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ABSTRACT

THE A-B SIGNAL DETECTION THEORY MODEL

Emesto A. Bustamante 
Old Dominion University, 2007 

Director: Dr. James P. Bliss

The purpose of this research was threefold: 1) Present the a-b SDT model as an 

alternative framework to overcome the limitations o f the underlying SDT model and the 

traditional measures o f sensitivity and criterion setting, 2) Provide empirical support to 

validate the adequacy o f the a-b SDT model, and 3) Conduct a Monte Carlo Study to 

compare and contrast the strengths and weaknesses o f both the traditional and the a-b 

SDT models across the full spectrum of response values with the goal o f providing 

researchers and practitioners with recommendations regarding the adequacy o f each 

model. The results from this research have both theoretical implications and practical 

applications. The findings from the empirical study suggest that Green and Swets 

(1966)’s contention that the detection and response processes are independent from each 

other is questionable. Furthermore, the findings from the Monte Carlo Study suggest that 

the a-b SDT model provides more accurate measures to capture the dependency between 

these two processes. This is particularly important for researchers and practitioners who 

are interested in studying human-automation interaction factors and how sensory and 

perceptual factors may affect humans’ response biases while interacting with automated 

systems.
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CHAPTER I

INTRODUCTION

Although Signal Detection Theory (SDT) was first introduced into the field of 

psychology as a means for studying humans’ abilities to detect sensory stimuli (Green & 

Swets, 1966), researchers have postulated its use for analyzing the performance of 

humans and automated systems in a variety o f different areas (Swets, 1996). Stanislaw 

and Todorov (1999) suggested that SDT could be applied to any situation in which an 

observer had to make a decision under some degree of uncertainty. Swets (1973) 

advocated that SDT could be applied to areas other than psychophysics, such as the study 

o f vigilance, recognition memory, attention, imagery, learning, conceptual judgment, 

personality, reaction time, manual control, speech recognition, and information retrieval 

systems.

Within the context o f SDT, Green and Swets (1966) emphasized the existence of 

two different and separate processes. According to Green and Swets (1966), detection or 

recognition is the process o f identifying whether the psychological experience was 

caused by just noise or the signal. Conversely, the decision process depends on the 

amount or extent o f the psychological experience required by the detector to make an 

affirmative response. Swets (1973) distinguished between a process o f covert 

discrimination and a process o f overt response. He argued that these two processes have a 

complex relationship, influenced by a number o f factors, including, but not limited to, 

probability, expectations, and motivation.

This dissertation adheres to the format of the Human Factors Journal.
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The main contribution o f SDT to the study of the performance o f humans and 

automated systems is the capability o f SDT to separate the discrimination process from 

the response process by distinguishing between independent measures o f sensitivity and 

measures of criterion setting. However, the usefulness of the traditional SDT model is 

questionable in most applied settings because observers do not make decisions based on 

an underlying psychophysical continuum. For example, research suggests that humans 

use cognitive heuristics (Kahneman, Slovic, & Tversky, 1982) and rely on naturalistic 

decision making (Klein, Orasanu, Calderwood, & Zsambok, 1993) to make decisions in a 

nonlinear fashion.

SDT and Psychophysics

SDT was first used in the field o f psychology to study human performance in 

psychophysical tasks (Green & Swets, 1966). One goal of traditional psychophysical 

methods was to determine the absolute threshold, which is defined as the minimum 

strength o f a sensory stimulus that was necessary for humans to detect it. Another goal of 

psychophysical methods was psychophysical scaling, which consisted o f mapping 

changes in the physical characteristics of stimuli to changes in humans’ psychophysical 

experience. There were three commonly used methods in psychophysics (Green & Swets, 

1966).

One traditional method was the method o f  adjustment. In this case, participants 

adjusted the magnitude o f a physical stimulus until they considered it to be just 

noticeable. One problem with this method was that participants were not very accurate at 

adjusting the magnitude of the stimulus with the controls available to them (Green & 

Swets, 1966).
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Another psychophysical method was the method o f  serial exploration, which was 

also commonly referred to as the method o f  limits. In this method, experimenters 

presented participants with a given stimulus and varied its magnitude in either an 

ascending or a descending order. Participants had to tell the experimenter when they 

could no longer detect the stimulus or when they could just detect it, depending on the 

presentation order. The main problem with this technique was that it allowed participants 

to build an expectation about the magnitude o f the next stimulus, which affected their 

willingness to respond (Green & Swets, 1966).

The third psychophysical method was the method o f  constant stimuli. This method 

mitigated some o f the limitations o f the method o f limits. Experimenters presented 

participants with different magnitudes o f the stimulus in a random order, and participants 

had to respond when they detected the given stimulus. The random nature of the 

presentation order limited participants’ response bias associated with their expectation.

All o f these methods, however, were based on the assumption of an absolute 

sensory threshold (Green & Swets, 1966). According to this assumption, participants 

would only emit an affirmative response if the magnitude of the stimulus exceeded the 

threshold. Swets (1961) argued that the problem with psychophysical methods could be 

analyzed within the context o f what he referred to as the fundamental decision problem. 

According to Swets (1961), when people perform a detection or decision-making task, 

they are limited to responding to a given interval or trial predefined by the experimental 

or applied condition. Therefore, for each trial, people’s responses are not indicative of 

whether or not they detected the stimulus. Instead, people’s responses are indicative of 

which response option (i.e., yes or no) they considered to be more appropriate for the
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given trial. Taking this into consideration, Green and Swets (1966) proposed the yes-no 

task as an alternative method for assessing humans’ ability to detect stimuli.

In the yes-no task, experimenters provided a cue (in a different sensory modality) 

to indicate to participants when the stimulus was going to be presented. For example, if  

the task consisted of detecting an auditory stimulus, experimenters would flash a. light to 

indicate to participants that the stimulus was being presented. Participants were instructed 

to respond either “yes” or “no”, depending on whether or not they perceived the stimulus. 

In contrast to psychophysical tasks, the yes-no task presented participants with either 

white noise or the target stimulus on each trial. Therefore, each trial had two possible true 

states: noise or the signal plus noise. Similarly, each trial led to two possible responses: 

yes or no. Consequently, all possible outcomes could be examined using a two-by-two 

contingency table as shown in Table 1.

TABLE 1: Two-by-Two Contingency Table

True States of the World

Signal + Noise Noise

Response

Yes Hit False Alarm

No Miss Correct Rejection

Green and Swets (1966) stressed the fact that when analyzing this contingency 

table, it is important to refer to the cells as conditional probabilities based on the two
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possible states o f the world to allow comparisons to be made regardless of the prior 

probabilities of each event. Moreover, Green and Swets (1966) called attention to the fact 

that only two o f these probabilities are necessary to assess overall performance because 

the remaining two are merely their complements. One conditional probability is that an 

affirmative response (i.e., yes) will be emitted given that the signal is present (i.e., signal- 

plus-noise). This is commonly known as the hit rate or p(HI). The second conditional 

probability is that an affirmative response (i.e., yes) will be emitted given that the 

stimulus is not present (i.e., noise). This is commonly referred to as the false alarm rate 

orp(FA).

Under the traditional SDT model, the two possible states o f the world (i.e., noise 

and signal-plus-noise) have a differential effect on participants’ psychophysical 

experiences, which could be represented by two overlapping probability density functions 

as shown in Figure 1. Sensitivity (d  ’) is defined as the mean difference between the 

means o f the two probability density functions. Criterion setting (c) is defined as the 

point along the psychophysical continuum above which a participant will make an 

affirmative response.

Traditional psychophysical theories based on an absolute sensory threshold 

predicted that participants would make affirmative responses in noise trials only by 

chance. However, as Swets (1961) indicated, even in the early studies it became apparent 

that noise trials led to a significant proportion of affirmative responses. Also, Swets 

(1961) emphasized the notion that participants’ response criteria were affected by a 

number o f non-sensory variables such as the prior probability of signal trials and different 

payoffs associated with different responses. Swets (1996) argued that varying
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participants’ response criteria allows researchers to obtain a number o f hit and false alarm 

rate combinations. These combinations can be plotted in what is frequently known as the 

receiver operating characteristic (ROC) curve (see Figure 2).

Noise Signal + Noise

High cLow c

Psychophysical Continuum

Figure 1. Noise and signal + noise distributions.

.05 1.00
p(False Alarm)

Figure 2. Receiver operating characteristic curve

Figure 2 shows a plot o f hit rate values along the ordinate and false alarm rates 

along the abscissa. The straight line that cuts across the bottom left vertex and the top
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right vertex represents a sensitivity value at chance performance. The curved line 

represents a sensitivity value greater than chance performance. The line that connects the 

center o f the straight line with the center o f the curved line represents the exact sensitivity 

value.

Swets (1961) pointed out that traditional psychophysical methods, such as the 

method of adjustment, the method of limits, and the method of constant stimuli, were not 

able to differentiate between sensitivity and criterion setting. The main reason for this 

claim was that changes in performance could be attributed to sensitivity only if  criterion 

setting was believed to be constant, whereas changes in performance could be attributed 

to changes in criterion setting only if  sensitivity was assumed to remain constant. 

According to Green and Swets (1966), SDT provides the means for distinguishing 

sensitivity level from criterion setting.

Since Green and Swets published their seminal work in 1966, researchers have 

applied SDT to a variety of different domains that are well outside of the realm of 

psychophysics. Some o f these areas include, but are not limited to, warning system 

performance (Bustamante, Bliss, & Anderson, in press; Lehto & Papastavrou, 1998; 

Parasuraman & Hancock, 1997), operator responses to alarms (Bustamante, 2005; 

Bustamante, Fallon, & Bliss, 2004; Meyer & Balias, 1997; Sorkin & Woods, 1985), pilot 

weather judgments (Coyne, 2005), pilot terrain avoidance performance (Peterson, 1999), 

air combat training (Eubanks & Killeen, 1983), air traffic control (Bass, 2006), driver 

decision making performance (Wolf, Algom, & Lewin, 1988), decision making 

performance in supervisory control (Bisseret, 1981), group decision making (Sorkin, 

Hays, & West, 2001), automated speech recognition system performance (Deller, Desai,
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& Yang, 2005), speech perception (Burlingame, Sussman, & Gillam, 2005), expert 

judgment performance (Harvey, 1992), luggage screening (Madhavan & Gonzales,

2006), and medical diagnosis (McFall & Treat, 1999; Mota & Schachar, 2000). The 

appropriateness of extending the traditional SDT model to areas that are outside o f the 

realm o f the psychophysical domain is questionable because the fundamental theoretical 

foundation of SDT may not serve as an adequate framework for conducting research in 

such areas.

Traditional SDT Model

Under the traditional SDT framework, researchers have postulated sensitivity 

measures as either the degree o f separation between signal and signal-plus-noise 

probability density functions along a psychophysical continuum or the area underneath 

the ROC space (Donaldson, 1993). There are a number o f SDT models and measures. 

Some examples of sensitivity measures include: d ’ and A q  (Green & Swets, 1966), A ’ 

(Pollack & Norman, 1964), E  (McComack, 1961), and Grier (1971)’s extension of the A ’ 

measure. Some examples of response bias or criterion setting measures include: c 

(Snodgrass & Corwin, 1988),/? (Green & Swets, 1966), B ” (Hodos, 1970), andB d ” 

(Donaldson, 1992). The most recently developed SDT model is Fuzzy SDT 

(Parasuraman, Masalonis, & Hancock, 2000). Fuzzy SDT provides measures of 

sensitivity (d ’) and response bias (fi). Although these measures are conceptually similar 

to those proposed by Green and Swets (1966), they are fundamentally different because 

they are based on fuzzy logic and decision making. As such, fuzzy SDT is not 

appropriate for analyzing dichotomous decisions based on dichotomous states o f the 

world (for applications o f fuzzy SDT, see Hancock, Masalonis, & Parasuraman, 2000).
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Despite the wide range o f SDT measures, the most commonly used and widely 

accepted measures of sensitivity and criterion setting are d ’ and c, respectively. The 

sensitivity measure d ’ is defined as the difference between the mean of the signal-plus- 

noise distribution and the mean of the noise distribution (see Figure 1), or 

d '= ^ \ p ( H I ) } - ^ \ p { F A ) }  (1)

where,

d ’ = sensitivity

0'*[p(HI)] = z score corresponding to the point below which the area under the standard 

normal distribution equals the proportion o f hits

®~'[p(FI)] -  z score corresponding to the point below which the area under the standard 

normal distribution equals the proportion o f false alarms

The criterion-setting measure c is defined as the point along the continuum above

which an observer makes an affirmative response (see Figure 1), or

c = ( - 1) * {5 * O '1 \p(H I)\ + .5 * d)"1 [p(FzO]} (2)

where,

c = criterion setting

0 ‘1[p(HI)] = z score corresponding to the point below which the area under the standard 

normal distribution equals the proportion of hits

0"'[p(FI)] = z score corresponding to the point below which the area under the standard 

normal distribution equals the proportion of false alarms

The main advantage o f these measures is that they can be estimated from a single 

combination o f proportions o f hits and false alarms. However, research suggests that d ’ 

and c have questionable properties when based on extreme responding (Craig, 1979),
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which is often the case in real-world settings (Snodgrass & Corwin, 1988) such as traffic- 

collision warning systems (Parasuraman, Hancock, & Olofinboba, 1997), medical 

diagnosis (Li, Lin, & Chang, 2004), monitoring complex cockpit displays (Bailey & 

Scerbo, 2005), and luggage screening (Drury, Ghylin, & Holness, 2006). The reason for 

this is that the O '1 function is undefined for values of 0 and 1. Therefore, if  an observer 

has a perfect hit rate of 1 or a false alarm rate of 0, the original hit and false alarm rates 

need to first be transformed. The problem is that transformations may lead to biased 

estimates (Hautus, 1995).

Limitations o f  the Traditional SDT Model

The applicability o f the traditional SDT model is questionable for a variety of 

different domains. There are conceptual and practical reasons why extensions of 

traditional SDT are debatable (Long & Waag, 1981). First, the underlying SDT model 

rests on the assumption of the existence of the two probability density functions 

associated with signal and signal-plus-noise trials along a continuum (see Figure 1).

Swets (1961) argued that the exact nature of the sensory excitation produced by either the 

noise or the stimulus was not an issue. According to Swets (1961), what matters is that 

sensory excitation varies from trial to trial even if  the magnitude o f the stimulus is held 

constant, and that excitation can be quantified in terms of a single continuous variable, 

which could be thought o f as the decision variable. However, in most applied settings, 

this argument is questionable.

Second, one criterion for assessing the adequacy of measures is the capability to 

assign scores even when observers do not commit any errors (Craig, 1979). However, as
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previously mentioned, there are limitations related to traditional SDT measures in the 

presence of extreme responding (Long & Waag, 1981).

Goals o f  this Research

The purpose of this research was fourfold: 1) Present the a-b SDT model as an 

alternative framework to overcome the limitations of the underlying SDT model and the 

traditional measures o f sensitivity and criterion setting, 2) Provide empirical support to 

validate the adequacy o f the a-b SDT model, 3) Conduct a jackknifing study based on the 

data obtained from the empirical study to determine if  differences between the a-b SDT 

model and the traditional SDT model were due to sampling error or some systematic 

variation, and 4) Conduct a Monte Carlo Study to compare and contrast the strengths and 

weaknesses o f both the traditional and the a-b SDT models across the full spectrum of 

response values with the goal o f providing researchers and practitioners with 

recommendations regarding the adequacy of each model.
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CHAPTER II

THE A-B SDT MODEL

The a-b SDT model is based on the work of Bustamante, Fallon, and Bliss (2006), 

who offered alternative measures of sensitivity or accuracy (a) and response bias (b) that 

do not rely on the underlying assumptions o f the traditional SDT model. Instead, a and b 

are based simply on the outcome matrix (see Table 1), defined by the proportion of hits 

and false alarms. It is important to note that the a-b SDT model is not atheoretical, and it 

shares many similarities about the detection and response processes as the traditional 

SDT model. Within the a-b SDT model, sensitivity or accuracy is conceptually defined as 

the tendency to make correct responses (i.e., hits and correct rejections). Response bias, 

on the other hand, is conceptually defined as the tendency to make affirmative responses 

(hits and false alarms).

In most applied settings, researchers are concerned with the ability o f humans and 

automated systems to make accurate decisions. Therefore, Bustamante et al. (2006) first 

replaced the term “sensitivity” with “accuracy” (a) and defined it as the weighted sum of 

the proportion of correct affirmative and negative responses, or 

a = .5 * p (H I) + .5*p(C R ) (3)

where, 

a = accuracy 

p(HI) = proportion of hits 

p(CR) = proportion of correct rejections
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Bustamante et al. (2006) defined response bias (b) as the weighted sum of the 

proportion o f correct and incorrect affirmative responses, or 

b = .5 * p(HI)  + .5 * p(F A ) (4)

where,

b = response bias

p(HI)= proportion o f hits

p(FA) = proportion o f false alarms

Advantages o f  the a-b SDT Model over the Traditional SDT Model

The a-b SDT model has several advantages over the traditional SDT model. 

Comparing Formulas 1 and 2 with Formulas 3 and 4, it is evident that the a-b SDT model 

is more parsimonious than the traditional SDT model. There are three main reasons for 

this. First, Bustamante et al. (2006) made no reference to an underlying decision 

continuum. Swets (1961) argued that the exact nature o f the sensory excitation produced 

by either the noise or the stimulus could be quantified in terms of a single continuous 

variable (the decision variable). However, this argument does not apply well to domains 

where individuals and automated systems make decisions based on multiple sources of 

information and different decision-making algorithms.

This lack o f reliance on the assumption o f an underlying decision continuum is 

one of the strengths o f the a-b SDT model because in most applied settings, humans and 

automated systems do not make decisions based on a single underlying continuum. 

Researchers have suggested that many factors may influence human decision making in a 

nonlinear fashion. Examples include the perception o f risk (Ayres, Wood, Schmidt, & 

McCarthy, 1998), the amount o f effort involved in choosing a particular alternative
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(Wogalter, Allison, & McKena, 1989), the use o f cognitive heuristics (Kahneman et al., 

1982), workload (Broadbent, 1978), fatigue (Krueger, 1989), and expertise (Klein et ah, 

1993). With regard to automated system decision making, designers typically use highly 

complex algorithms that are also nonlinear, such as decision trees, Monte Carlo Studys, 

and neural networks.

A second advantage o f the a-b SDT model is that it does not require 

transformations of original hit and false alarm rates for extreme responses. Because the a- 

b SDT model is not based on an underlying continuum, there is no need to assume the 

existence o f probability density functions associated with the different signal and signal- 

plus-noise trials. The a-b SDT model simply describes the decision outcome matrix 

shown in Table fusing  measures o f accuracy and response bias that are uncorrelated with 

each other. In contrast, traditional measures o f performance, such as hit rate, false alarm 

rate, overall percentage o f correct decisions, and the ratio of hit rate to false alarm rate, 

are all inadequate measures o f accuracy and response bias because they are correlated 

with factors that affect both the detection and the response processes (Stanislaw & 

Todorov, 1999).

A third advantage o f the a-b SDT model is that the alternative a and b measures 

may be interpreted more intuitively. With regard to a, a score o f 0 indicates the complete 

lack of ability to make accurate decisions. A score o f .5 indicates performance at chance 

level, and a score of 1 indicates perfect decision-making accuracy. With regard to b, a 

score of 0 indicates a lack of affirmative responsiveness. A score o f .5 indicates an 

unbiased level o f responsiveness, and a score o f 1 indicates a complete response bias 

toward affirmative responses. These metrics may be more appealing to human factors
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researchers as well as system designers and decision makers responsible for 

implementing human factors research findings because of their intuitive interpretative 

nature.
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CHAPTER III

EMPIRICAL VALIDATION OF THE A-B SDT MODEL

Prior research has shown evidence to support the advantages o f the a-b SDT 

model over the traditional SDT model (Bustamante, Anderson, Thompson, Bliss, & 

Scerbo, in press; Bustamante et al. 2006; Bustamante, Spain, Newlin, & Bliss, 2007). 

However, most o f this research has relied on the use o f Monte Carlo Studys. 

Consequently, there is a need to perform an empirical evaluation o f the a-b SDT model to 

complement the previously conducted simulation-based research.

Consistent with the second goal o f this research, this study aimed to provide an 

empirical validation of the a-b SDT model. The goal o f this study was to gather empirical 

data from a traditional signal detection study to assess the adequacy o f the a-b SDT 

model. The basic premise of SDT is that in a traditional SDT task, two distinct and 

independent processes take place: a covert discrimination process and an overt response 

process (Swets, 1973). Furthermore, according to the traditional SDT model, these two 

processes are independent o f each other and are affected by different factors (Green & 

Swets, 1966). Therefore, to test the adequacy of the a-b SDT model, two factors that 

should affect each of these processes independently were manipulated within a traditional 

SDT task.

One o f these factors was the probability o f occurrence of the target stimulus. Prior 

research suggests that changes in the probability o f occurrence o f the target stimulus 

affects people’s response bias (Bliss, Gilson, & Deaton, 1995). This effect is commonly 

known as probability matching. The second factor was based on a derivation o f Weber’s
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Law, which is used to predict people’s abilities to detect just noticeable differences 

between two stimuli. According to Weber’s Law, the ratio of the difference between a 

target stimulus and a baseline stimulus equals a constant K, or

where,

K = Weber’s fraction

AI=  Difference between the baseline and target stimuli 

7= Intensity of baseline stimulus

Based on Weber’s Law, it follows that as the difference between the baseline and 

target stimuli increases, people’s abilities to discriminate between the two stimuli should 

also increase. Within the context o f SDT, this implies that increasing the difference 

between the baseline and target stimuli should increase people’s accuracy levels. 

Hypotheses

The empirical validation of the adequacy of the a-b SDT model rests on two 

hypotheses: 1) Increasing the probability o f occurrence o f the target stimulus should 

increase participants’ response bias without affecting their accuracy; 2) Increasing the 

difference between the baseline and target stimuli should increase participants’ accuracy 

without affecting their response bias.

METHOD

Experimental Design

A 3 x 3 repeated-measures design was used for this study. The probability of 

occurrence o f the target stimulus was manipulated at three levels (.10, .50, and .90). The
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frequency difference between the baseline and target stimuli was also manipulated at 

three levels (5 Hz, 10 Hz, and 15 Hz).

Participants

A power analysis revealed that approximately 20 participants would be necessary 

to obtain statistically significant effects at a .01 alpha level, assuming a power o f .80 and 

a medium effect size for each factor (Cohen, 1988). Therefore, 20 (10 females, 10 males) 

undergraduate and graduate students from Old Dominion University in Norfolk, VA 

participated in this study. Participants ranged from 18 to 34 years o f age (M  = 23.05, SD 

= 3.69). They all had normal or corrected-to-normal vision and hearing. Participants were 

compensated with one research credit as a form of incentive to participate in this study. In 

addition to this, a prize of $ 100 was awarded to the participant with the best performance 

to motivate participants to perform at their maximum level.

Materials and Apparatus

This study took place in a sound-attenuated room with an average ambient noise 

level of 45 dB(A). Participants performed a traditional yes-no SDT task, which consisted 

of discriminating between baseline and target auditory stimuli that varied in their 

fundamental frequency. All stimuli were generated using the NCH Tone Generator 

software and lasted 100 milliseconds. The baseline stimulus consisted of a simple sine 

wave o f 500 Hz. Depending on the experimental condition, the target stimulus consisted 

o f a simple sine wave o f 505 Hz, 510 Hz, or 515 Hz. Stimuli were presented to 

participants through a set of sound-attenuated stereo headphones at 55 dB(A) using a 

fixed inter-stimulus ratio o f 2.5 seconds. A Microsoft Visual Basic program was 

developed and loaded on a Dell Inspiron 600m laptop computer to 1) Collect
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participants’ demographic and contact information (see Appendix A), 2) Present 

participants with the instructions o f the study (see Appendix B), 3) Familiarize 

participants with the baseline and target stimuli prior to each session (see Appendix C),

4) Present participants with information regarding the type of session (i.e., practice or 

experimental), the probability o f occurrence o f the target stimulus (i.e., .10, .50, or .90), 

and the frequency difference between the baseline and target stimuli (i.e., 5 Hz, 10 Hz, or 

15 Hz; see Appendix D), 5) Present participants with the baseline and target stimuli 

throughout each practice and experimental session, 6) Provide participants with feedback 

regarding their performance by updating their performance score (see Appendix E), and 

7) Record their responses.

Procedure

Participants came to the laboratory individually. First, the experimenter greeted 

them and provided them with the informed consent form (see Appendix F). Second, the 

experimenter asked participants to silence or turn off their cellular phones if  they had 

one. Third, the experimenter assigned each participant an identification number. Fourth, 

the experimenter asked participants if  they had any questions regarding the nature o f the 

study. If participants decided to participate, the experimenter asked them to sign and date 

the informed consent form. Fifth, the experimenter asked participants to complete the 

background and contact information form. Sixth, the experimenter showed participants 

the instructions for completing the study and asked them to read them carefully. Seventh, 

the experimenter instructed participants to place the set o f stereo headphones on their 

heads and adjust them to fit comfortably. Eighth, the experimenter showed participants 

the familiarization screen and instructed them about how to use the graphical user
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interface of, the program. Ninth, the experimenter showed participants how to navigate 

through the program to the first session and explained all the information displayed on 

the screen. Last, the experimenter answered any final questions participants had 

regarding the completion of the study.

As part o f this experiment, participants performed nine one-minute practice 

sessions and nine five-minute experimental sessions, which varied according to the 

probability o f occurrence o f the target stimulus (i.e., .10, .50, .90) and the frequency 

difference between the baseline and target stimuli (i.e., 5 Hz, 10 Hz, 15 Hz). Each 

practice session preceded its corresponding experimental session. Practice sessions 

consisted o f 20 trials, whereas experimental sessions consisted o f 100 trials. All sessions 

were fully counterbalanced according to the ascending or descending nature of each 

factor (i.e., the probability o f occurrence o f the target stimulus and the frequency 

difference between the baseline and target stimuli). Furthermore, to avoid a potential 

vigilance decrement, the experimenter instructed participants to take a short break after 

each experimental session.

Participants’ task consisted o f pressing the number one key on top of the 

keyboard for trials in which they perceived that the target stimulus was presented and 

pressing the number zero key on top o f the keyboard for trials in which they perceived 

that the target stimulus was not presented. To maintain experimental control, the 

experimenter asked participants to place and keep their left middle finger on top of the 

number one key and their right middle finger on top of the number zero key during each 

session.
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Throughout each trial, participants received feedback about the accuracy of their 

responses through the changes in their performance score. Participants started each 

session with a score of zero. For each individual trial, if  participants made an accurate 

response (i.e., a hit or a correct rejection), they received one point, which was added to 

their total performance score. Similarly, for each incorrect response (i.e., a false alarm or 

a miss), they lost one point, which was subtracted from their total performance score. 

RESULTS

Given that the purpose of this study was to provide empirical support for the 

adequacy of the a-b SDT model, four 3 x 3  repeated-measures ANOVAs were conducted 

to assess the effects of the probability o f occurrence o f the target stimulus and the 

frequency difference between the baseline and target stimuli on the a and b measures as 

well as on the traditional d ’ and c measures. Due to the large number of statistical tests, 

statistical significance for all inferential tests was set a priori at p  < .01. Similarly, only 

statistically significant results are reported.

The a-b SDT Model

Accuracy. A 3 x 3 repeated measures ANOVA showed a statistically significant 

effect o f frequency difference onparticipants’ accuracy levels (a), F(2, 38) = 44.23, p  < 

.01, partial r\ = .70. A follow-up trend analysis showed a statistically significant linear 

trend, F (l, 19) = 58.47,/? < .01, partial r\ = .76, and a statistically significant quadratic 

trend, F (l, 19) = 16.14,/? < .01, partial q2 = .46. Table 2 shows the means and standard 

deviations o f participants’ accuracy levels in each o f the three frequency difference 

conditions.
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Table 2: Means and Standard Deviations o f Participants’ Accuracy Levels across 

Different Frequency Difference Conditions

Frequency Difference M SD

5 Hz .71 .17

10 Hz .88 .16

15 Hz .91 .13

These results are also graphically depicted in Figure 3.
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Figure 3. Participants’ accuracy levels as a function o f the frequency difference between

the baseline and target stimuli.
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Response Bias. A 3 x 3 repeated measures ANOVA showed a statistically 

significant effect of the probability o f occurrence o f the target stimulus on participants’ 

response biases (b). However, because Mauchly’s test indicated that the sphericity 

assumption was violated, the Greenhouse-Geisser correction was used to adjust the 

degrees o f freedom, F(1.07, 20.29) = 2 4 . 4 5 , <  .01, partial r|2 = .56. Results also showed 

a statistically significant interaction effect between the probability of occurrence o f the 

target stimulus and the frequency difference between the baseline and target stimuli on 

participants’ response biases (b), F(2.01, 38.20) = 20.38, p  < .01, partial rj2 = .52.

To examine the nature of this interaction effect, three simple-effects follow-up 

analyses and Scheffe contrasts were conducted. The purpose o f these analyses was to 

assess the strength o f the effect o f the probability o f occurrence of the target stimulus at 

each level o f the frequency difference factor. Table 3 shows the results o f the simple- 

effects follow-up analyses.

TABLE 3: Simple-Effects Follow-Up Analyses for Participants’ Response Biases

Frequency Difference df SS MS F

5 Hz 1.18 2.33 1.98 39.23*

10 Hz 1.10 0.40 0.36 9.94*

15 Hz

f ------ -----------------------------

1.14 0.22 .19 8.29*

T *   " "
p  < .01

Table 4 shows the means and standard deviations o f participants’ response biases 

in each o f the three probability of occurrence o f the target stimulus conditions across all 

three frequency difference conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

TABLE 4: Means and Standard Deviations of Participants’ Response Biases

Probability o f Occurrence of Target Stimulus

.10 .50 .90

Frequency Difference M SD M SD M SD

5 Hz •27a .19 ,46b .08 ,75c .17

10 Hz ,41b .15 ,50b .05 ,61d .16

15 Hz •41b .14 ,50b .04 ,55d .11

NOTE: Means with different subscripts are significantly different from each other a tp <  
.01 based on Scheffe contrasts.

These results are also graphically depicted in Figure 4.
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Figure 4. Participants’ response biases as a function of the interaction between the 

probability o f occurrence o f the target stimulus and the frequency difference between the 

baseline and target stimuli.
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As Figure 4 shows, the effect o f the probability o f occurrence o f the target 

stimulus on participants’ response biases decreased as the frequency difference between 

the baseline and target stimuli increased.

Traditional SDT Model

Because o f the previously discussed limitation o f the traditional SDT model for 

estimating sensitivity and criterion setting measures in the presence of extreme responses, 

the observed hit and false alarm rates were first transformed using the log-linear 

transformation, as recommended by Snodgrass and Corwin (1988). Subsequently, d ’ and 

c were calculated based on the transformed hit and false alarm rates.

Sensitivity.. A  3 x 3  repeated measures ANOVA showed a statistically significant 

effect o f frequency difference on participants’ sensitivity levels (<F), F(2, 38) = 57.01 ,/?

< .01, partial p2 = .75. A follow-up trend analysis showed a statistically significant linear 

trend, F( 1, 19) = 85.36,/? < .01, partial p2 = .81, and a statistically significant quadratic 

trend, F( 1, 19) = 16.33,/? < .01, partial p2 = .46. Table 5 shows the means and standard 

deviations o f participants’ sensitivity levels in each of the three frequency difference 

conditions.

TABLE 5: Means and Standard Deviations o f Participants’ Sensitivity Levels across 

Different Frequency Difference Conditions

Frequency Difference M SD

5 Hz 1.56 1.24

10 Hz 2.92 1.33

15 Hz 3.25 1.14
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These results are also graphically depicted in Figure 5.
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Figure 5. Participants’ sensitivity levels as a function of the frequency difference 

between the baseline and target stimuli.

Criterion Setting. A 3 x 3 repeated measures ANOVA showed a statistically 

significant effect o f the probability of occurrence of the target stimulus on participants’ 

criterion settings (c). However, because Mauchly’s test indicated that the sphericity 

assumption was violated, the Greenhouse-Geisser correction was used to adjust the 

degrees o f freedom, F ( l . l  1, 21.10) = 63.79,/? < .01, partial r]2 = .77. Results also showed 

a statistically significant interaction effect between the probability o f occurrence o f the 

target stimulus and the frequency difference between the baseline and target stimuli on 

participants’ criterion settings (c), F(2.24, 42.56) = 9.73, p  < .01, partial rj2 = .34.

To examine the nature of this interaction effect, three simple-effects follow-up 

analyses and Scheffe contrasts were conducted. The purpose o f these analyses was to
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assess the strength of the effect o f the probability o f occurrence of the target stimulus at 

each level of the frequency difference factor. Table 6 shows the results of the simple- 

effects follow-up analyses.

TABLE 6: Simple-Effects Follow-Up Analyses for Participants’ Criterion Settings 

Frequency Difference d f SS MS F

5 Hz 1.22 35.10 28.72 49.07*

10 Hz 1.19 13.93 11.71 36.90*

15 Hz 1.28 11.29 8.83 53.24*

p  < .01

Table 7 shows the means and standard deviations of participants’ criterion setting 

in each of the three probability o f occurrence o f the target stimulus conditions across all 

three frequency difference conditions.

TABLE 7: Means and Standard Deviations o f Participants’ Criterion Setting

Probability of Occurrence of Target Stimulus

.10 .50 .90

Frequency Difference M SD M SD M SD

5 Hz ,87a .64 ,11b .29 I SO SO o .64

10 Hz ,62d .45 ,01b .17 -.57e .47

15 Hz ,62d .38 .05b .18 -•44e .37

NOTE: Means with different subscripts are significantly different from each other at p  < 
.01 based on the Scheffe test.
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These results are also graphically depicted in Figure 6.
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Figure 6. Participants’ criterion settings as a function of the interaction between the 

probability o f occurrence of the target stimulus and the frequency difference between the 

baseline and target stimuli.

As Figure 6 shows, the effect of the probability o f occurrence o f the target 

stimulus on participants’ criterion settings decreased as the frequency difference between 

the baseline and target stimuli increased.

Correlative Comparisons Between and Within Models

A correlation analysis of the a, b, d ’, and c measures revealed that both models 

provided statistically similar measures o f accuracy or sensitivity and response bias or 

criterion setting respectively. Also, results from this analysis showed that both models 

provided uncorrelated measures o f accuracy and response bias or sensitivity and criterion
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setting respectively. Table 8 shows the pattern o f correlations of the measures between 

models as well as within each model.

TABLE 8: Correlations among Measures

Variable 1 2 3 4

1. Accuracy (a) —

2. Response Bias (b) .04 —

3. Sensitivity (d ’) .95* .05

4. Criterion Setting (c) .01 -.94* -.01

*_p < .01

DISCUSSION

Results provided partial empirical support for the validity of the a-b SDT model. 

As expected, participants’ accuracy levels increased as the frequency difference between 

the baseline and target stimuli increased. Furthermore, the probability of occurrence of 

the target stimulus did not affect participants’ accuracy levels. Additionally, results 

showed a similar pattern for the traditional SDT measure o f sensitivity (d ’). Also, as 

predicted, results showed that participants’ response biases increased as the probability o f 

the target stimulus increased. Moreover, results showed a similar, yet reversed, pattern 

for the traditional SDT measure o f criterion setting (c). It is important to note that the 

reason why the pattern was reversed was simply due to the fundamental conceptual and 

mathematical definitions o f response bias and criterion setting. Greater values o f response 

bias are indicative o f people’s tendency to make affirmative responses, whereas lower
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values o f criterion setting are indicative o f people’s tendency to make affirmative 

responses.

Additionally, consistent with prior simulation research (Bustamante et al. 2006), 

the pattern o f correlations among the a, b, d ’, and c measures showed two important 

properties o f the a-b SDT model. First, the high relationship between a and d  ’ and b and 

c respectively showed empirical support for the construct validity o f the a-b SDT model. 

Second, the absence o f significant correlations between a and b showed partial support 

for the notion that the a-b SDT model provides independent measures o f accuracy and 

response bias.

Nevertheless, the data from this study showed unexpected results, which bring 

into question the adequacy of both models. The fact that there was an interaction effect 

between the probability o f occurrence o f the target stimulus and the frequency difference 

between the baseline and target stimuli on both response bias and criterion setting 

suggests that neither model provides independent measures of accuracy or sensitivity and 

response bias or criterion setting. As Figures 4 and 6 show, as the frequency difference 

between the baseline and target stimuli increased, and, consequently, participants’ 

accuracy or sensitivity levels increased, the effect of the probability o f occurrence o f the 

target stimulus on participants’ response biases or criterion settings decreased. 

Furthermore, results showed a stronger interaction effect for response bias than criterion 

setting, suggesting that the nature o f the dependency between the measures within each 

model may vary across models.

However, the differences in the effect size o f the interaction effect could have 

been due to sampling error or some systematic difference between the two models.
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Therefore, a jackknifing study was conducted based on the data obtained from the 

empirical study to determine if  differences between the a-b SDT model and the 

traditional SDT model were due to sampling error or some systematic variation that will 

require future research.
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CHAPTER IV

JACKKNIFING STUDY

The difference in the effect size o f the interaction between the probability o f 

occurrence of the target stimulus and the frequency difference between the baseline and 

target stimuli on response bias and criterion setting between the a-b SDT model and the 

traditional SDT model raised an important issue of concern that the empirical study alone 

could not address. The purpose of this jackknifing study was to determine if  the 

difference in the effect size o f the interaction on response bias and criterion setting was 

due to sampling error or some systematic variation.

METHOD

Given that the empirical study had a sample size o f 20 participants, this 

jackknifing study consisted of 20 iterations based on a sample size o f 19 participants for 

each iteration. A 3 x 3 repeated-measures ANOVA was conducted for each iteration, and 

the effect size of the interaction was recorded. The independent variables were the 

frequency difference between the baseline and target stimuli (5 Hz, 10 Hz, 15 Hz) and the 

probability o f occurrence of the target stimulus (. 10, .50, .90).

RESULTS

Statistical analyses consisted o f calculating the mean and standard error o f the 

effect size of the interaction. A dependent-samples t-test was used to determine if the 

difference between models was statistically significant. To maintain consistency, 

statistical significance was set a priori at an alpha level of/? < .01.
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Results showed a statistically significant difference in the interaction effect 

between the two models, t{\9) = 66.09,p <  .01. The interaction effect between the 

probability o f occurrence o f the target stimulus and the frequency difference between the 

baseline and target stimuli was significantly greater for the a-b SDT model (M =  .52, SD 

= .02) than the traditional SDT model (M =  .34, SD = .02). These results are graphically 

depicted in Figure 7.
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Figure 7. Differences in the interaction effect size between the a-b and traditional SDT 

models.

DISCUSSION

Results from the jackknifing study provided additional insight regarding the 

differences between the a-b SDT model and the traditional SDT model. The results from 

the jackknifing study indicated that the differences in the interaction effect size between
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the a-b SDT model and the traditional SDT model were not due to sampling error. These 

findings suggest that there are systematic differences in the degree o f dependency 

between the a and b measures and the d ’ and c measures respectively. Furthermore, these 

findings served as an additional foundation for the Monte Carlo Study.
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CHAPTER V

MONTE CARLO STUDY

As previously mentioned, the main contribution of SDT is that it allows 

researchers to examine the covert detection process independently of the overt response 

process. A fundamental requirement to satisfy this claim is to have a model from which 

to derive independent measures o f accuracy or sensitivity and response bias or criterion 

setting. The lack of a correlative relationship between measures of accuracy or sensitivity 

and measures of response bias or criterion setting is necessary but not sufficient to 

conclude that such measures are independent. The only condition in which the lack of a 

correlative relationship would be sufficient to establish statistical independence between 

measures of accuracy or sensitivity and measures o f response bias or criterion setting 

would be if both measures within a given model were bivariate normally distributed 

(Papoulis & Pillai, 2002).

In general though, two random variables, X  and Y, are statistically independent if  

and only if, the conditional probability o f a value of X  given a value of Y equals the 

marginal probability o f the value of X  and vice versa (Papoulis & Pillai, 2002), or

Neither the a-b SDT model nor the traditional SDT model satisfies this property. 

Given the intuitive nature o f the calculation and interpretation o f a and b, this can be 

clearly shown using the a-b SDT model as an example. Based on Formulas 3 and 4, it is

(6)

and,

(7)
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clear that in cases o f an extreme accuracy score (either 0 or 1), the probability o f b being 

equal to .5 is 1 and 0 for any other value o f b. Likewise, given an extreme value o f b 

(either 0 or 1), the probability of a being equal to 0 is 1 and 0 for any other value o f a. 

However, given the complex nature of the computations o f the traditional SDT measures, 

demonstrating lack of independence for them is not as simple. Furthermore, results from 

the empirical study and the jackknifing study suggest that this lack o f independence may 

vary depending on the value of each measure. Therefore, the purpose o f the Monte Carlo 

Study was to compare both models to examine the severity o f their lack o f independence 

across their full spectrum of potential values. Based on the results from-the empirical 

study and the jackknifing study, the degree of dependency between a and b and c and d 

respectively was expected to vary according to the range of values o f each measure. 

METHOD

To maximize estimation accuracy* the Monte Carlo Study was based on a 

population of 100,000 cases. Based on prior research (Bustamante et al. 2006), hit and 

false alarm rates were randomly drawn from a uniform distribution. Both measures of 

each model were then calculated based on the simulated hit and false alarm rates. The 

Statistical Package for the Social Sciences (SPSS 14.0) was used to conduct the 

simulation and analyze the data (see Appendix G).

RESULTS

Given the lack of effective statistical tests of independence, the relationship 

between the measures within each model was analyzed graphically. The purpose o f the 

graphical analysis was to examine the range of possible values o f response bias or 

criterion setting given different ranges o f values of accuracy or sensitivity.
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Preliminary analyses consisted o f frequency distributions and normal Q-Q plots of 

each measure to assess the nature o f their univariate distributions (Tabachnick & Fidell, 

2001)

Figures 8 to 11 show the frequency distributions o f a, b, d \  and c values.
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Figure 8. Frequency distribution o f a values.
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Figure 9. Frequency distribution of b values.
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Figure 10. Frequency distribution o f d ’ values.
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Figure 11. Frequency distribution of c values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figures 12 to 15 show the normal Q-Q plots o f a, b, d \  and c values.
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Figure 12. Normal Q-Q plot o f a values.
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Figure 13. Normal Q-Q plot o f b values.
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Figure 14. Normal Q-Q plot of d ’ values.
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Figure 15. Normal Q-Q plot of c values.
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Table 9 shows the correlations among the simulated measures. 

TABLE 9: Correlations among Simulated Measures

Variable 1 2 3 4

1. Accuracy (a) —

2. Response Bias (b) .00

3. Sensitivity (d ’) .99* .00

4. Criterion Setting (c) .00 -.98* .00 -

* p  < .01

Table 10 shows the results o f the Kolmogorov-Smimov test o f univariate

normality for each measure.

TABLE 10: Kolmogorov-Smimov Test o f Univariate Normality

Measure K-S p

a .02 .00

b .02 .00

d ‘ .00 .20

c .00 .20

NOTE: p  values were adjusted with the Lilliefors Significance Correction

As table 10 shows, a and b values were not normally distributed, whereas d ’ and c 

values were. Furthermore, as Figures 12 and 13 show, a and b values were not normally 

distributed as they approached their extreme scores.

Each set o f measures (i.e., a and b, d ’ and c) was then plotted jointly to examine 

the nature of their relationship across the full spectrum of their values.
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Figures 16 and 17 show the scatter plots o f the a-b SDT measures and the 

traditional SDT measures across their full range of possible values.

_ j -------------------j-------------------j - ---------------- j-------------------j-------------------r~
0.QQ 0.20 0.4Q QJSO 0.8Q t  .00

a

Figure 16. Scatter plot o f the a-b SDT measures across their full range o f possible values.

OI-----------j---------------- j---------------- 1---------------- 1---------------- 1-----------1
-5.00 -2.50  0.00 2.50 5.00
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Figure 17. Scatter plot o f the traditional SDT measures across their full range o f possible 

values.
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Figures 18 and 19 show the 3-D scatter plots o f the a-b SDT measures and the 

traditional SDT measures across their full range o f possible values.

Figure 18. 3-D scatter plot of the a-b SDT measures across their full range o f possible 

values.

Figure 19. 3-D scatter plot o f the traditional SDT measures across their full range o f 

possible values.
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Results from the 3-D scatter plot o f the traditional SDT measures suggest that d ’ 

and c are bivariate normally distributed. Last, each set o f measures was plotted jointly 

while restricting the range of one of the measures (i.e., a and d ’) to explore the nature of 

the frequency distribution o f the other measure (i.e., b and c) given the restricted set of 

values for the former measure. Given the intuitive interpretative nature of a values, 

scatter plots were restricted based on intervals o f . 10 across possible a values (see 

Appendix H). Only the a and d ’ values above chance performance were restricted for the 

subsequent graphical analyses. There were two reasons for doing this. First, given the 

symmetric nature o f the scatter plots o f a and b values and d ’ and c values respectively 

(see Figures 16 and 17), the graphical analyses above chance performance would be 

identical to those below chance performance. The second and most important reason for 

doing this was that in most settings, researchers and practitioners are interested in 

assessing human and automated system performance above chance level. Figure 20 

shows the scatter plots o f a and b values and d ’ and c values when .50 >= a < .60.

1.0 0 -

0 .8 0 -

0 .6 0 -

n

0 .4 0 -  

0 .2 0 -  

0.00-

Figure 20. Scatter plots o f a and b values and d ’ and c values when .50 >= a < .60.
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Figure 21 shows the scatter plots o f a and b values and d ’ and c values when .60

>= a < .70.

0 .60  0 .62  0 .6 4  0 .6 6  0 .6 8  0 .70

Figure 21. Scatter plots o f a and b values and d ’ and c values when .60 >= a < .70.

Figure 22 shows the scatter plots o f a and b values and d ’ and c values when .70 

>= a < .80.

Figure 22. Scatter plots o f a and b values and d ’ and c values when .70 >= a < .80.
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Figure 23 shows the scatter plots o f a and b values and d ’ and c values when .80 

>= a < .90.
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Figure 23. Scatter plots o f a and b values and d ’ and c values when .80 >= a < .90.

Figure 24 shows the scatter plots of a and b values and d ’ and c values when .90 

>= a < 1 .00.

0 .9 4

oo

O 0
5 °  CL ooft? oOoo

cP

4 .00 4.20 4 .40 4 .6 0 4 .60 6 .00

Figure 24. Scatter plots o f a and b values and d ’ and c values when .90 >= a < 1.00.
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DISCUSSION

Results from the preliminary analyses showed that unlike the traditional SDT 

measures, the a-b SDT measures were not normally distributed (see Table 10 and Figures 

12 to 15). Results from the correlational analyses were consistent with prior research 

(Bustamante et ah, 2006), indicating that both models provide uncorrelated measures of 

accuracy or sensitivity and response bias or criterion setting. However, results from the 3- 

D scatter plots o f the a and b and d ’ and c measures across their full range o f possible 

values showed that the relationship between the a and b measures is different than that of 

the d ’ and c measures (see Figures 18 to 19). More specifically, unlike the a-b SDT 

measures, the traditional SDT measures seem to be bivariate normally distributed. These 

findings suggest that the traditional SDT measures are statistically independent from each 

other, whereas the a-b SDT measures are statistically dependent on each other. 

Furthermore, as expected, as the value o f a increased, the range of possible b values 

decreased (see Figures 20 to 24). Consistent with the empirical study and the jackknifing 

study, the results from the Monte Carlo Study suggest that the nature of the dependency 

between the a and b measures is stronger than that of the d ’ and c measures.

Based on Green and Swets (1966)’s argument that the detection and response 

processes are independent, the results from the Monte Carlo Study would seem to suggest 

that the traditional SDT model provides more adequate measures than the a-b SDT 

model. However, the results from the empirical study and the jackknifing study bring into 

question the viability o f Green and Swets (1966)’s argument.

According to Green and Swets (1966), non-sensory factors, such as the 

probability o f the target stimulus, should have no effect on sensitivity. Likewise, sensory
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factors, such as the frequency difference between the baseline and target stimuli, should 

have no effect on criterion setting. However, the results from the empirical study and the 

jackknifing suggested that the effect o f sensory factors can impact the effect size o f non- 

sensory factors on criterion setting or response bias. These are crucial findings because 

they suggest that factors that affect the covert detection process can also affect the overt 

response process, thereby establishing a dependency between these two processes.

Consequently, the results from this research suggest that contrary to Green and 

Swets (1966)’s argument, the detection and response processes are dependent, and the 

nature o f their dependency increases as the difference between the baseline and target 

stimuli increases. Furthermore, the findings from this research suggest that the a-b SDT 

model is a more adequate framework for detecting the dependency o f the detection and 

response processes.

An applied example of a domain in which the a-b SDT model may be a more 

adequate framework to analyze human performance is pilots’ decision-making during 

potential weather threats. Research shows that in general, commercial aviation pilots 

have a tendency to deviate from their predetermined flight paths due to potential weather 

threats (Bliss, Fallon, Bustamante, Bailey, & Anderson, 2005). Two of the main reasons 

for this tendency to deviate from potential weather threats are passengers’ safety and 

comfort. The problem is that making unnecessary flight path deviations can have 

negative effects, such as increased fuel consumption and' flight delays.

Within the context o f SDT, passengers’ safety and comfort constitute non-sensory 

factors that increase pilots’ biases toward deviating from their predetermined flight paths. 

Researchers and designers can use the a-b SDT model to examine how sensory factors,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

such as the characteristics o f weather displays, can mitigate the effect of non-sensory 

factors. The purpose o f this would be to increasing pilots’ decision-making accuracy to 

the point where they would not be biased by such non-sensory factors and would avoid 

making unnecessary flight path deviations.
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CHAPTER VI

CONCLUSION

The combined results from this research provide important theoretical and 

practical contributions to researchers and practitioners. Given its lack o f reliance on the 

assumption of a single underlying continuum, the a-b SDT model is more generalizable 

and applicable than the traditional model. This greater generalizability and applicability is 

particularly important for researchers and practitioners who are interested in examining 

the performance o f humans and automated systems in complex domains, such as aviation, 

driving, luggage screening, and medical diagnosis, in which neither humans nor 

automated systems make decisions based on a single underlying continuum.

More importantly though, the findings from this research suggest that Green and 

Swets (1966)’s contention that the detection and response processes are independent from 

each other does not hold true for either the a-b SDT model or the traditional SDT model. 

An important point to note is that although the traditional SDT model provides 

independent measures o f sensitivity and criterion setting, the empirical data suggests that 

the covert detection and overt response processes are not independent. Therefore, the a-b 

SDT model provides more accurate measures to capture the dependency between these 

two processes.

This is particularly important for researchers and practitioners who are interested 

in examining not only the detection or decision-making accuracy o f humans and 

automated systems, but also their response biases. More specifically, researchers 

interested in studying human-automation interaction factors, such as compliance,
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reliance, and trust, may benefit from using the a-b SDT model to assess how sensory and 

perceptual factors affect humans’ response biases while interacting with automated 

systems.

Technological advances have made the use of automated systems a common 

practice in a variety o f task domains, including aviation (Bliss, 2003), air traffic control 

(Masalonis & Parasuraman, 2003), ground transportation (Shinar, 2000), medicine 

(Weinger, 2000), mining (Mallett, Vaught, & Bmich, 1993), ship handling (Kerstholt, 

Passenier, Houttuin, & Schuffel, 1996), and nuclear power control (Bransby, 2001). The 

increased used of automated systems has changed the role of humans from operators to 

system monitors (Parasuraman & Riley, 1997). Human monitors are notoriously 

ineffective in complex situations characterized by high levels of workload (Woods,

1995). Engineers and designers have developed automated alarm systems to assist human 

monitors (Papadopoulos & McDermid, 2001).

Advanced sensor technologies and fault-diagnosis algorithms have allowed alarm 

systems to detect the presence of dangerous conditions effectively (Turner & Bajwa, 

1999). The primary purposes o f alarm systems are to detect dangerous conditions and 

attract operators’ attention so that they can either avoid or escape problems (Xiao & 

Seagull, 1999). Ideally, systems should issue alarms only when there is an actual 

underlying problem present. However, because o f legal implications, system designers 

tend to follow the engineering fail safe approach, setting the threshold o f alarm systems 

low enough to alert operators o f even the slightest possibility of a problem (Swets, 1992). 

Moreover, the rare occurrence o f dangerous conditions makes it difficult for designers to 

develop alarm systems that emit a low number o f false alarms (Parasuraman & Hancock,
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1999). Consequently, most alarm systems generate many false alarms (Getty, Swets, 

Pickett, & Gonthier, 1995). Frequent false alarms cause a cry-wolf effect, which leads to 

a loss o f trust in the system and a decrease in operator compliance with alarm signals 

(Breznitz, 1983). As a result o f this cry-wolf effect, operators often ignore or cancel 

alarms without searching for additional information that could help them detect the 

presence of dangerous conditions (Sorkin, 1988).

Researchers have tried to mitigate the cry-wolf effect by focusing on increasing 

operators’ biases toward responding to alarm signals. To that end, researchers have 

manipulated hearsay information, the perceived urgency of such signals, and reaction 

modalities (Bliss, 1997; Bliss, Dunn, & Fuller, 1995). Although such solutions may result 

in higher response rates to true signals, they also increase responses to false alarms. This, 

in turn, may increase their level of workload and hinder primary-task performance 

(Gilson & Phillips, 1996).

Researchers have also tried to adapt the traditional SDT model to better 

characterize operators’ interactions with automated alarm systems (Bustamante et al., 

2004; Lehto & Papastavrou, 1998; Meyer, 2004; Sorkin & Woods, 1985). The underlying 

purpose for adapting SDT to analyze human responses to alarms is to examine system 

characteristics that may increase operators’ abilities to distinguish between true and false 

alarms, thereby increasing operators’ responses to only true alarms and decreasing their 

responses to false alarms. However, one of the main problems with adopting the 

traditional SDT model to this domain is that when operators interact with automated 

alarm systems in complex environments, they do not make decisions based solely on a 

single underlying psychophysical continuum. Instead, when responding to alarms,
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operators need to take into account several factors that vary according to the task at hand. 

Some o f these factors include: the reliability of the system (Bliss, Gilson, et al., 1995; 

Getty et al., 1995), the type o f response modality (Bliss, 1997), the perceived urgency of 

alarm signals (Bliss, Dunn, et al., 1995; Edworthy & Loxley, 1991), the presence of 

likelihood and task-critical information (Bustamante, 2005), workload (Bustamante & 

Bliss, 2005), and the acoustic parameters o f alarm signals (Edworthy, Hellier, & Hards, 

1995). Therefore, given its lack o f reliance on the assumption of a single underlying 

psychophysical continuum, the a-b SDT model may serve as a more adequate framework 

for characterizing operators’ interactions with automated alarm systems.

More importantly though, the findings from this research showed evidence to 

support the superiority o f the a-b SDT model over the traditional SDT model. Aside from 

being more parsimonious and generalizable, the a-b SDT provides measures o f accuracy 

and response bias that more adequately capture the dependency between the covert 

detection and overt response processes. As such, researchers and practitioners can use the 

a-b SDT model to more adequately examine how sensory system characteristics that can 

improve operators’ accuracy interact with non-sensory factors to affect operators’ 

reliance on and compliance with automated systems. ■ ■ -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

REFERENCES

Ayres, T. J., Wood, C. T., Schmidt, R. A., & McCarthy R. L. (1998). Risk perception and 
behavioral choice. International Journal o f  Cognitive Ergonomics, 2(1-2), 35-52.

Bass, E. J. (2006). Comparison o f four quantitative methods o f measuring human
judgment performance in a simulated horizontal air traffic conflict prediction task. 
International Journal o f  Applied Aviation Studies, 6(1), 25-46.

Bailey, N. R., & Scerbo, M. W. (2005). Concurrent monitoring for multiple critical
signals in a complex display: A vigilance perspective. In Proceedings o f  the 49th 
Annual Meeting o f  the Human Factors and Ergonomics Society (pp. 1518-1522). 
Santa Monica, CA: Human Factors and Ergonomics Society.

Bisseret, A. (1981). Application o f signal detection theory to decision making in
supervisory control: The effect o f the operator's experience. Ergonomics, 24(2), 
81-94.

Bliss, J. P. (1997). Alarm reaction patterns by pilots as a function o f reaction modality. 
The International Journal o f  Aviation Psychology, 7(1), 1-14.

Bliss, J. P. (2003). Investigation o f alarm-related accidents and incidents in aviation. The 
International Journal o f  Aviation Psychology, 13(3), 249-268.

Bliss, J. P., Dunn, M. C., & Fuller, B. S. (1995). Reversal of the ery-wolf effect: An 
investigation o f two methods to increase alarm response rates. Perceptual and 
Motor Skills, 60,1231-1242.

Bliss, J. P., Fallon, C. K., Bustamante, E. A., Bailey, W. R., & Anderson, B. L. (2005). 
Reactions o f  air transport flight crews to displays o f  weather during simulated 
flight. (Final Report, ODU Contract 130971). Langley, VA: NASA Langley 
Research Center.

Bliss, J. P., Gilson, R. D., & Deaton, J. E. (1995). Human probability matching
behaviour in response to alarms of varying reliability. Ergonomics, 35(11), 2300- 
2312.

Bransby, M. (2001). Design of alarm systems. In J. Noyes & M. Bransby (Eds.), People 
in control: Human factors in control room design (pp. 207-222). Edison, NJ: 
Institution o f Electrical Engineers.

Breznitz, S. (1983). Cry-wolf: The psychology o f  false alarms. Hillsdale, NJ: Lawrence 
Erlbaum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Broadbent, D. (1978). The current state o f noise research: Reply to Poulton. 
Psychological Bulletin, 85, 1052-1067.

Burlingame, E., Sussman, H. M., & Gillam, R. B. (2005). An investigation o f speech 
perception in children with specific language impairment on a continuum of 
formant transition duration. Journal o f  Speech, Language, and Hearing Research, 
48(4), 805-816.

Bustamante, E. A. (2005). A signal detection analysis o f the effects o f workload, task- 
critical and likelihood information on human alarm response. In Proceedings o f  
the 49th Annual Meeting o f  the Human Factors and Ergonomics Society (pp. 
1513-1517). Santa Monica, CA: Human Factors and Ergonomics Society.

Bustamante, E. A., Anderson, B. L., Thompson, A. R., Bliss, J. P., Scerbo, M. W. (in
press). Robustness o f the a b signal detection theory model o f decision making. In 
Proceedings o f  the Human Factors and Ergonomics Society 51th Annual 
Meeting. Santa Monica, CA: Human Factors and Ergonomics Society.

Bustamante, E. A., & Bliss, J. P. (2005). Effects o f workload and likelihood information 
on human response to alarm signals. In Proceedings o f  the 13 th International 
Symposium on Aviation Psychology (pp. 81-85). Oklahoma City, OK: Wright 
State University.

Bustamante, E. A., Bliss, J. P., & Anderson, B. L. (in press). Effects o f varying the
threshold o f alarm systems and workload on human performance. Ergonomics.

Bustamante, E. A., Fallon, C. K., & Bliss, J. P. (2004). Adapting signal detection theory 
for analyzing human response to alarm signals: A theoretical approach [Abstract], 
American Psychological Association Divisions 19 & 21 Midyear Symposium. 
Alexandria, VA, March 4-5.

Bustamante, E. A., Fallon, C. K., & Bliss, J. P. (2006). A more parsimonious approach to 
estimating signal detection theory measures. In Proceedings o f  the Human 
Factors and Ergonomics Society 50th Annual Meeting (pp. 1711-1715). Santa 
Monica, CA: Human Factors and Ergonomics Society.

Cohen, J. (1988). Statistical power analysis fo r  the behavioral sciences. Hillsdale, NJ: 
Erlbaum.

Coyne, J. T. (2005). Crisp and fuzzy signal detection theory and pilot weather judgment: 
Implications for VFR flights into IMC. Dissertation Abstracts International: 
Section B: The Sciences and Engineering, 66(1-B), 597.

Craig, A. (1979). Nonparametric measures of sensory efficiency for sustained monitoring 
tasks. Human Factors, 27(1), 69-78.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Deller, J. R., Desai, K. H., & Yang, Y. P. (2005). A decision-theoretic framework for the 
evaluation o f language models used in speech recognizers. Natural Language 
Engineering, 11(4), 363-393.

Donaldson, W. (1992). Measuring recognition memory. Journal o f  Experimental 
Psychology: General, 121, 275-277.

Donaldson, W. (1993). Accuracy of d' and vT as estimates of sensitivity. Bulletin o f  the 
Psychonomic Society, 37,271-274.

Drury, C. G., Ghylin, K. M., & Holness, K. (2006). Error analysis and threat magnitude 
for carry-on bag inspection. In Proceedings o f  the Human Factors and 
Ergonomics Society 50th Annual Meeting (pp. 1189-1193). Santa Monica, CA: 
Human Factors and Ergonomics Society.

Edworthy, J., Hellier, E., & Hards, R. (1995). The semantic association of acoustic
parameters commonly used in the design o f auditory information and warning 
signals. Ergonomics, 35(11), 2341-2361.

Edworthy, J., & Loxley, S. (1991). Improving auditory warning design: Relationship 
between warning sound parameters and perceived urgency. Human Factors, 
33(2), 205-231.

Eubanks, J. L., & Killeen, P. R. (1983). An application of signal detection theory to air 
combat training. Human Factors, 25(4), 449-456.

Getty, D. J., Swets, J. A., Pickett, R. M-, & Gonthier, D. (1995). System operator
response to warnings o f danger: A laboratory investigation o f the effects o f the 
predictive value of a warning on human response time. Journal o f  Experimental 
Psychology: Applied, 1, 19-33.

Gilson, R.D., & Phillips, M.J. (1996). Alert or sound alarm? Aerospace Engineering, 21- 
23. . .

Green. D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New 
York: Wiley.

Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas. 
Psychological Bulletin, 75, 424-429.

Hancock, P. A., Masalonis, A. J., & Parasuraman, R. (2000). On the theory of fuzzy 
signal detection: Theoretical and practical applications. Theoretical Issues in 
Ergonomics Science, 1(3), 207-230.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Harvey, L. 0 . (1992). The critical operating characteristic and the evaluation o f expert 
judgment. Organizational Behavior and Human Decision Processes, 53(2), 229- 
251.

Hautus, M. (1995). Corrections for extreme proportions and their biasing effects on
estimated values o f d \  Behavior Research Methods, Instruments, & Computers, 
27, 46-51.

Hodos, W. (1970). Nonparametric index of response bias for use in detection and 
recognition experiments. Psychological Bulletin, 74, 351-354.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics 
and biases. New York, NY: Cambridge University Press.

Kerstholt, J.H, Passenier, P.O., Houttuin, K., & Schuffel, H. (1996). The effect o f a priori 
probability and complexity on decision making in a supervisory control task. 
Human Factors, 38(1), 65-78.

Klein, G. A., Orasanu, J., Calderwood, R. & Zsambok, C. E. (1993). Decision making in 
action: Models and methods. Norwood, NJ: Ablex Publishing.

Krueger, G.P. (1989). Sustained work, fatigue, sleep loss and performance: A review o f 
the issues. Work and Stress, 3(2) 129-141.

Lehto, M. R., & Papastavrou, J. D. (1998). A signal-detection theory based perspective 
on design of warning. Perceptual and Motor Skills, 86, 720-722.

Li, C. R., Lin, W. Chang, H. (2004) A psychophysical measure o f attention deficit in 
children with attention-deficit/hyperactivity disorder. Journal o f  Abnormal 
Psychology, 113(2), 228-236.

Long, G. M., & Waag, W. L. (1981). Limitations on the practical applicability o f d7 and (3 
measures. Human Factors, 23(3), 285-290.

Madhavan, P. & Gonzales, P. (2006). Effects o f sensitivity, criterion shifts, and
subjective confidence on the development of automaticity in airline luggage 
screening. In Proceedings o f  the Human Factors and Ergonomics Society 50th 
Annual Meeting (pp. 334-338). Santa Monica, CA: Human Factors and 
Ergonomics Society.

Mallett, L.G., Vaught, C., & Bmich, M.J., Jr. (1993). Sociotechnical communication in 
an underground mine fire: A study o f warning messages during an emergency 
evacuation. Safety Science, 16, 709-728.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Masalonis, A. J., & Parasuraman, R. (2003). Fuzzy signal detection theory: Analysis of 
human and machine performance in air traffic control, and analytic 
considerations. Ergonomics, 46(11), 1045-1074.

McComack, R. L. (1961). Inspector accuracy: A study o f  the literature. Albuquerque: 
Sandia Corporation.

McFall, R. M., & Treat, T. A. (1999). Quantifying the information value o f clinical
assessments with signal detection theory. Annual Review o f  Psychology, 50, 215- 
241.

Meyer, J. (2004). Conceptual issues in the study of dynamic hazard warnings. Human 
Factors, 46(2), 196-204.

Meyer, J. & Balias, E. (1997), A two-detector signal detection analysis o f learning to use 
alarms. In Proceedings o f  the Human Factors and Ergonomics Society 41st 
Annual Meeting (pp. 186-189). Santa Monica, CA: Human Factors and 
Ergonomics Society.

Mota, V. L., & Schachar, R. J. (2000). Reformulating attention-deficit/hyperactivity
disorder according to signal detection theory. Journal o f  the American Academy 
o f  Child & Adolescent Psychiatry, 39(9), 1144-1151.

Papadopoulos, Y., & McDermid, J. (2001). Automated safety monitoring: A review and 
classification o f methods. International Journal o f  Condition Monitoring and 
Diagnostic Engineering Management, 4(4), 1-32.

Papoulis, A., & Pillai, S. U. (2002). Probability, Random Variables, and Stochastic 
Processes. New York, NY: McGraw-Hill.

Parasuraman, R., & Hancock, P. A. (1999). Using signal detection theory and Bayesian 
analysis to design parameters for automated alarm systems. In M. Scerbo & M. 
Mouloua (Eds.), Automation technology and human performance: Current 
research and trends (pp. 63-67). Mahwah, NJ: Erlbaum.

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, 
abuse. Human Factors, 39, 230-253.

Parasuraman, R., Hancock, P. A., & Olofinboba, O. (1997). Alarm effectiveness in 
driver-centered collision-warning systems. Ergonomics, 40(3), 390-399.

Parasuraman, R., Masalonis, A. J., & Hancock, P. A. (2000). Fuzzy signal detection 
theory: Basic postulates and formulas for analyzing human and machine 
performance. Human Factors, 42(4), 636-659.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

Peterson, D. A. (1999). The effects o f experience and training in the use o f a terrain
enhanced primary flight display for terrain avoidance (pilot training). Dissertation 
Abstracts International: Section B: The Sciences and Engineering, 60(6-B), 2998.

Pollack, I., & Norman, D. A. (1964). A non-parametric analysis o f recognition 
experiments. Psychonomic Science, 1, 125-126.

Shinar, D. (2000). Fleet study evaluation o f an advanced brake warning system. Human 
Factors, 42(3), 482-489.

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: 
Applications to dementia and amnesia. Journal o f  Experimental Psychology: 
General, 117(1), 34-50.

Sorkin, R. D. (1988). Why are people turning off our alarms? Journal o f  the Acoustical 
Society o f  America, 84, 1107-1108.

Sorkin, R. D., Hays, C. J., & West, R. (2001). Signal-detection analysis o f group decision 
making. Psychological Review, 108(1), 183-203.

Sorkin, R. D., & Woods, D. D. (1985). Systems with human monitors: A signal detection 
analysis. Human Computer Interaction, 1, 49-75.

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection measures. Behavior 
Research Methods, Instruments, & Computers, 31(1), 137-149.

Swets, J. A. (1961). Is there a sensory threshold? Science, 134, 168-177.

Swets, J. A. (1973). The relative operating characteristic in psychology. Science, 
182(4116), 990-1000.

Swets, J. A. (1992). The science o f choosing the right decision threshold in high-stakes 
diagnostics. American Psychologist, 47(4), 522-532.

Swets, J. A. (1996). Signal detection theory and ROC analysis in psychology and
diagnostics: Collected papers. Mahwah, NJ: Lawrence Erlbaum Associates.

Tabachnick, B. G., & Fidell, L. S. (2001). Computer-assisted research design and 
analysis. Needham Heights, MA: Allyn & Bacon.

Turner, I. Y., & Bajwa, A. (1999). A survey of aircraft engine health monitoring systems. 
In Proceedings o f  the 35th Joint Propulsion Conference, Aerospace Systems 
Condition Monitoring Session, (pp. 1-7). Los Angeles, CA: American Institute o f 
Aeronautics and Astronautics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Weinger, M. B. (2000). Auditory warnings in the medical work domain: An overview of 
critical issues. In Proceedings o f  the Human Factors and Ergonomics Society 
44th Annual Meeting (pp. 211-214). Santa Monica, CA: Human Factors and 
Ergonomics Society.

Wogalter, M. S., Allison, S. T., & McKenna, N. A. (1989). Effects o f cost and social 
influence on warning compliance. Human Factors, 31, 133-140.

Wolf, Y., Algom, D. Lewin, I. (1988). A signal detection theory analysis of a driving 
decision task: Spatial gap acceptance. Perceptual and Motor Skills, 66(3), 683- 
702.

Woods, D. D. (1995). The alarm problem and directed attention in dynamic fault 
management. Ergonomics, 35(11), 2371-2393.

Xiao, Y., & Seagull, F.J. (1999). An analysis o f problems with auditory alarms: Defining 
the roles o f alarms in process monitoring tasks. Proceedings o f  the Human 
Factors and Ergonomic Society 43rd Annual Meeting (Santa Monica, CA: Human 
Factors and Ergonomics Society), 256-260.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

Demographic and Contact Information
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APPENDIX B

Participant Instructions

instructions

INSTRUCTIONS
T he purpose of this study  is to a s s e s s  your ability to differentiate a  target auditory signal from a  baseline  signal. W e a re  specifically in terested  in examining 
how the probability of occurrence of the target signal a n d  the  difference in frequency b e tw een  th e  target an d  b aselin e  signals affects your perform ance.

As part of Ihis experim ent, you  will perform nine one-m inute practice se ss io n s  and  nine five-minute experim ental s e ss io n s , which will vary according 'to  the 
probability of o ccurrence of the target signal (i.e., .10, .50, .90) an d  the  difference in the  frequency betw een the  target an d  b aseline  signals (i.e., 5  Hz, 10 
Hz, 15 Hz).

Your job will consist of pressing  the  #1 Key on  top of the  keyboard  for th o se  trials in which you perceive that the  target signal w as p resen ted  and  pressing  
the  # 0  K ey on top of the keyboard  for th o se  trials in which you perceive that the  target signal w as not p resen ted . To m aintain experim ental control, p lease  
p lace  and  k eep  your left middle finger on top of the #1 Key and  your right middle finger on  top ol the  # 0  Key during e a ch  sess io n .

Throughout e a c h  trial, you  will receive feed b ack  on  the  accuracy  of your decision through the c h a n g es  in your perform ance score . You will start e a ch  
experimental s e ss io n  with a  sco re  of zero. For e a c h  individual trial, if you m ake a n  accu ra te  decision, you will receive o n e  point, which will be  a d d e d  to your 
total sco re . Similarly, for e a ch  incorrect decision, you will lose  one point, which will be  su b trac ted  from your total sco re . T he maxim um  sco re  you can  receive 
in a given se ss io n  is 100 points an d  the  minimum is -100  points. T he participant with the h ighest a v e rag e  score  ac ro ss  se ss io n s  in the  experim ent wilt 
receive $100.

If you have any  q uestions, p lea se  notify the  experim enter at this time.
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APPENDIX C

Familiarization

Ifamfiumz&tton

FAMILIARIZATION

P le a s e  click  o n  th e  b a s e l in e  a n d  ta r g e t  b u t to n s  to  fam ilia rize  y o u rse lf  w ith e a c h  s o u n d

■ e
5 0 5  Hz 5 0 0  Hz
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APPENDIX D

Session Information

H
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APPENDIX E

Performance Feedback

SESSIO N  TYPE: P ractice  

PROBABILITY OF TARGET SIGNAL: 0.1 

FREQUENCY DIFFERENCE: 5 Hz 

SCO R E 
10
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APPENDIX F

Old Dom inion U niversity Inform ed Consent Form

PRO JECT T IT L E : Signal Detection 

INTRO DUCTIO N
The purposes o f  this form are to give you information that may affect your decision whether to say YES or 
NO to participation in this research, and to record the consent o f  those who say YES. It is your right and 
responsibility to inform the researcher if  you wish to cease participation at any time.

RESEARCH ERS
James P. Bliss, Ph.D., Associate Professor, College o f  Sciences, Psychology Department 
Ernesto A. Bustamante, M .S., ABD, Graduate Student, College o f  Science, Psychology Department

D ESCRIPTIO N OF RESEARCH  STUDY
The purpose o f  this study is to assess your ability to differentiate a target auditory signal from a baseline 
signal. W e are specifically interested in examining how the probability o f  occurrence o f  the target signal 
and the difference in frequency between the target and baseline signals affects your performance. As part o f  
this experiment, you will perform nine one-minute practice sessions and nine five-minute experimental 
sessions, which will vary according to the probability o f  occurrence o f  the target signal (i.e., .10, .50, .90) 
and the difference in the frequency between the target and baseline signals (i.e., 5 Hz, 10 Hz, 15 Hz).

Your job w ill consist o f  pressing the #1 Key on top o f  the keyboard for those trials in which you perceive 
that the target signal was presented and pressing the #0 Key on top o f  the keyboard for those trials in which 
you perceive that the target signal was not presented.

Throughout each trial, you will receive feedback on the accuracy o f  your decision through the changes in 
your performance score. You will start each experimental session with a score o f  zero. For each individual 
trial, i f  you make an accurate decision, you w ill receive one point, which will be added to your total score. 
Similarly, for each incorrect decision, you will lose one point, which will be subtracted from your total 
score. The maximum score you can receive in a given session is 100 points and the minimum is -100  
points. The participant with the highest average score across sessions in the experiment will receive $100.

If you decide to participate, you will join a study involving research on the development and refinement o f  
the a b Signal Detection Theory M odel o f  D ecision Making. If you say YES, your participation may last up 
to one hour at the laboratory in M ills Godwin Building room 234. Approximately 20 o f  Old Dominion  
University students will be participating in this study.

EX CLUSIO NARY CRITERIA
To the best o f  your knowledge, you should not have any diagnosed hearing or vision deficits that would  
keep you from participating in this study. If you do have any o f  these deficits, you must wear the required 
corrective lenses or hearing aid. You must be at least 18 years o f  age to participate.

RISK S AND BENEFITS
RISKS: I f  you decide to participate in this study, then you may face a risk o f  the common problems 
associated with computer usage. The researcher tried to reduce these risks by minimizing the amount o f  
time in front o f  the computer. Also, as with any research, there is some possibility that you may be subject 
to risks that have not yet been identified.
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APPENDIX F (continued)

BENEFITS: The main benefit to you for participating in this study is that you will receive 1 Psychology  
research credit that may be used for extra credit or to fulfill a class requirement. It is possible to acquire this 
credit in other ways without participating in this experiment. You will also earn $100 if  you are the best 
performer o f  the entire participant pool.

COSTS AND PAYM ENTS
The researchers want your decision about participating in this study to be absolutely voluntary. There is not 
cost to participate and the researchers will pay you $100 i f  you are the best performer o f  the entire 
participant pool.

NEW  INFORM ATION
If the researchers find new information during this study that would reasonably change your decision about 
participating, then they will give it to you.

CO NFIDENTIALITY
All information obtained about you in this study is strictly confidential unless disclosure is required by law. 
The results o f  this study may be used in reports, presentations and publications, but the researcher will not 
identify you.

W ITHDRAW AL PRIVILEG E
It is OK for you to say NO. Even if  you say YES now, you are free to say NO later, and walk away or 
withdraw from the study -  at any time. Your decision w ill not affect your relationship with Old Dominion  
University, or otherwise cause a loss o f  benefits to which you might otherwise be entitled. The researchers 
reserve the right to withdraw your participation in this study, at any time, if  they observe potential problems 
with your continued participation.

COM PENSATIO N FO R  ILLNESS AND INJURY
If you say YES, then your consent in this document does not waive any o f  your legal rights. However, in 
the event o f  harm, injury, or illness arising from this study, neither Old Dominion University nor the 
researchers are able to give you any money, insurance coverage, free medical care, or any other 
compensation for such injury. In the event that you suffer injury as a result o f  participation in this research 
project, you may contact Dr. James P. Bliss at 757-683-4051 or Dr. David Swain the current IRB chair at 
757-683-6028 at Old Dominion University, who will be glad to review the matter with you.

VOLUNTARY CONSENT
By signing this form, you are saying several things. You are saying that you have read this form or have 
had it read to you, that you are satisfied that you understand this form, the research study, and its risks and 
benefits. The researchers should have answered any questions you may have had about the research. If  
you have any questions later on, then the researchers should be able to answer them:

Dr. James P. B liss at (757) 683-4051

I f  at any time you feel pressured to participate, or if  you have any questions about your rights or this form, 
then you should call Dr. David Swain, the current IRB chair, at (757) 683-6028, or the Old Dominion 
University Office o f  Research, at 757-683-3460.
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APPENDIX F (continued)

And importantly, by signing below, you are telling the researcher YES, that you agree to participate in this 
study. The researcher should give you a copy o f  this form for your records.

Participant’s Name Participant’s Signature Date

INVESTIGATOR’S STATEMENT
I certify that I have explained to this subject the nature and purpose o f  this research, including benefits, 
risks, costs, and any experimental procedures. I have described the rights and protections afforded to 
human subjects and have done nothing to pressure, coerce, or falsely entice this subject into participating. I 
am aware o f  my obligations under state and federal laws, and promise compliance. I have answered the 
subject's questions and have encouraged him/her to ask additional questions at any time during the course 
o f  this study. I have witnessed the above signature(s) on this consent form.

Investigator’s Name Investigator’s Signature Date
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APPENDIX G

Monte Carlo Study Syntax

COMPUTE hi = RV.UNIFORM(0,1).
EXECUTE.

COMPUTE fa = RV.UNIFORM(0,1).
EXECUTE.

COMPUTE a = .5 + .5*hi - ,5*fa .
EXECUTE.

COMPUTE b = ,5*hi + .5*fa.
EXECUTE.

COMPUTE d = IDF.NORMAL(hi,0,1) - IDF.NORMAL(fa,0,1).
EXECUTE.

COMPUTE c = (-1) * (,5*IDF.NORMAL(hi,0,1) + ,5*IDF.NORMAL(fa,0,1)). 
EXECUTE.
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APPENDIX H

Restriction o f a Values Syntax

USE ALL.
COMPUTE filter_$=(a >= .5 & a < .6).
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

GRAPH
/SCATTERPLOT(BIVAR)=a WITH b 
/MISSING=LISTWISE .

GRAPH
/SCATTERPLOT(BIVAR)=d WITH c 
/MISSING=LISTWISE .

USE ALL.
COMPUTE filter_$=(a >= .6 & a < .7).
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

GRAPH
/SCATTERPLOT(BIVAR)=a WITH b 
/MISSING=LISTWISE .

GRAPH
/SCATTERPLOT(BIVAR)=d WITH c 
/MISSING=LISTWISE .

USE ALL.
COMPUTE filter_$=(a >= .7 & a < .8).
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

GRAPH
/SCATTERPLOT(BIVAR)=a WITH b 
/MISSING=LISTWISE .

GRAPH
/SCATTERPLOT(BIVAR)=d WITH c 
/MISSING=LISTWISE .
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APPENDIX H (continued)

USE ALL.
COMPUTE filter_$=(a >= .8 & a < .9).
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

GRAPH
/SCATTERPLOT(BlVAR)=a WITH b 
/MISSING=LISTWISE .

GRAPH
/SCATTERPLOT(BIVAR)=d WITH c 
/MISSING=LISTWISE .

USE ALL.
COMPUTE filter_$=(a >= .9 &a<=1).
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

GRAPH
/SCATTERPLOT(BIVAR)=a WITH b 
/MlSSlNG=LISTWISE .

GRAPH
/SCATTERPLOT(BIVAR)=d WITH c 
/MISSING=LISTWISE .
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