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ABSTRACT

Navigation filters used during an entry, descent, and landing scenario often receive 

measurements related to the terrain over which the vehicle is traversing. Models of the 

terrain can be presented in varying degrees of fidelity, providing increasingly realistic and 

accurate models of the surface. While it is ideal to provide the filter with the most realistic 

model possible, the performance is limited by the strict nature of the real time scenario. 

Therefore, it is of interest to determine what level of fidelity i s necessary t o achieve an 

accurate filtering s olution. Determining how best to incorporate terrain-related data into 

navigation solutions can help produce the most robust and efficient navigation filter possible.

In the interest of determining a nominal filtering performance, an ellipsoidal model 

of the surface is used to create a baseline for the navigation filter. Increasingly complex 

digital elevation models are then utilized to better represent the surface over which the filter 

is navigating. These different fidelity models are then incorporated into various components 

of the filter to determine effects on the navigation performance. Simulations are performed 

that indicate that, as higher fidelity models are used, an increase in tuning noise must also 

be implemented to counteract the increasingly erratic nature of the terrain. The effects 

introduced by increasing terrain fidelity are also found to be reduced via the introduction of 

a lower fidelity estimate to the higher fidelity truth model.

Once simulations using an extended Kalman filter update are analyzed, alternative 

methods are developed to increase filter p erformance. S imulations with r educed uncer-

tainties are performed to determine the effects of uncertainty on the terrain-based filtering 

solution. Following this, nonlinear transformations are implemented in an attempt to better 

account for the erratic nature of terrain-based models. While at lower fidelities these results 

provide increased performance, it is found that, as model fidelity is increased, the use of 

tuning noise or a lower fidelity estimate is once again required for a stable filtering solution.
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1. INTRODUCTION

As exploration of the solar system continues to progress, more missions are moving

from orbiting and collecting information to landing on the surface to get actual samples.

NASA’s launch of OSIRIS-REx [19] and the soon-to-be Mars 2020 [1] missions represent

two vehicles that aim to land on two very different terrain types, but in both scenarios, a safe

and reliable navigation filter is required for mission success. Part of the success that these

missions have depends on how the filter can perform while acuiring and processing sensor

data relative to the actual terrain of the surface. Sensors such as terrain relative navigation

(TRN) [12] or nadir [6] and slant range altimeters [34] all use models of the surface in their

measurement processes. Using a model that can accurately represent the real terrain is vital

to the stability of the filter in allowing it to converge on an accurate state estimate. Knowing

how close to the truth this model needs to be for the filter to perform properly allows a more

flexible filter that can better adapt to the mission at hand. As mission planners continue to

raise the bar in what they do, where they go, and their scientific utility once there, the need

for robust and reliable navigation will need to continue to evolve with more accurate and

efficient models to meet those demands.

1.1. BACKGROUND

1.1.1. Sensor Modeling. For a navigation filter performing in the scenario of entry,

descent, and landing (EDL), an assortment of onboard sensors are used to find a state

solution that reliably estimates the vehicle’s position, velocity, and attitude. These sensors

can include, but are not limited to, TRN, a star camera [20], slant range altimeter, and nadir-

pointing altimeter. The sensors of the vehicle are modeled to provide data onmeasurements,

such as altitude or descent rate, that are used in a navigation filter to produce an estimate of

the vehicle state. The state can be updated using these models of the sensor in conjunction
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with sensor data. These updates depend on the model used in the filter and how precisely

they agree with the sensor measurements. Since the sensor finds measurements using

real world information, the closer these models can come to mimicking the real world

environment, the more accurate a solution the filter will be able to find.

This can be shown when looking at, for instance, the altimeter sensor. This sensor

acquires measurements based off of the surface below it, finding the vehicle’s altitude above

the real terrain. When modeling this measurement the ability to accurately represent that

terrain with a high fidelity should provide a solution that more reliably converges to that real

world measurement the sensor provides. Therefore, it is desirable to utilize a representation

of the surface that can best map the real terrain the sensor uses. The downside to these

higher fidelitymodels is that they often requiremore computational complexity andmemory

usage to actively model these sensors in real time. To compensate for this, it is desirable to

understand how different model fidelities perform when modeling these sensors and what

level of fidelity is required to provide a reliable filtering solution.

Whenmodeling the terrain used for altimetermeasurements, there aremanyfidelities

of varying complexity that can be used to process a solution. The most basic of these is

a spherical representation of the surface. By taking the radius of the body that is being

landed on, a sphere can be constructed that represents the surface at its lowest fidelity. A

slightly more complex solution is that of an ellipsoidal model. This uses the eccentricity of

the body along with its semi-major axis to create a surface that better represents the body’s

actual shape. From here, digital elevation models (DEMs) are utilized in an attempt to

represent the actual terrain of the body. These DEMs are based off either a reference sphere

or ellipsoid and provide elevations of the surface with respect to these reference shapes. The

fidelity of the DEM can also vary and, here, includes global models of 1/4◦, 1/16
◦, 1/64

◦, and

1/128
◦, where these values correspond to the spacing between each point in the DEM. This

is where the trade off between accuracy and computational efficiency is once again found.

While the 1/128
◦ DEM is significantly more accurate than the 1/4◦ DEM, it also requires many
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times the memory and computations in order to locate the proper elevation of the terrain

below the spacecraft. Understanding what level of fidelity the filter requires to precisely

estimate its state will lead to a filter that is reliable, while maintaining efficiency in how it

determines its state estimate.

1.1.2. Filtering Solutions. A navigation filter is used to estimate the state of the

vehicle at each time step. In order for the filter to estimate the state between sensor

measurement updates, the state is propagated fromone time step to the next. The propagation

is then used to update the state in conjunction with the new measurements provided from

the sensors. This is often done in the minimum mean square error paradigm, which carries

the uncertainties of the mean from propagation to update using a matrix of covariances.

Traditionally this is performed using a Kalman filter [14] to propagate and update a linear

system. Given that the problem of EDL is very much a nonlinear system, this filter must

be adapted, and as such, the extended Kalman filter (EKF) [8] is used to linearize the

propagation between measurement updates. This problem is complicated even further

when the attitude of the spacecraft is taken into consideration. To estimate the attitude, a

quaternion representation is employed, which is a non-additive part of the state that the filter

must now propagate and update. To overcome this issue, a multiplicative EKF (MEKF) [5]

is used and allows a multiplicative update to be performed on the attitude quaternion state.

Beyond the problem of propagation and updating the complicated state produced by an

EDL scenario, the filter must also account for numerical factors that could cause the filter to

diverge or, in worst case scenarios, force the filter to fail and stop working completely. As

a preventative measure to these issues, a UDU factorized [3] or cholesky square-root (SR)

factorized [32] filter can be implemented. These forms of factorization are then applied to

the covariance to create a more robust filter that overcomes the problems often created by

numerical issues.
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As the filter continues to process measurements, it becomes more confident in the

projection of te state into the measurement and reduces the assosiated state-to-measurement

uncertainty. If the followingmeasurement then changes drastically fromwhat was expected,

the uncertainty of the more confident state-to-measurement mapping may not accurately

represent the quality of that solution. As these measurements become more erratic in how

they are formed, it can become difficult for the filter to properly approximate a solution

that resembles the true sensor solution. This can be seen in the case of filtering altimeter

measurements. As the fidelity of the model increases, so too do the number of complexities

and variations for which the filter has to account. While the lesser fidelities, such as the

spherical or 1/4◦ DEMmodels, have a relative smoothness to them that the filter can maintain

converging to a proper solution, as these fidelities progress up to the 1/128
◦ DEM model, the

corresponding elevation changes come so rapidly that the filter finds it difficult to determine

an accurate solution. One way of overcoming these possible issues is to use nonlinear

transformations that may be able to better account for these rapid variations. Allowing the

filter to model its updates in these cases with a nonlinear method, such as an unscented

transform (UT) [30] or Monte Carlo sampling [11], the state and its covariance can be better

approximated, even with increased surface variations.

1.2. OVERVIEW

For an EDL trajectory, a SR-MEKF is utilized with an inertial measurement unit

(IMU), a star camera, and an altimeter as the sensors to estimate the vehicle’s state and

covariance at each time step. For the altimeter, different fidelities are utilized within the

filter to determine how performance is affected as terrain complexity is increased. Testing

for this also uses different fidelities within different components of the filter. These include

the truth fidelity, which represents the sensor measurement, the estimate of the truth, and

the Jacobian of the measurement model. All three of these components can each use a

different fidelity model, where the truth has the highest fidelity to best represent the true
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measurement, allowing the estimate and its Jacobian to be lower fidelities. This variation

of fidelities allows the filter to be tested to see how its ability to converge on a solution is

affected when lower fidelity, more computationally efficient, estimates are used. This will

determine the most reliable and computationally efficient filter for use in this scenario.

As higher fidelity models are used, the increasingly erratic nature of the terrain can

cause the corresponding filter solution to be less accurate or even diverge. To maintain

stability of the filter solution, tuning noise can be introduced as a way of making the filter

less certain prior to each update of its state estimate ad covariance. This erratic terrain can

also be counteracted as the components of the filter are changed, such that a lower fidelity

estimate is used to compare to that of the truth, creating a smoother surface to estimate upon.

To use the more accurate, higher fidelity estimates without tuning noise, a large reduction

to the uncertainty can be implemented. Providing the filter with more confidence in its

state as soon as the sensor is engaged can create a filter that would more easily maintain

this confidence. An easy way to test this is by activating the altimeter sensor earlier in the

descent trajectory. The corresponding reduction in the uncertainty can make it easier for

the filter to quickly converge on a solution and then, with a more confident solution, better

account for the subsequent rapid variations in terrain.

While uncertainty reduction can work with moderate success, it is also of interest

to determine how nonlinear transformations of statistics may benefit state estimates. As

mentioned before, the more erratic nature of the terrain makes having a nonlinear trans-

formation desirable for handling such changes. To do this a nonlinear transformation is

used to approximate the altimeter measurement statistics, such that the filter may be able to

better utilize these more complex DEMs. The implementation of a nonlinear transformation

can come in many forms, but for the purposes here will be shown with both an unscented

transform (UT) and Monte Carlo sampling. The UT provides an example of how these
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errors can be reduced in a method that can work in real time scenarios. Meanwhile, the

Monte Carlo sampling provides a look into how the filter could perform under a “best case”

scenario, where computation time is not of consequence.

This study will work to define the filter and models used in Chapter 2 and Chapter

3. With the SR-MEKF and altimeter models described, simulations are detailed in Chapter

4. A discussion of how the filter performs given components of the same fidelities, and

then components of different fidelities is given. Having determined how the filter performs

under these conditions, alterations to this filtering method are discussed in Chapter 5, which

describes how uncertainty can be reduced in simulation, and how the unscented transform

and Monte Carlo sampling are implemented. Simulations for these alternative methods are

performed and discussed in Chapter 6, followed by a conclusion to this work in Chapter 7.
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2. FILTERING

The Kalman filter is known to be used for state estimation of a linear system [14].

In its use here, however, the filter must be adapted to fit the nonlinear scenario of lunar

descent navigation. This is the case with many engineering applications of the Kalman

filter, which typically leads to the use of linearization. Thus, the extended Kalman filter

(EKF) was developed to linearize about the mean using the dynamics of the system and

then update using new measurements [8]. This makes the EKF a common choice when

filtering of a nonlinear system is required. The construction of an EKF will be discussed,

along with the added alterations used in this study, that will eventually constitute the final

filter, a square-root multiplicative extended Kalman filter (SR-MEKF).

2.1. EXTENDED KALMAN FILTER

To formulate the EKF, first consider the nonlinear dynamical system, which is taken

to be

xk = f (xk−1) + Mk−1wk−1 , (2.1)

where xk is the state at tk , f (·) represent the nonlinear dynamics of the system, xk−1 is

the state at tk−1, and Mk−1 is the mapping matrix for the process noise, which maps the

zero-mean white noise given by wk−1 into the dynamics.

The nonlinear measurement model is then taken of a similar form

zk = h(xk) + vk (2.2)

where zk is the measurement given at time tk via the measurement model h(·) evaluated at



8

the state xk . The measurement noise is given by vk , which is assumed to be a zero-mean

white noise sequence with covariance Rk .

2.1.1. Mean and Covariance Propagation. To determine amethod formean prop-

agation the expected value, E{·}, of Eq. (2.1) is taken as

E{xk} = E{ f (xk−1) + Mk−1wk−1}

= E{ f (xk−1)} + E{Mk−1wk−1} . (2.3)

When noting that the Mk−1 mapping matrix is deterministic and that the expected value of

E{xk} = mk , it can be said that using Eq. (2.3)

mk = E{ f (xk−1)} + Mk−1E{wk−1} . (2.4)

To find the expectation of f (xk−1) a first-order Taylor Series is expanded about the current

mean

f (xk−1) ' f (mk−1) + F(mk−1)(xk−1 − mk−1) , (2.5)

where F(mk−1) is the Jacobian of the dynamics given by

F(mk−1) =

[
∂ f (xk−1)

∂xk−1

����
xk−1=mk−1

]
.

Taking Eq. (2.5) and substituting it into Eq. (2.4) this becomes

mk = E{ f (mk−1) + F(mk−1)(xk−1 − mk−1)} + Mk−1E{wk−1}

and assuming that f (·), F(·), and mk−1 are also deterministic this becomes

mk = f (mk−1) + F(mk−1)E{(xk−1 − mk−1)} + Mk−1E{wk−1} . (2.6)
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If the estimation error is defined as

ek−1 = xk−1 − mk−1

which can then be substituted into Eq. (2.6) to get

mk = f (mk−1) + F(mk−1)E{ek−1} + Mk−1E{wk−1} . (2.7)

Since wk−1 is a zero-mean noise, and ek−1 is constructed to be zero-mean for an unbiased

a priori estimate, the expected value of these processes is zero. This is done such that an

unbiased a posteriori estimate can be determined, as is intended. When using this in Eq.

(2.7) the mean as it evolves over time is finally determined as

mk = f (mk−1) . (2.8)

With the mean propagation now defined the state estimation error covariance needs

to be determined. This covariance, Pk , is defined as

Pk = E{ek e
T
k } , (2.9)

where the state estimation error is

ek = xk − mk (2.10)

and recalling from Eqs. (2.1), (2.8), and (2.5) the estimation error corresponding to the

state as it evolves over time can be found by substituting into Eq. (2.10) as
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ek = [ f (xk−1) + Mk−1wk−1] − f (mk−1)

= f (mk−1) + F(mk−1)(xk−1 − mk−1) + Mk−1wk−1 − f (mk−1)

= F(mk−1)ek−1 + Mk−1wk−1 .

This final equation for the state estimation error can now be used in Eq. (2.9) where

ek e
T
k = [F(mk−1)ek−1 + Mk−1wk−1][F(mk−1)ek−1 + Mk−1wk−1]

T

= F(mk−1)ek−1e
T
k−1F(mk−1)

T + Mk−1wk−1e
T
k−1F(mk−1)

T

+ F(mk−1)ek−1w
T
k−1M

T
k−1 + Mk−1wk−1w

T
k−1M

T
k−1 ,

When taking the expectation of this, F(·), M(·), and mk−1 are assumed to be deterministic

such that

E{ek e
T
k } = F(mk−1)E{ek−1e

T
k−1}F(mk−1)

T + Mk−1E{wk−1e
T
k−1}F(mk−1)

T

+F(mk−1)E{ek−1w
T
k−1}M

T
k−1 + Mk−1E{wk−1w

T
k−1}M

T
k−1

sothe remaining expectations presented here include the uncorrelated noise, which are zero-

mean and therefore go to zero, the definition of the a priori covariance, Pk−1, and the a

priori power spectral density, Qk−1, where

E{wk−1e
T
k−1} = E{ek−1w

T
k−1} = 0

E{ek−1e
T
k−1} = Pk−1

E{wk−1w
T
k−1} = Qk−1 ,

which finally produces the evolution of the state covariance at each time step

Pk = F(mk−1)Pk−1F(mk−1)
T + Mk−1Qk−1M

T
k−1 . (2.11)



11

2.1.2. Mean and Covariance Update. Once the state has been propagated along

with its respective estimation error covariance the estimated state and covariance need to

be updated using new measurement data. To do this it is assumed an a posteriori mean is

produced via the inclusion of new measurement information. This a posteriori mean, m+k ,

is defined as

m+k = ak + Kk zk (2.12)

where ak is a constant vector that will be shown to encapsulate the a priori mean, Kk is a

linear gain, which will be further developed later on, and zk is the newmeasurement defined

in Eq. (2.2). Recalling Eq. (2.10) and defining it for both the a priori and a posteriori

errors as

e−k = xk − m−k (2.13)

e+k = xk − m+k , (2.14)

which are then solved for the a priori and a posteriori mean so the a priori mean can be

solved as

m−k = m+k + e−k − e+k . (2.15)

When the errors are once again constructed to be unbiased and zero mean it is found that

using Eq. (2.12) the expectation of the a priori is
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m−k + e−k − e+k = ak + Kk zk

E{m−k + e−k − e+k } = E{ak + Kk zk}

m−k = ak + Kk ẑk

where ẑk is the estimated measurement, which is given by E{zk}. This is then solved for

ak where

ak = m−k − Kk ẑk ,

and substitute it back into Eq. (2.12) to determine the updated mean as

m+k = m−k + Kk(zk − ẑk) . (2.16)

Following from this, the a posteriori error covariance needs to be defined for the update.

This is done with the a posteriori covariance expected from the error as

P+k = E{e+k (e
+
k )

T } (2.17)

where the a posteriori error is found using Eq. (2.16) to substitute into Eq. (2.15) as being

m−k = m−k + Kk(zk − ẑk) + e−k − e+k

where the a posteriori error is solved for as

e+k = e−k − Kk(zk − ẑk) . (2.18)

Using Eq. (2.13) to substitute in for e−k in Eq. (2.18) the a posteriori covariance is found as



13

P+k = E{(xk − m−k )(xk − m−k )
T − (xk − m−k )(zk − ẑk)

TKT
k

− Kk(zk − ẑk)(xk − m−k )
T + Kk(zk − ẑk)(zk − ẑk)

TKT
k }

where, when the gain, Kk , which is assumed to be deterministic, is pulled out of the equation,

it is then found to be

P+k = E{(xk − m−k )(xk − m−k )
T } − E{(xk − m−k )(zk − ẑk)

T }KT
k

− Kk E{(zk − ẑk)(xk − m−k )
T } + Kk E{(zk − ẑk)(zk − ẑk)

T }KT
k .

To complete the construction of the a posteriori covariance, its expectations are shown as

the a priori covariance, P−k , that has been previously defined, the cross covariance, Ck , and

measurement covariance,Wk , which correlate to the expect values as

P−k = E{(xk − m−k )(xk − m−k )
T }

Ck = E{(xk − m−k )(zk − ẑk)
T } (2.19)

Wk = E{(zk − ẑk)(zk − ẑk)
T } (2.20)

so that the a posteriori covariance is found as [35]

P+k = P−k − CkK
T
k − KkC

T
k + KkWkK

T
k . (2.21)

From here, the gain, Kk , is found such that the a posteriori mean square state

estimation error is minimized; the mean square error (MSE) performance index [8] is given

by
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J = E{(e+k )
T e+k } = traceE{e+k (e

+
k )

T } = traceP+k

= trace{P−k } − trace{CkK
T
k } − trace{KkC

T
k } + trace{KkWkK

T
k }

= trace{P−k } − 2 trace{KkC
T
k } + trace{KkWkK

T
k } . (2.22)

Now to find the minimum of this function the derivative needs to be taken [8] where

∂

∂Kk
trace{KkC

T
k } = Ck

∂

∂Kk
trace{KkWkK

T
k } = Kk[Wk +W

T
k ]

so that the derivative of Eq. 2.22 is

∂J
∂Kk

= −2Ck + 2KkWk

where the measurement covariance, Wk , is symmetric, such that it can be simply said that

Wk +W
T
k = 2Wk . The gain that minimizes the performance index is found by rendering it

stationary and solving for the gain such that

∂J
∂Kk

= −2Ck + 2KkWk = 0 (2.23)

Kk = CkW
−1
k . (2.24)

providing the Kalman gain.

Looking at the measurement, zk , the expected value is denoted by

E{zk} = ẑ . (2.25)

It can be solved for the measurement estimate, ẑ, from the expectation of Eq. 2.2 as
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ẑ = E{h(xk) + vk} . (2.26)

Following the same approach used for the dynamics, h(xk) is expanded in a first-order

Taylor Series about the a priori state estimate, such that

h(xk) ' h(m−k ) + H(m−k )(xk − m−k ) , (2.27)

where H(m−k ) is the Jacobian of the measurement, which is

H(m−k ) =

[
∂h(xk)

∂xk

����
xk=m

−
k

]
.

Substituting Eq. 2.27 into Eq. 2.26 the measurement estimate can now be expressed as

ẑ = E{h(m−k ) + H(m−k )(xk − m−k ) + vk}

= E{h(m−k )} + E{H(m−k )(xk − m−k )} + E{vk}

= E{h(m−k )} + E{H(m−k )e
−
k } + E{vk}

Assuming that h(·), H(·), and mk are deterministic and that the a priori error, e−k , and the

measurement noise, vk , are constructed as zero-mean, the estimated measurement, which

is taken to be the expected measurement, is found to be

ẑ = h(m−k ) .

To complete the update, the cross covariance and residual covariance need to be

computed in order to find the Kalman gain and the a posteriori mean and covariance.

Starting with the cross covariance given in Eq. 2.19, the second term of the expectation is

evaluated with Eq. 2.27 being substituted into Eq. 2.2 with the measurement estimate in
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Eq. 2.25 subtracted from it such that

zk − ẑk = hk(m
−
k ) + H(m−k )(xk − m−k ) + Lkvk − hk(m

−
k )

= H(m−k )(xk − m−k ) + Lkvk (2.28)

= H(m−k )(e
−
k ) + Lkvk . (2.29)

This is then substituted into Eq. 2.19 as

Ck = E{(xk − m−k )(xk − m−k )
T }H(m−k )

T + E{(xk − m−k )v
T
k }L

T
k

= E{e−k (e
−
k )

T }H(m−k )
T + E{e−k v

T
k }L

T
k

where H(m−k ) and Lk are outside of the expectations since they are assumed to be deter-

ministic. With the assumption that the state is uncorrelated to the measurement noise, vk ,

then becomes zero and leaves the cross covariance as

Ck = P−k H(m
−
k )

T . (2.30)

That leaves the covariance of the measurement as the last to find by multiplying Eq.

2.29 by its transpose as in Eq. 2.20. This gives the covariance as

Wk = (Hk E{e−k } + Lk E{vk})(Hk E{e−k } + Lk E{vk})
T

= Hk E{e−k e
−T

k }H
T
k + Lk E{vkv

T
k }L

T
k

= HkP
−
k H

T
k + LkRkL

T
k , (2.31)

where, once again, H(m−k ) and Lk are assumed to be deterministic and fall outside the

expected value and where the covariance of the measurement noise, vk , is given as Rk . This

gives the last definition needed to calculate the a posteriori state covariance. Using Eqs.
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2.24, 2.30, and 2.31 the covariance in Eq. 2.21 is found, such that the EKF update is now

completed.

2.2. MULTIPLICATIVE EKF

The EKF described is designed using a three parameter attitude, but for the filtering

solution in use, a quaternion measurement is used. In order to use this within the EKF

framework the Multiplicative EKF (MEKF) [5] needs to be implemented. This is done

so that the attitude error can be quantified as a three-parameter attitude, while the state

uses a quaternion measurement. This approximation is due to the benefit of a small angle

assumption in the errors. Since the EKF as it has been defined thus far is updated where the

estimated mean is added to the a priori mean the quaternion attitude could not be utilized.

This is because the quaternion attitude used for the update does not reside in vector space,

so it is not additive and can not merely be added to find a valid quaternion as is done in the

update for the remaining state parameters. In order to make use of this quaternion attitude

update the filter needs to be adapted to the MEKF that will allow the filter to make use of

these measurements. Doing this then allows for a filter that can utilize the advantages of a

quaternion attitude.

This is first done by defining the quaternion update as

ˆ̄q+k = δ q̄(∆θ) ⊗ ˆ̄q−k

so that ˆ̄q+k is the updated quaternion estimate, δ q̄(∆θ) is the conversion of the 3-parameter

attitude to a quaternion, and ˆ̄q−k is the a priori attitude estimate. For the MEKF, the update

is done in two steps shown as
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m+k,1 = m−k + Kk(z − ẑ) (2.32)

m+k,2 =


1
2∆θ̂k

1

 ⊗ ˆ̄q−k (2.33)

where first the additive update, m+k,1, is done and then the quaternion update, m+k,2 is

completed to find the updated state. This quaternion update is then normalized via

ˆ̄q+k =
ˆ̄q+k
| | ˆ̄q+k | |

where Eq. 2.33 is then brute-force normalized due to the utilized small angles assumption.

This update is then show where Eqs. 2.32 and 2.33 are put together as

m+k =


m+k,1

m+k,2


so that both the additive and quaternion sections of the mean get updated to the a posteriori

mean.

2.3. FILTERING ALTERATIONS

While the filter as described works in filtering the data in an effort to produce an

estimate that converges to the true solution, it is not immune to failure. Several anomalies

can cause the filter to fail or stop working in some fashion. Problems such as a negative

variance value or large covariance growth can cause divergence of the filter or, in the worst

cases, stop the filter completely. To preemptively prevent these problems some alterations

to the filter can be made. These alterations work to make a more robust and reliable filter

that will continue to operate and provide state estimates even in challenging environments.
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2.3.1. Square-Root MEKF. The covariance matrix has strict attributes of sym-

metry and positive definiteness that must be maintained in order for the filter to continue

processing measurements. While symmetry can be easily maintained through brute-force

symmetrization, maintaining a positive covariance is more difficult. To counteract this

issue, an adaptation to the filter to work with square-root factors of covariance matrices is

implemented. While this can also be done with UDU for upper triangular factorization [3],

here square-root factorization is used within the filter. This uses the Cholesky square-root

factor [21, 32] to factorize the covariance of the state to add a layer to numerical reliability.

This development is referred to as the square-root MEKF (SR-MEKF) and will be defined

for use here, greatly increasing the robustness compared to the MEKF.

To define a method for the filter to work with square-root factors of the covariance

matrix it is first noted that given some covariance matrix A, the square root factors can be

found as

A = SST ,

so that S represents the square root factor of A. Applying this to the a priori covariance it

can be said that

P−k = S−k (S
−
k )

T

P+k−1 = S+k−1(S
+
k−1)

T

Nk−1 = Tk−1(Tk−1)
T ,

where P−k is the a priori covariance at time tk with S−k as its square-root factor, P+k−1 is

the a posteriori covariance at time tk−1 with S+k−1 as its square-root factor, and Nk−1 is the

process noise covariance, formally noted in Eq. 2.21 as Qk−1, with Tk−1 as its square-root

factor. This gives the a priori covariance defined with square-root factors by substituting
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the covariances in Eq. 2.11 with there square-root factor representations such that

P−k = S−k S
−T

k = F(m+k−1)S
+
k−1(S

+
k−1)

T (F(m+k−1))
T + Mk−1Tk−1T

T
k−1M

T
k−1 ,

which can be re-written in factorized terms as

P−k = S−k S
−
k = [F(m

+
k−1)S

T
k−1 |Mk−1Tk−1][F(m

+
k−1)S

T
k−1 |Mk−1Tk−1]

T

so that

S−k = [F(m
+
k−1)S

+
k−1 |Mk−1Tk−1] .

While this does give a valid square-root factor, it is still contained within a non-square

matrix. In order to acquire a square matrix of the square-root factor the QR-Decomposition

method is utilized. Consider the QR-Decomposition of some matrix A, which is given by

AT = QRT , (2.34)

withQ as a unitarymatrix and R as a lower triangular matrix, making RT an upper triangular

matrix. Taking the transpose of Eq. 2.34 then allows us to say

A = RQT

so that when A and AT are multiplied together it produces

AAT = RQTQRT .

Since Q is a unitary matrix
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AAT = RRT

meaning that R is a valid square root factor of AAT . Utilizing these concepts in the square-

root factorization of the covariance propagation, the a priori covariance is determined by

using the QR-decomposition method, qr(·), to get

S−k = qr{[F(m+k−1)S
T
k−1 |Mk−1Tk−1]

T }T ,

where in this case the formulation is designed with transposes included such that it works

within the MATLAB framework.

For the a posteriori covariance the measurement covariance and the Kalman gain

need to be developed in such a way that they can also use the square-root factorized

covariances. To start this the measurement covariance is defined as

Wk = H(m+k−1)P
−
k H(m

+
k−1)

T + LkRkL
T
k (2.35)

where covariance components are broken down into square-root factors such that

Wk = SWk
ST

Wk
(2.36)

P−k = S−k (S
−
k )

T (2.37)

Rk = SRk
ST

Rk
. (2.38)

These equations can then be substituted into Eq. 2.35 where the measurement covariance

is represented with square-root factors as

Wk = SWk
ST

Wk
= H(m+k−1)S

−
k (S
−
k )

TH(m+k−1)
T + LkSRk

ST
Rk
LT

k ,
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where QR-decomposition can then be used to find the solution as

SW = [H(m
+
k−1)S

−
k |LkSR][H(m

+
k−1)S

−
k |LkSR]

T

= qr{[H(m+k−1)S
−
k |LkSR]

T }T .

With the measurement covariance computed using square-root factors, the Kalman

gain now needs to be changed to also use the factorized covariances. To start this it is

reminded that the Kalman gain was defined in Eq. 2.24 and is now evaluated where Wk is

substituted out for its square-root factors in Eq. 2.36,from this it is seen that the Kalman

gain is represented as

Kk = CkS
−T
W S−1

W (2.39)

so that themeasurement covariance is broken into its square-root factorized form. Following

that the cross covariance in Eq. 2.30 needs to be evaluated using the square-root factors of

the a priori covariance in Eq. 2.37 as

Ck = S−k [HkS
−
k ]

T . (2.40)

With these definitions Eq. 2.39 can be broken into two equations as

Uk = CkS
−T
W

Kk = UkS
−1
W (2.41)

giving the Kalman gain using square-root factors.

With these defined a square-root factorized a posteriori covariance can now be

constructed. This is done by substituting in the square-root factors of Eqs. 2.40 and 2.36

into Eq. 2.21 such that
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S+k S
+T

k = S−k (S
−
k )

T − KkSWk
ST

Wk
KT

k − KkSWk
ST

Wk
KT

k + KkSWk
ST

Wk
KT

k

= S−k (S
−
k )

T − KkSWST
WKT

k .

Then Eq. 2.41 can be taken and manipulated so that

Uk = KkSW

which then allows the a posteriori covariance to be defined as

S+k S
+
k = S−k S

−T

k − UkU
T
k (2.42)

where Uk is a n × m matrix with state dimension n and measurement dimension m. Matrix

Uk can be written as

Uk = [u1 u2 · · · um]

so that the covariance update then becomes

S+k S
+
k = S−k S

−T

k − u1u
T
1 − u2u

T
2 − · · · − umu

T
m .

This then requires a sequence of Cholesky downdates to update the covariance. This is

done so that if m = 2 the rank-1 downdate is shown as

S̃−k (S̃
−
k )

T = S−k (S
−
k )

T − u1u
T
1

which is then used to find the updated square root factors determined by a second rank-1

downdate where

S+k (S
+
k )

T = S̃−k (S̃
−
k )

T − u2u
T
2 .
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This gives the a posteriori covariance square-root update, S+k , which can be done where the

Cholesky downdate is represented by choldowndate(·), as

S+k = choldowndate{S−
T

k ,Uk}
T .

This now allows the covariance of both the propagation and the update to be done using

square-root factors, providing the more robust and reliable filter that was intended.

2.3.2. Residual Editing. On occasion, the data provided by the sensors may fall

uncharacteristically outside of what would be expected, which can result in a lose of

accuracy as the measurement is processed by the filter. This form of unreliable data can

occur for numerous reasons, but in order to make the filter robust in such a manner that it

can account for this, a residual editing method is implemented. This is a form of checking

the measurement residual and its error covariance to determine if the data used to update the

filter is reliable, and if not, the data can be ignored and discarded. To do this, a probability

gate to compare against is chosen from a χ2 distribution table [25]. Using the Mahalanobis

distance of the residual to compare to this probability gate provides information on if the

data update is usable or not [2, 17]. In the case that the data is unreliable, the data is

discarded and the a priori mean and covariance are used as the a posteriori updated mean

and covariance. This previously mentioned Mahalanobis distance is found as

d = rT
k W

−1
k rk

where W is the measurement covariance and r is the measurement residual. This is

compared to the χ2 probability gate, Pg, given its degrees of freedom, q, where if

d > χ2(q, Pg)

such that the Mahalanobis distance, d, was larger than the χ2 probability gate, the update
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would be discarded. Thiswill keep the filter from losing accuracy by diverging unnecessarily

from its solution and provide an added increment of robustness to the filter.

2.3.3. Underweighting. In some cases the filter can have a long propagation cor-

responding to a gap between measurements that forms a large state estimation error co-

variance that, when updated with an accurate measurement, can cause an over-convergence

that can then cause the filter to diverge. To counteract this process a “softening” to the

covariance with an underweighting [18, 27] factor can be added to the gain keeping this

over-convergence from happening. To do this the gain is altered such that

Kk = P−k H
T
k

[
1
p
HkP

−
k H

T
k + LkRkLk

]−1
,

so that the 1
p factor can soften the update. This update needs to remain positive where if

p = 1 it can be seen that the gain is then unchanged from the Kalman gain. The ‘’standard”

value of p is 5
6 , as was used for the Shuttle navigation system [18]. To do this there must be

a check that satisfies some cutoff point. This cutoff point can be defined as��������HkP
−
k H

T
k

��������> p
1 − p

��������LkRkL
T
k

�������� ,
where the softening factor, p, is the acceptable percentage decrease of the uncertainty across

a single update. With this “softened” gain implemented a filter can be maintained that, even

after long periods of propagation, can converge on a solution quickly without then diverging

from that solution unnecessarily.
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3. MEASUREMENT MODELS

In order for the spacecraft to determine its state, a suit of sensors must be utilized

to relay information to update the filter. Here the use of an inertial measurement unit

(IMU), nadir pointing altimeter, and star camera provide these updates to the filter. Many

other sensors such as a terrain camera for terrain relative navigation or a non-nadir pointing

altimeter for slant range altitude measurements could be used as well to provide more

information on the state of the vehicle. While these sensors provide rapid measurements to

the filter, the time between those measurements needs to be propagated by the dynamics to

estimate the state at the time a new measurement is provided. The use of sensor models is

then required to compare this new estimate of the state to that of the state defined by the

new measurement from the sensors. These models then need to be defined such that they

can work within the framework of the filter, requiring both measurements from the model

along with measurement Jacobians required for the EKF. The subsequent sections provide

a definition of the sensors in use and an explanation of how they determine their respective

measurements.

3.1. INERTIAL MEASUREMENT UNIT

The inertial measurement unit (IMU) modeled for use within the filter is assumed

to operate by returning integrated non gravitational acceleration and integrated angular

velocity measurements [28]. While IMU measurements can have several error sources, the

only ones taken into effect here are a stationary bias and thermo-mechanical noise. Using

this information, the IMU model is given by
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∆vm,k = ∆vk + bv + wv,k (3.1a)

∆θm,k = ∆θk + bθ + wθ,k , (3.1b)

where ∆vk is the true integrated non gravitational inertial acceleration expressed in the

IMU case frame, bv is the accelerometer bias, wv,k is the accelerometer noise, ∆θk is the

true integrated angular velocity of the IMU case frame with respect to the inertial frame

expressed in the IMU case frame, bθ is the gyro bias, and wθ,k is the gyro noise. The noises

and biases here are assumed to be zero mean and covariances of the form

E{bvbT
v } = Bv E{bθbT

θ } = Bθ

E{wv,kw
T
v,l} = Wv,kδk,l E{wθ,kwT

θ,l} = Wθ,kδk,l ,

where δk,l is the Kronecker delta, such that δk,l = 1 when k = l and is zero otherwise, which

makes it so accelerometer and gyro noises are taken as white noise. In order to solve for

the true integrated non gravitational acceleration and angular velocity Eq. 3.1 is taken and

rearranged via an “inversion” to yield

∆vk = ∆vm,k − bv − wv,k

∆θk = ∆θm,k − bθ − wθ,k ,

then, the estimated integrated non gravitational acceleration and integrated angular velocity

can be found as

∆v̂k = ∆vm,k − b̂v,k

∆θ̂k = ∆θm,k − b̂θ,k .
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3.2. NADIR ALTIMETER

In order to model the surface below the spacecraft, different altimeter sensor models

are defined. These models are presented for the nadir altimeter that is continually directed

in the direct downward position below the spacecraft. This modeling of the surface can

be done with varying degrees of fidelity. While some models, such as spherical, may be

simpler for the filter to utilize, it also produces a less precise solution. Meanwhile, models

of a higher fidelity topographic model can produce a much more precise altitude solution

but have a trade-off in increased complexities that can make producing a stable filtering

solution difficult. As such an altimeter needs to be defined that can take advantage of the

different model fidelities that are available to the filter.

Before these different model complexities are developed it is of interest to define a

general algorithm for the construction of these models. This provides a framework that the

subsequent model fidelities can follow to provide solutions to the filter. To start this, the

measurement, z, and its estimate, ẑ, are defined as

z = h(r f
alt) + balt + valt (3.2)

ẑ = h(r̂ f
alt) + b̂alt (3.3)

where it is noted that any variable given a (·̂) designation is an estimate of that variable, h

represents the height of the vehicle above the surface, which depends on the model in use,

balt represents the bias in the altimeter, and valt represents the noise.

The deviation of the altimeter between this truth and its estimate, also known as the

measurement residual, is represented by δh as

δh = z − ẑ

=

[
h(r f

alt) − h(r̂ f
alt)

]
+δbalt + valt ,
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where δbalt = balt − b̂alt . The function h(r f
alt) can then be expanded in a first-order Taylor

Series where

h(r f
alt) ' h(r̂ f

alt) +
∂h
∂r
δr

f
alt

where δr f
alt is the deviation of the true altimeter position in the fixed frame from its estimate,

which equals r f
alt − r̂

f
alt . This then yields the measurement deviation as

δh =
[
∂h(r f

alt)

∂r
f

alt

����
r
f
alt
=r̂

f
alt

]
δr

f
alt + δbalt + valt ,

where if it is said

hr =

[
∂h(r f

alt)

∂r
f

alt

����
r
f
alt
=r̂

f
alt

]
,

then

δh = hrδr
f

alt + δbalt + valt . (3.4)

Now that the altimeter deviation has been found in terms of the fixed frame, it needs

to be altered, such that the deviation can be determined via the inertial frame. This will

allow the relation of the position to the IMU from where the measurements of the state are

taken. To do this the true altimeter position, δr f
alt , now needs to be defined in terms of the

inertial position such that

δr
f

alt = r
f

alt − r̂
f

alt = T
f

i δr
i
alt (3.5)

where T f
i is the transformation from the inertial to the fixed frame, and δr i

alt is then the

deviation of the altimeter position in the inertial frame where
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δr i
alt = r i

alt − r̂ i
alt . (3.6)

The truth and extimate of these positions can then be defined as

r i
alt = r i

imu +T
i
br

b
alt/imu (3.7)

r̂ i
alt = r̂ i

imu + T̂
i
br

b
alt/imu . (3.8)

where r i
imu is the position of the IMU in the inertial frame, T i

b is the transformation from

the body frame of the spacecraft to the inertial frame, and rb
alt/imu is the known position of

the altimeter with respect to the IMU in the body frame of the spacecraft. Equation 3.6 is

then rewritten using Eqs. 3.7 and 3.8 as

δr i
alt =

[
r i

imu − r̂ i
imu

]
+

[
T i

b − T̂
i
b

]
rb

alt/imu

= δr i
imu +

[
T i

b − T̂
i
b

]
rb

alt/imu , (3.9)

where if it is noted via the small angle relationship [5] that

T i
b ≈ T̂

i
b + T̂

i
b

[
δφ×

]
,

Eq. 3.9 can then be evaluated as

δr i
alt = δr

i
imu + T̂

i
b

[
δφ×

]
rb

alt/imu

= δr i
imu − T̂

i
b

[
δrb

alt/imu×

]
δφ , (3.10)

also noting δφ represents the three-parameter attitude error. Equation 3.10 can now be

substituted into Eq. 3.5 to get
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δr
f

alt = T
f

i δr
i
imu −T

f
i T̂

i
b

[
rb

alt/imu×

]
δφ

to represent the deviation in the position of the altimeter in the fixed frame. This is then

used in the general altimeter measurement deviation in Eq. 3.4 where it can be shown that

a first-order expansion of this becomes

δh = hrT
f

i δr
i
imu − hrT

f
i T̂

i
b[r

b
alt/imu×]δφ + δbalt + valt . (3.11)

This first-order expansion provides the Jacobian in terms of its elements, which are needed

for use in the filtering algorithm. This general formulation will be used going forward for

the different fidelity models in use. While simple models, such as spherical, play out very

similar to the general algorithm, higher fidelity models require slightly more complex steps

to determine the altitude and first-order expansion of the measurement. Therefore, as these

models are developed these general equations provide the framework that the subsequent

sections will follow.

3.2.1. Spherical Altimeter. The simplest model for use in the altimeter is that of

a sphere. This takes the radial distance of the body and uses it to produce a sphere of that

radius for the filter to estimate upon. To do this it is first said that

hsph = ‖r
i
alt ‖ − rsph (3.12)

so that hsph is the height of the spacecraft above the spherical surface, ‖r i
alt ‖ is the inertial

position of the altimeter, and rsph is the radius of the spherical surface. This gives a true
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and estimate measurement by substituting Eq. 3.12 into Eqs. 3.2 and 3.3 as

z = hsph(r
i
alt) + balt + valt

ẑ = hsph(r̂
i
alt) + b̂alt .

In order to define the hr term of the general altimeter deviation in Eq. 3.11 the

partial of Eq. 3.12 is examined with respect to the altimeter’s fixed frame position. This is

given by

∂hsph

∂r
f

alt

=
∂hsph

∂r i
alt

∂r i
alt

∂r
f

alt

=
∂hsph

∂r i
alt

(T
f

i )
−1 . (3.13)

so that the partial is now taken with respect to the inertial frame. This partial is then taken

by using Eq. 3.12 so that it is then taken as

∂hsph

r i
alt

=
∂{‖r i

alt ‖ − rsph}

∂r i
alt

=
(r i

alt)
T

‖r i
alt ‖

,

producing the partial derivative measurement

[
∂h(r f

alt)

∂r
f

alt

����
r
f
alt
=r̂

f
alt

]
=
(r̂ i

alt)
T

| | r̂ i
alt | |

T i
f .

where T i
f is mearly the inverse of T f

i from Eq. 3.13. This is then inserted into Eq. 3.11

where

δh =
(r̂ i

alt)
T

‖ r̂ i
alt ‖

T i
fT

f
i δr

i
imu −

(r̂ i
alt)

T

‖ r̂ i
alt ‖

T i
fT

f
i T̂

i
b[r

b
alt/imu×]δφ + δbalt + valt

=
(r̂ i

alt)
T

‖ r̂ i
alt ‖

δr i
imu −

(r̂ i
alt)

T

‖ r̂ i
alt ‖

T̂ i
b[r

b
alt/imu×]δφ + δbalt + valt
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providing the altimeter measurement deviation for a spherical altimeter. This provides the

simplest model, as it is just the position of the spacecraft subtracted from the radius of the

body below it. While it provides a general idea of where the surface will be, because the

Moon has a topographic range of 13 km [24], it can still be highly inaccurate.

3.2.2. Ellipsoidal Altimeter. A slightly more complex model is done by imple-

menting an ellipsoidal surface of the body using its eccentricity. This provides a slightly

more accurate depiction of the surface than the spherical body, while still maintaining the

smooth surface that produces a more stable filter. There are several methods that allow the

conversion from Cartesian to Geodetic coordinates, including iterative methods, like in Ka-

plan and Hegarty [15], or closed form solutions, such as Vermeille’s [33] and Sofair’s [31]

algorithms. While a more comprehensive list of methods can be found [7], for the filter

in use Vermeille’s algorithm was chosen. This closed-form solution is beneficial in that

it allows for the computation of the partial derivatives that are required for use within the

filter.

Therefore, when using Vermeille’s algorithm, the height of the ellipsoidal surface

can be found as

hell =
k + e2 − 1

k

√
d2 + z2

where e is the eccentricity, z is a component of the fixed frame position i.e. r f
alt = [x y z]T ,

and d and k are given via intermediary steps of Vermeille’s algorithm, which are further

defined in the Appendix of this work. The truth and estimate of this would then be given as

z = hell(r
f

alt) + balt + valt

ẑ = hell(r̂
f

alt) + b̂alt

where r f
alt is the altimeter position in the planet fixed frame that is used within Vermeille’s

algorithm, and r̂
f

alt is the estimate of that position.
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The partial derivative also needs to be defined using the components of this algo-

rithm. The intermediary steps are again shown in the Appendix, but culminate in

∂h

∂r
f

alt

=
1
a2 (r

f
alt)

Tdiag(Hx,y, Hx,y, Hz)

such that

Hr = diag(Hx,y, Hx,y, Hz) .

The partial derivative can then be written as

[
∂h(r f

alt)

∂r
f

alt

����
r
f
alt
=r̂

f
alt

]
=

1
a2 (r̂

f
alt)

THrT
f

i ,

Providing what is needed to complete Eq. 3.11 to complete the ellipsoidal altimeter

measurement deviation where

δh =
1
a2 (r̂

f
alt)

THrT
f

i δr
i
imu −

1
a2 (r̂

f
alt)

THrT
f

i T̂
i
b[r

b
alt/imu×]δφ + δbalt + valt .

The slightly more complex ellipsoidal model allows for a better understanding of the surface

below the spacecraft, but still gives no representation of the terrain below. To get a true

representation of the surface some amount of terrain would need to be included in the model

making the ellipsoidal model a relatively simple model by comparison.

3.2.3. Topographical Altimeter. The model that can provide the highest fidelity

is the topographical model. This uses digital elevation models (DEMs) of the surface to

provide a more realistic representation of the surface below. Doing this provides a sensor

model that can better represent the “real world” that it is trying to match. This also allows
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the estimate of that “real world” sensor to vary in fidelity compared to the true sensor, while

still having some representation of the terrain. The following sections will delve into the

intricacies of the DEMs in use and the algorithms used to find the topographical altitude.

3.2.3.1. Digital elevation model. In order to find the altitude above a topographical

surface a DEM of that surface must be used. DEMs are models that represent the terrain

of the surface by providing elevations with respect to a reference shape. For instance, this

study uses a DEM of the Moon where the elevations are given over a reference sphere.

This means that for an elevation found on the DEM the radius of the Moon must be added

to that elevation to provide the actual height of the surface at that point from the center

of the Moon. This is then the height that is subtracted from the inertial position of the

spacecraft to provide its altitude. Other DEMs may be provided with elevations over a

ellipsoidal surface, which will require a different method of topographical modeling than

will be described here.

When using the different DEMs, data is usually provided in the structure of a table

of information. This table includes vertices of latitude and longitude that are used for

locating the position of an elevation. Depending on the data set provided by the DEM

different model fidelities can be provided to the filter. DEMs of the Moon are most often

provided by the older Clementine Orbiter [22] or the more recent Lunar Reconnaissance

Orbiter (LRO) [23], each of which provide a variety of model fidelities. These DEMs are

constructed where their fidelity is given by the degree of spacing between measurements.

For the Clementine Orbiter those DEMs consist of a 1◦model and a more precise 1/4◦model,

while the LRO has global models of 1/4◦, 1/16
◦, 1/64

◦, and 1/128
◦. Depending on the data set

in use these DEMs can be applied to different planets, like Earth or Mars, and can have a

range of different fidelities.

3.2.3.2. Topographical algorithm. In order to determine the altitude above the

nadir direction a algorithm for discerning the elevation of the surface in that direction must

be defined. This algorithm is constructed under the assumption that the DEM is based upon



36

a spherical reference sphere. As such the determination of the latitude (φ) and longitude (λ)

are constructed in a manner that is based off a spherical body, along with the radius of that

sphere being added to the elevation provided by the DEM. In order to find the topography

above a reference ellipsoid, Vermeille’s algorithm in the Appendix would need to be applied

to determine these values.

When determining the elevation of the DEM above a reference shape a bicubic

interpolation [26] is performed, which interpolates between the points of elevation that the

DEM provides. This table of elevations is constructed with latitude (φ) and longitude (λ)

as the vertices for locating the values required. As such, the first step in finding the proper

elevation is to calculate the latitude and longitude of the spacecraft above the planet fixed

frame given by

φ = sin−1
(

z
| |r

f
alt
| |

)
and λ = tan−1

(
y

x

)
, (3.14)

where x, y, and z describe the components of the position in the fixed frame, i.e. r
f

alt =

[x y z]T . This interpolation also requires a section of the DEM corresponding to the latitude

and longitude of the interpolation point, that is represented here by D. The intricacies of

this method are further developed in Chapter 3.2.3.3 but will be represented here in the

function f (·) where

rtop = f (φ, λ,D) + rsph

where rsph is the radius of the reference sphere the DEM is based on and results in rtop, the

height of the topography below the spacecraft in the nadir pointing direction. To then find

the height of the altimeter above the surface, the topographic height is taken and subtracted

from the distance of the altimeter from the center of the body, i.e.
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htop = | |r
f

alt | | − rtop

where htop is the height of the altimeter above the topographical surface of the chosen DEM,

so that the truth and estimate are found as

z = htop(r
f

alt) + balt + valt

ẑ = htop(r̂
f

alt) + b̂alt .

A benefit of using a bicubic interpolation is that the partial derivatives of the topography

with respect to the latitude and longitude are produced as a result, and represented here by

rtop,φ =
∂rtop

∂φ
and rtop,λ =

∂rtop

∂λ
.

These deviations are accompanied by the partial derivatives of Eqs. 3.14 given as

∂φ

∂r
f

alt

=

[
− xz
(
√

x2+y2(x2+y2+z2))
−

yz

(
√

x2+y2(x2+y2+z2))

√
x2+y2

(x2+y2+z2)

]
∂λ

∂r
f

alt

=
[
−

y

(x2+y2)
x

(x2+y2)
0
]

giving all the partial derivations needed to calculate the Jacobian for Eq. 3.11 where

hr =
(r i

alt)
T

| |r i
alt | |
− rtop,φ

∂φ

∂r
f

alt

T
f

i − rtop,λ
∂φ

∂r
f

alt

T
f

i

leaving the final topographical altimeter measurement deviation as

δh = hrδr
i
imu − hrT̂

i
b[r

b
alt/imu×]δφ + δbalt + valt .

3.2.3.3. Bicubic algorithm. The bicubic algorithm allows the determination of the

elevation of the surface given a set of latitude and longitude points. In the case of the
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altimeter this is done for the latitude and longitude along the nadir pointing direction. This

form of interpolation is chosen partially because it gives the added benefit of providing the

Jacobian of the latitude and longitudes of the table being used. To start this interpolation,

the sixteen nearest points to the point being interpolated need to be determined. Using

the calculated latitude and longitude of the altimeter position from Eq. 3.14, the table is

searched to determine which tile of the DEM the sensor falls within. To do this, a bisection

search is done to find the lower bounding point of this tile, where the indices, denoted by j

and k, are found when

φ j ≤ φ < φ j+1 and λk ≤ λ < λk+1 .

This is demonstrated in Figure 3.1, where the latitude and longitude found from the altimeter

make up the x and y values for the location of the interpolation point (noted by the diamond).

The four points surrounding that interpolation pointmake up the tile (grey area) inwhich that

point falls. The points of the tile and those immediately connected to it make up the extracted

grid of sixteen points for the interpolation process, noted as D moving forward. With these

lower
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←
−
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Figure 3.1. Extracted Topography Grid.

points found the interpolation method is started by finding the directional derivatives that
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are calculated using central differences along the latitude and longitude points as

D′λ( j, k) =
D( j + 1, k) − D( j − 1, k)
λ( j + 1) − λ( j − 1)

D′φ( j, k) =
D( j, k + 1) − D( j, k − 1)
φ(k + 1) − φ(k + 1)

.

Here D′ is the derivative of the table in the noted direction of latitude (φ) or longitude (λ),

and k and j are iterated values that loop through the points in D to obtain the derivatives.

This is also done for the derivatives across latitude and longitude as

D′λ,φ( j, k) =
D( j + 1, k + 1) − D( j + 1, k − 1) − D( j − 1, k + 1) + D( j − 1, k − 1)

(λ( j + 1) − λ( j − 1))(φ(k + 1) − φ(k − 1))
.

These sixteen table values and their derivatives are then used to acquire a matrix c that is

a known linear transformation with pre-determined coefficients [26]. This matrix is then

used to calculate the interpolated point as

h =
4∑

n=1

4∑
m=1

ci, j ti−1u j−1 ,

where t and u are given as

t =
λ − λk

λk+1 − λk
and u =

φ − φ j

φ j+1 − φ j
.

The directional derivatives of this interpolation are then found as

dh
dλ
=

4∑
n=1

4∑
m=1
(i − 1)ci, j ti−2u j−1 dt

dλ

dh
dφ
=

4∑
n=1

4∑
m=1
( j − 1)ci, j ti−1u j−2 du

dφ
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where the derivatives of t and u with respect to λ and φ are found as

t =
1

λk+1 − λk
and u =

1
φ j+1 − φ j

.

3.3. QUATERNION STAR CAMERA

To determine the attitude of the spacecraft, a star camera that produces a quaternion

measurement is utilized. These sensormeasurements can be determined in a couple of ways.

First, they can be processed through the filter [10], or they can use their own pre-processing

algorithms, such as QUEST [29] or Davenport’s q-Method [16] to produce what will be

used as the quaternion measurement. When processing the measurements within the filter

the estimated pixel locations and known unit vectors of star locations are processed by the

attitude filter. The second method uses estimated and known unit vectors of stars and finds

an attitude solution via a pre-processing algorithm that is then processed by the filter. For

use within this testing a pre-processing solution is provided to the filter. That quaternion

measurement is used to describe the orientation of the star camera frame (sc) with respect

to the inertial frame. This true attitude measured by the sensor is then taken as

z̄ = q̄err ⊗ q̄sc
c ⊗ q̄c

i ,

where qc
i is the true attitude of the case frame of the IMU with respect to the inertial frame,

q̄sc
c is the known attitude of the star camera frame with respect to the IMU case frame, and

q̄err is rotational error produced from bias and noise, represented here by

q̄err =


sin(12 | |θerr | |)

θerr
| |θerr | |

cos(12 | |θerr | |)

 .
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where θerr = bsc + vsc, with bsc representing zero-mean, constant, random bias, and vsc

as a zero-mean, white-noise sequence. From here, the measurement estimate of the star

camera can be determined as

ˆ̄z = ˆ̄qerr ⊗ q̄sc
c ⊗ ˆ̄qc

i ,

where ˆ̄qc
i is the estimated attitude quaternion and ˆ̄qerr is given as

ˆ̄qerr =


sin(12 | |θ̂err)

θ̂err
| |θ̂err | |

cos(12 | |θ̂err | |)

 ,
where θ̂err = b̂sc. To determine the deviation δq between the true and estimated values a

multiplicative form must be defined since the quaternion is not additive; this is done here as

δq = 2 · vec( z̄ ⊗ ˆ̄z−1) .

This multiplicative quaternion residual is then used in the first-order expansion needed for

the filter as

δq = T sc
c 2 · vec{ q̄c

i ⊗ (
ˆ̄qc

i )
−1} + (bsc − b̂sc) + vsc

= T sc
c δφ + δbsc + vsc

where T sc
c is the transformation matrix representation of q̄sc

c . This provides us with the

Jacobian needed for the filtering process.
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4. PRELIMINARY RESULTS

As has been described, there are several choices for fidelity within the altimeter sen-

sor models. The interest of this investigation is to examine how the navigation performance

is affected by using the different models within the filter. There are several components

where different model fidelities can be utilized. These components include the true mea-

surement that represents the sensor output, the estimated measurement used in the filter,

and the measurement Jacobian used in the filter. Using different fidelities within these

three components is the primary interest here to determine an appropriate configuration to

achieve for an accurate and robust filtering solution.

To determine how the filter should perform, a baseline test is carried out along

a descent-to-landing trajectory at the Moon. The vehicle is equipped with an IMU, a

nadir-pointing altimeter, and a quaternion star camera, which are described in Chapter 3.

Sensor specifications for the aforementioned sensors can be found in Table 4.1 1, where the

measurement noise and bias specifications are provided as 1σ standard deviations, along

with the operating conditions for the various sensors. It is noted for the star camera that

measurements are only produced when the vehicle is not thrusting, due to the resulting

vibrations. In Figure 4.1, the descent trajectory is shown as it progresses through the

mission elapsed time (MET), along with a visual representation of when the star camera

stops generating measurements, due to thrusting for the landing scenario, and when the

altimeter starts. Figure 4.2 provides a ground track for the trajectory that follows closely

along the equator of the Moon.

1These values are from the specifications sheet for the Northrop Grumman LN-200S IMU, which
provides specifications in terms of accelerations and body rates. For these values, see: http://www.
northropgrumman.com/Capabilities/LN200FOG/Documents/ln200s.pdf
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Table 4.1. Sensor configuration for the simulated lander.

Sensor Rate Noise (1σ) Bias (1σ) Operating Condition
Accelerometer 40 Hz 35µg/

√
Hz 300µg Always

Gyroscope 40 Hz < 0.07◦/
√
hr 1◦/hr Always

Altimeter 10 Hz 10 m 0.5 m alt. < 8 km
Star Camera 1 Hz 30 arc-seconds 10 arc-seconds When not thrusting

The filter state consists of position, velocity, and attitude states, along with ac-

celerometer, gyro, altimeter, and star camera biases. Since the biases are presented in Table

4.1, the initial uncertainties for the position, velocity and attitude need to be defined and are

taken to be

P0 = diag(1002, 1002, 1002, 0.012, 0.012, 0.012, 0.05722, 0.05722, 0.05722)

with units of m2, (m/s)2, and degrees2 for position, velocity, and attitude, respectively.

These uncertainty values are comparable to what would be expected during the powered

descent phase of an entry, descent, and landing scenario. The filtering solution is comprised

of a SR-MEKF that uses underweighting with a factor of 5/6 [18].

To represent a baseline performance, the filter is implemented using a truth model

with an ellipsoidal representation of the lunar surface, and an ellipsoidal model is used for

both the filter’s estimated measurements and its Jacobian. For this baseline, a Monte Carlo

simulation is carried out with 200 trials, where the initial filter estimate and measurement

noise are re-sampled with each trial. Figures 4.3 – 4.7 show the position, velocity, and

attitude, along with the star camera and altimeter residuals for both a single run and a

comparison of a single run to the Monte Carlo simulation. The position and velocity in

Figures 4.3 and 4.4 show that the altimeter works to enable the navigation filter to converge

on a more accurate solution once its measurements are introduced. The results displayed

here are in the lunar centered inertial frame and provide errors in [x y z] components.
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Figure 4.1. Altitude Decent Trajectory.

Considering the results, a convergence is best shown in the x axis direction immediately

after the filter acquires altimeter measurements. This larger convergence in the x direction

is due to the fact that the trajectory for this descent falls very close to the equator, so most of

the measurement data is obtained from the altimeter in that direction. The attitude in Figure

4.5 stays close to zero until around 750 seconds MET where the star camera turns off. The

residuals in Figure 4.6 and 4.7 stay within the 3σ covariance interval as is expected for both

the star camera and altimeter. For all state errors the Monte Carlo simulation (solid grey)

closely follows the single run performance (dashed black), as is expected in this scenario.

Given the smooth ellipsoidal surface the navigation filter is using, it is able to easily find a

solution as it descends through the trajectory.

4.1. IDENTICAL FIDELITIES

Now that the baseline has been defined, it is of interest to see how increasing model

fidelities affect the performance of the navigation filter. These simulations follow the same

trajectory and also have 200 trial simulations, similar to the baseline run. All fidelities of the
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Figure 4.2. Ground track of trajectory starting at left most point and proceeding toward the
right.

DEM are implemented, from 1/4◦ to 1/128
◦, which are used to model the true measurement,

estimated measurement, and measurement Jacobian models. The attitude filtering solutions

for these simulations are the same as in the baseline run, so they are excluded here. Also,

because the area of interest begins when the altimeter starts taking measurements, the

position and velocity errors are only shown during the corresponding time interval.

The smooth and steady convergence seen for the ellipsoidal model changes when

the topographic models are used. Considering the 1/4◦ simulation in Figure 4.8, the first

aspect of note is how the filter converges onto a solution given the introduction of altimeter

measurements. As the filter begins to use these measurements, the uncertainty initially

grows, especially seen in the position y axis and velocity x and y axis. This is where

the variation of the terrain first start to take effect. As the descent progresses, the filter

appears to maintain a more stable solution, portrayed by the steady uncertainty toward the

end of the trajectory. When comparing the single run performance (dashed black line) to

the Monte Carlo simulation (solid gray line), it is seen that now the single run performance
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Figure 4.3. Position errors as 3σ intervals (top) for the Monte Carlo simulation (solid
gray) and a single filter run (dashed black) and position error (solid black) and 3σ intervals
(bottom) for a single run when using the ellipsoidal model.
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Figure 4.6. Altimeter residual and 3σ interval (top) and altimeter residual 3σ interval
(bottom) for the Monte Carlo simulation (solid gray) and a single filter run (solid black)
when using the ellipsoidal model.
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is slightly conservative, having a smaller error interval, with respect to the Monte Carlo

simulation. While this is not ideal, the simulation is able to converge on a solution by

the end of the trajectory that remains steady just outside of the single run performance.

The 3σ interval in the altimeter residual matches the single run performance similar to the

baseline performance. This provides added confidence to the filtering solution in making

the 1/4◦ DEM a viable option for terrain modeling. The introduction of the 1/4◦ DEM forces

slight instability in the filter until it becomes accustomed to the new measurements. Going

forward, it is of interest to note how this changes as fidelities are increased.

The effects of terrain variation on the navigation filter only increase as higher fidelity

models are used, making it more difficult for the filter to converge to the true state. Figure

4.9 shows the Monte Carlo simulation results for the 1/16
◦ DEM, which quickly shows how

the increased variations can negatively affect the filter. The single run performance is

vastly more confident compared to the Monte Carlo simulation, showing that the filter has

a difficult time converging on the correct solution. This is also reflected in the 3σ altimeter

measurement residual intervals. Where the single run performance stays mostly constant,

the Monte Carlo result is much more erratic compared to what is observed for the 1/4◦ DEM.

To counteract these issues, the introduction of tuning noise is used to help the filter

determine a solution that matches the single run performance. To do this a tuning parameter

of

QTune = diag([1.5, 1.5, 1.5, 0.005, 0.005, 0.005])

is created where the first three values represent position noise with m2 units, and the second

three represent velocity noise with (m/s)2 units, and the remaining parameters of the state

receive no tuning noise. The results of using this tuning noise, seen in Figure 4.10, show that

the filter is vastly improved due its introduction. TheMonte Carlo simulation is now slightly

conservative until the very end of the trajectory compared to the single run performance,
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maintaining better performance than the 1/4◦ DEM. The effects of the terrain are still very

much present in the “wobble” of the solution, but the filter is still able to converge and

maintain a reasonably accurate solution. While this tuning noise introduces a variable that

can change depending on the fidelity and navigation filter in use, this shows how useful it

can be to improve the performance of the filter.

As the fidelity is increased, introducing more erratic terrain variations, the tuning

noise input to the filter must also be increased. For the 1/64
◦ DEM this requires the noise

to be increased in the position axis to 7.5 meters. In Figure 4.11 the 1/64
◦ simulation is

shown, where it is seen that the most notable change is that the “wobble” seen in the 1/4◦

and 1/16
◦ DEMs is reduced by comparison. This is due to the increase in tuning noise that

works to stabilize the filtering solution. This noise allows the filter to acquire an accurate

solution by minimizing the effects of the terrain, and as this noise is increased, the “wobble”

previously found is less likely to appear as the terrain effects are reduced. The residual is

also of note due to the increase seen to the single run performance compared to the Monte

Carlo performance from the larger tuning noise. These same trends of needing a larger

tuning noise and the effects of that are also seen when using the 1/128
◦ DEM, shown in

Figure 4.12. Here an increase in tuning noise is again needed in the position axis, bringing

the noise required to 15 meters. The main difference with this higher fidelity is that the

altimeter residual single run performance increases even further compared to the Monte

Carlo performance due to that tuning noise increase. While these higher fidelities still

produce filters that can converge on a solution, the large tuning noises used are not ideal.

As fidelities within the components of the filter are varied moving forward it will be of

interest to see if these issues can be smoothed out by using a combination of higher and

lower fidelity DEMs instead of large tuning noises.
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Figure 4.8. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/4◦ DEM.
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Figure 4.9. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/16

◦ DEM.
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Figure 4.10. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/16

◦ DEM.
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Figure 4.11. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/64

◦ DEM.
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Figure 4.12. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/128

◦ DEM.



58

4.2. VARYING FIDELITIES

While higher fidelity models are always preferred for determining true measure-

ments, because they better represent the actual surface of the planet, the estimated mea-

surement and measurement Jacobian can use different models to test the resulting effects.

A benefit of using these lower fidelity models is that of computational savings due to the

simpler model being used. As the problem of entry, descent, and landing takes place in

real time, it can often be difficult to get all navigation systems to run on the same com-

putational timing. By providing this flexibility in computational complexity the altimeter

sensor models could be more easily adjusted to run within the strict requirements of a real

time navigation setting. To investigate the impact of disparate fidelities, different models

are implemented within the components (truth, estimate, and Jacobian) to examine their

effects. These varying combinations can be seen in Table 4.2 and will be subsequently

referenced by their associated configuration number.

Configurations #1 and #2 leverage the same truth and estimate models, but changes

the fidelity used within the Jacobian of the filter. While this is unusual, as it is often expected

that the estimate and its Jacobian are of the same fidelity, the intent behind this is that the

simpler model of the Jacobian may be able to smooth some of the effects introduced by

the DEMs. Implementing the Jacobian with a spherical model gives a representation of

how the simplest computational model will affect the filter when being used with a higher

fidelity estimate. The results of Config. #1 are summarized in Figure 4.13. Comparing this

to the 1/4◦ DEM for all components of the filter (shown in Figure 4.8), the differences are

minute. The main difference is that the slight growth in errors along the z axis for the Monte

Carlo simulation when compared to the single run performance are now diminished. This

overall lack of difference between the two makes this configuration a suitable replacement

that has the added benefit of better computational efficiency in the filter’s Jacobian model.

The residual for this configuration is similar to that of identical fidelities with no differences

of note from the residual of the filter with a 1/4◦ measurement Jacobian.
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Table 4.2. Configuration definitions for testing varying fidelity.

Configuration Truth Model Filter Estimate Model Jacobian Model
#1 1/4◦ DEM 1/4◦ DEM Spherical
#2 1/16

◦ DEM 1/16
◦ DEM Spherical

#3 1/16
◦ DEM 1/4◦ DEM Spherical

#4 1/128
◦ DEM 1/4◦ DEM Spherical

The results of Configuration #2 are shown in Figure 4.14, where the effects of the

spherical Jacobian are examined with the 1/16
◦ DEM truth and estimate with the same tuning

noise previously used for identical fidelities with the 1/16
◦ DEM. This has similar results

to those of Figure 4.9, where again little difference between the two is noticed. While

Configuration #1 showed some slight improvement with the spherical Jacobian, when used

with the necessary tuning noise of the 1/16
◦ truth and estimate the introduction of a spherical

Jacobian brings no noticeable change. When comparing the residuals of the altimeter

measurements the same indifference is seen between the use of the higher and lower fidelity

Jacobians. This again supports the claim that a lower fidelity Jacobian could be used within

the navigation filter to provide a solution of similar accuracy that is more computationally

efficient.

Moving to Configuration #3, it is of interest to see how the performance of the

navigation filter is affected when the truth, estimate, and Jacobian are all different from

one another. While this can add further computational savings, it is also of interest to see

how a lower fidelity estimate could possibly provide benefits by using a fidelity that has

less terrain variations. Since the 1/4◦ DEM is used for the estimate, the tuning noise is

reduced from what has been previously implemented with a 1/16
◦ truth. The introduction

of this lower fidelity estimate requires a tuning noise in the position of only 0.5 meters to

be used. Figure 4.15 illustrates the results of Configuration #3, and here it is seen that the

effects of the lower fidelity estimate seems to counteract the effects of the higher fidelity

truth, making for a smoother convergence. This along with the lower tuning noise needed
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Figure 4.13. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/4◦ DEM for truth and estimate and the spherical Jacobian.
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Figure 4.14. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/16

◦ DEM for truth and estimate and the spherical Jacobian.
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Figure 4.15. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/16

◦ DEM for truth, 1/4◦ DEM for the estimate and a spherical Jacobian.
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Figure 4.16. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) when using
the 1/16

◦ DEM for truth, 1/4◦ DEM for the estimate and a spherical Jacobian.
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make the filtering solution slightly more accurate. The solution errors in the y position

axis and x and y velocity axis continue to converge as the descent continues through the

trajectory. While the z axis sees the Monte Carlo simulation fall slightly outside the single

run performance, it is not different enough to be of concern and is still very stable as the filter

tracks that axis. Both the position and velocity appear to be more stable than previously

seen configurations with a 1/16
◦ truth, as the lower degree estimate smooths the effects of the

large variations. This, along with its slightly more accurate solution, would indicate that

using a lower fidelity estimate is not only a viable option, but a beneficial one in working to

keep a more stable filter.

Having demonstrated that a lower fidelity estimate is capable of providing a “smooth-

ing effect” for a higher fidelity truth, it is of interest to see how this performs when the

highest fidelity, 1/128
◦, truth is used with the lowest fidelity DEM, 1/4◦, estimate. This is

the largest difference for the global DEMs and provides a look at how large changes in the

variation between the truth and estimate may affect the filter. Configuration #4 is shown

in Figure 4.16, where the performance is very similar to that of Configuration #3. The

effects of the 1/4◦ estimate on the much higher fidelity truth work again to smooth out the

issues that could be seen with the higher terrain variations. Whereas an increase in truth

fidelity also corresponded to an increase in tuning noise necessary to achive good filter per-

formance in previous cases, here the tuning noise used does not change from Configuration

#3. Changing the estimate to a lower fidelity allows the filter to smooth the issues of the

more accurate DEMs, while also bringing down the necessary tuning noise, making them

a preferable option when using a higher fidelity truth within the navigation filter.

The DEMs used within the SR-MEKF framework are able to perform as intended,

given some assistance. While the 1/4◦ fidelity is able to work to some level of success

without any tuning noise, for any higher fidelities it is necessary. Given the introduction

of this tuning noise, it is seen that the navigation filter is able to take advantage of these
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higher fidelity models. Even when a higher fidelity truth is used with a much lower fidelity

estimate the resulting filter is one that works as is expected when comparing the Monte

Carlo simulations to the single run performance.

Going forward, it is still of interest to see what alternative methods could be used

to improve performance within the filter. By reducing the uncertainty at the time altimeter

measurements begin, the filter may be able to better converge on a solution. It is also true

that, while the linearization of the EKF works here, it could be beneficial to use a nonlinear

transformation to approximate the measurement. This could give the filter a better idea of

the terrain it is trying to converge on and improve the performance. Even though the filter

as it is presented here works within the expected requirements, these questions still give

reason for further investigation.
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5. ALTERNATIVE METHODS

The conclusion resulting from filtering with the SR-MEKF is that as the fidelity of

the models better represents the real terrain of the surface, the filter finds it increasingly

difficult to properly track along the variations in the terrain. The increase in the rate

the terrain elevation changes below the spacecraft makes it more difficult for the filter to

converge on a solution without subsequent error growth. It is then of interest to find ways

that mitigate these problems in a manner that better allows the filter to converge toward,

and maintain, the true solution. This can be done by either reducing uncertainty to the

filter, giving it more confidence in its solution, or by allowing the filter to have a better

understanding of the area over which it is filtering. The subsequent sections show how to

develop such methods that will manipulate the filter to allow for these events to occur.

5.1. UNCERTAINTY REDUCTION

Large uncertainties in the filters state can make it easier for the filter to diverge from

the correct solution. If the filter starts with lower uncertainty in its covariance it should be

able to better track the spacecraft’s position and velocity above the surface. By reducing this

uncertainty such that the filter almost knows exactly where it is initially the errors produced

should also decrease in size, given the filter’s new confidence in its solution. Doing this

provides the filter with a smaller area of uncertainty so that it can better understand its

current location above the surface. While reducing uncertainties in such a manner in not

viable in an actual EDL scenario, it does provide an example of how the filter may perform

with a reduction to its uncertainty. Doing this allows confirmation that when the filter is

confident of its position and velocity it is able to reliably track them against the variations

of higher fidelities as expected.
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5.2. INITIATION ALTITUDE

A minor change that can be made to the altimeter sensor is to alter when it is first

initiated to acquire measurement data. This is a way to decrease the amount of uncertainty

built up by the filter at the time the altimeter starts taking measurements by shortening the

amount of time for which uncertainty is propagated without position or velocity related

measurements. While the growth of the uncertainty to that point is unchanged, the amount

it has grown when the altimeter is initiated will be less. This should allow the filter to more

quickly and easily converge to a solution. While this may not represent the specifications of

the sensors used in a real world scenario, it can provide insight to how the filter performance

may change if future advancements could allow for this kind of alteration.

5.3. UNSCENTED TRANSFORM

Since the EKF and EKF-based filters are constructed by linearizing nonlinear func-

tions, it is of interest to investigate a method that does not rely on linearization, to assess

if the aforementioned issues can be alleviated. In order to do that within the SR-MEKF,

an unscented transform (UT) [30] is implemented within the filter update when altimeter

data is processed. The UT allows the filter to have a better understanding of the nonlinear

terrain below it by incorporating the filter’s uncertainty through the use of sigma points that

capture the first and second moments of the function to create a distribution to approximate

a measurement. This estimated measurement is then used to find both the measurement and

cross covariances. Doing this allows the filter to perform without the measurement Jaco-

bian that previously described the deviation between the true measurement and its estimate.

While this simplifies simulations by taking out one of the three variable components, the

real benefit is that this allows the filter to compute its estimate and covariances with a better

understanding of the nonlinear terrain over which the vehicle is traversing. To construct

this update the formulation of the UT must be defined for use within the filter. Given the
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nonlinear function

z = g(x) + v (5.1a)

where x is a random input with mean m and covariance P, the UT seeks to approximate the

mean, covariance, and cross covariance (with the input x) of z. The nonlinear function can

be thought of as the altimeter model for the purpose of this discussion, but it is, in general,

a nonlinear function that maps the random variable x into the random variable z.

Given the function g(x) and the uncertainty of x through the distribution p(x), the

mean, covariance, and cross covariance of the estimate are

ẑ =

∫
g(x)p(x)dx

W =

∫
(g(x) − x̂)(g(x) − ẑ)T p(x)dx + R

C =

∫
(x − m)(g(x) − ẑ)T p(x)dx .

To approximate these integrals, sigma points are used to represent uncertainty using 2n + 1

deterministically selected points, where n is the dimension of x. Given the mean and

covariance of x as m and P, respectively, the sigma points are

X(0) = m

X(i) = m +
√

n + λSi

X(i+n) = m −
√

n + λSi

where i iterates through the 2n+1 points and λ is a scaling parameter given by α2(n+ κ)−n

with α and κ being parameters designed to determine the spread of the sigma points around

the mean. Each of the sigma points developed here has a weight attached [13] where
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w(0)m =
λ

n + λ

w(0)c =
λ

n + λ
+ (1 − α2 + β)

w(i)m =
1

2(n + λ)

w(i)c =
1

2(n + λ)

with wm being the weighs of the mean, wc being the weights of the covariances, and β is a

parameter that can be used for incorporating prior information of x. The sigma points are

transformed through the nonlinear function such that

Z(i) = g(X(i)) ∀ i ∈ {0, 1, ..., 2n}

where g(·) can be thought of as the altimeter measurement model. Using the weights, sigma

points, and the transformed sigma points the mean, covariance, and cross covariance (with

x) of z are approximated by the UT as

ẑ =
2n∑
i=0

w
(i)
m Z(i)

W =
2n∑
i=0

w
(i)
c (Z(i) − ẑ)(Z(i) − ẑ)T + R

C =
2n∑
i=0

w
(i)
c (X(i) − m)(Z(i) − ẑ)T .

This now allows the altimeter measurement estimate to be updated via a nonlinear

method that provides the filter with a better understanding of the terrain below it. By

taking the 2n + 1 sigma points and transforming them via the nonlinear function the filter

is now able to understand the measurement, not only at its location, but also at various

points around its area of uncertainty. This increased understanding the measurement is

able to obtain allows for a filter that can better estimate its state given a highly nonlinear

environment, such as lunar terrain.
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5.4. MONTE CARLO INTEGRATION

As a best case scenario where thousands of sample points can be taken, Monte Carlo

integration [4] can be performed within the altimeter update [11]. Doing this in the update

works similar to the UT in that several points within the area of uncertainty are used in the

construction of the filter update. While the UT uses 2n + 1 sigma points, a common rule of

thumb is that Monte Carlo sampling should use 10n samples; however, this is unfortunately

unobtainable since it would require 109 samples for position, velocity, and attitude states

alone, which is not practical within the confines of a navigation filter. Instead, several

hundred thousand samples are used to estimate the measurement, measurement covariance,

and cross covariance as in the UT. While using this method, it has been observed here

that the filter develops issues resulting from numerical calculations that force a failure at

the Cholesky downdate of the square-root filter. To circumvent this problem, the original

development of the square-root update by Potter is derived here, and largely follows the

developments in Grewal and Andrews [9].

The Potter square-root covariance update is utilized for scalar measurements, which

is valid in the case of the altimeter update implemented here. This is constructed by first

defining the covariance update as

P+k = P−k − P−k H
T
k [HkP

−
k H

T
k + Rk]

−1HkP
−
k ,

where the a priori covariance is then broken into square root factors as in Eq. 2.37 such

that the a posteriori covariance can be formulated as

S+k (S
+
k )

T = S−k (S
−
k )

T − S−k (S
−
k )

THT
k [HkS

−
k (S
−
k )

THT
k + Rk]

−1HkS
−
k (S
−
k )

T

= S−k (S
−
k )

T − S−kΛk[Λ
T
kΛk + Rk]

−1ΛT
k (S
−
k )

T

= S−k {I − Λk[Λ
T
kΛk + Rk]

−1ΛT
k }(S

−
k )

T .
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Here, I is an identity matrix that is the same size as the length of the state vector, and Λk is

defined using Eq. 2.40 as

Λk = (S
−
k )

THT
k = (S

−
k )
−1Ck .

When scalar measurements are considered, Λk becomes a vector, which is expressed as λk ,

and it can be shown that

I − Λk[Λ
T
kΛk + Rk]

−1ΛT
k = I −

λkλ
T
k

Rk + | |λk | |
2 .

Defining a term s as

s =
1

Rk + | |λk | |
2 ,

it follows that

I−
λkλ

T
k

Rk + | |λk | |
2 = I − sλkλ

T
k ,

which can then be broken into square-root factors of the form

I − sλkλ
T
k = (I − σλkλ

T
k )(I − σλkλ

T
k )

T where

σ =
1 +

√
1 − s | |λk | |

2

| |λ | |2
.

Now the a posteriori covariance can be expressed in terms of square-root factors yielding

S+k (S
+
k )

T = S−k (I − σλkλ
T
k )(I − σλkλ

T
k )

T (S−k )
T ,

from which it is clear that the a posteriori square root factor is
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S+k = S−k (I − σλkλ
T
k ) .

This allows the a posteriori square-root factor to be computed without using a Cholesky

downdate. This development is simpler in that it needs a scalar measurement, but for its use

here, it is found to be more reliable and provides solutions similar to the Cholesky downdate

procedure without being hindered by numerical issues.

To develop the Monte Carlo integration method, the expectations defined for the

measurement, measurement covariance, and cross covariance are now evaluated as integral

equations where

ẑ =

∫
h(x)p(x)dx

W =

∫
(h(x) − ẑ)(h(x) − ẑ)T p(x)dx + R

C =

∫
(x − m−)(h(x) − ẑ)T p(x)dx

and are now all of the form

I =
∫

g(x)p(x)dx .

These integrals can be solved via Monte Carlo integration where

I ≈
1
N

N∑
i=1

g(x(i))

and is constructed in a similar manner to the unscented transform. The main difference from

the UT is that the integration now takes place over, ideally, 10n different samples which

are all equally weighted. To do this, random samples from a normal distribution are drawn

according to
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X(i) ' pg(x |m, P) .

These samples are then transformed though the nonlinear function; i.e.

Z(i) = g(X(i)) .

The nonlinear function, g(·), represents the altimeter measurement model in this case. The

measurement estimate, its covariance and the cross covariance are then found as

ẑ =
1
N

N∑
i=1

Z(i)

W =
1
N

N∑
i=1
(Z(i) − ẑ)(Z(i) − ẑ)T + R

C =
1
N

N∑
i=1
(X(i) − m)(Z(i) − ẑ)T .

This now provides a method of Monte Carlo sampling within the altimeter measurement

estimate update. In order to gather an understanding of the terrain that is substantially

greater than the UT, a large number of samples need to used. While 10n is not a viable

option given the typical dimensions of a navigation filter, using a hundred thousand points

will allow the filter to gather significantly more information about the terrain when updating

the estimate. Doing this can provide a “best case” scenario of how the filter can perform

when it is able to have a good understanding of the terrain it is filtering over.
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6. RESULTS OF ALTERNATIVE METHODS

With the alternative methods described, similar tests to the preliminary results are

implemented. These tests are performed with similar specifications, including Monte Carlo

simulations of 200 trials where the initial filter estimate and measurement noise are re-

sampled with each trial. The same sensor specifications and uncertainties are also used,

along with similar noise and bias models. The specifications are only altered when that

is the governing theory behind the mitigation method, such as with uncertainty reduction

or altimeter initiation altitude. A significant aspect of the mitigation methods considered

compares the previous SR-MEKF to using a UT in the update of the SR-MEKF. Therefore,

moving forward, the runs without the UT update will be referred to as EKF because that is

the update method involved, and UT updated runs will be referred to as UT simulations.

6.1. REDUCED UNCERTAINTY

To observe how the terrain affects the filter when uncertainties are significantly

reduced at the initial activation of the altimeter, a simulation is conducted where the

trajectory starts when the altimeter turns on, such that state errors are at a minimum. To do

this, the simulation begins at an altitude of 8 km, which is the same altitude at which the

altimeter begins taking measurements. This simulation is also performed with very small

uncertainties; as such, the initial covariance is taken to be

P0 = diag(102, 102, 102, 0.12, 0.12, 0.12, (0.572 × 10−8)2, (0.572 × 10−8)2, (0.572 × 10−8)2)

with units of m2, (m/s)2, and degrees2 for position, velocity, and attitude, respectively.

Otherwise, all other specifications are the same as in the preliminary results in Chapter 4.
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Figure 6.1 shows the results for the reduced uncertainty simulation using the 1/16
◦

DEM. Starting the altimeter as soon as the filter initializes allows the filter to perform just as

expected, even using the higher fidelity DEMwith no tuning noise introduced to the system.

TheMonte Carlo simulation and the single run performance fall right on top of each other as

they should, showing that the filter is performing as expected when all uncertainty is gone.

What error growth is seen is due to the natural development of the uncertainty from the IMU

and is not due to the altimeter measurements. The altimeter residuals also show a similar

performance adding to the confidence in the filter and its solution with low uncertainties.

While this is an artificial scenario that would never be seen in actual use, it shows that the

filter can perform as expected when there is very little uncertainty in the measurement.

6.2. INITIATION ALTITUDE

As a more realistic example of reducing the uncertainty at the time that the altimeter

starts taking measurements is to initiate the altimeter earlier in the descent trajectory. By

doing this, the hope is that less, or no, tuning noise will be needed since the filter is more

certain of its state from the point altimeter measurements are initially included, similar to

the results from Chapter 6.1. To test this, a simulation is carried out with the altimeter

starting at 12 km instead of the previous 8 km with 1/16
◦ fidelities. To see how this affects

the need for process noise a simulation is done where

QTune = diag([1.5, 1.5, 1.5, 0.005, 0.005, 0.005]) ,

with a position tuning noise of 1.5 meter, as was used in the preliminary results, and a

second with a reduced 1 meter of position tuning noise and the same velocity noise.

These two variations are shown in Figs. 6.2 and 6.3 for the 1 m noise and 1.5

m noise, respectively. Here it is seen that the simulation with 1.5 m of noise looks very

similar to the previous simulations, which start at 8 km shown in Figure 4.10. There is
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Figure 6.1. Position (top), velocity (middle), and altimeter residual (bottom) 3σ intervals
for the Monte Carlo simulation (solid gray) and a single filter run (solid black) for 1/16

◦ truth,
estimate and Jacobian starting at 8 km with minimal uncertainty.
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little difference between them and it appears this reduction in the uncertainty at the time

the altimeter initiates has little effect. The results of the simulation with 1 m of noise also

seems to support the lack of effects produced by the reduced uncertainty. The position and

velocity error intervals for the Monte Carlo both lose some stability and fall further away

from the single run performance. They also appear to be more affected by the terrain due

to a larger “wobble” in the Monte Carlo results. From this, it can be concluded that the

small reduction in uncertainty gained by raising the altimeter initiation altitude by 4 km is

not enough to positively influence the filter’s sensitivity to the terrain.

6.3. UNSCENTED TRANSFORM

Using an unscented transform (UT) allows the filter to do a nonlinear transformation

that more accurately represent the surface it is tracking over by mapping first and second

moments to it. This provides the filter with an update that, through the transformation, has

a better understanding of the surface within its area of uncertainty. In theory, this should

provide a more stable filter that has a larger understanding of the terrain variations on the

surface in the area it is uncertain about. Since the sigma points of the UT stretch across

its area of uncertainty the sudden change in terrain elevation should be better foreseen and

overcome. The UT has several parameters that determine how the sigma points are selected

and weighted. The specifications found to perform the best for the UT used here have an α

of 1, a β of 2, and a κ of 3 − n, providing the largest spread of sigma points.

The UTwill be tested by first comparing the 1/4◦ DEM for all filtering components in

Figure 4.8 against the UT with a truth and estimate that have a 1/4◦ fidelity. The position and

velocity uncertainty intervals of the UT are given in Figure 6.4, where upon first comparison

of these figures it is seen that the UT converges to a much more accurate solution compared

to the EKF. In the instances of the x and z position axis and z velocity axis the UT continues

to converge after the point that the EKF no longer does. Along with this, the Monte Carlo

simulation is able to follow the expected single run performance much better with the UT in
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Figure 6.2. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and estimate with 1 m of position tuning
noise from 12 km.
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Figure 6.3. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and estimate with 1.5 m of position tuning
noise from 12 km.
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place. While it still sits slightly outside the single run performance, it is much more steady

and consistent compared to the EKF implementation. Given these results, it appears that

the UT can produce a more accurate and stable solution than the EKF is able to given the

lower fidelity terrain.

For the simulation of the 1/16
◦ DEM in the UT, the introduction of tuning noise is

once again needed for the filter to perform as intended. While the 1/4◦ fidelity was able to

show good improvement with its more mild terrain variations, the jump to 1/16
◦ proved too

unstable for the UT to converge to a proper solution. Attempts were also made to adjust the

UT to better perform over the more erratic terrain by manipulating the α, β, and κ, values,

but it ultimately proved unsuccessful in alleviating effects from the terrain. In order to allow

the filter to perform using the increased fidelity, a tuning noise of 8.5 m in the position

and 0.005 m/s in the velocity is used, which is a much larger increase compared to that

used in the EKF. The performance for this implementation is shown in Figure 6.5 where

the position, velocity, and residual intervals can be seen. While the use of the given tuning

noise assists the filter in converging toward a solution, it also seems to reduce the benefits

of the UT when compared to how the UT performed in Figure 6.4. The performance here

shows a filter that, while the y axis continues to converge slightly as the descent continues,

is nowhere near the benefits seen for the 1/4◦ fidelity UT. Comparing this UT solution to

the EKF, the first aspect of note is the altimeter residual interval where the effects of the

nonlinear transformation and tuning noise can be best visualized. While the single run

performance of the EKF is a stable, straight line once the altimeter is activated, the UT

better shows the effects of the nonlinear terrain and the increased tuning noise by having

a larger and more erratic single run performance. While the position and velocity error

intervals themselves are similarly accurate relative to the EKF, the increased tuning noise

and residual instability make it a less compelling option by comparison.
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Moving to the 1/64
◦ DEM in the UT, the issues brought about by the increased

complexities of the DEM only grow even further. The filter has a more difficult time

given the amount of variations in the terrain. The tuning noise used needs to be increased

significantly in the position to 25 m, while the velocity tuning noise remains 0.005 m/s.

The first thing to notice in Figure 6.6 is the altimeter residual intervals, where the single run

performance is even more erratic due to the increased terrain variations and further away

from the Monte Carlo performance due to the increased tuning noise. Its performance is

otherwise similar to the 1/16
◦ fidelity except that it falls outside the single run performance in

the position and velocity as time progresses. While the Monte Carlo simulation maintains

stability due to the large tuning noise that allows the filter to converge to a solution, that

solution is not as accurate given the large amount of noise needed. This performance

shows how difficult of a time the UT has when the higher fidelities models are used, while

the 1/4◦ model provides good improvement over the EKF, that changes as models with

increased variations are introduced. Previously, the introduction of variation between filter

components had provided benefits to the filter, so similar simulations will be considered to

see their effects on the filtering solution.

When using a fidelity for the truth that is higher than that of the estimate, it is

of interest to see if the results using the UT are similar to the corresponding findings of

implementing different fidelities in the EKF. Performing a simulation with a truth model of

1/16
◦ and an estimate of 1/4◦ gives the results in Figure 6.7. The first thing to note here is

that the introduction of the 1/4◦ DEM in the estimate once again reduced the tuning noise

needed for the filter to operate successfully. While originally the 1/16
◦ UT required 8.5 m of

tuning noise, here this was reduced to only 3 m. This is still larger than the EKF simulations

that used 1.5 m of position tuning noise, which follows the trend that the UT requires more

tuning noise to allow a filter that converges on a correct solution. The reduction in tuning

noise is also noticeable in the altimeter residual interval. While the single run performance

is slightly larger than the Monte Carlo results, they are much closer in magnitude than the
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Figure 6.4. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/4◦ DEM for truth and estimate with UT.
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Figure 6.5. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and estimate with UT.
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Figure 6.6. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/64

◦ DEM for truth and estimate with UT.
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identical 1/16
◦ residual due to the lesser noise used. The large variations seen using the 1/16

◦

estimate previously are also reduced by the use of the lesser 1/4◦ estimate. Much like with

the EKF, here the introduction of a lesser degree estimate helps to reduce the complexities

of the higher fidelity truth to make it easier for the filter to converge and maintain a stable

solution.

The trends seen in Figure 6.7 continue when using the 1/128
◦ DEM truth with the

1/4◦ estimate. In Figure 6.8, the lesser degree estimate is able to assist the filter in bringing

down the tuning noise to only 2 m in the position, even less than for the 1/16
◦ truth. By

comparison, with a truth and estimate of the same fidelity, the 1/64
◦ DEM required 25 m of

tuning noise, and the 1/128
◦ DEM would have required much more to function effectively.

This further emphasizes the benefits of using a lesser degree DEM estimate that is able to

smooth out the effects of the terrain that would otherwise be a much larger issue.

6.4. MONTE CARLO INTEGRATION

To understand how a nonlinear update may perform in a best case scenario, a Monte

Carlo sampling is performed. This sampling is done with 100, 000 samples drawn from the

uncertainty covariance. These samples are then input through the nonlinear transformation

and used to determine the measurement, measurement covariance, and cross covariance for

the altimeter. The results of this method are presented in Figure 6.9 where a simulation is

performed with a 1/16
◦ DEM for the truth and estimate. Comparing these results to the UT

with the same fidelities in fig. 6.5 the Monte Carlo simulation seems to assist the filter in a

couple areas. In terms of the necessary tuning noise for a stable filter solution the position

noise is reduced from the previous 8.5 m for the UT to 3.85 m for theMonte Carlo sampling.

Looking at the performance of the filter, benefits are seen in the convergence of the velocity

axis along with in position axis y and z. While there are not massive differences, the

convergence seen continues further along in the trajectory than with the UT and to a more

accurate solution. This sampling also has Monte Carlo simulation results that are slightly
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Figure 6.7. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and 1/4◦ DEM for estimate with UT.
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Figure 6.8. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and 1/4◦ DEM for estimate with UT.
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conservative compared to the single run performance. This may be in part to the large

number of samples taken here making the filter more sensitive to the tuning noise used.

While tuning this method it was more appealing to be slightly conservative compared to the

single run performance than having a filter where theMonte Carlo simulation fell outside the

expected single run performance. The use of the Monte Carlo sampling provides a slightly

better example of nonlinear sampling that allows the tuning noise used to be reduced and

finds a slightly more accurate solution compared to the UT.
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Figure 6.9. Position (top) and velocity (middle) error 3σ interval, and altimeter residual
(bottom) 3σ intervals for the Monte Carlo simulation (solid gray) and a single filter run
(solid black) when using the 1/16

◦ DEM for truth and 1/4◦ DEM for estimate with UT.
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7. CONCLUSION

To provide a filter that can more accurately model the “real world” it is intended

to run in, simulations have to be performed that can verify the usefulness of said filter

in characteristic scenarios. This was achieved here by simulating an entry, descent, and

landing (EDL) scenario on the Moon. Starting at 25 km altitude the filter estimates the

state comprised of the position, velocity, and attitude of the vehicle and sensor biases with

an IMU, star camera, which was disengaged once thrusting began, and a nadir altimeter,

which started at 8 km altitude. To determine filter performance with various fidelities of

terrain, different altimeter models were used that ranged from a simple spherical model to

complicated DEMs. These fidelities were varied for the altimeter sensor that is tested within

the SR-MEKF filtering solution. While all components (truth, estimate, and measurement

Jacobian) maintained the same fidelity, the results fell within the expected single run

performance for lower fidelities but began to diverge as the fidelity was increased. It was

found that this issue could be mitigated by introducing tuning noise to the filter that allowed

it to account for the issues brought about by the more realistic terrain. While larger noises

were required as fidelities were increased, this could be counteracted by the use of a lower

degree estimate. Simulating a higher degree truth with a 1/4◦ estimate and spherical Jacobian

provided a filter that could be compared to the more reliable, high fidelity truth while using

much less tuning noise than would otherwise be needed.

As fidelity of the altimeter model is increased, it became more difficult for the filter

to properly converge to a stable solution, requiring the introduction of tuning noise to the

system. This encouraged an inspection into alternative methods that could alleviate stability

issues that plagued the higher fidelity models and reduce the tuning noise needed in the

process. By reducing the uncertainty the filter has when the altimeter is first initiated, such

that both the filter and altimeter start at the same time, a much more stable filter could
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be configured that performed as expected with higher fidelity models and no tuning noise.

A more realistic attempt at uncertainty reduction was created by increasing the altitude at

which the altimeter sensor was initiated. The slight reduction in uncertainty this produced

was not enough to affect the filter as intended and did not produce any improvement in

the results. The need for tuning noise was still required and without a greater reduction in

uncertainty, no benefits were gained.

To construct a filter that could better account for the terrain of the surface below

it, nonlinear transformations were implemented within the altimeter sensor update. This is

done with an unscented transform (UT) that allowed the filter to obtain samples at various

points on the surface within the area of uncertainty that allow it to better understand the

varied terrain below the filter. The UT update was shown to reduce position and velocity

errors compared to the EKF update when using a lower fidelity DEM. As the fidelity was

increased, though, the instability of the terrain required the introduction of tuning noise

once again. When the fidelity used for the filter estimation was varied from that of the truth,

a stable solution was able to be found, once again, with a reduction in tuning noise, due to

the lower fidelity estimate. If a transformation method were able to account for the large

amount of variations in the higher fidelity DEMs, it could support a much more accurate

filter, but as it stands the need for tuning noise reduces these benefits. While using a lower

degree estimate helps, it is still not able to provide the more beneficial results seen in the

lower fidelity truth and estimate that could be run without the need for tuning noise.

The use of Monte Carlo sampling within the filter allows it to have an even better

understanding of the terrain below the vehicle with one-hundred thousand samples drawn

from the state uncertainty. This allows the filter to perform better than the UT in reducing

the tuning noise needed to provide a stable solution. The large sampling of the Monte Carlo

integration method also provided a solution that continued to converge to a more accurate

solution than the UT. While it did not reduce the tuning noise lower than what was used

with linearization, it was able to provide a solution that kept converging as it continued
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though descent better than the other methods at the same fidelity. Providing the filter with

a better understanding of the nonlinear terrain though this transformation allows for the

construction of a more accurate filtering solution through the large Monte Carlo sampling.

As demands on the navigation filter growwith the ever increasing number ofmissions

requiring EDL, the need for more realistic sensor modeling also grows. Simulations here

show how topographical terrain can prove difficult for the filter to converge on a solution

when the variations of that terrain change rapidly. While higher fidelity models require large

amounts of tuning noise, this can be supplemented with lower fidelity estimates to assist in

the filtering solution. As away to supply the filter withmore information of its surroundings,

nonlinear transformations were utilized. The UT provided a better understanding of the

nonlinear terrain and resulted in improvements for a lower fidelity DEM, with more stable

and accurate filtering solutions. While these require more time for computation at this

fidelity, the results in stability make it a beneficial trade off in performance. As fidelity is

increased, the major benefit appears to come from the combination of a higher fidelity truth

and lower fidelity estimate. This allows the necessary tuning noise to be reduced to provide

a filter that follows its expected single run performance. Monte Carlo sampling provided

an idea of how these nonlinear transformations can be assisted by the inclusion of more

sample points, both decreasing tuning noise and solution error compared to the UT. Going

forward, more research into alternate methods that allow the filter to better understand the

terrain below it will in turn allow for more realistic and high fidelity DEMs to be used to

provide accurate and reliable filtering solutions.
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APPENDIX

VERMEILLE’S ALGORITHM

In order to implement the ellipsoidal altimeter model, a method for determining

geodetic coordinates must be defined. To do this Vermeille’s Algorithm was chosen to find

the height of the vehicle above the point on the ellipsoid below it. Given the ellipsoidal

parameters of the semi-major axis, a, and the eccentricity, e, along with the fixed frame

position of the vehicle, r f
alt , this height can be determined. This is done via a transformation

to the selenodetic latitude, longitude, and altitude via a series of intermediary equations

provided by Vermeille [33]. Using the necessary parameters these intermediary terms are

be calculated as

p =
x2 + y2

a2 , q =
(1 − e2)z2

a2 , r =
p + q − e4

6
, s =

pqe4

4r3 ,

t =
3
√

1 + s +
√

s(2 + s) , u = r
(
1 + t +

1
t

)
, v =

√
u2 + e4q ,

w = e2 u + v − q
2v

, k =
√

u + v + w2 − w , and d =
k
√

x2 + y2

k + e2 .

The altitude for the ellipsoidal altimeter model is then calculated as

h =
k + e2 − 1

k

√
d2 + z2

providing the selenodetic height, h, above the ellipsoidal surface.

With the altitude above the surface found, the last component needed for the filter is

the partial derivative Jacobian of this measurement [6]. This is once again done with a set

of intermediary terms defined as
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Sx,y =
qe4

4r4 (2r − p) , Tx,y =
1

3t3
1√

s(2 + s)
Sx,y , Ux,y =

u
3r
+ r

(
1 −

1
t2

)
Tx,y ,

Vx,y =
u
v

Ux,y , Wx,y =
1
2v

(
e2Ux,y + (e2 − 2w)Vx,y

)
,

Kx,y =
1
2

1
k + w

(
Ux,y + Vx,y − 2kWx,y

)
, Dx,y = d

(
e2

k(k + e2)
Kx,y +

1
p

)
,

and Hx,y =
1 − e2

k2

√
d2 + z2Kx,y +

k + e2 − 1
k

d
√

d2 + z2
Dx,y .

and

Sz =
pe4(1 − e2)

4r4 (2r − q) , Tz =
1

3t3
1√

s(2 + s)
Sz , Uz =

u(1 − e2)

3r
+ r

(
1 −

1
t2

)
Tz ,

Vz =
u
v

Uz +
e4(1 − e2)

v
, Wz =

1
2v

(
e2Uz + (e2 − 2w)Vz − 2e2(1 − e2)

)
,

Kz =
1
2

1
k + w

(Uz + Vz − 2kWz) , Dz =
e2

√
x2 + y2

(k + e2)2
Kz ,

and Hz =
1 − e2

k2

√
d2 + z2Kz +

k + e2 − 1
k

dDz + a2
√

d2 + z2
.

This then allows the partial derivative of the altitude with respect to the fixed frame position

be determined as

∂h

∂r
f

alt

=
1
a2 (r

f
alt)

Tdiag(Hx,y, Hx,y, Hz) ,

providing the derivative of the selenodetic parameters with respect to the Cartesian coordi-

nates used in determining the altitude solution.
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