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ABSTRACT

IMPROVING STRUCTURAL FEATURES PREDICTION 
IN PROTEIN STRUCTURE MODELING

Ashraf Yaseen 
Old Dominion University, 2014 

Director: Dr. Yaohang Li

Proteins play a vital role in the biological activities o f all living species. In nature, 

a protein folds into a specific and energetically favorable three-dimensional structure 

which is critical to its biological function. Hence, there has been a great effort by 

researchers in both experimentally determining and computationally predicting the 

structures of proteins.

The current experimental methods of protein structure determination are 

complicated, time-consuming, and expensive. On the other hand, the sequencing of 

proteins is fast, simple, and relatively less expensive. Thus, the gap between the number 

of known sequences and the determined structures is growing, and is expected to keep 

expanding. In contrast, computational approaches that can generate three-dimensional 

protein models with high resolution are attractive, due to their broad economic and 

scientific impacts. Accurately predicting protein structural features, such as secondary 

structures, disulfide bonds, and solvent accessibility is a critical intermediate step stone to 

obtain correct three-dimensional models ultimately.

In this dissertation, we report a set o f approaches for improving the accuracy of 

structural features prediction in protein structure modeling. First of all, we derive a 

statistical model to generate context-based scores characterizing the favorability of 

segments of residues in adopting certain structural features. Then, together with other 

information such as evolutionary and sequence information, we incorporate the context- 

based scores in machine learning approaches to predict secondary structures, disulfide 

bonds, and solvent accessibility. Furthermore, we take advantage of the emerging high 

performance computing architectures in GPU to accelerate the calculation o f pairwise 

and high-order interactions in context-based scores. Finally, we make these prediction 

methods available to the public via web services and software packages.
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CHAPTER 1 

INTRODUCTION

Understanding the implication between the genetic code and life could have 

practically infinite applications, from ad-hoc drug synthesis to the creation o f forms of 

life with desired characteristics. However, we are still far from reaching this goal. 

Research in this direction is still at its early stages, and one of the biggest open problems 

nowadays is the prediction of protein structure.

Proteins are the primary components of living things. In nature, proteins fold into 

specific three-dimensional structures which are critical to their functions. Therefore, there 

has been a great interest by researchers in both experimentally determining and 

computationally predicting the 3D structures of proteins.

The current experimental methods of protein structure determination are 

complicated, time-consuming, and expensive. In contrast, computational approaches that 

can generate 3D protein models with high resolution are attractive due to their broad 

economic and scientific impacts. Correctly predicting structural features such as 

secondary structures, disulfide bonds, and solvent accessibility, which we refer to as the 

intermediate prediction steps, is a critical step stone to obtain correct 3D models 

ultimately.

To illustrate the effectiveness of the intermediate prediction steps, we hereby use 

protein secondary structure as an example. The prediction of secondary structure is an 

important intermediate step; often viewed as a simplification o f the more challenging 

problem of the tertiary structure perdition. Correct prediction of protein secondary 

structures can significantly reduce the degrees of freedom in protein tertiary structure 

modeling and therefore reduces the difficulty of obtaining high resolution 3D models. For 

example, if a segment in a protein is predicted to be an a-helix, we can take advantage of 

the Ramachandran plot, shown in Figure 1, to derive a much smaller range o f possible 

torsion angles that can be assigned to the backbone of the predicted segment, or we can 

simply use the ideal values of the torsion angles to build a helix.
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Figure 1 Ramachandran plot. Source:
http://www.cryst.bbk.ac.uk/PPS95/couree/3_geometry/rama.html.

Similar to secondary structure prediction, correctly predicting the formation and 

connectivity of disulfide bonds and the residues’ solvent accessibility can reduce the 

conformational space to aid modeling protein structures and help predict important 

protein functions.

In conclusion, the knowledge of those structural features o f protein residues, 

when predicted with high accuracy, can provide extremely valuable information for 

predicting protein 3D structure and function [l].

1.1 Problem Definition

Historically, the improvement of structural features prediction methods benefits 

from the incorporation of effective features/information that helps separate among the 

different structural states. Nowadays, almost all modem prediction methods make use o f 

evolutionary information revealed by multiple sequence alignment (MSA) of a family of 

homologues proteins. This information forms the input encodings to a machine learning 

algorithm, trained to recognize and discriminate the different structural states.

The accuracy o f the current prediction methods is stagnated for the past few years 

and obtaining improvements of even fractions of a percent is becoming very difficult. For 

example, the accuracy o f secondary structure prediction is stagnated between 76-80% in 

3-state and ~68% in 8-state. Furthermore, most of the reported accuracies from different

http://www.cryst.bbk.ac.uk/PPS95/couree/3_geometry/rama.html
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structural features prediction methods are not cross-validated and/or obtained from 

several small datasets.

This dissertation work targets the research problem of how to continuously 

improve the accuracy o f predicting protein structural features toward their theoretical 

upper bounds. The objective of this dissertation is to improve predictions of protein 

structural features to a new level of accuracy.

Reducing the inaccuracy of protein structural features prediction, will be very 

useful in improving the efficiency of protein tertiary structure prediction, because the 

search space for finding a tertiary structure goes up super-linearly with the fraction of 

inaccuracy in structural feature prediction.

1.2 O ur Approaches

In machine learning, it is well-known that extracting and selecting “good” 

features can significantly enhance the prediction performance of a predictor. Probably the 

most effective features, when predicting the structural states o f residues, are the structural 

states of the neighboring residues (residue’s context). For example, a residue is likely 

exposed to solvent if the neighboring residues are highly exposed to solvent. Moreover if 

both adjacent neighbors are helices, the middle residue is most likely to be helix, and vice 

versa; if the adjacent positions of a residue are not helices, it is impossible for this middle 

residue to adopt helix as its secondary structure. In fact, our computational results show 

that if the true secondary structures of neighboring residues are encoded, machine 

learning using a simple feed-forward neural network can easily lead to above 90% 

prediction accuracy, which exceeds the theoretical upper bound.

Unfortunately, using the true structural states as features is not feasible since they 

cannot be known beforehand. However, this inspires us that the favorability o f a residue 

adopting a certain structural state can be also an effective feature. The statistical scores 

measuring the favorability of a residue adopting a certain structural state within its amino 

acid environment can be evaluated from the experimentally determined protein structures 

in the Protein Data Banks (PDB). Encoding these scores as features provides a way to 

address a long standing difficulty in machine learning methods, such as neural networks, 

of taking interdependency among structural states of neighboring residues into account.
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Previously, deriving statistically meaningful context-based scores to characterize 

high-order inter-residue interactions was not feasible, until recently, where sufficient 

numbers of experimentally determined protein structures are available in PDB. Moreover, 

recent developments in GPUs with massively parallel computing mechanism offer 

attractive opportunities to take advantage of the parallelism at the chip level to achieve 

high performance computing. Implementation of an efficient, load balanced algorithm for 

jV-body interaction calculation on GPU will speed up the calculation o f context-based 

scores from high order inter-residue statistics.

In this work we derive a statistical model to generate context-based scores. The 

context-based scores indicate the favorability of a residue adopting a structural state in 

presence of its neighboring residues in sequence. These scores are incorporated as 

sequence-structure features together with other sequence and evolutionary information in 

machine learning approaches to predict secondary structures in 3-state and 8-state, 

disulfide bonding states and bonding connectivity, and solvent accessibility. We validate 

our methods on several commonly used benchmarks and compare our results with a set of 

popular structural features prediction methods. Furthermore, we propose an approach for 

accelerating high-order inter-residue interaction calculations by taking advantage o f the 

GPU architecture. Finally, we develop web services hosting our prediction methods for 

the protein structure research community.

1.3 Background

The word “Protein” comes from the Greek word “Proteios” which means 

“primary”, or “of prime importance.” Proteins are the primary components of living 

things and the vital organism parts on the planet, making more than half o f dry weight in 

every cell. They are the molecules in charge of the essential functions of cells. For 

example, they provide the infrastructure that holds a creature together (structural 

support); they are enzymes that make the chemical reactions necessary for life possible; 

they are the switches that control gene expression; they are the sensors that see, taste and 

smell, and the effectors that make muscles move.

Proteins are complex molecules consisting of linear sequences of smaller 

molecules called amino acids. A protein chain may contain from a few dozens to
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thousands of amino acids. The term ‘residue’ is used to refer to an amino acid molecule 

integrated into the protein chain.

There are twenty types o f amino acids in nature. Each is referred to by three 

letters code or one letter for short. An amino acid is made o f a central carbon atom (Ca), 

a hydrogen atom attached to Ca, an amine group (H2N), a carboxyl group (COOH) and a 

side chain (R) that differs from one amino acid to another. Figure 2 shows the generic 

structure o f an amino acid. Amino acids in a protein chain (residues) are connected by 

peptide bonds. Each bond is formed between the Carbon (C) atom from carboxyl group 

of one amino acid and the Nitrogen (N) atom from amine group of the following amino 

acid [2]. Figure 3 depicts the formation o f a peptide bond between two residues.

u
A m i n e  G r o u p  |

H2 N Cfl— C C a r b o x y l  G r o u p  
I \

( r )  o h

S i d e  C h a i n

Figure 2 The generic structure of an amino acid.

A m i n n  A - l f l . '  t  A n n n a  A r i d .  /

V V
H2 N — c — c  + h 2 n  — c  —  c

( K J >  O H  ( j § )  O il

O '
H . O1̂

H2 N C ' ~  C^p-ritid-- II
i  x^Bond | ^ ^ , 0

N H - C - C

( r?> o n  
Figure 3 Two amino acids forming a peptide bond.
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The composition o f the side chain characterizes an amino acid — it determines the 

shape, the mass, the volume and the chemical properties of an amino acid. According to 

the properties o f the side chains, amino acids are classified into small/large, polar/non

polar, hydrophobic/hydrophilic, aromatic or aliphatic. These properties play a significant 

role in protein structure folding and protein-protein interactions. For example, 

hydrophobic amino acids are usually buried in the middle o f the protein 3D structure, 

while hydrophilic amino acids are likely to be exposed to solvent. Figure 4 is a classical 

Venn diagram grouping amino acids according to their properties. Original representation 

and information can be found in [2, 3].

The different groups shown in Figure 4 are:

• Polar/Non-Polar: a non-polar molecule has a relatively even distribution of charge. 

Some polar amino acids are positively or negatively charged in solution.

• Hydrophobic/Hydrophilic: hydrophobic residues tend to come together to form 

compact core that exclude water; they tend to be on the inside o f a protein, rather than 

on its surface. Hydrophilic residues are the opposite.

P ro lm c

S m all!

aliphatic

«>%■\  N egative

- C h arged

~~~|  Po lar]

A rom atic Positive

H y d ro p h o b ic

Figure 4 Amino Acids Properties (Venn diagram).
Source: http://www.dsimb.inserm.fr/~debrevemA/ENN_DIAGRAM/.

http://www.dsimb.inserm.fr/~debrevemA/ENN_DIAGRAM/
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• Aromatic: aromatic amino acid forms closed rings of carbon atoms with alternating 

double bonds

• Aliphatic: aliphatic amino acids side chain contains only carbon or hydrogen atoms

The differences in the physico-chemical properties o f amino acids result in 

different 3D proteins’ structures. Other aspects like electrostatic interactions, van der 

Waals forces, and hydrogen bonding among the different amino acids are important 

forces driving the protein folding process. Each different combination o f amino acids will 

result in different protein structural conformations, whose energy values are determined 

by the interactions among the different amino acids within the structure as well as the 

interactions between the amino acids and the surrounding solvent.

1.3.1 Protein Structure

According to Anfinsen’s thermodynamics hypothesis, under certain chemical and 

physical conditions, a protein (at least globular protein) folds into a very specific 

structure, the same structure every time, such that this structure is in the most stable state 

it can adopt. This unique structure is referred to as the native structure. The sequence of 

amino acids, building up the protein, ultimately determines its native structure [4].

Proteins start functioning when they are interacting with the cell molecules, or 

with each other. In order for such interaction to take place and be effective, proteins need 

to recognize other molecules and bind to them, like a bck and a key. Therefore, protein 

structure determines its biological function.

Protein Structure can be expressed in different hierarchal levels:

1. Primary Structure: refers to the linear amino acid sequence in the protein. It shows the 

order in which the amino acids are connected by peptide bonds forming the protein 

chain. The two ends o f the protein chain are referred to amino terminus (N -terminus) 

to the left and the carboxyl terminus (C-terminus) to the right. The numbering of 

amino acids start from N-terminus toward C-terminus.

2. Secondary structure: refers to the general 3D form of the protein local segments (with 

no description of the atomic coordinates in 3D space), formally defined by the 

patterns of hydrogen bonds between backbone amide (H-N) and carboxyl groups 

(C=0), where the classificatbn of secondary structure elements is determined by 

recognizing these hydrogen bonding patterns.
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The two most common stable secondary structure elements are a-helices and P- 

sheets; whose stability comes from the regular patters of hydrogen bonds.

a. a-Helix: stabilized by H-bonding between N-H group and C=0 group of peptide 

bonds four residues apart. Its orientation produces a helical coiling o f the peptide 

backbone such that the side chain groups stem out of the helix and perpendicular 

to its axis. Some amino acids prefer forming alpha helices (helix formers) and 

others do not (helix breakers), due to some constraints of their side chains. For 

example, Alanine, Asparatic Acid, Glutamic Acid, Isoleucine, Leucine and 

Methionine favor the formation o f a-helices, whereas, Glycine and Proline favor 

disruption o f the helix. Among the different types of proteins local structures, a- 

helix is the most regular type.

b. P-sheet: is the second common conformation. It is composed of two or more 

different segments (strands) o f stretches along the primary structure of the protein. 

Beta strands of 3 to 10 amino acids long are connected by at least 2 to 3 backbone 

hydrogen bonds. Beta sheets are either parallel or anti-parallel. In parallel sheets 

following peptide chains proceed in the same direction, whereas in anti-parallel 

sheets following chains are aligned in opposite directions.

There are also other less common forms of helices and strands, such as the 310- 

helix, 7r-helix, and P-bridge. Other forms of secondary structure elements are turns 

and bends, linking the more regular secondary structure elements. Turns refer to the 

close approach o f two consecutive Ca atoms (less than 7 A) in which no hydrogen 

bonds are formed, and bends are high twists in the protein chain. Finally, random 

coils refer to any secondary structure type that lacks a regular form.

Figure 5 presents the composition percentage of the secondary structure states in 

protein dataset CulI5547 [5], which contains 5,547 protein chains, 25% pair-wise 

sequence identity, and 2.0 A resolution. In general, 7t-helices and P-bridges have 

relatively infrequent appearances in protein data banks (PDB).

3. Tertiary Structure: refers to the complete 3D structure of a single protein molecule. 

Protein tertiary structure is stabilized by hydrophobic interactions, hydrogen bonding, 

disulfide bonding (in some proteins), and non-bonded interactions including 

electrostatic interactions, and Van Der Waals forces.
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Figure 6 shows the first 3 levels o f protein structure hierarchy.

4. Quaternary Structure: refers to multiple polypeptide chains that may form the protein 

molecule. The quaternary structure is stabilized by the same interactions as the 

tertiary structure.

1.3.2 Protein Structure Determination

The efforts of understanding protein structures and functions started in the 1950s. 

Biochemists were trying to define the relationship between protein sequences and their 

different chemical properties.

.G(310-Hela),
3.80%

l(n-H»H*).002KB (B-bridge). 
1.10*

Figure S Distribution of secondary structure states in Cull5547.

Primary Structure
Mfc’KVYCYDSNlHKCVYCDNAKRL.LTVKKQPFEFINIMPEKGVi'DDEKiAELLTKLGKDTQIGIjTMP*

Figure 6 Protein structure hierarchy.
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As an early step in characterizing protein chemistry, in 1955 British biochemist Sanger 

designed an experiment to identify the sequence of insulin [6]. The early effort by 

researchers on protein determination began in late 1950s. Two British scientists, John 

Kendrew and Max Perutz, published the very first high resolution protein structure [7].

Nowadays, the most common technique to determine proteins’ 3D structures is X- 

ray Crystallography. In this method, a protein molecule is crystallized first, then a beam 

of X-rays hits the crystal where it will diffracts into many specific directions. A 3D 

picture of the density of atoms within the crystal can be produced from diffraction 

patterns, angles, and intensities o f these diffracted beams [8]. This method determines the 

actual positions o f the proteins’ atoms and their chemical bonds. In fact, most o f the 

proteins in PDB were determined by this technique [9, 10]. Nuclear magnetic resonance 

(NMR) is another popular technique used to determine the structure of proteins. With this 

method, a protein molecule is placed inside a strong magnetic field and irradiated with 

radio-frequency pulses. The energy radiated back at specific resonance frequency will 

then be used to calculate the positions of the atoms [ 11].

Applying either method is not a straightforward process. Both methods require 

very expensive equipment, field experts, and weeks o f work, which require extra dollars 

for expert’s labor. Moreover, X-ray Crystallography is limited by the difficulty o f some 

proteins to form crystals and NMR can only be used to determine small proteins.

1.3.2.1 Secondary Structure

Once a protein 3D structure is determined, secondary structure elements can be 

identified, either by recognizing patterns of hydrogen bonds [12] or by mapping the 

backbone torsion angles into specific regions in the Ramachandran plot [13]. Several 

automated methods have been developed to determine protein secondary structures. The 

most commonly used method is DSSP (Dictionary of Protein Secondary Structure) [12], 

Given the atomic coordinates of a protein, the DSSP program will assign a secondary 

structure type for each residue. An a-helix assignment (state ’H') starts when two 

consecutive amino acids have (/, /+4) hydrogen bonds, and ends likewise with two 

consecutive (/'-4, /) hydrogen bonds. This definition is also used for 3 jo-helix (state 'G') 

with (/, /+3) hydrogen bonds, and for ji-helix (state T) with (/, j+5) hydrogen bonds as 

well. Figure 7 shows the 3 different types of protein helical shapes.
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Figure 7 Hydrogen bonding patterns in helical types.

Residues in a-helices typically adopt backbone (cp, \|/) dihedral angles around (- 

60°, -45°), such that the ip dihedral angle of one residue and the <p dihedral angle o f 

the next residue sum to roughly -105°. On the other hand, residues in 3io-he!ices typically 

adopt (<p, \|/) dihedral angles near (-49°, -26°), such that the \p dihedral angle o f one 

residue and the <p dihedral angle of the next residue sum to roughly -75°. The majority 

o f 7t-helices are only 7 residues in length and do not adopt regularly repeating (cp, 

vp) dihedral angles throughout the entire structure. When the first and last residue pairs 

are excluded, dihedral angles exist such that the \p dihedral angle o f one residue and the 9 

dihedral angle o f the next residue sum to roughly -125°. The first and last residue pairs 

sum to -95° and -105°, respectively.

A minimal size helix is set to have two consecutive hydrogen bonds in the helix, 

leaving out single helix hydrogen bonds, which are assigned as turns (state T ) .

Beta-sheet residues (state 'E') are defined as either having two hydrogen bonds in 

the sheet, or being surrounded by two hydrogen bonds in the sheet. In the first case, 

sheets can be anti-parallel or parallel, as illustrated in Figure 8. In the second case, when 

sheets are being surrounded by hydrogen bonds forming isolated residues, are considered 

as bridges (state 'B').
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(a) Parallel 0-Sheet (b) Anti-Parallel p-Sheet

Figure 8 Hydrogen bonding patterns in Parallel 8> Anti parallel p-sheets.

State 'S' assignment by the DSSP program indicates a bend, which is an irregular 

structure, corresponding to a high twist of at least 70° in the chain. The remaining DSSP 

state is (space) which indicates an unassigned/other state. Table 1 list all 8-state of 

protein secondary structure as defined by DSSP. Figure 9 illustrates various types of 

secondary structures in protein 1B00(A).

Other structural features including disulfide bonds, contacts, and solvent 

accessible areas can also be identified given protein 3D structure. The DSSP program can 

also be used to determine these structural features.

Table 1 DSSP secondary structure states.

Output State Description
H a-helix Two consecutive amino acids with (i, i+4) hydrogen bonds, and ends 

likewise with two consecutive (i-4, i) hydrogen bonds
G 3 io-helix Same as a-helix but with (i, i+3) hydrogen bonds
1 jc-helix Same as a-helix but with (i, i+5) hydrogen bonds
T Turn A hydrogen bonded turn
E P-sheet (or 3-strand) An extended strand (anti-parallel or parallel sheet)
B 3-bridge Isolated residue - a single residue P-strand
S Bend A bend in the chain

Other Unassigned - any residue that does not belong to any of the previous 7 
states.
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Figure 9 3D structure of Protein 1BOO Chain A.

1.3.2.2 Disulfide Bonds

Disulfide bonds (alternatively called disulfide bridges or SS-bonds) are covalent 

bonds formed between two sulfur atoms from nonadjacent Cysteine pairs o f a protein 

structure. Figure 10 shows an example of a disulfide bond between two Cysteine residues 

in protein 153L(A). Disulfide bonds are often found in extracellular proteins, which play 

an important role in folding and enhancing thermodynamic and mechanical stability. 

Disulfide bonding patterns can also be used to discriminate structure similarity, even 

when low sequence similarities are present [14]. Furthermore, certain disulfide 

configurations provide mechanisms for sensing and responding to tensile forces, 

diversifying and functionalizing protein folds, minimizing aggregation, confining and 

coupling conformational changes, and controlling packaging and releasing for 

intercellular transport [15].
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Fiaure 10 Disulfide bond in protein chain.

1.3.2.3 Solvent Accessibility

The solvent-accessible surface area, or accessibility, of a residue is the surface 

area of the residue that is exposed to solvent. The residue accessibility is a useful 

indicator to the residue's location, on the surface or in the core, in the protein molecule. 

Figure 11 shows the surface area surrounding a protein segment.

Residue solvent accessibility is usually measured by rolling a spherical water 

molecule over a protein surface and summing the area that can be accessed by this 

molecule on each residue. To allow comparisons between the accessibility o f the 

different amino acids in proteins, typically relative values are calculated as the ratio 

between the absolute solvent accessibility value and that in an extended tripeptide (Ala- 

X-Ala) conformation [16]; referred to as the percentage of maximally accessible area. 

The DSSP program [12], can be used to calculate the absolute solvent accessibility values 

o f proteins.

Figure 11 Surface area of a protein segment
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Residue solvent accessibility plays an important role in folding and enhancing 

proteins’ thermodynamic and mechanical stability. The burial of residues at core 

(hydrophobic residues) is a major driving force for folding [17]. Moreover, the 

hydrophobic free energies are directly related to residues’ solvent accessibilities, of both 

polar and nonpolar groups [18]. Furthermore, active sites of proteins are located on its 

surface. Hence, prediction of the surface residues is considered an important step in 

determining proteins functions [19].

1.3.3 Protein Structure Prediction

Protein in nature folds into a unique and energetically favorable 3D structure 

which is critical and unique to its biological function. Hence, solving the protein folding 

problem is the key to many applications in the fields o f protein engineering and drug 

design.

Genome projects came out with millions of protein sequences of which only a 

small fraction have their 3D structure experimentally determined. (As of Tuesday April 

29, 2014 there are 99,775 structures in pdb.org [9]). Researchers in the field of protein 

structure determination are putting large effort on bridging the huge gap between 

sequence and structure. The current experimental methods of protein structure 

determination are complicated, time-consuming, expensive, and, in some cases, 

unsuitable. Therefore, computational methods for structure prediction are becoming an 

irreplaceable option.

In the early 1950s, an American biochemist, Anfinsen, observed that the active 

polypeptide o f a model protein could fold spontaneously into a unique 3D structure. He 

also observed that an enzyme unfolded under extreme environment could refold 

spontaneously into the same 3D structure that it folds into under natural conditions (its 

original or native conformation) [20], Based on his observations, Anfinsen had developed 

his theory of protein folding: “The native conformation is determined by the totality of 

interatomic interactions and hence, by the amino acid sequence, in a given environment”. 

This theory, also known as Anfinsen’s thermodynamics hypothesis, established the 

foundation of ab initio protein structure prediction problem, i.e. predicting the native 

conformation of a protein from its primary sequence.
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Following Anfmsen’s thermodynamics hypothesis early approaches for solving 

the protein structure prediction were based on the thermodynamics o f protein folding. 

Computer searching methods were applied to investigate the free energy of many local 

minimum energy confrontations in an attempt to find the global minimum conformation 

i.e., the thermodynamically most stable conformation o f the protein. The main challenges 

in these methods were in the huge conformational space, due to the flexibility of the 

proteins, and the complexity of the energy functions.

The search space of the protein structure prediction problem is astronomically 

large. In 1969, Cyrus Levinthal stated that the protein molecule has an astronomical 

number of possible conformations, due to the large number of degrees o f freedom in the 

protein primary structure. Despite this huge search space, proteins fold reliably and 

quickly to their native conformation. This is known as “Levinthal’s Paradox” [21]. For 

example, a protein molecule consisting o f 100 residues will have 99 peptide bonds, and 

therefore 198 different (<p, \|/) bond angles. If we assume that each of these angles can be 

in one o f three stable conformations, then the protein may misfold into a maximum of 

3198 different conformations. Therefore, if we try to sequentially enumerate all the 

possible conformations and evaluate each one, in order to get the one conformation with 

the lowest energy, assuming that each conformation is sampled at 1 nanosecond 

timescale, then this requires 9.4* 1077 years! The "paradox" is that most proteins fold 

spontaneously on a millisecond or even microsecond time scale.

In order to reduce the search space o f the protein structure prediction problem, 

one must consider devetoping an accurate energy function and a rapid searching 

algorithm. Hence, researchers dedicated large efforts in this area, which was then referred 

to as ab initio structure prediction.

During these times when ab initio researchers were working on their energy 

minimization approaches, other researchers were investigating different methodologies of 

protein structure prediction. Back then, an important observation was marked; “proteins 

that share similar sequences often share similar structures”. This observation opened the 

gate towards a new method in solving the protein structure prediction problem, which 

came to be known as template-based modeling. Below is a brief description of both, 

template-based modeling and template-less modeling (ab initio).
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1.3.3.1 Template-based Modeling

The template-based modeling methods are based on knowledge learned from the 

known protein structures deposited in protein databases [22], These methods use 

sequence similarity to model the unknown target structure based on known structures that 

are understood to be homologous to it. When a query protein shares at least 30% 

sequence similarity with a protein of known structure, template-based modeling can be 

used to predict the structure with reasonably good accuracy [23, 24].

Template-based modeling consists of four steps:

a) Find a good template from already determined structures in the protein data bank, by 

means of sequence alignments.

b) Align query sequence with the template structure.

c) Build the structural framework based on alignment, by copying aligned regions.

d) Fill up the gaps on the framework [25].

Template-based modeling has been successful in many cases when homo logs with 

high sequence similarity are available. However, when such homologs with high 

sequence similarity are not present in PDB or sequence alignments are incorrect, building 

high-quality templates becomes a difficult challenge. Moreover, the assumption that 

proteins with high sequence similarity share similar structures is not always true.

1.3.3.2 Template-less Modeling

Different from template-based prediction, ab initio (or de novo) predictions are 

methods that do not rely on templates of known structures with high sequence similarity.

An ab initio prediction system is generally composed of two main elements: a 

search algorithm and a scoring function (or energy function). The search algorithm is 

designed to broadly explore the protein conformation space guided by the scoring 

function. The scoring function is derived from physics laws or statistics, or is a 

combination o f both, characterizing the favorability of a protein sequence adopting a 

certain structural conformation. The scoring function should be able to distinguish good 

conformations from bad confirmations. It should also properly describe the forces behind 

the folding process. Many scoring functions have been proposed in the literature of ab 

initio prediction. Examples include, DFIRE [26], a distance-based all atom knowledge- 

based function, CHARMM [27], a physics-based energy function, ICOSA, a knowledge-



18

based contact potential correlating residue-residue interaction distance and orientation 

[28], and ROSETTA[29], that includes terms combing physics-based and knowledge- 

based approaches.

One o f the main challenges in ab initio protein structure prediction is the 

tremendously large conformation space. Reducing the conformation search space is the 

key to successful ab initio prediction. For this regard, the structural features, such as 

secondary structures, disulfide bonds, solvent accessibility, residue contacts, etc., become 

extremely useful. For example, if a protein segment is predicted to be in a certain 

secondary structure state with high confidence, then a limited range of the corresponding 

torsion angles can be used. Such restrictions on the degrees of freedom in protein 

segments will significantly reduce the conformation search space.

1.3.4 Protein Structural Features Prediction

The problem of structural feature prediction is formulated as a classification 

problem, such that each residue is predicted to be in one o f several states. A coarse-grain 

classification of secondary structure uses 3 states (helix, sheet, and coil), whereas a fine- 

grain classification uses all 8 states (a-helix, n-helix, 3|o-helix, P-strand, P-bridge, turn, 

bend and others). The disulfide bonding prediction involves two stages. The first stage is 

the bonding state prediction, whose goal is to determine whether each Cysteine residue in 

a protein chain is involved in forming a disulfide bond or not. Afterward, the second 

stage carries out the connectivity prediction, where Cysteine pairs likely to form disulfide 

bonds are identified. Residue solvent accessibility is usually classified into two states, 

such that each residue is classified into either buried or exposed. Finer-grain 

classification is also possible, where levels o f solvent-expo sure are defined and used in 

the classification.

Almost all current methods for protein structural features prediction use 

evolutionary information revealed by multiple sequence alignment (MSA) of a family of 

homologues proteins. This information forms the input encodings into a machine learning 

algorithm, trained to recognize and discriminate the different structural features’ states.
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1.4 Dissertation Organization

The remainder of this dissertation is organized as following. Chapter 2 presents 

the related work in predicting protein structural features and also the related work in 

GPU-acceleration in general purpose computing and in computational biology. Chapter 3 

describes our approaches for enhancing the accuracy of predicting protein structural 

features. We present the application o f the proposed approach in predicting secondary 

structures, disulfide bonds, and solvent accessibility in Chapters 4, 5 and 6, respectively. 

In each application area, we present implementation details o f  the approach, 

computational results, and discussions. In Chapter 7, we present our method of 

accelerating many-body potentials on the GPU. Finally, Chapter 8 summarizes our 

conclusions and provides our future (post-dissertation) research directions.
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CHAPTER 2 

LITERATURE REVIEW

In this literature review we present a review of the history of protein structural 

features’ predictions. Three generations o f predictors are presented in section 2.1. After 

that, in section 2.2, we provide an analysis o f the current prediction methods. In Section

2.3 we present a review o f the GPU-acceleration in general purpose computing and in 

computational biology.

2.1 History of Protein Structural Feature Prediction

Assuming that “there should be a strong correlation between amino acid sequence 

and structural state,” historically, protein structural feature predictions evolve through 

three generations.

2.1.1 1st Generation: Statistics-based methods

The early methods o f prediction are based on the fact that amino acids vary in 

their favorability in adopting specific structural states. Using secondary structure as an 

example, some amino acids prefer to adopt helical conformations (Methionine and 

Alanine), some favor 13-strand conformations (Tryptophan, Iso leucine and Valine), and 

some are commonly found in turns (Proline and Glycine). Thereby, statistical analysis 

can be performed for each amino acid in the various types of structural states which will 

result in single-residue frequency. These statistical analysis approaches become the 

foundation of the first-generation of structural features predictors.

Representative examples o f the first generation methods include Chou and 

Fasman’s method [30] and the GOR method for secondary structure prediction and a 

method by Fiser et al. [31] for disulfide bonding state prediction.

Although these early statistics-based methods are very simple to implement, 

databases o f known protein structures are of limited size and, more importantly, simple 

amino acid preferences are not sufficient enough to predict the protein structural 

information with high accuracy. As a result, the accuracy o f the early prediction methods
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did not exceed -60% in 3-state secondary structure prediction and -70% in disulfide 

bonding prediction.

2.1.2 2nd Generation: Machine learning-based methods

The second generation of structural features predictors extends the early methods 

by using the segment-based statistics (11-21 residues per segment). The basic idea is 

based on the likelihood of the central residue in a segment (or window) o f size N residues 

to adopt a particular structural state.

In order to detect higher order correlations among amino acids, machine learning 

methods were used in this era of structural features prediction history. The typical 

methodology, based on the earliest published work by Qian & Sejnowski in 1988 [32], is 

to train a learning machine (for example, a feed-forward neural network) to recognize 

amino acid patterns adopting certain structural feature. In addition to neural networks, 

support vector machine, nearest neighbors, random fields, and Hidden Markov Chain are 

popular machine learning tools in predicting protein structural features.

Due to advancements in machine learning methods, the accuracy o f structural 

feature prediction is significantly improved. Secondary structure prediction approaches 

70% and disulfide bonding state predictions reaches 81%.

2.1.3 3rd Generation: Prediction with Effective Features

In addition to sequence information, computational biologists found that certain 

information, when used as features in machine learning, can effectively enhance the 

prediction accuracy. Therefore, modern predictors focus on generating and selecting 

effective features in machine learning. The most effective feature is the evolutionary 

information obtained by multiple sequence alignment (MSA). The fundamental idea of 

using evolutionary information is based on the fact that structure is more conserved than 

sequence. When MSA is used, one can extract more information, including conserved 

residues and residue substitutions during evolution. Such information is particularly 

useful to achieve further accuracy improvement.

The following subsectbns provide literature review of the current methods of 

predicting protein structural features.
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2.1.3.1 3-state secondary structure

The first approach to use MSA profiles in secondary structure prediction was 

developed by Rost and Sander [33, 34], in a method called PHD, presenting an accuracy 

surpassing 70% for the first time when introduced. Additional input information derived 

from the results of MSA, including conservation weights and number of insertions and 

deletions, were used in later versions of PHD method [35] and resulted in ~1.6% increase 

of the accuracy over the original PHD method.

The PSI-PRED program [36] uses PSI-BLAST to replace BLAST to generate 

sequence position profiles and reaches an accuracy of -76.5-78.3%. The more recent 

update of PHD method, called PROFPHD [37], also uses PSI-BLAST-derived profiles as 

well as ensembles of bidirectional recurrent neural network architectures and a large non- 

redundant training set to achieve an overall prediction accuracy of -78%.

More recent methods with enhanced strategies and additional features lead to 

continuing improvements of secondary structure prediction accuracy. Porter [38], with 

the use o f bidirectional recurrent neural networks (BRNN) and PSI-BLAST profiles, 

reached an accuracy of -79%. YASPIN [39], with the use o f HMM to filter the 

prediction of a NN, leads to similar accuracies o f -79%. SPINE [40], with the inclusion 

of physico-chemical properties of each amino acid combined with PSI-BLAST profiles, 

obtains an accuracy o f -80%. Moreover, large scale training is been conducted in order to 

improve the prediction performance. The recent version of PSI-PRED reported an 

accuracy of -80% due to large scale training. Furthermore, new approaches have been 

proposed to apply a number of the recent prediction methods then combine their results 

and take a consensus prediction on top o f them. Jpred [41] is an example o f consensus 

predictors with an accuracy o f -81%.

All secondary-structure prediction methods are evaluated by the EVA experiment, 

a Web based assessment tool that evaluates prediction servers since 2006 [42]. It is also 

important to notice that there is certain grade of uncertainty in the assignment of 

secondary structures. The theoretical maximum prediction accuracy for the 3-state 

secondary structure is in the range between 88% and 90% [43], due to the errors resulted 

from secondary structure assignments based on crystal structure, and due to inconsistency 

of secondary structure assignments by different methods of different parameters, e.g.,
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DSSP [12] and STRIDE [24]. These errors will cause ambiguity in mapping 3D atom 

coordinates into secondary structure classes.

2.1.3.2 8-state secondary structure

Unlike 3-state secondary structure prediction, very few methods were developed 

for the 8-state secondary structure prediction, to the best of our knowledge. Pollastri et al, 

extend their 3-state prediction method, SSpro, by developing another version for 8-state 

secondary structure prediction, SSpro8 [37], The 8-state prediction accuracy reported in 

their work was 62-63%. A more recent prediction method developed by Xu et al [44] 

reports 67.9% accuracy through the use of conditional neural field (CNF) model, the 

method is called RaptorXss8.

2.1.3.3 Disulfide bonding state and bonding connectivity

Regarding the disulfide bonding state prediction methods, the use of evolutionary 

information contained in MSA leads to substantial improvements. Fariselli et al. [45] 

designed a jury of NNs trained by sequence profiles using MSA and resulted in 81% 

accuracy. Fiser and Simon [46] derived conservation scores from MSA to predict the 

oxidation state of Cysteine residues and obtained an accuracy o f 82%. More recent 

methods with enhanced strategies and additional features lead to continuing 

improvements of bonding state prediction accuracy. Mucchielii-Giorgi et al. [47] 

investigated the contribution of the overall amino acid composition o f the protein and 

managed to increase the accuracy to 84%. Ceroni et al. [48] proposed a method using 

spectrum kernel in SVMs, which yielded 85% prediction accuracy. Martelli et al. [49] 

combined a hybrid HMM and a NN in their prediction system and reached 84% and 88% 

accuracy measured on protein basis and Cysteine basis, respectively. Song et al. [50] 

incorporated dipeptide composition as features in prediction and gained similar accuracy.

The connectivity prediction started with the early method proposed by Fariselli 

and Casadio [51] based on graph matching, such that edges are weighted by residue 

contact potentials. Although this method was 17 times higher than a random predictor, 

still it is not comparable with the current connectivity predictors that incorporate 

evolutionary information contained in MSA, in advanced machine learning technologies. 

Ceroni et al. [52] encoded MSA data into Recursive Neural Networks in their
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DISULFIND server with 54.5% pattern precision and 60.2% bonded pair accuracy. Ferre 

and Clote [53] took advantage of secondary structure encoding in their DiANNA server 

and reached 86% accuracy. Cheng et al. [54] performed large-scale prediction of 

disulfide connectivity using kernel methods, two-dimensional recursive neural networks, 

and weighted graph matching and obtained accuracy of 51% pattern precision. Vincent et 

al. [55] took advantage of decomposition kernels for classifying chains instead of 

individual residues and achieved prediction accuracy comparable to the other prediction 

methods.

2.1.3.4 Solvent accessibility

A number of methods have been developed using different protein datasets and 

different computational methods, including neural networks [56-61], support vector 

machines [62, 63], nearest neighbor [64, 65], information theory [66], and Bayesian 

statistics [67]. In most of these methods, the prediction is performed in a discrete fashion, 

where predictors discriminate among a number o f predefined levels or states of residues’ 

exposure with predefined thresholds.

Predicting solvent accessibility using evolutionary information, revealed by 

multiple sequence alignments, led to a significant accuracy increase. Rost et al [68], Cuff 

et al [69], and Thompson et al [67] reported a two-state prediction accuracy o f -75% with 

0.25 threshold. More recent prediction methods benefit from PSI-BLAST derived profiles 

to reach higher accuracies o f -78%  in two-state prediction with 0.25 threshold, and an 

accuracy o f -64%  in three-state prediction with 0.9 and 0.36 thresholds [59, 63-65].

Most of the current methods nowadays provide real value prediction, in addition 

to discrete-fashion prediction (in 2-state, 3-state, or more). The Pearson correlation 

coefficient (between the predicted and true values) reported in real value predictors is 

-0.65 [64, 70].

2.2 Analysis of Protein Structural Feature Prediction

Large improvements have been obtained since the first generation structural 

features predictors. However, little significant progress has been reported in the past few 

years. Obtaining improvements o f even a fraction of a percent has become very difficult. 

One o f the reasons is the closer to the theoretical upper bound, the harder to achieve a
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higher accuracy. More importantly, lack of further effective features limits the 

performance of the learning machines.

Probably the most effective features, when predicting the structural state of a 

residue, are the structural states of the neighboring residues. For example, if the 

neighboring residues are exposed to solvent, the middle residue is likely exposed to 

solvent as well. If the neighboring residues are helices (sheets), the middle residue also 

has a high probability to adopt helix (sheet). Unfortunately, the structural features o f the 

neighboring residues cannot be directly applied to the learning machines, since they are 

unknown beforehand.

The main contribution of this work is the generation of context-based scores to 

describe the favorability o f the neighboring residues in adopting certain structural states 

and then encode these scores to train machine learning methods, with the expectation of 

improving prediction accuracy. In Chapter 3, we will explain our approach o f extracting, 

selecting, and then encoding these features in a neural network algorithm to improve the 

prediction accuracy o f protein structural features.

2.3 GPU-acceleration

Today’s Graphical Processing Units (GPUs) greatly outpace CPUs in arithmetic 

throughput and memory bandwidth, forming a dramatic shift in the field of high 

performance computing [71]. With the massively parallel computing mechanisms, GPUs 

are able to deliver performance speedups tens of times more than the CPU (and 

sometimes hundreds o f times), to solve problems in few minutes instead o f hours or days. 

Hence, GPUs became the ideal processor to accelerate a wide variety o f data parallel 

applications.

2.3.1 GPU applications in general purpose computing

Efforts to utilize the GPU for non-graphical applications have been underway 

since 2003. With the introduction of the CUDA environment from NVIDIA in 2007, a 

wide variety of applications have emerged [71-73] taking advantage o f the GPU 

capabilities in accelerating the operations of these applications. Owens et al. [72] 

described the techniques used in mapping general-purpose computation to GPUs, and
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they surveyed and categorized the latest developments in general-purpose application 

development on GPUs. Another survey was conducted by Stone et al. [74] on the 

development of molecular modeling algorithms that uses GPU computing. Zhu has 

designed a number of GPU-accelerated algorithms with CUDA for global optimization 

[75, 76]. Zhou and Tan [77] developed a parallel approach to run standard particle swarm 

optimization on GPU with speedup of around 11. You [78] designed a parallel Ant 

Colony Optimization (ACO) system for Traveling Salesman Problem on GPUs. 

Bakhtiari et al. applied GPU to Monte Carlo optimization in dose calculation in radiation 

therapy [79],

2.3.2 GPU applications in energy evaluations

It is common that the computation time of a protein structure modeling program 

ranges from several hours to several days or even longer. Many protein structure 

modeling applications can greatly benefit from a significant reduction in computation 

time by enabling one to sample broader conformation space to discover the appropriate 

structures, execute more simulation steps to obtain models with better accuracy, or carry 

out simulation on much larger proteins.

The most costly operations in many protein modeling applications are energy 

evaluations of protein molecules. Protein energy evaluation involves calculating all the 

interactions among protein atoms, which is typically an V-body problem. Reducing the 

energy evaluation time is the key to accelerate many protein structure modeling 

applications.

Being able to simultaneously calculate interaction forces among N  particles, 

GPU has been employed to accelerate the iV-body simulation in a variety o f applications. 

For example, Nyland, Harris, and Prins [80] developed a fast jV-body astrophysical 

simulation on NVIDIA GeForce 8800 GTX GPU. They reported on the performance of 

the all-pairs jV-body kernel for the simulation, demonstrating several optimizations to 

improve the performance.

Stock and Gharakhani [81] introduced an efficient multi-pole-accelerated tree 

code method for turbulent flows computations. Anderson, Lorenz, and Travesset [82] 

developed a general purpose molecular dynamics program that runs entirely on the GPU, 

showing that GPU provides an inexpensive alternative to a fast 30 processors distributed
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memory cluster. Mark et el. [83] described a complete implementation o f all-atom protein 

molecular dynamics running entirely on GPU, including all standard force field terms, 

integration, constraints, and implicit solvent. They provided two implementations on ATI 

and NVIDIA GPUs. Belleman, Bedorf and Zwart [84] took the advantage o f the 

parallelism in the GPUs in speeding up the force evaluations in a gravitational direct N- 

body simulation. They concluded that modem GPUs offer an attractive alternative to 

special purpose hardware designed for simulations.
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CHAPTER 3 

CONTEXT-BASED MODEL

In this chapter we describe our proposed approach. An overview of the materials 

and the methods are presented in section 3.1, implementation details are described in 

section 3.2, and methods of evaluations are presented in section 3.3.

3.1 Model Overview

Figure 12 is a flow chart representing our developed approaches in predicting 

protein structural features. The dashed lines in the figure represent optional steps. First of 

all, in this work, we derive a statistical model to obtain context-based scores. Then, 

together with other features such as evolutionary information, we incorporate the context- 

based scores in machine learning approaches to predict secondary structures, disulfide 

bonding state and bonding connectivity, and solvent accessibility.

GPU

Features
Benchmark

Construct!

j  Template"*]

8-state3-state

Secondary Structure 
TemnlMes Constructor

Disulfide Bond 
Prediction

Connectivity

Solvent Accessibility 
Prediction

Secondary Structure 
Prediction

Multiple Sequence 
Alignments

Context-based Features 
Generator

Figure 12 The proposed methodologies in predicting protein structural features.
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Moreover, we take advantage of the emerging parallel computing architectures in 

GPU to accelerate the derivation of context-based features. Finally, we make the 

predictors available to the public via web services and software packages.

It is well known that there exist general short range regularities in the primary 

structure of proteins [85]. Early studies have shown that the types and conformations of 

neighboring residues play a significant role in the structural conformation a residue 

adopts. In fact, taking advantage o f the local information embedded in the context of a 

residue is the foundation for most protein structural feature prediction methods.

3.1.1 Datasets 

■ Training Data Sets

A number o f protein datasets are taken from the protein sequence culling server, 

PISCES [5]: Culil6633, Cull7987 and Cul!5547, referred to as CullPDB lists. Table 2 

lists the characteristics of each dataset. These lists are used in our experiments for the 

proposed approach in the different structural features prediction methods. CuIIl 6633, the 

largest among the datasets, is used for generating context-based statistics. The other two 

datasets are used for NN training in structural prediction.

The structural features of each residue in the CullPDB lists are determined by the 

DSSP program [12]. These features include 8 states of secondary structure, solvent 

accessible surface areas, and disulfide bonds among Cysteine residues only. Figure 13 

shows the distribution of various structural features in Culll6633. Similar to most 

existing structural feature prediction methods, we apply a general elimination strategy to 

CullPDB list. We eliminate very short chains with less than 40 residues, since the PSI- 

BLAST program is usually unable to generate profiles for very short sequences. We also 

remove very large chains whose lengths are greater than 1000 residues.

Table 2 Characteristics of CullPDB lists.

Culll6633 Cull7987 Cull5547
Number of chains 16,633 7,987 5,547
Pair-wise sequence identity 50% 25% 25%
Resolution (A) 3.0 3.0 2.0
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Figure 13 Distribution of the structural states in the Cull16633.

■ Benchmarks

For the purpose of comparing our methods with the current methods of structural 

feature predictions, several protein benchmark sets are used. These sets include CB513 

[69], Manesh5l2 [2], Carugo338 [86] and the CASP9 targets [87].

3 .1.2 Multiple Sequence Alignment

Our proposed approaches critically rely on the evolutionary information in 

multiple sequence alignment (MSA). Similar to many modem protein structural feature 

predictors, this evolutionary information, representing the divergence o f a protein chain 

in its structural family o f proteins and contained in matrix format referred to as PSSM 

(Position Specific Scoring Matrix), is obtained by running PSI-BLAST with 3 iterations 

of searching against non-redundant database o f protein sequences (NR).

3.2 Model Implementation

Figure 14 depicts the flowchart o f the proposed model. PSSM data of the 

CullPDB sets are generated by running PSI-BLAST against the NR (non-redundant)
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Figure 14 Context-based Model.

database. After that, context-based features are generated based on the PSSM data of 

Cull16633 and then combined with the PSSM data of Cull7987 or Cull5547 to describe 

each residue. The resulting residues’ features are then encoded in neural networks for 

training and testing. The context-based features are represented as pseudo-potential 

scores to estimate the favorability o f residues in adopting specific structural states within 

their amino acid environment. These potentials are calculated based on the context-based 

statistics, which are derived from the protein datasets.

3.2.1 Derivation of Context-based Scores

We extract statistics o f residues at different relative positions in Culll6663 

protein sequences. These statistics represent estimations of the probabilities o f residues 

adopting specific structural states when none, one, or more o f their neighbors in context 

are taken into consideration. Fortunately, the recent increasing number of determined 

structures in protein data banks will make derivation of high-order-inter-residue 

correlation statistics feasible.
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Furthermore, to obtain more precise neighboring correlation statistics of residues’ 

structural states, we consider the divergence of a protein sequence in its structural family 

by using the PSSM data specifying the frequency o f each amino acid type in a protein 

MSA. The derived statistics of correlations between each residue and its nearby 

neighbors are then used to calculate context-dependent pseudo-potential scores using 

Sippl’s potentials of mean force method based on the inverse-Bohzmann theorem [88]. 

These scores are encoded in NN training for the different structural features predictors.

3.2.2 Machine Learning Algorithm

We consider neural network as our machine learning model. Implementation 

details will be presented with each predictor in chapters 4, 5 and 6.

3.3 Methods of Evaluation

We use Qi and SOV/ scores, where i is the number of states, to measure the 

prediction quality o f secondary structure and solvent accessibility. The definition of Qi is,

Qi = 100 * , where Pj is the total number of correctly predicted residues in state i

and N( is the total number of residues in this state. For example, in 3-state secondary

structure prediction, Q3 is the percentage o f residues predicted correctly in one o f the

three states: helix, strand, and coil.

For state i, SOVi (Segment overlap [89]) is defined as,

1 y  [minOV(sl, s2) -I- 6 (s l , s2) 
maxOV(sl,s2)SOVi = 100 * jj; * 2 , [----------------------------------- * len (sl)

Si

,where (si, s2) is a pair of overlapping segments, Sj is the set of all overlapping pairs o f 

segments in state i and Nj is the summatbn of the si lengths in Si (where there is an 

overlap with s2) plus the summatbn of the lengths of si in S j (where there is no overlap 

between segment s2 and si). minOV(sl,s2) is the length of the actual overlap of (si, s2) 

in state i, maxOV(sl, s2) is the total extent for which either segment (si or s2) has 

residue in state i and 6 (s l,s2 ) is defined as: <S(sl,s2) =  m m {m axO V(sl, s2) — 

m inO V (sl,s2 ),m inO V (sll s2 )l in t( len (s l)  /  2), in t(len(s2) /  2)}, where /e n (s l)  

and len(s2 ) are the lengths of si and s2 respectively.
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In order to measure the quality of disulfide bond prediction, we use sensitivity 

(Sn), specificity (Sp), and Matthew’s correlation coefficient (Mcc) [90]. The definitions 

of each is given by

c - T P /
n “  / ( T P  + F N )

S p =  T N / ( T N  +  F P )

( T P  * T N - F N *  F P )
Mcc = — -................................. ,

J ( T P  +  F N )  * ( T N  +  FP) * ( T P  +  F P )  * ( T N  +  F N )

where TP, TN, FP, and FN are the number o f true positives, the number of true negatives, 

the number of false positives, and the number o f false negatives, respectively. We also 

use residue-level accuracy (Qc) and protein-level accuracy (Qp ) to measure the prediction
p

accuracy. The residue-level accuracy is defined as, Qc = c//v < where Pc is the total

number of correctly predicted residues (in a specific structural state), and N c is the total 

number of residues. The protein-level accuracy is defined as, Qp = j \ y < where Pp is

the total number o f proteins where the structural states of all o f its residues are correctly 

predicted and N p is the total number of proteins in the data set.

Furthermore, in order to have a reliable estimate of the predictbn accuracy, N- 

fold cross validation is conducted. We randomly divide the protein chains in the training 

set into N  subsets with approximately the same number of chains. At each fold, N-2 

subsets are used for training, one for testing, and one for validation. To ensure complete 

separation of the training set and testing set for each fold, we generate a set of scores only 

based on the sequences in the N-2 training subsets and then encode it in training. Hence, 

totally N  sets of context-based scores are generated for A-fold cross validation. The 

overall prediction accuracy is calculated as the average accuracy o f the N fold 

predictbns.

Regarding the GPU acceleration, a simple performance metric is used to measure 

the speedup, defined by dividing the CPU time (tCPU) by the GPU time (tGPU). 

speedup  =  tCPU /  tGPU.
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CHAPTER 4 

SECONDARY STRUCTURE PREDICTION

Using the context-based model, we extract context-based statistical scores to 

measure favorability o f a residue adopting secondary structure in its amino acid 

environment. The fundamental idea is based on the fact that the formation of secondary 

structure exhibit strong local dependency, particularly, residues in a protein sequence are 

strongly correlated in different sequence positions in coils, P-sheets, 3-10 helices, a- 

helices, and a-helices. The context-based statistics indicate the favorability of a residue 

adopting a secondary structure conformation in presence of its neighbors in sequence. We 

derive statistics for singlets, doublets, and triplets in a sequence window from the 

CullPDB dataset. Then scores measuring the pseudo-potentials o f a residue adopting a 

certain secondary structure are calculated using the potentials of mean force approach. 

These scores are incorporated as sequence-structure features together with the PSSM data 

to train the secondary structure prediction neural networks. We apply our approach to 

predict secondary structures in both 3-state and 8-state. Our server implementing this 

method is named SCORPION (SeCOndaRv structure PredictlON) [91]. C3-SCORPION 

for 3-state prediction is available at: http://hpcr.cs.odu.edu/c3scorpion and C8- 

SCORPION for 8-state prediction is available at: http://hpcr.cs.odu.edu/c8scorpion. To 

take advantage of available homolog information, we also develop a temp late-based 

approach to construct templates for secondary structure predictors [92].

We test our methods on benchmarks of CB513 [69], Manesh215 [16], and 

Carugo338 [86] as well as the CASP9 targets [87]. We compare our results with a set of 

popular secondary structure prediction methods including Porter (ab initio) [38], Psipred 

[36], PROFphd [35], Netsurfp [60], and Jpred [41] for 3-state predictions, and with 

RaptorXss8 [44] for 8-state predictions. Prediction accuracy of our methods is further 

analyzed in this work.

http://hpcr.cs.odu.edu/c3scorpion
http://hpcr.cs.odu.edu/c8scorpion
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4.1 C3-SCORPION

The early studies in protein secondary structure show that the types of nearby 

neighboring residues play a predominating role to secondary structure conformation a 

residue adopts. In particular, the formation of interactions within coils beyond nearest 

neighbors appears not to contribute statistically significantly in determining coil structure 

[93]. The hydrogen bonds between residues at positions i and i+3, i and i+4, and i and i+5 

lead to the formation of 3-10 helices, a-helices, and n-helices, respectively. Moreover, 

residues in contacting parallel or anti-parallel |}-sheets are connected by hydrogen bonds 

in alternative positions.

Figure 15 shows the probability of Alanine as the middle residue of a triplet with 

neighboring residues at 1-5 positions away when adopting a-helix as secondary 

structure. As expected, the nearest neighbors have the strongest influence to the middle 

Alanine and the further the neighbors are away, the weaker the influence. However, even 

residues five positions away have non-negligible influence on the secondary structure of 

the middle Alanine.

Hence, capturing these correlations and then incorporate them as features into the 

learning process of a secondary structure predictor can enhance the prediction accuracy.

4.1.1 Method Implementation

■ Context-based Statistics

We extract statistics of singlets ( R j ) ,  doublets ( R j R i+ k ), and triplets 

(RjRj+icjRi+i^) residues at different relative positions from protein sequences in Cull 

Database. These statistics represent the estimated probabilities of certain residues 

adopting a specific structural state when none, one, or two of their neighbors in context 

are taken into consideration, respectively [94].

The observed probabilities of the i111 residue Rj in a singlet ( R j ) ,  doublet ( R j R i + k ), 

and triplet ( R j  R j +k j  Ri+k2) adopting a specific structural state C, will be respectively 

estimated by

Nobs(Q< Rj)
Pobs(CilR i) =

Nobs(Ri) '
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Figure 15 The probability of Alanine as the middle residue of a triplet with 
neighboring residues at 1~5 positions away when adopting a-helix as secondary 
structure, x, y, and • represent the left neighbor, right neighbor, and gap, 
respectively. The neighboring residues are ordered by their favorability of forming 
a-helix. The nearest neighbors have the strongest influences; however, neighbors 
5 positions away still have certain non-negligible influences on the middle 
Alanine.
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Here N o b s (Cj ,  R j ) ,  N o b s (Cj ,  R j R j + k ) ,  and N o b s (Cj ,  f ^ i ^ i + k j ^ i + k 2)  weighted

observed number of singlet ( R j ) ,  doublet ( R j R j + k ), and triplet ( R j R i + k 1R i + k 2 ) with Rj 

adopting conformation Q  in the protein structure database. N o b s ( R j ) ,  N o b s ( R j R i+ k ) ,  and 

N0bs(RiRi+k1Ri+k2) are the weighted observed number of singlets, doublets, and triplets. 

The observed numbers will be calculated as

N o b s ( R i )  = z z  PS S M j ( R j ) ,
Protein j

N o b s ( ^ i R i + k )  = z z  P S S M j ( R j )  * P S S M j ( R i+k),
Protein j

N o b s ( R i R i + k i R i + k 2)  =  z z  P S S M j ( R j )  * P S S M j ( R i+k l )  * P S S M ] ( R i+k2) ,
Protein )

cr c,

N0bs(Ci<R i) =  Y , Z PSSMi( R i)'
Protein j 

Cj=C,

Nobs(Ci» RjRj+k) =  z z P SSM j(R j) * PSSM ,(Ri+k) , a n d
Protein ]

Cj=Ct

Nobs(Ci<RiRi+k, Ri+k2 ) =  Z Z PSSMi(R i)  * p s s M j( Ri+ k l) * P SSMj ( R i+k2),
Protein j

where P S S M j ( R j )  is the PSSM frequency for residue type Rj at the j th position of a 

protein sequence.

■ Context-based potentials

The context-dependent pseudo-potentials are generated using the derived statistics 

of correlations between each residue and its nearby neighbors based on Sippl’s potentials 

o f mean force method. According to the inverse-Boltzmann theorem [88], we calculate 

the mean-force potential Usinglet(Ri, C,) for a singlet residue /?, adopting structural 

state Cj,

Usin.detiCi.Ri) =

Here R is the gas constant, T is the temperature, and Pref(jCi\Ri) is the referenced 

probability. In our method, we employ the conditional probability approach described in 

[95] to estimate the referenced probability by



Similarly, the mean-force potentials U doubie t(C i> RiR i+ k)  and 

UtripietiCi,RiRi+k1Ri+k2) f°r residue adopting structural state are calculated as

U (C R R -  RTln P°bs (Q I  Rref ( Q 1 # i)
u doubletKLi>Ki l<i+k) ~  ln  p  f r  \D P ' I P  (C  I O '!*ref\Li\KiKi+k)”obs\l'i\Ki)

and

U triplet (Q< Ri+k2 )

(C j \R tR  i+ k1Rj+k2 ' )R r e f i . ^ i \R iR i+ k2) R r e f { p i \ R i R i + k 1)R obs(P i l ^ i )  

P ref ( Q  | Ri R i+ k t R i+ k2 ) P o b s ( Q \ R i R i + k 2) P o b s ( Q \ R i R i + k 1) P r e f C Q lR i )  

with the corresponding referenced probability,
C j = C i

R/+k=fi(+lt /

P r e f ( Q i R i R i + k ) =  ^ ' ^obs(fij> RjR j+k) j  ^  ’ Nohs(.RjRj+k)>

and
C/=C(

R]+k1=Rt+k1

^/+̂ 2 — /

i ^ i + k i ^ i + k 2 )  —  ^  '  Nobs(.Cj,RjRJ+ktRj+k2) j  ̂ ^̂obs(.RjRj*k1Rj+k2)-
Then, the context-dependent pseudo-potential for /?; is the summation of singlet, doublet, 

and triplet potentials within window size

I K C M  ~  Usinglet(.Ci> R i )  "b ^  ' U d o u b l e t ^ i ’ R [R i+ k)  "b ^ ' U tr ip le t (S ' i iR iR i+ k i R i+ k2) ‘
k  k j , k2

These pseudo-potential scores are then incorporated as sequence-structure 

features together with the PSSM data to train the secondary structure prediction process.

■ Neural Network Model

We incorporate three phases of feed-forward neural network training in C3- 

SCORPION. The first and second phases are sequence-to-structure and structure-to- 

structure training, respectively, while the third phase is used to refine the prediction 

results. Figure 16 illustrates the neural network encoding and architecture for three
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phases o f training. In the sequence-to-structure training, a sliding window of 15 residues 

is selected, where each neural network is trained to predict the class of that residue in the 

middle o f the window. Each residue is represented by 20 PSSM values and 1 extra value 

to indicate C- or N-terminals overlap. When the context-based scores are incorporated, 3 

additional encoding values for each residue are needed.
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Figure 16 Three phases of prediction (architecture and encoding) for C3- 
SCORPiON.
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Overall, 360 input values are used to encode each residue in 3-state prediction. 

After sequence-to-structure training, the next phase is to carry out a structure-to-structure 

training to eliminate unrealistic secondary structure predictions such as ...CCCHCCC.... 

The last phase employs a similar manner as the first one, but setting some context-based 

scores to “absolute favorable” if the results from structure-to-structure prediction 

indicates that the probability o f a residue adopting a certain secondary structure is higher 

than 90%.

4.1.2 Results o f C3-SCORPION

Table 3 compares the 7-fold cross validation Q3 and SOV3 accuracies o f neural 

networks for 3-state prediction with context-based score encoding (PSSM + Context- 

based Score) and without context-based score encoding (PSSM Only). Both neural 

network trainings go through the same training and cross-validation procedure. When the 

context-based scores are incorporated, both Q3 and SOV3 accuracy enhancements are 

observed in all three secondary structure classes. The overall cross-validated Q3 accuracy 

is 82.74%, which is higher than the reported accuracies (-80%) in the popular secondary 

structure prediction servers [35, 36, 38, 41, 60]. It is important to notice that the most 

significant accuracy improvement (4.02%) is found in P-sheets. This is particularly 

encouraging because p-sheets are typically harder to predict than helices due to global 

interactions. 2.55% and 1.47% accuracy improvement are also observed in helices and 

coils, respectively. Due to the fact that residues in sheets and helices yield stronger 

correlation to the neighboring residues than those in coils, the context-based scores are 

more effective on sheets and helices predictions. The overall 7-fold cross-validated SOV3 

accuracy reaches 86.25%, which is 2.39% higher than that o f using PSSM encoding only.

Table 4 shows the Q3 accuracy and the composition frequency of each amino acid 

type. The prediction accuracy for Cysteine is the lowest, mainly due to its lowest 

composition frequency in protein sequences. Moreover, a Cysteine residue may form 

disulfide bond with another Cysteine residue, which complicates the prediction of their 

secondary structures.
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Table 3 7-fold cross validation Q3 and SOV3 accuracies for 3-state prediction in 
SCORPION.

PSSM Only PSSM + Context-based Score
Qh 84.74% 87.29%
Qe 72.72% 76.74%
Qc 80.53% 82.00%
Q3 80.31% 82.74%
SOVh 87.85% 90.34%
SOVe 81.87% 84.13%
SOVc 81.19% 83.31%
sov3 83.86% 86.25%

Table 4 Q3 accuracy for each amino acid type in SCORPION.
\A A k Si D C 9 E G H I
Comp(%) 8.11 5.16 1.33 5.92 1.26 8.88 5.88 6.96 2.33 5.85
Q3(%) 83.59 81.96 81.96 B3.67 76.79 83.27 83.03 B3.56 81.20 B4.29

L K VI F P S r W Y V
Comp(%) 7.64 5.82 1.62 1.19 4.52 5.03 5.45 1.42 3.62 7.00
Q3(%) 83.74 82.07 82.69 80.65 84.31 80.72 B0.92 80.02 79.96 83.70

Table 5 and Table 6 compare the Q3 and SOV3 accuracies between our method 

and the popularly used secondary structure prediction servers, including Porter (ab 

initio), PsiPred, ProfPhD, Netsurfp, and Jpred on benchmarks o f CB513, CASP9, 

Manesh215, and Carugo338. To enforce fairness comparison, we generate context-based 

scores by removing all sequences with 25% or higher sequence identity to the sequences 

in benchmark from Cull 16633 and all homologs with higher than 25% sequence identity 

to the chains presented in these benchmarks are excluded from CulI7987 when training 

neural networks. It is interesting to notice that our prediction method has significant 

higher accuracy in both a-helices and p-sheets than the other servers, with more than 5% 

improvements in most cases. However, as a tradeoff, the accuracy of coils is around 5% 

less compared to PsiPred, around 3.6% less compared to Netsurfp and around 2% less 

compared to JPred. After all, compared to PsiPred with the highest Q3 accuracy, our 

method’s improvement is from 0.5% to 2% on these benchmarks. Although 0.5% to 2% 

accuracy improvement over PsiPred does not seem very attractive, it is important to
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notice that more than 5% improvement in SOV3 accuracy compared to PsiPred. 

Moreover, the SOV3 accuracy of our server is 4.25% higher than Porter (ab initio) and is 

more than 6% higher compared to Netsurfp, JPred, or PsiPred. This is because the 

context-based scores incorporating secondary structure information of neighboring 

residues enhance the coverage o f the secondary structure segments.

Table 5 Comparison of Q3 accuracy between SCORPION and other popularly used 
secondary structure prediction methods including Porter (ab initio), PsiPred, 
ProfPHD, NetSurfp, and JPred on benchmarks of CBS13, CASP9, Manesh215, and 
Carugo338.

CB513 CASP9 Manesh215 Carugo338

/-—V Q3 77.53 78.65 77.99 77.5
u. .2<D
tS S QH 81.30 85.45 81.72 80.67
o — 
CL, X>

w
QE 66.18 67.4 66.73 66.21
QC 80.49 78.75 80.57 81.1
Q3 80.19 81.35 80.67 80.06
QH 79.28 83.32 78.29 77.09

CL QE 68.49 69.68 69.43 67.96
QC 87.11 85.84 88.63 88.87

Q3 76.52 76.91 76.77 76.47
X
cfr QH 80.06 84.41 80.02 78.76
ou QE 69.18 65.53 68.78 68.82

QC 77.54 76.48 78.06 78.8

Q3 77.88 79.35 78.7 78.24

fV)
<57

QH 77.21 82.46 77.39 76.2
QE 64.36 64.94 66.17 64.65
QC 85.56 84.27 86.39 87.1

Q3 78.72 79.24 79.32 78.67
*T3
2 QH 78.02 79.29 77.72 76.34
CL —> QE 69.04 74.05 71.48 69.37

QC 84.39 82.09 84.81 85.49

§ Q3 80.69 83.02 82.66 81.96
w

rAw g QH 85.27 88.38 86.22 85.51
QE 72.69 77.66 75.97 74.07

73 QC 81.15 81.44 82.95 83.43
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Table 6 Comparison of SOV3 accuracy between SCORPION and other popularly 
used secondary structure prediction servers including Porter (ab initio), PsiPred, 
ProfPHD, NetSurfp, and JPred on benchmarks of CB513, CASP9, Manesh215, and 
Carugo338.

CB513 CASP9 Manesh215 Carugo338

SOV3 80.21 82.41 80.90 80.03
t_ .2
ti E SOVH 84.64 88.36 85.07 84.09
o  —

CL £> SOVE 76.06 77.24 76.70 76.68
'w ' SOVC 78.76 79.87 79.32 78.61

SOV3 78.91 81.24 79.55 77.63

1 SOVH 83.61 87.21 84.00 82.40
’c/5
CL

SOVE 77.35 78.62 78.56 77.15

SOVC 75.80 77.19 75.96 74.03
SOV3 78.96 79.87 79.62 78.28

x:<& SOVH 83.79 86.42 83.59 82.55
s

CL
SOVE 76.19 74.08 76.52 76.21
SOVC 76.44 77.09 77.64 75.99
SOV3 77.66 79.74 78.92 77.18

,cx
% SOVH 82.21 86.13 82.86 81.62
C/5

SOVE 75.06 75.25 77.02 75.40

SOVC 75.26 76.38 76.31 74.52
SOV3 78.82 81.70 79.63 77.98

- o SOVH 82.85 83.39 82.88 81.61
CL —> SOVE 77.56 82.52 79.62 78.51

SOVC 76.11 79.74 76.63 74.71

§ SOV3 83.98 86.38 85.72 84.452 fA ftw §
u
C/3

SOVH 88.71 89.88 89.52 88.37
SOVE 80.64 84.57 82.91 82.12
SOVC 81.84 84.31 83.71 82.57

4.1.3 Discussions

■ Prediction with High Confidence

The feed-forward neural networks used in SCORPION provide a confidence 

interval to estimate the uncertainty of the prediction of each residue. When above 90% 

confidence is obtained, the secondary structure prediction of a residue has rather high
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accuracy (98% for helices, 94% for sheets, and 90% for coils in 3-state prediction and 

99% for a-heiix and 98% for p-sheet in 8-state prediction). Therefore, if consecutive 

residues in a helix or sheet segment are predicted with high confidence, misprediction of 

this helix or sheet segment is very unlikely. This is particularly useful in a variety of 

applications such as assigning secondary structures to NMR constraints or Cryo-EM 

density maps as well as limiting backbone torsion angle variations to reduce degree of 

freedoms in template-free predictions [96].

Table 7 compares the total number of residues predicted with over 90% 

confidence in CB513, Manesh215, Carugo338, and CASP in SCORPION with and 

without context-based score encoding. Overall there are 153,073 residues in these four 

benchmarks. For neural networks with PSSM-only encoding, the secondary structures of 

60,222 (39.3% of all residues) residues are predicted with over 90% confidence. When 

context-based scores are incorporated, the total number o f residue secondary structure 

predictions with over 90% confidence is enhanced by 15.5% to 69,537 (45.4% of all 

residues in benchmarks). Compared to the neural networks using PSSM only encoding, 

the numbers o f residues predicted with over 90% confidence increase by 6.7%, 9.9%, and 

42.3% in helices, strands, and coils, respectively.

■ A 3-State Prediction Example

Figure 17 depicts an example o f 3-state secondary structure prediction on protein 

3NNQ chain A from CASP9 targets. The Q3 accuracy of PSSM only neural networks is 

83.33%. When context-based score encoding is incorporated, the Q3 accuracy is thereby 

improved to 90.35%. The main prediction difference is on the highlighted a-helix where 

the PSSM-only neural networks miss.

Table 7 Total number of correct predictions with over 90% confidence on
benchmarks of CB513, CASP9, Manesh215, and Carugo338.

PSSM Only PSSM+Score
# of residues predicted as H with 90% confidence 33,292 35,533
# of residues predicted as E with 90% confidence 13,298 14,611
# of residues predicted as C with 90% confidence 13,632 19,393
Total # of residues predicted with 90% confidence 60,222 69,537
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Nevertheless, the context-based scores of the residues in the highlighted helix segment, as 

shown in Table 8, indicate that secondary structure of helix is highly favorable, which 

help the neural networks to identify the major part of this helix.

iiMiH'iHWtifioflnnnricipnMOwnoooeoooooeoooooooooootMoeBoeflooaooftOooiWBoeoMOiooooooeopooooaooooooooooflooii l u u i i u i i n n  
00009000011111 nill/,TO22«23SJ3 3 3 3 »U444M4444r)y>'.W5SSb6b6b6«66677m77/788S88888889'W)9W99(«e000O0Oem n  
m4V>ffl<i0]?M%?89eU<4«?890n3«673<)em456789M2J4567890123«t>78«0U?4W89«U»567890 U34SM8991?M5678<>Oi;M4 
H I E H S S P Y T S E f f H Y T W D I K R T K L G M Y D K T K tY W Y Q G K P W T O Q F T f E U D f lH Q tM S F S K H K A l tE R S tS P Y y f tH W M f f im H E T C K A O iy H A S K S L E H H H H H H

MNQ-A

CCCCCCKCCCaCCOtWWWHHatEEgCCtEEECCttEEOWHIIIIIHHICCOmiHHWICCCCEKOIItlMltniWHHWHCCCCCCCCCCCC DSSPSS3
CCCCCCCCCCCCEECOWHtWW CCEECtttCgECCCtKCOtHIHHHimCCOtWHtHKCCtCEEECQHttHtHiKQXfECttCOttCttCCC PSSM Only
CCCCCCgCCCCEEEOtW tW W CCEECaXCHEECgKCQIUIIIIIIIIUICCOtHW tW CCaXEEECaillllllllUOtiW HCCggCCCgCCC PSSM'•-Scat

Figure 17 3-state secondary structure prediction for protein 3NNQ chain A from 
CASP9 targets.

Table 8 Segment of 3NNQA (82-115).

AA
Context-based scores Structure Predictions True

StructureU (C ,...) U(E, ...) U (H ,...) PSSM+Score PSSM only
94 E 1.57 0.73 -1.66 H H H
95 T 3.17 0.43 -3.12 H H H
96 C 0.12 0.37 -0.08 C C C
97 K 5.11 1.01 -5.11 H C H
98 A 1.91 0.88 -2.11 H C H
99 C 5.5 0.58 -5.31 H C H
100 A 0.49 0.5 -0.53 H E H
I0l Q 2.18 0.22 -2.22 H E H
102 V 0.91 -0.1 -0.65 C C H
103 N 2.13 0.22 -2.11 C C H
104 A -3.66 0.27 3.68 C C C
105 S -0.51 0.57 0.28 C c C
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■ Analysis o f Misclassifications

The majority of the prediction errors in the set of benchmarks are resulted from 

the misclassifications of type E and C with 8.34% and the misclassification o f type H and 

C with 7.98%. The misclassification of H and E is much less common with -1.14%. 

Table 9 shows the total number of misclassifications on the benchmark set of CB513, 

CASP9, Manesh215, and Carugo338. A significant reduction o f misclassifications is 

observed upon the incorporation of context-based score encoding in the neural networks 

in SCORPION. Misclassifying H to E and E to H has been reduced by 14.08%, 

misclassifying H to C and C to H has been reduced by 8.83% and the misclassification of 

E to C and C to E has been reduced by 5.18%.

Table 9 Misclassifications of secondary structure states on benchmark sets.

Misclassifications PSSM Only PSSM + Score
H -> E 1864 1717
E -> H 2318 1876
H -> C 12997 11436
C -> H 11550 10943
E -> C 15125 13831
C -> E 10383 10356

4.2 C8-SCORPION

Compared to the general 3-state secondary structure, DSSP program has more 

detailed classifications of secondary structures to eight states, including 3-10 helix (G), a- 

helix (H), 7i-helix (I), P-stand (E), bridge (B), turn (T), bend (S), and others (C). The 8- 

state secondary structures convey more precise structural information than 3-state, which 

is particularly important for a variety of protein structure modeling applications. For 

example, accurate 8-state secondary structures predictions can restrict the variations o f 

backbone torsion angles within a smaller range according to the Ramachandran plot and 

thus reduce the search space in template-free protein tertiary structure modeling.



47

Moreover, differentiations among the different helical types (310-helix, a-helix and 71-  

helix) in secondary structure prediction aid to assign residues and fit protein structure 

models in cryo-electron microscopy density maps [97].

4.2.1 Method Implementation

In this method, similar to C3-SCORPION using context-based model, we derive 

the mean-force potential scores to estimate the favorability o f a residue in adopting a 

specific secondary structure state among the 8 states, within its amino acid environment. 

These mean-force potentials are combined with PSSM data to train a two-stage neural 

network for 8-state secondary structure prediction.

4.2.2 Results of C8-SCORPION

The overall Qg 7-fold cross validated accuracy on Cull7987 data set in C8- 

SCORPION is 71.5%, where the accuracies of predicting 3 10-helix (G), a-helix (H), n- 

helix (I), extended strand (E), isolated bridge (B), bend (S), turn (T) and coil (C) are 

22.7%, 92.4%, 0%, 82.9%, 2.4%, 22.3%, 51.6%, and 66.1%, respectively. The accuracy 

comparison with prediction without using context-based score encoding is listed in Table 

10. The prediction accuracies o f the eight different secondary structure states vary 

significantly. In particular, the prediction accuracy ofG , I, B, and S are very low, mainly 

due to the fact of their infrequent appearances in protein data banks (PDB), whose 

distribution is shown in Figure 5. Hence, the 8-state classification is considered more 

challenging than the 3-state, due to the extremely unbalanced distribution o f the 8- 

starctural states and their composition in native protein structures. As shown in Table 10, 

when the context-based scores are incorporated, accuracy enhancements are observed in 

all eight secondary structure classes, except for 7t-helix remaining at 0%. The very small 

fraction o f residues adopting 7t-helix (0.02%) structure makes it almost impossible to 

predict.

To the best of our knowledge, SSpro8 and RaptorXss8 are the only two reported 

public accessible servers for 8-state secondary structure prediction. At the time when this 

dissertation is written, SSpro8 is not available online; however, RaptorXss8 has 

demonstrated higher accuracy than SSpro8 in [44].
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Table 10 7-fold cross validation accuracy for 8-state prediction in SCORPION.
Qg Qh Qi Qe Qb Qs Qt Qc Overall

PSSM Only 19.5% 91.8% 0.0% 82.1% 2.3% 19.4% 49.4% 65.5% 70.3%
PSSM+Score 22.7% 92.4% 0.0% 82.9% 2.4% 22.3% 51.6% 66.1% 71.5%

Table 11 and Table 12 compare Q8 and SOV8 accuracies of C8-SCORPION with 

RaptorXss8 server on CB513, CASP9, Manesh215, and Carugo338, respectively. Similar 

to 3-state prediction, in order to guarantee fairness, we generate a new set of context- 

based scores by removing all sequences with 25% or higher sequence identity to the 

sequences in the benchmarks from Culll 6633 and all homo togs with higher than 25% 

sequence identity to the chains presented in the benchmarks are excluded from Cull7987 

when training 8-state prediction neural networks. SCORPION has a higher accuracy, in 

seven states except for 7t-helix, than RaptorXss8, with ~ 2% improvements in Q8 and ~ 

3% improvements in SOV8.

Table 11 Comparison of Q8 accuracy between SCORPION and RaptorXss8 on 
benchmarks of CB513, CASP9, Manesh215, and Carugo338.

CB513 CASP9 Manesh215 Carugo338
Q* 65.59 69.31 67.69 66.64
Qg 17.54 20.58 18.43 19.20

00 Q h 89.96 92.90 90.22 89.91
V)J)
So

Q. 0.00 0.00 0.00 0.00
Qe 77.68 81.64 79.60 79.45

§” Qb 0.09 0.00 0.32 0.44
Cl

Qs 15.87 18.11 17.80 17.14
Or 48.02 51.45 51.28 50.11
Qc 63.29 59.37 63.73 63.36
Qs 67.22 71.54 69.71 68.44
Qg 21.81 22.46 23.01 22.42

2o Q h 90.95 93.58 91.42 90.55
E Q. 00.00 0.00 0.00 0.00
su
C/3

Qe 80.31 83.95 82.54 81.44
Q b 1.43 1.04 1.79 2.22

00
u Qs 19.86 23.41 21.99 21.95

Or 49.44 53.87 53.03 52.65
Qc 63.54 62.82 64.93 64.69
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Table 12 Comparison of SOV8 accuracy between SCORPION and RaptorXss8 on
benchmarks of CBS13, CASP9, Manesh215, and Carugo338.

CB513 CASP9 Manesh215 Carugo338
SOVg 64.99 69.84 68.00 66.88
SOVo 20.04 21.27 20.81 21.71

00 SOVH 88.95 90.71 89.97 89.24
(/)(S)
£o

SOV, 0.00 0.00 0.00 0.00
S O V e 82.50 84.81 84.15 84.61

CL
cQ SOVB 0.09 0.00 0.32 0.44CC SOVs 17.72 19.74 19.40 18.78

SOVr 50.79 53.92 54.73 53.74
SOVe 55.13 59.61 58.78 58.01
s o v 8 67.66 73.47 70.79 69.50
SOVo 25.39 26.41 27.23 26.01

§
CL

s

SOVh 92.24 93.66 92.80 91.65
SOV, 0.00 0.00 0.00 0.00
SOVe 85.25 88.68 87.05 86.57

o
V i SOVb 1.43 1.04 1.78 2.21
oo
U SOVs 21.88 25.36 23.70 23.95

SOVT 52.98 56.97 56.71 56.89
SOVe 56.28 64.28 60.69 60.14

4.2.3 Discussions

We analyze the misclassifications among helices and strands in SCORPION. The 

benchmark set (CB513, Manesh2l5, Carugo338 and CASP9) include 10,011 helices 

ranging from 3- to 18-residue long and 13,877 strands from 1- to 16-residue long. The 

total number o f helices and strands that are correctly predicted as whole structures using 

SCORPION, are 4,880 and 5,467 respectively (the percentages are 48.75% and 39.40% 

respectively); leaving the rest of the predictions with at least one residue misclassification 

in the structure. Table 13 shows a detailed analysis of the misclassificattons in helices 

and strands in this benchmark set.

Figure 18 shows the length distributions of helices and sheets when the whole 

structures are missed from prediction in SCORPION. The most misclassified helices are 

3-10 helices (all of three-residue helices and portion of longer helices) and the most 

misclassified sheets are isolated P-bridges (residue size of 1). 3-10 helices are much rarer
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in PDB than a-helices, which has a very low prediction accuracy (-14%) in literature 

[98]. Also, most of the 3-10 helices are short with three or four consecutive residues. 

Similarly, the isolated p-bridges are also rare and short and probably more importantly, 

the isolated P-bridges are the results o f global interactions. Generating statistically 

meaningful context-based scores to sensitively identify 3-10 helices and P-bridges is 

rather difficult. Therefore, the context-based scores help but with limited contribution in 

correctly identifying 3-10 helices and P-bridges.

Table 13 Detailed description of Helix and Strand misclassifications on 
benchmark set of CB513, CASP9, Manesh215, and Carugo338.

Helix% Strand% Description
missed at begin (only) 5 .3 6 8 .2 8 only the first residue at the beginning o f  a structure

missed at middle 15.80 13 .89
at least one is m isclassified anyw here in between 
the tw o ends

missed at end (only) 11.59 8 .8 7 only the last residue a t the end o f  a  structure

missed at begin & end 
(only) 1.70 2 .0 8 m isclassified a t both ends (2 residues)

missed the whole 
structure

16.80 2 7 .4 8 the w hole structure m isclassified
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Figure 18 Histograms of the numbers of misclassified helices (A) and strands (B) 
in SCORPION by their lengths.
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4.3 Template-based SCORPION

Most current methods for secondary structure predictions do not rely on similarity 

to proteins of known structures, in other words, these methods are simply ab initio, i.e., 

from sequence information only to predict the structural features.

However, we cannot neglect the fact that many protein sequences have some 

degree of similarity among themselves. Actually, over half o f all known protein 

sequences have some detectable similarity (higher than 25%) to one or more sequences o f 

known structures [99, 100]. Around 75% was reported as the percentage of those newly 

deposited protein structures in the PDB database showing significant similarity to 

previous deposited structures. Consequently, taking advantage of structural similarity of 

proteins with sequence similarity may lead to significant improvement of protein 

structure prediction. In fact, the latest version of Porter has used homology-based 

templates for 3-state secondary structure prediction [100]. Porter has been reported to 

achieve prediction accuracy improvement when known structures with >30% sequence 

similarity are available and even surpass the theoretical upper bound when such sequence 

similarity is higher than 50%.

Incorporating homology information is very useful in protein structure modeling. 

Hence, in this approach, we extract structural information from templates constructed for 

protein chains with known structures that exhibit homology to our training set. The 

structural information, when available, is incorporated as features together with the 

PSSM data. In the case where structural information is not available, context-based 

scores of secondary structures is incorporated instead, as sequence-structure features to 

train the neural networks for secondary structure prediction.

4.3.1 Method Implementation

■ Template construction

Figure 19 illustrates the procedure of constructing structural templates. First of 

all, for a given protein sequence target, PSI-BLAST is used to search against the NR 

database with Evalue=0.001 and at most 3 iterations to generate the PSSM data. Then, 

the PSSM is used to search against the Protein Data Bank for alignments with Evalue=10.
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Figure 19 Construction of Templates.

If known structures are available in PDB, their 8-state assignments are determined by the 

DSSP program and then a structural template is built for the correspondent residue 

positions. Among the list of templates constructed, we select the top one that is less than 

95% sequence similarity, according to PSI-BLAST ranking.

■ Encoding

We use a window size o f 15 residues for input encodings. Each residue is 

represented with 20 values from the PSSM data, 1 extra input to indicate if the residue 

window overlaps C- or N-terminal, 1 value for degree of similarity, and 8 values for 

structural information from template or context-based secondary structure scores. Hence, 

a total number of 450 values are used to describe each residue.

Figure 20 shows an example of encoding residues in a protein sequence. For a 

residue with available structural information in the template, the corresponding secondary 

structure state is set to 1 while the other states are set to 0. At the same time, the degree of 

similarity is set for the sequence similarity. On the other hand, if the structural 

information for a residue is not available in the template, the degree of similarity is set to 

zero and the context-based scores are incorporated instead. These pseudo-potentials are 

incorporated as context-based scores representing sequence-structure features in neural 

network training when structural information from templates is not available.
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Figure 20 Encoding for template-based 8 -state secondary structure 
prediction.

■ Neural network model

We incorporate two phases o f standard feed-forward neural network training for 

the prediction method. Figure 21 shows the encoding diagram and the two-phase neural 

network architecture.
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Figure 21 Two phases of template-based 8-state secondary structure 
prediction (architecture 81 encoding).
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4.3.2 Results o f Template-based SCORPION

Upon the selection of the best alignment with similarity less than 95% for all 

protein chains in the Cull5547 dataset, the final Q8 seven-fold cross validated accuracy 

after applying the template-based 8-state prediction reaches 78.85%. Table 14 lists the Q8 

and SOV8 accuracies o f 7-fold cross validation for each state. Table 15 compares the Q8 

and SOV8 accuracy o f using predictions with and without templates on benchmarks of 

CB513, CASP9, Manesh215, and Carugo338. Clearly, when homology structural 

information is available, the 8-state prediction accuracy is significantly improved. It is 

also interesting to find that when structural templates are used, the 8-state prediction 

accuracy improvement in CASP9 is much less than the other benchmark sets. This is due 

to the fact that in the CASP9 experiment, targets are deliberately selected to have 

relatively low similarity to sequences with existing structures in PDB.

Figure 22 shows the distribution o f the prediction accuracy as a function of 

sequence similarity in levels in CB513, CASP9, Manesh215, Carugo338 as well as 

Cull5574 in cross-validation. Without surprise, the better templates with higher sequence 

similarity level, the more accurate the prediction results. More importantly, even 

templates with only 20%~30% sequence similarity can improve the prediction accuracy 

by near 5% in various benchmark sets compared to predicted results without templates.

Table 14 7-fold cross-validation accuracy in template-based 8-state prediction.
G H I E B S T C Overall

Q* 43.99 92.48 0.00 88.30 27.86 43.46 64.18 75.51 78.85
SOVs 47.96 95.19 0.00 92.77 27.57 45.32 66.64 71.45 80.10

Table 15 Comparison between 8-state predictions with and without template on
CB513, CASP9, Manesh215, and Carugo338.

Qs SOVg
No-Template With-Template No-Template With-Template

CB513 67.22 79.39 67.66 80.64
CASP9 71.54 76.36 73.47 78.15

Manesh215 69.71 81.10 70.79 82.99
Carugo338 68.44 80.39 69.50 81.95
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■ CB513
■ CASP9
■ Manesh215
■ Carugo338 

Cull5574 Testing

T*r»lB» (00. 10) (10,20) (20,30) (30,40) (40,30) (50,00) (60.70) (70.00) (00,90) (9a 95) 
Similarity Level

Figure 22 Distribution of 8-state secondary structure prediction accuracy (Q8) 
as a function of sequence similarity- the first group of bars corresponds to 
template-less predictions.

Figure 23 uses the A chain of protein 1BTN as an example to demonstrate the 

effectiveness of template-based 8-state secondary structure prediction. Prediction without 

template has 73.6% Q8 accuracy.

HE<SHMKHEMEAHNKKASSOSNHNVVCVllMQEH6FYICI)AICSAASGXPYHSEVIlVSlKEAlCEVAlOYKKKICHVFKlRI.S06NEVlFQ6KOOEE!f(T5HQAISSA
C E E E E E E E E E E C S T T C K S C C C C E E E E E E E E T T E E E E E S S M IM T C C S S S C C C E E C T T C E E E K S S C cM E E E E E C T T S C E E E E E C S S H H H H M O M tM M :
E E l - E - E E - f - E E - E E C - C C C - E E E E E  EEESSW - H - T - 0 5 S - C C C E E C - C - - E C - T C - 3 - S S E E E E - C - S S - E E E E E C S S - H H - H  H
CCEEEEEESEEETTSCCCCSSCCEEEEEEEETTEEEEEEtl M B l C C tC C S C C E E C T T E E E E E tT T C d M E E E E E E T T S C E E E E E C S S llH H H Om n iC
C E E E E E E E iE E E E T T E E C T S C C C E E E E E E E E T T E E E E E S slf l |§ T C IS S C C C C E E C T T C E E E E C T T C c fliE E E E K T T S C E E E IE C S S H H H H M M O m C

Sequence
OSSP
Template
Template-less pred. 
Template-bated pred.

Figure 23 Comparison between template-less and template-based predictions 
on 1BTN chain A.



56

The best template found in PDB has 61% sequence similarity. Under the guidance of the 

structural template, the mispredicted helix segment and bend segment in template-less 

prediction (highlighted in Figure 23) are corrected, which leads to overall 89.6% Q8 

accuracy.

4.3.3 Discussions

As shown in Table 14, the prediction accuracies for different states vary largely 

due to the very unbalanced appearing frequencies of the eight states in protein structures. 

In this work, we are particularly interested in the effectiveness of structural templates in 

improving the prediction accuracies o f those states with low accuracy in prediction 

without templates. From Cull5547, we create five subsets of chains that have structural 

templates with similarity level in intervals o f (0%, 10%], (10%, 20%], (20%, 40%], 

(40%, 70%], and (70%, 95%], respectively. Then, 7-fold neural network trainings are 

carried out for each subset and the average cross validation prediction accuracy for each 

state is reported in Table 16.

For a-helices (H), the prediction accuracy using templates with very low sequence 

similarity (0%, 10%] is already rather high (92.05%), mainly because there are sufficient 

number of a-helix samples available and the formation of a-helix is mainly result from 

local interactions. Anyway, the structural templates help refine the a-helix predictions 

with slight accuracy improvements. When structural templates with 40% or better 

similarity are available, the prediction accuracy of P-sheets (E) is also improved to above 

90%, reaching the theoretical upper bound in secondary structure prediction. 40%+ 

similarity templates also significantly improve the accuracies o f 3-10 helices (G) and 

bends (S) from 20%+ to 50%+. Similar but not as significant improvements are found in 

turns (T) and coils (C). However, the prediction results for bridges (B) and n -helices (I) 

are disappointing. Only when templates with very high similarity (>70%) are available, 

we can obtain 44% prediction accuracy in bridges (B). The prediction accuracy for n- 

helices (I) is still 0%. This is mainly due to the facts that n-helices are extremely rare 

(0.02%) and rc-helices (I) are often misclassified into a-helices (H).
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Table 16 Comparison of 7-fold cross validation prediction accuracies in eight 
states when templates with different sequence similarities are used.

(0, 10] (10, 20] (20, 40] (40, 70] (70, 95]

# of chains 4,426 4,215 3,204 1,437 1,133

Q h 92.05 92.70 93.60 94.97 95.94

Qg 22.07 23.93 35.09 55.03 69.44

Q. 0.00 0.00 0.00 0.00 0.00

Qe 83.37 84.53 86.59 90.16 93.61

Q b 1.53 3.59 7.24 22.30 44.26

Or 53.35 55.34 60.89 69.66 77.06

Qs 22.83 26.41 35.19 54.09 73.40

Qc 66.55 67.84 71.81 79.56 86.80

Qs 71.33 73.01 76.29 82.11 88.01
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CHAPTER 5 

DISULFIDE BONDING PREDICTION

Disulfide bonding prediction is accomplished in two stages. The first stage is the 

bonding state prediction, whose goal is to determine whether each Cysteine residue in a 

protein chain is involved in forming a disulfide bond or not. Afterward, the second stage 

carries out the connectivity prediction, where Cysteine pairs likely to form disulfide 

bonds are identified.

Our approach of generating context-based features and then combining them with 

PSSM data is applied to develop our method for predicting disulfide bonds. Our disulfide 

prediction algorithm is implemented on a web server named “DINOSOLVE” available 

at: http://hpcr.cs.odu.edu/dinosolve [101].

5.1 DINOSOLVE

The neighboring residues have strong and probably deterministic influence to the 

chemical property of Cysteine residues in forming disulfide bond [102], Actually, 

Cysteine often forms particular motifs of biochemical functions with neighboring 

residues, such as Cys-X-X-Ser [103], Cys-X-X-Cys [104], Leu-X-Cys-X-Glu [105], Cys- 

X-X-Asp-X-X-Cys [106], etc. Figure 24(A), (B), and (C) show the probability of 

Cysteine at position i in disulfide bonding state with the neighboring residues at i-1 and 

i+1, i-2 and i+2, and i-3 and i+3 positions, respectively. One can notice that the 

neighboring residues separated by two residues in the middle still have strong influences 

on the bonding state of the center Cysteine residue.

Hence, capturing the correlations among residues, where Cysteine residues are 

present, and then incorporate these correlations as features into the learning process of a 

disulfide bond predictor can enhance the prediction accuracy.

http://hpcr.cs.odu.edu/dinosolve
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(a) Probability of Cysteine in bonding state (b) Probability of Cysteine in bonding state 
with neighbors at i -1 and i + 1 positions with neighbors at i - 2 and i + 2 positions

(b) Probability of Cysteine in bonding state 
with neighbors at i - 3 and i + 3 positions

Figure 24 Probability of Cysteine in disulfide bonding state with neighbors at 
different positions.

5 .1.1 Method Implementation

■ Context-based statistics

We derive the first-order and second-order mean-force potentials according to the 

amino acid environment around the Cysteine residues from large number o f Cysteine 

samples, collected from Cull 16633. The mean-force potentials are integrated as context- 

based scores to estimate the favorability o f a Cysteine residue in disulfide bonding state 

as well as a Cysteine pair in disulfide bond connectivity. These context-based scores are 

then incorporated as features together with other sequence and evolutionary information 

to train neural networks for disulfide bonding state prediction and connectivity 

prediction.
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The first-order statistics estimate the correlations between a Cysteine residue and 

one of its neighboring residues while the second-order statistics estimate the correlations 

between a Cysteine residue and the coexistence of two neighboring residues. Both first- 

order and second-order statistics are extracted from protein chains in the Cull 16633 

dataset. For a Cysteine sample with window size of K, there are K-l position 

combinations for first-order statistics in total. Figure 25 shows the three possible 

situations of two neighbors relative to a Cysteine residue when extracting second-order 

statistics, including (a) both neighbors on the left; (b) two neighbors on both sides; and 

(c) both neighbors on the right. Therefore, considering a window size of K for a Cysteine

sample, there are totally position combinations for the second-order statistics of a

Cysteine residue in bonding state.

Similar to the bonding state statistics, the first-order and second-order statistics of 

a disulfide bonded Cysteine pair related to its neighboring residues are also extracted 

from the Cull dataset. These statistics are used to estimate the probability o f a Cysteine 

pair in forming disulfide connectivity.

(c) Both neighbors on the right hand side of Cysteine 

Figure 25 Three possible positions of two neighbors to a Cysteine residue.

(a) Both neighbors on the left hand side of Cysteine

(b) Two neighbors on both sides of Cysteine
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Compared to the statistics in estimating a Cysteine residue in a bonding state, the main 

difference lies in the different number o f position combinations in second-order statistics 

since the two neighboring residues may belong to two different Cysteine residues. Figure 

26(a) shows the situation that both neighboring residues belong to one Cysteine residue 

and Figure 26(b) shows the situation that the two neighboring residues belong to different 

Cysteine residues. Therefore, considering a window size o f K  for both Cysteine residues

(2 K  2 \2 J /2  position combinations for

the second-order statistics of a bonding Cysteine pair.

Similar to our method in predicting secondary structures, to obtain more precise 

neighboring correlation statistics to disulfide bonding states, we consider the divergence 

of a protein sequence in its structural family by using the PSSM data specifying the 

frequency of each amino acid type in a protein multiple sequence alignment.

Let Rj denote residue R at position i in a protein sequence and let Ry denote 

residue R at relative position j  to a cysteine residue. In the first-order statistics, the 

observed probability, Pobs{B o n d ed \R ^), of residue type R with relative distance k to a 

bonded cysteine in a specific protein data set is estimated as

i - m i - n i - 1 i i + 1 i + 2 i + 3

■■■© © ©<3  0 0 0
© o o 9 0 0 0 -

i - 3  j - 2  j - 1 i j + 1 j + 2 j + 3

(a) Both residues are the neighbors of one Cysteine residue

i - n i - 1  i i + 1 i + 2 i + 3

O <3 O CD CD
©  CD 3 O O O

j - m  j - 1  j j + 1 j + 2 j + 3

(b) One residue is the neighbor of Cysteine i and the other is the neighbor of Cysteine j

Figure 26 Possible positions of two neighbors to a Cysteine residue pair in
disulfide bond.
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n  ( n  » ii rj \  ^ ‘protein'EtCYSi is bonded PSSM (Ri+it) * PSSM^CYSf)
Fobs {Bonded. | /?(fc) J = -------- r, =--------------------------------------- ’

Z >protein 2 * C Y S j is bonded  / o ( J

where PSSM(Ri) is the PSSM frequency of residue type R at position i in a protein 

sequence. Similarly, in the second-order statistics, the observed probability, 

Pobs{Bonded\R^k y R ^ ) ,  ° f  coexistence of residues R ^  and R ^  to a bonded 

cysteine is estimated as 

Pobs(Bonded\R(kl), R{k2))

I p r o t e i n l c Y S , is bonded PSSM {Rj+kJ *  PSSMjCYSj)  *  PSSM(Ri+kJ  
ILprotein  XczSj is bonded PSSM(CYS[)

The neighboring correlation statistics to the disulfide bonding pair are obtained in 

a similar manner as bonding state.

■ Context-based potential

In this method, we consider the first-order and the second-order mean-force 

potentials only. Currently, there is insufficient number o f available protein structures in 

PDB to derive meaningful statistics for estimating higher order interactions.

According to the inverse-Boltzmann theorem, we introduce the first-order mean- 

force potential U{R(ky, Bonded) to treat the interaction between residue R(k) and 

cysteine in forming a disulfide bond,

U{R(k), Bonded) =
V w  J Pref(Bonded\R{k))

Here R is the gas constant, T is the temperature, and Pref{ B o n d e d \R ^ )  is the reference 

state, which is estimated as

„  r -  ,  J I B  a  lproteinlcYsiPSSM(Ri+k)*PSSM(CYSi)
' V ( “  !«<*,) = ---------£ ^ . W « i f ( C T 5 ) ---------

Similarly, the second-order mean-force potential u{R^kl),R^k y  Bonded) is 

calculated as

Ui R{kl),P(k2), Bonded)

= r T ln Pobs{Bonded\R(kl)lR(k2))Pref (Bonded\R(kl))Pref(Bonded\R(kl))

Pref {.Bonded I fyfc,)* R(k2))Pobs {Bonded | R(kt))Pobs {Bonded \ R(kt)) 

with the second-order reference state,
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Pref{Bonded\R(kl),R{k2))ZproteinI.CYSiPSSM(Ri + k i )  *  PSSMjCYSj)  *  PSSM(Ri + k 2 )  IproteinlcYS.PSSMiCYSi)

Influenced by all of its neighboring residues, the overall mean-force potential for 

the interactions of a cysteine residue in bonding state is the summation of all first-order 

and second-order potentials while the higher-order interactions are ignored
k *  0 k l * 0 k 2*0

U(CYSj, Bonded) = ĵT U ^R ^ , Bonded) + yT U(R(kl)>R(k2)> Bonded).
k k t  k 2

The potential U(CYSit CYSj, Connected) for a bonded cysteine pair CTS* and 

CYSj can be obtained in a similar way. These potentials are used as context-based scores 

to be encoded in neural network training for bonding state and connectivity predictions.

■ Neural network model

We adopt the standard feed-forward back-propagation neural network architecture 

for both disulfide bonding state prediction and connectivity prediction. The neural 

network for bonding state prediction uses a window size o f 15 residues for input 

encodings. Each residue is represented with 20 values from the PSSM data and 1 extra 

input to indicate if the window overlaps C-terminal or N-terminal. When incorporating 

the context-based scores in training the neural network predictor, two more inputs 

specifying the scores of the cysteine residue being in free and bonding state are added. 

Hence, a total number of 317 values are used to describe each cysteine residue. 100 

hidden nodes are used in the neural network for bonding state prediction.

The neural network for connectivity prediction incorporates two windows, each 

with size o f 15 residues, for input encoding. Each window encodes the amino acid 

environment of a cysteine residue in a cysteine pair. Each residue is encoded with 20 

PSSM values and 1 boundary indicator. The predicted results (bonded or free) from the 

bonding state prediction for both cysteine residues and the context-based scores for 

connectivity are also encoded as input. As a result, there are totally 636 input values for 

each cysteine pair. 150 hidden nodes are used in the neural network for connectivity 

prediction. Figure 27 and Figure 28 illustrate the encoding and neural network 

architecture for disulfide bonding state and connectivity prediction, respectively.
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Figure 27 Encoding and neural network architecture for disulfide bonding state 
prediction

protein chain

PSSM and Boundary in d ic a to r

C o n n ec tiv ity  
C on tex t-based  sco res

P(CWj,cr%,aet-rawmtW)[

Predicted Bondin' States

rara iu rararara  r a r T a r a ir n r D r a r a e r G ir c ^ i
317 values

I
2 values

2 values

Predicted Bondin' statesPSSM and Boundary in d ic a to r

rairirriinrnm m  c n c n c n c n i ia r a i ia e r t D ir c n s i
317 values ? v a lu es

a -
636

KKktea

ISO

Outaut
p(connected)

p(not-connected)

Figure 28 Encoding and neural network architecture for disulfide connectivity 
prediction.
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5.1.2 Results of DINOSOLVE

■ The bonding state prediction

Table 17 compares the prediction qualities of bonding states with PSSM-only 

encoding and PSSM with context-based scores encoding after 10-fold cross validation. 

Compared to the one trained with PSSM data only, the neural network using context- 

based scores as additional features results in improvements in all performance indexes, 

including Sn, Sp, Qc, Qp, and Mcc. The residue-level prediction accuracy (0.908) and 

protein-level prediction accuracy (0.856) are higher than the reported accuracies in 

popular disulfide bond prediction servers. Table 17 also compares the prediction qualities 

when Cull25 and Cull50 are used as training sets. Cull50 has more than twice cysteine 

samples as Cull25, which leads to better prediction performance than Cull25.

■ Connectivity prediction

Table 18 compares the computational results of 10-fold cross validation for 

disulfide bond connectivity predictions on CuI150 using PSSM-only and PSSM with 

context-based scores for neural network encoding. Similar to bonding state prediction, 

one can find that incorporating the context-based scores as features in neural network 

training enhances the connectivity prediction accuracy, where sensitivity (Sn), specificity 

(Sp), and overall accuracy (Qc) are improved from 73.07%, 91.03%, and 86.91% to 

73.42%, 91.61%, and 87.34%, respectively, compared to PSSM only encoding. These 

prediction results are also higher than the reported disulfide connectivity accuracies in the 

popular disulfide bond prediction servers.

Table 17 Comparison of prediction performance of bonding states using PSSM 
only and PSSM with context-based scores on Cull25 and CullSO using 10-fold 
cross validation.\ Cull25 Cull50

PSSM Only PSSM+Score PSSM Only PSSM+Score
s„ 0.554 0.616 0.655 0.720
s„ 0.945 0.956 0.947 0.959
Qc 0.870 0.888 0.885 0.908
Q r 0.719 0.751 0.829 0.856
Mcc 0.574 0.646 0.734 0.801
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Table 19 lists the prediction results on protein chains in Manesh215, Carugo338, 

and CASP9, which include at least one disulfide bond. The percentage of chains where 

all disulfide bonds are correctly predicted is 87.8%.

Table 18 Computational results of 10-fold cross validation on CullSO using PSSM 
only and PSSM + Score in neural network encoding.

fold
PSSM only PSSM + Score
Sn Sp Qc Sn Sp Qc

1 73.90 91.60 87.50 74.90 91.60 87.70
2 72.80 93.00 88.10 71.70 93.10 88.00
3 70.70 91.90 86.50 71.40 92.40 87.10
4 78.80 82.30 82.20 77.80 84.10 82.60
5 75.20 91.40 87.60 74.10 92.00 87.80
6 71.40 92.30 87.70 71.30 93.00 88.10
7 74.50 92.40 88.50 76.00 92.40 88.80
8 66.80 93.60 87.40 70.40 93.30 88.00
9 69.00 90.20 85.20 68.40 91.50 86.10
10 77.60 91.60 88.40 78.20 92.70 89.20
Average 73.07 91.03 86.91 73.42 91.61 87.34

Table 19 Prediction performance on protein chains in Manesh215, Carugo338, and 
CASP9.

Manesh215 Carugo338 CASP9 All
if of disulfide 
bonds

If of 
chains

# of correctly 
predicted

if of 
chains

ff of correctly 
predicted

& of 
chains

if of correctly 
predicted

if of 
chains

if of correctly 
predicted

1 14 13 23 23 1 1 38 37
2 12 11 21 21 0 0 33 32
3 9 7 19 16 1 1 29 24
4 3 2 13 12 0 0 16 14
5 3 3 6 5 0 0 9 8
6 1 0 2 2 0 0 3 2
7 1 1 2 1 0 0 3 2
8 2 1 2 2 0 0 4 3
9 0 0 3 0 0 0 3 0
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 1 0 1 0

Summary 139 122 (87.8%)
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Figure 29 depicts an example of the disulfide connectivity prediction on protein 

153L chain ‘A’ listed in Manesh215. The native 153L(A) structure has four cysteine 

residues: CYS(4), CYS(18), CYS(29), and CYS(60). CYS(4) is connected to CYS(60) 

and CYS(29) is connected to CYS(60) by disulfide bonds. In the bonding state 

prediction, the predicted bonding probabilities for CYS(4), CYS(18), CYS(29), and 

CYS(60) are 0.82, 0.84, 0.95, and 0.94, respectively, which are all higher than 0.5 

indicating that they are all bonded. In the connectivity prediction, the predicted bonding 

probabilities for the potential disulfide bonds are listed in Table 20.

Protein 153LA. <1:105)

C Y S ( 2 9 )
C n n n w t  l v  i t  y  (CY S < 1 fl) CY8 ( 2 9 )  » 

P(connected) ■- 0.84

Figure 29 Disulfide connectivity prediction on protein 153L A chain.

Table 20 Predicted bonding probability for potential disulfide bonds in 153L(A).
Potential Disulfide Bonds Predicted Bonding Probability
CYS(4)-CYS(18) 0.37
CYS(4)-CYS(29) 0.32
CYS(4)-CYS(60) 0.66
CYS(l8)-CYS(29) 0.84
C YS( 18)-CYS(60) 0.90
CYS(29)-CYS(60) 0.34
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Form Table 20, one can find that CYS(18) and CYS(60) are most likely to be 

connected due to their highest predicted connectivity probability (0.90). However, if 

CYS(18) and CYS(60) are connected, CYS(4) and CYS(29) are unlikely to be connected 

due to their low predicted connectivity probability (0.32), which violates the predicted 

results during bonding state prediction. Therefore, an alternative connectivity pattern is 

selected with CYS(18)-CYS(29) and CYS(4)-CYS(60). This prediction result matches 

the disulfide connectivity pattern in the native structure of 153L(A).

5.1.3 Discussions

The context-based scores are effective features to enhance the neural network 

training process. When context-based scores are incorporated, the bonding state 

prediction accuracies are improved on all three benchmarks compared to those using 

PSSM data only. Table 21 compares the residue-level accuracies on the popularly used 

public benchmarks, including Manesh215, Carugo338, and CASP9. Similar to the 

computational results of 10-fold cross-validation, one can find that the Cull50 training set 

yields better predictbn performance than Cull25.

Moreover, incorporating the context-based scores as features in neural network 

training enhances the connectivity prediction accuracy, where sensitivity (Sn), specificity 

(Sp), and overall accuracy (Qc) are improved from 73.07%, 91.03%, and 86.91% to 

73.42%, 91.61%, and 87.34%, respectively, compared to PSSM only encoding.

One important question for generating the context-based statistics is how faraway 

the neighbors in sequence need to be involved.

Table 21 Comparison of residue-level accuracies (Qc) on benchmarks of 
Manesh215, Carugo338, and CASP9 using Cull25 and CullSO as training sets.

Cull25 Cull50
PSSM Only PSSM+Score PSSM Only PSSM+Score

Manesh215 0.830 0.848 0.879 0.900
Carugo338 0.808 0.821 0.872 0.884
CASP9 0.950 0.951 0.955 0.963
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Figure 30 compares the 10-fold cross validated accuracies when context-based 

features with different window sizes are used for neural network training. One can find 

that the context-based features with window sizes 3 and 5 slightly improve the prediction 

accuracy compared to using PSSM only. However, the context-based features with 

window size 7 yield the optimal performance. This is mainly due to the fact that the 

context-based features with window size 7 take the important i -  i+3 residue correlations 

into account, where such correlations are often found in many motifs where cysteine is 

involved, such as Cys-X-X-Cys, Cys-X-X-Ser, Cys-X-X-His, Cys-X-X-Pro, Cys-X-X- 

Asp, etc. Another reason is, when the window size 7 is used, the residue-residue 

correlations in secondary structures are implicitly estimated, because helices, strands, and 

coils are strongly correlated at relative positions i-3 — i — i+3, i-2 — i — i+2, and i-1 -  i -  

i+1, respectively [28]. It is also interesting to find that the prediction accuracy drops 

when the context-based features with window size 9 are employed. This is because the 

context-based scores with window size 9 integrate almost twice as many mean-force 

potential terms as scores with window size 7 -  these additional terms measure the long 

distance inter-residue correlations of i -  i+4, which are not as important as the shorter 

inter-residue correlations but accumulate the statistical sampling noise.

93.0%

920%

910%  

£  90  0%

I 890%

880%

870%

86.0%

85.0%

84.0%
1 (PSSM Only)

W indow Mm

Figure 3 0 10-fold cross validated accuracies using context-based scores 
generated with different window sizes.
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CHAPTER 6 
SOLVENT ACCESSIBILITY

Correctly predicting the solvent accessibility of residues can not only reduce the 

conformational space to aid modeling protein structures in three dimensions, but also 

help predict important protein functions.

Our approach of generating context-based features and then combining them with 

PSSM data is applied to develop our method for predicting solvent accessibility. The 

prediction algorithm is implemented on a web server named “CASA” available at: 

http://hpcr.cs.odu.edu/casa [107].

6.1 CASA

We use the context-based model to derive statistics for singlets, doublets, and 

triplets in a sequence window from experimentally determined structures in PDB [10]. 

Then scores measuring the pseudo-energy o f a residue adopting a certain accessibility 

state are calculated using potentials of mean force approach. The fundamental idea is 

based on the fact that the residue’s solvent accessibility exhibit strong local dependency. 

These scores are then incorporated as features together with the multiple sequence 

alignment data to train neural networks for solvent accessibility prediction. We apply our 

approach to predict solvent accessibility in 2-state.

We test CASA on protein benchmarks, Manesh215 [16], Carugo338 [86], and 

CASP9 [108] targets. Lastly, we compare CASA with a set of popular methods for 

solvent accessibility prediction, including NETASA [58], Sable [59], Netsurf [60], 

SPINE [56], ACCpro [61] and SANN [64],

6.1.1 Method Implementation

The solvent accessibility values are determined by the DSSP program [12]. 

Relative values for residues’ solvent accessibility are calculated as the ratio between the 

absolute solvent accessibility value and that in an extended tripeptide (Ala-X-Ala) 

conformation. Table 22 shows the extended state value of each amino acid reported by

http://hpcr.cs.odu.edu/casa
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Ahmad et al. [16] and used in many prediction methods. A threshold o f 0.25 is used to 

define the 2-state solvent accessibility (Buried when the relative solvent accessibility 

value is less than 0.25, and Exposed otherwise).

■ Context-based statistics

Presumably, the neighboring residues have strong influence to the chemical 

property o f a residue in its accessibility to solvent. Figure 31 shows the probability of 

residue K. at position i in buried accessibility state with the neighboring residues at i - 1 

and i + 1, i - 2 and i + 2, and i - 3 and i + 3 positions, respectively. One can notice that the 

residues separated by two residues in the middle still have strong influences on the state 

of the center residue.

In this work, similar to the previous work in SCORPION and DINOSOLVE, we 

extract statistics of singlets ( R j) ,  doublets ( R jR i+ k ), and triplets (RiRi+kt Ri+k2) residues 

at different relative positions in protein sequences, which is further used to generate 

pseudo-potentials to be incorporated as new features in neural network training. The 

statistics of singlets, doublets, and triplets represent estimations o f the probabilities of 

residues adopting a specific solvent accessibility state when none, one, or two of their 

neighbors in context are taken into consideration, respectively.

Table 22 Extended state values of amino acids.

A.A Extended State
(A2) A.A Extended State

(A2)
Ala 110.2 Met 200.1
Asp 144.1 Asn 146.4
Cys 140.4 Pro 141.9
Glu 174.7 Gin 178.6
Phe 200.7 Arg 229.0
Gly 78.7 Ser 117.2
His 181.9 Thr 138.7
lie 185.0 Val 153.7

Lys 205.7 Trp 240.5
Leu 183.1 Tyr 213.7
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■ Context-based potential

Similarly, the context-dependent pseudo-potentials are generated based on the 

potentials of mean force method. We calculate the mean-force potentials U S| n g ie t ( R i ,  C | ) ,

Udoubiet(C|,RiRi+k) and Utripietfe.RiRi+kiRi+kj) for a residue R ,  adopting solvent 

accessibility state C j .  Then, the context-dependent pseudo-potential for R ( under its amino 

acid environment is 

U ( C | , . . .  R i . j R j R j + j . . . )  =

^singlet(C|» Rj) +  2kUdoublet(^i» RiRi+k) "b >̂k1,k2 ^triplet(^l» Rf Ri+kiRi+ka)-

P (9 u r lM IIx K y )/P (9 u r i« 9 |K ) P ( 9 u r l w l  | x - K - y ) / P ( l u r l * d | K )

P ( lu r l« 4  |K ) •  9.292 
P ( ix p o « « ljK )  •  9 .799

P (9 u ri« d | x -  - K - - y ) /P ( tu r l* d |K )

A C B t  t  G H I M P O R S T V U Y

Figure 31 The probability of Lysine (K) as the middle residue of a triplet with 
neighboring residues at 1~3 positions away when adopting buried accessibility 
state, x, y, and • represent the left neighbor, right neighbor, and gap, 
respectively. The neighboring residues are ordered alphabetically.
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■ Neural network model

Our method for predicting protein solvent accessibility incorporates two phases of 

neural network training. Similar to SCORPION and DINOSOLVE, we adopt the standard 

feed-forward back-propagation neural network architecture. Figure 32 depicts the 

encoding and neural network architecture for CASA.

6.1.2 Resu Its of CASA

We use Q2 to measure the quality o f our prediction method. We also use Q b and 

Q e to measure the quality o f predicting the buried state and the exposed state, 

respectively. Table 23 compares the prediction qualities o f solvent accessibility with 

PSSM-only encoding and PSSM with context-based scores encoding after 7-fold cross 

validation. Compared to the one trained with PSSM data only, the neural network using 

context-based scores as additional features results in improvements in the Q2 accuracy, 

which is higher than the reported accuracies, 72-79%.

Protein Chain

Residue i-7

PSSM + SA scores + Boundary Indicator

Residue i+7

i-7 i-6 I i-5 I i-4 I i-3 i-2 i-l I
1 1 I • •• 1

in in in in in in in
e a a

Level 1 L
lSx(26+2+l) values

e r P(Buried)
’ P(Exposed)

Predicted SA ♦ Boundary Indicator
I 1-7 I t-S I M  I 1-4 I 1-1 | I I  | l - l  | M I M  I It) I M | M  I M  I M I

Level 2

SA: Solvent Accessibility

c r

1 5 x ( 2 + l )  v a l u e s

P(Buried)
1 P(Exposed)

Figure 32 Encoding and neural network architecture for 2-state solvent 
accessibility prediction.
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Table 23 Comparison of prediction performance of Solvent Accessibility using 
PSSM only and PSSM with context-based scores on Cull7987 using 7-fold cross 
validation.

Qb Qe Q2
PSSM Only 78.44% 80.61% 79.50%
PSSM+Score 79.21% 82.00% 80.76%

Table 24 compares the Q2 accuracy between our method and the popularly used 

solvent accessibility prediction servers including NETASA [58], Sable [59], Netsurf [60], 

SPINE [56], and ACCpro [61] on benchmarks of CASP9, Manesh215, and Carugo338. 

To guarantee fairness, we generate a new set of context-based scores by removing all 

sequences with 25% or higher sequence identity to the sequences in benchmark from 

Cull 16633.

Table 24 Comparison of the accuracy between our method (CASA) and other 
popularly used solvent accessibility prediction servers including NET ASA, Sable, 
Netsurf, SPINE, and ACCpro on benchmarks of CASP9, Manesh215, and 
Carugo338. __________________________________________________

CASP9 Manesh215 Carugo338

NETASA
Qi 69.32 71.09 69.7

Qb 70.86 72.1 72.04
Qe 67.59 69.9 67.22

Sable
t=0.2

q 2 78.47 79.83 78.68
Qb 78.27 80.2 78.48
Qe 78.69 79.4 78.91

Sable
t=0.3

q 2 75.13 77.04 75.94
Qb 89.55 91.08 90.29
Qe 59.58 60.35 60.33

Netsurf
q 2 79.15 80.83 80.04

Qb 80.04 83.35 81.27
Qe 78.19 78.49 78.13

SPINE
q 2 77.86 80.5 79.68

Qb 83.22 85.3 85.33
Qe 72.08 74.8 73.53

ACCpro
q 2 76.18 78.87 77.99

Qb 81.15 83.19 83.12
Qe 70.81 73.76 72.41

CASA
q 2 80.82 81.93 81.14

Qb 81.46 84.27 83.65
Qe 80.13 79.14 78.39
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The predictions of the benchmark sets are performed in 2-state for each method. 

Sable method provides 10-state predictions, with 10% difference among the states of 

solvent accessibility. Hence the results reported in Table 24, for sable method, are using 

0.2 and 0.3 thresholds. We also compare our method with SANN [64] on benchmark of 

CASP9. The Q2 accuracy of SANN on CASP9 is 77.86% such that the Qb and Qe are 

69.68% and 86.66%, respectively.

We observe that CASA outperforms the other methods, where the Q2 performance 

is higher in these benchmarks. However, when considering the predictions o f the 

accessibility states individually, SPINE predictions of the buried state (Q b) is better than 

CASA, with an average o f 1.49% improvement. On the other hand, CASA provides a 

much higher exposed state prediction (Q e) with an average o f 5.75% difference compared 

to SPINE. Similarly, SANN predictions o f the exposed state (Q e) is also higher than 

CASA with 6.53% difference, but CASA provides a much higher buried state prediction 

(Q b) with 11.78% difference and the overall Q2 predictions with ~3% improvement over 

SANN.

6.1.3 Discussions

The context-based scores are effective features to enhance the neural network 

training process. When context-based scores are incorporated, the solvent accessibility 

prediction accuracy is improved on all three benchmarks compared to those using PSSM 

data only.

Figure 33 depicts an example of solvent accessibility prediction on protein 3NRF, 

chain ‘A’ listed in CASP9 targets. The first row, underneath the native structure in Figure 

33, is the amino acid sequence, the second row is the DSSP assignments of each residue, 

the third row is the predicted solvent accessibility state when using PSSM information for 

encoding, and the last row is the prediction when incorporating context based scores with 

PSSM information. An improvement of 6.61% is achieved in this prediction example 

upon the incorporation o f context based scores with PSSM information.
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Figure 33 Solvent Accessibility Prediction on protein 3NRF(A).

Although the overall improvement of our method is relatively small, from tertiary 

structure prediction point of view, reducing inaccuracy, even just a few percent, would be 

very helpful in modeling efficiency, because the search space for finding a tertiary 

structure goes up superlinearly with the fraction of inaccuracy. Furthermore, our method 

of generating context-based statistics relies on the number o f known protein structures in 

PDB. As the number o f protein structures available in PDB continues to increase rapidly, 

we will be able to obtain more accurate context-based statistics for solvent accessibility. 

Hence, our method has potential to achieve further accuracy improvement in the future.
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CHAPTER 7

GPU-ACCELERATION OF MANY-BODY POTENTIALS

In this chapter, we present approaches to accelerate the calculations o f pairwise 

and high-order interactions by taking advantage of the emerging high performance 

computing architectures in GPU. In section 7.1, we use a 2-body knowledge-based 

energy function, DFIRE, as an example to illustrate our GPU implementation and to 

show the efficiency of the proposed approach in accelerating pairwise interaction 

calculations. In section 7.2, we use two potential energy functions with 3-body terms, 

including the Axillord-Teller Potential and the Context-based Secondary Structure 

Potential (CSSP) as examples to demonstrate the effectiveness of our approach in 

accelerating 3-body interactions.

The main contribution in this work is the design of workload distribution schemes 

to achieve perfect or nearly perfect load balancing among GPU threads in the symmetric 

2-body and 3-body problems. Moreover, the evaluation of DFIRE, in particular, exhibits 

a few floating-point operations but intensive memory accesses instead. Accordingly, we 

reorder the protein atom sequence by types to improve cache efficiency in latest NVIDIA 

Fermi GPU architecture.

Other standard CUDA programming techniques are implemented in order to fully 

take advantage of the power of the GPU architecture. Examples include coalesced 

memory access, fine-grain threads, parallel sum reduction, loop unrolling, and taking 

advantage o f GPU memory hierarchy.

7.1 Accelerating 2-body Potentials

Reducing the energy evaluation time is the key to accelerate many modeling and 

simulation programs. The major part of most energy evaluation involves estimating 

interactions between pair-wise atoms, which is typically an V-body problem. For a 

system involving N  particles, conventional evaluation of the potential energy function by 

estimating every pair-wise interactions requires 0(N2) operations. As a result, for
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relatively large systems, calculation of all pairs of interactions requires substantial 

computational time.

In this section, we present an approach to accelerate the calculations of 

knowledge-based energy functions popularly used in computational protein structure 

modeling by taking advantage of the GPU architecture. We use an all-atom knowledge- 

based energy function, DFIRE [26], as an example to illustrate our GPU implementation. 

Our key contribution is the design of a workload distribution scheme to achieve perfect or 

nearly perfect load balancing among GPU threads in the symmetric JV-body problem. 

Moreover, unlike many V-body simulations [80-82, 84] where a large number o f floating 

point operations are involved, the evaluation of knowledge-based energy functions 

exhibits a different computing pattern with few floating-point operations but intensive 

memory accesses instead. Accordingly, we reorder the protein atom sequence by types to 

improve cache efficiency in latest NVIDIA Fermi GPU architecture. We name the GPU 

implementation of DFIRE energy function “ GPU-DFIRE”  while the original serial CPU 

version is referred to as “ CPU-DFIRE” . GPU-DFIRE is implemented on the recent 

Fermi architecture using CUDA programming environment [109]. A Monte Carlo 

sampling program and a local optimization program are used to demonstrate the 

efficiency of GPU-DFIRE in all-atom protein structure modeling.

7.1.1 GPU-DFIRE Implementation Details

We use DFIRE [110] potential energy function as an example to illustrate our 

GPU implementation of memory intensive knowledge-based energy functions. The GPU 

implementation of DFIRE (GPU-DFIRE) can be adopted into a variety o f protein 

modeling algorithms, such as Monte Carlo (MC) methods [111], Local Energy 

Minimization [112], Molecular Dynamics [113], Genetic Algorithms (GA) [96], 

Evolutionary Computing (EC) [114], etc., where repeatedly assessing the potential 

energy of protein conformations is required.

7.1.1.1 DFIRE Potential

DFIRE is an all-atom potential energy function derived from “ the structures of 

single-chain proteins by using a physical state o f uniformly distributed points in finite 

spheres as the zero interaction reference state” [26]. A large three-dimensional DFIRE
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array (first atom type, second atom type, and distance bin) is used to store the statistical 

potential energy values of each possible atom pair based on their Euclidean distance. In 

this work, we consider the symmetric version o f DFIRE, which has demonstrated better 

accuracy than the asymmetric one [26]. In symmetric DFIRE, for a protein sequence 

starting from N-terminal to C-terminal, DFIRE(ATOMS[i], ATOMSJj], d) = 

DFIRE(ATOMS[j], ATOMS[i], d), for atom pair i and j in distance d and ATOMS[i] 

denotes the atom information of the /tK atom in the protein. The DFIRE program takes the 

protein PDB file as input and parses it into the ATOMS array, including atom type in 

DFIRE, sequence number, and spatial coordinate values (XYZ).

The computation o f DFIRE energy is a near A-body calculation. Starting from the 

first atom in the ATOMS array, for every atom in the protein, the DFIRE program 

retrieves the energy terms between the current atom and the rest of the atoms not in the 

same residue. The energy term is obtained by calculating the pair-wise atom distance, 

converting it into a distance bin, and then looking up the large DFIRE array for the 

appropriate energy term value. DFIRE calculation has a distance cutoff; if the distance 

between two atoms is bigger than the cutoff, the interaction between these two atoms is 

deemed to be small enough to be ignored. Figure 34 shows the pseudocode of DFIRE 

subroutine (calcDFIRE) for pair-wise atom interaction calculation. Finally, all energy 

terms are accumulated to generate the overall DFIRE potential energy value. The major 

operations in calculating DFIRE energy are memory accesses, i.e., looking up the large 

DFIRE array for every atom pair.

calcDFIRE(atomi, atomj, d)
<

if(d < CUTOFF)
return (DFlREIatomi.DFlREtype, atomj.DFlREtype, d] );

else
return a .0 ;

>

Figure 34 DFIRE subroutine for pair-wise atom interaction calculation.
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The serial calculation of symmetric /V-body interaction in DFIRE is 

straightforward, whose pseudo code is shown in Figure 35.

7.1.1.2 Workload Distribution

Unlike the asymmetric JV-body problem, where exactly (AM) 2-body interactions 

are calculated for each particle, in the symmetric N-body problem the number of 2-body 

interaction calculations in the inner loop varies gradually from N-\ to 1. Consequently, 

directly mapping the calculations in the inner loops to GPU threads will lead to 

unbalanced workload distribution.

To balance workload distribution among GPU threads, we design the following 

novel load assignment scheme. The pseudocode o f workload assignment for a thread in 

GPU-DFIRE is shown in Figure 36.

j s c o r e  =  0 . 0 ;  / /  initialization
for i * 1  t o  N - l  { / / o u t e r  loop j

for j = i + l  t o  N (  / /  inner loop
d  *  d i s t ( A T O M S ( i ] ,  A T O M S  [ j  ] )  ;  //d is tan ce  bin btw. atome i . j  ' 
s c o r e  =  s c o r e  +  c a l c D F I R E ( A T O M S [ i ] ,  A T O M S [ j ] ,  d ) ;  i

»
i i ;

Figure 36 Pseudocode of symmetric N-bodv calculation in serial DFIRE.

T h r e a d ( i )
(

s c o r e  ■  i i .  f i ;
i f ( N  m o d  «*■ u AND i  >  N/X) 

c o u n t  ■  N/2 -  l ;
•Is*

c o u n t  “  N / X ;

/ /  initialization

/ /  even number and eeeond half

/ /  odd number or even number/first half

for k = l  t o  c o u n t  (
j  ■  ( i  +  k )  m o d  N ;  
d  -  d i s t ( A T O M S ( i ] , A T O M S [ j ] )

/ /  atom-atem ealcualtion loop 
/ /  next atom number 
/ /  dietanee bin btw. atome i. j

s c o r e  =  s c o r e  +  c a l c D F I R E ( a t o m s [ i l , a t o m s t j 1> d ) ;
I

Figure 36 Pseudocode of workload assignment in GPU-DFIRE.



81

For simplicity in illustration, we assume the one-thread-per-atom assignment. 

Each thread i carries out M  atom-atom interaction calculations between atom / and atom 

(/+1) mod L, (/+2) mod L, , (i+M) mod L. If L is an odd number, M  is (L-1)/2 and 

perfect load balancing in doublets calculations can be obtained. On the other hand, when 

L is an even number, for the first U2 threads, M  is L!2 and for the second LI2 threads, M  

is L!2-1. Figure 37 shows the thread load distribution in 2-body calculations for an odd N, 

where perfect toad balancing can be achieved. Whereas, Figure 38 shows the thread toad 

distribution for an even N, where nearly perfect load balancing can be achieved-the first 

half of the threads carry out one more atom-atom interaction calculation each than the 

second half o f the threads.

7.1.1.3 Cache Efficiency

In the latest NVIDIA GPU Fermi architecture, the device memory is cached with 

L1/L2 cache. LI cache is shared in one multiprocessor while L2 cache is shared among 

all multiprocessors. Correctly organizing data can take advantage of the cache coherence 

in GPU. Generally, atoms in a PDB file are grouped by their residues in the protein.
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Figure 37 Perfect balancing when N is an odd number. Each thread carries out 
(N -  1)/2 atom-atom iterations.
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Figure 38 Nearly perfect balancing when N is an even number. The first N/2 
threads carry out N/2 atom-atom interactions. The second N/2 threads carry out 
N/2-1 interactions.

Figure 39 shows the sorting o f a 6-residue fragment of protein, where atoms of 

the same types are clustered after reordering. Clustering atoms o f the same types together 

can potentially improve the cache hit rate. Another advantage of reordering the atom 

sequence by atom types is, in case of cache misses, the requested global memory 

addresses will have a good chance to fall within fewer cache-lines compared to unsorted 

atom sequence, which can lead to better bus utilization.

4 l < 0 » M 1 7 ) l » M ) i U J 1 1 0 S I I I 7 M 2 M a £ U » U U I 7 U U 14 1 1  U  11 30 9 8 7 1 3  4 J 2 1 ho.
o  c u  n u  a  cu cc  ( i  o  c a  h  a  c f7 c ficc7 c o u g  a  a  c c* n o  c a H  NZ a  CD Cti C8 0 : CA N 0 c C A H Typo
G G G G K K « K K K K « K f F F f f F F F F F F 6 6 & G K K K K K * K K K 6 G G G 4«l4u(

JS -
4 I 4 0 J » B ] 7 M U ) 4  3 i U 3 1 ] 0 & U 2 7 a a » 2 3  22 2 1 2 l > U l l l 7 U U 14 13 12 11 10 9 1 7 8 3 4 3 1 ho.
a  c n c n c c jc m c G  a  o c u n w w c r c t c o c D c o c o a c i o  o c c  a a H  H  C 0 0 C c : CA CA CA N N H rf l»
F F F F F f F F F F F F K ! > X K K K K I l K 4 K K K K K It It G G G G G i G G G G G G AOtdiO

Figure 39 Reordering atoms in a 6-residue protein fragment according to atom
types. Atoms of the same type are clustered after sorting.
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Table 25 compares the GPU-DFIRE performance using sorted and unsorted atom 

sequences. The performance data is obtained by NVIDIA Compute Visual Profiler 3.2 

[115] on an NVIDIA M2050 (Fermi architecture). One can find that when the atom 

sequences are sorted by the atom types, the number of LI hits increases while that o f LI 

misses decreases, which indicates LI cache efficiency improvement. However, 

surprisingly, we only observe GPU time decreasing in relatively small proteins with less 

than 500 residues; for proteins over 500 residues, the GPU times with sorted atom 

sequence are even higher than those without sorting.

Our further analysis finds that this is mainly caused by the divergent branches in 

the GPU-DFIRE program. The DFIRE energy evaluation requires testing the atom-atom 

distance against the DFIRE cutoff—if the atom-atom distance is higher than the DFIRE 

cutoff, the atom-atom interaction will be ignored. When the threads handling atom-atom 

interactions within the DFIRE cutoff as well as those exceeding cutoff co-reside in the 

same warp, divergent branches may occur in runtime. As shown in table 25, the number 

o f divergent branches in GPU-DFIRE with sorted atom sequence grows significantly as 

the protein size increases.

Table 25 Performance between sorted and unsorted atom sequences in proteins 
of various sizes. Performance data are obtained by NVIDIA Compute Visual 
Profiler 3.2 [115].
PDB • a r m •o f atoms GPU rime 11 hits LI misses Divergent

branches
(JmorteriSorted

(H«)
IJmorted
(p*)

Snrted/umorted Sorted tin sorted Sorted IJrtsorted Sorted

IPRI 53 419 49 76 055 4387 3/069 2.305 3,493 160 107
IG6U 06 718 56 85 036 8389 6.007 2533 4575 623 291
1DFR 162 IJ94 158 242 035 17.306 14,581 9/451 12,285 1,962 977
2WJK 210 1311 220 160 031 36.743 24.140 15580 22559 1,982 1318
tVQS 145 2.654 479 729 036 111369 56.012 20/477 27621 5,226 3.058
10WH 455 1319 891 to n 038 119518 118591 35.757 55.947 15.247 5.122
2X6V 597 4369 1/429 1/416 131 220512 184.191 28.154 4852) 24.133 3303
2Y89 696 5.595 1351 1327 101 339/409 301.044 63.379 67.121 24,579 2.147
u<g BIB 6342 1.056 2396 1.11 561.190 422301 87.111 99.741 27.497 5.412
3COC 10GB 7.992 1.729 1514 14)6 710J99 611.904 85566 248,178 42.726 7308
1HICY 1 124 8.788 3.985 3548 1.12 758535 691.194 79.113 96515 59.320 8.377
1QHK t IS6 9.284 5.737 4387 1.17 826.776 729/614 76525 127.422 67.655 8.110
WUK 1.114 10.787 7.529 7.111 1.06 1.174510 1311.720 66588 234,798 74.980 15350
3MBC 1,470 11.222 7.901 7/438 1.06 1.197540 1371520 71/483 184537 72570 16.131
2XQY 1.796 13333 9504 9.317 1.02 1563510 1550.320 I2052S 272.308 79.668 11329
2WPF 1.955 14388 12.380 11.799 135 2.115580 1592.400 108928 277.929 90550 14.063
1LU0 1.258 25307 14319 31.1)6 14)5 7/464550 3549.770 154502 181378 188.759 21397
2WAQ 1.114 26,454 36.419 14302 14)5 6585.780 1539500 364348 666517 179,784 13341
1EOO 4396 14321 51.778 S0.1S8 131 11.196500 9.411300 588.341 1376500 278,080 18.481
ICYT 6J036 46.152 93399 91380 132 19.160.200 17.412500 523.193 1.382520 364.695 62572
2PM7 6358 48398 98564 94361 134 21.747500 18518500 594347 1.170570 400.250 50,119
3C3N 6.482 52.706 114.301 111398 103 2S53S500 21516500 564574 1275550 367.785 69.461
t u n 7.434 58.130 151.318 146.181 14)4 31.772500 27570300 743,424 1547.330 531.273 78364
3H0G 7.904 62352 170,996 166.339 103 36.193500 32.311200 830585 1561/420 485.525 74327
1MQT 9J063 71.547 204309 200529 102 45.718/400 41579500 989423 2.702.170 642.562 99.490
WIE 10.400 81.080 281510 275.717 101 61.210500 57.158500 1.529580 2.757.380 744,917 107384
1HF9 11.907 90364 342398 112336 103 72.799.100 70340.100 1.100.150 2/448,980 636,491 102361
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In small proteins with less than 500 residues, the numbers of divergent branches 

in GPU-DFIRE with sorted atom sequences are 1.5-3 times o f those without sorting. In 

contrast, in larger proteins with more than 500 residues, the ratio o f divergent branches 

with sorted and unsorted atom sequences increases to 4 8.

This is due to the fact that sorting atom sequences according to atom types 

increases the chance o f divergent branches occurrences, because the clustered together 

atoms o f the same type may be from nearby or faraway residues. In larger protein 

molecules, the occurrence chance of divergent branch becomes higher after sorting. 

Consequently, in large proteins, the GPU time gains o f the cache efficiency by sorting are 

counteracted by the increasing number of divergent branches. Nevertheless, in practice, 

the DFIRE energy function is often used in protein modeling applications on small 

proteins typically with less than 300 residues. Sorting atom sequences according to atom 

types are effective in GPU-DFIRE evaluation in small proteins with less than 500 

residues due to improved cache efficiency, where the overall GPU times are reduced 

11 %—45%.

7.1.1.4 Additional Improvements

In addition to asymmetric /V-body load balancing and reordering atom sequence 

according to atom types in GPU-DFIRE we also use the following “ standard” CUD A 

programming techniques in our GPU implementations to fully take advantage of the 

power of the GPU architecture.

(I) Coalesced global memory access

In GPU architecture, global memory access by all threads in the half-warp (non- 

Fermi) or fiill-warp (Fermi) o f a block can be coalesced into efficient memory 

transactbns [109]. In GPU-DFIRE, we reorganize the data arrays used in the DFIRE 

program to facilitate coalesced memory access.

For example, instead of viewing atoms information as an array o f structures, we 

reconstruct the ATOMS array from “ array o f structure” to “ structure of array” . The 

array reconstruction posts a one-time cost at startup, which has trivial impact to the 

overall application performance, particularly when the DFIRE potential energy is 

evaluated many times for different protein conformations. Moreover, threads per block 

are chosen to be a multiple of warp size in our GPU implementation.
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(2) Fine-grained threads

For an N-body problem with small N, achieving good performance on GPU is 

difficult, as shown in the literature [80]. In GPU-DFIRE, similar to the technique used in 

[80], we adopt fine grained threads by increasing the number of active threads by 

assigning multiple threads to compute interactions o f an atom in a small protein. We 

firstly calculate the number of threads (Tn) that can be assigned to handle interactions 

computation o f an atom by dividing the maximum number of threads (Tmax) that a GPU 

device can launch over the total number of atoms N .(T n= Tmax/N.)

Then, we distribute the workload of interaction computation to Tn threads. As a result, 

large number of threads whose total number is near the maximum number o f threads that 

the GPU hardware can launch are created. With sufficient number o f threads, the memory 

access latency can be effectively masked. Figure 40 show the effectiveness o f fine

grained threads in GPU-DFIRE in small proteins.

Our computational results o f GPU-DFIRE on Tesla M2050 show that the turning 

point between linear increasing speedup and constant speedup is when N  = 2000, as 

shown in Figure 40. Fine-grained threads are particularly effective in proteins with less 

than 2000 atoms.
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Figure 40 Effectiveness of GPU-DFIRE with fine-grained threads in small
proteins (Tesla M2050).
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It is important to notice that particularly more significant performance 

improvements are found in the small proteins, whose speedups are promoted to be close 

to those of the large proteins. This is due to the fact that sufficiently large number of 

threads is produced to use the GPU hardware to its fullest. As the number of particles 

increases, the speedup curves of fine-grain threads and one-thread-per-particle start to 

merge because the increasing number of threads in one-thread-per-particle strategy makes 

more efficient use of the GPU architecture.

(3) Parallel sum reduction

We adopt the parallel sum reduction algorithm [116], a tree based approach, to 

compute the overall energy from the partial energy sums generated by the GPU threads in 

GPU-DFIRE. The algorithm involves a local sum reduction step and a global sum 

reduction step. In the local sum reduction step, the tree based approach [116] is used to 

accumulate the partial sums from threads within each block. Then, an additional kernel is 

launched to add up the partial sums from each block in the previous kernel using the tree- 

based approach again.

Since fined-grained threads are used for small proteins, the computation time of 

parallel sum reduction is nearly constant for proteins o f various sizes, which is 

approximately 0.1 ms on Tesla M2050. This is less than the computation time of simply 

using CPU to sum up the partial sums, which ranges from 0.14 ms (proteins with ~300 

atoms) to 3.0 ms (proteins with ~  10,000 atoms). After all, compare to the overall GPU- 

DFIRE energy evaluation time, even for the small proteins which typically takes 1.0-3.0 

ms, the parallel sum reduction time is relatively small.

(4) Take advantage o f GPU memory hierarchy

Our GPU-DFIRE implementation requires transferring the DFIRE table and atom 

information arrays (ATOMS) including atom type array, residue number array, and atom 

coordinates arrays, from the host memory to the GPU device memory and retrieving the 

calculated overall energy from the device memory.

We reorganize the data arrays in DFIRE program to different memory locations in 

the GPU. First of all, we take advantage of the shared memory to reduce the number of 

accesses to the global memory. In GPU-DFIRE, all threads in a block shares the ATOMS 

array; hence, the data in the ATOMS array for a thread block can be loaded in the shared
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memory. Unfortunately, for proteins with large number of atoms, the high-speed shared 

memory has limited size, which may not be able to accommodate all data in the input 

array. We have to break the input array data into tiles, where a tile represents a fixed 

dimension of the atom information data. Then, the tile is loaded into the shared memory 

and used by all threads in a block. Once all threads are done with one tile, the next tile 

will be loaded into the shared memory and override the previous one. This process is 

repeated until all computations in the thread block are completed. Moreover, the latest 

NVIDIA Fermi architecture introduces a cache hierarchy for caching local and global 

memory accesses. For example, Tesla 2050M GPUs have 64 kB of RAM per streaming 

multiprocessor, which can be partitioned into shared memory and LI cache. A CUDA 

programmer can select combinations o f “ 48 kB shared memory +16 kB LI cache” or 

“ 16 kB shared memory +48 kB LI cache”  according to his/her program needs. Our 

GPU-DFIRE implementation on Tesla M2050 uses the “ 48 kB shared memory +16 kB 

LI cache”  combination, which yields slightly better performance than the other 

combination. Figure 41 shows the overall implementation of GPU-DFIRE on GPU 

memory hierarchy (Fermi).
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Figure 41 Implementation of GPU-DFIRE on GPU memory hierarchy (Fermi 
architecture).
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(5) Loops unrolling

Loop unrolling is an optimization technique that can be applied to GPU 

programming by replacing the body o f a loop with multiple copies of itself [80]. For 

example, in GPU-DF1RE we unroll the atom-atom calculation loop in the pseudocode 

shown in Figure 36. Figure 42 compares the GPU-DFIRE performance of 2 times loop 

unrolling and 4 times loop unrolling by showing their average percentages relative to the 

computation time of GPU-DFIRE without loop unrolling. One can find that replicating 

the loop body for 2 times yields best performance in GPU-DFIRE. Loop unrolling is 

more effective in large proteins with averagely ~4% computation time reduction because 

they contain more loop iterations.

7.1.2 Computational Results

The GPU-DFIRE programs are tested on a server with Quadro FX3800M as well 

as a server with Tesla M2050 GPU. The Tesla M2050 GPU (Fermi architecture) has 14 

multiprocessors with 32 cores each, 3 G of global memory, 64 kB of RAM which can be 

configured between Shared Memory and LI cache and 32 kB of registers per 

multiprocessor.
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Figure 42 Effect of loop unrolling in GPU-DFIRE performance (Tesla M2050) on a 
se t of 84 proteins ranges from 318 atoms to 99,895 atoms. The computation time 
measures are based on the average of 10 runs._____________________________



89

The Quadro FX3800M GPU (non-Fermi architecture) has 16 multiprocessors 

with 8 cores each, 1 G of global memory and 16 K of RAM. The CPU version of DFIRE 

(CPU-DF1RE) runs on a server with an Intel i7 CPU 920 @ 2.67 GHz, 8 MB cache, and 

6 G memory. We firstly benchmark GPU-DFIRE on a set of proteins o f various sizes. 

The GPU time we measured includes the time of transferring the protein information 

(ATOMS) arrays to GPU device memories, GPU execution time, and the time of 

retrieving the calculated overall DFIRE energy from GPU. Then, we apply GPU-DIRE 

to a Monte Carlo program for protein conformation sampling and a program for protein 

energy local minimization. We use the gcc compiler with the default “ -0 3 ”  optimization 

flag specified in DFIRE package for CPU-DFIRE. For GPU-DFIRE, nvcc compiler in 

CUDA 2.0 is used with “ -03” flag.

7.1.2.1 Overall Speedup

Figure 43 shows the overall speedup of GPU-DFIRE using pairwise interaction 

on NVIDIA Tesla M2050 and Quadro FX3800M on proteins o f various sizes with 

respect to CPU-DFIRE.
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Figure 43 Overall speedup of GPU-DFIRE on Tesla M2050 and Quadro FX3800M 
on a set of proteins with various sizes with respect to CPU-DFIRE. The 
computation time measures are based on the average of 10 runs for each 
protein._______________________________________________________________
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Due to not having enough computations in each thread, there are certain inefficiencies in 

GPU-DFIRE for proteins with less than 20,000 atoms. However, the performance is 

consistently high for proteins with more than 20,000 atoms. For very large proteins with 

more than 50,000 atoms, the maximum speedups of GPU-DFIRE can converge to ~ 150 

and ~250 using Quadro FX3800M and Tesla M2050, respectively. Moreover, it is 

important to notice that Tesla M2050 yields significant higher speedups than Quadro 

FX3800M in small proteins with less than 5000 atoms. This is due to the fact that Quadro 

FX3800M is non-Fermi architecture without LI cache, where the strategy of sorting atom 

sequence by atom types to achieve cache efficiency cannot take effect.

7.1.2,2 Applications o f GPU-DFIRE in Protein Structure Modeling

GPU-DFIRE can be adapted to a variety o f protein structure modeling algorithms 

requiring assessing protein molecule energy or feasibility. We use GPU-DFIRE in a 

Monte Carlo protein conformation sampling program and a local structure optimization 

program (MINIROT) where DFIRE is the target energy function. The measured 

computation time is the application execution time, which includes CPU time, GPU time, 

and the data transferring time between host memory and device memory.

In this work, we only consider how the acceleration in energy function evaluation 

using DFIRE can affect the overall performance of the protein structure modeling 

program. However, it is important to notice that if more parallel computations, e.g., 

randomly proposing new atom positions in Monte Carlo algorithm and the matrix 

operations in MINIROT, are moved to the GPU, more aggressive performance 

improvements may be obtained. After all, the key advantage of using GPU DFIRE is that 

almost no programming modification o f the original protein structure modeling program 

is necessary since GPU-DFIRE can provide the same programming interface as CPU- 

DFIRE.

• Monte Carlo sampling

We use GPU-DFIRE in a Monte Carlo sampling program provided by the 

TINKER package [117]. DFIRE is used as the target potential energy function. The 

protein conformational search is carried out by using Cartesian all atoms move where the 

position of every atom in the protein molecule is changed by a small random perturbation
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during every Monte Carlo trial. The Monte Carlo sampling program uses the Metropolis 

algorithm [112] and the DFIRE energy is evaluated in every iteration step to determine 

the acceptance of the proposed new conformation.

Adopting GPU-DFIRE, the Monte Carlo sampling algorithm is implemented as a 

heterogeneous CPU-GPU program. The evaluation of the DFIRE energy is carried out on 

the GPU while the rest of the Monte Carlo computations are executed on the CPU. We 

carry out the Monte Carlo optimization program using GPU-DFIRE on Tesla M2050 on a 

protein 3GDG with 7992 atoms. Our computational results show that the number of 

Monte Carlo steps per second is increased from 2.57 in CPU-DFIRE to 212.67 in GPU- 

DFIRE. The acceleration in the energy function evaluation significantly improve the 

performance o f the Monte Carlo computatbn with an average speedup o f 82.67, where 

the original computation time for 105 iterations is reduced from more than an hour to less 

than one minute.

The Cartesian all atom move in this Monte Carlo example requires evaluation of 

interactions between every atom pair. However, for Monte Carlo methods employing 

local conformational moves by changing a few torsion angles or positions of small 

number of atoms in a Monte Carlo trial, energy re-evaluations are only necessary for the 

atom pairs with relative position changes and thereby the computation times o f both 

CPU-DFIRE and GPU-DFIRE may be further reduced.

• Local structure optimization

We adopt GPU-DFIRE in the MINIROT program [118] provided by the TINKER 

package [117] where DFIRE is the target energy function. The MINIROT program 

performs local energy minimization of an initial protein structure over dihedral angle 

space using a limited memory Broyden-FIetcher-Goldfarb-Shanno (BFGS) algorithm. 

DFIRE energy is evaluated at every iteration step to determine the descending gradient 

until convergence is reached. Similar to the implementation of the Monte Carlo program, 

the evaluation of the DFIRE energy is on the GPU and the rest computations are on CPU. 

Because evaluation of the descending gradient on each atom is needed in MINIROT, we 

use the asymmetric scheme instead of the symmetric scheme in GPU-DFIRE.
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Table 26 compares the percentages of energy function evaluation times in the 

Monte Carlo sampling program and the MINIROT program using the CPU-only 

implementation and the heterogeneous CPU-GPU implementation with energy 

calculations on GPU. Compared to the Monte Carlo program where 99.9% of its 

computation time is in energy evaluation, the MINIROT program has significant more 

computations on CPU due to its matrix operations in linear search. Therefore, the energy 

evaluation occupies 75.8% of the overall computation time in the MINIROT program, 

which is still in majority but is much less than that of the Monte Carlo sampling program.

Table 27 shows the performance of the MINIROT program on 6 initial structures 

of protein 2ERL using GPU-DFIRE and CPU-DFIRE. Using GPU-DFIRE by migrating 

the energy evaluation computation to the GPU, the percentage of computational time 

spent in energy evaluation in the overall MINIROT program is reduced from 75.8% to 

24.1%. As a result, although not as significant as that o f the Monte Carlo program using 

GPU-DFIRE, MINIROT with GPU-DFIRE can achieve an average speedup o f -4.5.

Table 26 Percentages of energy evaluation times in Monte Carlo sampling 
program and MINIROT using the CPU-only implementations and the 
heterogeneous CPU-GPU implementations with energy function evaluation on 
GPU. The energy evaluation times in heterogeneous CPU.

Percentage of energy evaluation time {CPU-only implementation)(X) Percentage of energy evaluation time (heterogeneous CPU-CPU 
implementation with energy evaluation on GRJ) (X)

MC 99.9 892
MINIROT m 24.1

Table 27 Performance comparison of MINIROT program on 6 initial structures of 
2ERL (319 atoms) using GPU-DFIRE and CPU-DFIRE. GPU-DFIRE is carried out 
on Tesla M2050 server.

RMSO(A) Num. of steps Execution tim e(s| 
CPU-DRK GFU-DflRE (Testa M2050)

Initial I 3.19 338 6476 1419
Initial 2 206 225 43.39 973
Initial 1 2.24 480 91.70 1989
Initial 4 3.19 222 4323 10.02
Initials 205 692 130.35 2681
Initial 6 3.62 434 8221 1727
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7.2 Accelerating 3-body Potential

Three-body effects play an important role for obtaining quantitatively high 

accuracy in a variety o f molecular simulation applications. However, evaluation o f three- 

body potentials is computationally costly, generally o f 0(N 3) where N  is the number of 

particles in a system. Although the N-body interactions can be carried out in a 

straightforward way on a serial processor, efficient parallel implementation to fully take 

advantage of GPU architectures requires deliberate considerations.

In this section, we extend our previous GPU-based 2-body load-balancing 

workload distribution scheme, presented in section 7.1, to explicitly calculating 3-body 

terms. A load-balancing workload distribution scheme is presented for calculating 3-body 

interactions by taking advantage of the GPU architectures. Perfect load-balancing is 

achieved if N  is not divisible by 3 and nearly perfect load-balancing is obtained if N  is 

divisible by 3. The workload distribution scheme is particularly suitable for the GPU’s 

Single Instruction Multiple Threads (S1MT) architecture, where particles data access by 

threads can be coalesced into efficient memory transactions. We use two potential energy 

functions with 3-body terms, including the Axillord-Teller Potential [119] and the 

Context-based Secondary Structure Potential (CSSP) [94] as examples to demonstrate the 

effectiveness o f our workload distribution scheme.

7.2.1 3-body Effects

Although many molecular simulations are typically confined to evaluating 

interactions between molecular pairs, recent studies show that three-body or even higher 

order effects play an important role for quantitatively accurate computation in a variety of 

molecular simulation applications [120-123]. For example, the three-body effects 

strongly influence solid-liquid and vapor-liquid equilibria o f fluids [124-127]. The 

context-based secondary structure potential taking three-body statistical terms into 

account leads to significant accuracy enhancement in evaluating protein secondary 

structures [94]. A three-body potential incorporating interaction between a DNA base and 

a protein residue with regard to the effect of a neighboring DNA base outperforms two- 

body potentials in specific protein-DNA site recognition [128]. A four-body residue-
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residue contact potential has demonstrated its effectiveness compared with pairwise

potentials in discriminating native protein conformations [129]. Inclusion of three-body 

effects in the additive CHARMM protein CMAP potential also results in enhanced 

cooperativity o f a-helix and P-hairpin formatbn [130].

Despite the advantages o f calculating three-body interactions explicitly in 

molecular simulations, the main obstacle o f a potential energy involving three-body or 

higher order terms is its high computational cost. In general, when external influences are 

not presented, the potential energy of a system with N particles can be evaluated as

where U(pi( Pj) is the two-body term involving two particles pj and pj, U(pi( pj, pk) is the 

three-body term, and U(pj, pj, pk, pi) is the four-body term, and so on. Computing time 

increases largely when higher order terms are included. Generally, two-body terms
■j i

require 0(N  ) operations, while 0(N ) for three-body terms, 0(N ) for four-body terms, 

and so forth. Computation reduction approaches such as Bames-Hut method, fast 

multipole, and particle-mesh [131-134] can significantly reduce the overall computation 

complexity by simplifying interactions between far apart particles. Nevertheless, 

simulation using computation involving three- or higher-body terms is still unrealistic for 

a system with relatively large number of interacting molecules until recent improvements 

in computer systems.

In this section, we extend our GPU-based two-body load-balancing workload 

distribution scheme to explicitly calculating three-body terms. The effectiveness of our 

approach is demonstrated in the computation of the Axillord-Teller potential [119], a 

physics-based three-body potential function, and the Context-based Secondary Structure 

Potential (CSSP), a knowledge-based three-body potential energy function to evaluate 

protein conformation adopting certain secondary structure pattern [94].

7.2.2 GPU-based Load-balancing Scheme for Computing 3-body Interactions

] T U(P i,P j)+  Y j U(P i'P )'Pk)+  ^  U(pi; pj( pk, p , ) +
i*j i* j*k  i*j*k*I

Our load-balancing scheme assumes that the three-body interaction terms are 

independent of the order of the three particles. In other words, the order permutation o f 

the three particles does not change the potential value. Moreover, for simplicity in
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illustration, we assume one-thread-per-particle assignment, i.e., each thread keeps one 

particle information unchanged and then shift the second or the third particles 

information at each iteration to obtain all combinations of triplets. A fine-grained 

assignment other than the one-thread-per-particle assignment to enhance GPU 

performance on systems with small number of particles is presented in the next section.

7.2.2.1 Serial Implementation

The general implementation of three-body interaction computation in serial is 

straightforward. All one needs to do is to enumerate all triplet combinations o f three 

different particles and then calculate the three-body energy o f the triplet. The 

corresponding pseudo code is illustrated in Figure 44. For a molecular system with N  

particles and assuming that each pair of particles are interacting, there are totally N*(N -  

1 )*(N -  2)16 triplet computations and each particle is involved in exactly (N  -  \)*(N  -  

2)/2 interaction computations. However, for each particle in the outer loop in Figure 44, 

its number of three-body interaction calculations in the middle and inner loops varies 

gradually from (N  -  \)*(N -  2)12 to 1. Consequently, directly mapping the calculations in 

the middle and inner loops to GPU threads will lead to a highly unbalanced workload 

distribution.

i s u m E  • -  0 . 0 ;  / /  i n i t i a l i z a t i o n
! f o r  i  *- 1  t o  N - 2  { / /  f i r s t  p a r t i c l e ,  o u t e r  l o o p

p a r t i c l e l  =  i ;

f o r  j  «- i + 1  t o  N - l  { / /  s e c o n d  p a r t i c l e ,  m i d d l e  l o o p
p a r t i c l e 2  ** j ;
f o r  k  «- j + 1  t o  N  { / /  t h i r d  p a r t i c l e ,  i n n e r  l o o p

p a r t i c l e 3  -  k ;
s u m E  -  s u m E  +  T r i p l e E ( p a r t i c l e l ,  p a r t i c l e 2 ,  p a r t i c l e 3 ) ;

! )
)

}

Figure 44 Pseudocode of calculating three-body terms in a system with N 
particles.
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7.2.2.2 Rotational Symmetry

Our implementation of load-balancing workload distribution scheme for three- 

body interaction computation on GPU is based on the concept of rotational symmetry. 

Assuming that the A'particles in the system are stored in a cyclic array, we use i,j, and k 

to denote the indices of the three particles in clockwise order and dy, djk, and dki to 

denote the position separations between particles i and j , j  and k, and k and /, respectively. 

Here dy  is calculated as

U -  i, i < j
i ~  (j — i + N, i > j

and djk and dki are calculated in a similar way. Clearly, we can have the following two 

properties

1). i *  j  =£ k, and

2 ) .  dij  +  djk +  dki =  N.

A
Then, we study the position separation pattern of dki dik o f a triplet (Pj, Pj, Pk).

A  A , A
Considering two position separation patterns dki d>k and dki dik , dkl A  and

A ,
dki d>k are rotational symmetric if dy  =  d ^ ' and djk = djk and dkl = d ki' or 

dij = djk and djk = dki' and dki = d y ' or dy  = dki' and djk =  d y ' and dki = djk '. Or

A  A . A
equivalently, if dki d>k can turn into dki dik via cyclic rotations, then dki dJk

A .and dki dik are rotational symmetric. Given an example of a system where N  = 6,

i 3 ^ 2^  x

3 2 ? 2 i  ̂ an(j l 3 are rotational symmetric but 3 2 and 2 3 are

not. In our GPU implementation, assuming one-thread-per-particle and all threads share 

the same computation pattern due to GPU’s SIMT architecture, rotational symmetric 

position separation patterns indicate that some threads will calculate certain triplets in 

overlap, which will lead to waste o f computational power and, more seriously, erroneous
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results if not handling correctly. Figure 45 illustrates an example where N  = 6. Thread 1

l

starts from particle PI and triplet (PI, P2, P3) has position separation pattern 4 1 . If

/ \  / \  
a rotational symmetric position separation pattern of 4 1 , for instance, 1 —  4 is

adopted, then thread 1 will carry out three-body interaction calculation on triplet (PI, P2,

P6), which is the same as the three-body interaction calculation on triplet (P6, PI, P2) in

l

thread 6 starting at P6 with position separation pattern 4 1 . In summary, the

fundamental idea of our GPU-based algorithm is to uniquely enumerate all position 

separation patterns that neither pair is rotational symmetry.

. . . v

P5 P3

Thread 1

P4

Thread 6

Figure 45 An example with N = 6 with thread 1 starting from P1 and thread 6 from 
P6. The highlighted particle is the first particle that a thread handles. For

separation pattern 4 1 , threads 1 and 6 will calculate three-body interactions
of triplets (P1, P2, P3) and (P6, P1, P2), respectively. If thread 1 adopts a position

separation pattern 1 4 , which is rotational symmetric to 4 — 1, will compute
three-body interaction of triplet (P1, P2, P6), which overlaps the computation of

thread 6 with position separation pattern
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To balance workload distribution among GPU threads, we design a novel 

workload distribution scheme by enumerating all position separation patterns without 

sharing rotational symmetry. The workload distribution scheme is shown in Figure 46. 

For thread /, the index o f the first particle is always i specified by the passed parameter 

and the second and third particles are selected according to the enumerated position 

separation patterns. The algorithm enumerates all position separation patterns satisfying 

dy  ^  djk and dy  < dki. ( 1)

It is easy to show that any position separation patterns that do not satisfy the above 

condition are rotational symmetric to one of the position separation patterns satisfying 

this condition, because we can always rotate the smallest position separation to dy. The 

above condition also indicates that dy is bounded by [(N — l) /3 j .  Hence, our algorithm 

iterates the second particle index from (/ + 1) mod N to (i +  [(N -  l ) /3 j )  mod N. Then, 

the third particle is iterated to satisfy ( 1).

; T h r e a d ( i ,  N) j
' ( !

l o c a l E  «- 0 . 0 ;  / /  initialization !
i  i

: p a r t i c l e l  — i ;  / /  particle 1 j
| r a n g e  *- / /  range of particle 2 j
; f o r  d i j  -  1  t o  r a n g e  {
| d j k  -  d i j ;

d k i  N -  d j k  -  d i j ;
p a r t i c l e 2  — ( i  + d i j )  mod N; // particle 2 

; w h i l e  ( d k i  >  d i j )  { / /  range of particle 3  |
p a r t i c l e 3  — ( i  +  d i j  +  d j k )  mod N; / /  particle 3  j

l o c a l E  — l o c a l E  +  T r i p l e E ( p a r t i c l e l ,  p a r t i c l e 2 ,  p a r t i c l e 3 ) ;  i 

j  d j k  *- d j k  +  1 ;  j
d k i  *- d k i  -  1;

| } |
>

I l o c a l _ s u m _ r e d u c e ( l o c a l E ) ; / /  sum partial scores in local block
: } i
I. I

Figure 46 Pseudocode of enumerating ail non-rotational symmetric position 
separation patterns except for the order three symmetric one and calculating 
three-body interaction of the corresponding triplet particles in a GPU thread.
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Figure 47 illustrates an example o f enumerating triplets by the first thread (thread 

1) in a system with 10 particles, using the algorithm shown in Figure 46. For thread 1, the 

first particle is always PI. The second particle iterates from P2 to P4. When the second 

particle is P2 (dtj = 1), three-body interactions of triplets (PI, P2, P3), (PI, P2, P4), (PI, 

P2, P5), (PI, P2, P6), (PI, P2, P7), (PI, P2, P8), and (PI, P2, P9) with position separation 

l l i i i i i

patterns 1 , 7 2 , 6 3 , 5 4 , 5 , 6 , and 2 7 are

calculated, respectively. When the second particle is P3 (dy = 2), the three-body 

interactions o f triplets (PI, P3, P5), (PI, P3, P6), (PI, P3, P7), (PI, P3, P8) with

/ \  2 /  \  /  \
respective separation patterns 6 2 , 5 3 , 4 4 , and 3 ~ 5 are accumulated.

When the second particle is iterated to P4 (d,j = 3), only one triplet triplets (PI, P4, P7)
3

with separation pattern 4 3 can satisfy (1). The completion o f the algorithm allows

thread 1 to carry out three-body interactions of 12 triplets with different position 

separation patterns that are not rotational symmetric. Assuming that one particle per 

thread, the total number of three-body interactions is 12*10 = 120 = 10*9*8/6.

P10

Figure 47 (a) cfy = 1, the second particle is P2 and three-body interactions of triplets (P1, 
P2, P3), (PI, P2, P4), (P1, P2, P5), (P1, P2, P6), (PI, P2, P7), (P1, P2, P8), (P1, P2, P9) with

1 A .  A.  ' 1 *
patterns 8'—  1 , 7 2 , 6 —  3 , 5 —  4 , 4
calculated, respectively.

5 , 3 " 6 , and 2 7 are
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Figure 47 (b) dij= 2, the second particle is P3 and three-body interactions of triplets (P1,
2 2

P3, P5), (P1, P3, P6), (P1, P3, P7), (P1, P3, P8) with separation patterns 6 —  2 , 5
2 2

4 4 , and 3 5 are calculated, respectively.

Figure 47 (c) d v = 3, the second particle and only one three-body interaction of triplet
3

(P1, P4, P7) with separation pattern 4 3 is calculated.

Figure 47 An example of enumerating triplets without sharing rotational 
symmetry in position separation patterns by the first thread (thread 1) in a 
system with 10 particles.
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The only position separation patterns that the algorithm shown in Figure 46 

cannot iterate are order three rotational symmetric patterns in case of dy  =  djk = dki, 

when N  is divisible by 3. The order three rotational symmetric pattern will cause the 

triplets with equal separation distances to be calculated repeatedly by different threads. 

Figure 48 shows an example o f a system with 6 particles, where an order three rotational 
2

symmetric pattern 2 2 exists. As a result, threads 1, 3, 5 over calculates triplet (PI,

P3, P5) while threads 2, 4, 6 over calculates triplet (P2, P4, P6). The deeper reason is, if 

N  is divisible by 3, (N - 1 )*(N - 2) is no longer divisible by 6 and thus the total number of 

N*(N - 1 )*(N - 2)/6 interaction computations cannot be equally distributed to N  threads. 

Consequently, order three rotational symmetric patterns require special handling.

*

P4
s—s 

Thread 1

V
Thread 4

~ )

r
P4

Thread 2

Thread 5

Pi

P4

Thread 3

Thread 6

Figure 48 Order three rotational symmetry in a system with 6 particles. The 
highlighted particle is the first particle a thread handles. Threads 1, 3, 5 over 
calculate triplet (P1, P3, PS) while threads 2,4, 6 over calculate triplet (P2, P4, P6 ).
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7.2.2.3 Load- balancing Workload Distribution Scheme

Figure 49 shows the complete workload distribution algorithm with special 

handling of N  divisible by 3 based on the pseudocode provided in Figure 46. Only the 

first M 3 threads will carry out the three-body interaction computation of triplets with 

order three rotational symmetric position separation pattern to avoid over calculation. 

When N  is not divisible by 3, each thread carries out exactly (N  -  1 )* (N -  2)/6 three-body 

interaction operations, where perfect load-balancing is achieved. When N  is divisible by 

3, the first M3 threads carry out an additional iteration o f three-body interaction 

computation for triplets with order three rotational symmetric pattern. When N  is 

relatively big and thereby a lot of iterations are needed, this additional iteration has little 

impact to the overall system performance and hence we can claim that nearly perfect 

load-balancing is obtained.

T h r e a d ( i ,  N)
1

l o c a l E  •- 0 . 0 ;  
p a r t i c l e l  «- i ;  
r a n g e  «- l(N — 1)/3J ; 
f o r  d i j  <- 1  t o  r a n g e  { 

d j k  -  d i j ;
d k i  *- N -  d j k  -  d i j ;  
p a r t i c l e 2  — ( i  +  d i j )  m o d  N ;
w h i l e  (dk i  > d i j )  {

// initialization 
// particle 1 
// range of particle 2

// particle 2 
// range of particle 3

p a r t i c l e 3  •-  ( i  +  d i j  +  d j k )  m o d  N ;  / /  particle 3
l o c a l E  •-  l o c a l E  +  T r i p l e E ( p a r t i c l e l ,  p a r t i c l e 2 ,  p a r t i c l e 3 ) ;

d j k  «- d j k  +  1 ;
d k i  -  d k i  -  1 ;

)
}
//Special handling 3-way rotational symmetric 
i f  (N mod 3 = =  0) { / /  N divisible by 3

i f  ( i  < =  N / 3 )  { 
d i j  = d j k  =  N / 3 ;
p a r t i c l e 2  ( i  +  d i j )  m o d  N ;  / /  particle
p a r t i c l e 3  — ( i  +  d i j  +  d j k )  m o d  N ;  / /  particle
l o c a l E  — l o c a l E  +  T r i p l e E ( p a r t i c l e l ,  p a r t i c l e 2 ,  p a r t i c l e 3 ) ;

)

)
l o c a l  sum r e d u c e ( l o c a l E ) ; // sum partial scores in local block

}

Figure 49 Pseudocode of load-balancing workload distribution scheme. Perfect 
load-balancing is achieved when N is not divisible by 3. When N is divisible by 3, 
an additional iteration is needed for the first N/3 threads.
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Figure 50(a), (b), and (c) show the workload distribution when N  = 7, 8, and 9, 

respectively, with perfect load-balancing when N  = 7 and 8 and nearly perfect load- 

balancing when N -  9. In addition to load balancing, the workload distribution scheme is 

particularly suitable for the GPU’s SIMT architecture [109]. This is due to the fact that, at 

each iteration step, each thread reads data from different particles with the same stride, 

which can be coalesced into efficient memory transactions.

7.2.2.4 Additional Performance Improvement Implementations on GPU

The above load-balancing workload distribution scheme assumes the one-thread- 

per-particle on GPU architecture. Nevertheless, for molecular systems with small N  

value, the one-thread-per-particle scheme with N  threads may not produce enough threads 

to fully utilize all resources in GPU. To address this issue, we implement fine-grained 

threads by dividing the workload originally assigned to one thread to multiple threads so 

that sufficient threads are produced when N  is small. In addition to fine-grained treads, 

other standard CUDA programming techniques, including parallel sum reduction, loop 

unrolling, and coalesce memory access are implemented in order to fully take advantage 

of the GPU architecture [109],
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread 5 

Thread 6 

Thread 7

PI P2 P3
P2 P3 P4
P3 P4 P5
P4 P5 P6
P5 P6 P7
P6 P7 PI
P7 PI P2

PI P2 P4
P2 P3 PS
P3 P4 P6
P4 P5 P7
P5 P6 PI
P6 P7 P2
P7 PI P3

PI P2 PS
P2 P3 P6
P3 P4 P7
P4 P5 PI
P5 P6 P2
P6 P7 P3
P7 PI P4

PI P3 P4
P2 P4 P5
P3 P5 P6
P4 P6 P7
PS P7 PI
P6 PI P2
P7 P2 P3

2nd column shift

PI P3 P5
P2 P4 P6
P3 PS P7
P4 P6 PI
P5 P7 P2
P6 PI P3
P7 P2 P4

Figure SO (a) Perfect Balancing [N  = 7).

Itera tion  1 Itera tion  2 Itera tion  3 Itera tion  4

Thread 1 

Thread ?

Thread 3 

Thread 4 

Thread 5 

Thread 6 

Thread 7 

Thread 8

Figure SO (b) Perfect Balancing (N = 8).

P i P2 P3

P2 P3 P4

P3 P4 P5

P4 P5 P6

P5 P6 P7

P6 P7 P8

P7 P8 PI

P8 PI P2

PI P2 P4

P2 P3 P5

P3 P4 P6

P4 PS P7

P5 P6 P8

P6 P7 PI

P7 P8 P2

P8 PI P3

PI P2 PS

P2 P3 Pfe

P3 P4 P7

P4 P5 P8

P5 P6 PI

P6 P7 P2

P7 P8 P3

P8 PI P4

PI P2 P6

P2 P3 P7

P3 P4 P8

P4 PS PI

PS P6 P2

P6 P7 P3

P7 P8 P4

P8 PI PS

Itera tion  5 Itera tio n  6 Itera tio n  7

PI P3 P4

P2 P4 P5

P3 P5 P6

P4 P6 P7

P5 P7 P8

P6 P8 PI

P7 PI P2

P8 P2 P3

2 nd co lum n shift

PI P3 PS

P2 P4 P6

P3 PS P7

P4 P6 P8

PS P7 PI

P6 P8 P2

P7 PI P3

P8 P2 P4

PI P3 P6

P2 P4 P7

P3 PS P8

P4 P6 PI

PS P7 P2

P6 P8 P3

P7 PI P4

P8 P2 P5
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Iteration  1 Ite ra tion  2 Iteration  3 Ite ra tion  4 Itera tion  5 Iteration  6 Iteration  7 Ite ra tio n  8 Ite ra tio n  9 Ite ra tio n  10

Ih rea d  1 Pi P2 P3 PI P2 94 PI P2 P5 PI P2 PS PI 92 P7 PI P3 P4 PI 93 P5 Pi 93 P6 Pi P3 P7 PI P4 97
Thread 2 97 P3 P4 92 P3 PS P2 P3 PS 92 P3 P7 P2 93 PS P2 P4 PS 92 94 PS P2 94 P7 P2 P4 P8 P2 PS PS

Thread 3 P3 94 PS 93 94 PS P3 94 P7 93 P4 PS P3 94 99 P3 P5 P6 P3 PS P7 P3 PS PS P3 PS P9 P3 PS P9

Thread 4 94 PS P6 94 PS P7 94 PS PS 94 PS PS P4 PS PI 94 P6 P7 94 PS PS P4 PS 99 P4 PS PI P4 97 PI

Thread b PS PS 97 PS PS PS PS PS P9 PS PS PI PS PS P2 PS P7 PS PS P7 P9 PS P7 PX PS P7 P2 P5 PS P2

T hread 6 P6 97 PS P6 P7 PS P6 P7 PI PS P7 P2 P6 P7 P3 P6 P8 P9 PS PS PI PS PS P2 P6 PS P3 P6 99 P3

Ih rea d  J 97 P8 P6 P7 P8 PI P7 PS P2 P7 PS P3 P7 P8 P4 P7 P9 PI P7 P9 P2 P7 99 P3 P7 P9 P4 P7 91 P4

T hread 8 P8 P9 PI PS PS 97 PS PS P3 PS P9 94 P8 P9 PS PS PX P2 PS PI P3 PS PI P4 PS PX P5 PS 97 PS

Ih re a d  0 P9 PI P2 P9 PX 93 P9 PI P4 P9 PI PS 99 PI PS P9 P2 P3 99 P2 P4 99 P2 PS P9 P2 P6 P9 93 P6

2nd co lum n sh ift 2nd co lu m n  sh ift

Figure 50 (c) N = 9, due to order three rotational symmetry, only the first three threads handles triplets (1,4,7), (2, 5 ,8), 
and (3,6, 9), respectively, at iteration 10.

Figure 50. Workload Distribution Scheme when N 
Near-perfect load balancing is obtained when N =

= 7 ,8 , 9. Perfect load balancing is achieved when N =  7 and 8 . 
9.
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7.2.3 Computational Results

Two potentials involving three-body terms, including the Axillord-Teller potential 

and the CSSP potential are used to demonstrate the effectiveness of our load-balancing 

workload distribution scheme on GPU. We name the GPU implementation o f Axillord- 

Teller and CSSP potential energy functions “GPU-AxT” and “GPU-CSSP,” respectively. 

The original serial CPU versions are referred to as “CPU-AxT” and “CPU-CSSP.” The 

load-balancing workload distribution scheme for three-body interactions is adopted in 

GPU-AxT and GPU-CSSP. As for the two-body interactions in GPU-CSSP, we used our 

approach, described in section 7.1, to balance the workload [135]. Furthermore, the 

standard CUDA programming techniques for performance improvement are implemented 

in both potentials.

The GPU-AxT and GPU-CSSP programs are tested on a server with Tesla C2070 

GPU. The Tesla C2070 GPU (Fermi architecture) has 14 multiprocessors with 32 cores 

each, 6 GB of global memory, 64 KB of RAM which can be configured between Shared 

Memory and LI cache and 32 KB of registers per multiprocessor. We also tested GPU- 

CSSP program on two other servers with NVIDIA Tesla C l060 on one server and Tesla 

C870 on the other server. Tesla C l060 has 30 multiprocessors with 8 cores each, 4 GB of 

global memory, and 16 KB of registers per multiprocessor. Tesla C870 has 16 

multiprocessors with 8 cores each, 2 GB of global memory, and 16 KB of registers per 

multiprocessor. Both Tesla C l060 and Tesla C870 are non-Fermi architecture with no LI 

cache.

CPU-AxT and CPU-CSSP run on a server with an Intel(R) Xeon(R) CPU @ 2.40 

GHz, 1.6 GB cache, and 70 GB memory. We benchmark GPU-AxT and GPU-CSSP on a 

set of systems of various sizes. The GPU time we measured includes the time of 

transferring the system information (particles) arrays to GPU device memories, GPU 

execution time, and the time of retrieving the calculated overall potential energy from 

GPU. We use the gcc compiler with “ -0 3 ” optimization flag for the CPU
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implementations and nvcc compiler in CUDA 2.0 with “ -0 3 ” flag for GPU 

implementations.

7.2.3.1 Computational Results o f Axil lord- Teller Potential

• Axillord-Teller Potential

The Axillord-Teller potential is an intermolecular potential for the interaction of 

the van der Waals type between three particles [119]. Considering particles i ,j, and k, the 

Axillord-Teller potential u i;fc is calculated as,

__ „ r 1 . 3{-r fj + rjjc+rjlk)(rfj -  r^+ rji)(r^  +  r?k- r f k\
u i jk  y l„ 3 ~ 3  _3  q / - _ 5 - S _ S 'v J

r i j r ik rj k  8(J i j r i k rj k )

where v is a non-additive coefficient and r^, ryfc, and rik are Euclidean distances between 

particles / and j , j  and k, and k and /, respectively.

• GPU-AxT Speedup over CPU-AxT

We employed the Axillord-Teller potential in a molecular dynamics simulation 

for Argon gas. A simulation box of length L is initialized with N  number o f argon 

particles (atoms). In order to demonstrate the effectiveness of Axillord-Teller potential 

implementation on the GPU (GPU-AxT), we run the simulation for 10 steps in boxes of 

various sizes ( I  ranges from 10 for 125 particles to 58 for 24389 particles). The execution 

time o f Axillord-Teller potential evaluation is averaged over the number of simulation 

steps.

Figure 51 shows the overall speedup o f GPU-AxT on NVIDIA Tesla C2070 on 

systems of various sizes with respect to CPU -AxT. For very large systems with more 

than 3,000 particles, the maximum speedups of GPU-AxT can reach -340. Figure 51 

also shows that there are certain inefficiencies in GPU-AxT for systems with less than 

2,500 particles, due to insufficient number of threads to fully take advantage of the GPU 

architecture. To improve the performance of systems with small number of particles, we 

adopt a fine-grained implementation by evenly splitting the workload of three-body 

interaction computations belonging to one thread to multiple threads so that nearly the 

maximum number of threads that a GPU device can launch is created.
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Figure 51 Overall speedup of GPU-AxT on Tesla C2070 on a set of systems with 
various sizes with respect to CPU-AxT.

Significant performance improvements are found in systems with small number of 

particles when Fine-grained threads are employed, whose speedups are promoted to be 

closer to those with a lot of particles. For systems with small number of particles, 

sufficiently large number of threads is produced to use the GPU hardware to its fullest. 

As the number of particles increases, the speedup curves o f fine-grain threads and one- 

thread-per-particle start to merge because the increasing number of threads in one-thread- 

per-particle strategy makes more and more efficient use of the GPU architecture. After 

all, with sufficient number of threads, the memory access latency can be effectively 

masked.

• Load Balancing Scheme vs. Direct Mapping Scheme

Theoretically, assuming every three particles are interacting with each other, if the 

serial algorithm is directly mapped to GPU implementation, the longest thread needs to 

carry out (N -  \ )*(N-  2)12 three-body interaction calculations. When the load-balancing 

scheme is used, each thread handles at most (N  -  1) * (JV -  2 )/6  + 1 three-body 

interactions. Therefore, the theoretical speedup of the load-balancing scheme over direct
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mapping scheme is approximately 3. Figure 52 shows that, when no distance cutoff is 

applied, the GPU-AxT implementation using the load-balancing scheme is around 3 

times faster than that of direct mapping. This agrees well with our theoretical analysis. 

Nevertheless, in practice, interactions between particles separated over a certain distance 

are weak enough to be ignored in computation. Using the distance cutoff can significantly 

reduce the overall three-body interaction computation. Figure 52 also shows that the 

speedup of the GPU-AxT implementation using the load-balancing scheme when half o f 

box width is used as cutoff distance over that of direct mapping is reduced to 

approximately 1.8.

The performance reduction o f the balanced GPU-AxT with distance cutoff is 

mainly caused by the divergent branches in the program. Evaluation of the Axillord- 

Teller potential with distance cutoff requires testing pairwise particle distances — if any 

one of the pairwise particle distances is higher than the cutoff distance, the three-body 

interaction computation will not be carried out.

4.50

•  No Cutoff ■ Cutoff = Bo«Wldth/2
m  4.00 '

3.50

Z  3.00
M • •
V
«  2.50
s
3 2.00 
x |1 1  •  '  '  '  "
9> 150

100
10 12 14 lfi 18 20 22 24 26 28 30 32

box width
Figure 52 Speedup of GPU-AxT implementation using load-balancing scheme
over that of direct mapping. When no cutoff distance is applied, speedup is
approximately 3, agreeing well with the theoretical analysis. When half box width
cutoff is adopted, speedup is reduced to ~1.8.
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When the threads handling three-body interactions within the distance cutoff as 

well as those exceeding cutoff co-reside in the same GPU warp, divergent branches will 

occur in runtime. Table 28 compares the number of divergent branches of GPU-AxT with 

half box width cutoff with GPU-AxT without distance cutoff. The performance data is 

obtained by NVIDIA Compute Visual Profiler 3.2 [115]. When no distance cutoff is 

adopted, GPU-AxT does not suffer from branch divergence because pairwise particle 

distances are not necessarily checked against cutoff distance. In contrast, when distance 

cutoff is applied, branch instructions (if statements) are inserted to compare the pairwise 

particle distances with the cutoff distance, which potentially leads to divergent branches. 

When half box width cutoff is used, the divergent branches in GPU-AxT is 

approximately 15% of the total number off branch instructions, which results in speedup 

reduction.

Table 28 Comparison of the Number of divergent branches in GPU-AxT with half 
box cutoff distance and GPU-AxT without cutoff.

# of Branch Instruction # of Divergent Branch
Box Width no Cutoff w. Cutoff no Cutoff w. Cutoff
10 2,628 6,722 0 1,319
12 7,817 16,954 0 1,338
14 39,338 91,987 0 11,766
16 87,558 207,909 0 27,614
18 266,098 640,687 0 89,429
20 500,511 1,182,504 0 152,506
22 1,181,940 2,858,410 0 435,072
24 2,489,780 5,809,260 0 730,359
26 4,829,030 11,573,100 0 1,635,830
28 8,787,680 20,750,600 0 2,717,490
30 15,192,000 36,138,900 0 5,058,260
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7.2.3.2 Computational Results o f Context-based Secondary Structure Potential (CSSP)

• Context-based Secondary Structure Potential (CSSP)

CSSP is a statistical potential integrating inter-residue interaction potentials for 

assessing predicted protein secondary structures [94]. Consider a protein chain with L 

amino acid residues and fragment size of S' (S < L), the CSSP potential o f a protein 

molecule is calculated as,

where Rt denotes residue i in the protein chain and !/(/?*)> U^Ri.Rj), and (/(/?*, Rj, Rk) 
are singlet, doublet, and triplet potential terms, respectively.

• Performance o f Load-balancing Scheme

Unlike the Axillord-Teller potential, which is a pure three-body potential, the 

CSSP potential includes three-body terms together with two- and single-body terms. In 

GPU-CSSP implementation, the single-body terms are calculated using direct mapping 

and the two-body terms are calculated using the pairwise load-balancing scheme 

described in [135], which has a theoretical speedup of -2.0 over direct mapping scheme. 

The three-body terms are calculated using the load-balancing workload distribution 

scheme described in this paper with theoretical speedup of -3.0 over direct mapping. 

Figure 53 shows the speedup of the load-balancing GPU-CSSP over that of direct- 

mapping on a set o f proteins ranged from tens to hundreds of residues, where an average 

speedup o f 2.6 is obtained. This speedup is consistent for small and large proteins.

Figure 54 shows the overall speedup o f the final GPU-CSSP implementation with 

fine-grained threads on NVIDIA Tesla C2070, Tesla C l060, and Tesla C870 on proteins 

of size ranging from tens to thousand residues with respect to CPU-CSSP. The 

computation time measures are based on the average of the times on proteins o f sizes 

within the ranges specified in the figure. For large proteins, the maximum speedups of 

GPU-CSSP can reach up to -480, -190 and -55 using Tesla C2070, Tesla C l060 and

p r o t e i n
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Tesla C870, respectively. It is important to notice that Tesla C2070 yields significantly 

higher speedups than Tesla C l060 and Tesla C870. This is due to the fact that Tesla 

C2070 has 448 CUDA cores whereas Tesla C l060 and Tesla C870 have 240 and 128 

CUDA cores, respectively. Moreover, Tesla C l060 and Tesla C870 are non-Fermi 

architecture without LI cache.

4.50 Speedup of balanced GPU-CSSP
4.00

3,50
a

j2  3.00 + ♦
5  2.50 * V 6

2.00

1.50

1.00 i . i i i i

20 120 220 320 420 520 620

Number of Residues
Figure 53 Performance of the balanced GPU-CSSP with respect to the
unbalanced GPU-CSSP on Tesla C2070.
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Figure 54 Overall speedup of GPU-CSSP on Tesla C2070, Tesla C1060 and Tesla
C870 on a set of proteins with various sizes with respect to CPU-CSSP.
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CHAPTER 8 

SUMMARY AND POSTDISSERTATION REASEARCH

An approach of deriving context-based scores based on the potentials o f mean 

force method for characterizing the favorability of residues in adopting a structural state 

according to their amino acid environment is developed in this work. These context- 

based scores are incorporated as features together with other sequence and evolutionary 

information in neural network training for different structural features predictions, 

including secondary structure in 3-state and 8-state, disulfide bonds, and solvent 

accessibility. Furthermore, efficient toad balancing schemes to accelerate the calculations 

of many-body potentials by taking advantage of the GPU architecture are also developed 

in this work.

The effectiveness of using context-based scores has been demonstrated in our 

computational results in A-fold cross validation as well as on protein benchmarks, where 

enhancements of prediction accuracies are observed. A comparison of our methods with a 

set of popular structural features prediction methods was made such that our methods 

demonstrate higher accuracies. Furthermore, the efficiency of our proposed load- 

balancing approach in accelerating many-body potentials has been demonstrated in the 

corresponding results as well.

Web servers implementing our prediction methods are currently available:

• DINOSOLVE, available at http://hpcr.cs.odu.edu/dinosolve.

• C3-SC0RPI0N, available at http://hpcr.cs.odu.edu/c3scorpion.

•  C8-SC0RPI0N, available at http://hpcr.cs.odu.edu/c8scorpion.

• CASA, available at http://hpcr.cs.odu.edu/casa.

This dissertation raises many interesting opportunities for us to continue our study 

in our future post-dissertation research. The following is a list o f some of these possible 

research directions:

http://hpcr.cs.odu.edu/dinosolve
http://hpcr.cs.odu.edu/c3scorpion
http://hpcr.cs.odu.edu/c8scorpion
http://hpcr.cs.odu.edu/casa
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• Toward the theoretical upper bound

In order to close the gaps between the theoretical upper bounds and our current 

prediction accuracies o f secondary structures, disulfide bonds and solvent accessibility, 

our future efforts will include:

1) Deriving better context-based scores fo r  calculating high-order interactions.

The context-based scores estimate the favorability o f a residue adopting certain 

structural conformation within its amino acid environment. The contribution o f the 

context-based scores in structural features prediction depends on their accuracy.

In order to show the sensitivity to context-based scores accuracy, we hereby use 

our SCORPION method for predicting secondary structures in 3-state as an example. 

Figure 55 shows the distribution of the context-based scores accuracy and the 

corresponding accuracy improvements over the PSSM-only predictions for 3-state 

secondary structure in CB513, CASP9, Manesh215, and Carugo338 benchmarks. When 

the accuracies are lower than 40%, the context-based scores are close to random and thus 

their contributions to secondary structure prediction are marginal. The more accurate in 

the scores, the higher accuracy improvement over the PSSM-only predictions is achieved. 

When the accuracy of the context-based scores exceeds 80%, the average accuracy 

improvement over PSSM-only predictions reaches 2.5%. Unfortunately, the quality of the 

context-based scores is limited by number of samples existing in the PDB, particularly 

when calculating the high-order interactions. Therefore, it is not often that the context- 

based scores are highly accurate and the average of the context-based scores accuracy in 

SCORPION training and prediction is around 60%. Hence, more samples from the PDB 

will be collected in order to calculate the residues’ high-order interactions.

2) Obtaining more precise PSSM substitution matrices

The evolutionary information revealed by multiple sequence alignments is a 

major component of almost all modern prediction methods. The quality of this 

information depends on the alignment algorithm used. Hence, our research direction 

involves investigating better sequence alignment algorithms on increasingly large 

sequence databases.
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■ Score Distribution ♦  Accuracy Improvement

<40% 40%-49% 50%-59% 60%-69% 70%-79% >80%
A c c u tk y  of Cont*«t-b*M<l Scortt

Figure 55 Distribution of context-based scores accuracy and its correlation with 
accuracy improvement over PSSM only prediction in CB513, CASP9, 
Manesh215, and Carugo338 benchmarks. The accuracy of context-based 
scores is measured by calculating the percentage of residues whose lowest 
score secondary structure conformations (H, E, or C) agree with the DSSP.

3) Developing advanced machine learning algorithms

More machine learning algorithms will be explored; specifically, algorithms that 

can capture residue-residue interactions in longer range and handle increasingly large 

number o f known protein structures.

• Secondary structure prediction and intrinsically disordered protein regions

An important application of secondary structure prediction is to predict 

intrinsically disordered protein regions. Disordered proteins typically have a low content 

of secondary structures. In fact, the predicted secondary structures are often incorporated 

as important information in disorder region predictors such as DISOPRED [l 36] and 

SPINE-D [137]. Figure 56 shows an example o f the secondary structures predicted by 

SCORPION on Thylakoid soluble phosphoprotein TSP9 [138], an intrinsic disordered 

protein reacting to light condition changes from the photosynthetic membrane. The 

majority of the N-terminal a-helix is predicted correctly with high confidence (8+) except
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for two residues at the end. For the unstructured coils, 85.3% of the 75 residues are 

correctly identified while the rest 14.7% are misclassified as helices or strands but with 

low prediction confidence (6-). Coupled with other residue feature predictors such as 

solvent accessibility, B-factor, and disulfide bonding state, the accuracy improvement in 

secondary structure prediction using context-based scores has the potential to enhance 

determination of intrinsically disordered regions.

• More protein structural features to predict.

Features including contact-map, torsion angles, disordered regions, and B-factor 

will be considered as part of our future research.

• A Framework for tertiary structure prediction

Prediction methods, once available, will serve as a framework by which important 

information can be generated in order to be used in tertiary structure predictions. Even 

though this dissertation focuses specifically on protein structural features prediction, we 

are planning to work on protein tertiary structure prediction, where the tools and 

techniques developed in this work can be efficiently applied in order to enhance protein 

3D prediction.

• General GPU-accelerator

Our future research directions regarding GPU-accelerations of many-body 

potentials will include investigating the development of a general GPU-accelerated 

framework that can be easily employed to accelerate complicated energy potential 

functions.

1  SAAKGTAETK QEKSKVl'WM. ' \Y : TKEDQFY ETDPILRGGD VKSSGSTSGK Sequence
c c c c c c c c c c  c c c c m m m m HHHCCCCCCC CCCCCCCCCC CCCCCCCCCC DSSP Assignment
c c c c c c c c c h  i m c c m m m m HCCCCCCCCE CCCCCCCCCC CCCCCCCCCC SCORPION Prediction
9 9 8 7 8 8 7 6 4 6  6 5 7 9 8 9 9 9 9 7 5 6 6 7 7 6 6 4 4 4 4 8 9 7 6 6 7 9 8 6 5 6 8 8 8 8 8 8 8 8 Prediction Confidence

5 1  KGGTTSGKKG TVSIPSKKKN GNGGVFGGLF AKKD
CCCCCCCCCC CCCCCCCCCC CCCCCCCCCC CCCC
CCCCCCCCCC CECCCCCCCC CCCCEEECEE ECCC
8 8 9 8 8 9 8 8 8 8  5 6 4 7 8 8 7 6 6 8 9 9 9 7 6 5 4 4 4 5 4 7 8 9

Figure 56 Secondary Structures Predicted by SCORPION on Thylakoid soluble
phosphoprotein TSP9.
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