
Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2015

Wireless Networking for Vehicle to Infrastructure
Communication and Automatic Incident
Detection
Sarwar Aziz Sha-Mohammad
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons, and the Digital Communications and Networking
Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in

Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

Recommended Citation
Sha-Mohammad, Sarwar A.. "Wireless Networking for Vehicle to Infrastructure Communication and Automatic Incident Detection"
(2015). Doctor of Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/7grv-2t93
https://digitalcommons.odu.edu/computerscience_etds/63

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/63?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


WIRELESS NETW ORKING FOR VEHICLE TO

INFRASTRUCTURE COMMUNICATION AND  

AUTOMATIC INCIDENT DETECTION

Sarwar Aziz Sha-Mohammad 
B.Sc.June 2001, University of Sulaimani, Iraq 

M.Sc. February 2005, University of Sulaimani, Iraq

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COM PUTER SCIENCE

OLD DOMINION UNIVERSITY 
December 2015

by

M. Abdel-Wahab (Director)

Dimitri* Popescu (Co-Director)

Kurt J. Maly (Member

Approved by:



ProQuest Number: 10128808

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10128808

ProQuestQue

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



ABSTRACT

WIRELESS NETWORKING FOR VEHICLE TO 
INFRASTRUCTURE COMMUNICATION AND AUTOMATIC

INCIDENT DETECTION

Sarwar Aziz Sha-Mohammad 
Old Dominion University. 2015 

Directors: Dr. Hussein M. Abdel-Wahab 
Dr. Dimitrie Popescu

Vehicular wireless communication has recently generated wide interest in the area 

of wireless network research. Automatic Incident Detection (AID), which is the re­

cent focus of research direction in Intelligent Transportation System (ITS), aims to 

increase road safety. These advances in technology enable traffic systems to use data 

collected from vehicles on the road to detect incidents. We develop an automatic 

incident detection method that has a significant active road safety application for 

alerting drivers about incidents and congestion. Our method for detecting traffic 

incidents in a highway scenario is based on the use of distance and time for chang­

ing lanes along with the vehicle speed change over time. Numerical results obtained 

from simulating our automatic incident detection technique suggest that our incident 

detection rate is higher than that of other techniques such as integrated technique, 

probabilistic technique and California Algorithm. We also propose a technique to 

maximize the number of vehicles aware of Road Side Units (RSUs) in order to en­

hance the accuracy of our AID technique. In our proposed Method. IEEE 802.11 

standard is used at RSUs with multiple antennas to assign each lane a specific chan­

nel. To validate our proposed approach, we present both analytical and simulation 

scenarios. The empirical values which are obtained from both analytical and simu­

lation results have been compared to show their consistency. Results indicate that 

the IEEE 802.11 standard with its beaconing mechanism can be successfully used for 

Vehicle to Infrastructure (V2I) communications.



Copyright, 2016. by Sarwar Aziz Sha-Mohammad. All Rights Reserved.



IV

ACKNOWLEDGEMENTS

This work could not be completed without Professor Popescus' advice and sup­

port . I am grateful for the time he gave to help me complete this work. His office has 

always been open for me. He also gave me a clear route to achieve my goals. Also. 

I would like to express my great thanks to Professor Hussein M. Abdel-Wahab who 

supported me since I started my PhD program. I will not forget the support that I 

got from both of them. Next. I would like to send great thanks to my PhD committee 

Professor Kurt J. Maly, and Professor Ravi Mukkamala. I also highly appreciate the 

role of Professor Michele C. Weigle for her recommendations that helped improve 

my PhD proposal and her feedback about my research ability report. I also want to 

thank PhD student Semuel Rompis and the Transportation Engineering department 

for letting me use the labs. This work would not be completed without support from 

many other individuals, especially Ms. Amanda Daniel for discussions on the DSRC 

evaluation. I am grateful to my loving parents and siblings for their patience during 

my study and work.



TABLE OF CONTENTS

Page

LIST OF TA B LES..............................................................................................................  vii

LIST OF FIG U R ES............................................................................................................  x

Chapter

1. INTRODUCTION..................................................................................................... 1
1.1 MOTIVATION AND FACTS .........................................................................  1
1.2 VEHICLE A R CH ITECTU RE.........................................................................  3
1.3 VEHICLE EMBEDDED NETWORK BUS ...............................................  4
1.4 WAVE PROTOCOL STACK .........................................................................  10
1.5 WAVE PHYSICAL LAYER.............................................................................  11
1.6 CHANNEL LOAD ASSESSM ENT................................................................  12
1.7 DATA TRAFFIC CONGESTION C O N TR O L...........................................  14
1.8 VEHICULAR NETWORK MAC LAYER MODELING AND 

STRUCTURE ..................................................................................................... 15
1.9 O B JE C T IV E S ..................................................................................................... 20
1.10 ORGANIZATION..............................................................................................  21

2. TECHNICAL BACKGROUND AND LITERATURE R EV IEW ................. 22
2.1 IEEE 802.I I P .......................................................................................................  22
2.2 IEEE 802.1 IP  CHANNEL W ID T H ..............................................................  24
2.3 DSRC DATA C O N G ESTIO N .........................................................................  28
2.4 INFRASTRUCTURE-TO-VEHICLE COM M UNICATION...................  29
2.5 VEHICLE TO INFRASTRUCTURE S T U D IE S ....................................... 30
2.6 WAVE BEACONIG M ECH A N ISM ..............................................................  33
2.7 DSRC IN THE EUROPEAN UNION AND JA P A N ................................  34
2.8 VEHICULAR SAFETY A PPLIC A TIO N S.................................................  34
2.9 CICAS-V SYSTEM DESIGN .........................................................................  37
2.10 GID MESSAGE FORMAT .............................................................................  38
2.11 THE CICAS-V H A RD W A RE.........................................................................  39
2.12 THE IMPACT OF INCIDENT D E T E C T IO N ...........................................  41
2.13 INCIDENT DETECTION M O D E ................................................................  42
2.14 AID RELATED W O R K .................................................................................... 44

3. VEHICLE TO INFRASTRUCTURE COMMUNICATION..........................  46
3.1 SCENARIO ASSUMPTIONS AND SPECIFICATIONS ........................ 46
3.2 IEEE 802.11 PROTOCOL FOR USING V2I COMMUNICATION . . .  47
3.3 ANALYTICAL FORM ULA.............................................................................  49
3.4 SIMULATION SCENARIO D E S C R IP T IO N .............................................  58



vi

3.5 NUMERICAL RESULTS AND DISCUSSION.........................................  60
3.6 SUMMARY .......................................................................................................  66

4. INCIDENT D ETEC TIO N ....................................................................... 68
4.1 SYSTEM MODEL AND PROBLEM STATEMENT ..............................  68
4.2 CHANGING LANE DISTANCE (CLD) METHOD ..................................  69
4.3 CHANGING LANE SPEED (CLS) METHOD ......................................... 71
4.4 NUMERICAL RESULTS...............................................................................  73
4.5 SUMMARY .......................................................................................................  79

5. CONCLUSION AND FUTURE W O R K .......................................................... 82
5.1 SUMMARY .......................................................................................................  82
5.2 DISSERTATION CONTRIBUTION........ ....................................................  83
5.3 FUTURE W O R K ............................................................................................  84

REFERENCES...................................................................................................................... 85

APPENDICES

A. SIMULATION T O O L S ........................................................................................... 101

B. ABBREVIATIONS AND D ESCRIPTIO N ........................................................ 104

VITA 105



vii

LIST OF TABLES

Table Page

1. WAVE spectrum mask requirements (from [1]) ................................................ 24

2. Comparison of wireless communication technologies (from [2])......................  49

3. Default and simulation parameter values............................................................. 65



viii

LIST OF FIGURES

Figure Page

1. Vehicular network communication and application illu s tra tio n ................... 5

2. WAVE Protocol Stack (based on figure from [3] ) ...........................................  10

3. Carrier sensing and transmission ranges (based on figure from [2]).............. 14

4. WAVE MAC Layer Modeling(based on figure from [2]) ...............................  16

5. Channel State Manager (based on figure from [2])...........................................  17

6. Back-off State Manager (based on figure from [4])...........................................  18

7. Transmission Coordination Manager State Machine (based on figure from
P I) ........................................................................................................  19

8. Reception Coordination Manager State Machine (based on figure from [2]) 20

9. Dedicated Short Range Communication spectrum band and channels in
the U.S.(based on figure from [5])......................................................................... 23

10. IEEE 1609.4 in the WAVE protocol(based on figure from [6])..................... 25

11. Synchronization, control channel. Service channel, and guard inter-
vals(based on figure from [7]).................................................................................  27

12. IEEE 1609.4 Multichannel operation state machine [8].................................. 27

13. Channel access diagram (based on figure from [9]) ........................................  31

14. Highway segment with three RSUs in each traffic direction........................... 35

15. DSRC overlapping channels in the EU and U S A ............................................  35

16. Japan DSRC channels.............................................................................................. 36

17. The CICAS-V illustration .....................................................................................  38

18. The GID M ap ............................................................................................................. 39

19. RSU CICAS-V H ardw are.......................................................................................  40

20. Vehicle CICAS-V H ardw are...................................................................................  40



ix

21. Driver-vehicle Application Interface (based on figure from [10] ) ................  41

22. Illustrating the radio coverage area for a RSU....................................................  47

23. Timing diagram for establishing connection and data exchange between
a vehicle and a RSU using IEEE 802.11 based beaconing.............................. 48

24. The integration region for obtaining the CDF of De .......................................  52

25. The integration region for obtaining the DCF of D e in case 2 ......................  54

26. Probability of successful data exchange as a function of the beaconing
interval for average vehicle speed varg = 70 m ph...............................................  60

27. Probability of successful data exchange as a function of the beaconing
interval for average vehicle speed vavg =  70 m ph...............................................  61

28. Probability of successful data exchange as a function of date rate for
vehicle speed interval 50 — 85 mph for beaconing interval 700 m s ...............  64

29. Probability of successful data exchange as a function of the average vehicle
speed for beacon interval Tj, = 700 ms and data 8 kbps..................................  64

30. Assigned each lane with different ch an n e l...........................................................  66

31. Schematic descrip, of params associated with changing lane variation. . . .  70

32. Schematic description of parameters associated with speed variation for
changing lanes.............................................................................................................  71

33. Average time versus average distance for changing lanes.................................  74

34. Average speed variation versus average time when changing lanes................ 74

35. Detection r a te ............................................................................................................... 75

36. Comparison with respect to lane change...............................................................  77

37. Q length when the AID enable and disable ....................................................... 77

38. Q length when the AID enable and disable and compare to other algo­
rithms   78

39. Q length when the AID enable with rate of changing route r a t e ..................  78

40. Q length when the AIDs enable with 20% rate of changing route rate . . .  80

41. Q length when the AIDs enable with 30% rate of changing route rate . . . .  80



X

42. Q length when the AIDs enable with 40c/t rate of changing route rate . . .  81



1

CHAPTER 1 

INTRODUCTION

It has been few decades since Information Technology (IT) has been employed 

in education, health care, and government sectors to enhance the quality and ef­

ficiency of services. Nowadays, the transportation industry utilizes IT to improve 

functionality and safety in equipment and roadways. For example. IT is used in the 

building of roads and development of critical safety and transportation devices. For 

instance as a prominent breakthrough in the area. Intelligent Transportation Systems 

(ITS) enable vehicles and roadside infrastructure to share and exchange information 

with each other through microchips and sensors. This technology has changed the 

way transportation systems are studied and approached. One of the most important 

aspects of ITS is their ability to detect incidents so as to alert drivers to impending 

traffic problems to avoid congestion.

1.1 MOTIVATION A N D  FACTS

In 2007. 2.392,061 intersection car crashes caused thousands of deaths and more 

than one million injuries [2]. In 2009. the National Highway Traffic Safety Adminis­

tration statistics and analysis in the United States also showed that vehicle crashes 

caused one death every 16 minutes [11]. In [12]. Paniati concluded that detecting 

barriers to  traffic flow could save 70 billion dollars and 8.5 billion gallons of fuel that 

is wasted due to congested traffic. Results presented by Kittelson [13] show that 

the annual car crash per person costs in small, large, and very large urban areas are 

$1946. $1579 and $1392 respectively. Papageorgiou [14] also showed that more than 

50% of primary incidents cause secondary traffic incidents and slowdowns. Thus, it
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is very im portant to alert drivers about impending incidents, not only to reduce the 

congestion, but also to maintain safety for drivers and passengers.

Vehicle safety was born after the Mercedes company built passive safety cages 

in their vehicles shortly after World War II. The safety cage is a strong central cell 

flexibly connected to the deformable front and rear vehicle crash cell to absorb kinetic 

energy during the collision. Air bags and seat belts are also passive vehicle safety 

systems. These passive safety systems could have saved 255.115 lives since 1975 [11],

The automotive company engineers and vehicle safety researchers and developers 

moved vehicle safety to a new level called active safety. The passive safety purposes 

minimize vehicle passenger harm during the collision, but active safety is designed 

to avoid the collision and minimize the damage if the collision is unavoidable, for 

example through Antilock Brake System (ABS). Electronic Stability Control (ESC), 

or Brake Assist. The ABS controls vehicle wheels and prevents vehicles from skidding 

through monitoring the hydraulic pressure on the individual wheels. The ESC is a 

computerized technology that detects vehicle's steering control and assists the driver 

in controlling the vehicle by utilizing the ABS on individual wheels.

After vehicle electronic systems developed to the level that can collect data about 

the vehicle area, the advanced safeties came up. The advanced safety in vehicles 

analyzes the collected data to detect potential risks and sends instructions to the 

electronic embedded systems such as ESC to avoid such risks, using, for example. 

Adaptive Cruise Control (ACC). The ACC is a cruise control that can maintain 

the safety distance . and accelerate speed to the set speed after the vehicle in front 

switches to the other lane or the traffic returns to normal. Also, the blind spot assist 

is one of the advanced vehicle safety applications that alerts the driver about entering 

an occupied space. This application gives a visual alert to the driver first. If the 

driver ignores it. it will give a sound alert. If the driver continues to ignore it. it will 

activate the ESC to gently bring the vehicle back into its lane.
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1.2 VEHICLE ARCH ITECTURE

Today, modern vehicle functions are electronically controlled by Electronic Con­

trol Units. The embedded ECU system analyzes the collected data from vehicles' 

onboard sensors to make decisions and then distributes the instructions to the sub­

systems to perform the proper action in the vehicle [15]. For example, the vehicle 

embedded radar sensors can be used for detecting object position and velocity [16]. 

In addition to radar sensor, vehicle safety uses camera sensors to achieve more ac­

curate information about the movement and position of objects [2], These sensors 

can be used to collect data about the area close to the current position of the ve­

hicle. Vehicles need some traffic information about the road miles away from their 

current position to perform the correct actions to avoid unexpected events such as 

incidents or congestion. This information cannot be provided by short range vehicle 

radars, nor can it be obtained from vehicle camera sensors. Therefore, wireless sensor 

network becomes a very important resource for collecting data from other vehicles 

and the RSUs. When vehicles receive emergency messages about incidents or unsafe 

conditions ahead, the drivers have enough time to avoid them or at least minimize 

the risks.
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1.3 VEHICLE EM BEDDED NETW O RK  BUS

Modern vehicles are equipped with many electronic systems. The cost of such 

systems are estimated at 40CX of the total price of today's vehicles and drives 90(/c of 

its innovations [17], The ECUs communicate with the onboard sensors. These com­

munications are controlled by different onboard network buses, for example Control 

Area Network (CAN). Local interconnect Network (LIN). FlexRav. and Media Ori­

ented System Transport (MOST). The ECUs communicate through the CAN bus 

with each other. This network bus is short message-based standard, and it is de­

signed for in-vehicle network communication with 1 Mbps data rate [18]. It is also 

self-diagnostic and repairs communication errors. The LIN bus is designed for com­

munication between smart sensors [19]. It is easy to implement and is a low-cost 

communication bus. It could also be used for systems which do not require a high­

speed data rate. ECU could use it as a gateway to enter the CAN bus. The FlexRay 

is a highly expensive but high-speed data rate bus; it is faster than the CAN bus. 

The FlexRay can offer 10Mbps data rate. It can also support two channels, but 

requires redesign network architecture [20]. The MOST bus network is a cheap and 

high-speed fiber optical network bus. The CAN and LIN are designed in a way that 

are not accessible by the vehicle owner or mechanics for customization, diagnostic, 

or repair. The Onboard is designed as self-diagnostic and repair.

Accurate and reliable data could be conveyed to the traffic management center to 

provide better traffic service. Today's vehicle data information is extended beyond 

basic standard vehicle activity information.

The vehicle application reads data through CAN. The data  formats depend on 

the originated equipment manufacture. Vehicles may have different data formats
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Infrastructure

V2I and I2V connections

Vehicle V2V connection

FIG. 1: Vehicular network communication and application illustration

for defining and calculating data, and different d a ta  formats are possible for dif­

ferent models by the same automaker. Aggregating and collecting data is difficult 

from different sources. In United States, the data format and message setting are 

standardized to overcome interoperability issues. This also gives old model vehi­

cles communication ability with new vehicles [21]. Vehicles have independent CAN 

buses to protect different onboard subsystems. The CAN buses communicate with 

each other through the gateways. These gateways are vulnerable to attack. False 

messages could be injected and sent from one CAN bus to another. Therefore, the 

attacker could control all the vehicle's components that are monitored by these CAN 

buses, such as the cooling system, lock, head lights, radio, and even vehicle engine 

and transmission [22]. While the ECUs are designed so as not to be accessible by 

vehicle owners or mechanics, only the automaker, the attacker could reverse the ECU 

engineered functions through the parts available at a car dealership. The more elec­

tronic controls are developed, the more security is required. Therefore, more security 

techniques and methods must be developed to ensure vehicle passenger safety.
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Today most applications are developed based on the data collected by the vehicles' 

sensors. The vehicle position is one of the most important pieces of information used 

in many vehicle applications such as the Global Positioning System (GPS). The 

vehicle position can be calculated based on GPS satellite signals or on data collected 

by vehicle sensors or cameras. The lane accuracy is sufficient enough to determine 

the lane that vehicle travels on. This means that it is also easy to show the vehicle 

position to the driver on the on-screen map. The user range error based on the 

GPS satellites is around 1.5 m. In [23]. Kaplan et al. showed that the positioning 

accuracy error is currently minimized to submeter and further minimization is under 

development.

Some safety applications have been developed to alert drivers about the road con­

dition ahead of time while miles away. For example, there are applications that alert 

about congestion or incidents. These applications require communications between 

vehicle and vehicle, and vehicle with roadside units. These applications are divided 

into two classes based on time delay tolerance of receiving the required information: 

hard safety and soft safety applications. The hard safety applications cannot toler 

ate delay because it may alert the driver about immediate risks such as emergency 

electronic brake light. Time delay should be minimized to give enough time to the 

driver for the immediate reaction. The soft safety applications are more tolerant of 

time delay such as congestion detection, construction zones, or potholes. Hard and 

soft applications have high quality user intConclerfaces to minimize interruption to 

drivers. Vehicular wireless network features are different from the regular wireless 

networks. These features were not addressed well in Wireless Local Area Network 

(WLAN). The vehicle wireless network is developed based on WLAN. This makes 

use of decades of experience in WLAN in vehicular wireless network. The topology 

changes frequently in vehicular wireless network. Vehicles stay for very short times in 

the communication range of each other in addition to  the high speed mobility nodes.



Vehicles do not know each other addresses. On the other hand, security is a really 

big challenge that developers and automaker engineers are facing. In addition, de­

veloping vehicle techniques and devices requires older vehicles to return for updates 

and installations of new hardware. Therefore, the vehicle owners should bring their 

vehicle to the service center for maintenance which is time consuming and costly. So 

the developers must minimize the changing requirements as much as they can.

In this new area of study, researchers face many challenges because of high speed 

mobility of nodes and short communication lifetime. In the light of these challenges, 

modification of IEEE 802.11 standard (later developed to IEEE 802.l i p  standard) 

has been defined by IEEE (Institute of Electrical and Electronics Engineers) for 

Wireless Access in Vehicular Environment (WAVE) with minimum change require­

ment in a regular IEEE 802.11 standard in wireless LAN network specifications [21]. 

As a regular wireless network has ad hoc and infrastructure modes, the study of 

wireless communication systems for ITS also has two main modes: vehicle-to-vehicle 

(V2V) communication and vehiele-to-infrastructure (V2I) communication. The for­

mer mode has the advantage of being able to achieve very low-latency and is useful for 

disseminating emergency messages in traffic safety systems [24]. Figure 1 illustrates 

V2V and V2I communications. There are several wireless communication technolo­

gies that could be used in vehicular network as short-range radios such as Bluetooth. 

Wi-Fi. and Dedicated Short Range Communication(DSRC) and as long-range radios 

such as cellular network, satellite services and digital radio broadcast networks [2].

While there are many basic concepts that are shared between regular wireless net­

works and vehicular networks, the latter have some specific characteristics that may 

directly or indirectly affect the efficiency and feasibility of specific networking proto­

cols. In the following section, we outline two characteristics of vehicle communication 

svstems that are relevant to our studv.



1.3.1 M OBILITY A N D  RELIABILITY

Mobility is an important characteristic of both regular wireless networks and ve­

hicular networks. The higher mobility in vehicular networks causes mobile terminals 

that are associated with moving vehicles to be in the radio range of an access point 

associated with a RSU or other vehicles only for a very short time, especially when 

vehicles travel at highway speeds. Therefore, there is only a very short period of time 

to establish the connection and exchange information between vehicular network ter­

minals. It is also hard for vehicular network nodes to establish a trusted connection 

to avoid malicious messages and protect their privacy in a short period of time.

1.3.2 COM PUTATIONAL CAPABILITY

In WAVE, nodes (vehicles or RSUs) could be equipped with processors, large mem­

ory capacity, antennas, sensors, Global Position System and computational resources. 

These capacities increase computational ability to determine accurate position, speed 

and direction of the vehicles. The WAVE communication protocols must be suffi­

cient to support minimum delay giving enough time for the driver to react. Biswas 

et al. showed that the driver needs less than 2.5 seconds to react after receiving the 

emergency alert [25, 26]. Vehicle to vehicle is mostly used for emergency message 

dissemination, while local broadcast is used for message disseminations. The primary 

issue is gaining media share among the vehicles in heavy traffic. This increases the 

message delivery time delay. Many message dissemination techniques are proposed, 

such as topologv-based multicast, Geocast. Enhanced broadcast and Stochastic Dis­

semination. In topologv-based multicast, the topology of multicast is established 

and maintained for a group of vehicles based on multicast trees [27]. In Geocast, the 

vehicles are divided into multicast zones or groups based on the geographic location 

information [28. 29. 30]. The enhanced broadcast takes the advantage of lower delay
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and ease of implementation of broadcast in non-heavy traffic. A vehicle may decide 

to rely on distances between source and destinations. In Stochastic Dissemination 

[31] each vehicle independently calculates the relay message probability based on 

random graph theory. Because the WAVE topology is very dynamic, the vehicle 

must maintain and update its information about the other vehicles continuously. 

This overhead expensive process increases the communication delay. In [31. 32], the 

authors indicated that the optimal dissemination delay with a much lower overhead 

process could be obtained by the Stochastic Dissemination methods.

The messages such as the road condition, traffic signal phase, time information, 

service advertisement, and security credential could be broadcasted by RSUs. Short 

or long range radio technologies could be used for vehicular wireless networks, such 

as DSRC. Wifi, and Bluetooth. Bluetooth operates on 2.4 GHz and is usually used 

for pairing drivers' cell phone with their vehicles. This enables hands-free calling. 

Also, mobile phone vehicle safety applications could use the vehicle sound system 

to alert the driver about road conditions ahead. It also enables the vehicle to use 

the passenger or driver cell phone to make an emergency call when the driver loses 

his/her ability during a crash. It is possible to use Bluetooth for V2I communication 

when the vehicle is stationary or move very slowly. Bluetooth's high latency makes 

it impossible to be used for vehicle safety communication [2]. Wi-Fi can also be used 

for vehicle-to-vehicle and vehicle-to-infrastructure. Because vehicles stand still for a 

very short period of time, modification of the Wi-Fi overhead process is required to 

minimize the latency. Wi-Fi is close to meeting most vehicular network specifica­

tions. The modification of Wi-Fi (IEEE 802.11 standard) has led to dedicated short 

range communication protocol about which we will give details in the next chapter. 

On the other hand. 3G cellular networks meet most of the hard and soft safety ap­

plications but unpredictable delay is expected in sharing bandwidth with the voice
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Management Plane Data Plane

WME

MIME

RIME

WSMP UDP TCP Transport layer

(IEEE 1609.3) IPv6 Network layer

LLC (IEEE 802.2)

WAVE u p p er MAC (IEEE 1609.4) Data link layer

WAVE low er MAC (IEEE 802.11p)

WAVE PHY (IEEE 802.11p) Physical layer

FIG. 2: WAVE Protocol Stack (based on figure from [3] )

Concl

communication. Choosing radio technology for WAVE depends on the application 

specification requirements. For example, Bluetooth could be used to find a parking 

spot in a parking lot.

1.4 WAVE PROTOCOL STACK

The WAVE protocol stack contains protocols to support vehicular communication 

for both hard and soft applications. The protocol stack is divided into two parts: 

management plane and data plane. The over-the-air communication is provided by 

the data plane. Data plane protocols could transm it data in the traditional way 

through the transportation layer (UDP or TCP) to Network layer (IPv6) and then 

to the data layer and PHY layer. It can transmit data as a WAVE Short Message 

Protocol if the IP is not available or not required for the transmission. Figure 2 

shows the WAVE protocol stack in vehicular network.

The data link layer consists of three sublayers. The top sublayer is the logic link
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control (LLC). which provides the standard interface for the lower MAC layers and 

IEEE 802.2 [33]. The second sublayer is the WAVE upper MAC layer (IEEE 1609.4). 

which provides the channel switching operations for the DSRC [1]. The button data 

link sublayer is the lower MAC (IEEE 802.lip ) ,  which comprises the lower MAC 

layer with the physical layer (PHY) [1],

The Management plane is a set of functions that WAVE Management Entity 

(WME) is performing for IPv6 configurations, service advertisement, and WAVE 

management frame. A management information base (MIB) is also maintained by 

the WME. The MIB contains the information about the DSRC stations and status. 

The MAC Layer Management Entity and the Physical Layer Management Entity 

are supporting the WME. The security functions are also provided by the WAVE 

protocol stack and meet the IEEE 1609.2 standard [34]. Kenney gave a complete 

description of the WAVE standard in [21].

1.5 WAVE PHYSICAL LAYER

The orthogonal frequency division multiplex (OFDM) is used to transfer data 

by IEEE 802.11a standard [35]. The channel spectrum is divided into narrow sub­

channels in OFDM method. Each sub-channel conveys a part of information. The 

frequencies and transmission time will be assigned to each sub-channel to avoid inter­

ference. hence the name "orthogonal frequency." The inter-symbol interference guard 

can be used to eliminate symbol interference virtually by setting the sub-channels 

to operate at low symbol rates. This gives high reliability at high data rates, signal 

distortion that is caused by multi path could also be efficiently dealt with by OFDM. 

In addition, the modulation schemes and coding rates determine the IEEE 802.11a 

radio data rates [36]. Varying periodic waveform to convey information through the 

channel is called modulation scheme. The high data rate is very im portant in a vehic­

ular network to minimize the time delay, but the high data rates require a clear signal



12

at a receiver. The high data rate signal is error-prone at receiver side. In order to suc­

cessfully receive frame, the modulation and coding rate must be known at receivers 

to distinguish frame from the noise when signals are detected through the channel. 

Usually the IEEE 802.11 standard uses the modulation scheme binary phase-shift 

keying (BPSK) with zero coding rate for the preamble part of frame header which 

contains the imminent arrival of the frame. The BPSK with 1/2 coding rate is used 

for physical layer convergence procedure which contains information about the frame 

payload, such as the frame length. modConclulation and coding rate.

When the receiver PHY layer detects the value of Signal to Interference Noise 

Ratio which is bigger than the BPSK threshold, the frame signal is detected. Then 

the receiver starts decoding the preamble and PLCP header. It is very important 

to mention when the PHY layer is at a receiving state, the MAC layer does not 

send a send command to the PHY layer. A body frame capture technique is used, 

which is not a part of the IEEE 802.11 standard but implemented in the IEEE

802.11 standard radio chipsets and is optional [2]. In the body capture technique, 

the PHY layer is continuously monitoring the Interference Noise Ratio value while 

PHY is receiving frame body. If the powerful received signal strength arrives while 

the PHY is in a body-capturing state, the PHY layer moves to the preamble and 

PLCP capture state to receive the header parts of the new frame. This technique is 

very useful in vehicular networking because the powerful signal most likely originates 

from the nearby vehicles. The nearby vehicles impose more likely immediate risk 

than far away vehicles. The IEEE 802.l ip  essentially is IEEE 802.11a standard with 

minimum change.
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1.6 CHANNEL LOAD ASSESSM ENT

One of biggest challenges in vehicular networking and regular wireless network is 

media access control. The Institute of Electrical and Electronics Engineers (IEEE) 

developed a clear channel assessment function that can assess current channel load at 

IEEE 802.11 MAC layer WAVE radios [37]. Availability of media is detected by the 

clear channel assessment functions, and it is available on all IEEE 802.11 devices. In 

a regular WLAX. the busy media will be determined by checking the physical layer 

and the network allocate vector. The network allocate vector, which is used to check 

the media, is not virtually busy. When the received power in a certain time interval 

exceeds the certain value, that called carrier sensing threshold. The channel will be 

declared busy. The same carrier sensing threshold will be shared by all nodes for 

consistency overall the network.

Different tools and technologies such as radio frecpiency chipsets of different sen­

sitivity in addition to antennas and cables are calibrated to keep the channel busy 

with report indications in a consistent manner [38]. The fraction channel busy time, 

channel busy ration (CBR). is calculated by invoking the clear channel assessment 

function periodically. In this way, a convenient metric to assess channel load condi­

tions will be provided by the CBR. In [39], it has been concluded that the broadcast 

reception rate at receivers degrades rapidly as CBR increases. In [40], Weifield et 

al. showed that the average CBR is 73% and the reception rate degrades to 45% 

for frames received with an received signal strength equal to  -85 dB for the scenario 

378-bye messages were broadcasted by 180 vehicles at 10 Hz with 20 dBm transmis­

sion power. This is unacceptable reception rate for many vehicle safety applications. 

In figure 3. R es  is carrier sensing range and R Tx  is the transmission range. In [41], 

Yang et al. showed the R es  optimal values are two to three times smaller than the 

R t x - For the congestion control algorithms, the space dimension must be considered
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[38].

FIG. 3: Carrier sensing and transmission ranges (based on figure from [2])

1.7 DATA TRA FFIC CONGESTION CONTROL

In [42], authors described a general framework for designing congestion control 

solutions. Many algorithms and techniques were developed recently for data traffic 

congestion control [43. 44. 45. 46. 47, 48. 49, 50. 51]. These developed methods 

and techniques aim at keeping overall channel loads under a specific threshold value. 

The purpose of reducing congestion is to make a fraction of bandwidth available for 

safety message dissemination on top of the periodic broadcasts. These algorithms 

are divided into two categories: proactive and reactive. In the first place, channel 

congestions are prevented by proactive algorithms. The functions that are able to 

detect the channel overload in imminent future are used. The means to assess current 

channel loads are used in reactive algorithms to achieve their goal. In this method, it 

is vehicles' responsibility to minimize their contributions to the overall channel load 

when congestions are detected.

Transmission power is one of the way to control channel congestions. In [52], D- 

FPAV was developed for adjusting beacon transmission power dynamically. D-FPAV
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scheme is a proactive algorithm that keeps the transmission power below predefined 

threshold called Maximum Beaconing Load, which is the main focus in D-FPAV 

scheme. D-FPAV scheme relies on accurate information and suitable models for 

channel load prediction. Message rate adjustment is used in D-FPAV scheme. A 

fixed message rate is used first, and then the transmission power will be adjusted 

based on the other vehicles within its carrier sensing range.

1.8 VEH ICULAR NETW O RK  MAC LAYER M ODELING A N D  

STRUC TURE

Vehicular MAC layer model consists of six sub-models: Transmission. Reception. 

Channel State Manager. Back-off Manager. Transmission Coordination, and Recep­

tion Coordination [53]. These module designs and abstractions were derived by IEEE

80.11 standards. Figure 4 shows the illustration of the MAC layer module operations, 

relations and association to each other in addition to the connection with PHY layer 

Modules.

1.8.1 TRA NSM ISSIO N

The MAC layer interface to wireless PHY is a transmission module. The frames 

from upper layer to the PHY layer for transmission consists of Request to Send (RTS) 

and data frames from the transceiver side and acknowledgement (ACK) and Clear 

to Send (CTS) frames from the receiver side. The state machine for this module 

consists only two states idle and transm itting.

1.8.2 RECEPTIO N

The frame reception process initiated by wireless PHY layer will be completed by 

the reception module. In this module, successful reception of the frame will be verified 

by performing cyclic redundancy check. A node that received a bad. unknown or 

incomplete frame should wait for extended inter-frame space interval which is longer
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FIG. 4: WAVE MAC Layer Modeling(based on figure from [2])

than distributed inter-frame space (DIFS), and then Channel State Manger will be 

confirmed. In reception module, there are two main processes which address filtering 

and discarding of the frames not intended for the node. If the NAV duration is found 

in any frame, it would be passed to the channel state manger. So the node knows how 

long to delay its transmission. The state machine for reception module also consists 

of two states: idle state or receiving state. The channel manager is responsible for 

providing info about its status when the other modules so request.

1.8.3 CHANNEL STATE M ANAG ER

Maintaining PHY layer and virtual carrier sensing status for the Carrier sense 

multiple access with collision avoidance (CSMA/CA) mechanism will be managed by 

the channel state manager. When the total value of received signal strength is bigger 

than the carrier sensing threshold or the node is in a transmission state, channel-busy
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FIG. 5: Channel State Manager (based on figure from [2])

will be announced, channel-clear will be announced if these two conditions are not 

satisfied. It is also possible to stay in a channel-busy state after receiving the virtual 

carrier sensing update from the reception module. Figure 5 illustrates the channel 

manager states.

1.8.4 BACK-OFF M ANAG ER

The back-off manager monitor the back-off counter to avoid collision. The back­

off counter will be set to a random value, and then it will be decremented when the 

media is idle. When the counter value reaches zero and the channel is idle, the frame 

will be transm itted. The back-off counter will not be decremented when the channel 

is busy.

1.8.5 TRANSM ISSIO N COORDINATION
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FIG. 6: Back-off State Manager (based on figure from [4])

The packet transmission request and medium access from upper layer will be 

managed by the transmission coordination module management. In this module, 

if the data frame that would be transm itted is smaller than the RTS frame, the 

data frame will be transm itted directly. Otherwise, the RST/CTS handshake will 

be necessary to avoid the hidden node problem. Figure 7 shows the transmission 

coordination state machine. When the transmission request comes from the upper 

layer, transmission coordination leaves TCTDLE and starts back-off process at the 

Back-off manager. It moves to RTS Pending or data pending based on the data frame 

size as we mentioned earlier. When the transmission coordination receives the signal 

shows that back-off counter reached zero, the transmission coordination instructs to 

send the RTS or data frame. If no back-off process remains and the channel manager 

reports that the carrier sensing is idle, the RTS or data frame transmission will start 

immediately. The transmission coordination moves to the waiting CTS state after 

the RTS is transm itted.

1.8.6 RECEPTIO N COORDINATION
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The reception coordination module manages the frame filtering and it also con­

forms with the transmission manager about receiving CTS or ACK frames in addition 

to creating the CTS and ACK frames. It consists of three states: RCJD LE. Wait 

SIFS. and Waiting TX. Figure 8 shows the reception coordination manager state 

machine. When the RTS is received, reception coordination extracts the XAV and 

queries the Channel State Manager to learn about the current XAV status. If the 

RTS is not addressed to the receiver, it will be discarded. Otherwise, the CTS will 

be created and move to SIFS state and the SIFS timer will be set. Once the SIFS 

timer elapses. CTS frame will be sent and then it will move to Wait TX state untill 

the transmission is complete. When the transmission is completed, it will go back to
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TC JD LE. The same process will be taken for transmission of ACK frame.
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FIG. 8: Reception Coordination Manager State Machine (based on figure from [2])

The vehicular wireless communication and Wireless LAX have many similar mech­

anisms and schemes. The WAVE stack protocol could send the data frame in the 

traditional way (the data  frame go through the transport layer. Network layer. Data 

link layer and Physical layer), or it may transm it the data frame through the WAVE 

Short Message Protocol when the IP address is not required or does not exist. In a 

later chapter, the detail about the WAVE stack protocols will be given.

1.9 OBJECTIVES

Our main objective is to propose a technique to avoid negative impact of channel 

switching IEEE 1609.4 standard on the top of IEEE 802.1 lp  standard. The second 

goal is to maximize the number of vehicles that a roadside infrastructure component 

can interact with. We will also perform an evaluation based on IEEE 802.11 stan­

dard for probability of success of data exchange in V2I. We will finally develop AID
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algorithms and alert message dissemination schemes to detect incidents in low traffic 

conditions on a freeway to avoid congestion.

1.10 ORGANIZATION

The following is an outline of the organization of this thesis. In chapter two. 

the technical background of the vehicular network structure is given. In addition, 

the literature review about the vehicle to infrastructure as well as that of research 

in automatic incident detection is given. The analytical study for the IEEE 802.11 

assessment is given in chapter 3. In order to corroborate the analytical study, a 

simulation scenario is developed. In chapter 4. two new traffic parameters are defined. 

Two AID algorithms are also developed based on these newly defined parameters. 

Finally in chapter 5. we thoroughly present the conclusion of our whole work as well 

as points of our contribution and recommendations for future work. The table of 

abbreviations and the information about used simulation tools could be found in 

appendix sections.
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CHAPTER 2 

TECHNICAL BACKGROUND AND LITERATURE 

REVIEW

In the previous chapter we gave a detailed background of the progress that has 

been made so far in the area of vehicular networks. In this chapter, we will through 

the technical details of those protocols designed in the area specifically for automatic- 

incident detection and explain their negative impacts.

The bidirectional mode communication between vehicles and RSUs have an im­

portant role in alerting drivers about dangerous road conditions ahead, security, and 

service advertisement. In addition. V2I could be used for V2V communication or 

Internet access. As we mentioned in the previous chapter, a short range communi­

cation technology Wi-Fi which is defined by IEEE 802.11 standard could be used for 

V2I and V2V communications [2],The high node speed and limited coverage range in 

vehicular wireless network make it difficult for the nodes to exploit available services. 

Therefore, academic researchers, standardization groups, and vehicle manufacturers 

tried to define a standard to overcome some difficult experiences in WAVE. Such 

difficulties resulted in the definition of IEEE 802.l i p  for WAVE [21. 5], and it is 

further recognized as the Dedicated Short Range Communications (DSRC). The 75 

MHz spectrum at 5.9 GHz is assigned for Intelligent Transportation Systems (ITS). 

This band is structured into seven ten-MHz channels. The 5.9 GHz frequency band 

is licensed but it is free. This frequency band is restricted, and it can be used only for 

vehicular communications. The first 5 MHz are used as a guard band for protecting 

from the adjacent frequencies. The even numbers from 172 through 184 is used to 

identify DSRC channels.
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FIG. 9: Dedicated Short Range Communication spectrum band and channels in the 
U.S.(based on figure from [5])

2.1 IEEE 802.IIP

In IEEE 802.l i p  standard, the expensive authentication and association opera­

tions are not required. IEEE 802.l i p  standard data packets could be exchanged 

with all Base Service Set Identification values made l ’s as wildcard Base Service Set 

Identification, which is only usable for the duration of probe recpiests in a regular 

wireless LAN network.

Because IEEE 802.l ip  physical and MAC layers are limited to work within a 

single channel, the multi-channel operations are provided by IEEE 1609.4 on top 

of IEEE 802.l i p  [9. 54]. Operations are switched between channels by dividing 

the available access time into Control Channel (CCH) and Service Channel (SCH) 

intervals as in figure 9. The CCH is used for safety communications [55]. The two end 

channels of DSRC spectrum are reserved for special uses [56] and the rest are service 

channels. The SCHs could be used for safety and non-safety usage. The DSRC 

spectrum in the European Union is structured into five ten-MHz channels. The 

different frequency band is used for CCHs. The mean reason for this difference is to 

have a guard zone between CCH and SCH to avoid interference. While IEEE 802.l ip
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standard does not have such expensive overhead time for establishing the connection, 

it has some drawbacks. Spectrum masks are used to protect the adjacent channels 

from interference. The four class masks A. B. C. and D for the 5.9 GHz DSRC 

are specified bv IEEE 802.l ip  amendments. For vehicle-to-vehicle communications, 

class C will be adopted. The spectrum mask requirements at different offsets for each 

class from channel centers are shown in Table 1. A 0 dBr bandwidth not exceeding 

9 Mhz must be used for each 10 Mhz channel as the transm itted spectrum.

TABLE 1: WAVE spectrum mask requirements (from [1])
Class Limit at 5 

MHz Offset 
(dBr)

Limit at 5.5 
MHz Offset 
(dBr)

Limit a t 10 
MHz Offset 
(dBr)

Limit a t 15 
MHz Offset 
(dBr)

A -10 -20 -28 -40
B -16 -20 -28 -40
C -26 -32 -40 -50
D -35 -45 -55 -65

In [57]. Rai et al. showed that interference occurs when two vehicles are operat­

ing over adjacent channels in adjacent lanes. For instance. VI transmission causes 

interference at V2 in the adjacent lane (2.5 m apart) when they are operating on 

adjacent channels 172 and 178.

2.2 IEEE 802.IIP  CHANNEL W IDTH

The orthogonal frequency-division multiplexing scheme as IEEE 802.11a is used 

as a base IEEE 802.l i p  PHY. In IEEE 802.11a. the OFDM scheme operates over 20 

MHz channels, but it operates over 10 MHz channels in IEEE 802.l ip .  Therefore, 

the timing parameters must be doubled, and the frequency parameters must be half 

of the frequency parameters used for 20 MHz IEEE 802.11a transmissions, and hence 

doubling guard interval size between transm itted symbols.
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As we mentioned earlier, the time division scheme for multi-channel operations is 

specified by IEEE 1609.4 which sits on top of IEEE 802.l i p  as in figure 10. This 

protocol is designed for operating on a single radio over multiple DSRC channels. 

Regarding the time synchronization, all devices are required to limit time synchro­

nization within seconds with a common time reference. For example, the pules-per- 

seeond signal which Global Positioning System devices issued are exploited to keep 

exact timing.

A P I

W M E  
(IEEE 1 6 0 9 . 3 )

M L M E

PLME

S a f e t y N o n s a f e t y
A p p l i c a t i o n s A p p l i c a t i o n s

W S M P  
(IEEE 1 6 0 9 . 3 )
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W A V E u p p e r  M A C  (IEEE 1 6 0 9 .4 )

WAVE l o w e r  M A C  (IEEE 8 0 2 . l i p )

W AVE PHY (IEEE 8 0 2 . l i p )

FIG. 10: IEEE 1609.4 in the WAVE protoeol(based on figure from [6])

The IEEE 1609.4 allows the timing information to be obtained from other WAVE 

radios when the radios do not have direct access to exact timing sources. For example, 

the time information in WAVE Timing Advertisement frames could be read to achieve 

this goal. The timing information provider must meet the minimum requirements of 

coordinated universal time synchronization. As we mentioned, the synchronization 

time interval is divided into a CCH interval and follow by a SCH interval as in figure

1 1 .

WAVE spectrum mask requirements The CCH is used to broadcast safety mes­

sages. and the SCH is used for advertisement service availability. In addition, safety 

messages are also perm itted to be transm itted over the CCH. Vehicles are equipped
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with a single radio tuned to SCH will not be able to receive these messages. The 

front and rear guard intervals are defined by IEEE 1609.4 at the beginning and end 

of each CCH and SCH intervals. Synchronization tolerance and maximum channel 

switching time define the front guard interval. The expected precision of a device's 

internal clock is the synchronization tolerance. Maximum channel switching time 

is the overhead introduced by the operation of switching from one physical channel 

to another. MAC layer temporarily prevents activities during CCH or SCH guard 

interval and then resume the suspended activities. In other words, all the frame 

transmissions will be postponed until the guard time interval elapsed. All incom­

plete transmission frames will be dropped before the next guard interval starts. The 

local queue stored data frames that are not transm itted during the CCH or SCH 

interval will be transm itted in next cycle. There is also a mechanism to assign an 

expiration time to individual data frames. Regarding the channel switching state 

machine, the vehicle starts in the No Sync state. When the time synchronization is 

achieved, the vehicle moves to the CCH Guard state and tuned to CCH channel. As 

we mentioned earlier, all frames transmission will be postponed until the guard time 

interval elapse and are stored in a local queue. All data  frames that are planned to be 

transm itted during CCH. will be transm itted and while the other frames that must 

be transm itted during the SCH time interval will be stored at a local queue. When 

the CCH interval is elapsed, all activities will be suspended until the SCH guard 

interval expired. In SCH state, all data frames planned to be transm itted during 

the SCH interval will be scheduled to transmit. When the SCH interval elapsed, the 

vehicle turns to the CCH guard interval. Figure 12 shows multichannel an operation 

state machine.

In [1. 58]. authors showed that the poor CCH utilization degraded the perfor­

mance of broadcast safety messages. The details about the negative impact of chan­

nel switching will be covered later in this chapter. Vehicles periodically broadcast
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information about their current status. The growing number of vehicles causes con­

gestion of the radio link. This degrades the network performance. In [39]. authors 

showed that even in a simple traffic scenario the DSRC channel congestion can occur. 

In [59. 60. 61. 62], many protocols and mechanisms were developed for MAXETs. 

However, these solutions for highly dynamic change network topology and vehicle 

density are not well suited. Maximizing data through put is aimed primarily fWAVE 

spectrum mask requirementsor traditional MAXETs in congestion control solution 

while leaving a fraction of the bandwidth is the main goal for transm itting safety 

messages. A number of mechanisms recently for vehicular network safety communi­

cation were developed. In the next section, an overview of the current state of traffic 

data will be given.

2.3 DSRC DATA CONGESTION

Current channel load conditions can be estimated by individual vehicles, and 

broadcasting safety messages over a DSRC channel is used for dominating vehicle 

safety communications. The DSRC safety messages such as basic safety messages 

(BSMS) are broadcasted periodically by vehicles. Also, event-driven safety messages 

are broadcasted about sudden sharp deceleration or control losses. On the other 

hand, signal phase and timing (SPAT). Radio Technical Commission for Maritime 

Services Corrections. Traffic Information Message, and Roadside Alert are broad­

casted by RSUs in addition to the WAVE Service Advertisements.

In [39]. authors showed tha t the traffic data load of channels depends on a series 

of transmission parameters such as message frequency, message size, transmission 

power (distance), and data rate. The vehicle safety applications determine the mes­

sage frequency, size, and transmission power. Therefore, congestion control functions 

above wireless access could be defined in vehicular environments to avoid lower layer
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communication protocols. The time intervals are longer between subsequent BSM 

messages for low message frequencies, and V2V applications require less timely sup­

port. Therefore, high frequencies must be used. This increases the risks of channel 

congestions.

Vehicle speed also has a direct connection with the proper message rates. For 

example, vehicles that travel 36 m /s at 80 mph. Significant new information will 

not be carried by the updated sent message every 2-3 m. The required V2V safety 

applications in a timely fashion will be met by broadcast BSMs at 10 Hz. The dis­

tance between the receivers is associated and determines the transmission power. 

Clear received signal strength is required at the receivers for high frequency channel 

bands. To reach faraway nodes, it requires high power transmission while it increases 

the channel interference and frame collision. Selecting power transmission is allowed 

to be chosen by the application for each individual BSM in WAVE stack protocols. 

The message size is contingent directly upon network performance, but the adaption 

of V2V safety message sizes is not practical in WAVE networking. Longer trans­

mission time and longer channel busy intervals are required for transm itting longer 

messages. In [39]. the author showed that overall performance improvements are 

confirmed by simulations and experiments for short messages. Therefore, dynamic 

adaption of message rate, transmission power, or both are focused on by congestion 

control algorithm developers.

2.4 IN FRASTRUCTURE-TO -VEH ICLE CO M M UNICATION

In I2V mode, the local messages, such as traffic controller signal phase, timing 

information, dangerous road condition information, security credential, and service 

advertisements, will be broadcasted from the RSUs. The cellular, satellite, or dig­

ital radio can be used at RSUs for the local broadcasting as a short-range radio
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transceiver. Widely available services in vehicle today are satellite and digital radio 

services. The real-time traffic and road condition information could be delivered 

through them to the drivers or navigation devices. There are some applications that 

require the veliicle-to-infrastructure communications such as browsing and email.

2.5 VEHICLE TO IN FR A ST R U C T U R E STUDIES

In [9]. the negative impact of IEEE 1609.4 channel switching has been shown on 

the IEEE 802.l i p  standard. Many techniques and schemes are proposed [63. 64] to 

minimize the impact of IEEE 1609.4 standard channel switching, but these solutions 

emphasize the SCH performance. The authors optimized the SCH performance by 

sacrificing CCH performance. If the estimated time for transm itting a packet ex­

ceeds the current SCH remaining time interval, the packet transmission would be 

prevented, and it would be transm itted in next SCH interval in IEEE 1609.4 stan­

dard specification. Thus the remaining time of the interval will be underutilized. 

This phenomena is called a bandwidth wastage problem and is caused by channel 

switching [63. 64].

Second, the WAVE BSS (WBSS) provider advertisement message in IEEE 

802.l ip  standard is broadcast only in a CCH time interval [65]. Therefore, vehicles 

cannot be aware of a WBSS provider when the WBSS provider switches to one SCH 

channel or in the event of collision possibility of WBSS advertisement messages with 

the other traffic messages such as event-based safety messages and vehicle beacons 

that are broadcasting during CCH interval[65]. Vehicles must receive at least one 

WBSS advertisement message per each CCH time interval to tune to RSU-advertised 

SCH to exchange data with RSU. In IEEE 802.l i p  standard, the WBSS is initialized 

by either a vehicle or RSU. Therefore, it is possible for vehicles to be unaware of 

RSU while passing through RSU coverage area of IEEE 802.1 lp  standard. Almalag 

et al. [66] referred to the probability of preventing the comfort service because of a
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FIG. 13: Channel access diagram (based on figure from [9])

lower priority of non-safetv messages in IEEE 802.l i p  standard.

Here we give a brief description of some proposed schemes to overcome the neg­

ative impacts of IEEE 1609.4 channel switching on the IEEE 802.l ip  beaconing 

performance, and we will also discuss some of their advantages and disadvantages. 

In [63]. Immediate and Extended access schemes are proposed to minimize the SCH 

bandwidth wastage problem. In Immediate scheme, nodes can immediately switch 

to SCH without waiting for CCH time interval to elapse and complete its trans­

mission. In Extended scheme, a node does not switch to CCH till it finishes its 

transmission. Both Immediate and Extended schemes optimize SCH performance 

by sacrificing CCH performance. Figure 13 shows the alternating, immediate and 

extended channel access diagrams.

In the fragmentation scheme [64]. the remaining SCH time interval is used to 

transmit a fragment of a packet whose estimated transmission is bigger than the 

residual CCH time interval. In this scheme. SCH performance is optimized at the cost
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of additional header for the fragment packets. Also, this scheme is not guaranteed 

to utilize the residual time interval because of the CSMA/CA random nature. In 

[64]. Best-fit scheme is given. This scheme checks the transmission queue to find the 

packet with estimation transmission time less than the remaining time of SCH time 

interval to transmit. The first drawback of this scheme is the size of the packets in a 

transm itting queue should be known. Second, actual duration priority is difficult to 

determine by a node because of the random nature of back-off.

IEEE 802.11p/WAVE was also studied in terms of futures and capabilities by 

Campolo et al. in [67]. They also noted the possibilities of vehicles that are not 

aware of RSU in cases where RSU switches to one of SCHs. They also suggested 

a technique to increase the number of vehicles aware of RSUs bv piggybacking the 

RSU beacon parameters to the vehicle aware of RSU beacon. This awareness rate 

increases at the cost of additional header for a vehicle's beacon. This in turn  needs 

the modification in PHY and MAC procedures and techniques to capture a header 

and a frame body. In addition. Eichler showed that IEEE 802.l i p  standard has a 

low through put and high delay in his high density simulation scenarios [68]. In [69], 

the probability of preventing the comfort service was referred because of less priority 

of non-safety messages. In [69]. Almalag et al. divided the control channel time 

period into time frame slots and assigned each active vehicle a time slot to broad­

cast beacons and receive non-safety messages. In their work, they focused only on 

V2V communication and techniques for selecting cluster-head to adjust inter-cluster 

communications. This also optimizes SCH performance at the cost of CCH per­

formance. For the NOTICE system, the connection is established through physical 

contact when the vehicle passes over the sensors embedded in the roadway [70].
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2.6 WAVE BEACONIG M ECHANISM

A RSU periodically broadcasts a short message (beacon) which contains infor­

mation about the RSU and the link measurement data. Each vehicle in the RSU 

coverage range successfully receives at least one beacon and thus can be aware of the 

RSU and then can establish connection and exchange data with RSU [71].

The beaconing is currently used in IEEE 802.11 wireless local area networks. The 

802.11 standard may not be suitable for establishing V2I wireless links due to the 

limited time a moving vehicle spends in the radio range of a wireless RSU [24].

At the same time, a beaconing mechanism in IEEE 802.11 has been studied in 

the context of V2V communications in [72], Their numerical results show that the 

beaconing mechanism met the V2V application requirements. Capacity, efficiency 

and analytical formulas for IEEE 802.11 standard were studied in a context of wireless 

LANs in [73]. Analytically, they showed the degradation of IEEE 802.11 standard 

capacity when the number of active stations increased. They7 further showed that 

their analytical results are close to their numerical simulation result. Moreover, 

Bvchkovsky et al. [74] showed that connecting to APs over 802.11 was feasible for 

vehicles. Jakob et al. [75] studied the Cabernet design implementation system for 

communication of moving vehicles with open 80.11 Wi-Fi in cities. Their evaluation 

from a real-world taxi test bed in the Boston area shows tha t Cabernet can achieve 

more than enough through put for a large class of vehicular applications. The general 

approach presented in [71] was to study the probability of successful connection and 

data exchange between passing vehicles and RSUs. These studies inspire us to believe 

that using the beaconing mechanism is convenient to study IEEE 802.11 standard 

probability of success data exchange between RSU and the vehicle.
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2.7 DSRC IN THE EU R O PEA N  UN IO N A N D  JA PA N

The European DSRC spectrum is divided into five ten-MHz channels while it 

is structured into seven ten-MHz in the United States [2]. Different frequencies are 

used for CCHs in the USA and the EU. Introducing guard zone between CCH (5.895- 

5.905 GHz) and SCH#1 (5.885-5.995 GHz) is used avoid interference which is the 

main reason for allocated CCHs difference frequencies. Mainly this guard interval 

is the second SCH (5.885-5.995 GHz) while it is usually used for low-priority. low- 

power messages. Also, the CCH and SCH # 1 is a heavily used channel for safety 

applications. Figure 15 shows the DSRC overlapping channels in the EU and the 

US.

In 1996, the comprehensive plan for ITS was released in Japan by the Japanese 

Ministries of Transport. Construction, Posts and Telecommunications, International 

Trade and Industry, and the National Police Agency jointly [76]. In 2001. the Radio 

Industries and Businesses STD-T75 standard was developed for DSRC. Figure 16 

shows the structure DSRC channels in Japan which consist of 7 down-link and 7 

up-link channels allocated at 5.770-5.850 GHz band.

2.8 VEH ICULAR SA FETY  APPLICATIONS

In the United States of America, 9,000 deaths were recorded for about 1.7 mil­

lion vehicle crashes at intersections [77], In 2004 in addition to the $7.9 billion 

loss. 163.000 lives were lost due to the 302.000 vehicle crashes [78], Red light and 

stop sign violations caused 250.000 of these collisions. The vehicle to roadside unit 

communication enables the vehicles' ability to alert the drivers about the potential
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FIG. 16: Japan DSRC channels

accident in advance to avoid the collision especially at intersection crash box. The 

U.S. Department of Transportation (USDOT) and five automotive original equip­

ment manufacturers (Ford. General Motors. Mercedes-Benz, Toyota, and Honda) 

have partnered up with The Cooperative Intersection Collision Avoidance System 

for Violations (CICAS-V) group to build the Crash Avoidance Metrics Partnership 

framework [79, 80. 81]. The CICAS-V aims at avoiding or minimizing the intersec­

tion collisions. This system's goal depends on the ability of communication between 

vehicle onboard unit and installed RSU at the intersections. The vehicle dynamics 

such as speed, distance, lane of the travel and position with the intersection traf­

fic information could be used to estimate the potential collisions. The full function 

CICAS-V system protocols were designed and implemented in a real test bed and 

evahiated to  check the feasibility of the project excitability. In this chapter, we will 

illustrate one of the V2I communication application functions, and w'e will also show 

the significant vehicle safety ability of this application which can save thousands of 

lives.
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2.9 CICAS-V SYSTEM  DESIG N

The CICAS-V system utilizes the vehicle to infrastructure communication con­

cepts. When vehicles enter the coverage range, it receives safety messages from RSU 

17. These safety messages consist of the current SPAT and digital map of the inter­

section called Geometric Intersection Description (GID) [81]. The Global Positioning 

System differential correction could be optionally broadcasted by the RSU. The ve­

hicle safety applications read the information from onboard units. It calculates the 

possible violation based on the vehicle dynamic information such as speed and the 

vehicle distance from stop-bar of the vehicle lane traveled. It gives a warning to the 

driver to take a proper action when the potential collision is detected. Moreover, 

the vehicle would probably automatically takes an action if the driver ignores the 

raised alert. The positioning accuracy based on the GPS is sufficient to determine 

the violation estimation of vehicle to a stop bar. The GID map contains information 

about the intersection such as stop bar for each line, the road and lane geometry 

directed to the intersection and the individual lane traffic signal phase. The vehicle 

onboard must receive this information from RSU at CICAS-V application assump­

tion. The RSU message size is restricted to minimize the time delay. Therefore, the 

GID map should be fitted into a single RSU message broadcast. The IEEE standard 

message size is limited to  1.4 KB and 400 bytes is reserved for the security purpose 

[21]. Therefore. GID maps has to be fitted into only 1 KB. This creates a challenge 

for developers to find a way to fit this information into an acceptable single message 

size.



38

ED CO

RSU

RSU Coverage range

FIG. 17: The CICAS-V illustration

2.10 GID M ESSAGE FORMAT

In [21]. Society of automotive engineer SAE defined a standard to minimize the 

size for the above information as follows:

•  Cartesian offsets are used to represent an intersection reference point (IRP).

• A set of points (nodes) with line width at each point is used to describe roads 

and lanes.

•  Specifying the centerline of the lane describes the lane geometry.

• The first geometry point for the lane is used as the stop bar location.

•  300 distance from IRP will be represented.
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In general, the GID map consists of a set of nodes. One of the nodes is the IRP 

and the others describes the lanes. There are two types of lanes: based lane and 

derived lanes. The based lane is described by the nodes, but the derived lanes is 

computed from the based lane. Figure 18 shows a simple sample of a GID map.

The signal phase and time will be sent in the same GID map message to the 

vehicle. It consists of the current signal phases and the signal phase change time. 

It is dependent on the vehicle onboard to extract the correct signal phase and time 

related to the vehicle movement direction.

2.11 THE CICAS-V HARDW ARE

The roadside units at the signalized intersession consists of the antenna. GPS 

plus differential GPS antenna, which is optional. Figure 19 shows the RSU CICAS- 

V hardware and its connection with the other required devices. The RSU is connected 

to the traffic control through the LAX bus network. Further. RSU might be con­

nected to backbone Internet Protocol (IP) networks. This helps control the RSU
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FIG. 19: RSU CICAS-V Hardware

remotely. On the other side. CICAS-V vehicles are equipped with onboard unit com­

puting devices. It is connected via the CAN bus to the vehicle radio antenna. GPS 

receiver, and the driver-vehicle interface. Figure 20 shows the vehicle side CICAS-V 

system.

GPS Antenna

Radio antenna

FIG. 20: Vehicle CICAS-V Hardware

The SPAT. DGPS and GID message will be sent to the vehicle. The vehicle safety 

application uses this information to  estimate the intersection's potential violations. 

First, the applications show the signal phase and the vehicle's distance from the 

intersection. Bv the time the vehicle gets closer to the intersection, the application 

shows a stop ahead. Afterwards, it shows the stoplight when the vehicle gets closer 

and will automatically stop the vehicle if the driver ignores the last warning. This 

application was implemented in a Mercedes-Benz at the Intelligent Transportation 

World Congress in New York City. The detail of this application can be found in



41

[10].

FIG. 21: Driver-vehicle Application Interface (based on figure from [10] )

Figure 21 shows the vehicle intersection driver assistance application interface. 

The application gives a warning about the red-light violations. When the applications 

are ignored by the driver and the red-light violation is expected. ESC will be activated 

to avoid the violation. The Pre-Crash is also activated. This application tightens 

the seat belts, rolls up windows and also raises the headrests. These applications 

were implemented and installed on different devices. They communicate through the 

CAN bus which makes these devices work independently. The crash or malfunctions 

of one device does not impact the others.
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2.12 THE IM PACT OF IN C ID EN T DETECTION

In [82]. Busch showed that more than 50 percent of accidents are caused by another 

accident which would happen a few minutes before the subsequent accident. This 

shows that it is im portant to alert drivers about the incident not only to reduce 

the congestion, but also to provide safety for drivers and passengers on a road. In 

[83]. Robinson highlighted incidents as a major reason for traffic congestion. He 

also showed that its delay is higher than rush hour traffic delay. In addition, the 

US Department of Transportation (US-DOT) [12] showed that billions of dollars are 

wasted due to incidents and traffic congestion. These impacts motivate researchers 

to develop techniques and methods to detect and alert drivers to avoid the possible 

incident consequences. In the next section, we will give a brief background of incident 

detection algorithms and also its modes.

2.13 IN C ID EN T DETECTIO N M ODE

Incident detection algorithms are divided into two classes: automatic and non- 

automatic algorithms. An algorithm triggers an alert whenever the traffic data col­

lected from the RSU satisfies certain conditions. Non-automatic incident detection 

triggers an alert based on reported incidents [84], Both automatic and non-automatic 

incident detection may be used for incident detection on freeway or arterial routes.

There are two critical components involved in creating a traffic alert system: one 

involves data collection from passing vehicles, while the other deals with the analysis 

of collected data and detecting traffic trends and patterns.

The data collection process uses vehicle-to-vehiele and vehiele-to-infrastructure 

networking and its performance depends on various factors related to the reliability 

and validity of the vehicle safety communication systems. Because we are develop­

ing Automatic Incident Detection, we will focus on AID algorithms and technique



43

characteristics. Therefore, we give a description of AID algorithm categories. AID 

algorithms are divided into two categories: time series and comparative.

Tim e Series Categories: In time series categories, the current traffic condition

could be estimated based on past traffic observations. So. statistics or time series 

models are used bv time series AID algorithms. For example. Standard Deviation 

algorithm [85] and the TRANSCOM System were used for Managing Incidents and 

Traffic (TRANSMIT) System [86].

Com parative Categories: In comparative categories, the new values for traf­

fic parameters are calculated from the current collected data. The new values are 

compared to the pre-identified thresholds to detect incidents. For example. California 

Algorithms [87] and the McMaster Algorithm [88. 89]

Traffic safety depends not only on the algorithm rate of false-alarms. but also 

depends on the reliability and validity of the Vehicle Safety Communications. It also 

has an im portant role in providing minimum latency of not more than 100 ms for 

safety messages. In addition, safety messages should travel at least 150 meters [90]. 

Simplicity and easy implementation are also other im portant criteria to judge AID 

algorithms. Two important terms are defined here:

•  Detection Rate :

The percentage of total capacity-reducing incidents detected during a specified 

time period is the detection rate [91].

• False Alarm Rate :

False Alarm Rate is the percentage of false detection alert for a specific algo­

rithm  in a specific period of time [91].
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The accuracy of AID algorithms depends not only on the algorithm false alarm 

rate, but also on the reliability and validity of the V2I connection. This plays an 

important role to minimize latency of receiving or communicating safety alert mes­

sages. Simplicity and ease of implementation are additional factors by which AID 

algorithms are evaluated and compared.

2.14 AID RELATED W ORK

In order to make traffic management systems effective, they must possess the 

ability to detect barriers to traffic flow. The AID system is one of the tools that 

can be used to detect these barriers. Incidents cause the majority of disruptions of 

freeway traffic flow rather than rush hour traffic [12], As we mentioned many traffic 

parameters have been defined for the purpose of developing AID system such as 

volume, changing lanes, average speed and traffic density. Most automatic incident 

detection algorithms adopt these parameters slightly in order to achieve the desired 

result. In addition, many techniques and schemes were also invented based on video 

detection cameras, cellular phones and inductive loop detectors.

Traffic information such as occupancy between two adjacent detectors at upstream 

and downstream of the traffic flew were compared to detect incidents in California 

Algorithm [90]. We note that the California Algorithm is facing challenges in quickly 

detecting incidents in non-dense traffic cases because the occupancy change occur­

rence takes a long period of time. Picking appropriate traffic parameters raises a 

challenge for AID algorithm developers to reduce the incident detection delay, which 

is very important in transportation systems to make the right action at the right 

time. The NOTICE system [70] uses short-range wireless communications between 

sensors embedded in the roadway and passing vehicles to collect traffic-related data, 

as well as providing drivers with advance notification about potential incidents. NO­

TICE was developed for enhancing incident detection algorithms. The suspected
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incident position p with an interested time interval I  would be used as an input to 

improve incident believe.

The AUTOPIA system [92] uses similar V2I wireless communications to reduce 

congestion by determining the speed of vehicles and distance between them. In the 

AUTOPIA system, false alarm is raised easily by individual vehicle speed variation 

such as a truck or slow vehicle. In [93]. Robert et al. proposed a vision-based 

technique. While today the video-based AIDs is a popular technique in ITS. they 

have difficulty in many situations such as shadows, snow. rain. fog. and glares[94]. 

The cell phone call incident detection has some issues such as minor incident event 

observers may not report. In [95], Alexander et al. also showed that the false alarm 

rate based on cellular phones is higher than 32%. an AID system with such a high 

ratio false alarm is really hard to be accepted in ITS. In [96], Zhen et al. showed that 

a large amount of traffic data availability increase the accuracy of those applications 

used to apply the data for different purposes.
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CHAPTER 3 

VEHICLE TO INFRASTRUCTURE COMMUNICATION

In this chapter, our main focus will be 011 constructing an analytical formula 

as well as simulation results for IEEE 802.11 standard. We will conduct an assess­

ment for IEEE 802.11 standard for V2I communications for intelligent transportation 

systems. Specifically, we will consider a beaconing mechanism for establishing con­

nection between passing vehicles and RSU's for traffic monitoring between which 

the probability of successful data exchange is evaluated. Analytical results together 

with results obtained from ns3 simulator are being compared. Our results show that 

IEEE 802.11 with its beaconing mechanism can be successfully used for V2I commu­

nications. We will begin by describing our simulation assumptions and specifications.

3.1 SCENARIO ASSU M PTIO N S A N D  SPECIFICATIONS

In our study, we consider the V2I communication system shown in figure 14. in 

which it is assumed that vehicles are equipped with Event Data Recorders as man­

dated by the National Highway Transportation Safety Administration (NHTSA) [97]. 

These are expected to collect information about the vehicle dynamics and other 

required operating parameters related to vehicle mobility such as acceleration, de­

celeration. current lane, lane change position, and lane change time. The vehicles 

exchange this information with RSUs placed at regular intervals along the road for 

various purposes such as incident detection or traffic congestion notification.

We assume that RSUs are placed on opposite sides of the roadway for each traffic 

direction, and that they are connected by wire under the median. However, adjacent
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FIG. 22: Illustrating the radio coverage area for a RSU.

RSUs along the roadway are not connected with each other in order to reduce the 

overall infrastructure cost. We also assume tha t each RSU contains a GPS device 

(for time synchronization), a radio transceiver, and an embedded computing device 

that processes the data collected by passing vehicles to detect traffic-related events. 

As shown in figure 22, a given RSU has only a limited radio coverage area (of the 

order of tens of meters) much smaller than the distance between two consecutive 

RSUs. and vehicles can exchange information with the RSU only inside this coverage 

area.

3.2 IEEE 802.11 PROTOCOL FOR USING  V2I COM M UNICATION

Several technologies can be used in WAVE (W'ireless Access in Vehicular Envi­

ronment) such as DSRC. Wi-Fi. Bluetooth. 3G. 4G LTE. and SDARS. Table 2 shows 

the capacity of these technologies and their usages in vehicular networks. To enable 

connection with passing vehicles, the RSUs use an IEEE 802.11 type networking
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FIG. 23: Timing diagram for establishing connection and data exchange between a 
vehicle and a RSU using IEEE 802.11 based beaconing.

protocol, and they act as wireless access points to which passing vehicles will con­

nect as mobile terminals when entering radio range. Connection is established using 

the IEEE 802.11 beaconing mechanism by which the wireless access point transm its 

beacon signals spaced at regular intervals of 7), seconds. When a vehicle enters the 

coverage area of the RSU and receives the beacon signal, a wireless link is established 

and information is exchanged between the vehicle and the RSU as shown in the tim ­

ing diagram of figure 23. We note that, as the vehicles pass by the RSU. they will be 

inside the coverage area of the RSU only for a limited time, and we assume that the 

link between vehicle and RSU suffers no power outages during this period. This as­

sumption implies that the signal power and the corresponding signal-to-interference 

plus noise ratio at the receiver are above given thresholds to ensure a specific bit 

error rate, and also that the shift in frequencies due to the Doppler effect is tracked 

and compensated.

Furthermore, we note that even when connection is established successfully be­

tween a passing vehicle and RSU. it is possible tha t not all traffic information is 

exchanged as the vehicle may travel outside the RSU coverage area before the traffic
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data is completed. Our goal in this section is to provide an analytical evaluation of 

the probability of successful information exchange between a passing vehicle and a 

RSU under the assumption that the vehicles randomly get under the RSU coverage 

area.

TABLE 2: Comparison of wireless communication technologies(from [2])
DSRC W i-Fi Bluet oot h 3G 4G LTE SDARS

R ange H undreds 
of m eters

H undreds 
of m eters

Up to  100 
m eters

Tens of kilom e­
ters

Tens of m eters 
up  to  100 km

C ountryw ide

E nd-to-end  m es­
sage delay

10 ms 10 ms 10 ms From 50 to  hun­
dreds of millisec­
onds

Tens of millisec­
onds

10-20 sec­
onds

Y2V local 
broadcast

yes yes Im practical W ith  a server W ith  a server No

V2V m ultihop
m essaging

yes yes Im practical W ith  a Server W ith  a server No

I2V local b road ­
cast

yes yes Im practical Not offered by 
all netw ork oper­
ators

N ot offered by 
all netw ork oper­
a to rs

Yes

Y21 bidirec­
tional

yes yes Im practical Yes Yes No

3.3 ANALYTICAL FORM ULA

Based on our model, the probability of receiving any arbitrary beacon at time 

instant tb is constant within the interval [0.7ft]. which implies that R  is uniformly 

distributed within the beaconing interval [0.7ft]. Therefore, the probability distribu­

tion function that governs the events occurring within such time interval is uniform. 

This is due to the fact that when a beacon is broadcasted under the coverage area, 

any vehicle moving thereunder may receive the beacon regardless of the time instant 

it might have entered the coverage area. Let 7max be the maximum amount of traffic 

information exchanged between the passing vehicle and the RSU with data rate R. 

The distance traveled by the vehicle while exchanging the 7max amount of information 

with RSU denoted bv d, can be calculated as follows:

dx — r -“ t̂x =  vti and db =  by 
R (1)
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where r is the vehicle speed and <4 is the distance traveled by the vehicle up to 

receiving the first beacon. Also, since R  is the data rate (bvte/sec) so Imax/ R  has 

unit time. Using the timing diagram in figure 23. we can calculate the total distance 

travelled by the vehicle:

de = db + da + (2 D I F S  + ta)u (2)

where ta is the period of time the vehicle needs to  associate and establish the connec­

tion with RSU. and DIFS is a distributed inter-frame space in IEEE 802.11 standard 

time line for DCF Medium Access.

From the classical formula of velocity from classical mechanics v =  d / t  which 

yields t =  d/v.  by dividing both sides of the above equation by v we can calculate the 

total time needed for the vehicle to establish the connection and exchange information 

which is the time lapse during which the vehicle completes its total distance de:

te =  t-b T 4 T ta T  2 D I F S  (3)

The distributed inter-frame space is the time delay between the time when the 

connection has been established and the time the RSU starts to send data. Likewise, 

before receiving the data, the RSU slacken (back off) for the same short period of 

one DIFS. Therefore, we have added double DIFS to the whole total time period.

3.3.1 PRO BABILITY ANALYSIS

We now turn  to our major goal of this section which is to derive a formula to 

calculate the probability of successful data exchange and connection establishment 

between the vehicle and the RSU. To achieve this goal, we have conducted the same 

methodology conducted in [71]. As we mentioned above, the probability distribution
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function (PDF) that governs the whole situation is uniform distribution. The ran­

dom variable that the PDF takes as an argument is de which must be less than or 

equal to the diameter (D) of the geometrical shape covered by the RSU along the 

hypothetical highway to successfully exchange the information. Accordingly, proba­

bility of successful data exchange and connection establishment between the vehicle 

and the RSU is given by:

Ps = Prob[de < D\ (4)

In order to give a clear description of the above formula, we recall the basics of the 

probability theory and formal definition of probability distribution function. Accord­

ingly. the above function Ps that seems to be implicitly defined, yields the probability 

of successful data exchange and connection establishment at any time te correspond­

ing to the total distance de passed by the vehicle. This gives the likelihood for the 

random variable d, to take on a certain value. This likelihood is constant as we men­

tioned earlier based on our presumed model since the PDF is uniform distribution. 

However, our goal is to calculate the probability within a certain range. This can 

be calculated using the integral of the variable’s function over that range. In proba­

bility theory, the integration of the PD F within a variable range is another function 

that takes on a different argument. Such function is called Cumulative Distribution 

Function, abbreviated to CDF.

In order to extract a formula for the CDF. we have to obtain an explicit formula 

for the PDF and then subject it to integral. This will be the main subject of the 

following subsection which is completed for several cases depending on the range 

within which the extreme points of the time interval fall.

3.3.2 CO NSTRUCTIO N OF CDF

When a CDF takes on a value as its argument, that numerical value corresponds to
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the maximum boundary point of the range that the random variable of its underlying 

PDF takes. As the CDF is the integral of the PDF. the value that the CDF takes on 

is geometrically the area under the curve of the PDF covered by the certain range. 

In order to determine the cumulative distribution function of random variable de. 

we will have to find a formula for it. We denote our CDF by Fpt (de). The random 

variable de depends on both time t e and the velocity of the vehicle v as we explained 

earlier in this section. So for the sake of convenience, we use the functions of both te 

and v which are f te(te) and f v(v) respectively. The CDF is thus given by:

Fd( (de) = J j ^  ft, (te)fv(v) dte dv (5)

where T> is the region in which de is defined. Figure 24 shows the integration area 

V  in a typical case. The curve shows the classical equation of v =  j  together the 

boundary points which we later use in constructing our formula for the CDF using



double integration. The locations of the boundary points in each of the following 

cases vary depending on the motion of the vehicle. Let

T, = Ta + 2 D I F S  (6)

where Ta is the period of time which the vehicle needs to establish the connection with 

roadside units. Tf, is the maximum period of time which the vehicle waits to receive 

a beacon. The waiting time period for receiving the first beacon when the vehicle 

gets under the RSU coverage area is bounded by 0 and TV Therefore. The time 

for successful data exchange between RSU and vehicle is bounded by 0 +  Tt + 

and Tb +  Ti +  As we mentioned. D  is distance the vehicle passes within RSU 

coverage area. Therefore, we can bound the vehicle speed for successful data exchange 

between vehicle and RSU under RSU coverage area by ^ ~ -P.— tb and — . We
H T i i  +  i m a x / n  t i l  j - f -1 m a x

can apply traditional rules of inequalities in math, to conclude th a trfc+r j R is 

always smaller than — . Since R  is the data rate, in our case it is equal to 8
i t  1 i ~v  1 m a x

Kbps. So

RTi <  RTi (7)

and Tb>  0 which implies that

n + T, + > T ,  + ( 8 )

which gives
1 1

----------- 1—  < ------ 1— (9)Tb + Tt + t ^  Tt +

Multiplying both sides by D. yields
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FIG. 25: The integration region for obtaining the DCF of De in case 2

Then, following [71] the CDF of de is obtained as:

D D R
F o r  n  +  r .  +  V  <  r t ,  +  <  <  K l ' “

This case does not arise in our model as we have set Vmin to be the average 

minimum speed that each vehicle attains while passing through the coverage area. 

Therefore we would have:

FDt(D) = 0 (11)

bv the DCF definition.
D D R

Case 2: For -------------- —  < Cllin <---——----—  < VT
Tb + Tt + ^  RTt max

The subject enclosed area that we are going to calculate is shown in figure 25. We 

apply equation 5. so we can calculate the highlighted area which is the probability 

of success.
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dtP d v
Tb(i 'max  ̂min ) J

r . P*__
I  R T z -\- I m a T  I  i' 7 . 7

/ / , dtedv
Jrn„n JTl+,-^WLFb ( 5 n a x  C nin ) 

1 f  T l + I n

J  i 'm  i n

li-r- R 

DR . D
t dv

Tb(vmax — d n in ) IT, + i ^

1 f  r , + / l j  , D
Tb ( ’̂max ^'min )

f  T 1 + I m a x  ,  D  ( rj-t  . I j n a x w ,
/  ( —  -  [Ti +  - 5 - ) )dv

1 ( D l n v - { T i +  Î ) v )
Tb{lW  -  I ’xnin) ^

hence.

J - p . ( J J )  =  ..... ;  (P1n T  f , r  -  D  + T , v m h , )  ( 1 2 )
J 6 l ' m a x  */ m in j  -M *  ^m in

We can calculate the CDF Fpt (D ) is the same for all other cases as in the follow­

ing. In the rest of the cases, the locations of the boundary points will change and 

thus the limits of the double integration accordingly.

Case 3: For
D  D R

* min ^  T-, rp  j  m i  , T ^  ' m a x
T h +  T , +  ^  R T i  +  7 m a x

F o A d e) =  d t e d v

a
dtp dv

Tb(vlriax I’min ) JJT>



we get:

Case 4: For

1

T b ( v  m ax  C n i n )

1

P Rf  r, +1 m a x  / D  T n a x  •. \ ,
/  ( - - ( T i  +  — - ) )dv

v)Th(vby1- max Cnin )
( Dl nv  -  (Ti +

R

D R
R T i  +  I m a x

D
7~, | t I n̂iax b i R

, TrD  , TbD  _ T b V \  ( 1 3 )

Tb +  T  Tb +  Ti 

D  i /  v  DR<  » m i n  ^  ► m a x  ^Tb +  T  +  W  min max R Tl +  / ma:

F Dt (d< ) =  j J ^  f t e {te) fv {v )  d t e dv

=  7777 r  f f  d t e dv
T b y V m a x   ̂Vnin ) J  JT>

1  rv m a x  r  ®

\ /  I d R d vJ -b \U max ^Vnin) ‘̂min * '?*+ 77/^J

i • DJ_ /**• m a x

t
T V  m a> 

'd ̂ 'min■̂ i(̂ ma>c ^min)

1  /**’ m a x

T _l hnax Ji~r d
dv

R

T b ( ma x  ^ 

1

riwx
■----7 /  (— -  (Ti +
I T l i n J  Jl'min ^

( Dl nv  -  ( T  +  ~ ^ £ )v)
Tb(vn )ax ’̂miri)

I’m a x
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we get:

Fd , ( D )  =  1 ■; ( d \ix)p ^  - T X n ^  +  T i V ^ )  (14)
1 bD max ' niin j V *" min

r , K. tr -V' ^  ^ V' D R
C . 3 S C  O .  l O l  V m i n  ^      r <' ' '  * n m v  ^

we get:

111111 ry -i r-r-t /  l l l c l X  T~l'~T~' i TTb +  Ti +  RT; +  7, nax

FD ,

  / /
F n i i ,  )  7 7 p7 f c ( t ’m ax  F n i i i )  J  J'D

1
7)

7'6 + r; + iJ7f&

d7> dr

x  r 1’m a x  r  ,,

7-- --- --- -- --- --- -- r /  /  dte dv
( F n a x  F i l i n ) d ^ ^ T ^ T i +  haR J-

n !max

Tb(l'max F n in ) 7  “ f

D

t
Th + Tt+ ^  

1  m a x

dv
_ xT  _i_ ^ m a x  mi »

F,( ̂ Tinax ’̂min)

i

/ * 7 'm a x  / /  I m n v

7 1'rni n ? ’ 7 7

{ D l n v  -  ( F  +
F ft(r  max F n in ) 77

r  / m   ̂ / n ,  Vmax(Tb + Ti)
F o A D )  =  777777------------ 77— r  x 77InTb{Vmax — Vm m ) \  D

TtD TbD  „  ^
7iV'max 4" rp T  4  „  1 Mtiin7fc I (15)

-F +  -F F  +  F  /

Case 6: For V)nin < Tmax < P  —  < pT^  —
F, + 7( + 7?F +  7max

This case is beyond the scope of our probability calculations as no speed should 

go over Vmax. Even if we consider the real world system, if a vehicle goes over the 

speed limit when there is an incident ahead, despite being rear, it does not give out 

any information regarding the impact of the incident on the speed of the rest of the
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other vehicles moving with normal speed. Therefore, in this case, there is no need to 

calculate the probability as our main objective is to detect incidence.

The six cases outlined above enable us to calculate the probability of successful 

data exchange between a vehicle and a RSU for different values of D. /,nax- 7ft• vavg. 

and /?.

3.4 SIMULATION SCENARIO DESCRIPTIO N

To corroborate the analytical approach and expressions presented in the previous 

section, we used the ns3 simulator to model the information exchange between a 

RSU and vehicles passing by it when IEEE 802.11 protocol is used to establish the 

wireless link and to numerically evaluate the probability of successful information 

exchange between passing vehicles and RSU. A total number of 1.000 simulations 

were performed and the coverage area of the RSU was set to D = 28 m in order to 

be consistent with the short coverage areas of the IEEE 802.11 standard for enabling 

successful authentication, establishing connection, and information exchange between 

a passing vehicle and a RSU. Similar to [71 j. we have a list of assumptions stated 

below:

•  We assumed tha t non-overlapping channels are assigned to each lane in order 

to avoid interference with vehicles in adjacent lanes, but Daniel et al. studied 

general approach for only one lane.

•  We assumed that RSUs use Distributed Coordination Function (DCF) based 

on Carrier Sense Multiple Access with Collision Avoidance as required by the 

IEEE 802.11 standard medium access mechanism.

•  The RSU broadcasts beacon frames periodically, such that, when a vehicle 

enters the RSU coverage area and receives the beacon frame, it will attem pt to 

establish the connection and exchange information with the RSU.
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•  We assumed that the RSU channel will not be released until the vehicle com­

pletes the information exchange or travels outside the RSU radio range.

Thus, successful information exchange depends on:

•  the time the vehicle remains in the RSU coverage area, which depends on the 

actual speed of the vehicle:

•  the waiting time for receiving the first beacon frame, which depends on time 

interval between beacons:

•  the amount of information that is exchanged between the vehicle and RSU:

•  the data rate at which the RSU communicates with the vehicle.

In our simulations, we set the length of the time interval between two consecutive 

beacons t b to start from 0.1 s up to 1.1 s. and we note that because vehicles enter 

the RSU coverage area at random instances, they will receive the first beacon after 

a random time interval which is less than or equal to the beaconing interval length. 

After the vehicle receives the first beacon, the vehicle will establish the connection 

with the RSU. and information exchange takes place after the vehicle gains access to 

the communications medium. We also set a maximum amount Jmax =  8 kb, which is 

more than an order of magnitude higher than the maximum information value chosen 

in [98]. The vehicle first uploads its information to the RSU and then downloads the 

RSU information intended for it. As shown in figure 23. the total time to complete 

the information exchange between vehicle and RSU -  te - consists of t b (initial delay 

waiting for beacon) plus the information exchange time U (delay busy period). Let db 

be the distance the vehicle drives through to receive the first beacon from RSU and 

di be the distance the vehicle drives while exchanging traffic information, such that 

the total distance traveled by the vehicle while completing the information exchange 

is de = db +  da +  d;. In our simulations, we account for a successful information



60

tn tn a> o  o3
O
JDro.a
o

1
R -  8  Kps 

R = 16 Kps 
R .  51 2K ps 

R •= 2M ps

0.8

0.6

0.4

0.2

0
1.20.2 0 .4 0.6 0.8 10

b e a c o n  in te rv a l(s e c )

FIG. 26: Probability of successful data exchange as a function of the beaconing 
interval for average vehicle speed vavg = 70 mph.

exchange each time de < D  which is equivalent to te =  tb + ta +  t t < y  where ~  is 

actual time the vehicle needs to drive through the RSU coverage area. This is based 

on a fact from physics that velocity is the distance per unit time t. i.e v = y  which 

implies that t =

In order to ensure more efficient use of the wireless link, we did not consider in 

the simulations the Distributed Inter Frame Space (DIFS) and randomly selected 

slots of time back-off in DCF mechanism. We note that, in IEEE 802.11 standard 

with DCF. even when the media is idle, the access point waits for a DIFS period 

which is not randomly selected by the station. Since we assume that only one vehicle 

communicates with the RSU on a given channel, random back-off time period was 

set to zero in our scenario.
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FIG. 27: Probability of successful data exchange as a function of the beaconing 
interval for average vehicle speed varg =  70 mph.

3.5 NUM ERICAL RESULTS A N D  DISCUSSIO N

A typical experiment of our simulation using ns3 has been plotted in figure 26. 

It shows the probability of successful data exchange Ps as function of different bea­

coning intervals tested for different data rates R. It is obvious that at the beginning 

the beaconing intervals are too small which make the success one hundred percent. 

This is due to the fact that with such small intervals, the vehicle would have ample 

opportunity to receive the beacon and start a successful data exchange with the is­

suing RSU regardless of the amount of data rate R. As the beaconing interval gets 

wider from 0.6 and above, we notice that the probability of successful data exchange 

decreases depending on the amount of data rate. The amount of data rate plays a 

positive role in increasing the probability of success until it gets capped by much 

wider beaconing intervals at around 1.2. From this point, the probability of success

1 --------------- r— --------- r
n s3  sim ulation result 

analytical result for IEEE 802.11
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declines regardless of the amount of the data rate. The real world interpretation for 

this phenomena is that long beaconing intervals do not leave enough room for the 

vehicles to successfully receive beacons and hence increases the likelihood of data 

exchange failure.

We now come to comparison of our numerical results with that of IEEE 802.11. 

Figure 27 shows the probability of successful information exchange between a vehicle 

and RSU versus different beaconing intervals having the average speed fixed at 70 

mph. It shows how the probability of successful connection varies when the beaconing 

interval is increased from 0.1 s to 1.2 s. We note that our results are pretty close 

to those of IEEE 802.11. This comparison between our numerical results and the 

analytical ones of IEEE 802.11 makes us believe that our simulation scenario is pretty 

close to real world system. We also note that, as expected, as the beaconing interval 

increases, the probability of successful information exchange decreases as more time 

is spent waiting for the beacon after the vehicle enters the RSU radio range, leaving 

less time available for the actual information exchange. Thus, it is important to 

set the beaconing interval at a suitable value, as decreasing the beaconing interval 

(that is increasing the number of beacons) will consume available bandwidth, while 

increasing the beacon interval (lowering the number of beacons) creates long periods 

of dead air which reduces the probability of successful information exchange. We note 

that an alternative approach may be to use active scanning by which the vehicle sends 

probe requests instead of waiting to receive a beacon from the RSU. We note that 

in IEEE 802.11 standard, in active scanning mode, the vehicle would send probe 

request frames over all 11 channels, which will either render all channels busy or 

cause interference in the channels which are already assigned to vehicles in adjacent 

lanes.

On the other hand, the speed of the vehicle is another im portant factor to be 

considered. We have conducted an independent experiment by changing the vehicle's
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speed and then extracting the corresponding probability of success for different data 

rates having fixed the beaconing interval at 700 ms. The plotted data is shown in 

28.

It is obvious from the figure that at the beginning the vehicle is too slow which 

makes the success one hundred percent. This is due to the fact that with such 

low speeds, the vehicle would stay longer under the coverage area and have ample 

opportunity to receive the beacon and start a successful data exchange with the 

issuing RSU regardless of the amount of data rate. As the vehicle moves faster 

above 60 mph. we notice that the probability of successful data exchange decreases 

depending on the amount of data rate. Again in such circumstances, the amount of 

data rate plays a positive role in increasing the probability of success until it gets 

capped by high speed at around 85 mph. From this point, the probability of success 

declines regardless of the amount of the data rate. The real world interpretation for 

this phenomena is that at high speeds, the vehicle will not have enough opportunity to 

successfully receive beacons, which increases the likelihood of data exchange failure.

Likewise, we have compared our numerical results obtained from ns3 simulator, 

to the analytical results of IEEE 802.11. We have tested the vehicle speed versus 

probability of information exchange having fixed the beaconing interval and data 

rates at 700 ms and 8 Kbps respectively. We have plotted our results in figure 28.

In Figure 29. we show how the probability of successful connection varies when the 

average vehicle speed varies from 45 to 85 mph for a beaconing interval Tb = 700 ms. 

In this case as well, we observe closeness between analytical and simulated results 

for speeds up to 70 mph. after which the to tal number of simulations should be 

increased to observe performance similar to the analytical values. Average speeds 

above 70 mph imply many more unsuccessful information exchange attem pts between 

vehicles and RSU. As expected, the higher the vehicle speed, the lower the probability
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of successful information exchange since vehicles will traw l through the RSU coverage 

area faster. However, at 70 rnph. which is the speed limit posted on most highways 

in the US. the probability of successful information exchange is quite high. Table 3 

shows the default and our simulation parameter values. The IEEE 802.11 standard 

assessment shows the feasibility of IEEE 802.11 standard for vehicle-to-infrastructure 

communication.

TABLE 3: Default and simulation parameter values
Parameters Default value Simulation value

RxPowerThreshold 0.1 dBm 0.1 dBm
rss -80 dBm -80 dBm

cRange -100 m 14 m
t power 0.9 dBm 0.9 dBm
txGain 0.2 dB 0.2 dB
rxGain 0.2 dB 0.2 dB

datarate 2 Mbps 8Kbps

Table 3 shows those parameters used in ns-3 simulator which is our preferred tool 

for this methodology. The default values of the parameters in the above table are 

used for Wireless LAX while we have configured it to fit our own purpose for only two 

parameters, ns-3 is the most popular network simulation tool used by educational 

institutes and software organizations. We believe that the use of this tool is very 

potential in our work and as well in extracting our numerical results. Through ns- 

3 we have implemented RSUs and the vehicles. We set the coverage range to 14 

meters and data rate to 8 kbps to study the probability of success data exchange in 

a shortest radio range with lowest speed data rate to create a similar scenario as in 

[71]. We published this work in IEEE GLOBECOM conference on Dec. 2013 [99].

For the purpose of increasing the number of vehicles aware of the RSUs and 

the probability of successful data exchange, each lane is assigned to partial or no 

overlapping channels to avoid collision between adjacent lanes. om net+ +  was used 

to see the feasibility of our assumption. Figure 30 gives the clear picture of the
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FIG. 30: Assigned each lane with different channel

scenario events. In our scenario, two vehicles on two adjacent lanes randomly generate 

packets, and they send them to the RSUs through the assigned channel for their 

lane. Two regular access points are set very close to each other represent a RSU. 

Figure 30 is the om net+ +  simulation graphic interface for our scenario assumption. 

Table 3 shows the simulation scenario channel parameters. Below is the om net++  

simulation A PI and AP2 scalars for our assumption from result General-0.sea hie in 

the om net++  simulation project result directory. The number of collisions is zero 

for both APs. This implies that we get same probability of successful data exchange 

between vehicles in different lanes and RSU as in figure 30.

3.6 SUM M ARY



67

In this chapter, we assessed the IEEE 802.11 standard with DCF for V2I com­

munication and information exchange. We presented an analytical approach for 

calculating the probability of successful information exchange between vehicles and 

RSUs. and corroborated the analysis with numerical results obtained from simu­

lations. We observed that a suitable beaconing interval has an im portant role in 

increasing the probability of successful information exchange in the considered V2I 

communications system, and that the results from our analysis indicate that IEEE 

802.11 standard with its beaconing mechanism is suitable for information exchange 

in V2I communications.
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CHAPTER 4 

INCIDENT DETECTION

The ability of detecting an incident and its position is important in traffic man­

agement systems to take the proper action at the right time. Current methods for 

automatic incident detection are not void of defects as they yield high percentages 

of false alarms. Minimizing the number of such false alarms is currently the main 

concern of research in the area. According to a study conducted in [100], Parkany 

et al. have shown that incident detection alarms were disabled at many traffic man­

agement centers because of high rates of false alarms. This creates challenges for 

the researchers to develop an automatic incident detection system with a lower rate 

of false alarms. The traffic parameters such as volume, number of changing lanes, 

average speed and density have been used by developers in their automatic incident 

detection applications. Also, many techniques and schemes were invented based on 

video detection cameras, cellular phones and inductive loop detectors. Most au­

tomatic incident detection algorithms adopt these parameters slightly in order to 

achieve the desired result. Today. Automatic Incident Detection is one of the top 

research topics after smart devices were built in vehicles and roads to provide road 

safety. These smart devices enable vehicles to communicate with each other and 

roadside units as well. Many traffic parameters and methods were developed and de­

fined to detect incidents on the roads and alert drivers in advance to avoid congestion 

[101 ].

4.1 SYSTEM  MODEL A N D  PROBLEM  STATEM ENT

The system proposed for AID in our work uses V2I communications between 

passing vehicles and RSUs placed at regular intervals on the highway as shown in
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figure 14. It is assumed that vehicles are equipped with Event Data Recorders, as 

mandated by the National Highway Transportation Safety Administration (XHTSA) 

[102]. which are expected to collect information about the vehicle dynamics and 

other required operating parameters related to vehicle mobility such as acceleration, 

deceleration, a current lane, lane change positions, and the lane change time. The 

vehicles exchange this information with RSUs placed at regular intervals along the 

road for various purposes which include AID and traffic congestion notification. This 

system for V2I communication has been studied in [71. 103] and has been suitable for 

rapid information exchange between vehicles traveling at highway speeds and RSUs.

In this framework, our goal is to define and aggregate relevant traffic parame­

ters at RSUs to establish new AID techniques. Specifically, we consider the average 

lane changing distance and average changing speed, and we study the variation of 

these parameters in both incident and non-incident conditions. We also state for­

mal AID algorithms based on these param eters that issue alerts to drivers about 

incidents, and we illustrate the proposed algorithms with numerical results obtained 

from simulations.

4.2 CH ANG ING  LANE DISTANCE (CLD) M ETHOD

In this method, the RSU processes the information collected from vehicles related 

to the coordinates of the vehicle as it changes lanes, illustrated schematically in 

figure 31. The RSU then calculates the distance each vehicle needs to change the 

lane to be used later in the incident detection algorithm. In reality, observing lane 

change within a short distance suggests the occurrence of an incidence.

Let A and B be two vehicles, and assume that vehicle A moves from lane 1 to 

lane 2 to pass vehicle B as shown in figure 31. If vehicle B is involved in an incident 

and/or traffic slowdown, the move of vehicle A from one lane to the other occurs 

usually when the two vehicles are closer to each other. In other words, the distance
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FIG. 31: Schematic descrip. of params associated with changing lane variation.

between "a" and ub" is shorter when incidents are present rather than having normal 

traffic flow. From analyzing the triangle "abc". where “c" is the point on lane 2 where 

vehicle A passes B. one can estimate the length \ab\ of uab" segment corresponding 

to the distance vehicle A  needs for changing lanes. This distance depends on the 

angle 0 and the distance \bc\ between “c” and l'b" as

tan 0 = (16)
\ab\

Now \ab\ can be easily calculated by knowing 9 (which the vehicle provides the RSU 

with) arid \bc\. which must be almost the width of the lane (typically 3.5 meters). 

The value of 6 depends on the driver's behavior and should be large enough to allow 

vehicle A to change lanes safely without hindering and /or colliding with the vehicle 

in the other lane C or the vehicle B involved in the slowdown.

For each vehicle A  G A.  where A  is the set of all vehicles that successfully 

uploaded their lane change information to the RSU. let B a be the set of all ordered 

pairs (dn. ta) where cln is the distance and ta is the time that vehicle A needs for 

changing lanes. The RSU then calculates the average distance and time fjfja.f i ta for
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FIG. 32: Schematic description of parameters associated with 
changing lanes.

variation for

all ordered pairs. If the average ordered pair (prfa. Hta) lies within a certain predefined 

critical region, namely Rj,  the RSU will increase its belief that an incident is present. 

This process is repeated by the RSU periodically with a constant time in between each 

repetition which depends on the speed limit of the roadway. The proposed incident 

detection procedure, formally stated as Algorithm 1 is then applied on filtered and 

restructured traffic collected data, by discarding any irrelevant data. Synchronization 

is also performed between the current time and the time needed for the filtering 

process.

Algorithm  1 -  Changing Lane Distance Method
1: Filter the data collected at RSU.
2: For all a € A  calculate B a a set of all (da. ta)s 
8: Calculate Hda • R/a for B a
4: if pair (AGa./^fa) is in pre-defined critical region R j  then  
•5: increase incident belief.
6 : end if
7: if incident belief > the pre-identified threshold then  
8: raise incident flag and issue traffic alert.
9: end if 

10: Go to Step 1.
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4.3 CH AN G ING  LANE SPEED (CLS) M ETHOD

In this method, the RSU processes the information collected from vehicles related 

to their speed changes in both incident and non-incident conditions. Specifically, as 

outlined in figure 32. the speed variation for a given vehicle A between the begin­

ning position of the lane change "a" to the finishing position "b" is related to the 

speed variation of vehicle C  between positions "a'" and "1/". The reasoning behind 

this approach is based on the fact that when vehicle A changes lanes, it will cause 

variation of vehicle C ’s speed, too. During normal conditions, the speed variation 

depends on several factors, among which we note are the behavior of the drivers, the 

vehicle classes, and the current traffic conditions. The average of speed variation fxVa 

and the related average time jj,ta will be calculated at RSU and if these parameters 

are in a pre-defined critical region R v for speed variation, the belief that an incident 

has occurred will be increased.

Algorithm  2 -  Changing Lane Speed Method
1: Filter the data collected at RSU.
2: For all a £ A  calculate B n a set of all {v„.t„)s
3: Calculate fiVn,i~tta for B a
4: if pair (p,,.a. /pa) is in pre-defined critical region R v then
5: increase incident belief.
6: end if
7: if incident belief >  the pre-identified threshold then
8: raise incident flag and issue traffic alert.
9: end if

10: Go to Step 1.

The CLS method is formally stated as Algorithm 2. which is similar to Algo­

rithm  1. except that in this case the information about the speed of vehicle va (and 

its variation in time) collected at the RSU is processed instead of the lane change 

distance dn used in the CLD method. We note that the upstream volume at the RSU 

can be used to identify the non-incident congestion, in which case the variation of 

vehicle speeds when changing lanes will be low. More precisely, when the upstream
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volume is larger than the road capacity, it causes congestion and corresponds to a 

different traffic state, for which there is a lot of research related to the identification 

of congestion using the shockwave diagram such as: [104. 105. 89. 106].

4.4 NUM ERICAL RESULTS

To illustrate the effectiveness of the proposed AID techniques, we simulated traf­

fic on a segment of a 1-mile 3-lane highway with two roadside units at the both 

ends collecting the required traffic information (vehicle lane and speed changes over 

time). Simulations were performed using the veins simulator [107]. which combines 

road traffic micro-simulation and network simulation. We simulated traffic” flows 

corresponding to 360. 400. 450. 514. 600, 720. 900. 1200. 1350 and 3600 vehicles 

per-hour per-lane for 100 times for both incident and non-incident traffic conditions. 

In incident condition, we have created an incident 400 meters close to the RSU at 

the down-stream end. Each vehicle uploads all collected information into the RSU 

for analysis and incident detection decision processes.

For the CLD method, figure 33 shows that in non-incident traffic conditions, lane 

changes for most vehicles occur outside the critical region, while when incidents are 

present, the lane change parameters are situated in the critical region corresponding 

to short distances over short periods of time for changing lanes.

For the CLS method, figure 34 shows that the average speed in non-incident con­

dition for changing lanes is faster than that of when incident conditions are present. 

Note that the critical region lies in a different location unlike figure 33. This is be­

cause we have different parameters here. This has clearly classified and categorized 

the incident and non-incident collected data around our identified threshold. In fig­

ure 35. we have compared our numerical results with those for Integrated Technique. 

Probabilistic Technique and California algorithm. We have observed that the inci­

dent detection rate of our algorithm is higher for low flow-traffic than that of other



74

9

(/)0?c
JS 8
G>05cm 7

s zo
£
CO 6
"O050)c:
<D 5
O

1c05> 4
*coXJcoo 3
CDCO
CD
E 2-—■
<u
03to
a3 I
>to

0

incident condition traffic 
non-incident condition traffic

FIG.

0 50 100 150 2 0 0  250
a verage d istance(m eters) veh icle  n e e d s  to ch a n g e lan es

33: Average time versus average distance for changing lanes.

1
■g
g.

0
<x>

1  
<0

20

15 •4* %

t------------------ r
incident condition 

ngn incident condition

^ c ritica l region

t- j¥'~. *• ’ ' '1 G ~.r
2 3 4 5

average time(second)

FIG. 34: Average speed variation versus average time when changing lanes.



75

1 .4  -

1 .2

t--------------- r
T h e  in te g r a te d  t e c h n iq u e  

T h e  p ro b a b ilistic  t e c h n iq u e  
C aliforn ia  a lgorith m  

C h a n g in g  la n e s  D is ta n a c e  T e c h n iq u e  
C h a n g in g  s p e e d  tim e T e c h n iq u e

a>to

1 -

0.8  -

<ua 0.6  -

0 .4

0.2 -

0
5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0

traffic f lo w (c a r s /h r /la n e )

FIG. 35; Detection rate

3 0 0 0  3 5 0 0

techniques. We note that usually the traffic flow has direct impact on detection rate 

and detection time because collecting enough information to detect incidents exceeds 

the threshold in a short period of time. From our simulation, we note that incident 

detection based on changing speed related to time is slower than incident detection 

based on lane changing distance. This is because changing speeds involving acceler­

ation and deceleration in both non-incident and incident conditions are very close to 

each other. Therefore, it is quite a challenge to identify threshold based on the speed 

changing method. So. in sum. our algorithm yields better results for low density 

traffic because in the event of such traffic, less information is in general available to 

detect incidents. However, in figure 36 we have shown the comparison with respect 

to changing lane distance in a separate data plot.

We now come to another test to verify the effectiveness of our AID. We have 

configured VEIN simulator to conduct a test for a typical incident detection. In
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figure 37. we have plotted the queue length of the vehicles as the function of time 

lapse during a typical traffic flow. In the figure, we note that the queue length 

rapidly grows in the absence of AID. Meanwhile, if the AID is enabled, the queue 

length slowly increases when the AID imposes either the change-lane solution or the 

change-speed solution. The reason is that when the vehicles receive alerts for the 

incident, they change their routes so that the congestion on the road would decrease. 

Note that in our simulated test, the capacity of the road is 5.000 vehicles with 4 lanes 

and the incident has caused the blockage of 2 lanes.

Another test that we have conducted is to verify the effectiveness in case a certain 

percentage of the vehicles pay attention to the incident alert. We have plotted our 

results of the queue length in figure 39 for different percentages. In the figure, we 

note that prior to resolving the incident, the queue length behaves almost like what 

we have shown in figure 37. However, as soon as the incident is resolved after time I, 

the queue length rapidly declines in case the AID being enabled while slowly declines 

m the absence of the AID. There is another time duration the trarfic flow wnien we 

have denoted by II. At this point, the negative impact of the incident is gone.

The simulation scenario was also developed for both our methods and the other 

three methods. We set up a three-lane freeway with the capacity of 5000 vehicles/h 

with the vehicles’ arrival rate 4500 vehicles/h and average speed 60 miles/h. Figure 

38 shows queue length when the incident is not resolved. The queue length in our 

method increases very slowly compared to the other methods. Figures 40. 41. and 

42 show the traffic queue length when the incident is resolved after a specific period 

of time. From the time the incident occurs to the time the incident is resolved, 

the queue length increases with all AIDs. which is the natural behavior, but the 

method we developed yields a shorter queue length compared to the other methods
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with varying rates of route changes. The vertical line represents the time when the 

incident is resolved (cleaned up), but congestion decreases gradually until normal 

traffic flow resumes, with the shortest queue reverting to a natural traffic pattern the 

quickest.

4.5 SUM M ARY

In this chapter, we defined two new traffic parameters: average speed and average 

distance vehicles need for changing lanes. We also developed an automatic incident 

detection based on these new traffic parameters. The simulation results showed that 

the detection rate of our method on a freeway is higher than that of integrated 

technique, probabilistic technique, and the California Algorithm detection rate for 

low-density traffic streams. We also used a wireless LAX network with multiple 

antennas at RSUs to assign each lane a specific channel for the purpose of providing 

reliability and validity of the vehicle safety communications.
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CHAPTER 5 

CONCLUSION AND FUTURE WORK

Finally in this chapter, we are going to summarize the proposed technique as well 

as evaluation. We will also make a number of recommendations for future work.

5.1 SUM M ARY

We assessed the IEEE 802.11 standard with DCF for V2I communication and in­

formation exchange. We presented an analytical approach for calculating the proba­

bility of successful information exchange between vehicles and RSU and corroborated 

the analysis with numerical results obtained from simulations. We observed that a 

suitable beaconing interval has an important role in increasing the probability of 

successful information exchange in V2I communication systems, and that the results 

from our analysis indicate that IEEE 802.11 standard with its beaconing mechanism 

is suitable for information exchange in V2I communications.

As for our automatic incident detection technique, we have defined two new traf­

fic parameters, namely the average speed and the average distance vehicles need for 

changing lanes. Our automatic incident detection is based on these new traffic pa­

rameters that provide information about incident. Our simulation results showed 

that our method has detection rates on a freeway higher than that of integrated 

technique, probabilistic technique, and the California Algorithm detection rate for 

low-densitv traffic streams. The major drawback of the California Algorithm is that 

it cannot quickly detect incidents in non-dense traffic. We also used a wireless local 

area network with multiple antennas at Road side units to assign each lane a specific



83

channel for the purpose of providing reliability and validity of the Vehicle Safety 

Communications.

5.2 DISSERTATION CO NTR IBU TIO N

Low probability of success data exchange between RSUs and vehicles in IEEE 

802.l i p  can be effected by several factors. Those factors are but are not limited to. 

high mobility nodes (vehicles) in wireless access in vehicular environment, limited 

coverage range of RSUs. and channel switching in IEEE 802.l ip  which is provided 

by IEEE 1609.4 standard. In IEEE 802.l ip .  vehicles must also broadcast beacons to 

keep accurate environment awareness because of dynamic behavior network topology 

in WAVE. This also raises the collision probability and delay in WAVE. Those vehicles 

which are willing to communicate with RSU must receive at least one RSU-generated 

WAVE Service Advertisement short message to exchange data  with the RSU on 

the subsequent service channel interval. Having probability of not receiving the 

WSA message as well as a short period of time under the RSU coverage range, 

vehicles cannot detect the RSU to upload (download) data to (from) RSU. In IEEE 

802.l ip .  RSU-awareness vehicle percentages are 9c60 to 9c80 based on traffic density. 

Losing some im portant information can reduce the accuracy of the outcome of the 

algorithms. This cannot represent real world system. Proposition of a technique to 

avoid negative impact of channel switching IEEE 1609.4 standard on the top IEEE 

802.l i p  standard is a major issue in a vehicular network communication.For this 

purpose, the IEEE 802.11 standard is used to increase the portability of success 

data exchange between RSU and the vehicle passing under the RSUs coverage area. 

The beaconing mechanism was used for the analytical evaluation based on the IEEE

802.11 standard specification timelines.

Finally, we developed AID algorithms to detect incidents in a low-traffic condition
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on a free-way and alert drivers ahead of time to avoid the congestion. In our method­

ology. reliability of communication between vehicle and RUSs has been maximized. 

This is very important for several safety applications. Collected data from several 

vehicles maximizes the accuracy of vehicle safety applications. Our designated goal 

concerns automatic incident detection achieved through collecting data from as many 

vehicles as possible hooked up with RSUs. as well as analyzing the collected data 

and making a decision based on the pre-identified threshold. To increase the number 

of vehicles to be aware of the RSUs. multiple antennas are used at RSUs with IEEE

802.11 standard for media access control instead of IEEE 802.lip .T hese antennas 

are placed close to each other to form RSUs. and they are connected to one common 

central service station. The collected raw data is stored, arranged, integrated, and 

set in a new data format at RSU central service. At RSU central service, our AID 

algorithms take this new data format as input to make a decision. The developed 

AID algorithms extracted required features (the distance and speed vehicle needed 

for switching lanes related to time) from the collected data. Results in this thesis 

have been published in references [109] and [110]

5.3 FU TU R E W ORK

The beaconing mechanism was very important in our developed automatic in­

cident detection method. A recommendation for future work accordingly, may be 

a planned scheme to study the use of the active scanning mode of IEEE 802.11 as 

an alternative to the beaconing mechanism, where vehicles send a probe request to 

RSUs only on channels that are available and not actively used. In our work, we 

did not take non-incident congestion into consideration. A recommendation for a 

following work in this regard is to develop methods and techniques to distinguish 

between non-incident and incident triggered congestions. Also. Bayesian Statistics
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may be applied to update our incident assumption to increase the detection rates. 

We are also planning to estimate the incident location based on the collected lane 

changing information.

Further, researchers could develop a protocol to disseminate message alerts that 

signal traffic congestion. The protocol might operate in such a wav that as time 

passes, the vehicle would be enabled to update the alerts depending on the status of 

the incident.

In general as for automatic incident detection, the length of the queue of the 

vehicles in traffic flow can also be used to develop a method. This is a factor by which 

one can expect incidents and even estim ate the expected delay due to the incident. 

The length of the queue can be inserted into the message alert and iipdated at any 

time during the traffic flow.



86

BIBLIOGRAPHY

[1] D. Jiang and L. Delgrossi. "IEEE 802.11 p: Towards an international standard 

for wireless access in vehicular environments." Vehicular Technology Confer­

ence. VTC Spring 2008. pp. 2036-2040. 2008.

[2] T. Zhang and L. Delgrossi. Vehicle Safety Communications: Protocols. Secu­

rity. and Privacy. John Wiley k  Sons. 2012. vol. 103.

[3] S. Grafting. P. Mahonen. and J. Riihijarvi. "Performance evaluation of IEEE 

1609 wave and IEEE 802.l i p  for vehicular communications." Ubiquitous and 

Future Networks (ICUFN). 2010 Second International Conference on. IEEE. 

pp. 344-348. 2010.

[4] L. F. Van Hoesel and P. J. Havinga. "A lightweight medium access proto­

col (LMAC) for wireless sensor networks: Reducing preamble transmissions 

and transceiver state switches." Society o f Instrument and Control Engineers 

(SICE), pp. 205-208. 2004.

[5] D. Jiang and L. Delgrossi. "IEEE 802.lip : Towards an International Stan­

dard for Wireless Access in Vehicular Environments." Vehicular Technology 

Conference. VTC  Spring 2008. IEEE. pp. 2036-2040. 2008.

[6] A. J. Ghandour. M. Di Felice. L. Bononi. and H. Artail. "Modeling and simula­

tion of WAVE 1609.4-based multi-channel vehicular ad hoc networks." Institute 

fo r Computer Sciences. Social-Informatics and Telecommunications Engineer­

ing (ICST). pp. 148-156. 2012.

[7] Q. Chen. D. Jiang, and L. Delgrossi. "IEEE 1609.4 DSRC multi-channel oper­

ations and its implications on vehicle safety communications." Vehicular Net­

working Conference (VNC). IEEE. pp. 1 8. 2009.



87

[8] S. U. Eichler, "Performance evaluation of the IEEE 802.11 p wave commu­

nication standard." Vehicular Technology Conference. VTC-2007. IEEE. pp. 

2199-2203. 2007.

[9] M. van Eenennaam. A. van de Venis. and G. Karagiannis. "Impact of IEEE 

1609.4 channel switching on the IEEE 802.l i p  beaconing performance." Wire­

less Days (WD). 2012 IFIP. IEEE. pp. 1-8. 2012.

[10] C. Robinson and L. Delgrossi. "Integrating In-Vehicle Safety with Dedicated 

Short Range Communications for Intersection Collision Avoidance." SAE Tech­

nical Paper. Tech. Rep.. 2010.

[11] X. H. T. S. Administration. "Traffic safety facts 2009." National Center 

for Statistics and Analysts. US Department of Transportation. Available at: 

http://www-nrd. nhtsa. dot. gov/Pubs/811402. pdf 2011.

[12] J. Paniati. "Traffic congestion and sprawl," Federal High­

way Administration." preprint (Nov. 2002). available at 

h t t p : //w w w .fhw a.dot. g o v /co n g es tio n /co n g p ress .h tm .

[13] M. J. Kittelson. "The Economic Impact of Traffic Crashes." Ph.D. dissertation. 

Georgia Institute of Technology. 2010.

[14] M. Papageorgiou. Concise encyclopedia of traffic & transportation systems. 

Pergamon Press Oxford. 1991.

[15] D. K. Nilsson. P. H. Phung. and U. E. Larson. "Vehicle classification based on 

safety-security characteristics.” Road Transport, Information and Control-RTIC  

2008 and IT S  United Kingdom Members' Conference. IET. pp. 1-7. 2008.

http://www-nrd
http://www.fhwa.dot.gov/congestion/congpress.htm


88

[16] C. Has. "Electronic sensing technologies for autonomous ground vehicles: A 

review." Advanced Topics in Electrical Engineering (ATEE). 2013 8th Inter­

national Symposium on. IEEE. pp. 1 6. 2013.

[17] R. Shorey. "Emerging Trends in Vehicular Communications: Communications 

in Electric Vehicles." IEEE New York Monitor, pp. 8 -15. 2011.

[18] \Y. Lawrenz.. CAN System Engineering. Springer. 2013.

[19] W. Lawrenz and T. Roskam. "LIX Protocol Conformance Test." SAE Technical 

Paper. Tech. Rep.. 2005.

[20] J. Voelcker. "Environment’s Stupid Top 10 Tech Cars.” Spectrum, IEEE. 

vol. 45. no. 4. pp. 26-35. 2008.

[21] J. B. Kenney. "Dedicated short-range communications (DSRC) standards in 

the united states." Proceedings of the IEEE. vol. 99. no. 7. pp. 1162-1182. 

2011.

[22] K. Koscher. A. Czeskis. F. Roesner, S. Patel, T. Kohno, S. Checkoway. D. Mc­

Coy. B. Kant or. D. Anderson. H. Shaeham et a i. "Experimental Security Anal­

ysis of a Modern Automobile." Security and Privacy (SP), 2010 IEEE Sympo­

sium on. IEEE. pp. 447-462. 2010.

[23] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applica­

tions. Artech house. 2005.

[24] K. Bilstrup. E. Uhlemann. E. Strom, and U. Bilstrup. "On the Ability of the 

802.l ip  MAC Method and STDMA to Support Real-Time Vehicle-to-Vehicle 

Communication.r EU RASIP Journal on Wireless Communications and Net­

working. pp. 1 13. 2009.



89

[25] S. Biswas. R. Tatchikou. and F. Dion. "Vehicle-to-vehicle Wireless Commu­

nication Protocols for Enhancing Highway Traffic Safety." Communications 

Magazine. IEEE. vol. 44. no. 1. pp. 74-82. 2006.

[26] D. V. McGehee. E. X. Mazzae. and G. S. Baldwin. "Driver reaction time in 

crash avoidance research: Validation of a driving simulator study on a test 

track." SAG E Publications, vol. 44. no. 20. pp. 3-320. 2000.

[27] E. M. Royer and C. E. Perkins. "Multicast operation of the ad-hoc on-demand 

distance vector routing protocol." Proceedings of the 5th annual A C M /IEE E  

international conference on Mobile computing and networking, pp. 207-218. 

1999.

[28] C. T. Cheng, H. L. Lemberg. S. J. Philip. E. van den Berg, and T. Zhang. 

"Slalom: A scalable location management scheme for large mobile ad-hoc 

networks." Wireless Communications and Networking Conference (WCNC), 

IEEE. vol. 2. pp. 574 578. 2002.

[29] G. Jayakumar and G. Gopinath. "Ad hoc mobile wireless networks routing 

protoeols-a review." Journal of Computer science, vol. 3. no. 8. p. 574. 2007.

[30] M. Kihl. M. Sichitiu. and H. P. Joshi. "Design and evaluation of two geo­

cast protocols for vehicular ad-hoc networks." Journal o f Internet Engineering. 

vol. 2, no. 1. 2008.

[31] T. Zhang and W. Chen. "Soft mobile ad-hoc networking." Springer, pp. 233 

238. 2001.

[32] A. Vahdat. D. Becker et al.. "Epidemic routing for partially connected ad hoc- 

net works." Technical Report CS-200006. Duke University. Tech. Rep.. 2000.



90

[33] I. . \Y. Group. "IEEE standard for information technology-telecommunications 

and information exchange between systems local and metropolitan area 

net works-specific requirements-part 11: Wireless lan medium access control 

(mac) and physical layer (phy) specifications amendment 6: Wireless access in 

vehicular environments." IEEE St.d. IEEE. vol. 802. p. l ip . 2010.

[34] H. Zhu. R. Lu. X. Shen. and X. Lin. "Security in service-oriented vehicular 

networks." Wireless Communications, IEEE. vol. 16. no. 4. pp. 16-22. 2009.

[35] M. Zargari. M. Terrovitis. S.-M. Jen. B. J. Kaczynski. M. Lee. M. P. Mack. 

S. S. Mehta, S. Mendis. K. Onodera. and H. Samavati. "A single-chip dual-band 

tri-mode CMOS transceiver for IEEE 802.11 a /b /g  wireless LAX." Solid-State 

Circuits, IEEE Journal of. vol. 39. no. 12. pp. 2239-2249. 2004.

[36] A. Doufexi. S. Armour. M. Butler. A. Nix. D. Bull. J. McGeehan. and P. Karls- 

son. "A comparison of the HIPERLAN/2 and IEEE 802.11 a wireless LAN 

standards." Communications Magazine. IEEE. vol. 40. no. 5. pp. 172-180. 

2002 .

[37] G. R. Hiertz. S. Max. Y. Zang. T. Junge. and D. Denteneer. “IEEE 802.11 

s mac fundamentals." M ASS 2007. IEEE Internatonal Conference on Mobile 

Adhoc and Sensor Systems, IEEE. pp. 1-8. 2007.

[38] Q. Chen. D. Jiang. T. Tielert. and L. Delgrossi. "Mathematical modeling of 

channel load in vehicle safety communications." Vehicular Technology Confer­

ence (V T C  Fall), 2011 IEEE. pp. 1-5. 2011.

[39] A. Weinfeld. "Methods to reduce dsrc channel congestion and improve v2v 

communication reliability." in 17th IT S  World Congress. 2010.

[40] A. Weinfied. J. Kenney, and G. Bansal. "An adaptive dsrc message transmission 

interval control algorithm." in IT S  World Congress. 2011.



91

[41] X. Yang and X. Vaidya. "On physical carrier sensing in wireless ad hoc net­

works." INFOCOM 2005. 24th. Annual Joint Conference of the IEEE Computer 

and Communications Societies. IEEE. vol. 4. pp. 2525-2535. 2005.

[42] R. K. Schmidt. A. Brakemeier. T. Leinmuller. B. Boddeker. and G. Schafer. 

"Architecture for decentralized mitigation of local congestion in vanets." in 10th 

International Conference on IT S  Telecommunications (ITST). Kyoto. Cite- 

seer. 2010.

[43] G. Bansal. J. B. Kenney, and C. E. Rohrs. "LIMERIC: A linear adaptive 

message rate algorithm for DSRC congestion control." IEEE Transactions on 

Vehicular Technology, vol. 62. no. 9. pp. 4182-4197. 2013.

[44] M. S. Bouassida and M. Shawky. "A cooperative congestion control approach 

within VAXETs: formal verification and performance evaluation." EURASIP  

Journal on Wireless Communications and Networking, p. 11. 2010.

[45] R. Baldessari. D. Scanferla. L. Le. W. Zhang, and A. Festag. "Joining forces 

for vanets: A combined transmit power and rate control algorithm." in 6th 

international workshop on intelligent transportation (W IT). 2010.

[46] H. Busche. C. Khorakhun. and H. Rohling. "Self-organized update rate control 

for inter-vehicle networks." in Proc. o f the 10th International Workshop on 

Intelligent Transportation (W IT). 2010.

[47] X. Guan. R. Sengupta. H. Krishnan. and F. Bai. “A feedback-based power 

control algorithm design for VAXET." IEEE. pp. 67-72. 2007.

[48] J. He. H.-H. Chen. T. M. Chen, and W. Cheng. "Adaptive Congestion Control 

for DSRC Vehicle Xetworks." IEEE Communications Letters, vol. 14. no. 2. 

pp. 127-129. 2010.



[49] Y. P. Fallah. C. Huang. R. Sengupta. and H. Krishnan. "Design of cooperative 

vehicle safety systems based on tight coupling of communication, computing 

and physical vehicle dynamics.” The 1st A C M /IE E E  International Conference 

on Cyber-Physical Systems, pp. 159 167. 2010.

[50] C. Khorakhun. H. Busche. and H. Rohling. "Congestion control for VAXETs 

based on power or rate adaptation." in Proceedings of the 5th international 

workshop on intelligent transportation (W IT). 2008.

[51] J. Mittag. F. Schmidt-Eisenlohr. M. Killat. J. Harri. and H. Hartenstein. "Anal­

ysis and design of effective and low-overhead transmission power control for 

VAXETs/' Fifth ACM  international workshop on Vehicular Inter-networking. 

pp. 39 48. 2008.

[52] M. Torrent-Moreno. J. Mittag. P. Santi. and H. Hartenstein. “Vehicle-to- 

vehicle communication: fair transmit power control for safety-critical infor­

m ation.” IEEE Transactions on Vehicular Technology, vol. 58. no. 7, pp. 3684- 

3703. 2009.

[53] Q. Chen. D. Jiang. V. Taliwal. and L. Delgrossi, "IEEE 802.11 based vehicular 

communication simulation design for XS-2.” Proceedings of the 3rd interna­

tional workshop on Vehicular ad hoc networks, pp. 50-56, 2006.

[54] S. Zeadally. R. Hunt. Y.-S. Chen. A. Irwin, and A. Hassan. "Vehicular Ad hoc 

Networks (VAXETS): Status. Results, and Challenges.” Telecommunication 

Systems, vol. 50. no. 4. pp. 217 -241. 2012.

[55] "FCC Report and Order 03-324: Amendment of the Commissions Rules Re­

garding Dedicated Short-Range Communication Services in the 5.850-5.925 

GHz Band." 2003.



93

[56] "FCC Report and Order 06-110: Amendment of the Commissions Rules Re­

garding Dedicated Short-Range Communication Services in the 5.850-5.925 

GHz Band." 2006.

[57] K. Hong. J. B. Kenney. V. Rai. and K. P. Laberteaux. ''Evaluation of Multi- 

Channel Schemes for Vehicular Safety Communications." Vehicular Technology 

Conference (V T C  2010-Spring), IEEE. pp. 1-5. 2010.

[58] T. K. Mak. K. P. Laberteaux. and R. Sengupta. "A multi-channel vanet provid­

ing concurrent safety and commercial services." Proceedings of the 2nd ACM  

international workshop on Vehicular ad hoc networks. ACM. pp. 1-9. 2005.

[59] A. M. Abbas and O. Kure. "Quality of service in mobile ad hoc networks: a 

survey." International Journal o f Ad Hoc and Ubiquitous Computing, vol. 6. 

no. 2. pp. 75-98. 2010.

[60] V. T. M. Do. L. Landmark, and 0 . Kure. '"A survey of qos multicast in ad hoc

networks." Future Internet, vol. 2, no. 3. pp. 388-416. 2010.

[61] A. Grundy. "Congestion control framework for delay-tolerant communica­

tions." Ph.D. dissertation. University of Nottingham. 2012.

[62] C. Lochert. B. Scheuermann, and M. Mauve. "A survey on congestion control 

for mobile ad hoc networks." Wireless Communications and Mobile Computing, 

vol. 7. no. 5. pp. 655 676. 2007.

[63] C. Campolo. A. Molinaro. and A. Vinel. "Understanding the performance of 

short-lived control broadcast packets in 802.11p/WAVE vehicular networks." 

Vehicular Networking Conference (VNC). IEEE. pp. 102-108. 2011.

[64] S.-Y. Wang. H.-L. Chao. K.-C. Liu. T.-W. He. C.-C. Lin. and C.-L.

Chou. "Evaluating and improving the T C P /U D P  performances of IEEE



94

802.1 l(p)/1609 networks." IEEE Symposium on Computers and Communica­

tion (ISCC). IEEE. pp. 163-168. 2008.

[65] C. Campolo and A. Molinaro. "On vehicle-to-Roadside Communications in

802.11 p/WAVE VAXETs." Wireless Communications and Networking Con­

ference (WCNC). IEEE. pp. 1010-1015. 2011.

[66] M. S. Almalag. S. El-Tawab. S. Olariu. and M. C. Weigle. "A modified TC- 

MAC protocol for multi-hop cluster communications in VAXETs." in Con­

nected Vehicles and Expo (ICCVE). 2013 International Conference on. IEEE. 

2013. pp. 832 837.

[67] C. Campolo and A. Molinaro. "The 1-880 Field Experiment: Effectiveness of 

Incident Detection Using Cellular Phones." California Partners for Advanced 

Transit and Highways (PATH), pp. 1010-1015. 1998.

[68] S. Eichler. “Performance evaluation of the IEEE 802.l i p  WAVE communi­

cation standard." Vehicular Technology Conference (VTC). IEEE. pp. 2199- 

2203. 2008.

[69] M. Almalag. "TDMA Slot Reservation in Cluster-Based VAXETs." Ph.D. dis­

sertation, Old Dominion University. May 2013.

[70] D. Treeumnuk. D. C. Popescu. and S. Olariu. "Requirements for the Physical 

Layer of the XOTICE System for Vehicular Communications." Proceedings 

2009 IEEE Global Telecommunications Conference GLOBECOM. pp. 3-7. 

December 2009.

[71] A. Daniel. D. C. Popescu. and S. Olariu. "A Study of Beaconing Mechanism 

for Vehicle-to-Infrastructure Communications." IEEE ICC 2012 Workshop on 

Intelligent Vehicular Networking: V 2V /V 2I Communications and Applications

W IVN 2012. pp. 7146-7150. June 2012.



95

[72] A. Vinel. A. Turlikov. and D. Staehle. "Study of Beaconing for Car-to-Car 

Communication in Vehicular Ad-Hoc Networks." in Proceedings 2009 ICC  

Workshops Communications Workshops. Dresden. June 2009.

[73] F. Cali. M. Conti, and E. Gregori. "IEEE 802.11 wireless LAX: capacity analy­

sis and protocol enhancement." INFOCOM '98. Seventeenth Annual Joint Con­

ference of the IEEE Computer and Communications Societies, IEEE. vol. 1. 

pp. 142 149 vol.l. Mar-2 Apr 1998.

[74] V. Bychkovsky. B. Hull. A. Miu. H. Balakrishnan. and S. Madden. "A measure­

ment study of vehicular internet access using in situ Wi-Fi networks." The 12th 

annual international conference on Mobile computing and networking, ACM. 

pp. 50-61. 2006.

[75] J. Eriksson, H. Balakrishnan. and S. Madden. "Cabernet: Vehicular Content 

Delivery Using WiFi." Proceedings of the 14th ACM  international conference 

on Mobile computing and networking, ACM. pp. 199-210. 2008.

[76] Y. Liu. F. Dion, and S. Biswas. "Dedicated short-range wireless commu­

nications for intelligent transportation system applications: State of the

art." Transportation Research Record: Journal of the Transportation Research 

Board, vol. 1910. no. 1. pp. 29-37. 2005.

[77] X. H. T. S. Administration. "Traffic safety facts 2004: A compilation of motor 

vehicle crash data from the fatality analysis reporting system and the gen­

eral estimates system (DOT HS 809 919)." US Department o f Transportation. 

Washington. DC. 2006.

[78] W. G. Xajm. J. D. Smith, and M. Yanagisawa. "Pre-crash Scenario Typology 

for Crash Avoidance Research." in D O T HS. Citeseer. 2007.



[79] M. Mailo. F. Ahmed-Zaid. C. Basnyake. L. Caminiti. S. Kass. M. Losh. J. Lund- 

berg. D. Masselink. E. Mc-Glohon. P. Mudalige et a l. "Final Report: Coop­

erative Intersection Collision Avoidance System for Violations (CICAS-V)." 

Technical Report. National Highway Traffic Safety Administration (XHTSA). 

Washington. DC. Tech. Rep.. 2008.

[80] M. Made and L. Delgrossi. "Cooperative intersection collision avoidance system 

for violations (CICAS-V) for avoidance of violation-based intersection crashes." 

Enhanced Safety o f Vehicles. 2009.

[81] M. Stearns and L.-G. Vega. "Independent Evaluation of the Driver Accep­

tance of the Cooperative Intersection Collision Avoidance System for Viola­

tions (CICAS-V) Pilot Test." National Technical Information Service. Tech. 

Rep.. 2011.

[82] F. Busch. "Concise Encyclopedia of Traffic Transportation Systems." Perga- 

mon Press, pp. 219-225. 1991.

[83] M. D. Robinson. "A model for Evaluating the Safety Implicatioms of Advanced 

Traveler Information Systems." Ph.D. dissertation. M.Sc. Thesis. Queen's Uni­

versity. 1995.

[84] E. Parkany and C. Xie. "A complete review of incident detection algorithms 

V their deployment: what works and what doesn't." National Technical Infor­

mation Service. Tech. Rep.. 2005.

[85] C. L. Dudek. C. J. Messer, and X. B. Nuckles. "Incident Detection on Urban 

Freeways." Transportation Research Record 495. pp. 12-24. 1974.

[86] E. Xiver. K. C. Mouskos. T. Batz. and P. Dwyer. "Evaluation of the 

TRAXSCOM's system for managing incidents and traffic (TRANSMIT)."



97

IEEE Transactions on Intelligent Transportation Systems, vol. 1. no. 1. pp. 

15-31. 2000.

[87] H. Payne and S. Tignor. "Freeway ineident-detection algorithms based on de­

cision trees with states." Transportation Research Record, no. 682. 1978.

[88] F. L. Hall. Y. Shi. and G. Atala. "On-line Testing of the MeMaster Incident 

Detection Algorithm Under Recurrent Congestion." Transportation Research 

Record 1394. PP- 1-7. 1993.

[89] A. I. Gall and F. L. Hall. "Distinguishing between incident congestion and 

recurrent congestion: a proposed logic," Transportation Research Record, no. 

1232. 1989.

[90] G. Karagiannis. O. Altintas. E. Ekici, G. Heijenk. B. Jarupan, K. Lin, and 

T. Weil. “Vehicular networking: A survey and tutorial on requirements, archi­

tectures, challenges, standards and solutions ." IEEE Communications Surveys 

& Tutorials. 2011.

[91] H. S. Mahmassani. C. Haas. S. Zhou, and J. Peterman. "Evaluation of Incident 

Detection Methodologies." University of Texas at Austin. Tech. Rep.. 2011.

[92] V. Milanes, J. Villagra. J. Godoy. J. Simo. J. Perez, and E. Onieva. “An Intelli­

gent V2I-based Traffic Management System." IEEE Transactions on Intelligent 

Transportation Systems, vol. 13. no. 1. pp. 49-58. 2012.

[93] K. Robert. "Video-based traffic monitoring at day and night vehicle features 

detection tracking." ITSC'09. 12th International IEEE Conference on Intelli­

gent Transportation Systems. IEEE. pp. 1-6. 2009.

[94] M. S. Shehata. J. Cai. W. M. Badawy. T. W. Burr. M. S. Pervez. R. J. Jo- 

hannesson. and A. Radmanesh. "Video-based autom atic incident detection for



98

smart roads: the outdoor environmental challenges regarding false alarms," 

IEEE Transactions on Intelligent, Transportation Systems, vol. 9. no. 2. pp. 

349 360. 2008.

[95] A. Skabardonis. T. Chira-Chavala. and D. Rydzewski. "The 1-880 field ex­

periment: effectiveness of incident detection using cellular phones." California 

Partners fo r  Advanced Transit and Highways (PATH). 1998.

[96] J. Zhang. F.-Y. Wang. K. Wang. W.-H. Lin. X. Xu. and C. Chen. "Data- 

driven intelligent transportation systems: A survey." Intelligent Transportation 

Systems, IEEE Transactions on. vol. 12. no. 4. pp. 1624 1639. 2011.

[97] National Highway Traffic Safety Administration. "Traffic Safety Facts Prelim­

inary 2009 Report." http://w ww -nrd.nhtsa.dot.gov/Pubs/811255.pdf. 2010.

[98] M. Abuelela. S. Olariu. and M. C. Weigle, '‘NOTICE: An architecture for the 

notification of traffic incidents." Vehicular technology conference. VTC Spring 

2008, IEEE. pp. 3001-3005. 2008.

[99] S. Sha-Mohammad, H. M. Abdel-Wahab. and D. Popescu. "A study of IEEE

802.11 standard for use in vehicle to infrastructure communication." Globecom 

Workshops (GC Wkshps), 2013 IEEE. pp. 1303-1307. 2013.

[100] C. Xie and E. Parkanv. "Use of driver-based data for incident detection." A p­

plications o f Advanced Technologies in Transportation. ASCE. pp. 143-150. 

2002 .

[101] B. M. Williams and A. Guin. "Traffic management center use of incident detec­

tion algorithms: Findings of a nationwide survey." Intelligent Transportation 

Systems. IEEE Transactions on. vol. 8. no. 2. pp. 351-358. 2007.

http://www-nrd.nhtsa.dot.gov/Pubs/811255.pdf


[102] X. H. T. S. Administration. "Traffic Safety Facts: 2007 Data: Pedestrians." 

Annals of Emergency Medicine, vol. 53. no. 6. pp. 824-824. 2009.

[103] S. A. Sha-Mohammed. D. C. Popescu. and H. M. Abdel-Wahab. "A new tech­

nique for automatic incident detection in intelligent transportation systems 

using aggregation of traffic parameters.” Wireless Communications and Net­

working Conference (WCNC). 2015 IEEE. pp. 2144 2148. 2015.

[104] P. Izadpanah. B. Hellinga. and L. Fu. "Automatic traffic shockwave identifica­

tion using vehicles trajectories." in Proceedings o f the 88th Annual Meeting of 

the Transportation Research Board (CD-ROM). 2009.

[105] D. Huang. S. Shere. and S. Ahn. “Dynamic highway congestion detection and 

prediction based on shock waves." Proceedings o f the seventh ACM  interna­

tional workshop on Vehicular Internetworking. ACM. pp. 11-20. 2010.

[106] Y. Wang and F. Li. “Vehicular ad hoc networks." Springer, pp. 503-525. 2009.

[107] C. Sommer. R. German, and F. Dressier. "Bidirectionally coupled network and 

road traffic simulation for improved I VC analysis." Mobile Computing, IEEE  

Transactions on. vol. 10. no. 1. pp. 3 -15. 2011.

[108] K. Fall and K. Varadhan, “The NS Manual (formerly ns Notes and Documen­

tation)." The V IN T  Project, vol. 47. 2005.

[109] F. Schmidt-Eisenlohr. J. Letamendia-Murua. M. Torrent-Moreno. and 

H. Hartenstein. Bug Fixes on the IEEE 802.11 DCF module of the Network 

Simulator n.s-2.28. Universitat Karlsruhe. Fakultat fiir Informatik. 2006.

[110] Q. Chen. F. Schmidt-Eisenlohr. D. Jiang. M. Torrent-Moreno. L. Delgrossi. and 

H. Hartenstein. "Overhaul of IEEE 802.11 modeling and simulation in ns-2."



100

The 10th AC M  Symposium on Modeling, analysis, and simulation of wireless 

and mobile systems. ACM. pp. 159-168. 2007.

[111] B. Musznicki and P. Zwierzykowski. ''Survey of Simulators for Wireless Sensor 

Networks." International Journal o f Grid and Distributed Computing, vol. 5. 

no. 3. pp. 23-50. 2012.

[112] A. Varga. "O m net++: Objective Modular Network Testbed in C + + ." Discrete 

event simulation system.. http://www. omnetpp. org.

[113] S. Eichler. C. Schroth. and J. Eberspacher. "Car-to-ear communication." Cite- 

seer. vol. 1. pp. 35-40. 2006.

[114] H. Noori. "Realistic Urban Traffic Simulation as Vehicular Ad-Hoc Network 

(VANET) via Veins Framework." in 12th Conference of Open Innovations 

Framework Prgrannn. FBUCT. 2012.

http://www


101

APPENDIX A 

SIMULATION TOOLS

For the purpose of evaluating the probability of success data exchange in vehicle to 

infrastructure communications, ns — 3 network simulation tool was used. Discrete 

event network simulator ns — 3 is one of the most used network simulation tools

[108]. Many education institutes and software organizations such as Sun Microsys­

tems. University of California at Berkeley, and Carnegie Mellon University strongly 

influenced the original implementation of IEEE 802.11 networks in ns — 2. While it 

has a limited accuracy in simulating radio behaviors [109]. it was not critical typi­

cally for higher protocol layers. In [110]. the remodeling of PHY and MAC layer is 

designed. Today, ns — 3 is a free source network simulation tool and is available on­

line at https://w w w .nsnam .org. The ns-3 can be installed on unix shell with ubuntu 

Linux platform. The unix shell script was used to run the ns — 3 implemented simu­

lation codes and to generate random numbers within the beacon interval to calculate 

random vehicle entering RSU coverage area. The probability of success is calculated 

in the same implemented unix shell script tool.

To calculate the successful communication between vehicle and road side unit, 

the packet cap ture  (pcap) which is an API for capturing network traffic was used. 

The tcpdum p unix command was used to print out the contents of captured packet 

on a network interface.

It is im portant to use the correct simulation tool that can fit within the require­

ments of a certain research. Because of the limitations imposed by ns — 3 and ns — 2 

as we mentioned above as well as the fact that their models cannot make vehicular 

networks much realistic [111]. OMXet+-H was used to simulate the proposed tech­

nique. O M X et++ is a network simulation tool that contains all ns — 2 features [112],

https://www.nsnam.org
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It is a batter choice for simulating physical layer. Therefore. O M X et++ was used to 

test the proposed technique.

The automatic incident detection can be completed in a large test bed [113]. To­

day. vehicle in network simulation (viens) simulator is one of the most comprehensive 

tools to make the vehicular network simulations as realistic as possible. It is also an 

open source software. One of the very important features of viens is reliance on the 

mobility model that was implemented by Transportation and Traffic Science com­

munity. The OpenStreetMap could be imported to simulate. OpenStreetMap is the 

full data set of the street maps in almost all the cities in the world. Viens coupled 

the two types of simulators: network simulator OMXet-|-+ and mobility SUMO. The 

most interesting feature of viens for AID scenario implementation is re-routing of 

cars in a reaction to network simulator [114].

The road side units and the vehicle wireless capability were created by using 

network simulator O M X et++ which the viens can couple with the mobility simu­

lator sumo. The scenario area was extracted from the OpenStreetMap fulldataset 

at www.OpenStrcctMap.org. The sumo road network file was created by command 

netconvert and then random trips were created for the vehicles by the command 

randomTrips. The routes and traffic flows are created by command duarouter. The 

mobility simulation part setup was completed by creating configuration file which 

combined the road nets, routes and vehicles. In these processes, several configured 

files will be created such as .ned.xml and .edg.xml for netconvert, and the routing 

files .net.xml. .poly.xml and .rou.xml and the last file, which contains the beginning 

and ending time plus the simulation time steps. For creating the network simula­

tion parts. O M X et++  is supported in viens. The messages, gates, connections, and 

self messages models were implemented in O M X et++. The XED file was imple­

mented for the vehicle, which contains the submodels. For example module interface 

imanetRouting was used as manet routing. Regarding the RSUs. they were created

http://www.OpenStrcctMap.org
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as the same vehicle network structures except for the mobility which is set to zero in 

a fixed location. The last step is the set up runtime parameters in a OMXetpp.ini. In 

viens simulation, the TCP socket at port 9999 is created for connecting OMXet+ +  

implemented part and SUMO parts. After both OMXet+ +  and sumo portions are 

implemented, first sumo-launched.py is used to create the TCP socket at port 9999 

in a listening state for connecting to the OMXet portion. When the completed con­

figure file is run in a different unix shell, automatically the OMXet+ +  and sumo will 

be launched and wait for the developer to run it.
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APPENDIX B

ABBREVIATIONS AND DESCRIPTION

Abbreviations Description
ACK Acknowledgement
BPSK Binary Phase-Shift Keying
BSS Basic Service Set
CBR Channel Busy Ration
CCH Control Channel
CDF Cumulative Distribution Function
CLD Changing Lane Distance
CLS Changing Lane Speed
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTS Clear to Send
DIFS Distributed Inter Frame Space
DSRC Dedicated Short Range Communication
GPS Global Position System
IEEE Institute of Electrical and Electronics Engineers
ITS Intelligent Transportation Systems
LIN Local Interconnect Network
MLME MAC Laver Management Entity
MOST Media Oriented System Transport
NHTSA National Highway Transportation Safety Administration
OFDM Orthogonal Frequency Division Multiplex
PHY Physical Layer
PLCP Physical Layer Convergence Protocol
RSU Road Side Units
RTS Request to Send
SCH Service Channel
SPAT signal phase and timing
US-DOT US Department of Transportation
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
WAVE Wireless Access in Vehicular Environments
WLAN Wireless Local Area Network
WME WAVE Management Entity
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