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ABSTRACT

SCALABLE PARALLEL DELAUNAY IMAGE-TO-MESH
CONVERSION FOR SHARED AND DISTRIBUTED MEMORY

ARCHITECTURES

Daming Feng
Old Dominion University, 2019

Co-Directors: Dr. Nikos Chrisochoides and Dr. Andrey Chernikov

Mesh generation is an essential component for many engineering applications.

The ability to generate meshes in parallel is critical for the scalability of the entire

Finite Element Method (FEM) pipeline. However, parallel mesh generation applica-

tions belong to the broader class of adaptive and irregular problems, and are among

the most complex, challenging, and labor intensive to develop and maintain. In this

thesis, we summarize several years of the progress that we made in a novel framework

for highly scalable and guaranteed quality mesh generation for finite element analysis

in three dimensions. We studied and developed parallel mesh generation algorithms

on both shared and distributed memory architectures. In this thesis we present a

novel two-level parallel tetrahedral mesh generation framework capable of delivering

and sustaining close to 6000 of concurrent work units (cores). We achieve this by

leveraging concurrency at two different granularity levels by using a hybrid message

passing and multi-threaded execution model which is suitable to the hierarchy of the

hardware architecture of the distributed memory clusters. An end-user productivity

and scalability study was performed on up to 6000 cores, and indicated very good

end-user productivity with about 300 million tets per second and about 3600 weak

scaling speedup. Both of these results suggest that: compared to the best previous

algorithm, we have seen an improvement of more than 7000 times in performance,

measured in terms of speed (elements per second) by using about 180 times more

CPUs, for geometries that are by many orders of magnitude more complex.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Scalable, stable, and portable parallel mesh generation algorithms with quality

and fidelity guarantees are important for real world (bio-)engineering and medical

applications. Their scalability can be measured in terms of the ability of an algo-

rithm to achieve a speedup, proportional to the number of cores. Portability is the

capability of an algorithm to be executed on different platforms, with or without

only a few minor modifications. Stability refers to the fact that the parallel algo-

rithm can create meshes that retain the same quality and fidelity as the meshes

created by the sequential generator that it utilizes. The quality of mesh refers to

the quality of each element in the mesh, which is usually measured in terms of its

circumradius-to-shortest-edge ratio (radius-edge ratio, for short) and (dihedral) an-

gle bound. Normally, an element is regarded as a good element when its radius-edge

ratio is small [1, 2, 3, 4] and when the angles are in a reasonable range [5, 6, 7].

Fidelity is understood as how well the boundary of the created mesh represents the

boundary (surface) of the real object. A mesh has good fidelity when its boundary is

a correct topological and geometrical representation of the real surface of the object.

Delaunay mesh refinement is a popular technique for generating triangular and tetra-

hedral meshes for use in finite element analysis and interpolation in various numeric

computing areas, because it can mathematically guarantee the quality of the mesh

[8, 9, 10, 3].

Most current mesh generation algorithms are desktop-based, are either sequen-

tial or parallel, and have been developed for a small number of cores. The previous

parallel unstructured mesh generation and refinement algorithms are not suitable

for NUMA DSM architecture supercomputers. These algorithms rely on irregular

communication patterns and lack data locality, due to the large number of remote

memory accesses. Oliker and Biswas [11] concluded that the performance of un-

structured mesh refinement deteriorates, for some cases, on just a 4-core cc-NUMA
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architecture. Chowdhury et al. [12] presented multicore-oblivious algorithms and

a run-time scheduler for several fundamental problems, including matrix transpo-

sition, FFT, sorting, Gaussian elimination, and others; however, mesh generation

has not yet been addressed. Mesh generation algorithms, when run on supercom-

puters, are either conservative in leveraging available concurrency [13, 14, 15] or

require the solution of the domain decomposition, which is still an open problem for

three-dimensional domains [16, 17]. There is no doubt that the scalability of mesh

generation algorithms will continue to be critical for many engineering applications,

such as CFD simulations. In order to solve this problem and to create high-quality

meshes of the desired resolution, it is necessary to apply a supercomputer-based

parallel mesh generation algorithm which scales well on modern non-uniform (i.e.,

distributed) memory machines. To this end, we propose a three-dimensional locality-

aware parallel Delaunay image-to-mesh conversion algorithm that (1) applies a three

dimensional data decomposition instead of domain decomposition according to the

circum-centers of tetrahedra, and (2) employs a data locality optimization scheme

to reduce the communication overhead caused by a large number of remote memory

accesses.

The Parallel Delaunay Refinement algorithm (PDR) [15, 14, 13] is based on a the-

oretically proven method for managing and scheduling the insertion points. Based

on the Delaunay Independence Criterion, PDR breaks the meshing problem of the

entire region up into smaller independent subproblems, i.e. it partitions the region

into subregions in such a way that the circumcenters of the elements belonging to dif-

ferent subregions can be inserted concurrently. Using a carefully constructed octree,

the list of the candidate points is split up into smaller lists that can be processed

concurrently with the sequential Delaunay refinement code implemented in a Delau-

nay refinement software, e.g., TetGen [2]. PDR requires neither the runtime checks

nor the geometry decomposition, and it can guarantee the independence of inserted

points and thus avoid the evaluation of data dependencies. The Parallel Optimistic

Mesh Generation algorithm (PODM) [18] is a tightly-coupled parallel Delaunay mesh

generation algorithm. The sequential construction of the initial mesh in PODM only

involves the triangulation of the bounding box, i.e., the sequential creation of six

tetrahedra. This approach works well on a medium number of cores. It scales well

up to a relatively high core count, compared to other tightly-coupled parallel mesh

generation algorithms [19]. However, due to extensive remote memory accesses, its
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scalability for Distributed Shared Memory machines is limited, depending on the

utilization of the target machine from other users. We take advantage of the legacy

mesh approaches and propose an algorithm that quickly leverages high parallelism.

The algorithm utlizes the aggressive speculative approach employed by PODM and

data partitioning offered by PDR to improve data locality and to decrease the com-

munication overhead.

Most of the current supercomputer architectures consist of clusters of nodes,

each of which contains multiple cores that share the in-node memory. A hybrid par-

allel programming model, which utilizes message passing (MPI) for parallelization

among distributed memory compute nodes and uses thread-based libraries (Pthread

or OpenMP) to exploit parallelization within the shared memory of a node, seems to

be an excellent solution to take advantage of the resources of such architectures. This

leads to the trend of writing hybrid parallel programs that involve both process-level

and thread-level parallelization. Implementation of the hybrid MPI+Thread parallel

mesh generation algorithms is challenging because of the data dependencies and the

irregular and unpredictable behavior of mesh refinement. We have proposed a three

dimensional hybrid MPI+Threads parallel mesh generation algorithm which exploits

the two levels of parallelization by mapping processes to nodes and threads to cores.

It is able to deliver considerable scalability on supercomputer architectures. Prelim-

inary results show that the major overhead of current implementation is the format

translation overhead between the distributed memory apaces of parallel processes.

This is a commonly reported problem when importing or migrating a shared memory

application to distributed memory architectures. We are exploring a method that

helps to reduce the overhead. The idea is that we introduce a customized layer on

top of the current shared memory implementation. This customized layer allows a

thread to transparently get either pointer mesh structure (for mesh refinement) or in-

dex mesh structure (for data migration), based on the operations that it will perform.

In addition, most of the distributed memory clusters consist of heterogeneous nodes

(nodes with different number or type of cores), which makes the computing ability of

each node different from the other nodes, depending on the number and type of cores

that a node has. Developing parallel applications and software that efficiently uti-

lizes such heterogeneous and hierarchical computing and communication resources is

a challenging and open question [20]. Furthermore, a supercomputer is usually open

to the public or to a certain community, and it is shared by all authorized users,
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which means that many jobs, from different users, may run simultaneously. Due to

management and scheduling, a few cores on a node may have already been occupied

by other users’ jobs in practice. Therefore, the parallel mesh generation algorithm

that we have proposed is able to efficiently work on heterogeneous supercomputers

while scaling it towards exascale, and while maintaining correctness.

1.2 CONTRIBUTIONS

In summary, the contributions of this dissertation thesis are as follows:

• We propose a three dimensional two-level Locality-Aware Parallel Delaunay

image-to-mesh conversion algorithm (LAPD) [21]. The algorithm exploits two

levels of parallelism at different granularities: coarse-grain parallelism at the

region level (which is mapped to a node with multiple cores), and medium-grain

parallelism at the cavity level (which is mapped to a single core). We employ

a data locality-aware mesh refinement process to reduce the latency caused

by the remote memory access. We evaluated LAPD on Blacklight, a cache-

coherent NUMA distributed shared memory (DSM) machine in the Pittsburgh

Supercomputing Center, and we observed a weak scaling efficiency of almost

70% for roughly 200 cores, compared to only 30% for the previous algorithm

PODM.

• A parallel mesh generation algorithm for distributed shared memory architec-

ture which takes advantage of two legacy approaches, i.e., the Parallel Opti-

mistic Delaunay Mesh generation algorithm (PODM) [18] and PDR [15, 14, 13].

We present a scalable three-dimensional hybrid parallel Delaunay image-to-

mesh conversion algorithm (PDR.PODM) for distributed shared memory ar-

chitectures [22]. PDR.PODM is able to explore parallelism early in the mesh

generation process because of the aggressive speculative approach employed by

PODM. In addition, it decreases the communication overhead and it improves

data locality by making use of a data partitioning scheme offered by PDR.

PDR.PODM supports fully functional volume grading by creating elements of

varying size. Small elements are created near the boundary or inside the criti-

cal regions in order to capture the fine features, while big elements are created

in the rest of the mesh. We tested PDR.PODM on Blacklight, a distributed

shared memory (DSM) machine in the Pittsburgh Supercomputing Center. For
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the uniform mesh generation, we observed a weak scaling speedup of 163.8 and

above for up to 256 cores, as opposed to PODM, whose weak scaling speedup

is only 44.7 on 256 cores. The end result is that we can generate 18 million

elements per second, as opposed to the 14 million per second that we were able

to generate in our earlier work. PDR.PODM scales well on uniform refine-

ment cases running on DSM supercomputers. The varying size version sharply

reduces the number of elements, compared to the uniform version, and thus,

reduces the time required to generate the mesh, while keeping the same fidelity.

• A scalable three dimensional hybrid MPI+Threads parallel Delaunay image-

to-mesh conversion algorithm on distributed memory clusters [23], which si-

multaneously explores process-level parallelization and thread-level paralleliza-

tion: inter-node parallelization using MPI and inter-core parallelization in-

side one node using threads. We present a scalable three-dimensional hy-

brid MPI+Threads parallel Delaunay image-to-mesh conversion algorithm. A

nested master-worker communication model for parallel mesh generation is

implemented, which simultaneously explores process-level parallelization and

thread-level parallelization: inter-node communication using MPI and inter-

core communication inside one node using threads. In order to overlap the

communication (task request and data movement) and computation (parallel

mesh refinement), the inter-node MPI communication and the intra-node local

mesh refinement is separated. The master thread that initializes the MPI en-

vironment is in charge of the inter-node MPI communication, while the worker

threads of each process are only responsible for the local mesh refinement within

the node. We conducted a set of experiments to test the performance of the

algorithm on Turing, a distributed memory cluster at the Old Dominion Univer-

sity High Performance Computing Center, and we observed that the granularity

of coarse level data decomposition, which affects the coarse level concurrency,

has a significant influence on the performance of the algorithm. With the proper

value of granularity, the algorithm expresses impressive performance potential

and is scalable to up to 6000 cores (the maximum number of nodes available

to us in the experiments), and indicated very good end-user productivity with

about 300 million tets per second and about 3600 weak scaling speedup.
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CHAPTER 2

BACKGROUND

Delaunay mesh refinement works by inserting additional (often called Steiner)

points into an existing mesh to improve the quality of the elements (triangles in

two dimension and tetrahedra in three dimension). The basic operation of Delaunay

refinement is the insertion and deletion of points, which then leads to the removal of

poor quality elements and of their adjacent elements from the mesh and the creation

of new elements. If the new elements are of poor quality, then they are required to be

refined by further point insertions. One of the nice features of Delaunay refinement

is that it mathematically guarantees the termination after having eliminated all poor

quality elements [1, 24]. In addition, the termination does not depend on the order

of processing of poor quality elements, even though the structure of the final meshes

may vary. The insertion of a point is often implemented according to the well-known

Bowyer-Watson kernel [25, 26]. Parallel Delaunay mesh generation methods can be

implemented by inserting multiple points simultaneously [13, 14, 18], and the parallel

insertion of points by multiple threads needs to be synchronized.

Blelloch et al. [27] proposed an approach to create a Delaunay triangulation

of a specified point set in parallel. They describe a divide-and-conquer projection-

based algorithm for constructing Delaunay triangulations of pre-defined point sets.

One major limitation of triangulation algorithms [27, 28, 29, 30] is that they only

triangulate the convex hull of a given set of points and therefore they guarantee

neither quality nor fidelity.

Ivanov et al. [31] proposed a parallel mesh generation algorithm based on domain

decomposition that can take advantage of the classic 2D and 3D Delaunay mesh

generators for independent volume meshing. It achieves superlinear speedup but

only on eight cores. Galtier and George [32] described an approach of parallel mesh

refinement. The idea is to prepartition the whole domain into subdomains using

smooth separators and then to distribute these subdomains to different processors for

parallel refinement. The drawback of this method is that mesh generation needs to be

restarted form the beginning if the created separators are not Delaunay-admissible. A

parallel three-dimensional unstructured Delaunay mesh generation algorithm [33] was
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proposed which addresses the load balancing problem by distributing bad elements

among processors through mesh migration. However, the efficiency of the algorithm

is only 30% on 8 cores.

Foteinos and Chrisochoides [34, 18] proposed a tightly-coupled Parallel Opti-

mistic Delaunay Mesh generation algorithm (PODM). This approach works well on

a NUMA architecture with 144 cores and exhibits near-linear scalability. PODM

scales well up to a relatively high core count compared to other tightly-coupled

parallel mesh generation algorithms [19]. However, it suffers from communication

overhead caused by a large number of remote memory accesses, and its performance

deteriorates for a core count beyond 144 because of the network congestion caused

by the communication among threads. The best weak scaling efficiency for 176 con-

tinuous cores is only about 49% on Blacklight, a cache-coherent NUMA distributed

shared memory (DSM) machine in the Pittsburgh Supercomputing Center.

Parallel Delaunay Refinement (PDR) [14, 15] is a theoretically proven method for

managing and scheduling the insertion points. This approach is based on the analysis

of the dependencies between the inserted points: if two bad elements are far enough

from each other, the Steiner points can be inserted independently. PDR requires

neither the runtime checks nor the geometry decomposition and it can guarantee the

independence of inserted points and thus avoid the evaluation of data dependencies.

The work has been extended to three dimensions [13]. Using a carefully constructed

spatial decomposition tree, the list of the candidate points is split up into smaller

lists that can be processed concurrently. The construction of an initial mesh is the

basis and starting point for the subsequent parallel procedure. There is a trade-off

between the available concurrency and the sequential overhead: the initial mesh is

required to be sufficiently dense to guarantee enough concurrency for the subsequent

parallel refinement step; however, the construction of such a dense mesh prolongs the

low-concurrency part of the computation.

A number of other parallel mesh generation algorithms have been published,

which are not the Delaunay-based algorithms. De Cougny, Shephard and Ozturan

[35] proposed an algorithm in which the parallel mesh construction is based on an

underlying octree. Lohner and Cebral [36], and Ito et al. [37] developed parallel

advancing front schemes. Globisch [38, 39] presented a parallel mesh generator which

uses a sequential frontier algorithm. A more detailed review of many more methods

appears in [40].
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Ibanez et al. [41] proposed a hybrid MPI-thread parallelization of adaptive mesh

operations. They presented an implementation of non-blocking inter-thread message

passing from which they built non-blocking collectives and phased message passing

algorithm. A variety of operations for handling adaptive unstructured meshes are

implemented based on these message passing capabilities. These operations show

good speedup over threads per process. However, the authors did not show the

overall performance (speedup or efficiency) of their algorithm. In addition, they did

not mention any information about the input that they used in the experiments. The

hybrid algorithm we proposed in this paper take complex multi-labeled 3D image as

input directly.

Gorman et al. [42] presented an optimisation based mesh smoothing algo-

rithm for anisotropic mesh adaptivity. The method was parallelised using a hybrid

OpenMP/MPI programming method and graph colouring to identify independent

sets. The algorithm achieved good scaling performance within a shared memory

compute node. However, no experiments were conducted on distributed memory

clusters to evaluate the inter-node and overall performance.

Dhairya Malhotra and George Biros [43] presented a Fast Multipole Method

(FMM) for computing volume potentials and use them to construct spatially adaptive

solvers. They used space-filling curves, locally essential trees and a hypercube-like

communication scheme for distributed memory parallelization. They discussed the

distributed-memory tree construction and explained the partitioning of the domain

across processes. They also discussed the parallel 2:1 balance algorithm on this dis-

tributed octree. For a distributed octree, the interacting source octants may belong

to different processes. Therefore, A local essential tree is built by communicating the

ghost octants needed by a process for the downward pass.

Lashuk et al. [44] described a parallel fast multipole method (FMM) for highly

nonuniform distributions of particles. The method employs both distributed memory

parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU accel-

eration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions

on heterogeneous high performance computing architectures. The communication

cost for the hypercube communication scheme is discussed.

Hu et al. [45] proposed a scalable fast multipole methods on distributed hetero-

geneous architectures. The FMM is a divide-and-conquer algorithm that performs a

fast N-body sum using a spatial decomposition and is often used in a time-stepping
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or iterative loop. The implementation of the Fast Multipole Method (FMM) on a

computing node with a heterogeneous CPU-GPU architecture with multicore CPU(s)

and one or more GPU accelerators, as well as on an interconnected cluster of such

nodes.

Ibanez et al. [41] proposed a hybrid MPI-thread parallelization of adaptive mesh

operations. They presented an implementation of non-blocking inter-thread message

passing from which they built non-blocking collectives and phased message passing

algorithm. A variety of operations for handling adaptive unstructured meshes are

implemented based on these message passing capabilities. However, the authors did

not show the overall performance and the scalability (speedup or efficiency) of their

algorithm.

Gorman et al. [42] presented an optimisation based mesh smoothing algo-

rithm for anisotropic mesh adaptivity. The method was parallelised using a hybrid

OpenMP/MPI programming method and graph colouring to identify independent

sets. The algorithm achieved good scaling performance within a shared memory

compute node. However, no experiments were conducted on distributed memory

clusters to evaluate the inter-node and overall performance.

Dreher and Grauer [46] described Racoon, a framework that offers a grid-based

environment for the mesh-adaptive solution of conservative systems and related sys-

tems. Racoon is a hybrid strategy of multi-threading and inter-process communi-

cation through MPI and POSIX-multithreading, which exploits both shared and

distributed memory architectures parallelization. It supports mesh refinement, re-

gridding, load balancing and distribution. During mesh refinement, bands of ghost

cells are created and updated around the individual grid blocks.

Remacle et al. [47] proposed the Parallel Algorithm Oriented Mesh Database

(PAOMD). PAMOD is the extension of the Algorithm Oriented Mesh Database

(AOMD) in order to support distributed meshes. It provides a general parallel mesh

management framework in which mesh representation can be adapted to different

types of applications. Each partition is assigned to a processor, and the local mesh

is represented by a serial AOMD mesh. Ghosting are not supported. Instead, mesh

entities that are classified on partition boundaries must exist in the parallel data

structure and may be shared with other partitions.

The Mesh-Oriented datABase (MOAB) [48] is a component for representing and
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evaluating mesh data. MOAB can store structured and unstructured mesh, consist-

ing of elements in the finite element polygons and polyhedra. It supports common

parallel mesh operations like parallel import and export and general sending and

receiving of mesh and metadata between processors.

Rodriguez et al. [49] described ViennaMesh, a parallel mesh generation approach

for multi-core and distributed computing environments based on the generic meshing

library ViennaMesh and on the Advancing Front mesh generation algorithm. The ap-

proach is based on the Advancing Front meshing technique, in which the algorithm

preserves the input hull mesh during the volume meshing process. Therefore, the

communication overhead is minimized, as interface changes do not have to be com-

municated through the parallelized meshing environment. The ViennaMesh library

offers a unified interface to various mesh related tools.

PMSH [50] is a parallel mesh generation algorithm is based on Netgen. The mesh

generation algorithm proceeds in five main stages: (i) generation of a coarse volume

mesh, (ii) partitioning of the coarse mesh to get submeshes, each of which will be

processed by a processor, (iii) extraction and refinement of coarse surface submeshes

to produce fine surface submeshes, (iv) remeshing of each fine surface submesh to

get the final fine volume mesh, and (v) matching of distributed duplicate partition

boundary vertices followed by global vertex numbering.

Burstedde et al. [51] uses ghost layers for parallel adaptive mesh refinement and

coarsening in ALPS (Adaptive Large-scale Parallel Simulations) which is a library

for parallel octree-based dynamic mesh adaptivity and redistribution. One processor

maintains entities from other parts located on other processors to avoid excessive

communication with other parts. These read-only copies are often referred as ghost

entities. Ghost entities are read-only copies of remote part entities.
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CHAPTER 3

PARALLEL DELAUNAY IMAGE-TO-MESH

CONVERSION ALGORITHMS FOR SHARED MEMORY

ARCHITECTURES

In this chapter, we analyze the remote memory access on NUMA shared memory

architecure and proposed the LAPD [21] and PDR.PODM [22] algorithms.

3.1 REMOTE MEMORY ACCESS ON NUMA ARCHITECTURE

In distributed shared memory (DSM) systems, memory is physically distributed,

while it is accessible to and shared by all cores. However, a memory block is phys-

ically located at various distances (hops) from the cores. As a result, the memory

access times vary, and this depends on the distances (hops) from a core to a memory

block. When the parallel applications are running on such NUMA machines, a thread

running on a core might access its own local memory or its non-local (remote) mem-

ory (memory local to another node). The experimental platform, Blacklight [52], is

a cc-NUMA shared-memory system that consists of 256 blades. Each blade holds

two Intel Xeon X7560 (Nehalem) eight-core CPUs, for a total of 4096 cores across

the whole machine. The 16 cores on each blade share 128 Gbytes of local memory.

The dashline rectangle in Fig. 1. shows one individual rack unit (IRU) of 16 blades

and 256 cores on Blacklight. Each rectangle represents a blade. The 16-port NL5

router is used to connect blades that are located internally to each IRU. Each of

these routers connects to eight compute blades within the IRU. The remaining eight

ports of the internal router are used to connect to other NL5 router blades [53].

The total 4096 cores have 32 TB of memory. Each thread that runs on a core in

PODM maintains its own Poor Element List (PEL) [18]. The PEL contains the

poor elements that violate the quality criteria [3] and are assigned to be processed

by this thread. If PELi is not empty, thread Ti will get the first element in the list,

compute the cavity, delete the tetrahedra in the cavity, and create new tetrahedra
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according to the Bowyer-Watson kernel [25, 26]. Additionally, a global load balanc-

ing list stores the IDs of threads whose poor element list is empty. When a thread

Ti runs out of work (when its PEL is empty), it will push back its ID to the global

load balancing list and start to wait. If another thread Tj creates new elements, it

will check whether the load balancing list is empty. If the list is empty, it means all

of the other threads are busy. Thread Tj adds the newly created elements to its own

PEL. If the list is not empty, thread Tj adds the newly created elements to the PEL

of the first thread. Suppose it is thread Ti, in the load balancing list. The new poor

elements in thread T ′
is poor element list created by thread Tj still reside in thread

T ′
js local memory. When Ti needs to refine these poor elements, it needs to access

thread T ′
js local memory to fetch them. In the case that these two threads run on

cores that belong to the same blade, the ask-for-work operation between them is a

local memory access, since all of the cores in the same blade share memory, without

any switches. However, If thread Ti and thread Tj are not in the same blade, one

thread needs to fetch a poor element from the local memory of another thread. This

leads to a remote memory access. Moreover, if they are not in the same IRU, the

time latency is much longer, because of the increase in hops (about a 2000 cycle

latency penalty on Blacklight for each hop) and the traffic contention. Fig. 1. shows

one possible case in which we reserve 64 cores on Blacklight. It illustrates that the

maximum number of hops between two blades of the same IRU is three, and that of

different IRUs is five.

As with most DSM supercomputers, the experimental platform, Blacklight, is

shared by many users. The scheduling and the reservation of cores (blades) is man-

aged by the system. A user has no mechanism to decide which blades he can get to

run his job. The system determines which blades are given to the user’s job based

on the available blades. In most cases, the job will get several non-adjacent blades,

among all of the blades in the system. For a data communication intensive applica-

tion, such as parallel mesh generation, performance will suffer on high core counts

because of a large number of remote memory accesses. The performance of PODM

was indeed poor when the allocated cores (>128) were non-consecutive. The ideal

case is to make a thread finish all of its work on its local memory. However, this

is almost impossible for unstructured parallel mesh generation because of the irreg-

ular and unpredictable communication during run-time. In this paper, we describe

a two-level locality-aware parallel Delaunay mesh refinement algorithm, LAPD. It
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FIG. 1.: One possible allocation of 4 blades (64 cores) on Blacklight. The dashline
rectangle represents the individual rack unit (IRU). Each IRU includes 16 blades and
each blade has 16 cores that share 128 GB local memory.

divides the image into subregions, and each subregion is refined by a parallel mesh

generator (PODM, in our case). In each of the subregions, a thread of a PODM

mesh generator has the flexibility to communicate with any other thread in the same

PODM mesh generator, in order to maximize the concurrency of this PODM mesh

generator. The communication between different PODM mesh generators is con-

fined and only happens when the poor element is near the partition boundary. This

two-level locality-aware parallel strategy eliminates a large number of remote mem-

ory accesses, as well as alleviates the pressure of the network routers caused by the

intensive communication among threads.

3.2 LOCALITY-AWARE PARALLEL DELAUNAY MESH

GENERATION

In this section, we present the Locality-Aware Parallel Delaunay (LAPD) mesh

generation algorithm in details.

3.2.1 TWO-LEVEL PARALLEL MESH REFINEMENT
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The algorithm explores concurrency at two levels of granularity: coarse-grain

parallelism at the subregion level (which is mapped to a node with multiple cores)

and medium-grain parallelism at the cavity level (which is mapped to a single core).

Coarse-grain Management

    tightly coupled
Parallel Re nement

PODM PODM

    tightly coupled
Parallel Re nement

communication for the 

elements accross the 

partition boundary 

PODM

    tightly coupled
Parallel Re nement

FIG. 2.: A diagram that illustrates the design of the two-level parallel Delaunay
mesh generation algorithm.

In the coarse-grain parallel implementation, the input image (domain) is decom-

posed into subregions and each node is responsible for the refinement work of one

subregion. The communication between two adjacent subregions happens only near

the partition boundary. In the medium-grain parallel implementation, the threads

running in the cores of a node follow the refinement rules of PODM to insert or delete

multiple points in parallel. The work load balancing among the threads of each node

is performed by the load balancing scheme of the PODM mesh generator. Fig. 2.

illustrates a diagram of the two-level parallel mesh generation design.

In the two-level parallel locality-aware refinement algorithm, we combine two

different communication types in two granularity levels, with partially coupled com-

munication at the node level and tightly coupled communication at the core level.

This algorithm quickly leverages high concurrency due to the aggressive speculative

approach employed by the tightly coupled PODM of each subregion, uses the par-

tially coupled communication to ensure conformity of elements across the partition

boundary, and employs data partitioning to improve data locality gradually during

the mesh refinement procedure. Fig. 3. depicts the pseudo-code of the algorithm.

3.2.2 DATA LOCALITY-AWARE IMPLEMENTATION

For illustration purposes, in this subsection, we exhibit a simplified two dimen-

sional example that shows the locality-aware property of the LAPD algorithm. The

parameter ri is the circumradius upper bound that we use to control the size and the
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1 Algorithm: LAPD (I,r,n,b)

Input : I is the input segmented image,

r is the circum-radius upper bounds vector of length n

/* ri in the vector r defines the circum-radius upper bounds of elements created in step i. */

2 b is the number of blades.

Output: A Delaunay Mesh M that is conforming to the size upper bound rn.

3 Generate Initial Mesh that is conforming to the size upper bound r1;

4 for i = 2 to n do

5 Mi = StepMesh(ri, i,Mi−1, b);

6 end

7 Algorithm: StepMesh (r̄,i,M , b)

Input : i is the current step

r̄ is the current size upper bound,

M is the mesh created in the previous step,

b is the number of blades.

Output: A Delaunay Mesh M′ that is conforming to the current size upper bound r̄.

8 Divide the 2i−2 subregions of the previous step into 2i−1 subregions by the bisection plane of the previous subregion along

one dimension;

9 Assign the elements of M to subregion PELs based on the circumcenter coordinates;

10 Divide the b blades into 2i−1 nodes based on their physical locations;

11 Assign each node a PEL of a subregion;

12 for each node do

13 SM = GenerateMesh(r̄, PEL);

14 end

15 Algorithm: GenerateMesh (r̄,PEL)

Input : r̄ is the size upper bound of the current step,

PEL is the poor element list that need to be refined.

Output: A submesh SM of a subregion.

16 while PEL! = NULL do

17 Get the first poor element e in PEL;

18 Refine e and create new elements;

19 for each newly created element e′ do

20 if e′ is a poor element according to the size upper bound r̄ and fidelity bounds then

21 add e′ to PEL;

22 else

23 add e′ to output SM of this subregion;

24 end

25 end

26 end

FIG. 3.: Pseudocode of the locality-aware parallel Delaunay mesh algorithm.

number of elements that are created in step i. The smaller ri is, the more elements

are created. Empirically, we found that setting ri = ri−1/2 leads to the best balance

between available concurrency and overheads.

In the beginning of the mesh process, an appropriate isosurface is recovered and

an initial tetrahedral mesh is constructed and refined in parallel using the PODM

mesh generator, until all of the elements satisfy the user-defined size upper bound

r1 determined by the theory that we developed in the previous work [14, 15, 13].

The elements in this initial mesh are distributed among all memory blocks, since

PODM uses all of the available threads to jump-start the computation with maximum

concurrency. Fig. 4.a exhibits a two-dimensional illustration of an initial mesh and its

distribution in memory after the first step. We use four different colors to distinguish
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FIG. 4.: A simplified two dimensional illustration of LAPD method.

the elements in the different memory of the four blades. The left subfigure shows the

mesh, and the right subfigure illustrates the element distribution on four different

memory blocks. The different colors represent different memory blocks in which

elements are stored.

In the second step, the whole region (image) is divided into two subregions, and

the initial mesh is divided into two sub-meshes, based on the coordinates of centers

of element circum-spheres. A PODM mesh generator refines the sub-mesh of each

subregion. The threads of the PODM mesh generator will work in the subregion

and will refine the sub-mesh in parallel to get the mesh that is conforming to size

upper bound r2, using similar criteria to that used before. As illustrated in Fig. 4.b,

the whole region, i.e., the bounding box and the image, is divided by its bisection

line (the bisection plane in a three-dimensional space) along one dimension, and the

initial mesh is divided into two sub-meshes, M1 and M2, according to the coordinates

of the circum-centers of elements in the mesh. In this example, there are two nodes

in this step. We assume that node G1 contains blades B1 and B2, while node G2

contains blades B3 and B4. Node G1 is only responsible for refining the elements

belonging to the top half subregion, and node G2 is responsible for the elements in

the bottom half subregion.



17

During the refinement, B1 gets the poor element e1 that was stored in B′
3s local

memory and adds it to its own poor element list. Element e1 is triangulated and

deleted. To keep the Delaunay property, element e2 is part of the cavity and is also

triangulated. The new elements e3, e4, e5 and e6 will be stored in the local memory

of B1, because the new elements will be stored in the local memory of the blade that

created the elements, i.e. B1, as shown in Fig. 4.b. The same process is used to refine

the other elements in the mesh. The elements of the first subregion, i.e. sub-mesh

M1, will be refined by node G1, and the newly created elements will be in the local

memory of G1, i.e. in the local memory of the blades of this node. Those elements of

M2 will be refined by G2, and the newly created elements will be in the local memory

of G2.

Therefore, after the second step, a new mesh that conforms to size upper bound

r2 is generated. Fig. 4.c shows the mesh and its storage configuration in memory.

The elements that are on the top half subregion were created by blades B1 and B2

of node G1 and are stored in the local memory of B1 and B2, while those that are

on the bottom half subregion were created by blades B3 and B4 of node G2 and are

stored in the local memory of B3 and B4.

In the third step, the whole region is divided into four subregions, as shown in

Fig. 4.c. Each of the four sub-meshes will be assigned to one node to refine. Each

blade in node G1 of the second step, i.e. B1 or B2, can only be assigned a subregion

that is in the top half part, because the elements (the green and pink ones) of this

part were stored in the local memory of B1 and B2. Similarly, B3 or B4 can only

be assigned a subregion that is in the bottom half part, because the elements (the

green and pink ones) of this part were stored in the local memory of B3 and B4.

Under this assignment, during the refinement of the third step, blades B1 and B2

can only refine the elements stored in either B′
1s or B′

2s local memory, while blades

B3 and B4 can only refine the elements stored in either B′
3s or B

′
4s local memory. The

communication happens between subegions if, and only if, a thread in one subregion

wants to refine the elements that are adjacent to the elements of the other subregion

along the partition boundary.

After the third step, a mesh is created and its storage configuration in memory is

shown in Fig. 4.d. The newly created elements of each subregion will be only stored

in the local memory of the blade that is responsible for refining the subregion.

Finally, we go on to the next step. In this step, each blade will only need to
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access its own local memory in order to finish the refinement work, except for the

elements on the boundary shown in Fig. 4.d. The refinement continues until all of

the elements in the mesh are Delaunay and are conforming to the target size upper

bound rt.

In this data locality-aware mesh refinement algorithm, we reduce the number of

remote memory accesses by controlling the inter-node communication in each step.

A blade can only ask for work or give work to the blades that are in the same node;

B1 can only communicate with B2 in the second step shown in Fig. 4.b because they

are in the same node and are physically close to each other. In the last step, there

will be only a few remote memory accesses (when the elements are near the partition

boundary between subregions) because most of the poor elements that one blade

needs to refine are in the local memory of this blade. In this subsection, we describe

an over-decomposed block-based partition approach to alleviate the load balancing

problem.

The over-decomposed block-based partition proceeds in three main stages: (1)

over-decompose the bounding box that overlaps the input image and the coarse mesh

(i.e., the number of blocks is much greater than the number of cores), (2) mark the

blocks that contain elements as active blocks, (3) partition the active blocks into N

subregions to make each of the subregions contain a roughly equal number of blocks,

where N is the number of basic computing nodes that share the local memory (for

example, a blade of 16 cores that share 128GB memory is a basic computing node

on Blacklight). In this case, each subregion ends up with a roughly equal number

of elements and the refinement is well balanced among the multicore PODM mesh

generators working on each subregion.

Fig. 5. gives a demonstration of how this static work load partition strategy

makes LAPD ensure both data locality and load balance. We use the static block-

based partition approach to roughly balance the load among different subregions at

each step. For each subregion, we utilize the load balancing approach of PODM.

Taking advantage of this two-level load balancing scheme, LAPD ensures the data

locality during the parallel refinement procedure and does not suffer from severe load

imbalance for the complex input images. The case of the dynamic load balancing

problem in the context of adaptive mesh refinement is out of the scope of this paper.

We developed a run time system [54] to address this problem.

3.2.3 EXPERIMENTAL EVALUATION
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FIG. 5.: Block partition and computing node mapping illustration of LAPD

In this section, we present the weak scaling performance of the two-level locality-

aware parallel mesh generation algorithm, LAPD, as well as that of PODM, for

comparison. The input images that we used in the experiments are the 3D CT

abdominal atlas obtained from IRCAD Laparoscopic Center [55] and the 3D Brain

atlas [56]. We tested both LAPD and PODM on Blacklight, using up to 192 cores.

See Table 4. and Table 2. for detailed results of both approaches.

Performance Evaluation Metrics

We used the following metrics to evaluate and study the performance of parallel

mesh generation algorithms [57, 58]. Speedup S : The ratio of the serial execution

time of the fastest known serial algorithm (Ts) to the parallel execution time of the

parallel algorithm (Tp). Efficiency E : The ratio of speedup (S) to the number of

cores (p): E = S/p = Ts/(pTp).

In the weak scaling case, the number of elements per thread (we used one thread

per core) remained approximately constant. In other words, the problem size (i.e., the

number of elements created) was increased proportionally to the number of threads.

The number of elements generated equalled approximately three million on a single

Blacklight core. The problem size gradually increased from three million to 559

million tetrahedra for 1 to 192 cores on Blacklight. In practice, because of the

irregular nature of the unstructured mesh, it was impossible to control the problem

size (the number of elements) exactly, while the number of cores was increased by
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p times, so we used an alternative definition of speedup which is more precise for a

parallel mesh generation algorithm.

We measured the number of elements (tetrahedra) generated every second in the

experiment. Let us denote by Elements(p) and T ime(p) the number of tetrahedra

generated and the meshing time respectively, where p is the number of threads. Then,

we can use the following equation to compute the speedup:

S(p) =
elements per sec(p)

elements per sec(1)
=

elements(p) · time(1)

time(p) · elements(1)
(1)

In equation (2), elements per sec(p) represents the number of elements (tetrahe-

dra) created per second using p threads (cores); elements per sec(1) represents the

number of elements (tetrahedra) created per second by the best sequential mesh gen-

eration algorithm. Since the PODM maintains the best single-threaded performance

compared to other sequential three dimensional mesh generation software, such as

Tetgen [59] and CGAL [4], we used the sequential rate of PODM, i.e. the number

of elements generated per second by single-threaded PODM, as a reference when we

computed the speedup and presented the performance of the multi-threaded LAPD.

Experimental Results and Analysis

Table 4. shows the weak scaling performance of PODM and the two-level locality-

aware parallel mesh generation algorithm, LAPD, respectively. The input image is

the 3D abdominal atlas. We observed that both PODM and LAPD performed well

on Blacklight for up to 64 cores. However, the speed-up of PODM deteriorated

significantly for 128 or more cores. In fact, the speed-up on 144 cores was about

80.8, which was smaller than that on 128 cores (about 94.5), and it was down to only

62.9 and 54.8 for 176 and 192 cores, respectively. The blue line in Fig. 10.a shows

this speed-up clearly.

The main reason for this performance deterioration of PODM is the increase of

communication time due to the large number of remote memory accesses and due to

the congested network. In PODM, each thread has the flexibility to communicate

with any other thread during the refinement. This approach works well on a medium

number of cores (threads) and exhibits impressive scalability. However, when the

core count is beyond a certain number (128 on Blacklight, for example), the commu-

nication overhead becomes the bottleneck that hinders the performance of PODM,
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TABLE 1.: Weak scaling performance comparison of PODM and LAPD. The input
image is a 3D abdominal atlas. The number of elements remains approximately
linear with respect to the number of threads in both PODM and LAPD.

(a) Weak scaling performance of PODM

Threads 1 32 64 128 144 160 176 192

Elements
(millions)

3.09 96.96 186.80 374.09 419.65 467.01 513.81 559.20

Time(s) 27.78 26.07 27.02 35.97 47.24 57.24 74.20 92.77

Elements
per second
(millions)

0.11 3.75 6.91 10.41 8.89 8.14 6.92 6.03

Speedup 1.0 34.1 62.8 94.5 80.8 74.0 62.9 54.8

Efficiency 1.00 1.06 0.98 0.74 0.56 0.46 0.36 0.29

(b) Weak scaling performance of LAPD

Threads 1 32 64 128 144 160 176 192

Elements
(millions)

3.09 96.96 186.80 374.09 419.65 467.01 513.81 559.20

Time(s) 27.81 26.18 26.90 31.26 34.04 36.27 37.82 39.63

Elements
per second
(millions)

0.11 3.73 6.95 12.01 12.30 12.70 13.61 14.12

Speedup 1.0 33.9 63.2 109.1 111.8 115.5 123.6 128.2

Efficiency 1.00 1.06 0.99 0.85 0.78 0.72 0.70 0.67

because it exerts too much pressure on the network routers.

In the LAPD algorithm, we confine the tightly coupled communication among

the cores in each node, i.e. the threads running on the cores of a node have the

flexibility to communicate with each other in order to maximize the concurrency of

that node. As we explain below, the communication between the two nodes happens

when one node needs to refine an element across the partition boundary between

these two subregions and at least one of element is in the local memory of the other

node during the cavity expansion. In order to guarantee the conformity of the created

mesh, this inter-node communication is necessary and unavoidable. In other words,

the inter-node communication is forbidden, unless it is unavoidable.

Table 1.b shows that the speed-up and efficiency of LAPD on 128 Blacklight

cores is 109.1 and 85% respectively, which is better than those of PODM, 94.5 and

74% respectively. The red line in Fig. 10.a illustrates that each time we increase

the number of cores by 16 (a blade), the approach gains some speedup increase, for

up to 192 cores. The efficiencies of LAPD on the 176 and 192 cores are 1.9 and 2.3
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FIG. 6.: Speedup and overhead comparison of PODM and LAPD for 3D abdominal
image. (a) Weak scaling speedup of PODM and LAPD upto to 192 cores on Black-
light. Three million tetrahedra are created by each thread running on a core. The
black line depicts the ideal linear speedup. The red dash line with green markers
shows the speedup of LAPD and the blue one with yellow markers is the speedup of
PODM. (b) Overhead percentage of PODM and LAPD. The left stacked bar shows
the overhead percentage of PODM and the right one shows the overhead of LAPD.

times better than those of PODM. The previous image-to-mesh conversion algorithm,

PODM, scales well up to only 128 cores on Blacklight. The locality-aware approach,

LAPD, scales well up to 192 cores on Blacklight.

The overhead time of both PODM and LAPD mainly consists of three parts:

• Rollback overhead time: this is the time that threads spend on completing

partial cavity expansions before they detect a conflict with some other thread

and discard the expansion.

• Idling time overhead: this is the total time that threads have no poor elements

to refine, and they are idling and waiting for more work from other threads.

• Communication overhead time: this is the total time that threads spend on

fetching elements that are not in the local memory.

See Fig. 6.b for the details of the overhead time percentages of PODM and LAPD.

The figure shows that the total overhead time of LAPD is less than that of PODM for

all numbers of cores, from 64 to 192. We observe that, for core counts beyond 128, the

communication overhead time (the blue bar in Fig. 6.b) contributes the main part of

the total overhead time. The communication overhead time takes a higher percentage

of the total overhead time with the increase in the number of cores. The percentage
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TABLE 2.: Weak scaling performance comparison of PODM and LAPD. The input
image is a 3D Brain atlas. The number of elements remains approximately linear
with respect to the number of threads in both PODM and LAPD.

(a) Weak scaling performance of PODM

Threads 1 32 64 128 144 160 176 192

Elements
(millions)

2.01 64.32 128.61 257.30 289.46 321.72 353.78 385.94

Time(s) 18.29 17.73 18.72 22.88 29.91 39.73 49.69 57.78

Elements
per second
(millions)

0.11 3.62 6.87 11.24 9.68 8.10 7.12 6.68

Speedup 1.0 33.0 62.5 102.2 87.97 73.60 64.72 60.72

Efficiency 1.00 1.03 0.98 0.80 0.61 0.46 0.37 0.32

(b) Weak scaling performance of LAPD

Threads 1 32 64 128 144 160 176 192

Elements
(millions)

2.01 64.32 128.61 257.30 289.46 321.72 353.78 385.94

Time(s) 18.29 18.48 18.83 21.66 24.01 25.18 27.08 28.48

Elements
per second
(millions)

0.11 3.48 6.83 11.88 12.06 12.77 13.06 13.55

Speedup 1.0 31.6 62.1 109.6 111.8 116.1 118.8 123.2

Efficiency 1.00 0.99 0.97 0.84 0.76 0.73 0.68 0.65

of communication overhead on 144 cores is about 32%, while this number is already

increasing to 50% for 176 cores and to 53% for 192 cores. Since the problem size

increases linearly with respect to the number of threads (cores), the communication

traffic per network router increases during the refinement process. Besides the risk of

contention with other users’ the number of jobs running on Blacklight also increases

as the core count increases. Because of these overheads, the performance of PODM

deteriorates on Blacklight for a high core count.

The green bar in Fig. 20.b illustrates that the communication overhead time of

LAPD is less than half that of PODM. The idling time and the rollback overhead

time of each thread in LAPD stay approximately at the same percentage as those

in PODM. Since the communication overhead time is the main part of the total

overhead time in PODM, the total overhead time in LAPD is reduced by a large

percentage after the communication overhead time is reduced by the locality-aware

optimization.

Table 2. shows the performance comparison of PODM and LAPD algorithms for
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the 3D Brain atlas. Again, we can see clearly the significant performance improve-

ment of LAPD compared to that of PODM.

3.3 SCALABLE 3D PARALLEL DELAUNAY IMAGE-TO-MESH

CONVERSION FOR DISTRIBUTED SHARED MEMORY

ARCHITECTURES

In this section, we present an integrated parallel implementation that targets

distributed shared memory architectures. Our parallel mesh generation algorithm

proceeds in the following three main steps: (a) parallel initial mesh construction, (b)

sequential lattice construction and initial mesh partition, (c) independent subregion

(submesh) scheduling and two-level parallel refinement.

PDR.PODM(I,r̄t,r̄I ,N ,C)
Input: I is the input segmented image;

r̄t is the circumradius upper bound of the elements in the final mesh;
r̄I is the circumradius upper bound of the elements in the initial mesh;
N is the number of computing nodes;
C is the number of cores in a computing node.

Output: A Delaunay Mesh M that conforms to the upper bound r̄t.
1: Create the bounding box of I;
2: Construct a lattice with subregion size reflecting the initial upper bound r̄I ;
3: Find the buffer zones of each subregion of the lattice;
4: Generate an initial mesh that conforms to r̄I using PODM;
5: Distribute the initial mesh to subregions based on their circumcenter coordinates;
6: Push all subregions to a refinement queue Q;
7: for each computing node in parallel
8: Create a PODM mesh generator PMG with C threads;
9: while Q 6= ∅

10: Pop one subregion L and its buffer zones B1 and B2 from Q;
11: Get the bad elements in L and add them to the PEL of PMG;
12: while PEL 6= ∅ in parallel
13: Get the first bad element e from PEL;
14: Check the type of the bad element e;
15: Refine e based on the refinement rules and create new elements;
16: Check and classify new elements;
17: for each newly created element e′

18: if e′ is a bad element and it is in the current subregion
19: add e′ to PEL for further refinement;
20: else
21: add e′ to a neighbor subregion;
22: endif
23: endfor
24: endwhile
25: for each neighbor subregion Lnei of L that contains bad elements
26: Push Lnei back to the refinement queue Q;
27: endfor
28: endwhile
29: endfor
30: return M

FIG. 7.: A high level description of the PDR.PODM algorithm.

Figure 7. is a high level description of PDR.PODM. A bounding box of the input

image is created, the lattice structure is constructed, and the buffer zones of each
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subregion are found and stored (lines 1 to 3). The construction and the distribution

of the initial mesh are done in parallel by PODM running on multiple cores (lines 4

to 6). Lines 7 to 29 delineate the subsequent parallel refinement procedure after the

construction of the initial mesh. All of the subregions are pushed to a refinement

queue Q. Each subregion in Q includes the bad elements that belong to the cor-

responding subregion. If Q is not empty, a PODM mesh generator that is running

on a multi-core computing node gets the bad elements from one subregion to refine.

Multiple PODM mesh generators that are running on different computing nodes can

do the refinement work of different subregions simultaneously. PDR.PODM follows

the refinement rules of PODM to create the volume mesh and recover the isosurface.

As shown in lines 15 to 23, after creating a new element e′, we check whether e′ is

a bad element or not, and if it is, we check which refinement rule it violates. Then,

based on the coordinates of its circumcenter, we add the element either to the current

PEL or to the PEL of a neighbor subregion for further refinement. Figure 7. lists

only the main steps of PDR.PODM. The actual implementation is more elaborate,

in order to support efficient data structures and parallel processing.

3.3.1 PARALLEL INITIAL MESH CONSTRUCTION

The construction of an initial mesh is the starting point for the subsequent parallel

procedure. PDR uses the sequential TetGen [2] algorithm to create the initial mesh,

which increases the sequential overhead of the whole parallel algorithm. In order to

reduce the sequential overhead, we used the PODM mesh generator to create the

initial mesh in parallel. There are two important parameters that will affect the

performance of the whole algorithm when we create the initial mesh. The first one

is the number of cores that we use to create the initial mesh. This value should be

neither too small nor too large. If the number of cores is too small, it will not be

enough to explore the available concurrency. If it is too large, the communication

overhead among them is high. Both of these cases make the construction of the initial

mesh time-consuming and deteriorate the performance of PDR.PODM. In practice,

we found that 64 cores is the optimal value for creating the initial mesh when running

PDR.PODM on Blacklight. The second parameter is the circumradius upper bound

r̄I that we use to control the volume of the upper bound of created elements. This

number determines the number of elements of the initial mesh. The larger r̄I is, the

larger the volume of the created tetrahedra are, and thus, fewer elements are created,
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FIG. 8.: A two dimensional illustration of three dimensional buffer zones. The Venn
diagram on the right part demonstrates the logical relations between two subregions
and their first and second buffer zones.

because the volume of the input object is fixed. If r̄I is too small, the meshing time

of the initial mesh is too long because a large number of elements are created; if it is

too large, there is not enough concurrency for the subsequent refinement procedure

because there are not enough elements in the initial mesh. In our experiments, we

used r̄I = 4r̄t , where r̄t represents the target radius upper bound for the final mesh,

since it gave the best performance for PDR.PODM among the different values of r̄I

that we have tried, so far.

3.3.2 INITIAL MESH DECOMPOSITION AND DISTRIBUTION

We used a simple, but efficient, way to divide the whole input image into subre-

gions; this consists of partitioning the bounding box into cubes. Then, we assigned

tetrahedra to different subregions based on the coordinates of their circumcenters.

Consider a subregion L1. The 26 neighbor subregions form its first level buffer zone

B11(the dark red region shown in Figure 12.b). When subregion L1 is under refine-

ment, all of the subregions in the first level buffer zone B11 cannot be refined by

another PODM mesh generator simultaneously. During the refinement procedure,

the point insertion operation might propagate to one subregion of its first level buffer

zone. Consider a case where L1 and L2 are refined simultaneously. If B11 and B21 are

not disjoint, this may result ina nonconforming mesh across B11 and B21. Therefore,

we used a second level of buffer zones, B12 and B22 (light red and light green in

Figure 12.b) in order to ensure that B11 and B21 are disjoint. In our implementation,

if one subregion is popped up from the refinement queue during the refinement, all of

its first and second level buffer neighbors were also popped up. This guarantees that

two subregions that are refined simultaneously are at least two layers (subregions)
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away from each other; thus, the aforementioned problems are eliminated.

3.3.3 TWO-LEVEL PARALLEL MESH REFINEMENT

In distributed shared memory (DSM) systems, memory is physically distributed

while it is accessible to, and shared by, all of the cores. However, a memory block

is physically located at various distances from the cores. As a result, the memory

access time varies, and it depends on the distance of a core from a memory block.

Based on a benchmark of the system group of the Pittsburgh Supercomputing Center

[60], as shown in Table 3., the memory latency inside one blade (Computing Node) is

O(200) cycles and it increases when the number of network switches increases. Each

extra switch adds about O(1, 500) cycles of latency penalty.

TABLE 3.: Memory hierarchy and the approximate memory access time (clock cy-
cles) of Blacklight

Level Memory Module Size Access Clock Cycles
1 L1 Cache 32KB per core 4
2 L2 Cache 256-512KB per core 11
3 L3 Cache 1-3 MB per core 40
4 DRAM to a blade 128GB O(200)
5 DRAM to other blades 128GB and more O(1500)

PDR.PODM explores coarse-grain parallelism at the subregion level (which is

mapped to a virtual Computing Node) and medium-grain parallelism at the cavity

level (which is mapped to a single core). A Computing Node is a virtual computing

unit that consists of a group of cores. A multi-threaded PODM mesh generator is

mapped to a computing node. Each PODM thread runs on one core of that com-

puting node. In the implementation, we consider the sixteen cores that are in the

same blade as a computing node since they share 128GB local memory on the exper-

imental platform. In the coarse-grain parallel level, the whole region (the bounding

box of the input image) is decomposed into subregions, and the bad elements of the

initial mesh are distributed into different subregions based on the coordinates of their

circumcenters. Then, a subset of independent subregions is selected and is scheduled

to be refined simultaneously. The selection and scheduling of subregions is based

on the two level buffer zones, i.e., if one subregion is selected to be refined, all of

the subregions that are in its first and second level buffer zones cannot be selected

simultaneously, in order to avoid resorting to rollbacks. In the medium-grain parallel
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FIG. 9.: (a) A diagram that illustrates the design of PDR.PODM parallel Delaunay
mesh generation algorithm. (b) Two-level parallelism illustration. The selected sub-
regions are refined simultaneously and multiple cavities are expanded concurrently
within a single subregion.

level, the threads running on the cores of a computing node follow the refinement

rules of PODM, in order to refine the bad elements of each subregion in parallel.

The load balance among the cores of each computing node is performed by the load

balancing scheme of the PODM mesh generator.

Figure 9.a shows a diagram of the PDR.PODM parallel mesh generation imple-

mentation design. The boxes that are marked PODM represent parallel Delaunay

mesh generators. The block Data Partition represents the partition of the whole

region (the bounding box of the input image). The block Scheduler represents the

management and distribution of PODM mesh generators on different subregions.

Refinement Queue is a refinement queue that stores all the subregions. Each Queue

Item stores a pointer to one subregion of the lattice structure. Figure 9.b shows an

instance of the two-level parallel mesh refinement. The two subregions are selected

to be refined simultaneously, and inside each region multiple points are inserted con-

currently.

3.3.4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance of PDR.PODM on distributed shared

memory architecture. We performed a set of experiments, creating uniform meshes

to access the weak scaling and strong scaling performance of PDR.PODM. When
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measuring the weak scaling performance of an algorithm, the problem size (the num-

ber of elements created in the case of PDR.PODM) increases proportionally with

respect to the number of cores. When measuring the strong scaling performance, the

problem size remained the same for all number of cores. We tested both the weak

scaling performance of our implementation and PODM on Blacklight, using up to

256 cores. Then, another set of experiments were performed to test the strong scaling

performance of PDR.PODM when creating uniform mesh. Finally, a set of experi-

ments was conducted to test the performance of PDR.PODM when creating varying

sized meshes. In all of these experiments, the execution time reported includes the

pre-processing time for loading the image, the lattice data structure creation time,

and the actual mesh refinement time.

Experiment Setup

The input images we used in our experiment are the CT abdominal and brain

atlas from IRCAD Laparoscopic Center [55]. We also show several uniform and

varying size meshes using a 3D MRI with brain tumor. Our experimental platform is

Blacklight [60], the cache-coherent NUMA shared memory machine in the Pittsburgh

Supercomputing Center. Blacklight is a cc-NUMA shared-memory system consisting

of 256 blades. Each blade holds 2 Intel Xeon X7560 (Nehalem) eight-core CPUs, for

a total of 4096 cores across the whole machine. The 16 cores on each blade share 128

Gbytes of local memory. One individual rack unit (IRU) consists of 16 blades and

256 cores. A 16-port NL5 router is used to connect blades located internally to each

IRU. Each of these routers connects to eight blades within the IRU. The remaining

eight ports of the internal router are used to connect to other NL5 router blades [53].

The total 4096 cores have 32 TB memory.

Weak Scaling Performance of Uniform Meshing

In this subsection, we present the weak scaling performance of PDR.PODM. We

also show the weak scaling performance of PODM for comparison. We increase the

problem size, i.e., the number of tetrahedra, linearly with respect to the number of

cores. The number of tetrahedra created is controlled by the parameter r̄t. This

parameter sets a circumradius upper bound on the tetrahedra created. A decrease

(increase) of the parameter r̄t by a factor of m, results in an approximate m3 times

increase (decrease) of the number of tetrahedra created. The number of tetrahedra
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created increases gradually from 3 million to 745 million when the number of cores

increases from 1 to 256. Table 4. shows the weak scaling performance of PODM and

PDR.PODM.

Evaluation Metrics

The quality of an element e (tetrahedron or triangle) is measured by its radius-

edge ratio. Let r(e) and l(e) denote the circumradius and the shortest edge of e

respectively. The radius-edge ratio of e is defined as ρe = |r(e)|
|l(e)|

. The radius-edge

ratio of each element in the output mesh generated by PDR.PODM is smaller than

1.93 because it utilizes the same refinement rules as PODM [3, 18].

We use the following metrics to evaluate the scalability of parallel mesh generation

algorithms. We measure the number of elements generated every second during the

experiment. Let us denote by elements(p) and time(p) the number of generated

tetrahedra and the meshing time respectively, where p is the number of cores. Then

we can use the following formula to compute the speedup:

S(p) =
elements per sec(p)

elements per sec(1)
=

elements(p) · time(1)

time(p) · elements(1)
(2)

In equation (2), elements per sec(p) represents the number of elements created

per second using p cores while elements per sec(1) represents the number of elements

(tetrahedra) created per second by the best sequential mesh generation algorithm.

Scalability Analysis

Table 4. demonstrates that PODM shows outstanding performance when the

number of cores is less than or equal to 64. The speedup, using 32 cores and 64

cores, is 34.1 and 63.8 respectively, which means that the speedup increases linearly

TABLE 4.: Performance of PODM & PDR.PODM. The input is the abdominal
atlas.

Cores
Elements Meshing Time (seconds) Elements/s (million) Speedup Efficiency %
(millions) podm pdr.podm podm pdr.podm podm pdr.podm podm pdr.podm

1 3.0 27.18 27.78 0.11 0.11 1.0 1.0 100.00 100.00
32 95.1 26.07 29.74 3.75 3.19 34.1 29.0 106.56 90.71
64 187.3 27.02 30.14 6.91 6.23 63.8 56.6 98.12 88.53

128 375.1 35.93 38.54 10.42 9.76 94.5 88.7 73.86 69.32
160 466.4 50.76 38.86 9.18 12.13 83.5 110.3 52.15 68.92
192 560.3 76.04 40.31 7.35 13.91 66.8 126.5 34.80 66.05
224 657.2 123.57 40.57 5.29 16.19 48.1 147.2 21.47 65.71
256 745.7 151.44 41.53 4.92 18.02 44.7 163.8 17.47 63.99
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with respect to the number of cores. On 128 cores, PODM achieves a speedup of 94.5

and an efficiency of 73.86%. However, the performance of PODM deteriorates when

the number of cores is more than 128 on Blacklight. We ran a set of bootstrapping

experiments, from 128 cores to 256 cores, with an increase of two blades (32 cores)

each time, to test the performance deterioration of PODM. Each time we increased

the number of cores, the speedup decreased. For example, the speedup on 160 cores

is 83.5, which is lower than that of 128 cores, and it decreased to only 44.7 for 256

cores. The reason for this performance deterioration of PODM is the increase of

communication time due to the large number of remote memory accesses and the

congested network. The blue dashed line with yellow markers in Figure 10.a shows

this performance deterioration of PODM when the core count is above 128 quite

clearly.

PDR.PODM exhibits better scalability potential when the number of cores is

higher than 128, as shown in Table 4.. We ran the same set of bootstrapping exper-

iments from 128 cores to 256 cores with a step of two blades (32 cores) each time,

in order to compare the performance with PODM. We observed that, each time

we increased the number of cores, the speedup of PDR.PODM increased, while the

speedup of PODM decreased. For example, the speedup on 128 cores was only 88.7

and it increased to 163.8 for 256 cores. The reason for this performance enhance-

ment is the data partition that PDR offers. As we described before, we partition the

whole region into subregions, and we also divide all of the available cores into groups

(computing nodes). Therefore, the communication among different computing nodes

is eliminated during the refinement procedure, and the runtime checks during the

cavity expansion in each subregion involve only a small number of cores.

When the number of cores is less than 128, the performance of PDR.PODM

TABLE 5.: Weak Scaling Performance of PDR.PODM. The input is the BigBrain.

Cores
Elements Meshing Time Elements/s

Speedup
Efficiency

(million) (second) (million) (%)
1 4.1 41.27 0.10 1.0 100.00

16 66.0 45.88 14.39 14.4 89.95
32 131.9 48.56 27.17 27.2 84.91
64 264.2 50.15 52.68 52.7 82.31

128 526.1 58.83 89.43 89.4 69.86
160 656.7 60.88 107.87 107.9 67.42
192 787.3 62.79 125.39 125.4 65.31
224 917.0 64.09 143.09 143.1 63.88
256 1046.4 66.47 157.43 157.4 61.50
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FIG. 10.: (a) Weak scaling speedup of PODM and PDR.PODM on 32 to 256 cores
on Blacklight. Three million tetrahedra are created by each thread running on a
core. The black line depicts the ideal linear speedup. The red dash line with green
markers shows the speedup of PDR.PODM and the blue one with yellow markers
is the speedup of PODM. (b) Running time of PDR.PODM and running time of
PODM.

is lower than that of PODM. As illustrated in Table 4., PODM using 32 and 64

cores creates 3.75 million and 6.91 million elements per second, respectively, and the

speedup is linear with respect to the number of cores, while PDR.PODM created

3.19 million and 6.23 million elements per second respectively, and the speedup is

only 29.0 and 56.6 respectively. The lower speedup of PDR.PODM is caused by the

overhead that we introduced to check and distribute newly created elements to the

corresponding subregions for further refinement. When the number of cores is small

(< 128), the overhead that we introduced was more than the overhead that we want

to reduce, because of remote memory accesses and rollbacks.

Figure 20.b depicts the execution time of PODM and PDR.PODM. The execution

time of PODM consists of the allocation time for the initialization of the threads and

the meshing time. The execution time of PDR.PODM includes the allocation time,

the lattice construction time, the initial mesh creation time, and the subsequent mesh

refinement time. We can see clearly in Figure 20.b that the total meshing time of

PDR.PODM, i.e. the meshing time to create the initial mesh (the yellow block of the

left bar) plus the meshing time in the subsequent refinement procedure (the red block

of the left bar), is greater, although by a small amount, than the meshing time of

PODM (the light purple bar on the right) when the number of cores is lower than or
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TABLE 6.: Strong Scaling Performance of PDR.PODM. The input is the abdominal
atlas.

Cores
Elements Meshing Time Elements/s

Speedup
Efficiency

(million) (second) (million) (%)
1 376.2 3412.27 0.11 1.0 100.00

16 376.2 236.83 15.88 14.4 90.23
32 376.2 122.26 30.77 27.9 87.41
64 376.2 63.28 59.44 54.0 84.44

128 376.2 38.65 97.32 88.5 69.12
160 376.2 34.64 108.59 98.7 61.70
192 376.2 29.86 125.98 114.5 59.65
224 376.2 26.86 140.06 127.3 56.84
256 376.2 24.92 150.97 137.3 53.61

equal to 128. However, this drawback of PDR.PODM can be easily overcome. What

we need to do is set a threshold on the number of cores. When the number of cores

is lower than this threshold, we deactivate the lattice structure and all of the related

data decomposition and scheduling procedures. Only when the number of cores is

higher than this threshold and PODM does not perform well is the PDR.PODM

mode activated to take advantage of its scalability potential.

Table 6. shows the strong scaling performance of PDR.PODM for an input image

abdominal atlas. In the strong scaling case, the number of elements remains the

same. In the experiments, the number of elements is about 376.2 million for all runs

from 1 to 256 cores. As demonstrated in Table 6., when the number of cores is large

(> 128), the strong scaling speedup is a little lower than the weak scaling speedup

shown in Table 4.. The underlying reason is that the ratio of useful computation to

overhead decreases as the number of cores is increased.

Comparision: Uniform Meshing and Varying Size Meshing

Figure 11. shows examples of a uniform mesh and two varying size meshes created

by PDR.PODM for the brain tumor image. Figure 11.a demonstrates a uniform

volume mesh. The size upper bound of the element is the same (uniform) for both

materials. Figure 11.b shows a varying size mesh. Small elements are created near

the boundaries in order to capture the fine features of the boundaries while, in the

regions far away from the boundaries, the elements are larger. Figure 11.c gives an

illustration of another varying size mesh that contains a critical region around the

tumor specified by the user. A dense uniform mesh is created inside the critical

region around the tumor while a varying size mesh is maintained outside.
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(a) (b) (c)

FIG. 11.: Uniform and varying size meshes created by PDR.PODM for the input
brain tumor image (two materials). (a) A uniform volume mesh for both materials.
(b) A varying size mesh with the same geometric fidelity is created that small elements
created near the boundaries. (c) Another varying size mesh with a dense mesh created
inside the user-specified region around the tumor.

We also ran a set of experiments from 16 to 256 cores that generated varying size

meshes for the multi-material abdominal image. Table 7. shows the experimental

results of PDR.PODM in creating uniform meshes and varying size meshes. Com-

pared to the uniform meshes, the corresponding varying size meshes have many fewer

elements. As a result, the meshing time required to create the varying size meshes is

less than the meshing time for the uniform mesh with the same fidelity. The largest

uniform mesh in the experiment contains 745.7 million elements, and the meshing

time is 41.53 seconds for 256 cores. PDR.PODM created a corresponding varying

mesh with the same fidelity in only 5.91 seconds, which is almost seven times faster

TABLE 7.: Comparison of Uniform Meshing and Varying Size Meshing.
The input is the abdominal atlas.

Cores
Elements (million) Meshing Time (second) Elements/s (million) Speedup

uniform varying uniform varying uniform varying uniform varying

16 47.2 2.5 27.78 3.60 1.69 0.69 15.4 6.3
32 95.1 5.0 29.74 4.92 3.19 1.02 29.0 9.2
64 187.3 6.5 30.14 5.97 6.23 1.09 56.6 9.9

128 375.1 9.7 38.54 5.62 9.76 1.73 88.7 15.7
160 466.4 12.5 38.86 5.85 12.13 2.14 110.3 19.4
192 560.3 16.1 40.31 5.85 13.91 2.75 126.5 25.0
224 657.2 19.4 40.57 5.99 16.19 3.24 147.2 29.4
256 745.7 23.5 41.53 5.91 18.02 3.98 163.8 36.2

Note: The fidelity of the uniform and the corresponding varying size mesh is the same for the same
number of cores.
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than the uniform meshing. Furthermore, since the number of elements is lower than

the uniform mesh, the finite element solver will perform faster using the varying size

mesh, compared to using the uniform mesh.
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CHAPTER 4

PARALLEL DELAUNAY IMAGE-TO-MESH

CONVERSION ALGORITHMS FOR DISTRIBUTED

MEMORY CLUSTERS

In this chapter, we present a scalable three dimensional parallel Delaunay image-

to-mesh conversion algorithm. A nested master-worker communication model is used

to simultaneously explore process- and thread-level parallelization. The mesh genera-

tion includes two stages: coarse and fine meshing. First, a coarse mesh is constructed

in parallel by the threads of the master process. Then the coarse mesh is partitioned.

Finally, the fine mesh refinement procedure is executed until all the elements in the

mesh satisfy the quality and fidelity criteria. The communication and computation

are separated during the fine mesh refinement procedure. The master thread of each

process that initializes the MPI environment is in charge of the inter-node MPI com-

munication for data (submesh) movement while the worker threads of each process

are responsible for the local mesh refinement within the node. We conducted a set of

experiments to test the performance of the algorithm on distributed memory clusters

and observed that the granularity of coarse level data decomposition, which affects

the coarse level concurrency, has a significant influence on the performance of the

algorithm.

4.1 ALGORITHM

The algorithm has two stages: the pre-processing stage and the two level parallel

refinement stage. In the pre-processing stage, the algorithm first uses the schedul-

ing information from the system to create processes and threads. The scheduling

information includes the hostname (which also can be called the node name) and the

number of available cores (and their IDs) of each node. Based on the information,

the algorithm creates an MPI process on each node. Each process creates threads

based on the number of available cores of each node. The number of threads of

each process (master and worker threads) is equal to the number of available cores
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of each node, and each is different from each other. The node with maximum num-

ber of available cores is chosen as the master node, and the process running on it

is the master process. Then, a coarse mesh is constructed by the multiple threads

of the master process, and the whole region (the bounding box of the input image)

is decomposed into subregions. Next, the bad quality elements of the coarse mesh

are assigned into subregions based on the coordinates of the circumcenters of the

elements. If the circumcenter of an element is inside a subregion, the element is

assigned to that subregion.

The second stage is the two-level parallel mesh refinement stage. The algorithm

simultaneously explores process-level parallelization and thread-level parallelization:

inter-node communication using MPI and inter-core communication inside one node

using threads. In process level parallelization, the master process uses a task sched-

uler to schedule the tasks (subregions) to worker processes, through MPI communi-

cation. Each subregion is considered as a task, and the submesh inside the subregion

is the data. The worker processes communicate with the master process and with

each other for task requests and data migration. In the thread-level parallelization,

the process of each computing node creates multiple threads that follow the refine-

ment rules of the Parallel Optimistic Delaunay Mesh generation algorithm (PODM)

[34, 18] to refine the bad elements of each subregion in parallel by inserting multiple

points simultaneously. The parallel mesh refinement terminates, until all of the bad

elements in the coarse mesh are eliminated according to the user-specified quality

criteria.

The MPI communication and the local shared memory mesh refinement are sep-

arated, in order to overlap the communication and computation in this two-level

parallelization model. The master thread of each process that runs on each com-

puting node initializes the MPI environment, and creates worker threads based on

the number of available cores of each computing node. It communicates with the

master thread of other processes that run on other nodes for data movement and

task requests. The worker threads of each process do not make MPI calls, and are

only responsible for the local mesh refinement in the shared memory of each node.

One thing that we should mention is that the number of threads of each process

should be at least two (a master thread for communication and a worker thread for

mesh refinement), in order to separate the MPI communication and the local mesh

refinement. Therefore, we set a threshold for the number of available cores and we



38

discarded the node that had only one available core.

4.2 MPI+THREADS IMPLEMENTATION

In this section, we present a hybrid MPI + BoostC++ Threads parallel image-to-

mesh conversion implementation for distributed memory clusters [23]. The algorithm

explores two levels of concurrency: coarse-grain level concurrency among subregions

and medium-grain level concurrency among cavities. As a result, the implementation

of our algorithm exploits two levels of parallelization: process level parallelization

(which is mapped to a node with multiple cores) and thread level parallelization

(which is mapped to a single core in a node).

In the coarse-grain parallel level, the master process first creates an initial mesh

in parallel, using all its threads. Then, it decomposes the whole region (the bounding

box of the input image) into subregions and it assigns the bad elements of the initial

mesh into subregions, based on the coordinates of their circumcenters. Finally, the

master process uses a task scheduler to manage and to schedule the tasks (subregions)

to worker processes, through MPI communication. We describe a method of how to

select and schedule a subset of independent subregions to multiple processes, which

can be refined simultaneously without synchronization. In the medium-grain parallel

level, the process of each compute node launches multiple threads that follow the

refinement rules of PODM in order to refine the bad elements of each subregion in

parallel by inserting multiple points simultaneously. Fig. 13. and Fig. 14. give a high

level description of our hybrid MPI+Threads parallel mesh generation algorithm.

(a) (b)

FIG. 12.: (a) A diagram that illustrates the design of nested master-worker model.
(b) A two dimensional illustration of three-dimensional buffer zones.
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4.2.1 COARSE LEVEL DATA DECOMPOSITION AND TASK SCHED-

ULER

We used a simple but efficient way to decompose the whole input image into

subregions, which consisted of partitioning the bounding box into cubes. Then, we

assigned tetrahedra to different subregions, based on the coordinates of their cir-

cumcenters. We used a two-level buffer scheme to select and schedule independent

subregions to multiple processes, which could then be refined simultaneously without

synchronization. Consider that a subregion and the twenty six neighbor subregions

form its first level buffer zone (dark red or dark green region shown in Fig. 12.b).

When a subregion is under refinement, all of the subregions in the first level buffer

zone cannot be refined simultaneously, because the point insertion operation might

propagate to one or several subregions of its first level buffer zone. Consider a case in

which two subregions are refined simultaneously. If their first level buffer zones are

not disjoint, this may result in a nonconforming mesh in the intersection subregions

of their first level buffer zones. Therefore, we use a second level buffer zone (the light

red and light green regions in Fig. 12.b) in order to ensure that the first level buffer

zones of the two subregions under refinement are not overlapping. A subregion is

considered as a task that can be dealt with by one process, and the subregions in

its second level neighbors are considered as dependent tasks. A subregion which is

outside the second level neighbors is an independent task, and it can be refined by

another process, concurrently. We used a task queue and task scheduler to sched-

ule the independent tasks that could be refined by multiple processes simultaneously,

based on the two level buffer zones. The idea of the task scheduler is straightforward:

if one task (subregion) is popped up from the task queue during the refinement, all

of its dependent tasks, i.e. its first and second level buffer neighbors, are also popped

up. This guarantees that the two subregions that are scheduled to be refined simul-

taneously are at least two layers (subregions) away from each other and independent.

During the refinement procedure, the point insertion operation might propagate to

one subregion of its first level buffer zone. Therefore, if the submesh of one subregion

were scheduled to one worker process for refinement, the submeshes of its first level

neighbors would also need to move to the local memory of the worker process. Each

subregion has an integer flag that represents the process rank (node ID) where the

actual data (submesh) inside each subregion is stored, as shown in Fig. 12.b. The

worker process sends data request messages to collect the submeshes of one subregion
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and its first level neighbor subregions from other workers, based on the integer flags

(lines 6 to 18 in Fig. 14.).

4.2.2 NESTED MASTER-WORKER MODEL

We propose a nested master-worker model, in order to take advantage of the

two level parallelization on multicore distribute clusters. Fig. 12.a is a diagram

that illustrates the design of the nested master-worker model. The master process,

running on a node (called the master node), creates the initial mesh, and manages

and schedules the tasks (subregions), while the worker processes, running on other

nodes (worker nodes), communicate with each other and with the master process for

task request and data migration. Within each node, the process is multithreaded,

and each thread runs on one core of the node.

In the implementation, the MPI communication and the local shared memory

mesh refinement are separated, in order to overlap communication and computation.

The master thread of each process that runs on each compute node initializes the

MPI environment. Then, it creates new worker threads, and it pins each worker

thread on one core of the compute node. Therefore, the number of threads (master

and worker threads) of each process is equal to the number of cores of each node. The

master thread initializes the MPI environment and communicates with the master

thread of the other processes that run on other nodes for data movement and task

requests. The worker threads of each process do not make MPI calls and are only

responsible for the local mesh refinement work in the shared memory of each node.

Fig. 13. and Fig. 14. list the main steps of the master process and the worker

process of the nested master-worker model, respectively. In the algorithm, each

subregion is considered as a task, and the submesh inside the subregion is the actual

data. If we denote P0 as the master process and Pi, Pj as worker processes, the

main steps of the algorithm can be summarized as follows: (i) the master process

P0 creates the initial mesh, decomposes the initial mesh, and initializes the task

queue and scheduler (lines 1 to 5 in Fig. 13.); (ii) a worker process Pi sends a task

(subregion) request to the master process P0 (line 2 in Fig. 14.); (iii) P0 receives the

task request from Pi, pops one task (subregion L) and its dependent tasks (neighbors)

from the task queue and sends the subregion and its neighbors’ submeshes Location

information to Pi (lines 8 to 13 in Fig. 13.); (iv) Pi sends a data request to each

process Pj that has the submeshes that Pi needed (lines 4 to 18 in Fig. 14.); (v) after
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Master Process(P0)(I, δ̄t, δ̄I , g)
Input: I is the input segmented image;

δ̄t is the circumradius upper bound of the elements in the final mesh;
δ̄I is the circumradius upper bound of elements in the initial mesh;
g is value of granularity;

1: Generate an initial mesh in parallel that conforms to δ̄I ;
2: Use a uniform octree to decompose the whole region into subregions based on g;
3: Find the buffer zones of each subregion of the octree;
4: Distribute the initial mesh to octree leaves based on their circumcenter coordinates;
5: Push all octree leaves to a task queue Q;
6: while (1)
7: Probe the message;
8: if The message is a task (subregion) request message from a worker process Pi;
9: if Q! = ∅

10: Receive message from Pi;
11: Get one subregion L from task queue Q;
12: Send L and its neighbors’ submeshes Location information to Pi;

//Location is an array that contains the process ranks,
//which hold the submesh of L or its first level neighbors.

13: Set process Pi to status HAS WORK;
14: else if Q == ∅ && at least one worker process’s status is HAS WORK;
15: Receive message from Pi;
16: Put Pi to waiting task list WTL;
17: Send a message to Pi with status WAIT IN LIST;
18: else if Q == ∅ && all worker processes’ statuses are NO WORK;
19: Send termination message to Pi;
20: Send termination message to every process that is waiting in the WTL;
21: if the number of terminated workers == the number of workers
22: break;
23: endif

24: endif

25: endif

26: if The message is a data (submesh) request message from Pi

27: Receive the message from Pi;
28: Pack data (submesh);
29: Send data (submesh) to Pi;
30: endif

31: if The message is a feedback from Pi that just finished the refinement work
32: Receive the message from Pi;
33: Set Pi to status NO WORK;
34: Update task queue Q based on the feedback message from Pi;
35: while Q! = ∅ && waiting task list WTL is not empty
36: Get one subregion from Q;
37: Pop one process Pj from waiting task list WTL;
38: Send subregion and neighbors Location information to Pj ;
39: Set Pj to status HAS WORK;
40: endwhile

41: endif

42: endwhile

FIG. 13.: A high level description of Master Process’s (P0) work.

getting all of the submeshes of L and its neighbors, the worker threads of Pi start

the mesh refinement; (vi) Pi sends a feedback message to the master process P0 and

P0 updates the task queue based on the feedback message (lines 31 to 41 in Fig. 13.);

(vii) if all of the refinement work is done, P0 sends a termination message to each

worker process Pi and master process exits after all worker processes terminate (lines

18 to 24 in Fig. 13.).

A worker process does not send the submeshes of a subregion and neighbors

back to the master process after it has finished the refinement work. Instead, it

sends a feedback message that only contains the number of bad elements of each

subregion to the master process. The master process updates the task queue, based

on the feedback message to decide whether a subregion needs to be pushed back to

the task queue for further refinement. A data (submeshes) collection operation is
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Worker Process(Pi)()
1: while (1)
2: Send a task (subregion) request to master process P0;
3: Probe the message;
4: if The message is a task message from master process P0;
5: Receive the message from P0;
6: Send data (submesh) request to each process Pk in Location array;
7: while (1)
8: Probe the message;
9: if The message is a data (submesh) request message from a process Pj ;

10: Receive the message from Pj ;
11: Send data (local submesh) to Pj ;
12: else if The message contains data (submesh) from a process Pk

13: Receive the message from Pk;
14: number of submeshes received += number of submeshes Pk holds;
15: if number of submeshes received == number of submeshes needed
16: break;
17: endif
18: endwhile
19: Pass the submesh to worker threads for mesh refinement;
20: while the worker threads are doing the mesh refinement
21: Probe the message;
22: if The message is a data (submesh) request message from a process Pj ;
23: Receive the message from Pj ;
24: Send data (local submesh) to Pj ;
25: endif
26: endwhile //Local Mesher has finished the refinement work;
27: Send feedback message with mesh refinement information to P0;
28: else if The message is a message from P0 with status WAIT IN LIST
29: while Pi is waiting for new task
30: Probe the message;
31: if The message is a data (submesh) request message from a process Pj ;
32: Receive the message from Pj ;
33: Send data (local submesh) to Pj ;
34: endif
35: endwhile
36: else if The message is a termination message from P0

37: break;
38: endif
39: endwhile

FIG. 14.: A high level description of a Worker Process’s (Pi) work.

needed when a worker process gets a task (subregion) to refine. The worker process

sends a data request to other worker processes which hold the submeshes in their

local memories. A worker process is likely to send data requests to other worker

processes and to receive data requests from these worker processes, simultaneously.

In order to handle the interleaving messages among the worker processes and to

avoid deadlocks, non-blocking MPI communication and a message polling approach

are used when the master thread of a worker process tries to collect the Submeshes

that it needs from other worker processes (lines 6-18 in Fig. 14.). When the worker

threads of a process are doing the refinement work, the master thread is still able to

receive and respond to the data requests from other workers (lines 20-26 in Fig. 14.),

since the communication and the computation are separated.



43

4.2.3 OPTIMIZATIONS

The first optimization is to reduce the format translation overhead caused by

the STD map utilized in the previous implementation. The time complexity of the

lookup operation in the std::map is logarithmic in size. Therefore, for each time of

data mapping from the pointer to integer index, the time is approximately O(nlgn),

where n is the number of elements that need to exchange among the processes. Obvi-

ously, a constant mapping with the time complexity of O(1), instead of the std::map,

will reduce the format translation overhead. The new implementation introduced

and maintained the index-based mesh structure during the mesh refinement proce-

dure. After introducing the index-based mesh structure during the mesh refinement

procedure, the std::map could be replaced by one-to-one direct mapping. The lookup

time of each element will, then, be constant instead of logarithmic, which reduces

the overhead caused by the explicit mesh format translation.

The second optimization is to reduce the delay caused by the communication,

the packing and unpacking, and the waiting time of both the master and the worker

threads. In a previous implementation, the master thread was responsible for the

communication, the data packing and unpacking, and the mesh structure format

translation. It caused the following problems: (i) It increased the waiting time (idle

time) of the worker threads of the local mesher. The local mesher could not do

any mesh refinement work in the required subregion until it got all of the data (the

submeshes of the level one neighbors). (ii) It increased the response time of the master

thread(s) of other process(es) which sent data requests to ask for data to current-

process. The process was only able to perform one operation at a time: either the

data processing (the unpacking and translation) or the response to the MPI message

of other processes. The delay in the data processing of the current process caused a

delay in response to the data requests messages from other processes, and vice versa.

In order to solve the problem, we offloaded some work from the master thread to

the worker threads, to speed up the data processing step. The master thread was

now only responsible for communication and data migration. The data processing

(unpacking and translation) work was split to the worker threads.

The third optimization is to maximize the resource utilization. Most of the cur-

rent supercomputer architectures consist of clusters of nodes that are used by many

clients (users). A user wants his/her job submitted in the job queue to be scheduled

promptly. However, the resource sharing and job scheduling policies that are used
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in the scheduling system to manage the jobs are usually beyond the control of users.

Therefore, in order to reduce the waiting time of their jobs, it is becoming more and

more crucial for the users to consider how to implement the algorithms that are suit-

able to the system scheduling policies and are able to effectively and efficiently utilize

the available resources of the supercomputers. We proposed a hybrid MPI+Threads

parallel mesh generation algorithm on distributed memory clusters with efficient core

utilization. The algorithm takes the system scheduling information into account and

is able to utilize the nodes that have been partially occupied by the jobs of other

users. In the previous work [61], we proposed a parallel Delaunay image-to-mesh

conversion algorithm which is the first three-dimensional hybrid MPI+Threads par-

allel meshing algorithm that involves both distributed memory parallelization and

shared memory parallelization. However, the execution of the algorithm has very

high resource requirements. It only works on clusters with homogeneous nodes and

needs exclusive accesses of these nodes. In other words, it cannot execute on the

nodes which have been partially occupied by the jobs of other users. As a result,

the waiting time of the algorithm in the queue is large in order to get the resources

it needs. The optimization overcomes the limitations of the previous parallel mesh-

ing algorithm [61] which only works on clusters with homogeneous nodes and needs

exclusive accesses of these nodes. As a result, it is up to 12.74 times faster than

the previous algorithm without efficient core utilization for 400 cores and 2.58 billion

element mesh as illustrated in Table 12..

4.2.4 LOAD BALANCE

In order to alleviate the load balance problem during the parallel mesh refinement

procedure, a semi-dynamic load balance scheme was introduced. It deals with the

load balance issue of the algorithm on two levels: the coarse-grain level load bal-

ance among processes, and the fine-grain level load balance among threads within a

process.

Coarse Level Load Balance

On the coarse-grain level, over-decomposition [62] is utilized to deal with the load

balance problem among processes. We over-decomposed the whole region so that the

number of subregions was much larger than the number of processes, to ensure that

each process would have enough subregions to refine. This method introduced some
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overhead, but it helped to alleviate the load balance problem among the processes. A

study of optimal load balance strategies among processes, while keeping the overhead

and communication cost small, is part of our future work.

Fine Level Load Balance

On the fine-grain level, a load balance list was used to spread the elements among

the threads of a process. Each thread has the flexibility to communicate with other

threads that belong to the same process during the refinement. A worker thread Ti

pushes back its Thread ID to the load balance list, if the bad element list BELi

of a thread Ti does not contain any elements. Then, Ti goes to sleep and is able

to be awakened by another thread Tj when Tj produces some work for Ti. After

a running thread Tj completes a Delaunay insertion operation, it checks all of the

newly created elements and puts the ones that are regarded as bad elements on the

BEL of the first thread Ti, found in the load balance list. Tj also removes Ti from

the load balance list.

4.3 PERFORMANCE

4.3.1 EXPERIMENTAL PLATFORM, INPUTS AND EVALUATION

METRICS

We have conducted a set of experiments to assess the performance of the hybrid

MPI+Threads parallel mesh generation algorithm. The experimental platform was

the Turing cluster computing system at the High Performance Computing Center

of Old Dominion University. We tested the performance of our implementation on

Turing with its two subclusters: the Phi cluster and the Ed-Main cluster. The Phi

cluster contained nine Intel Xeon Phi nodes each, with two Xeon Phi MIC cards and

20 cores. The Ed-Main cluster of Turing contained 190 multi-core compute nodes

each, containing between 16 and 32 cores and 128 Gb of RAM. We used two 3D multi-

tissued images as inputs in the experiments: (i) the CT abdominal atlas obtained

from the IRCAD Laparoscopic Center [55], and (ii) the knee atlas obtained from

Brigham & Women’s Hospital Surgical Planning Laboratory [63]. We performed the

experiments on the Phi cluster using up to 180 cores, and on the Ed-Main cluster

using up to 900 cores (45 compute nodes, the maximum number of nodes available
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for us in the experiments). We used the Weak Scaling Speedup S , (the ratio

of the sequential execution time of the fastest known sequential algorithm (Ts) to

the execution time of the parallel algorithm (Tp)) and Weak Scaling Efficiency E

(the ratio of the speedup (S) to the number of cores (p): E = S/p = Ts/(pTp)) to

evaluate the scalability of the parallel mesh generation algorithms [57, 58].

In the weak scaling case, the problem size (i.e., the number of elements created)

increased proportionally to the number of cores. Because of the irregular nature

of the unstructured tetrahedra mesh, it was impossible to control the problem size,

which increased exactly by p times when the number of cores was increased from 1 to

p. Therefore, an alternative definition of speedup was used, which was more precise

for a parallel mesh generation algorithm. We measured the number of elements

generated every second during the experiment. Then the speedup could be calculated

as S(p) = elements per sec(p)
elements per sec(1)

.

4.3.2 MESH QUALITY ANALYSIS

In this subsection, we analyze the quality of the meshes created by our algorithm.

The quality of mesh refers to the quality of each element in the mesh, which is mea-

sured by Delaunay methods in terms of its circumradius-to-shortest-edge ratio (its

radius-edge ratio, for short) and its (dihedral) angle bound. The radius-edge ratio of

a tetrahedron is defined as the ratio of its circumradius to the length of its shortest

edge. The radius-edge ratio of the created mesh is theoretically guaranteed by the

Delaunay refinement method, and the actual edge ratio bound in our implementation

was less than 2, in our implementation. Because of the potential nearly flat tetra-

hedra, a more useful measure was the dihedral angle. We compared the quality of

TABLE 8.: Mesh quality comparison of our method and PODM. The two input
images are abdominal atlas and knee atlas.

Abdominal Atlas Knee Atlas

MPI+Threads PODM MPI and Thread PODM

number of elements 1,355,131 1,352,737 832,569 831,674
number of vertices 244,066 244,027 185,752 185,703

edge-radius ratio bound 2 2 2 2
min dihedral angle 4.89◦ 4.78◦ 4.96◦ 4.94◦

max dihedral andle 174.21◦ 174.47◦ 174.89◦ 175.11◦
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(a) (b)

FIG. 15.: (a) Dihedral angle distribution of the final mesh created by the hybrid
MPI and Thread method. (b) Dihedral angle distribution of the final mesh created
by the PODM.

meshes that were created by our method with the quality of meshes that were created

by PODM method on the two multi-material 3D input images (an abdominal atlas

and a knee atlas), as shown in Table 8.. We also showed the dihedral angle distri-

bution of the final meshes created by our algorithm and PODM in Fig. 15.a and in

Fig. 15.b. The goal of such comparisons is to illustrate that the hybrid MPI+Threads

is able to generate meshes with the same quality guarantees as PODM.

4.3.3 SCALABILITY, GRANULARITY AND CONCURRENCY

In this subsection, we present the weak scaling performance of the implementation

on the Phi cluster up to 180 cores (9 compute nodes) with different data decompo-

sition granularities. The number and size of the subregions into which a problem is

decomposed determines the granularity of the decomposition. In the implementation,

we used a uniform octree to decompose the whole image, and the depth of the octree

determined the number of leaves (subregions) of the decomposition. The number of

subregions was Nsub = 8d, where d was the depth of the octree. In the algorithm,

we passed the depth of the octree as an input parameter, in order to control the

granularity of the coarse level data decomposition. We performed the experiments

on the Phi cluster with two different data decomposition granularities:

• d = 3 represents the octree split to depth 3, with 512 subregions.

• d = 4 represents the octree split to depth 4, with 4096 subregions.
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The problem size, i.e., the number of tetrahedra, increases linearly with respect to

the number of cores. The number of tetrahedra created gradually increased from 6.64

million to 1.17 billion for the input image abdominal atlas, and from 6.33 million to

1.14 billion for the knee atlas, when the number of cores increased from 1 to 180.

Table 9. and Table 10. show the weak scaling performance of the algorithm for the

two input images (abdominal atlas and knee atlas), respectively.

TABLE 9.: Weak scaling performance of data decomposition with different granu-
larities. The input is abdominal atlas.

Cores
Elements Running Time (s) million elements/s Speedup Efficiency%
(million) depth3 depth4 depth3 depth4 depth3 depth4 depth3 depth4

1 6.64 64.70 64.70 0.10 0.10 1.00 1.00 100.00 100.00
20 133.93 76.47 76.47 1.75 1.75 17.07 17.07 85.35 85.35
40 261.54 102.63 177.09 2.55 1.49 24.84 14.50 62.10 36.25
60 390.61 110.35 156.09 3.54 2.51 34.50 24.50 57.50 40.83
80 520.31 115.02 141.44 4.52 3.69 44.09 35.96 55.11 44.95

100 650.16 125.96 133.79 5.16 4.87 50.31 47.45 50.31 47.45
120 780.13 137.03 129.54 5.69 6.03 55.49 58.77 46.24 48.97
140 905.07 149.64 125.00 6.05 7.25 58.95 70.64 42.11 50.46
160 1034.34 158.47 120.28 6.53 8.60 63.62 83.85 39.76 52.41
180 1167.95 177.24 119.56 6.57 9.74 64.01 94.89 35.56 52.72

TABLE 10.: Weak scaling performance of data decomposition with different granu-
larities. The input is knee atlas.

Cores
Elements Running Time (s) million elements/s Speedup Efficiency%
(million) depth3 depth4 depth3 depth4 depth3 depth4 depth3 depth4

1 6.33 64.27 64.27 0.10 0.10 1.00 1.00 100.00 100.00
20 126.24 76.20 76.20 1.66 1.66 16.83 16.83 84.14 84.14
40 257.01 83.16 179.44 3.09 1.44 31.39 14.60 78.48 36.51
60 383.76 97.56 158.04 3.93 2.43 39.96 24.67 66.59 41.12
80 508.18 109.02 149.37 4.66 3.40 47.35 34.52 59.18 43.15

100 633.73 127.67 139.03 4.96 4.55 50.42 46.19 50.42 46.19
120 762.09 141.62 136.83 5.38 5.55 54.66 56.39 45.55 46.99
140 886.62 152.78 132.96 5.80 6.64 58.95 67.49 42.10 48.21
160 1014.09 174.60 127.26 5.81 7.93 59.00 80.60 36.87 50.37
180 1142.34 199.07 125.32 5.74 9.07 58.29 92.14 32.38 51.19

As demonstrated in Table 9. and Table 10., the algorithm gets near-linear weak

scaling performance for each of the two inputs, when the number of cores is less

than or equal to 20. The efficiency, with 20 cores, is about 85%. The reason is that

the refinement work was done inside one compute node with shared memory and no

core was dedicated to MPI communication, in this case. Therefore, no inter-node

communication overhead was introduced. The algorithm shows better weak scaling

performance with d = 3, i.e, when the coarse mesh and underlying image is par-

titioned into 512 subregions, than that with d = 4, i.e. when the coarse mesh is

partitioned into 4096 subregions, when the number of cores is less than or equal to

100 (5 nodes). There are two reasons. First, the decrease of granularity, with more

subregions, does not necessarily lead to the increase of the degree of concurrency,

because the maximum number of tasks (subregions) that can be executed (refined)
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(a) (b)

FIG. 16.: (a) Weak scaling speedup comparison of two different granularities for the
input image abdominal atlas. (b) Weak scaling speedup comparison of two different
granularities for the input image knee atlas.

simultaneously is limited by the number of available cores. Second, the decrease of

granularity, which increases the number of subregions, introduces more overheads.

As demonstrated in Fig. 17.a and Fig. 17.b, the communication overhead (the red

part) with 4096 subregions (the right bar) is always higher than the communica-

tion overhead, with 512 subregions (the left bar). The large overhead leads to the

speedup of 40 cores (2 nodes) even lower than that of 20 cores with 512 subregions,

as demonstrated in Fig. 16.a and Fig. 16.b. The algorithm exhibits better scalability

when the octree depth is 4 (4096 subregions) and the number of cores is more than

120 (6 nodes) as shown in Table 9. and Table 10.. We observed that, each time

we increased the number of cores, the efficiency of experiment with 4096 subregions

increased, while the efficiency with 512 subregions decreased. Take the experimental

result of the input abdominal as an example: the efficiency with 512 subregions on 40

cores was 62.10% and it decreased to 35.56% for 180 cores. In contrast, the efficiency

with 4096 subregions on 40 cores was 36.25% and it increased to 52.72% for 180

cores. Fig. 16.a and Fig. 16.b illustrate the speedup comparison, with two different

granularities for two input images, respectively. For 512 subregions, the gradient of

speedup becomes smaller and smaller, with the number of cores (nodes) increasing;

the speedup with 180 cores is almost the same as that with 160 cores. In contrast,

for 4096 subregions, the speedup increases almost linearly, compared to the speedup

with 40 cores.

Fig. 17.a and Fig. 17.b show the breakdown of the total running time for the
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FIG. 17.: The breakdown of the running time of two different granularities. The
left bar in each bar graph is the time breakdown with 512 subregions and the right
one is the time breakdown with 4096 subregions. (a) The breakdown of the running
time of experiments for abdominal atlas. (b) The breakdown of the running time of
experiments for knee atlas.

experiments with the two images, respectively. The running time consists of four

parts: (i) the pre-processing time: the time that the master process spends on loading

an image from the disk, constructing an octree, creating the coarse mesh, assigning

the elements of the coarse mesh to subregions, and creating subthreads; (ii) the

meshing time: the time that a process (more precisely, the multiple worker threads

of a process) spends on mesh refinement; (iii) the communication time: the time

that a process spends on task requests and data movement; and (iv) the idle time:

the time that a process waits in the waiting list and does not perform any mesh

refinement work. Each bar is the sum of the time that a process spends on each

part for each iteration (in each iteration, the process requests a subregion and refines

the submesh inside the subregion). We calculated the average time of each part for

all processes. As demonstrated in Fig. 17.a and Fig. 17.b, the idle time with large

granularity (512 subregions) continued to increase, from 40 cores (2 nodes) to 180

cores (9 nodes). It became the major overhead that deteriorated the performance

of the algorithm when more than five nodes were used, because of the low degree of

concurrency. In this case, a finer decomposition was required, although it introduced

more overhead. In addition, the communication overhead (the red part) with small

granularity (the right bar) is always higher than the communication overhead with

large granularity (the left bar). In fact, we can see clearly the basic tradeoffs in

parallel computing between granularity and concurrency: we have to decrease the
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FIG. 18.: (a) The overall weak scaling speedup of the two input images up to 900
cores (45 nodes) on Ed-Main cluster of Turing. (b), (c), (d) The weak scaling speedup
comparison of hybrid MPI and Threads implementation with other three shared
memory algorithm implementations and ideal speedup for upto 160, 300 and 900
cores.

granularity in order to increase the concurrency, which introduces more overhead. If

there are not enough processing units to exploit the maximum degree of concurrency,

a finer data decomposition with smaller granularity deteriorates the performance of

the algorithm, because of the higher overhead it introduces.

4.3.4 PERFORMANCE COMPARISON

We ran a set of experiments on the Ed-Main cluster of the Turing cluster system

up to 900 cores (45 nodes) to test the scalability of the algorithm. We used the same

two input images, abdominal atlas and knee atlas, as our test experiments on the

Phi cluster. Based on the analysis of the subsection above, we ran the experiments

with the optimal value of octree depth, i.e. d = 3 when the number of nodes was less

than or equal to 5 (100 cores), and d = 4 when the number of nodes was between 6

and 30 (120 to 900 cores). Fig. 18.a demonstrates the weak scaling speedup of the
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TABLE 11.: Comparison of parallel Delaunay image-to-mesh conversion algorithms.

Methods Max Cores Elements Per Second Platform Main Characteristics
PODM 128 10.42 million Shared Memory First parallel image-

to-mesh conversion
algorithm.

LAPD 192 14.12 million Shared Memory Improving the locality
during refinement.

PDR.PODM 256 18.02 million Shared Memory Taking advantages of two
previous algorithms [18,
15] to improve the scala-
bility.

MPI+Threads 900 45.25 million Distributed Memory Hybrid MPI and Threads
algorithm involves two
level parallelization.

two input images up to 900 cores (45 nodes) on the Ed-Main cluster of the Turing.

We compared the performance of the hybrid MPI+Threads algorithm with three

other shared memory algorithms, PODM [18], LAPD [21], and PDR.PODM [22].

The main characteristics of these algorithms are listed in Table 11.. The input image

that we used in all of the experiments is the abdominal atlas. Fig. 18.b shows the

speedups of the four implementations, up to 160 cores. As we can see, the locality-

aware parallel mesh generation algorithm, LAPD, had the best performance, because

it increased the data locality during the parallel mesh refinement. In fact, all of the

other three methods had better performance than that of the hybrid MPI+Threads

algorithm when the number of cores was small (less than 300). The reason is that

the hybrid method introduces the process-level data migration and movement, which

introduces additional communication overhead through MPI routines, compared to

the pure shared memory parallel mesh refinement. However, when the number of

cores increases, the scalability potential of the hybrid method becomes more and

more obvious. When experiments are performed with more than 300 cores, the

MPI+Threads method has the best performance, compared with the other three

methods, because of the two levels of parallelization that it utilizes.

4.3.5 PERFORMANCE ON HETEROGENEOUS CLUSTERS

In this section, we shows the experimental results of the algorithm on heteroge-

neous clusters with the disruption of other users’ jobs. We compared the performance

of the new implementation with the previous implementation which only works on

cluster with homogeneous nodes.

The total time of the algorithm in the experiments has two parts: the execution

time and the waiting time. The execution time is the time that the job executes on
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TABLE 12.: The performance comparison of the heterogeneous algorithm and the
homogeneous algorithm. The input is abdominal atlas.

Cores
Nodes Elements Execution Time (s) Waiting Time (s) Total Time (s) Total Time Ratio

homo hetero (million) homo hetero homo hetero homo hetero homo:hetero
1 1 1 6.64 64.70 64.35 0 0 64.70 64.35 1:1

20 1 1 133.93 76.47 77.27 0 0 76.47 77.27 1:1
40 2 3 261.54 102.63 107.09 0 0 102.63 107.09 0.96:1
60 3 4 390.61 110.35 115.22 0 0 110.35 115.22 0.96:1
80 4 6 520.31 115.02 121.44 0 0 115.02 121.44 0.95:1

100 5 10 650.16 125.96 204.79 0 0 125.96 204.79 0.62:1
200 10 22 1292.20 139.33 249.87 731 0 870.33 249.87 3.48:1
300 15 26 1937.00 131.53 231.44 3674 181 3805.53 412.44 9.23:1
400 20 36 2577.91 127.65 280.35 18622 1191 18749.65 1471.35 12.74:1

the cluster. The waiting time is the time that the job spends on waiting in the SGE

job queue to get the resources from the scheduling system. The waiting time depends

on the job scheduling of the system and the resources that a job requests, such as the

number of cores and the amount of memory. In the experiments, the problem size

(i.e., the number of elements created) in the experiments increases proportionally

to the number of cores and the number of elements per core remains approximately

constant. The comparison of the total time of the heterogeneous algorithm and the

previous homogeneous algorithm is demonstrated in Table 12..

The execution time of the heterogeneous algorithm is a bit longer than that of the

homogeneous algorithm because more computing nodes involve in the communication

and the execution of the job is disturbed by the jobs of other users running on the

same node. As shown in Table 12., the execution time of the homogeneous algorithm

of 100 cores is 125.95 seconds and five 20-core node are used while the execution time

is 204.79 seconds of the heterogeneous algorithm and ten partially occupied nodes

are used in order to get 100 cores. However, the heterogeneous algorithm reduces

the waiting time which is the dominating part of the total time when the number

of cores is large. As a consequence, the total time of the algorithm is much smaller

than that of the homogeneous algorithm. As shown in Table 12., the waiting time for

the homogeneous algorithm of 400 cores is about 18622 seconds in order to get the

computing resources (the homogeneous nodes with exclusive accesses). In contrast,

it only takes about 1191 seconds for the new algorithm waiting in the queue before

it executes. As a result, the total time of the previous algorithm is 12.74 times more

than that of the heterogeneous algorithm for the experiments of 400 cores.

4.3.6 STRONG SCALING PERFORMANCE
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We also tested the strong scaling performance of the algorithm. The input image

that we used in the expreiments is the abdominal atlas. In the strong scaling case,

the problem size is fixed across all the runs with different number of cores. The

scalability of the algoritm in the strong scaling case is far more worse than that of

the weak scaling case. It only scales up to 800 cores in the test experiments. The

reason can be explained as follows. The strong scaling performance of the algorithm

is determined by the problem size. If the problem size is very large, i.e. creating

a very large mesh, in the experiments, the algorithm will demonstrate good strong

scaling performance. On the contrary, if the problem size is very small, the strong

scaling performance will deteriorate. This issue has been pointed out and analyzed

by J. L. Gustanfson [57]. As he stated: on ensemble (distributed) computers, fixing

the problem size creates a severe constraint since, for a large ensemble (with the

small fixed problem size), it means that a problem must run efficiently even when

the problem occupies only a small fraction of available memory.

TABLE 13.: Weak scaling performance up to 6000 cores. The input image is ab-
dominal atlas.

#Cores 1 2400 3000 3600 4200 4800 5400 6000
#Nodes 1 106 114 144 171 192 213 247

# Elements a 6.64 Mb 16.85 Bc 21.03 B 25.18 B 29.43 B 33.63 B 37.80 B 41.98 B
Running Time(s) 79.70 132.41 129.64 130.99 132.38 133.68 139.29 141.17

Elements/second(M) 0.83 127.24 162.25 192.23 222.31 251.55 271.36 297.38
Speedup 1.00 1527.71 1948.10 2308.04 2669.21 3020.21 3258.11 3570.51
Efficiency 1.00 0.65 0.64 0.63 0.63 0.61 0.59 0.62

a # Elements represents the number of elements.
b M: million.
c B: billion.

TABLE 14.: Weak scaling performance up to 6000 cores. The input image is knee
atlas.

#Cores 1 2400 3000 3600 4200 4800 5400 6000
#Nodes 1 78 104 135 156 191 213 247

# Elements a 6.33 Mb 14.97 Bc 18.67 B 22.44 B 26.16 B 29.86 B 33.59 B 37.32 B
Running Time(s) 67.27 87.98 96.62 96.64 96.79 101.16 103.55 107.62

Elements/second(M) 0.90 170.11 193.53 232.17 270.24 295.15 324.37 346.79
Speedup 1.00 1808.52 2057.48 2468.42 2873.13 3137.9 3448.72 3687.03
Efficiency 1.00 0.75 0.69 0.69 0.68 0.65 0.63 0.61

a # Elements represents the number of elements.
b M: million.
c B: billion.
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(a) (b)

FIG. 19.: (a) Weak scaling speedup up to 6000 cores of two input images. (b) Strong
scaling speedup up to 1000 cores with input ircad atlas.

4.3.7 PERFORMANCE FOR LARGE NUMBER OF CORES

We decomposed the whole domain into 32768 regions. The number of tetrahedra

created gradually increased from 6.64 million to 41.98 billion for the input image

abdominal atlas, and from 6.33 million to 37.32 billion for the knee atlas, when the

number of cores increases from 1 to 6000.

Table 13. and Table 14. show the weak scaling performance of the hybrid parallel

mesh generation algorithm of the two input images, respectively. We ran the exper-

iments using from 1 up to 6000 cores (the maximum number of available cores on

Turing). As we mentioned before, in the weak scaling case, the number of elements

increased proportionally to the number of cores. The number of elements increased

linearly from 6.64 million using a single core to 41.98 billion using 6000 cores for the

input image abdominal atlas, and from 6.33 million to 37.32 billion for the input

image knee atlas. The implementation of the algorithm scaled well up to 6000 cores.

On 6000 cores, it achieved a speedup of 3570.51 with an efficiency of 62% with the

input abdominal atlas. This was the best result for parallel mesh generation algo-

rithms running on a distributed memory clusters. One can note that the speedup

and efficiency of the algorithm for the same number of cores has some perturbation.

4.3.8 OVERHEAD ANALYSIS FOR LARGE NUMBER OF CORES

We analyzed the communication overhead for the experiments, up to 6000 cores.

The breakdown of the total running time consists of four parts: the pre-processing
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FIG. 20.: (a) Running time breakdown comparison. The left bar and right bar repre-
sent the running time of implementation before and after optimization. (b) Overhead
Comparison. The left bar and right bar represent the overhead of implementation
before and after optimization.

time, the meshing time, the communication time, and the idle time. The pre-

processing time is the time that the master process spends loading an image from

disk, constructing an octree, creating the coarse mesh, assigning the elements of the

coarse mesh to subregions and creating subthreads. The meshing time is the time

that a process (more precisely, the multiple worker threads of a process) spends on

mesh refinement. The communication time is the time that a process spends on task

requests and data movement. The idle time is the time that a process waits in the

waiting list and does not perform any mesh refinement work. In the experiments, we

counted the sum of the time that a process spends on each part, for each iteration (in

each iteration, the process requests a subregion and refines the submesh inside the

subregion). Then, we calculated the average time of each part for all of the processes

in one experiment.

Fig. 20.b shows the communication overhead breakdown. The communication

overhead consists of four parts: the pointer mesh structure to integer index mesh

structure (pointer to int) time, the integer index mesh structure to pointer mesh

structure (int to pointer) time, the packing and unpacking data time, and the sending

and receiving time. We reduced almost 50% of the total overhead (the red part of

left bar in Fig. 20.a) in the new implementation. As a result, we generated a decrease

of about 25% of the total running time and we improved the performance in the new
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implementation by about 25%.



58

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we summarize several years of the progress that we made in a

novel framework for highly scalable and guaranteed quality mesh generation for fi-

nite element analysis in three dimensions. We present three parallel Delaunay mesh

generation algorithms on shared and distributed memory supercomputers: (i) A three

dimensional Locality-Aware Parallel Delaunay image-to-mesh conversion algorithm

(LAPD), which employs a data locality-aware mesh refinement process to reduce

the latency caused by the remote memory access. (ii) A parallel mesh generation

algorithm for distributed shared memory architecture, which takes advantage of two

legacy approaches, i.e. the Parallel Optimistic Delaunay Mesh generation algorithm

(PODM) and the Parallel Delaunay Refinement algorithm (PDR). It quickly lever-

ages high parallelization because of the aggressive speculative approach employed by

PODM, and it uses data partitioning offered by PDR to avoid the runtime checks

and to decrease the communication overhead. (iii) A scalable three-dimensional

hybrid MPI+Threads parallel Delaunay image-to-mesh conversion algorithm on dis-

tributed memory clusters, which simultaneously explores process-level parallelization

and thread-level parallelization: inter-node parallelization using MPI, and inter-core

parallelization inside one node using threads. We implemented a nested master-

worker model to handle the inter-node MPI communication and the intra-node local

mesh refinement separately, in order to overlap the communication (the task request

and data movement) and computation (the parallel mesh refinement). We achieved

this by leveraging concurrency at two different granularity levels, using a hybrid mes-

sage passing and multi-threaded execution model which is suitable to the hierarchy of

the hardware architecture of the distributed memory clusters. An end-user produc-

tivity and scalability study was performed on up to 6000 cores, and indicated very

good end-user productivity, with about 300 million tetrahedra per second and about

3600 weak scaling speedup. A set of experiments were conducted at the Pittsburgh

Supercomputing Center and at the High Performance Computing Center of Old Do-

minion University in Norfolk, Virginia. The experimental results demonstrated that

the novel framework that we proposed for scalable mesh generation is suitable to the
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hierarchy of distributed memory clusters with multiple cores, and it showed, so far,

the best scalability. We analyzed the communication overhead for the experiments,

up to 6000 cores, and found that the communication overhead takes a certain portion

in the total running time. Therefore, there is still space for improvement in terms

of the scalability of Delaunay-based isotropic grid generation codes. Tasks for the

future are to reduce the communication overhead and to improve data locality, in

order to further improve the performance of the algorithm.
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