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ABSTRACT

MODELING STEM CELL POPULATION DYNAMICS

Samiur Arif 
Old Dominion University, 2014 
Director: Dr. Stephan Olariu

Because of the stochastic nat ure' of biological systems, m athem atical and compu

tational modeling approaches have become more acceptable' te> experimentalists and 

clinicians in recent, years as contributing to new understandings of complicated cell 

mechanisms and tissue physiology. Indeed, even single1 e-ell or small tissue sample's are 

complex dynamic systems that adapt to environmental challemges in space and time 

whic'h is pexuly understood. M athem atical models and computer simulations can 

e'xplain and uncover unknown aspects of cell behavior and tissue functions. Models 

based on key biological mechanisms can give1 interesting insights and formulate' pre- 

elictions that, cannot be derived from physical experimemts or statistical data alone. 
Therefore, novel reseairh approaches should incorporate interdisciplinary dialogue's 

between Biology. M athematics and Com putational Sciences to validate1 experimental 

data and non-intuitive scenarios such as the stem cell hypothc'sis. The1 tissue of a 

higher organism such as a human being can be elescribe'd as a set of a large number 

e>f cells with certain functions and morphology. However, most of the m ature cells 

are deprived of the potential to replenish themselves. Such imperfection of m ature 

ceils is compensated by the presence of a population of stem cells which possesses the 

capability to self renew and to differentiate into various cell lineages. This process 

of continual cell replacement, is calk'd homeostasis, is critical for the maintenance 

of adult tissue's, and is maintained through the1 presence' of different control mech

anisms. The homeostatic replacement of cells varies substantially among different 

tissues. Unquestionably, the most im portant ability of a stem cell is to m aintain the 

homeostasis by continuously supplying specialized cells. The decision for an individ

ual stem cell to either renew or differentiate can be described as a stochastic process. 

Several research programs supported by hospitals and health institutes an1 trying to 

understand the underlying mechanism of how stem cells proliferate, differentiate, and 

maintain equilibrium with or without feedback. At this stage researchers are not able 

to answer key questions, for example the rate of proliferation, stem cell homeostasis 

and feedback tha t plays a crucial role in tissue equilibrium. This dissertation work



is within the realm of Bioinformatics where com puter scientists have to face more 

algorithmic challenges because of the huge amount of data with exception, numer

ous rules and conditions. This thesis attem pts to present stochastic models which 

can predict stem cell growth, understand stem cell homeostasis characteristics, and 

formalize m athem atical relationships of tissue lineage homeostasis.
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CHAPTER 1

INTRODUCTION

To some degree, our life comprises of a m ultitude of biochemical processes on very 

different scales. Such processes are inherently stochastic. Stochasticity is unavoidable 

when considering biological systems and processes, both at the macro scale with 

populations surviving in rapidly and unpredictably changing environments, but also 

and especially at the molecular level [37, 23. 53], where entropie considerations can 

have significant implications.

Due to the stochast ic representation of the biological systems, m athem atical and 

com putational modeling approaches have become more acceptable by experimental

ists and clinicians. Several new cont ributions have been made to understand compli

cated cell mechanisms and tissue physiology. Even a single cell or a tissue segment 

is a complex dynamical systems that adapts to environment al challenges in space 

and time. Which makes them appropriate for modeling. M athem atical models and 

com puter simulations can explain and uncover unknown det ails of cell behavior and 

tissue functions [25, 9], Models based on key biological mechanisms can give inter

esting insights and formulate predictions that cannot be derived from actual physical 

experiments [27]. Therefore, novel research approaches should incorporate interdis

ciplinary interactions to validate experimental data  and noil-intuitive scenarios such 

as the stem cell hypothesis [40].

The tissues of higher organisms such as human beings can be described as a set 

of a large number of cells with various functions and morphology. However, most 

of the m ature cells are deprived of the potential to replenish themselves indefinitely. 

Such imperfection of m ature cells is compensated by the presence of a populat ion of 

stem cells, which possess capability to self renew and to differentiate into various cell 

lineages. These processes of self-renewal, differentiation, and proliferation are fun

dam ental in the functioning of stem cells. Li and Xie [28] have described a delicate 

balance between stem cell self-renewal and differentiation, and the understanding of 

this point, is a basis for underst anding of how stem cells regulate the body, their role 

in tum or growth and formation, and their therapeutic use in treating human disease.
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Scientists were led to the concept of stein cedi niche by observing t he role of the sur

rounding environment in regulation of stem cell function and determ ination of the 

course of their development. The concept of niche refers to the micro-environment 

for the adult stem cells and a more specific understanding of niche includes a thor

ough description of cell to cell interactions and extracellular signaling. The stem 

cell niche is the means by which the body interacts with the stem cells to deter

mine development, maintaining a sta te  of quiescence, and self-renewal under normal 

conditions, but stim ulating proliferation and differentiation when additional cells are 

required by the body, such as times of external stress. Although the concept of niche 

is derived from the micro-environment of the stem cell within the organism, scien

tists are attem pting to reproduce these condit ions in vitro, and the concept of niche 

also extends to regulation of stem cells in this environment . Moreover, the decision 

for individual stem cells to either renew or differentiate can also be represented bv 

a stochastic process. Several research programs [27. 60. 26] supported by hospitals 

and health institutes are trying to understand underlying mechanism how a stem 

cell proliferates, differentiates and maintains equilibrium with or without feedback. 

At, this stage the rate of stem cell proliferation, stem cell homeostasis mechanism 

in tissue equilibrium are not. properly understood. The main goal of this thesis is 

to employ stochastic modeling and com puter simulations to understand stem cell 

growth, homeostasis and tissue lineage homeostasis.

1.1 MOTIVATION

In recent decades t he biological research community has come to view cell lineages 

as fundament al unit of tissue and organ development., maintenance and regeneration. 

At the starting point of lineage, particularly in self-renewing tissues such as blood, 

epidermis and the intestinal lining, stem cells are present in small number. As scien

tists and clinicians have become ever so interested in harnessing the proliferation and 

differentiation power of stem cells to repair injuries and cun ' disease, there has also 

been a surge of interest in the mechanisms underlying the execution and regulation 

of cell lineages [14. 16].

Stem cells have tremendous capabilities to develop into many different cell types 

in the body during early life and growth. Additionally, in many tissues they an ' 

the only source of internal repair system, dividing frequently to replenish other cells 

as long as the person or animal's life time. As a stem cell divides, each new stem
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FIG. 1: Self-renewal and Differentiation, from Wilson et. al. Stem cells are 
capable of repopulating undifferentated cell populations (self-renewal) and forming 
more specialized cell types (differentation).[63]

cell has the potential either to remain a stem cell or become another type of cell 

with a more specialized function, such as a muscle cell, a red blood cell, or a brain 

cell. Understanding the life cycle and transition of stem  cell within tissue to a 

fully developed differentiated cell holds much promise to  tackle different problems in 

regenerative medicine and cancer cures.The transformation of a single stem  cell to 

a  specific cell type within the body happens in multiple stages. In the intermediary 

stages stem  cells are called transit amplifying cells (TA). Since stem  cells and TA 

cells cannot be readily distinguished from each other, to infer the number of stem 

cells, the process has to be indirect. One approach is to develop stochastic models for 

the evolution of tissue and infer the number of stem cells from molecular markers in 

a  sample of cell taken from tissue [57]. Hence, it is believed in many sections of the 

research community, building proper stochastic models is of param ount im portance 

to understand the growth of stem cells, homeostasis, and cell lineage within tissue.

1.2 OBJECTIVE

The most im portant objective of this work is to develop a  m athem atical model 

for tissue level cell lineage to understand cell progression from pure stem cell to fully 

differentiated m ature cells in the body. A com partm ental structure of tissue com

prising of stem cell com partm ent (SC), transit-amplifying (TA) cell com partm ent,
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and fully mat,ure cell compartment (FC) has been proposed in this thesis for this 

purpose.

The key problems in pursuit of this complete tissue cell lineage model is to under

stand individual com partm ents and their intricacies. The most im portant of these 

com partm ents is the stem cell compartment , which holds the main proliferation ca

pability of any tissue within the body. As a result , stem cell growth model and stem 

cell homeostasis model were independently developed in this work.

1.3 THESIS STATEMENT

W ith the inherent stochastic nature of stem cell characteristics and the complex 

nature of multistage cell progression within tissue, stochastic models are required to 

fully understand and comprehend these complex phenomena. In this thesis several 

different stochastic models with mathematically tractable closed forms have been re

vealed and their theoretical predictions have also been compared wit h com putat ional 

simulation results.

1.4 CONTRIBUTIONS

The main objective is to understand stem cell proliferation, cell lineage within 

tissue, homeostasis, and to depict the progression of m utant cells from normal stem 

cells within tissue. These are all accomplished through five different independent 

m athem atical models, which are the main contributions of this work:

•  The first model shows the growth kinetics of stem cells independently. Since dif

ferentiated cells are incapable of self-renewal, a crucial component of stem cell 

research is modeling the proliferation capacity of the undifferentiated stem cell 

phenotype. Therefore, it. is an im portant research topic to identify m athem ati

cal growth models for stem cells that are inherently heterogeneous and account 

in a unified way for division, stagnation, deterioration and death. Somewhat 

surprisingly, the overwhelming majority of stem cell growth models proposed 

in the literature, including the well known Sherley model [50] and hyperbo

las tic model [54], are deterministic. While simple and tractable, deterministic 

models are too rigid, lacking the flexibility and versatility needed to accurately 

describe stem cell proliferation which has high variability and heterogeneity.

•  In the second model, simple stem cell dynamics within tissue was modeled to



accurately predict the number of stem cell within a particular t issue aft er each 

cell cycle finishes. In the light of the increased interest, in stem cell research, 

fueled by the promises tha t cell based therapies hold, it is hardly surprising 

tha t various m athem atical models have been proposed for illustrating the in

tricate dynamics of stem (‘ell self-renewal, differentiation, and fully m aturing 

cell production. Most of the models in current literature are again determinis

tic [5, 10], with only a handful of them taking a stochastic approach [58], In 

addition, virtually all approaches to modeling stem cell dynamics assume only 

specific cell division patterns (typically, symmetric) ignoring the asymmetric 

division regimen. In addition to being stochastic, this model accommodates all 

types of cell divisions. One of the interesting features of this model is that it 

suggests that, with the absence of spontaneous m utations or external molecu

lar feedback, the Markov process is a martingale indicating tha t the stem cell 

population is in stochastic equilibrium.

•  The main goal of the third model is to offer a comprehensive mathem atical 

model of tissue level homeostasis. In order to model the dynamics of individual 

com partments, two local param eters are employed. They are the rate at which 

cells divide and the rate at which they undergo apoptosis. In the current liter

ature asymmetric cell divisions are not taken into consideration [25, 27]. But 

in this model all forms of division have been taken into considerat ion. It. also 

presents a stochastic mathem atical model to study stem cell population dy

namics and stem cell homeostasis, both applicable in the hematopoietic system 

and other tissues. Highlighting the quantitative aspects of stem cell biology. In 

spite of its simplicity, this model reveals the intricate interplay between local 

and global equilibrium (i.e.. homeostasis) requirements.

•  The last of the models depicts how mutant stem cells within tissue evolve from 

wild type stem cells. Again stochastic approach has been employed to model 

the evolution of mut ant stem cells.

1.5 OUTLINE

This work is organized in the following order:
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•  Chapter 2 gives a short overview of different biological terms and short func

tional description of their roles within organisms.

•  Chapter 3 presents a background on current, m athem atical and com putational 

models in stem cell proliferation, differentiation, homeostasis and an overview 

of different models in m athem atical biology.

•  Chapter 4 presents a simple stochastic growth model for stem cell proliferation.

•  Chapter 5 shows a discrete time Markov model for stem cell homeostasis within 

tissue.

•  C hapter 6 depicts a comprehensive tissue cell lineage and homeostasis model 

at tissue level.

•  Chapter 7 presents a simple stochastic model to depict- mutant cell evolution.

•  Chapter 8 concludes with the summary of the work and brief discussion on 

future research directions.
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CHAPTER 2

TERMINOLOGY

In this chapter, some of the basic biological terminology will be discussed in brief to 

lay foundations for the m athem atical models in later chapters. Some specific tissue 

will also be discuss in preparation for tissue lineage homeostasis model, which will 

be discussed in chapter 6.

All living creatures are made of cells which are small membrane-bounded units 

filled with a concentrated aqueous solut ion of chemicals and endowed wit h the ex

traordinary ability to create copies of themselves by growing and dividing. The 

simplest forms of life are solitary cells. Higher organism such as human beings are 

communities of cells derived by growth and division from a single founder cell. Most, 

cells are very small; most are indistinguishable wit hout using a microscope. Cells are 

enclosed by a cell membrane and come in many different shapes. The contents of a 

cell are called the protoplasm.

The following is a glossary of animal cell terms:

•  C ell m e m b ra n e  - The thin layer of protein and fat that surrounds the cell. 

The cell membrane is semipermeable, allowing some substances to pass into 

the cell and blocking others.

•  C e n tro so m e  - (also called the microtubule organizing center) A small body 

located near the nucleus and it has a dense center and radiating tubules. The 

centrosomes is where microtubules are made. During cell division (mitosis), the 

centrosome divides and the two parts move to opposite sides of the dividing 

cell. The centriole is the dense center of the centrosome.

•  C y to p la sm  - The jellylike material outside the cell nucleus in which the or

ganelles are located.

•  G olg i b o d y  - (also called the Golgi apparatus or golgi complex) A flattened, 

layered, sac-like organelle tha t looks like a stack of pancakes and is located 

near the nucleus. It produces the membranes that surround the lysosomes.
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The Golgi body packages proteins and carbohydrates into membrane-bound 

vesicles for export from the cell.

• Lysosome - (also called cell vesicles) round organelles surrounded by a mem

brane and containing digestive enzymes. This is where the digestion of cell 

nutrients takes place.

• Mitochondrion - Spherical to rod-shaped organelles with a double membrane. 

The inner membrane is infolded many times, forming a series of projections 

(called cristae). The mitochondrion converts the energy stored in glucose into 

ATP (adenosine triphosphate) for the cell.

• Nuclear membrane - The membrane that surrounds the nucleus.

•  Nucleolus - This is an organelle within the nucleus. It is where ribosomal 

RNA is produced. Some cells have more than one nucleolus.

•  Nucleus - A spherical body containing many organelles, including the nucle

olus. The nucleus controls many of the functions of the cell (by controlling 

protein synthesis) arid contains DNA (in chromosomes). The nucleus is sur

rounded by the nuclear membrane.

•  Ribosome - A small organelles composed of RNA-rich cytoplasmic granules 

tha t are sites of protein synthesis.

2.0.1 EUCARYOTIC CELL

Cells do not all contain the same organelles in the same proportions. Indeed, 

one vast and evolutionarily ancient class of cells, the bacteria, cont ain essentially no 

organelle. The presence or absence of a nucleus is used as the basis for a simple but 

fundamental classification of all living organisms. Those whose cells have a nucleus 

are called eucaryotes. Those cells that do not have it are called procaryotes.

2.0.2 PHENOTYPE

The one defining character or observable marker of a cell or organism is called 

phenotype'. A phenotype results from the expression of an organism 's genes as well 

as the influence' of environmental factors and the interactions between the two.
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2.0.3 CELL CYCLE

Reproductive cycle of the cell, the orderly sequence of events by which a cell 

duplicates its contents and divides into two. the cell cycle can be divided in three 

periods. First phase is known as interphase, during which the cell grows, accumu

lating nutrients needed for mitosis and duplication of its DNA. The second phase 

is known as mitotic phase, during which the cell splits itself into two distinct cells, 

often called daughter cells. The final phase where the cell is completely divided.

2.0.4 CELL DIVISION

Separation of a cell into two daughter ceils. In eucaryotic cells it entails division 

of the nucleus (mitosis) closely followed by divison of the cytoplasm.

2.0.5 CELL SENESCENCE

The normal aging of cells from one locat ion to another. Particularly the migration 

of a cell over a surface.

2.0.6 CELL SIGNALING

Communication between cells by extracellular chemical singals; especially the 

molecular mechanisms by which cells detect and respond to these signals.

2.0.7 MITOSIS

The most common form of stem cell division is called mitosis. It. is used for 

growth and repair. During mitosis, a cell makes an exact, copy of itself and splits into 

two new cells. Each cell contains an exact copy of the original cell's chromosomes 

in their 23 pairs. This is the reason why all the cells in an organism are genetically 

identical. The process of mitosis is fast and highly complex. The sequence of events 

is divided into st ages corresponding to the completion of one set of activit ies and the 

st art of the next. Mitosis is closely controlled by the genes inside every cell. Errors in 

mitosis can either kill a cell through apoptosis or cause mutations. Cert ain types of 

cancer can arise from such m utations. Sometimes this control can go wrong. If that, 

happens in ju st a single cell, it, can replicate itself to make new cells that are also out 

of control. These are cancer cells. They continue to replicate rapidly without the
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control systems that normal cells have. Cancer cells will form lumps, or tumors , tha t 

damage the surrounding tissues. Sometimes, cancer cells break olf from the original 

tum or and spreads in the blood to other parts of the body. When a tum or spreads to 

anot her part of the body it is said to have metastasized. The cancer cells continue to 

replicate and make more tumors. These are called secondary tumors. Proper control 

of mitosis is one of the main regulatory concerns of stem cell homeostasis.

2.0.8 CELL MUTATION

When a cell replicates using mitosis, the ideal result is a perfectly identical sister 

cell. When a cell replicates and the resulting cell is different than the original cell, it 

is called a m utation.

2.0.9 APOPTOSIS

A genetically det ermined process of cell self-dest.ruct.ion that, is marked by the 

fragmentation of nuclear DNA. It is activated either by the presence of a stimulus 
or by the removal of a st imulus or suppressing agent . This is a normal physiological 

process eliminating DNA-damaged, superfluous, or unwanted cells, and when halted 

(as by genetic m utation) may result in uncontrolled cell growth and tum or formation. 

This is also known as programmed cell death (PCD).

2.0.10 TISSUE

Tissue is an organized assembly of specialized cells t hat forms a dist inct part of 

a plant, or an animal. It is nothing but an ensemble of similar cells from the same 

origin that together carry out a specific function. Body organs a n 1 formed by the 

functional grouping together of multiple different tissues.

2.1 STEM CELLS

Stem cells are a class of undifferentiated cells that are able to differentiate into 

specialized cell type's. Commonly, stem cells come from t wo main source's. Embryonic. 

stem eells are; elerrive>el freun a lour or live; elay e>lel human em bno  that is in the', 

blastoe-yst, phase' e)f development.. These are1 generally totipotent cells. Sen these e-ells 

have total pehential to elevelop into any e-ell in the lxxly. Adult. e>r somatic  stem 

cells exist throughemt, the bexly after embryemie- deve'leepment anel are lounel insiele
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of different types of tissue. These stem cells have been found in tissues such as the 

brain, bone marrow, blood, blood vessels, skeletal muscles, skin, and the liver.

The main characteristics of st em cells can be summarized as follow:

•  They have the potential to replace cell tissue that has been damaged or de

stroyed by severe illnesses or injury.

•  They can replicate over and over again for a very long time.

•  Understanding the growth and replication of stem cells into healthy tissues and 

disease prone tissues will assist the search for cures.

•  Embryonic stem cells generated through therapeutic cloning have also been 

proposed as promising candidates for future therapies.

The ability to differentiate is the potential to develop into other cell types. A 

totipotent stem cell (e.g. fertilized egg) can develop into all cell type's including 

embryonic membranes. A pleuripotent stem cell can develop into cells from all three 
germinal layers (e.g cells from the inner cell mass). O ther cells can be oligopotent. 

bipotent, or unipotent depending on their ability to develop into few. two. or one 

other cell type(s), respectively.

Self-regeneration is the ability of stem cells to divide and produce more stem cells. 

During early development., the cell division is symmetrical, i.e. each cell divides to 

gives rise to daughter cells each with the same potential.

2 .1 .1  T Y P E S  O F  S T E M  C E L L S

Several adject ives are used to describe the developmental potent ial of stem cells; 

that is, the number of different kinds of differentiatral cell that they can become.

•  T o tip o te n t  cells. In mammals, totipotent cells have the potential to become 

any type in the adult body and any cell of the extraembryonie membranes (e.g.. 

placenta). The only totipotent cells are the fertilized egg and the first four or 

so cells produced by its cleavage. In mammals, the expression totipotent stem 

cells is a misnomer as totipotent cells cannot make more of themselves.

•  P lu r ip o te n t  s te m  cells. These art1 the group of stem cells, with the potential 

to make any differentiated cell in the body. T hm ; types of pluripotent stem 

cells that occur naturally:
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-  Embryonic Stem (ES) Cells. These can be isolated from the inner cell 

mass (ICM) of the blastocyst. This is the stage of embryonic development 

when im plantation occurs. For humans, excess embryos produced during 

in vitro fertilization (IVF) procedures are used. Harvesting ES cells from 

human blast.ocysts is controversial because it destroys the embryo, which 

could have been implanted to produce another baby (but often was simply 

going to be discarded).

-  Embryonic Germ (EG) Cells. These can be isolated from the precur

sor to the gonads in aborted fetuses.

-  Embryonic Carcinoma (EC) Cells. These can be isolated from tera- 

locarcinornas, a tum or tha t occasionally occurs in a gonad of a fetus.

• M ultipotent stem cells. These stem cells can only differentiate into a lim

ited number of differentiated types. For example, the bone marrow contains 

m ultipotent stem cells tha t give rise to all the cells of the blood but not to 

other types of cells. M ultipotent stem cells are found in adult animals; perhaps 

most organs in the body (e.g.. brain, liver, lungs) contain them where they can 

replace dead or damaged cells. These adult stem cells may also be the cells that 

when one accumulates sufficient mutations, produce a clone of cancer cells,

2.2 IDENTIFICATION OF STEM CELLS

Although there is not complete agreement among scientists of how to identify 

stem cells, most tests are based on making sure t hat stem cells are undifferentiated 

and capable of self-renewal. Tests are often conducted in t he laboratory to check for 

these properties.

Two Canadian researchers 'Fill and McCulloch first discovered stem cells |f>8|. 

They irradiated mice with enough X-rays to kill the animals within 30 days if they 

did not receive a transplant of fresh, undamaged bone marrow cells. The researchers 

then injected varying amounts of cells to determine how many cells were necessary 

to keep the animals alive. Ten days after injecting the cells. McCulloch observed 

nodules in the spleens of the surviving mice. Wit h a background in bacteriology. Dr. 

McCullough suspected that the blood cells were forming tlit' equivalent, of a bacterial 

colony and tha t this was the source of the new blood cells that were keeping the 

animals alive.
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One way to identify .stem cells in a lab. and the standard procedure for testing 

bone marrow or hematopoietic stem cell (HSC). is by transplanting one cell to save 

an individual without HSCs. If the stem cell produces new blood and immune cells, 

it dem onstrates its potency.

Clonogenic assays (a laboratory procedure) can also be employed in vitro to test 

whether single cells can differentiate and self-renew. Researchers may also inspect 

cells under a microscope to see if they are healthy and undifferentiated or they may 

examine chromosomes.

To test whether human embryonic stem cells are pluripotent, scientists allow the 

cells to differentiate spontaneously in cell cult tiny m anipulate the cells so they will 

differentiate to form spwifie cell types, or inject the cells into an immuno suppressed 

mouse to test for the formation of a teratom a (a benign tum or containing a mixture 

of differentiated cells).

Both embryonic and adult stem cells share t he properties of self-renewal, differ

entiation, and proliferation which characterize stem  cells; however, there are some 

im portant differences. The main difference is in differentiation, pluripotency versus 
multipotency. Although embryonic stem cells may be grown effectively outside the 

body, adult stem cells have shown resistance to production in large numbers. All 

the above issues of self-renewal, differentiation, and proliferation are critical areas 

within the field of stem cell research. For many stem cell therapies, the efficacy of 

the treatm ent will depend on the number of stem (’ells available, thus a mathem at ical 

model representing the size and rate of growt h of stem cells would be highly useful.

2.3 STEM CELL NICHE

The microenvironment where stem cells are found, which interacts with stem cells 

to regulate cell fate is known as stem cell niche. In a Nature review [47], stem cell 

populations are established in niches, specific anatom ic locations that regulate how 

they participate in tissue generation, maintenance, and repair. The niche saves stem 

cells from depletion, while protecting the host from over-exuberant, stem-cell prolifer

ation. It const it utes a basic unit of t issue physiology, integrating signals th a t mediate 

the balanced response of stem cells to the needs of organisms. Yet the niche may 

also induce pathologies by imposing aberrant function on stem cells or other targets. 

The interplay between stem cells and their niche creates the dynamic system neces

sary for sustaining tissues, and for the ultim ate design of stem-cell therapeutics.The
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simple location of stem cells is not sufficient to define a niche. The niche must have 

both anatomic and functional dimension. The word niche can be in reference to 

the in vivo or in vitro stem cell micro-environment. During embryonic development , 

various niche factors act on embryonic stem cells to alter gene expression and induce 

their proliferation or differentiation for the development of the fetus. W ithin the 

human body, stem cell niches maintain adult stern cells in a quiescent state, but 

after tissue injury, the surrounding micro-environment actively signals to stem cells 

to either promote self renewal or differentiation to form new tissues. Scientists are 

studying the various components of the niche and trying to replicate the in vivo niche 

conditions in vitro. This is because for regenerative therapies, cell proliferation and 

differentiation must be controlled in flasks or plates, so th a t sufficient quantity of 

the proper cell type are produced prior to being introduced baek into the patient for 

therapy.

2.4 HOMEOSTASIS

In order to function properly and for longevity, cells must maintain homeostasis. 

Homeostasis is a state in which everything within the cell is in equilibrium and 

functioning properly. The state  of homeostasis keeps the cell constant with what 

it needs to function. Tor stem cells it is even more im portant as stem cells have 

enormous proliferation capability which other normal cells lack. The waste is being 

transported away from the cell while it receives the nutrients it needs to continue 

to function. Homeostasis keeps the cell stable. When cells are in homeostasis, they 

work to help the organism function properly. It is im portant for cells to maintain 

honn'ostasis for the organism to remain healthy. Different parts of the cell work to 

constantly maintain homeostasis in the cell.

The main part of the cell tha t works to m aintain homeostasis is the cell mem

brane. T hat is the outer wall between the cell and the outside; world. Essentially, it 

protects the cell from outside stimuli tha t could disrupt, a cell's homeostasis. The cell 

membrane acts as the gatekeeper to what goes into and leaves the cell. It is made 

up of mostly fats (lipids) and protein and is selectively permeable, meaning it only 

lets certain molecules pass through the membrane1.

When there is too much of a certain molecule inside the cell, the cell membrane 

allows some of the molecules to permeate the membrane and leave the cell. Con

versely, when there is too much of a molecule out side the cell and not enough inside
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the cell, the cell membrane will " enough of the molecule to perm eate to maintain 

homeostasis. Charged molecules and large molecules cannot: pass through the cell 

membrane, while small and uncharged molecules can.

35
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CHAPTER 3 

STATE OF THE ART

Over the centuries, the task of understanding the dynamics of various biological 

phenomena noticed in nature and society have captured the interest of scholars and 

philosophers. However, with the exception of D. Bernoulli's attem pt at modeling 

the outbreak of a smallpox epidemic. T. R. Malthuss population growth model and 

Verhulst formulation of the logistic growth model, most of tin; early efforts, includ

ing G om pertz's human m ortality model [19], were' empirical. The data available was 

highly unreliable, and the general sense of evidence was lacking by modern st andards. 

All this changed in 1871 when Galt on and Watson undertook the first systematic a t

tem pt a t the extinction phenomena noticed in the social sciences that, nonetheless, 

could not be convincingly explained [61], Their work was among the earliest sys
tem atic attem pts at enlisting the help of probability theory in modeling, and thus, 

understanding, t he dynamics of populat ion growt h. While their pioneering work had 

focused on a rather narrow problem, namely that of accounting for the wholesale 

extinction of family name's in England, their mathem atical methods turned out to 

be surprisingly powerful and general [21].

A mathematical model can be defined as description of a system using mathennat- 

ical concepts and language'. Usage of m athem atical modt'ling in biology is wielespre'ael 

[30. 31]. For e'xample'. various mathem atical medels have bee>n used in e'pieh'mie's te> 

study the me'chanisms by which iidectious disease's spread, pmlie't the' (extent anel 

course1 of outbreeuks. (evaluate; the' eeffeeetiveeneess of strateegiees te> ee>ntreel and mitigate' 

the1 re'sulting epideunies. M athematical modeds have be'en used in biology to elet ermine' 

maximum harvest in agriculture'. to undeerstand the' elynamie-s of biological invasions, 

anel have numerous environmental conservation implications. Populatiem me>ek'ls are 

alsee use'd tee undeerst.and the spread of parasite's, viruses, anel elise'ase'. The realization 

of this elepe’nelc'iice on environmental he'alth lues ere'ate-el a need to unele'rstand the' 

dynamic inieuae tions e»f the1 (earths flora and fauna.

The; me'chanisms controlling steem cell seelf-reeneewal. mainte'iiance' and diffeereent ia- 

tion are still poorly unde'rstood. and there c'xists no ge'iie'ial characterization of ste'm 

cells base'd on observable' cell properties. To aeldre'ss the'se proble'ins with the ludp of
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m athem atical models holds a promising research direction. The hard task of sorting 

and counting prized stem cells and their cancer causing cell (Cancer Stem Cells or 

CSC) has long frustrated scientists and medical practitioners looking for new ways 

to help people who have progressive diseases. Recent developments by University of 

Florida researchers [12] have devised a series of mat hem atical steps t hat accomplishes 

what the most powerful microscopes, high-throughput, screening systems and protein 

assays have; failed to do. that, is. to assess how rapidly stem cells and t heir malignant, 

cousins alter normal behavior to increase; the;ir numlwrs. By offering a m ethod to 

evaluate; the; edfects of eliseases and treatm ents e»n stem cell aelivity in the tissue, as 

well as allowing the; assessment of malignant stem like cells, researchers believe1 they 

can better evaluate potential therapies for incurable disease's. In the following sec- 

tiem eliffeereait, types e>f mathematie-al mealels that are most prevalent in m athem atical 

biology will be; briefly diseusseel as a stepping ste>ne> to building moelelings lor stem 

cell elynamies and honuxrstasis.

3.1 DIFFERENT TYPES OF MATHEMATICAL MODELING IN 
BIOLOGY

Usually mathemat ical models in biology are segregated in two types, deterministic 

and stochastic. Deterministic models assume the future to be determinist ic. Usually 

they are m athematically tractable and in widespread use. In most case they are 

rather unrealistic. Stochastic models assume the future to be stochastic/random . 

They are m athematically challenging and typically closed forms are much harder to 

obtain. Sections 3.1.1 and 3.1.2 give two import ant, models of population growth 

based on reproduction of organisms: the exponential and the logist ic models, both 

of which are deterministic, will be discussed. Section 3.1.3 gives a brief discussion 

of the Gompertz model, which is predominantly used in cancer research [34], Then 

comes the important hyperbolastic growth model (3.1.4) which is used in stem cell 

growth modeling, tumor modeling and in other growth phenomena. Furthermore in 

section (3.1.5), Bass’s growth model, the immensely popular model used in marketing 

research to predict, among other things, tin1 time of adoption for durable consumer 

goods. Finally, to set, t he stage1 in section 3.1.6 a simple1 stochastic model proposed by 

Yule1 will be present,ed which turns out to be1 a linear greewth-rate pure birth  pre)ce;ss.
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3.1.1 THE EXPONENTIAL GROWTH MODEL

The exponential population growth model is usually associated with the work of 

T. R. Malt bus (1766-1834) |49] who first realized t hat any species can pot ent ially 

increase in numbers according to a geometric series. If a species has non-overlapping 

populations (e.g., annual plants), and each organism produces R  offspring then the 

number, A',, of individual in generation t = 0,1, 2 , ...........  is given by

where N ti is the initial size of the population (i.e.. at the 0-th  generation). By writing 

r =  In R , (1) becomes

where, depending on the application domain, r is referred to as M althusian param 

eter, intrinsic rate of increase, instantaneous rate of natural increase, or population 

growth rate.

A glance at (2) reveals that depending on the param eter r. there are three possible  

outcom es:

•  if r < 0 . the population declines exponentially:

•  if r >  0, the population increases exponentially;

•  if r — 0 , the population does not change.

Some of the applications of the exponential model and equation (2) are in microbi

ology (growt h of bacteria), conservation biology (restorat ion of disturbed populations 

or loss to extinction), insect rearing (prediction of yield), plant or insect quarantine 

(population growth of introduced species), fishery management (prediction of fish 

population dynamics) [1. 8].

In spite of its widespread use. a serious shortcoming of the exponential model 

is that, it ignores the limitations to unbounded growth imposed by environmental 

factors and conditions [2].

( 1)

A, =  V „crf. ( 2 )

3.1.2 THE LOGISTIC GROWTH MODEL

The logistic growth model was proposed by the Belgian mathem atician P. Verhulst 

around 1838. Verhulst suggested that the rate of population increase may be limited.
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as it may depend on the population size. N  — N( t ) .  and on the growth rate, r, defined 

as

where the param eter K  represents the upper limit on population growth and is 

calk'd carrying capacity. The carrying capacity of a biological species in a given 

environment is the largest population size of the species tha t the environment can 

sustain indefinitely, given the food, habitat, water and other necessities required.

Observe tha t when N  is small relative to K.  the population growth rate r is 

maximal and is nearly Co- The param eter r () can be interpreted as the population 

growth rate in the absence of compet ition. The populat ion growth rate declines with 

N  and reaches 0 when N  = K . If N  exceeds K . the population growt h rate  becomes 

negative and the population declines, eventually becoming ex tinct. It can be easily 

seen population size N  is a function of time /.. The dynamics of population growth 

are captured bv tin; following differential equation, with boundary condition N  =  iV() 

at t = 0 ,

Equation (3) tells that when N  is small, the early unimpeded growth rate can

some members of the population interfere with each other by competing for critical 

resource, such as food or living space. The com petition diminishes the combined 

growth rate, until the value of N  ceases to grow which indicated the saturation of 

the population in the given environment.

As it turns out. taking into account the boundary condition, equation (3) has the 

solution

Observe that

which is to.say that the limiting value of Ar is K , the highest value that the population 

can reach given infinite time or come close to reaching in finite time.

3.1.3 THE GOMPERTZ GROWTH MODEL

(3)

be approximated by r N .  Later, as N  grows. — becomes larger and larger, as

lim N{t )  = K

G ompertz function is used to approximate growth up to certain limit. It is the 

most popular function to estim ate growth.probability and proportion along with
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logistic function. It is more general type than logistic function class.The right-hand 

or future value asym ptote of the function is approached much more gradually by 

the curve than the left-hand or lower valued asymptote, in contrast to the logistic 

function in which both asymptotes are approached by the curve symmetrically.

G(,r) = (5)

where a ~  (0 ,oc),6  ~  ( —oc.O) and r ~  (-oc .O ). C(t.) usually denotes the num

ber of individuals at time t.

The 3 coefficients control the shape of the function . The upper limit of the 

curve is controlled by the coefficient a. Whereas b is the growth rate and r  is the 

acceleration rate .

3.1.4 THE HYPERBOLASTIC MODEL

Growth models such as logistic, Gompertz. Richards, and Weibull have been 

extensively studied and applied to a wide range of medical and biological studies. 

Tabatabai et, al. [54] introduced a class of three and four param eter models called hy- 

perbolastic models for accurately predicting and analyzing self-limited growth behav

ior th a t occurs, e.g, in t umors, stem cell growt h. In the following three Hyperbolastic 

models 111, H2 and H3 will be briefly discussrxl.

First, of the hyperbolastic model is the HI hyperbolastic model which produce's 

flexible asymm etric curves through nonlinear ordinary differential equations of thee 

form

or

dP( t )
(PM + ~7, : = : . ,  ) P  -  ( ------/  +  /*) P 2 =  ( P( t ) P  -  (l2{ t )P2 (7)s / i T T W ) )  \ M y / ( i + P j  J wdt

W ith initial condition

P(to)  =  / ’<»

where P(t )  represents the population size1 at time l . ( i  is the param eter repre

senting the intrinsic growth rate. 0 is a param eter, and M  represents the maximum
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sustainable population (carrying; capacity), which is assumed to be constant, though 

in general the carrying capacity may change over time. For growth curves. /I has to 

be positive, leading to an eventually increasing curve with an asymptote' at M\ ft 

can be negative only for ewentual inhibition curves or elevav profile's. If 0 = 0 , then 

the? eeepiatiem (0) rexlueos te> a leegistie- elifFerential equatiem anel expiation (7) rexluee's 

to a general leigistie- mealed 3.1.2. Solving the equation (6) for the1 populatiem P  give's

where?

M
V O  M,il Oarcsinh(f)]

(y — 3/ — / Q̂ |A/,j/() ( fliircsiiihUo)!
I 0

and arcs inh( t )  is the? inverse hyperbedic sine function e»f t. The function P(l.) in 

expiation (8) is the hyperbolastic growth me)del of type1 I or simply HI.

In the seexmel type? of Hyperbolastic models, an alternative growth euirve' through 

a nonlinear hyperbedastie' elifferemtial expiation of the' form,

 ̂  ̂ — (\[PfP2( t )P  1 tanli
.\l -  P{l)

" V O
( 9)dt

with initial cemelitiem P(tu) = Pd  anel 7 > 0. where t ank  stanels for hyperbedic 

tangent, functlem, M  is the carrying e'apaelty. and ii anel 7 are1 parame'ters. As in 

the* HI mealed, parameiter (i has to be positive1 for increasing grenvth curve's with an 

asym ptote at, M  anel is negative only for elexay predile's. This expiation (!)) as the1 

hyperbedastie- eliffere'ntial expiatiem ed' type? II.

Sedving expiatiem (9) for peipulatiem size P  give's the1 t.hre'o param eter mealed.

P{t)  =  l + evare-sinh[e:( (10)

where

/>,[,:( MlO]

The1 funetiem P(l)  in e'quat.iem (10) is the1 hyperbedastie- grenvth mealed ed' type I I  

or simply H2.

Finally, a third grenvth eurve thremgh the1 fbllenving nemlincar hyperbedastie elif- 

fe?re?ntial exjuation ed' the1 form
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( 11)

with initial condition P{t.0) =  P0, where M  is the carrying capacity and /b y  

and 0 are param eters. This equation (11) is known as the hyperbolastic ordinary 

differential equation of type 111.

The solut ion to equation (11) is a four param eter model

The funct ion P (t) in equation (12) is the hyperbolast ic growt h model of type 111 

or simply H3.

3.1.5 THE BASS GROWTH MODEL

of how new products get adopted as an interaction between users and potential 

users. It has been described as one of the most famous empirical generalizations 

in marketing. Based on very simple behavioral observations. Bass's model became 

immensely popular. In spite of its deceiving simplicity, the Bass model is an excellent, 

predictor of new-product sales and is still heavily used.

The model is based on number of empirical observations. First, that there exists 

an intrinsic tendency of some individuals to make a purchase, independent of the 

number of previous adopters. Bass calls these individuals the innovators.  In con

trast. to the innovators, some people buys a product due media and social pressure. 

Bass refers to these folks as imitators.  Bass's second major assumption is that the 

probability tha t an initial purchase will be made' at time /. is a linear function of the 

number of previous buyers. Under these assumptions Bass postulates that

P[t)  =  M  — c)  ,n~' ar t' s inh(f)] ( 12)

where

The Bass growth model [3] was developed by Frank Bass to describe the process

(13)

where
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•  p and q he two param eters that quantify t he extent of the influence of innovators 

and im itators, respectively;

•  M  the market, potential of a given product., that is. the size of the potential 

consumer population;

•  N( t )  the cumulative number of adopters in [0. /]

•  A/ — N( l )  is the size of the remaining population, and

•  p + q / M N ( t )  is the instantaneous adoption rate of every individual in the 

remaining population.

The differential equation (13) with boundary condition /V(0) =  0) has solution

f ( p i q ) t  _  1

N( t )  =  A /-—— — -  (14)' ' ( (/' < <l)i -\- 1 ' '
P

It is easy to confirm that

lim N( t )  = M
t >OC

and that N( t )  has an S-shaped graph characteristics of many other growth models, 

for example the logistic growth model.

It was recently pointed out by Yan et al. [65] that Bass's growth model is a common 

generalization of the exponential and logistic models. Indeed,

•  for q =  0, Bass's model reduces to the exponential model;

•  for p — 0, Bass’s model reduces to the logistic model.

The accuracy of Bass’s model depends on the three param eters. A/, p. and q. 

In the case of a new product, these param eters are obtained by using existing sales 

d a ta  for previous versions of the same product or by extrapolating from sales data 

for similar products.

3.1.6 THE YULE MODEL

No doubt one of the earliest stochastic processes was proposed in 1924 by G. U. 

Yule in his m athem atical theory of evolution [66]. In Yule's model. { Y ( t )  \ t > 0} 

represents the number of species in some genus of plants or animals [36], Yule’s model 

assumes that, evolution begins with a single species at time I =  0 and tha t species do
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not. die out. If there are Y( t )  species at time I. then AY( t )6  is the probability that a 

new species will he created in the time interval [/, I -f d] for some very small 6 > 0.

More formally, the process { Y ( t )  | t > 0} has boundary conditions l \ ( 0) =  1 and 

Pi(0) =  0 for i ^  1 and transition rate A„ such that :

It follows that In Yule’s growth model the events { Y( i )  = n}  are geometrically 
distributed with success probability e x t .

It is clear tha t because of its underlying assumptions, the Yule model is not suf-

In addition to the assumed linear growth rate, the Yule model assumes unbounded 

growth and. consequently, cannot be used to model growt h in limited-capacity situ

ations.

3.2 STEM CELL GROWTH

Stem cells are capable of dividing and renewing themselves for long periods, in 

some tissues for the entire life period of the animal. Unlike muscle cells, blood cells, 

or nerve cells, which do not normally replicate themselves, stem cells may replicate 

many times, or proliferate. A starting population of stem cells that proliferates for 

many months in the laboratory can yield millions of cells. This property was first 

observed in the laboratory by James Till and Ernest. MeCulloeh [58]. If the resulting 

cells continue to be non specialized, like the parent stem cells, the cells are said to be 

capable of long-term self-renewal. Understanding this self-renewal and proliferation 

capability may hold the key for a lot of im portant discoveries in regenerative medicine 

and artificial muscle production for food consumption. Till and MeCulloeh |58| also 

established the fact stem cell compartment contains colls with extensive1 proliferation

Vn e N, A„ = nA > 0.

So, the Kolmogorov different ial equat ions are,

Now, the second equation above yields f \ ( t )  =  c 

An easy inductive argument confirms that Vf > 0

PTI( t ) =< Xt( l - e  X,Y‘ 1 (15)

ficiently flexible to deal with growth phenomena encountered in real-life : ; ; ” at ion.85
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capacity which have the ability to give rise to new stein cells and to differentiate 

unboundedly. Secondly, they also established all the differentiated cell have minimum 

or 110 capacity to proliferate and within tissue stem cells are the only cell capable of 

mass growth. Their work was the first to realize that stem cells have an enormous 

capacity to renew and differentiate.

Afterward several different, mathem atical model have been proposed for stem cell 

proliferation. One of the m athem atical model that, was proposed is the Sherley’s 

model [50]. This method is based on the implicit assumption tha t, within a cell 

population under study, all division events give rise to daughter cells that always 

divide. When a cell population dot's not adhere to this assumption, use of the 

exponential growth equation leads t o errors in the determ ination of bot h population 

doubling time and cell generation time. Also a new derivation a more general growth 

equation that defines cell growth in terms of the dividing fraction of daughter cells 

was proposed. This equation can account for population growth kinetics that, derive 

from the generation of both dividing and non-dividing cells. As such, it provides 

a sensitive method for detecting non-exponential division dynamics. In addition, 

this equation can be used to determine when it is appropriate to use the standard 

exponential growth equation for the estim ation of doubling time and generation time.

Deasy at, al. presented a model [11] where they evaluate the assumptions of the 

Sherley model [50]. Then it was augmented by incorporating terms to account for the 

alternative stem cell fates of apoptosis and differentiation. They offered two modi

fied models for cell growth in the presence of cell loss or cell differentiation. Using 

muscle-derived stem cells (MDSCs) induced to apoptose or to undergo differentia

tion, it was observed good fits in the presence of these events. The models presented 

in [11] was expected to facilitate the development of both a biological and m athe

matical understanding of stem cell dynamics and heterogeneity. These tools allowed 

to quantitatively assess param eters of stem cell population growth subject to both 

intrinsic and extrinsic regulation. An increased understanding of inter cellular and 

micro-environmental determ inants of stem cell fate teamed with appropriate growth 

models will eventually allow for the development of bio-reactor systems designed for 

the large scale generation of phenotypical stem cells to be used in cellular therapy 

strategies.

In recent times hyperbolastic growth models have been used by Tabatabai al al. 

[55]. It was argued the niat.hemat.ical models prevalently used to represent stem cell
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proliferation do not have the level of accuracy tha t might be desired and hyperbolas

tic growth models promise a greater degree of precision in representing d a ta  of stem 

cell proliferation. In the embryonic stem  cells the results were compared with other 

popular models, including the Deasy model [10], which is used predominantly for 

stem  cell growth. It was dem onstrated tha t hyperbolastic model H3 can accurately 

represent the dynamics of stem  cell proliferation for both embryonic and adult mes- 

enchymnal stem  cells. Although it was shown tha t m odel’s stem  cell proliferation 

predictions are close to real experiment data  but more test is needed to accurately 

use this model generally. Another argument against this model th a t it is a very 

simple deterministic model whereas stem cell proliferation at cellular level is more 

accurately described by a stochastic model.

3.3 HOMEOSTASIS

Each of the tissues of an adult mammal seems to be in a sta te  of equilibrium and 

all except the most highly modified types of cells, to be poised bet,ween an unsta

ble functional sta te  and a stable routine of recurring mitosis. It is p retty  obvious 

th a t an understanding of the nature of the mechanisms tha t determine and m aintain 

the actual point of balance with each tissue is of the greatest possible theoretical 

and practical importance. One common idea is tha t there exists a tissue level mi

totic inhibitor which controls the tissue mass by suppressing cell division [51]. The 

earliest indication th a t this concept was correct came from observations on organ 

regeneration and in particular from studies of the regeneration of kidney and liver in 

adult mice and rats. The first successful extraction of tissue-specific mitotic control 

inhibitors appear to th a t have been the works of Saetren [45, 46].

Regulation of stem cells occurs a t many different levels. Cell intrinsic factors as 

well as extrinsic signals from the surrounding cells and environment may modulate 

cell division, stem cell maintenance, and the differentiation process. In adult tis

sues, an amazing balance exists between stem cell proliferation and the generation 

of differentiated m ature cells. Previously, it has been argued th a t this balance is 

obtained a t the level of a single stem  cell, which divides strictly into a new stem 

cell and a progenitor. However, recent evidence suggests th a t balance can also be 

achieved a t the level of the stem cell population. Some stem  cells might be lost due 

to differentiation or damage, whereas others divide symmetrically to fill this gap. In 

a standard scenario tissue only undergoes asymmetric divisions. T hat means a single
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stem  cell divides into one stem cell and one transit-amplifying cell which eventually 

differentiates into fully m ature cell of the tissue. It has been noticed tha t w ithout 

external duress usually tissue stem cells undergo asymmetrical division most of the 

time [59].

In [4] the general strategies for stem cell self-renewal and evidence for stochastic 

stem  cell fate in adult tissues across a range of tissue types and organisms have been 

discussed. Alongside self-renewal and multipotency, stem cell potential is frequently 

associated with quiescence. Now in case of extensive growth, quiescence period can 

play a inhibitory role for regulating homeostasis. The factors controlling the balance 

between proliferation and differentiation in adult tissues have placed emphasis on 

mechanisms promoting asymmetrical division of individual stem cells, leading to stem  

cell longevity and clonal persistence. In recent years, the development of inducible 

genetic labeling systems has allowed such preconceptions to be challenged. Studies [4] 

have revealed that, in many cycling tissues, stem cells follow an active and stochastic 

pattern  of behavior in which frequent stem cell loss is compensated by proliferation 

of neighbors leading to progressive expansion of some clones and extinction of others.

3.4 TISSUE CELL POPULATON DYNAMICS

There have been a number of models th a t have studied cell population dynamics 

mostly com putational in [38, 39, 17]. The process of maintaining the number of 

m ature cells is a  well regulated multistage process consisting of differentiation of 

stem cells and their progeny and of the self-renewal of the stem  cells population. The 

process of differentiation may be broken down into several stages. The capability to 

self renew characterizes not only the stem  cells but also the population of cells at 

different stages of differentiation [32]. When the progeny of stem cells jum ps to the 

higher stage of differentiation, its ability to differentiate is reduced and ultimately 

lost a t the stage of m ature cells. Mechanism of regulation of this complex process are 

not well understood. Due to the increasing interests in stem cells applications, such 

as stem  cells based therapies for impaired organs, degenerative diseases [15, 18] or 

reconstitution of blood structure after chemotherapy in treatm ent of leukemia [48], 

wide spectrum  of methods have been chosen to enlarge the knowledge on the rules 

of this process. Several m athem atical and numerical models have been developed to 

help in understanding stem cells differentiation [52, 58, 32, 64].

These models present different m athem atical approaches to describe processes of
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differentiation and self renewal [52, 15, 13] involving stem cells proliferation [58] and 

mechanisms of stem cell fate decision [64] or stem cells regulation system [7]. All those 

models describe different parts of the process of homeostasis in adult tissue. However, 

an im portant difference is how an environmental and exterior disturbances during 

those processes are considered, and if they have a reflection in the m athem atical form 

of the models.

One of the earliest and most influential models is th a t of Tomlinson and Bodmer 

[60], which was used as a starting point in later model by Jhonston et al. [25]. T hat 

earlier model assumes tha t the cells in the colonic crypt can be assigned to one of 

three different compartments: stem cells, semi-differentiate cells (transit-amplifying 

cells, TA) and fully differentiated cells. This is the first model where eom partm ental 

view was taken on board. It was a strictly deterministic model with each cell cycle 

comprising synchronous cell division on different compartments. The later on models 

such as Johnston tried to develop on tha t basic model by taking careful account of 

different cell cycle times of stem and semi-differentiated cells to  accommodate asyn

chronous division which Bodmer’s model failed to address. This resulted in much 

more complicated set of differential equations compare to the earlier primitive model 

because the enhanced model needs to keep track not only of the number of cells but 

also to their age distribution. In order to evade the complexity Johnston et al. [25] 

formulated a simpler model in which growth occurs continuously rather than in dis

crete multiples of cell cycle. Such assumption made it easier to analyze, and showed 

param eters in it may be related to those in more detailed age-structured model. To 

achieve homeostasis in physical or biological system, some degree of feedback mecha

nism is necessary. Jhonston model achieved tha t by varying the proportions of death, 

differentiation and renewal population as individual com partm ent sizes changed.

Many tissues and organs grow to precise sizes and, when injured regenerate ac

curate and rapidly. In [27], Lander et. al. investigated whether the organization of 

cells into lineages, are necessary elements of control strategies tha t make such be

havior possible. Thus drawing on m athem atical modeling and experimental results 

they showed fast regeneration from a variety of initial conditions, and maintenance of 

high ratios of differentiated to undifferentiated cells, can be simultaneously achieved 

through a combination of lineage structures and feedback mechanisms. The feed

back mechanism tha t was proposed also explains how the distinctive proliferation
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behaviors of stem cell and transit-amplifying cell populations can emerge as a con

sequence of feedback effects, rather than intrinsic programming of cell types. Unlike 

Bodmer’s model they have structured semi-differentiated or transit-amplifying cell 

com partm ent into multiple stages with each stage having feedback to their prior 

stage.
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CHAPTER 4 

STEM CELL GROWTH

4.1 GROWTH MODELING IN STEM CELL RESEARCH

The past decade has seen a phenomenal surge of interest in stern cell research fu

eled by the immense potential stem cell based therapies holds in regenerative medicine 

and cancer research. In particular, there is an increasing demand for an accurate 

m athem atical model to represent and describe its growth kinetics. Since once differ

entiated stem cells are incapable of mitosis, a crucial component of stem cell research 

is modeling the proliferation capacity of the undifferentiated stem cell phenotype. 

Therefore, it is an im portant research topic to identify m athem atical growth models 

for stem  cells th a t are inherently heterogeneous and account in a unied way for mi

tosis, quiescence, senescence and death. Somewhat surprisingly, the overwhelming 

m ajority of stem cell growth models proposed in the literature, including the well 

known Sherley and hyperbolastic models [50, 55, 6] are deterministic. While simple 

and tractable, deterministic models are too rigid, lacking the exibility and versa

tility needed to accurately describe stem cell population dynamics tha t have high 

variability and heterogeneity.

Stochastic growth models have a chance of making real progress. In this chap

ter, a simple and versatile stochastic model is presented to mimic stem cell growth 

phenomena.

A starting population of stem  cells th a t proliferates for many m onths in the labo

ratory  can yield millions of cells. If the resulting cells continue to be not specialized, 

like the parent stem cells, the cells are said to be capable of long-term self-renewal. 

These processes of self-renewal, differentiation and proliferation are fundamental in 

the functioning of stem  cells. Lie and Xie [28] have described a delicate balance 

between stem cell self renewal and differentiation. This provides a basis for under

standing of how stem  cells regulate the body and also their therapeutic use in treating 

disease.

The main contribution of this chapter is to present a three-param eter version of 

the pure-birth growth model [41] as a versatile and effective means of tracking the
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dynamics of stem cell growth. Using public-domain experimental da ta  made available 

by NIH [35], a  comparison is shown to illustrate the realistic nature of the model on 

stem  cells growth characteristics.

For many stem cell based therapies, the efficacy of the treatm ent will depend 

on the number of undifferentiated stem cells available for transfer [56, 20]. An early 

model using a system of differential equations was proposed by Loeffler and W ichman 

[62] to model the stem cell growth within blood tissue. Cowan and Morris [33] 

introduced a two-parameter model representing the number of new daughter cells 

and the rate per proliferation cell per day. Similar in concept is the growth model 

proposed by Sherley et al. [50] to describe the generation of both dividing and non

dividing cells. Deasy et al. [9] applied the Sherley model to describe the mechanisms 

of muscle stem  cell expansion with cytokines. Jankowski et al. [24] used this model to 

investigate the role of CD34 expression and cellular fusion in the regression capacity 

of cells. Deasy et al. [11] expanded the Sherley’s growth model by incorporating a 

term to account for cell loss and cell differentiation Till et al. [58] presented the first 

stochastic model for stem cells growth. The growth model tha t would be presented 

later in the section is strictly stochastic. It is also a continuous model unlike most of 

the growth models for stem cells present in the literature.

4.2 DERIVATION OF THE VERSATILE STOCHASTIC GROWTH  
MODEL

Consider a stochastic process { N( t )  \ t. > 0} of continuous param eter t, where 

for every positive integer k,  (1 < k  < N) ,  the event { N( t )  — k}  occurs if the colony 

contains k  cells at time t.

For simplicity, assume th a t at time t =  0 the population starts  with a single 

individual and assume an upper bound N  on the to tal size of the population. It 

is worth noting tha t in many, if not most, practical situations this assum ption is 

violated. However, it is rather straightforward to see th a t the case of n0 initials 

reduces to the no-fold convolution of independent simple processes.

When the population contains k  individuals, A* captures the growth rate  of the 

population. The growth rates are subject to the mild restriction. Namely,

Ai ±  (16)

for all 1 moreover, since N  is the largest size the population assumed, so

it deduces, Xn  — 0.
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It will become apparent in the following, condition (16) is not unduly restrictive 

since one can instantiate the Afcs in such a way tha t (16) is satisfied.

To model the stem  cell growth process, the instantiation of \ k , (1 <  k < N )  as

A/t =  k a ( N  -  k f  (17)

where a  and ft are positive real numbers, assumed to be of infinite precision, and N

is a param eter th a t described the largest desirable size of the stem  cell colony. This

allows to  tweak a  and ft in such a way tha t A, /  Aj  for i j ,  thereby satisfying 

condition (16). It is observed tha t k * a  is the driving force of cell growth where k  is 

the current number of cells. I

Furthermore, Pk(t) =  Pr[{/V(/.) =  A:}]. Which says the probability of the event of 

having k  stem cells a t time t  is represented by

4.2.1 DERIVING A CLOSED FORM FOR PK(T), 1 < K  < N

It is fairly obvious tha t for k  > 1 and for a small h >  0, Pk ( t +h)  has the following 

components:

•  Pk{t)[l — h\k  +  o(h)] , which describes the probability of staying a t state  k.

* Pk- i ( t ) [h \ k  , 4- o(/i)], which describes the probability of reaching to the state  

k  from state  k  — 1.

This allows the following:

Pk(t +  h) =  Pk(t)[ 1 — h\k +  o(h)] +  Pk~i{t)[h\k-i  +  o(h)] +  o{h)

= Pk(t)[ 1 — ft-Afc] +  P +  o(h).

Transposing Pk(t) and dividing with h yields

m  + h) -  p„(t) „  . . . ,  m

Taking limits on both sides of this equality as h -» 0 yields the differential equation

— =  -AfePfc(t) +  Afc-iPfc-i(i) (18)

with the boundary condition P*,(0) =  0. Proceeding similarly for k =  1, the following 

differential equation is obtained.

Pi(t  +  h) =  Pi(£)[l -  PAi] +  o(h).
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Transposing P\(t )  and dividing with h  yields

AiPi(t) +
o(h)

(t + h) -  t " 1" n "' ’ h.

Taking limits on both sides of this equality as h —> 0 yields the differential equation

dPi(t )
dt

-XiPi ( t ) (19)

with the boundary condition Pi(0) =  1. This la tter equation can be easily solved to 

obtain

m  = e A  i t ( 20)

Having obtained Pi(t),  using the differential equation (22), a closed form of P2(/) 

can be achieved similarly. This process is then continued iteratively, until a closed 

form is obtained for Pk(t) for (1 <  k  < N) .  The details of the derivation, as well as 

the proof of Theorem 4.1 can be found in Appendix A. To summarize, the following 

result can be stated.

T h e o re m  4 .1 . For all t > 0,

Pk(t)

A ]  A 2 • • ■ A fc j  Y l i =
-Xjt

I K * ;  -  A'3 = 1 
3 & ( 2 1 )

N -  1
N  1n

\ j=i
Aj Aj

A  A for k — N.

A bove  theorem gives a formula to obtain the probability of having k  stem  cells

at any given time t. Using this formula all the probabilities Pi, P2, ..........  can be

computed as it has been already been state  tha t 1 < k  < N.

4.3  D E R IV IN G  A  C L O S E D  F O R M  F O R  PK (P),  1 < K  < N

For k  >  1, Pk(t  +  h) has the following components:

•  Pk(t)[ 1 -  h \ k 4- o(h)\

•  Pk i(t)[hXk i +  o(h)\.

This allows to write

Pk(t +  h) — Pk(t)[l  — hXk +  o(h)] +  P t . v t - k-i  +  o(h)] +  o(h) 

— Pk(l)[ 1 — hXk] +  Pfc \ (t)hXk~i  +  o(h).

85
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Transposing Pk(t) and dividing with h yields

Pk(t + h ) - P k(t) , p ( f U X  p  (f) o(h)
(t + h ) - t  ~  ~ X k h i t )  +  l/fc- 1(0 +  ~ T '

Taking limits 011 both sides of this equality as h  —»• 0 yields the differential equation

— =  — XkPk(t) +  K - \ P k  \{t) (22)

with the boundary condition Pk(0) =  0.

Proceeding similarly, when k =  1,

P {(t + h) =  P ^ l l  -  hX, + o(h)} + o(h)

= p ^ m - h M + o i h ) .

Transposing P\(t)  and dividing with h yields

P { t  + h ) -  Px{t) x , o(h)
(i +  f t ) - < -----------A,/ , ( )  +  — .

Taking lim its on both  sides o f this equality as h, —> 0 yields the differential equation

(lPAt) % „ . . , v
- ^  =  -A iP ,(0  (23)

with the boundary condition Pi(0) =  1. This la tter equation can be easily solved to 

obtain

/ ' , ( / ) - <  Al/. (24)

Having obtained P\(t ) ,  Let compute / 2(f)- For this purpose, a suitable instanti

ation of (22) allows to write

dP2(t)
dt

-A2 P 2 (t) +  Ai P-i(t).

Solving for P2 A)  yields

A2 — A1

=  A!
g -Aii p

+ (25)
A2 — Ai Ai — A2

Having obtained P2(t), it is easy to compute Ps(t).  Indeed, (22) allows to write

dP3(t)
dt

—A3/M O +  X2Px(t).
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This la tter equation yields

P3(t) =  a , a 2 +  y-:........ :..w '------ r-T +
( A 2 — A i ) ( A 3 — A j )  ( A i  — A 2 ) ( A a  — A 2 ) ( A i  — A s ) ( A 2 — A3)

It is instructive to verify tha t the boundary condition P3(0) =  0 holds. Indeed,

/MO) -  AiA2 

=  0
( A 2 — A i ) ( A 3 — A i )  ( A i  — A 2) ( A s  — A 2 ) ( A i  — A s ) ( A 2 — A3)

W ith insight gleaned from the resolution of these special cases, now the proof the 

following general result is,

T h e o re m  4 .2 . For  1 < k  < N  and t > 0,

a W  =  A,A2 . . . V  , f  (26)
? = i

Proof. It can be proceeded by induction on k. The base case, corresponding to k  =  2, 

is verified as confirm ed by (25).

Let k , (2 <  k < N  — 2), be arbitrary and assume tha t (26) holds for the chosen value 

of k.  It is needed to show tha t

j-

Pk+i(t) =  AiA2 • • • A fc ] T   ------------  —  (27)
“ f  11 C A H  ( A j  -  A j )
1 — 1

holds as well.

Pk+i(t)  obeys the differential equation

dPk+i(t)
dt

-Afcf iPfc-ti(t) -f AfcPt(f)

with the boundary condition Pfe+i(0) =  0.

To simplify the notation write

y(t )  =  Pfc-u (0 -

In this notation, the previous differential equation reads

dy(t)
dt

+  ^ k n y ( t )  — A  k P k { t )

with y(0) =  0 .
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To solve the la tter differential equation, an integrating factor p(t)  is needed in 

such a way tha t

(28)

A hit of algebra reveals tha t

p(t) = ( Xknt .

Now, both sides of (28) can be integrated to obtain 

p(t)y(L) =  I AkeXk^ ltPk(t)dt  + C

=  n (26>]
' • ’> / > " ' 3

/• * d A‘ "
=  a , a 2 - - - a  < j Y . n i . r , ( X j _ Xi)dt +  <!

I—I Jji,

* f  e (^-n A , ) t

= * , v . ^ E y  i i , „ .aA, -Ai)‘i i + ri=i

-  ( ^ - y ) + r - (29)
l—l

From (29) it follows immediately tha t 

Pki\(t.) = y ( t )

k c A-f
= A!A2---Afc2 j   id + f V( A i t )  i  A j  ) 1 1 1>-j<<p ( A j  A , )  

X )
Ai A2 • ■ • A*  r ^  + Ce  Xk" f . (30)

Hi , m  (Ai i=i m  J}*i

The constant C  can be determined from the boundary condition /\- ti(0 )  =  0. 

This is equivalent to

1=1 j*i J
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Solving for C  to obtain

c =  - A , A 2 - - - A
1

AjA2 • • • A*; |

II i ■ y_ k f i (A j A|)

1

i — 1 

k

— A] A'2 • • • A/j

I I  fr+1 ( A ,  A j )i j#,
1

fc I I I -  J 1 ( A j  -  A f c t l )

Finally, (30) and (31), combined yield

/ W O  -  * > * • • •  A . ( A , - A , )
8=1  J?tj

+ C (

— Ai A2 ••• A* £ ■

A , t

+

„  A, f .

— f  11 ;• j *-n  ( A,  — Aj )  ?.= ] •'

confirming tha t (27) holds true.

This completes the proof of Theorem 4.2. □

(31)

• I 1 1 / *• • ! ( A y Aj )  I 11 V J <._ fc-)- 1 ( Aj  Af e y l )
L * — ‘ j # i J

*:+1
A1A2 • • • A*,

4.4 APPLICATION OF VERSATILE STOCHASTIC GROWTH  
MODEL

In Section 4.3 a simple formula was derived for the sta te  probabilities for a three 

param eter pure-birth process growth model. The main goal of this section is to show 

th a t by a suitable instantiation of the A*.s. the three param eter pure-birth process 

can be used to model stem cell growth phenomenon.

Specifically, in Appendix A (26) allows to compute the probability of having k  

individuals at any given time t. In turn, once the state probabilities are computed, 

then the expected number, E[{A(£)}] =  Yl k=1 kPk{t)  of individuals a t any given 

time I.

The NIH stem  cell growth da ta  [35] which is available online have been taken to 

compare with the predictions from versatile stochastic growth model. In Figure 3 

a comparison between da ta  generated by the three param eter birth  model and the 

NIH embryonic stem cell growth d a ta  is presented. It has to be noted tha t growth 

model predicts the expected number of cells present at any given time period. It
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can be deduced that the three param eter pure birth  process growth model roughly 

follows the experimental d a ta  of stem cell growth. Similarly in Figure 4 signifies 

results generated by three param eter model against adult stem  cell experimental 

data. Unlike the deterministic models where for any given time there could only 

be one result, in stochastic three param eter growth model there can be numerous 

outcomes which is more in tune with realistic experimentation. The calculation 

of expected number of cells is basically taking the mean of all possible values. It is 

further possible th a t if d a ta  of stem cell growth from a series of experiments are tested, 

the average will match predictive results from this model even more accurately.

The three param eter pure-birth versatile growth model is sufficiently accurate to 

predict the dynamic behavior of stem cells. This model can be used to understand 

the growth dynamics of cell populations such as cell proliferation and quiescence 

rates both in vivo and in vitro. Although it must be emphasized a t this moment due 

to lack experimental d a ta  at this stage this model cannot be compared vigorously 

but this could be a good lead in the research of stochastic growt h models for stem  

cell.
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CHAPTER 5 

STEM CELL HOMEOSTASIS

The equilibrium of stem cell numbers are usually observed in all living organism. 

Results show [5, 27] tha t an increase in stem cell self-renewal, low apoptosis rates, 

and less differentiation can lead to the growth of cancers. Consequently, it is of great 

interest to understand the dynamics of homeostasis at the stem cell population level.

Long-term maintenance of tissue equilibrium relies on the accurate regulation 

of stem cell activity. Stem cells have to respond to tissue damage and proliferate 

according to tissue requirements while avoiding over proliferation. The regulatory 

mechanisms involved in these responses are now being unraveled [60, 27, 33] providing 

new insight into strategies and mechanisms of stem cell regulation. In the following 

section a new approach to investigate the dynamics of the stem  cell com partm ent is 

presented.

Stem cells constitute a population of cells th a t continues to divide in adult or

ganisms and produces cells for tissue regeneration. Stem cells can self-renew, can 

produce both differentiating cells, and cells tha t maintain stem-cell identity. They 

are pluripotent meaning they can give rise to all cell types in a given organ. Most 

stem cells actually divide very slowly and differentiating cells are produced from 

a partly  lineage-restricted, rapidly dividing, cell population, the so-called transient 

amplifying pool. Stem cells are usually identified by tissue culture procedures: under 

certain culture conditions, individual cells from a tissue can produce all cell types 

present in this tissue. If the progeny of such a cell contains a t least one cell tha t 

also fulfills these pluripotency criteria, the m other cell could self-renew and is by 

definition a stem cell.

In the light of the increased interest in stem cell research, fueled by the promises 

tha t cell-based therapies hold, it is hardly surprising th a t various m athem atical mod

els have been proposed for elucidating the intricate dynamics of stem cell self-renewal 

and differentiation. Most of these models are deterministic [5, 10] with only a hand

ful of them taking a stochastic approach [58]. In addition, virtually all approaches 

to modeling stem cell dynamics of which assume only specific cell division patterns 

(typically, symmetric) ignoring the asymmetric division regimen.
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The main contribution of this model is to propose a simple and intuitive Markov 

chain to model the internal underpinnings of stem cell dynamics. In addition to 

being stochastic, this model accommodates all types of cell divisions. One of the 

interesting features is th a t it suggests th a t, absent of spontaneous m utations or ex

ternal molecular feedback, the Markov process is a M artingale indicating tha t the 

stem  cell population is in stochastic equilibrium.

The remainder of this chapter is organized as follows: Section 5.1 introduces 

Markov chain tha t models the dynamics of the stem cell com partm ent, and Section

5.2 discusses the empirical validation of the model by way of simulation.

5.1 MODELING STEM CELL DYNAMICS

A Markov chain Figure 5 with states 0, 1, 2, 3, • ■ • with the obvious semantics, 

namely th a t when in sta te  i, the stem cell com partm ent comprises of i stem  cells. 

Also it is worth noting tha t sta te  0 is absorbing, capturing the fact th a t the stem 

cell com partm ent becomes extinct and no further dynamics are of interest.

FIG. 4: Markov chain for stem cell homeostasis

Some experiments seem to indicate tha t should the stem cell com partm ent become 

extinct, molecular-level feedback induces one or several semi-differentiated cells, also 

known as transit amplifying cells, to revert back to stem cell state. However, since 

this reversal does not seem to be widely accepted in the literature, it was not taken 

into consideration for this model.

Time is divided into slots of identical duration. In each time slot, each stem cell 

divides with a constant probability p, independent of other stem cells and of the time
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slot itself. A dividing stem cell has a 1/3 probability of producing two, one or zero 

stem  cells, independent of the time slot when the division occurs and of how cells 

divide.

Suppose th a t for some n, (n  > 0), the event {A„ =  /} has occurred, th a t is, in 

time slot n  the stem cell com partment contains i cells. Here the point of interest is 

in the conditional probability of the event { X n , | =  j }  th a t there will be j  stem cells 

in time slot n  I 1. Observe tha t for a fixed value of i

0 <  j  < 2i (32)

which holds because the largest possible number of stem cells produced by i dividing 

stem cells is 2i.

5.1.1 A STEPPING STONE

As a first step towards computing Pr[{Arn.|i — j }|{A'r, =  /}], The following 

probablity needs to be computed first.

Pr[{A nfl =  j } \ {Xn =  i} fl {k  stem  cells divide in time slot n}]. (33)

t i m e  s l o t  n

d i v i d i n g
c e l l s

t i m e  s l o t  n  +  1

n e w  c e l l s

FIG. 5: Illustrating the case where k  cells divide in time slot n.



44

Referring to Figure 6, imagine tha t k stem cells divide in time slot n. In order 

for the stem cells com partm ent to contain j  stem cells in time slot n  +  1, k + j  — i 

new stem cells have to be produced as a result of the k  divisions occurring in time

slot n. Since each of the dividing stem cells can produce a t most two stem cells, it

must be tha t k + j  — i < 2 k  and so

j  -  i < k < i. (34)

On the other hand, if i > j  then, since i — k  stem cells have not divided, it must 

be the case tha t i — k  < j  and so

i -  j  < k < i. (35)

Now, (34) and (35), combined, imply

\ i ~ j \ < k < i .  (36)

T y p e -0

Type -1

Type - 2

0

0

0

T *

" ^ 0

FIG. 6: Illustrating three cases of division with Type-0 producing zero stem  cell and 
two differentiated cells, Type-1 producing one stem cell and one differentiated cell, 
Type-2 producing two stem cells

A dividing stem cell is said to be of Type r, (r =  0, 1, 2), if it produces r  

stem  cells. Since the stem cells are morphologically indistinguishable, the number
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of distinct  configurations of Types 0, 1 and 2 arising from the division of k  stem 

cells can be obtained using the well-known Bose-Einstein statistics. Recall th a t in 

the Bose-Einstein statistics, m indistinguishable balls are placed a t random into n  

distinguishable bins and each of the resulting ')  distinct outcomes has the same

probability, namely

(n{m-  1\ 
V m /

In this case, m  =  hand n  =  3 and so the number of distinct outcomes is l ) 

(k^2), each with probability
1

(*+’)

Let x't, x'2, X;j be the number of dividing stem cells of Type 2, Type 1, and Type 

0 respectively. It is clear th a t Xi, x 2, .r.s must satisfy the following conditions

■Ti +  X ‘i  +  X ’s  =  k

2 x i  + x 2 =  j  -  i + k.

Assuming x :i to be a param eter, it can be solved for Xi and x 2

I Xi = j - i  + :r3 

|  x 2 = k  + i - j  — 2 xs. 

Since both  X\ and x 2 are non-negative, it follows that

max{0 , i — j }  < x$ <
k -  (j  -  i)

(37)

Since is an integer, the number of values of ;r:i tha t satisfy (37) is determined 

as follows:

•  First, if i < j  the possible values of are 0, 1, 2, 

of

1

fc- (j i) 
2 , for a total

k -  u  -  #)

distinct values;

•  Second, if i > j  then by (37), the possible values of x-j are

i — T i — j  +  1 > • • •
k -  ( j  -  i)
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for a total of

k -  ( j  — i)

distinct values.

To summarize, regardless of whether ? < j  or / > j ,  ,r3 can take on exactly

i +  ‘ - i * - • ' I (38)

distinct values.

Consequently, since each value of :r3 uniquely determim's a value for :n and a value 

for x-2 and since by the Bose-Einstein statistics each is equiprobable, with probability 

(* ‘2) ' \ t h c n ,

1
Pr[{X n) i =  j } \ { X n = f} H {k  stem cells divide in time slot n}]

Thus, (33) holds true.

f c - l *  J\ 
2

( ^ 2)
(39)

5.1.2 COM PUTING THE ONE-STEP TRANSITION PROBABILITIES

Let i and j  be arbitrary non-negative integers. Since state 0 is absorbing, it is 

clear tha t

Pr[{A'n)1 = j } \ {  X„ =  ()}] =  ().

Therefore, from now on it is assumed j > 1. By (32), Pr[{A'71 + i =  ,y}|{A'„ =  /}] =  

0 whenever j  > 2i.

T h e o re m  5.1. Let i > 1. For all j ,  (0 <  j  < 2/),

P r[ (A „ l ,= ; /} |{ V „ = > } ] =  E  j ! ' 1!1 - ' ' )

1 +
\ i  k

j|
2

(kV)
(40)
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Proof. By Theorem B .l in Appendix B

P r | { * » M = j } P ' „  =  0 ] == E  enfx,,,. = = i>]
k=\r -j\

fl {A" stem cells divide in time slot n}]

Pr[{A: stem cells divide in time slot n}|{X„ =  i}]

±  * H '  j
i '
k

j  I (‘ 7 )
[l>y (39)].

(41)

In the above expression

•  ( lk)ph{ 1 — p)l k  i*s the probability th a t exactly k  of the i stem cells divide in 

time slot n;

11

r r r
is the conditional probability tha t j  stem cells will be present in 

time slot (n  + 1), given tha t there were i stem  cells in time slot n and tha t k  

of them have divided.

W ith this the proof of Theorem 5.1 is complete. □

C o ro lla ry  5.2. Let i > 1. For all r, (0 < r < i),

Pr[{X nH =  r}|{A 'n =  *}] =  Pr[{A'ntl =  2i -  r} |{X „ =  /}. (42)

Proof. It follows directly from (41) which tells th a t the underlying Markov chain has 

symmetric transitions about i. □

Thus, for example, letting stand for P r[{X „n  =  7-}|{A'„ =  <}], pU{) =  pu2i, 

P i , i =  P i , 2 i - i  and, in general, p^r = pifii r for 0 < r  <  /.

5.1.3 VERIFYING THAT THE TRANSITION MATRIX IS STOCHAS
TIC

Having obtained the various one-step transition probabilities, it is im portant to 

show they for all i. and for all n, Pr[{A’n+i =  r} |{X „ =  ?’}] =  1, in other words, 

tha t the transition m atrix is stochastic.
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T h e o re m  5.3. For all i and fo r  all n  E N,

J  0

Proof. The proof relies heavily on Theorem 5.1 and Corollary 5.2. For a given i, 

evaluating 1 =  =  ?"}] as f°N°ws

2 ?

E Pr[<-V"i' = . /> | { A -„  = />] = £>[{*„,, = j } | { . V „  =  /}]
J  ■» 3 = 0

2i i 1 +

J = ‘> k= \ i  j \

i l i

= E  E  uKd-ri
j = < )  A -=  |? j  i

1 +
i  A-

( T )

k I* h 
2

( T )

i + k  !» j  j 
2

J = t  k=  | i  j |

2 ? 7

c r )

+ E  E
j = i  I 1 k=\i

1 +
i k

k i?l j \ 
2

Let, t — |i — j | and note that

1 +

E  E  CKd-rt'
j = ( )  k= \ i  j \

k l» JI 
2 2? 7 1 +

( T )
Z  Z  u K’f1

i* ji 
2

j  = i ] \ k = \ ,  j |  

1 +

r 22)

E E l f c k f 1 -'')'

A- I

t = l  k = t

W ith this, the expression of f>r[{ A’„ , i =  /}|{A'„ =  /'}] becomes

(v)

E P r [ { A - „ ( l =; /) |{A 'I1=  )}] =  ^  - p ) '  *-
1 +

2=0 k~() (* « )

7 7 /  . \

+ 2Z Z  j ^ 1- ^
A = 1  k = t  '  '

1  +
A- f 

2
_

( ^ 2)
(43)
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Let r be an arbitrary value of t and consider all the terms corresponding to k — r 

in the previous sums.

First, in the sum £ * =0 ([) // '( !  ~  vY k the corresponding term is

1 +

11
Second, in the sum 2 ^ =1 £*=* Q ) / ( l  -  ;>)’ k (?vrj the corresponding terms

are

which reduces to

r  -  1

1
i—I

 
+

2
+  ^

+ f u 

r - 2
+  ■

r  -  (r -  1)
+ 1 +

r  -  r)

r  -  1 r  — 1 1 \  1
2r  +  2 f

2
+

2
+  . . . +

2  _ ).j r f j j P r( 1 -  vY ~ r

By Theorem B.5 in Appendix B, this reduces further to

r ( r  -  1)0) 2 r  +

Thus, altogether, the coefficient corresponding to t — r in

1 +2 i i f c  i » - j |  
2

j= ( )  k=\i j\ f t 2)

turns out to be

r / 1 \> r 1 + L§J + + r(r2 l) — [§
r / ( ! - P )   — ------J7T2 ^ --------—

r2 { Hr t 2
1/ ( 1 - P ) ’ r - ^ f y

(r + 2)(r ) 1)

I i)r(\  -  v y  r  ?------
. J ' ( "  t n
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Since, r  was arbitrary it follows that

2 i

E = i>K*.  = 01 = E  ; r = (p+1-vY  = 1.
j = 0  r = 0  '  ■'

and the proof of t he theorem is complete. □

5 .1 .4  E V A L U A T IN G  T H E  C O N D IT IO N A L  E X P E C T A T IO N  O F  A N  t 1

Having determined the one-step transition probabilities, it is of great theoretical 

interest to determine for a given state i , the expected sta te  in which the Markov 

chain will find itself once it leaves i. Put, differently, what is of interest is in the 

conditional expectation L[A n f i|{Ar„ =  ?}]. The somewhat surprising answer to this 

natural question is given by the following result.

T h e o re m  5.4. For all non-negative integers n, and f o r  all i > 1, Ll[Xn( j|{ A'n =

i}] =

Proof. By the Law of Total Expectation

2  i

j= 0

2 i

i- 1

\ ? k
k 1' h 

2

j - 0 k=\i j\

f c - l »  i l  
2

( r )

+ e  ( l y ^ - p Y  ‘

1 + k j t  t l  
2

n 2)

E^ E  u H 1-^
j = t ( l  A: — j f  j\

i k
k \i jj 

2

Write t — |z — j \  and observe tha t

•  if j  =  0, 1, • • ■ , i — 1 then I =  i, i — 1, • • • , 1 and j  = i — t;
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•  if j  =  i +  1, i + 2, • ■ • , 2i then t =  1, 2, • ■ ■ , / and j  =  i +  t;

•  finally, if j  =  i then t — \i — j \  = 0.

After the change of variable t =  |? -  j \ ,  the expression of hJ[Xn+i \ { X n =  ?'}] becomes

1 + fc t

t - 1 k=t. C l 2)

fc= ()

1 +
t k

k  t

( T )

+
/  • \

+  u V ( !

i + k  t

f = l k = t c t 2)

E u V (1 -//)' '•
i +

fc=0
fc *

*=l k = t Cfc22)

+

fc=0

7. 7
z

1 +
7 A'

A- f

(E)
1 + A- t

fc=0
E  u  r (1

1  +
fc t

2
.

(**2)

+
1 + fc t.

r 12)t = l  k=t. y  /  \  2 )

i [by Theorem 5.3 and (43), the terms add up to l.j

W ith this, the proof of Theorem 5.4 is complete. □

Theorem 5.4 states that if every dividing stem cell has an equal chance of pro

ducing, two, one, or no stem cells then, stochastically, the system is in equilibrium,
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in the sense tha t if the stem cell com partm ent contains i cells in time slot then the 

expected number of stem cells it contains in time slot, n  + 1 is also /. More formally, 

it can now be stated the following im portant consequence of Theorem 5.4.

C o ro lla ry  5.5. The process { X „ } is a miniiiujale.

Proof. By Theorem 5.4, for all positive i and non-negative integer n,  /?[A'n) i|{A'„ =  

i}] =  i. This, combined with the fact tha t x„ — i implies th a t E [ X n ( i|{A”„ =  /}] =  

X n. Now, applying the expectation operation on both sides yields

E [ X n) =  V[V [X n n \ { X n =  /}]]

=  Fj [A’n ( i], [by the Law of Total Expectation]

confirming th a t {X n } is a martingale. □

5.2 S IM U L A T IO N S

In this section simulation analysis will be conducted to dem onstrate the m odel’s 

effective predict,ions. All these simulations were implemented on MATLAB.

5.2.1 EXPERIMENTAL SETUP

In order confirm empirically the theoretical findings above and especially the 

predictions of Theorem 5.4, the following simulation plan was implemented:

1. Firstly, the number n of time slots was taken as independent param eter for 

the simulation and also the initial distribution, /, of the number of stem  cells. 

In the first, and second experiments initial number of stem cells/ was, i =  50 

and i. — 100 respectively. While the number n  of time slots was 100 in both 

experiments;

2. In each time slot simulated, from the current number of stem cells /, randomly k 

stem cells were selected to divide in tha t time slot,. The number k was selected 

following a binomial distribution with success probability p  =  0.3;

3. Each of these k  dividing stem cells produced either 0,1, or 2 stem  cells according 

to the Bose-Einstein statistics;
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Initial no. of stem cells i =50 
Time slots n = 100

45
0 10 20 30 40 50 60 70 80 90 100

Time Slots

FIG. 7: Simulation results for initial stem cell populations of 50

4. The track of the number of stem cells were kept after all k  divisions and updated 

the total number of stem cells accordingly. The same procedure was repeated 

for 100 time slots.

All the steps above are then run ten thousand times and averages were taken to 

produce the final outcome.

5.2.2 RESULTS

As previously discussed in Section 5.2.1 a simulation script was w ritten in MAT- 

LAB to produce all the predictive results. A glance at Figure 8 and Figure 9 reveals 

th a t a t the end of 100 time slots, the number of stem cells found is roughly equal to 

the same initial number of stem cells at the start. In other words, as predicted by 

Theorem 5.4, the expected number of stem cells tha t would be seen in the next time
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slot is equal to the stem cell seen at current time slot. In the first experiment initially 

the experiment had i =  50 stem cells. Then the script was run independently 10,000 

times. After averaging individual runs of all the trial runs the results were observed 

and plotted. From Figure H dem onstrates stem cell numbers did fluctuate above the 

initial number of cells i =  50 during runs but on an average after 100 time units, they 

remained the same number from starting point, reflecting stem cell homeostasis.

Secondly, the experiment had i =  50 stem cells to s ta rt with. Then the script 

was run independently again 10,000 times. After averaging individual runs of all 

the trial runs the results were observed and plotted. From Figure 9 dem onstrates 

stem cell numbers did fluctuated above the initial number of cells i =  100 during 

runs but on an average after 100 time units, they remained the same number from 

starting point, meaning stem cell homeostasis was achieved. These show tha t stem  

cells number fluctuate up and down because of the type of division occurs randomly 

at cellular level, but overall the number of stem cells remains the same and constant. 

Meaning the homeostasis of stem cell is conserved within tissue.

In the last of the figures, Figure 9 shows results from a single simulation run. 

This is presented here to dem onstrate the reasoning behind 10, 000 runs from last 

two results above. Rather than averaging numerous runs, a single run is observed. 

As seen from Figure 10 tha t unlike the previous two simulations it is not smooth and 

shows more movements upwards and downwards although results are practically same 

as stem  cell numbers hovers close to initial number as suggested from the theoretical 

findings.

In Figure 11 stem cell compartment homeostasis is studied a t different, levels with 

influence of feedback mechanism. Feeback mechanisms provide sharp increase or de

crease in the to tal number of stem cells. The green line signifies period of homeostasis 

whereas red line denotes explosive growth or reduction in stem cell com partm ent. In 

the first experiment, Figure 11 stem cell com partm ent init ially started  with 1000 cells 

then continued upto 450 time units when feedback mechanism triggered an explosion 

of stem  cell growth for 50 time units. After tha t brief period of growth stern cell 

number reaches to roughly 1400. In this period of growth the feedback works in such 

a way which promotes only division where one stem cell produces two new stem cells 

in each cycle. Similarly, we see another growth period a t time unit 1000 and later 

we see a significant reduction of stem cell number a t time unit, 1550. In reduction 

period, feedback mechanism works in such a way where cell division produces two
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FIG. 11: Stem Cell Com partm ent Homeostasis a t different level starting with 1000 
stem cells

differentiated cells and no new stem cell, thus triggering reduction in to tal number of 

stem  cells. The purpose of these two experiments is to show even with the feedback 

mechanism in place from the environment stem com partm ent maintain homeostasis 

a t different level. A similar event occurs for Figure 12 where we homeostasis achieved 

a t different levels where initially the simulation had 500 stem cells.



59

CHAPTER 6

REASONING ABOUT HOMEOSTASIS IN TISSUE

LINEAGES

The main goal of this chapter is to offer a mathematical model of tissue-level home

ostasis. The modeling of the dynamics of individual compartments by two local 

parameters, namely the rate a t which cells divide as well as the rate a t which they 

undergo apoptosis. In spite of its simplicity, this model reveals the intricate interplay 

between local and global equilibrium (i.e., homeostasis) requirements. In turn, these 

requirements must be reflected in the prevailing feedback mechanisms.

The main results include:

•  a necessary and sufficient condition for homeostasis of the stem cell (SC) com

partment;

•  a  necessary and sufficient condition for homeostasis of the transit amplifying 

(TA) cell compartment;

•  a necessary and sufficient condition for homeostasis of the differentiated cell 

(post-mitotic) compartment

•  a proof of the fact tha t tha t the TA compartment cannot be homeostatic unless 

the stem cell compartment is also homeostatic.

It has been assumed existence of a complex and integrated feedback mechanism 

responsible for maintaining homeostasis a t the tissue level. While in this model it 

was not concerned with the exact way in which the feedback mechanism operates, 

but local equilibrium equations spell out conditions tha t the feedback mechanism 

must address in one form or another.

It has also been assumed tha t the signaling by which the feedback mechanism 

regulates the biological processes in the tissue compartments occurs in pulses. The 

pulses are nearly instantaneous changes in compartment parameters. In the time 

intervals between these pulses, the various compartment param eters remain constant.



60

6.1 THE STEM CELL COMPARTMENT

Let X q(t) denote the size of the SC compartment a t time t > 0, with Xo(0) =  

no > 1. For h > 0, let

•  n0(/i) denote the fraction of the stem cells th a t divide in the interval (t , t + h];

• 70(h) denote the fraction of the stem cells tha t undergo apoptosis in the interval 

(£, t +  h].

Also it has been assumed tha t the two limits l im ^ o  ^ 4 ^  =  1,0 an(  ̂ " 4 ^  =  7o
exist and are finite.

Clearly, n0 represents the rate at which stem cells divide. Similarly, 70 represents 

the rate a t which stem cells are lost to apoptosis. Previously it has been mentioned 

tha t the assumption over large time intervals both 70 and no are constants. This as

sumption is in line with the fact th a t both 70 and n0 change in response to  regulatory 

feedback loops whose cycle is measured in days [7]. Since the ratio ^  will appear 
quite often in the derivations, it is convenient to write,

9o = - .  (44)
v0

For a dividing stem cell let,

•  c*i denote the probability tha t the cell produces two daughter stem cells;

•  a 2 denote the probability tha t the cell produces one daughter stem cell and 

one TA cell;

•  (*3 denote the probability tha t the cell produces two TA cells.

Naturally,

c*i +  <*2 +  <23 =  1. (45)

For later reference observe tha t ^  1. Otherwise, by (45), 0-2 =  «3 — 0 which 

makes no biological sense, for the stem cells would produce no TA cells a t all.

In the above notation, uQ(h)Xo( t ) and i/o(h)Xo(t) denote, respectively, the ex

pected number of stem cells tha t divide and those tha t undergo apoptosis in the 

time interval (£, t + h]. It should be fairly obvious tha t the size, X 0(t -f h), of the SC
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compartment a t time t 4- h can be expressed as

X 0(t +  h) = Xo(t)  — — Xo(f)7o(/i) +  Xo(t)vo(h)[2oti +  <22]

= Xo(t)  +  Xo(t)i/o(h)[2oti +  02 — 1] — Xa(t)'yo(h) 

=  X 0 (t) +  Xo(t)i/o(h)[ati — Q3] — Xo(t)'yo(h). [by (45)]

After transposing Xo(t) and dividing both sides by h,

which, upon taking limits as h  —> 0, yields the differential equation

=  X 0 {t) [i/0( a x -  a 3) -  70] (46)

with the boundary condition Xo(0) =  nQ. By solving (46) for Xo(t),

X 0 (t) = n 0 e M a i - a3)- yo]t (47)

Since the ratio ^  will appear quite often in our derivations, it is convenient to 

write

Now taking note of a conceptually useful result implied by (47).

C o ro lla ry  6.1. Unless 9q < 1, the S C  compartment cannot be homeostatic.

Proof. Since both rvj and o 3 are probabilities, and since Oi /  1, the difference O) - a 3  

is strictly less than one. As a consequence, 70 > V'q implies 70 > ^0(01 — 03) which, 

by (47), guarantees tha t X 0 (t) is a decreasing function of time. □

In turn, Corollary 6.1 confirms the intuitive feeling tha t if the SC compartment 

is to be homeostatic then the rate at which stem cells are lost to apoptosis must be 

strictly smaller than the rate a t which they divide. However, it is conceivable that 

the condition 9o < 1 might be violated for short, transient periods of time in the 

wider context of time-dependent feedback mechanisms.

(48)
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FIG. 12: Illustrating the dynamics of the SC compartment.

The dynamics of the stem cell compartment are illustrated in Figure 13. The 

direction of the arrows suggest the flow of cells going inside or outside of the stem 

cell compartment. Specifically, it is easy to confirm that:

•  new stem cells are being produced as a result of cell divisions a t the rate of 

X o ( t ) i / o ( 2an  +  £*2) =  +  (£*i — £*3)];

•  stem cells are being lost to apoptosis a t the rate of .Xo(t)7o;

•  TA cells are being produced a t the rate of Xo(t)vo(ai2  +  2c*3) =  Ao(<)i'o[l — 

(o-i -  a 3)].

W ith all these condition stated, the following fundamental result is implied by

(47).

Theorem  6.2. A necessary and sufficient condition for homeostasis of the SC com

partment is

7o =  (£*1 -  a 3 )v0- (49)

Proof. First, if (49) holds then, by virtue of (47), A0(t) =  no, independent of t, 

indicating tha t the SC com partment is homeostatic.
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Conversely, suppose tha t the SC compartment is homeostatic. This implies tha t 

X 0(t) — n0, independent of t. Now, (47) implies tha t ^ (o u  — (*3) — 70 =  0 and so

(49) must hold, as claimed. □

It is interesting to note tha t (a  — 1 — a  -  3) î o is the rate a t which stem cells 

accumulate due to symmetric divisions. Theorem 6.2 tells tha t in order for the SC 

com partment to be homeostatic this accumulation rate must match the rate at which 

stems cells are lost to apoptosis.

Observe tha t (49) can be written as

<*i -  (*3 =  0 o,

emphasising the fact tha t 9q is a critical value as far as homeostasis of the SC com part

ment is concerned. Indeed, if a.\ — a 3 > ^  the SC compartment grows exponentially. 

On the other hand, if « i — rt3 < ^  then the SC com partment decreases exponentially.

Also noting tha t homeostasis of the SC compartment in the special case where 
7o =  0 and only symmetric divisions occur, that is a 2 =  0, has been studied exten

sively in the literature [25, 26, 27, 60]. As several of these authors pointed out, in 

tha t particular case, homeostasis of the SC compartment hinges on the very strong 

condition a.\ =  a 3 — |  which shows th a t the system is inherently unstable.

At this point,

•  equation (49) is independent of no, the number of cells in the SC compartment. 

In turn, this seems to suggest tha t any feedback mechanism tha t maintains SC 

compartment homeostasis must act on n0, 70, or, indeed, the probabilities 

c*!, (*2, « 3 subject to (49);

•  as will be discussed later in some detail, the rate a t which TA cells are produced 

by cell division in the stem cell compartment depends on au — a 3. Thus, the 

lower r*x -  o 3, the more TA cells are being produced per unit time;

•  somewhat surprisingly, the probabilities ot\ and a 3 only occur in (49) through 

the expression a.\ — a 3. This seems to imply tha t as long as the probabilities 

of symmetric divisions are shifted up or down by equal amounts, homeostasis 

is preserved. The feasible ranges for these probabilities are investigated below.

Lemma 6.3. For every value of ot\ in the range [<?o, there exist feasible proba

bilities c*2 and a 3 that satisfy both (45) and (49).
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Proof. It is by justifying the stated  range for cq. For this purpose, recall tha t by

(45), 2a:i +  a 2 =  1 +  (cq — (*3). Since a 2 > 0, (49) leads directly to

.  l +  0oQ,< —
which, combined with the fact tha t <q > 0O guarantees tha t

a ^  ^  1 +  ^0
00 < <*1 < —— •

To complete the proof, there has to be a need to show tha t for each value of cq in 

the range [0O, there exist probabilities a 2 and a 3 tha t satisfy (45) and (49). To 

see tha t this is the case, write cq — u for some arbitrary u  in the interval [0o, ^ r 1] 

By (49), the expression of a 3 must be c*3 = u — 0$. It is observed th a t by the 

choice of u,

0 < a 3 =  u  -  0O <
2

Next, is it easy to see tha t a 2 =  1 +  0o — 2u and tha t by the choice of u,

0 <  « 2 <  1 -  0O.

Finally, it is easy to see tha t the expressions for cq, a 2, a 3 obtained above satisfy 

(45) and (49), and the proof is complete. □

Lemma 6.3 confirms the intuition tha t homeostasis of the SC com partment can 

occur for a large number of values of ot\ and, consequently, of rv2 and r*3. Moreover, 

as later it can been shown, as long as (49) holds, the rate a t which new TA cells arise 

as a result of divisions in the SC compartment is independent of the actual values of 

a j ,  a 2, a 3. It would be interesting to see if the feedback mechanism tha t keeps the 

SC com partment homeostatic favors some of these values over others.

Next, turning attention to the rate a t which TA cells are being produced.

L em m a 6.4. Under homeostatic conditions, the rate at which TA cells are being 

produced in the S C  compartment  is n 0 (v0 -  7 0 ).

Proof. Recall tha t the rate a t which TA cells are being produced by cell division in 

the SC com partment is X 0 i;0 (at2  +  2a 3). Consequently, under homeostasis, It can be 

written,

X 0{t ) i /0{ct2 + 2a3) = n ovo(ot2 + 2a3)
=  noUo[l -  (c*i -  a 3)]

=  nQu0(l  -  0O) [by (49)]

=  no(v0 -  7o)i [by (48)]
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as claimed. □

n o ( v 0  +  7 0 )

FIG. 13: Illustrating the dynamics of a homeostatic SC compartment.

To summarize, Figure 14 captures the dynamics of the SC com partment under 

homeostatic conditions. Indeed, with n 0  standing for the steady state  number of 

stem cells:

•  new stem cells are being produced a t the rate of n 0 (is0 + 70);

•  stem cells are being lost to apoptosis at the rate of n07o;

•  new TA cells are being produced at the rate of no(v0  — 70). Once created, these 

new TA cells join the dynamics of the TA com partment as described in Section 

6 .2 .

6.2 THE TRANSIT AMPLIFYING CELL COMPARTMENT

Let X\(t.) denote the size of the TA cell compartment a t time t > 0, with X i(0) =  

ni > 1. For h >  0, let
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• v x(h) denote the fraction of TA cells tha t divide in the interval ( t , t  +  h]\

•  71 (h) denote the fraction of TA cells tha t undergo apoptosis in the interval 

( t , t +  h].

Let assume that the two limits lim^^o =  *7 and lim ^ o  =  7i exist and 

are finite. In this notation, ux represents the rate at which TA cells divide, while 71 

represents the rate a t which TA cells undergo apoptosis. Since, as mentioned already, 

the model do not concern with time-dependent feedback mechanisms, both 71 and 

i>\ are independent of time.

Further, for a dividing TA cell, let

•  p x denote the probability tha t the cell produces two daughter TA cells;

•  p 2 denote the probability tha t the cell produces one daughter TA cell and one 

differentiated cell;

•  /?3 denote the probability that the cell produces two differentiated cells.

Clearly,

Pi + P2 + P3 = L (50)

For some small h > 0, let X x{t +  h) denote the number of TA cells a t time t +  h.

It is clear tha t X x(t + h) involves the following components

•  X x(t)  — V \ { h ) X \ { t )  — 7x(/i)Xi(f): the TA cells in existence a t time t  tha t have 

undergone neither division nor apoptosis in (t , t +  h]\

•  Xa(t)i/o(h)[a2 +  203]: the new TA cells generated in ( t , t  T  h] by divisions in 

the SC compartment;

•  Xi(t)i / i (h)[2pi + p 2]' the new TA cells generated in (<, t + h ) by divisions of TA 

cells.

Visibly,

X i  (t + h) =  V i(f) — ux(h )X i ( t )  — 71 ( h ) X x(t) +  X Q(t)u0 (h)[2a2 +  013] +  X x( t)vx(h)\ZP\ +  p2\

= Vi(<) +  X x(t) [vx(h )(px — P3 ) — 7i(^)] +  -Vo(0 I/o(^)[QJ2 +  203].

After simple algebraic manipulations of the above expression obtains
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X . i t  + h) - X . i t )  
h X i ( t ) 1/1 (h h i i  -n  71 ̂\Pi -  ih)h h

+  X 0 (t)  ̂[o2 +  2o3]

which, upon taking limits as h —> 0, yields the differential equation 

d X . i t )
dt X \ ( t )  [ v i { f h  ~  i h )  — 7i] + Xo(t, )i /o[ai2 + 203] (51)

with boundary condition X |(0) =  rq.

By (47), the differential equation (51) with boundary condition .X'i(O) =  rq can 

be rewritten as
d X . i t )

dt
(52)

where

•  A  = v.if) .  -  £3) -  7 i, and

•  <f>it) =  no^o(«2 +  2a3)el‘/0̂ 1̂ a3^ 7°lt =  «o^o[l — (« i — tt3)]e[l/°̂ Ql“a3 -̂7°lt. 

Using standard techniques, the solution of (52) turns out to be

X . i t ) .At n .  + /J o

. - A u

which, upon evaluating the integral, becomes

X . i t )  = n .e  +  n0i/o[l -  (« i -  q 3)]

0 (u) du

.j\vo(a\ -a3)-7o]i , A t

(53)

(54)
1/0(07 -  a 3) -  70 -  A  

where, recall, A = u.ifi .  — (33) — ry..

Now by this statem ent, and a prove of technical lemma tha t reveals the complexity 

of the feedback mechanism at work in tissue lineages.

Lemma 6.5. I f  A  =  i/o(cq —( * 3 ) — 7o then the TA compartment  cannot be homeostatic.

Proof. Suppose not; Lemma C.2 in the Appendix guarantees tha t as A  -> tq(rq — 

<*3) -  7o
0i4«

1 /0 (0 7  -  o 3) -  7o -  A  

and so the expression of A i(t) in (54) becomes

te A t

X . i t )  =  eAt in .  + n0i/0[ 1 -  (oi -  o 3)] t) .

However, this latter expression shows tha t X.it.) is a function of t. Observe tha t Au(0 

remains a function of t, even if A  — 0 in which case X . i t )  = n.  +  noi/o[l — (c*i — o 3)]t 

grows linearly with t. This completes the proof of the lemma. □
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Observe tha t the conclusion of Lemma 6.5 is independent of whether or not the 

SC compartment is homeostatic. The proof of Lemma 6.5 gives a hint of the growth 

regimens seen by the TA compartment it is happens not to be homeostatic. Refer to 

the Appendix C for details.

The following useful corollary follows directly from the proof of Lemma 6.5.

Corollary 6.6. If the TA compartment is homeostatic then A ^ 0.

Next, recalling tha t A =  V\{fi\  — fif) — 7x, Lemma 6.5 can be rephrased as follows:

Corollary 6.7. If
ih _  ih  = 21 + ■*(■»■ ~ « 3 > ~ T »

V i  v x

then the TA compartment cannot be homeostatic regardless of whether or not the SC 
compartment is.

The dynamics of the TA compartment are illustrated in Figure 15. Specifically, it is 

easy to confirm that:

•  new TA cells are being produced as a result of TA cell divisions a t the rate of 

Xi(t)v>x(2/3i +  fif) — A-x(t)i/i[l +  — fh)}',

•  new TA cells are being produced by divisions in the SC com partment at a rate 

of X 0 {t)u0[l -  ((*! -  a 3)]

•  TA cells are being lost to apoptosis at the rate of X i(f)7i;

•  differentiated cells are being produced at the rate of X\{ t)v \{ f i 2  +  2fi3) = 

X x { t ) v \ [ l  -  {fix -  fin)}.

As pointed out by several authors [25, 27, 60], accumulated empirical evidence 

suggests tha t if homeostasis is not present a t the SC compartment, then neither can 

the TA com partment be homeostatic. To the best of current knowledge, there is no 

mathematical proof of this phenomenon in the literature. Next result provides such 

a proof.

T h e o re m  6.8. If the TA compartment is homeostatic then so is the SC  compartment.
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X !  ( ( ) * ! [  l  +  ( f t  - f t ) ]

X o ( i ) ^ o [ l  — ( a i — a 3 )] X i M ^ l l  -  ( f t  - f t ) ]

X , ( t ) 7 i

FIG. 14: Illustrating the dynamics of the TA cell compartment.

Proof. If the TA compartment is homeostatic, then Xi{ t)  — n\  for all I > 0. After 

simple algebraic manipulations (54) can be written as

n! [1 -  eAt] =
n 0i/0[l -  (ai -  a3)]

uq(qi -  a 3) -  70 -  A  

where, as a direct consequence of Corollary 6.6,

, h ( « r  o 3 )  - 7 o ] t eAt] (55)

1 ~At
7̂  0 .

After dividing (55) by 1 — eAt and some simple algebra, n i can be w ritten as

n  i ^0^0(02 +  2 a3) 
i/0(cn -  0:3) -  7o -  A  

n 0 «70 [l  ~  ( a i  -  a 3)]

pH(ai-a3)-7o]< „ A t

1 — eAt

1 oA t (56)
*4>(«i -  a3) -  70 -  A

Since the TA compartment is homeostatic, the right-hand side of (56) must be 

independent of t. Observe th a t - 70-4 a constant and, therefore, in order

for the right-hand side of (56) to  be a  constant the expression

I  — g f l ' o O l  - < * 3 ) - 7 o ] t

oAt
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must be a constant. By Lemma C .l in the Appendix C this happens if and only if 

— 03) — 7o =  0. However, by (6.2) this guarantees tha t the SC compartment 

must be homeostatic.

One last point needs clarification, namely th a t the conditions of Lemma C .l in 

the Appendix are verified. To see tha t they are with a =  i/q(qi — 0 :3 )  — 7 0  and b =  A  

note that,

•  by Corollary 6.6, 1 — eAt ^  0 and so, b 0,

•  by Lemma 6.5, A ^  — <*3) ~  7o and so a /  ft,

confirming tha t Lemma C .l does, indeed, apply.

This completes the proof of Theorem 6.8. □

Now the necessary and sufficient condition for the homeostasis of the TA com

partm ent.

T h e o re m  6.9. The TA compartment  is homeostatic i f  and only i f  the S C  compart

ment  is homeostatic and, in addition,

«i7i -  n o K  -  7o)
nil/ 1

(57)

com partment is also homeostatic. Recall tha t by (49), a \  — 03 =  jJjjL Thus, (56) can

Proof  First, if the TA compartment is homeostatic, then by Theorem 6.8, the SC 

com partment is i 

be re-written as

ni
n Qi / 0 [ l  -  ( q i  -  q 3 )]  

^o(a i ~ <*3) — 7o — A

n [l -  *

1
1 - e At

- A  
- n 0(i/o -  7o)

(58)
v i i f i i  ~  0 s )  ~  T \

Now, simple algebra confirms th a t (58) yields (57).

Conversely, assumption tha t the stem cell departm ent is homeostatic and tha t 

(57) holds. This requires now to show tha t the TA com partment is also homeostatic. 

Since the stem cell departm ent is homeostatic, (49) guarantees tha t

•  noi/0(n2 +  2 o 3 ) =  n0(i/0 -  7 0 );
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.  A = *q(ft -  f t )  -  71 -  ^ 0 2 ;

•  v0(a i - a 3) - 7o - A  = - A  = x t e p * ;

0  g [ ^ o ( a i - a 3 ) - 7 o ]t _  e A t  _  j  _  g a t

Upon replacing the values of these expressions back into (54), this following can 

be obtained

X \ ( t )  = n \ e At +  rt\ [l -  eAt] =  rq,

confirming tha t the TA com partment is homeostatic.

This completes the proof of the theorem. □

It is worth observing tha t

•  the probabilities f t  and f t  only occur in (57) through the expression f t  -  f t .  

This seems to imply that, provided the SC compartment is homeostatic, as 
long as the probabilities of symmetric divisions are shifted up or down by equal 

amounts, homeostasis of the TA com partment is preserved;

•  (57) relies on knowledge of the rate nQ(v0 -  70) at which TA cells are being 

produced in the SC compartment;

• contrary to what have been seen in the SC compartment, (57) depends on the 

size, rii, of the TA compartment. How can the feedback mechanism keep track 

of, or approximate, ti{?

•  further, (57) seems to suggest tha t homeostasis of the TA com partment may 

occur in two mutually exclusive ways, depending on the sign of the expression

f t  ~  f t :

C ase  1: f t  — f t  > 0, in which case the probability tha t a dividing TA cell

produces two daughter TA cells is larger than or equals the probability of 

producing two differentiated cells;

C ase  2: f t  -  f t  < 0, in which case the probability tha t a dividing TA cell

produces two daughter TA cells is strictly smaller than the probability 

tha t it produces two differentiated cells.
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Now it can be argued tha t Case 1 above, while mathematically plausible, makes no 

biological sense. Indeed, assume th a t the TA cell compartment is homeostatic and 

0i — 03 >  0. By (57) this implies tha t

» i7 i > no(^o -  7o) > 0.

In words, the number of TA cells lost to apoptosis per time unit equals or exceeds 

the influx of TA cells produced by the stem cell compartment per time unit. This 

does not make biological sense and so, in the remainder of the this model, Case 1 is 

dismissed.

For later reference,

L em m a 6.10. Under homeostatic conditions in the TA compartment

+  2/?3) =  n 0(v0 -  70) +  ni(i/i -  71). (59)

Proof. Under homeostasis, X i ( t )  = n\ independent of t. Thus 

Xi(t)i/ \(02 +  203) =  n\U\{02 A 20f)

= fll^l  (1 — 0 1 +  0z)

— («o^o +  « i^ i) -  (^o7o +  « i7 i) [by Theorem 6.9]

=  ^ 0(^0 ~~ 7o) +  ^ 1(^1 — 7i)>

completing the proof. □

To summarize, Figure 16 captures the dynamics of the TA cell com partment 

under homeostatic conditions. Indeed, with n\  standing for the steady state number 

of TA cells:

•  new TA cells are being produced by divisions in the TA com partment a t the 

rate of +  71);

•  new TA cells are being produced by divisions in the SC com partment a t the 

rate of n0(i/0 f  70)

•  TA cells are being lost to apoptosis at the rate of n\V\\

•  differentiated cells are being produced a t the rate of n0(v0 — 70) -I- n\ (v i  — 71).
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n \ { v \  +  7 i )

n 0(vo -  7 0 )  +  n i ( i / i  -  7 1 )

FIG. 15: Illustrating the dynamics of the TA cell com partment under homeostasis.

6.3 THE DIFFERENTIATED CELL COMPARTMENT

Let X i ( t )  denote the size a t time t > 0 of the differentiated (i.e. post-mitotic) 

cell compartment. Let assume that, ^ ( 0 )  =  n2 >  0.

For h > 0, let 72(h) denote the fraction of the differentiated cell com partment 

tha t dies and is shed in ( t , t  + h). Again assume tha t the limit lim ^ o  ~  72  exists 

and is finite. Clearly, 72 represents the rate a t which differentiated cells die. 

Referring to Figure 17, consider what might happen in the time interval (f, t + h]:

•  X i ( t ) i /1 [/?2 +  2/?3] new differentiated cells are added from the TA cells com part

ment;

•  X 2 {t)^2 {h) differentiated cells die and are shed.

Visibly, X 2(t +  h) has the following components

X 2(t + h) = X 2(t) -  X2( t)12(h) +  +  2ft]

which can be written as

X2(t + h)X*(t) 72 (h) .
 --------- = ------ h ~ X 2 ^> +  ^ Xi\t)[fi2 +  2/t3J.
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FIG. 16: Illustrating the dynamics of the differentiated cell compartment.

Upon taking limits as h  -» 0 and using Lemma 6.10 the following differential 

equation can obtained,

dX 2(Q
dt +  72^2(i) =  (not'o +  n iiq) -  (n07o +  n X7i)

with boundary condition X 2(0) =  n2.

Using standard techniques the solution of this differential equation turns out to

be

X 2(t) =  e - 7 2 1 n 2
(nQuo +  m i/i) -  (n07o +  n ^ i )

72
+ (n0^o + n xv { ) -  (n07o +  n ^ i )

72
(60)

6.3.1 HOMEOSTASIS OF THE DIFFERENTIAL CELL COMPART
MENT

The crucial fact tha t there cannot exist homeostasis of the differentiated cell 

com partment unless both the stem cell and TA compartments are homeostatic.

If homeostasis to occur in the differentiated cell compartment, it must be tha t 

X2(£) =  n2 independent of t. In particular, this observation along with (60) allow to 

write

n2 =  e - 7 2 1 n2 -
(no^o + n i i / i ) -  (no70 +  r a ^ )

72
+

(n0uQ +  UjUi) -  (wq7q +  n i7 t) 
72

which, after suitable manipulations, yields
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n2 h _  g-fttl =  ( ^ o  +  nlul ) - ( n 0'y0 +  n lj 1) , _  e_72(,
72 L J  •

Since 72 0, the above becomes

(n0i/0 +  nii/i) -  (no7o +  ^ i7 i) n2 = -----------------------------------------
72

or, equivalently,

n0^o +  n xux =  n07o +  ^ i7 i T ™272- (61)

Observe tha t equation (61) tells tha t the differentiate cell com partment is home

ostatic only if the expected number of stems cells and TA cells produced by division 

per unit time matches the expected number of cells tha t die (in all compartments) 

per unit time.

6.4 SIMULATIONS

In this section simulation analysis will actually dem onstrate the model’s effective 
predictions.

6.4.1 EXPERIMENTAL SETUP

In order to confirm empirically the theoretical findings above and especially the 

predictions of the model and condition (61), the following simulation plan was im

plemented:

1. Firstly, the number n  of time slots was taken as independent param eter and 

also the initial distribution, no, of the number of stem cells, n\ ,  to tal number 

of TA cells and n2, total of number of fully differentiated.

2. Each of the stem cells produces either 2,1 or 0 stem cells with « i , a 2 and a 3 

probabilities respectively. Whereas each of the TA cells produces either 2 ,1, or 

0 TA cells with (3i ,(33, and [33 probabilities respectively.

3. The apoptosis rates were taken as 70,71 and 72 for stem, TA and fully differ

entiated cell compartments.

4. After each cell cycle stem cell com partment numbers were adjusted based on 

the number of new stem cells were produced and subtracted the shredded stem 

cells from apopotosis.
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5. After each cell cycle TA cell compartment numbers were adjusted by adding 

new cells coming from stem cell compartment, newly produced TA cells and 

subtracting the dead TA cells.

6 . For full differentiated cells, the numbers are adjusted by adding the cells arriv

ing from TA cell compartment and subtracting the dead cells.

7. The total of number of cells in each compartment is adjusted after every cell 

cycle and for the entire duration of the experiment.

All the steps above are then run 10,000 times and averages were taken to produce 

the final outcome.

6.4.2 RESULTS

In the first group of results, stem cells, TA cells and fully differentiated cell 

compartments are observed after a certain period of time where they go through 
a finite number of cell cycles. For these group of results firstly apoptosis rates for 

different compartments were 70 =  0.002,71 — 0.003 and 72 =  0.019532. Before each 

of the cell cycle, probabilities for stem cell com partment and TA cell compartment 

were chosen as such so tha t Lemma 6.3, and Lemma 6.7 were not violated. They 

were generated by a suitable random number generator. In Figure 18 initially there 

were «2 =  500 fully differentiated cells along with no =  180 stem cells and n x =  170 

TA cells. Then the experiment started  for 1000 time units where each time units 

represent one cell cycle. All the steps from Section 6.4.1 were performed correctly.

As expected from theoretical results stem cell, TA cell and fully differentiated 

compartments have all reached homeostasis within the 1000 unit time period. Sim

ilarly in Figure(19) initially there were n0 =  100 stem cells, n x =  120 TA cells and 

ri2 =  140 fully differentiated cells, before the experiment was started  and 500 time 

units were allotted. Again homeostatic conditions were observed for all three com

partm ents before the the allotted 500 time units. Finally, in Figure 20 initially there 

were no =  50 stem cells, n x = 150 TA cells and n2 =  200 fully differentiated cells 

and again 500 time units were allotted. As expected homeostatic conditions were 

observed just expected by theoretical results.

In Figure 21 and 22 homeostasis condition is being observed for a  special case. In 

both the experiments the fully differentiated cells are started  initially substantially
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FIC. 17: Homeostatic condition observed a t different com partm ents
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FIG. 18: Homeostatic condition observed at different com partm ents
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FIG. 20: Homeostatic Condition with lower fully differentiated cells a t the s ta rt

lower than cell numbers in stem cell and TA cell com partment. This is actually 

the cases when external stressful situation is implied on tissue and tissue has to 

regenerate m ature cells in quick succession to function properly. In Figure 21 and 

22 th is same phenomena is being observed. A steep rise of fully differentiated cell 

number is observed before homeostatic condition is reached and then production is 

ceased for fully differentiated cells. In ordinary circumstances fully m atured cells are 

always larger in number than other type of cells. The main point to notice here tha t 

whenfully differentiated cell com partm ent number reduces significantly, a period of 

explosive growth is observed but eventually homeostasis will be preserved as we see 

at the tissues of living organisms.
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FIG. 21: Homeostatic Condition with lower fully differentiated cells a t the s ta rt
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CHAPTER 7 

MUTANT STEM CELL

As discussed in earlier chapters when a stem cell divides, it can either produce dif

ferentiated cells or self-renew to produce more stem cells. Because stem cells are 

thought to be the cells of origin for many types of cancer and other terminal dis

eases, understanding what controls this decision has become a central question in 

stem-cell and cancer research. But how is this decision altered when a stem cell ac

quires a cancer-driving m utation is being widely investigated [22], Previous studies 

have shown tha t mutation increases the proliferation of stem cells tha t might tend to 

reduce the cells potential for differentiation. Enhanced proliferation and self-renewal 

has been prevalent more in m utated stem cells [29] . In this chapter a stochastic 

model is proposed to estimate the selective advantage of mutations by fitting the 
simulation curves to the real data.

Wild type cells will divide asymmetrically providing the population remains at 

a certain number say n  whereas m utant cell divide symmetrically. Under initial 

condition model assume tha t cells divide symmetrically producing a type 2 division 

or production two stem cells any time the population is less than n. This can be 

made complex by assigning a probability of Type 0 and Type 2 symmetric divisions 

but homogeneity can be assumed so tha t P(type 0) =  P(type 2). While total number 

of m utatnt stem cells remains under n  , Type 2 division is favored or else Type 0 is 

favored. For this model such complexities are ignored. M utant cells are identical to 

wild type cells except tha t they have an increased chance of a Type 2 division. In 

this model by assigning a probability of s per division tha t they divide symmetrically 

(Type 2). If this brings the population above n  then a random cell in tha t niche is 

ejected and lost. If the model incorporated a feedback system this would not have 

been required.

7.1 MODELING MUTANT STEM CELLS PROGRESSION 
WITHOUT SELECTIVE ADVANTAGE

Let us consider an urn containing initially n white balls which are basically wild 

type stem cells. Then the cell cycles can be thought of an extraction of balls from the 

urn. A number of extractions are performed based on the following rules as follows:



FIG. 22: Markov chain for m utant cell progression without selection

•  If the ball extracted is white then a biased coin is flipped which gives heads 

with probability p  and q is the probability of having tail. If head shows up a 

red ball is returned into the urn meaning a m utant cell is added to population 

after a cell cycle, otherwise the original ball is returned.

•  If a red ball is extracted, it is promptly returned to the urn.

7.1.1 PROBLEM

Of interest is the expected number of such extractions tha t are performed until 

for the first time the urn contains all red balls only, meaning the population becomes 

filled with m utant stem cells only.

7.1.2 DERIVATION

This can be viewed as an Markov chain with states 0,1, 2 , ............, n. When the

state  is in sta te  i, there is i red balls in the urn.

Assume tha t without loss of any population, the Markov chain is in state i, (0 < 

i < n, where n  is the total population. The probability tha t it stays in state i after 

the next extraction is the summation of the following probabilities:

•  the probability tha t a red ball is extracted;

•  the probability tha t a white ball is extraction times (1-p) or q.

So, the probability is ,

* n ~  i /, \ . W-  + ------(1 - p )  =  l - p +  —  =  q +  —
n  n  n n

On the other hand, the probability tha t at the end of the next extraction the Markov

chain makes the transition to * +  1 is
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•  the probability tha t a white ball is extracted times p. T hat is,

n — i ip
p .  = p ------

n n

Now, it is easy to see tha t state n  is the absorbing state as transition probability 

P ~  ^  =  0-r n
Now, E(i)  is the expected number of extractions tha t are necessary to reach the

state  i of the Markov chain. Recall tha t the markov chain starts out in state 0 and

so £ (0 ) =  0.

Assume the Markov chain is in state i — 1. By assumption, the expected number 

of transactions necessary to reach the state i — 1 is E ( i  — 1). The expected number 

of transaction to reach state i can be expressed as follows:

+  [ £ ( ! - 1) + 3 | ( , - ( i z i > ) 2 ( p - i i ^ ) ..........

Let, a  = p  — so, 1 — a  =  q + then,

E ( i ) =  [E(i  — 1) +  l ] a  +  [E(i  — 1) +  2 ]a ( l — a)  + [E(i — 1) +  3 ]a ( l  — a ) 2 +

=  E( i  — l) [a  +  a ( l  — a)  +  a ( l  — a ) 2 + ......... ]

+  a [ l  +  2(1 — a )  -f 3(1 — a ) 2 + ........... ]

=  E( i  -  l ) a [ l  +  (1 — a) +  (1 — a ) 2 + ..........]

+  a [ l  +  2(1 — a )  +  3(1 -  a ) 2 + ........... ]

=  E ( i  -  l ) . a .— +  Q!.—x [using (931) 
a  or

=  £ ( t - l )  +  -  
a

= E ( i -  1) +  - -----
p(n  — i 4- 1)

So, V* =  1 ,2 , n,

~ «  + p l̂ T T )  ‘62)
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Now,

E ( l )  

E (  2) 

E (  3)

E(  0) +  - . -
p n

E (l)  + 

E(2) +

n  1
p n - 1
n  1
p n -  2

E(n)
n

E ( n  -  1) +  -  
P

E(n)
1

H—  
n

Now, 

Finally,

I  +  I  +  . . .  +  I
1 ^  2  T  ^  n ln n  +  f1) + ^  where, 8 is Euler’s constant. (S =  0.577..)

E { n ) n  In n  +  S n (63)

More, generally, for any given i,

E( i )
1 1
— I-------- - +
n n - 1

- H + -

........

• +

+

i

n  — i + 1 
1
n

+
n — i

in n  +  i- + i . _ i n ( n - l ) - 4 - _ L _

In
n

nl n

n  — i 2 n(n — i )
n  i

n  — i 2 (n — *)
(64)

7.2 MODELING MUTANT STEM CELLS PROGRESSION WITH  
SELECTION

Let us consider an urn tha t contains, for some i(0 < i < n), i red balls and n  — i 

white balls. It can be thought here tha t red balls are m utant cells and white balls 

are wild types. Now after an certain time period when cells undergo divisions, these
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model assumes an individual ball is being extracted. The model employs these two 

following extraction methods from the urn.

• Suppose a white ball is extracted: A biased coin is flipped tha t turns up 

heads with the probability p.

-  If the coin turns up heads, a red ball is returned into the urn. Meaning a 

m utant cell is added to the population.

-  If the coin turns up tails, the white ball is returned into the urn. Meaning a 

wild type cell is returned in the urn an no significant changes in population 

of wildtype and m utant stem cell.

• Suppose a red ball is extracted: A biased coid in flipped which turns up 

heads with probability r.

-  If head is obtained, an arbitrary ball is extracted from the urn and is 

replaced by two red balls. Meaning either wild type or m utant cell is 
replaced in the population with two m utant cell types.

-  If tails is obtained the red ball is returned meaning no changes in popula

tion comprising of wild type and m utant stem cell types.

7.2.1 PROBLEM

Suppose initially the population of n  balls in the urn contains white balls only 

rather only wild type cells no m utant cell types. Of interest is the expected number 

of extractions as above stated rules, for the first time, the urn contains only red balls. 

In other words we are interested in the expected number cell cycles before we see a 

population of wild type cells converting into mutant cell types.

7.2.2 DERIVATION

Here the problem can be look as a Markov chain with states 0 ,1 ,2 , ............, n. In

state i, (0 <  i < n), the urn contains i red balls. When the Markov chain is in state 

i, the claim is the probability of the Markov chain in state i after the next extraction

i s l - 2f b  + * ]
To see this, consider separately the case where the next ball to be extracted is 

red or white.
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•  Upon extracting a white ball, the Markov chain stays in state i with probability

•  Upon extracting a red ball, the Markov chain remain in state i if either,

-  tails show up with probability (1 — r)^

-  heads show up but a red ball is extracted from the urn with probability

To summarize total probability of staying at i state for the Markov chain is,

Similarly, claim is the Markov chain is in state i +  1, after the next extraction is

As before we consider separately the case of where extracted ball was red or white.

•  Upon extracting a white ball, the Markov chain goes to state i +  1 with prob

ability ^ . p

•  Upon extracting a red ball, the Markov chain goes to state i -f 1 with probablity

Let E(i)  be the expected member of extractions that, starts with an all white 

ball urn, end with an urn with i red balls and n  -  i white balls. It is easy to see that

Next goal is to evaluate E{i)  recursively in respect to function of E(i  — 1). To 

help visual the problem Figure 24 depicts the Markov chain,

It is easy to see that,

•  Vi, (0 < i < n), the sum of probabilities leaving state i add up to 1.

•  for i = n, sta te  is absorbing

=  1
n — i

n
ir

To summarize, the total probability is

E(0) =  0.
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FIG. 23: Markov chain with state transition probabilities

For, Vi it can be shown using (62) that,

E(i)  = E ( i - 1 )  + 

= E ( i - 1 )  +

1

n - i - f  1 n

n (n  -  1) i
p (n — i +  l)[n  -  1 +  (i — 1)0] 

Now, we simply sum up all the expected values to write,

where, 0 =  - 
’ p

£ („ ) =  £ 1
p ^  (n  — i +  l)[n  -  1 +  (i -  1)0] 

This also proves for r  =  0, i.e 6 — 0,

E(n)
n (n  — 1)

V E
l

(n — i + l ) (n — 1)

1 1 
I  +  2 + +

n

(65)

(66)

(67)

7.3 SIMULATION

Simulation was carried out for several values of n  to match the prediction of 

theoretical results. In the simulation setup, the chances for heads to  show up was
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FIG. 24: M utant cell progression from wildtype

taken as p  =  0.1. In every cell cycle the steps were performed as described in the 

model. Different values of n  was used to test the efficacy of the m odel’s prediction. 

Figure 25 shows the simulation results. As it can be seen, the results show th a t the 

simulation results closely match with theoretical predictions. 1

*A special thanks has to go to Mr. Alex Nwala for his assistance with this simulation.
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CHAPTER 8 

CONCLUSION

In this chapter, the summary of the work and future research directions are discussed. 

The dissertation started with a look at stem cell growth. Then stem cell homeostasis 

and tissue cell lineage was explored before m utant stem cell progression was briefly 

studied to complete this work.

8.1 SUMMARY

Through a combination of the processes of self-renewal, differentiation, and pro

liferation, all the cell types needed in the tissue system are produced as daughter 

cells of the stem cells, while the stem cells themselves are maintained in constant 

numbers. For regenerative m edicine and tissue healing, the number of stem  cells in 

a tissue plays a vital role. The choice of an accurate growth model is an integral 

part of the analysis of the growth and will eventually aid researchers in attaining 

a better understanding of the progression and regression of the population size and 

the associated rates of change. In this work, a simple stochastic growth model pro

poses to fulfill the need for an growth model. This simple growth model with closed 

m athematical form is deceptively simple enough to compute and fairly accurate.

The regulation and equilibrium of stem cell numbers is normally observed in 

living organisms. Results show tha t an increase in cell renewal, which is equivalent 

to a failure of programmed cell death or of differentiation, can lead to the growth 

of cancers. So, understanding the ingrained homeostasis a t cellular level is of great 

interest to researchers. In Chapter 5 a stem cell homeostasis is modeled using discrete 

time Markov chain which clearly shows mathematically tha t in long run stem cells 

maintain equilibrium.

Studies of developing and self-renewing tissues have shown tha t differentiated 

cell types are typically specified through the actions of multistage cell lineages. Such 

lineages commonly include a stem cell and multiple progenitor (TA) cell stages, 

which ultimately give rise to terminally differentiated (TD) cells. Understanding 

the cell lineage process through mathematical modeling is of param ount importance. 

Homeostasis a t tissue lineage model in Chapter 6 addresses these issues.



91

Perhaps the most important and useful property of stem cells is that of self
renewal. Through this property, striking parallels can be found between stem cells 

and cancer cells: tumors may often originate from the transformation of normal 

stem cells, similar signaling pathways may regulate self-renewal in stem cells and 

cancer cells, and cancer cells may include cancer stem cells, rare cells with indefinite 

potential for self-renewal that drive tumorigenesis. Mutant stem cells are responsible 

mainly for tumorigenesis. Hence, understanding the genealogy of mutant stem cell 
is of vital importance. Mutant stem progression model in Chapter 7 tries to depict 
these important phenomena.

8.2 CONTRIBUTIONS

Firstly, the three parameter pure-birth growth model is sufficiently accurate to 

predict the dynamic behavior of stem cells. This model can be used to understand 
the growth dynamics of cell populations such as cell proliferation and quiescence 
rates both in vivo and lab experiment.

Secondly, a simple stochastic model for capturing the homeostasis of the stem 

cell compartment was proposed. By assuming that each dividing stem cell has an 
equal chance of producing two, one or no stem cells the stochastic model shows 
that homeostasis seems to be a default scenario of stem cell dynamics and that 
to get the stem cells out of this equilibrium either by spontaneous mutations that 
favor one specific division outcome or, otherwise, external feedback is required. One 
possible form of such feedback would alter the outcome of stem cell divisions favoring, 
perhaps on a transient basis, the number of stem cells produced. This feedback is 
of paramount importance in regenerative medicine where the stem cells need to be 
steered towards a controlled growth that will regenerate lost tissue cells.

Finally, simple mathematical equations have been derived for the three compart
ments of tissue. These equations along with strict conditions portrays a better un
derstanding of homeostasis which has not been revealed in earlier research attempts 
[27, 26].

8.3 FUTURE WORK

From this dissertation, several clear directions for future work can be envisaged. 
These directions can be classified as further analysis of stem cell homeostasis, self
renewal and differentiation and also understanding reasoning behind cancerous stem



92

cell hypothesis.

Also justification of the models can be made more concrete by more rigorous 

simulation techniques and also by comparing with clinical data  from vivo and vitro.

For stem cell growth model it would be ideal to get clinical data from real world. 

Especially, stem cell growth data for comparison with the predictive nature of model 

and better estimates of the three parameters. At this stage much cannot be said 

about the parameters from a biological stand point. May be with delving more with 

real world data and comparing with the model one can understand the parameters 

upper and lower bounds. Analyzing laboratory data in future will let growth model’s 
individual parameter to precisely map the progression. The main strength of the 

growth data is to predict the time required to produce certain cell mass. In muscle 
regeneration this growth model holds a promising future. In recent times using stem 

cell’s explosive growth ingredient, artificial beef production has been accomplished. 
This could be an interesting future research topic to predict the initial number of 
stem cell required to produce certain amount of tissue mass. A more robust growth 
model based on the simple model from Chapter 4 may be the answer for that.

Stem cell homeostasis and tissue lineage models are very im portant in better un

derstanding the balance a t tissue level for a living organism. In future work under

standing the feedback mechanisms tha t was ignored in this work for this two models 

would be a novel addition. In biological organism complex feedback mechanisms 

work to control growth, death and differentiation. Although it was ignored here in 

these two models but these two model give a foundation to build more comprehensive 

models in future.

M utant cell model tha t was proposed here needs further investigation in terms of 

more simulation and comparison with real world m utant cell progression data. Also 

it would be useful would add more param eter tha t triggers a wild type stem cell to 

convert into a  m utant cell.
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APPENDIX A

THEOREMS AND LEMMA RELATING TO STEM CELL 

GROWTH

A .0.1 DERIVING  A CLOSED FORM FOR PN(T)

In Section 4.3 closed form for Pk(t) for k < N  was obtained. What can be said 

about Pat(0?
Recalling that =  0, (22)

where the constant D will be determined in such a way that the boundary condition 
Pjv(0) = 0 is satisfied.

To determine D, Pv(t) can be written as follows

(68)

which implies that

II i<j<jv i (Aj — A*) 

e~~Xitdt

(69)

Since Pjv(0) =  0, (69) implies that

=  1. [by Theorem A.2 in the Appendix]
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Replacing the value of D in (69)

PN(t) =  1 — IT i<j<N -  1 
3&

(70)
A j A i

Lemma A .I. If a\, a2, • • ■ , an, (n > 2), are distinct real numbers then the following 

identity holds

(71)

7 = 1

Proof. Proceeding by induction on n. To settle the basis, observe that

1 + — i  0.
°2 ~~ a l °1 a2

as expected.
For the inductive step, let n, (n > 2), be arbitrary and assume that for the chosen 

value of n, (71) holds. With this assumption, goal becomes to show that

n + l

V -/  > n
1

+i o. (72)
i = 1

j = l

After multiplying (71) throughout by an+l_ai and after suitably transposing 
terms,

1 A  1
n + l

f i ( “ j ~ a ')

E
i=2

(® n + l  ® l )  |  | ( ® j  ®i)
i= 2
J'/i
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W ith this observation, the left-hand side of (72) becomes

n + l  .j n 1 n .

E«i = E  : ' E-,-in<+ -  Oj)  (® n + l  ® l )  11iflj ^ i )  | ( f l j  — Oj) |  J[(® j ® n + l )

+

1 = 1l+i
l=i!+■ 1=1 j=i

E
i= 2

n + l

[ J ( a j  -  O j)  ( « n + l  ^  a i )  I f e  ~  a *)
1=11+1

1=1J+*

+

r i ( a j  a n + l )  
1 = 1

(f ln+1  ~  Q l )  ~  ( ^ n + l  ~~ O j)  1
n + l

i= 2
( a n + l  -  « l )  f j ( a 2 “  G i ) I I K  ~  a " + 1 ^

1=1!+■ 1=1

- - E fl + 1
i—2 (a„+i -  ai) jQ (a j -  a*) J J ( a j - a n+i)

i=ii=i
j+*

E
1=2

n + l +

(a„+i -  aj) f J ( a j  -  a*) -  an+1)
j =  1> = 2

E
i=2

1
n + l

(® n + l  ° i )  i i k  ~  Oj) ( ® n + l  » . )  n < ° i  ® n + l )
1 = 21+*

1=2
1+i

On+1 ®1
V  1 1/  > n + l  "

t=2 _  a*) ~  a"+ i)
1=2
l+>

1=2l+i
1 n + l

®n+1 ®1 i= 2
n ( O j  -  Oj)
1=2
1+1

0, [as (74) is applied to the n-element sequence 02, 03, i O n + l ]

(73)
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□

A companion result to Lemma A. 1 goes as follows.

L em m a A .2. I f  ai, a?, ■ ■ ■ ,a n, (n > 2), are distinct real numbers then the following 

identity holds
n n

<»>
1=1  3  =  1 3  1

Proof  Proceeding by induction on n. To settle the basis, observe tha t

«1 02 =  j

<3-2 — a l ®1 ~~ ®2

as desired.

For the inductive step, let n, (n > 2), be arbitrary and assume tha t for the chosen 

value of n, (74) holds. W ith this assumption, goal becomes to show tha t

n + l  n + l

<re>i=1 ai a«

By writing,

n + l n + l

£ n a,- — ai
i = l  3 = i  3  1 fc=l i = l3*i

n + l  n + l

iW e

n + l

n + l

®t J[ J[ (® j  Oj)
1=13*i

n + l

n + l  

+  £ n + l

ai -  ai) * 2 Oj J J (a ^  -  Oi)
1=23*i 1 = 1 

3 *  •

Recall tha t by Lemma A .l

n + l

3 = 1
1 / 1

(76)

(77)

After multiplying (77) throughout by — and after suitably transposing terms,
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n + l

n + 1

E
i = 2

“i i i k _ 2 ai ~ a<)
>=2 J = 1
J#*

By virtue of (78), (76) can be written as follows:

n + l  n + l n + lE n —  =AA a, -  Oj AX
i = l  i=> J  1 fe=1!/•

n + l

- E

n + l

+ E n + l
t = 2 a i l lK  -a.) " 2 - fli)

J#* > = 1

n + l  n + l

I h  E
fc=l t=2

n + l  n + ln°* e
fc=l i=2

i - ± ) _____1
^  a! /  n+1

n ( a j  -  <h)
1=1i/>

a i — a*
n + l

1=2
!*•

n + l  n + l

= IK E
*=1 i = 2

n + l

i i k
j=2

n + l  n + l

= I K E
k = 2  i=2

n + l

a i  1 1  (O j  Ot )
1=2
1#>

(78)

n + l  n + l

= E l l , , ' , ,
i — 2  7=2 “ j  “ * 

l#i
=  1. [as (74) is applied to the n-element sequence 02, 03, i ^n+l]

(79)

This completes the proof of Lemma A.2. □ 

Finally, take note of the following result.
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L em m a A .3. I f  ax, a2, • • • , an, (n >  2), are distinct real numbers then the following  

identity holds

a i1 +  —  +
=2 J

Oj 

-  Oi
(80)

0 2 - a i  (a2 -  Oi)(o3 -  aO (a2 -  ax)(a3 -  a t ) • • • (an -  ax)

Proof. Proceeding by induction on n. To settle the basis, observe tha t

1 4. a i _  a2 
02 — 0} a2 — Oj

as expected.

For the inductive step, let n, (n  >  2), be arbitrary and assume tha t for the chosen 

value of n, (80) holds. W ith this assumption, goal becomes to prove tha t

n + lOi Oia2 (L1 Q>2 * * ’ &TIi + —zi— + --------- ....................+ . . . + ---------------- — 12---------------------- =  r r  qj
0 2 - a i  (o2 - a i ) ( a 3 - a i )  (a2 -  a i)(a3 -  a x) • • • (an+1 -  ai) A I a . _  aj

(81)

Writing, 

1 +

=  1 +

+

ai Oj a2 0i02 ’ • ■ On
(o2 -  Oj)(a3 -  a j) • • • (an+1 -  aj)

Oi02 • ■ • an._i
0 2 -a x  (a2 -  ax)(a3 -  ax)

Q i _______ QiQ2______
02  — ox (a2 — ax)(a3 -  ax) (a2 -  ax)(a3 — aj) • • ■ (an — ax) 

oio2 ■• • an
(a2 -  a j)(a 3 -  ax) ■ ■ ■ (an+x -  a x)

n
TT O j ___________ 0x02 ‘ ‘ • On__________
A-l aj -  ox (a2 -  ax)(a3 -  a x) • • • (an+1 -  Ox)

[by the induction hypothesis]

2 = 2  
nn

j —2 ai 0,1
1 +

Ox

1

j=2
n-f 1

dj d\ Q/\

n - ^ 2-
2= 2

as desired. This completes the proof of Lemma A.3. □

A.0.2 THE SANITY CHECK

The major goal of this section is to prove th a t for all t > 0, the probabilities I \ ( t )  

add up to 1.
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T h e o re m  A .4 . For all t , (t > 0),

N

T .  =  '■
fc=l

Proof. Recall tha t by Theorem 4.2, for 1 < k  < N  and for t > 0,

Pk(t) — AiA2 • • • Ak-\  ^ 2
o

i —1
n < Ai -  a '>
j = i

Similarly, by Equation 70 for t > 0,

N - 1

pN (t) =  i -  £
i~\

n
j = i\  j/<

A,
A  j  A  j

A,i

(82)

Thus, proving Theorem A.4 is tantam ount to proving the following result.

L em m a A .5. For all 1 < i < N  — 1, the coefficient o f  e Xit in E t L i Pk(t) is

N ~  1

TT —Ai -
y ^ A ,

Proof  To begin, assume tha t 2 < i < N  — 1. It is easy to see th a t the coefficient of 

e Xit in E f J i 1 W )  is

A1A2 • • • Aj_i
+

A1A2 •• • Aj
( A i  —  A j ) ( A 2 —  A j )  •  •  •  ( A j _ i  —  A j )  ( A i  —  A j ) ( A 2 —  A j )  •  •  •  ( A j _ i  —  A j ) ( A j + i  —  A j )

A1A2 • • • A^_2
( A i  —  A j ) ( A 2 —  A j )  •  •  •  ( A j _ i  —  A j ) ( A j + j  —  A j )  •  •  •  ( \ n ~ i  —  A j )

A1A2 • - ■ Aj_j
( A j  -  A j ) ( A 2 -  A j )  •  ■ ■ ( A j _ x  -  A j )

(83)

1 + +
A j  A  j .i ' u + l A»Aj+i • • • Ajv-2

A j + i  —  A j  ( A j + i  —  A j ) ( A j +2 —  A j )

On the other hand, observe tha t with the assignment

( A j + i  —  A j ) ( A j +2 —  A j )  •  •  •  ( A j v - i  —  A j )

(84)

a i  —  A j ,  02 —  A j + i ,t-f 1>
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Lemma A.3 guarantees tha t

j  ^  A» _̂_______ AjAi+i  AiAj+i • • • Aat-2
A j + i  —  A ,  ( A j + i  —  A j ) ( A j +2 —  A j )  ( A j + i  —  A j ) ( A j +2 —  A j )  ■ •  ■ ( A #

Ai+iAj+2 • ■ • Ajv-i
( A j + i  -  A j ) ( A i+2 -  A j )  •  •  •  ( A j v  i  ~  A j )

Finally, by (83) and (85), combined, the coefficient of e~x,t in Ylk=i ^ ( 0  is

A 1A 2 -  A j _1 A j + i A j +2 •  ■ •  A j v - i

( A i  —  A j ) ( A 2 —  A j )  •  •  •  ( A j _ j  —  A j )  ( A j + i  —  A j ) ( A i+2 —  A j )  •  •  •  ( A j v - i  —  A j )  

N~1 A
-

3*i

completing the proof of Lemma A.5. □

In turn, Lemma A.5 implies Theorem A.4.

Thus, for all t, (t > 0),

£  a < ()  = i
fc=i

and the proof is complete. □

- l  ~  Aj)

(85)
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APPENDIX B

THEOREMS AND LEMMAS RELATING TO STEM 

CELL HOMEOSTASIS

T h e o re m  B . l .  Let A and B  be events over a probability space Pr) with

Pr[B] ^  0. Let C q ,C \ ,C 2 , .......... be a partition o f  Q that is, Uk>oC k =  fi and

c i n c j = < b ,V i ^ j .

Let, now state and prove a useful result from  probability theory.

Pr[A|fi] =  Pr[A|C7fc n B\ Pv[Ck \B ]
fc>0

Proof.

Pv[A\B\ = P r [ ( A n u k>0C k)\B} = Pr[Uk>0( A n C k)\B}
Pr[ufc>o(/i n  Ck n  B)} E fc>oP r P n C k n  B)}

Pr[£] Pr[B]
E fc> p P rP l^ n fi)]P r [C k n /? ]

Pr[B]
E k>0 Pr[(A\Ck n B )] P v [C k \B}Pv[B}

Pr [B]

= ^ P r[M IC *nB )]P r[C fc|B],
fc>0

as claimed. □

L em m a B .2 . For all non-negative integers r,

r r  — 1
— +
2 2

Proof. By proving a more general statem ent, namely tha t for all integers m, (m /  0), 

and n

n
+

r......
i-H1£I

--
m m
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77

1

1 IT
i

77
( n ------)

777
— + — +
777 777 777

By taking m  =  2

But it is known tha t 

So, (89) implies 

Now, letting n =  r — 1,

n
m
n
m

+ 77 + 

+  n -

71

m
n
777.

77

77 77
— + —

2 2
77.

77 7 7 + 1

2 2

77 7 7 + 1-- +
_2_ 2

71

r  — 1 r
+ — =  r

2 2

as claimed. □

T h e o re m  B .3 . For all natural numbers r > 1 

2
1

+
2 \  + .......... r -  2

+
r  — 1 ^ r ( r  — 1 r

2 2 )  + 2 2 J  2 2

(86)

(87)

(88)

Proof. The proof is by induction on r. The basis is trivial, for r  =  1 both left hand 

side and right hand side equals to 0. Next, let r  >  1 be arbitrary and assume tha t 

the statem ent holds for r  — 1 or, in other words,

<

1
+

2 ) , ..........
r  — 3

+
r  — 2 \ (r — l)(r — 2) r  — 1

Ia j 1.2 J J L 2 J L 2 J J  2 L 2 J
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W ith this assumption,

1 2
2

+
_ 2 _

+ +
r -  1 A J l 2

=  2 +
2 J  V 2 2

+ +
r -  2

+ 2
r — 1

( r -  l ) ( r - 2 )  
2

(r — l) ( r  — 2)

( r -  l ) ( r - 2 )

+

r  — 1 
2

r  — 1

r  — 1

+  ( r -  1) +

[by Lemma B.4] 
(r — l) r

as claimed. □

L em m a B .4 . For all non-negative integers r,

r r  -  1— +
2 2

r  — 1.

Proof. By proving a more general statem ent, namely tha t for all integers m, (m /  0), 

and n

n
+

(m — l)n
m m

n.

n

f1£l

n " n  ’
n ------

m
— + = — +
m m m

By taking m =  2 

Recalling tha t

n
m
n
m

+ n  + 

+ n -

n
m

n
m

= n

n
2

n
2

+ = n.

n + l

(89)
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(89) implies

Now, upon letting n  = r — 1,

n n +  l
— + =  n
2 2

r  — 1 r
+ — =  r

2 2
r  — 1

(90)

(91)

as claimed. □

T h e o re m  B .5. For all natural numbers r > 1 

2
1 2 \ r  -  2 r — 1

— + — ) +  . . . + +
2 2 2 2

r ( r  — 1

Proof. The proof is by induction on r. The basis is trivial, for r  =  1 both left hand 

side and right hand side equals to 0. Next, let r  >  1 be arbitrary and assume tha t 

the statem ent holds for r — 1 or, in other words,

(r — l)(r — 2) r — 11 2 \ r — 3 r  -  2— + — + ••• + +
2 2 J 2 2

W ith this assumption

1 2 \ r  — 1 ^ J i 2 r  — 2
— + — +  ••■ + =  2 — + — +  ••• +2 2 / 2 y v 2 2 2

+ 2
r  — 1

(r -  l ) ( r  -  2)

(r -  l ) ( r  -  2)

(r — l)(r — 2)

+

r  — 1 
2

r  -  1

+ 2 r  — 1

[by Lemma B.4] 
(r — l ) r  r

2

+  (<r-1)+[0
as claimed. □
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APPENDIX C

THEOREMS AND PROOFS RELATING TO TISSUE 

CELL LINEAGE

For t >  0, define the function xf such tha t

1 -  eat
m  =  (92)

where a ^  b, 6 ^ 0 .

L em m a C .l. A necessary and sufficient condition fo r  xp(t) to be a constant, is that 

a = 0.

Proof. First, if a =  0 then (92) guarantees tha t xjj(t) =  0 for all t >  0.

Conversely, assume xp(t) to be a constant independent of t. Thus, in particular, 
■0(1) =  0(2) which amounts to

1 -  ea _  1 -  e2a 
1 — eb 1 — e2b

However,
1 — e2a _  1 — ea 1 +  e°
1 _  e 26 1 _  eb l eb

and so
1 — ea 1 — e“ 1 +  e“
1 — eb 1 — eb 1 +  eb

Since b ^  0 the above is equivalent to

1 +  e a
l - e a = ( l - e a)-  — — r .

K ' I +  eb

If a ^  0 then 1 — ea ^  0 and
1 +  e“
1 +  eb

which implies a = b, a contradiction.

Thus, a = 0, as claimed. This completes the proof of the lemma.

□



Lemma C .2 . If x and y are finite, then for all t e

P x t  _  „ y t
lim  ------—  =  teyt.
x-^y x  — y

Proof. It can be written that,

and so

p X t  _  p y t  p ( x - y ) t  _  1
 _____  =  ev tl_______ t

x - y  x - y

g i t  _  g y t  [  e ( x - y ) t  _  j

lim
x-*y x  — y x-*y y  x  — y

e ( x - v ) t  _  |

lim eyt
x - > y \

eyt lim -
x - y y

eyi lim -
z —►()

tey\

,zt — 1
  [where

as claimed. □
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APPENDIX D 

THEOREMS AND LEMMAS RELATING TO MUTANT 

STEM CELL PROGRESSION

L em m a D .l .  For some a ,  where, 0 < a  < 1

1 +  2(1 -  a )  +  3(1 -  a f  +  4(1 -  a f  +  ..........=  -1
a l

Proof. It is easy to see that,

1 +  (1 ■— Q;) +  (1 — ct)2 +  (1 — a )3 + ............ =  — (93)
a

Now,

1 +  2(1 -  a)  +3(1  - a f  +  4 ( 1 -  a ) 3 + ...... ••• =  1 +  (1 -  a)  +  (1 -  a)

+  ( l - a ) 2 +  ( l - a ) 2) +  ( l - a ) 2 

+  (1 -  o;)3 +  (1 -  a ) 3 +  (1 -  a ) 3 +  (1 -  (*)3 

4- (1 -  a f  +  (1 -  a ) 4 +  (1 -  a ) 4 +  (1 -  a ) 4

Now, by adding column wise R.H.S becomes,

1 +  (1 -  a ) -  +  (1 -  a ) -  +  (1 -  a f -  +  (1 -  a f -  +  (1 -  a f -  +
a  a  a  a  a

1 1 — a  (1 -  a ) 2
 1-----------h -------------b ...........
a  a  a
1 "
a
1

1 +  (1 -  a )  +  (1 -  a f  +

c r

□
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