
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 8-2020

Automatic Linear and Curvilinear Mesh Generation Driven by Automatic Linear and Curvilinear Mesh Generation Driven by

Validity Fidelity and Topological Guarantees Validity Fidelity and Topological Guarantees

Jing Xu
Old Dominion University, jingxu0513@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Xu, Jing. "Automatic Linear and Curvilinear Mesh Generation Driven by Validity Fidelity and Topological

Guarantees" (2020). Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University,

DOI: 10.25777/31kp-az96

https://digitalcommons.odu.edu/computerscience_etds/127

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/127?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AUTOMATIC LINEAR AND CURVILINEAR MESH

GENERATION DRIVEN BY VALIDITY FIDELITY AND

TOPOLOGICAL GUARANTEES

by

Jing Xu
B.S. June 2005, Information Engineering University, China

M.S. June 2009, Soochow University, China

A Dissertation Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2020

Approved by:

Andrey Chernikov (Director)

Danella Zhao (Member)

Jiangwen Sun (Member)

Nail Yamaleev (Member)

ABSTRACT

AUTOMATIC LINEAR AND CURVILINEAR MESH
GENERATION DRIVEN BY VALIDITY FIDELITY AND

TOPOLOGICAL GUARANTEES

Jing Xu
Old Dominion University, 2020
Director: Dr. Andrey Chernikov

Image-based geometric modeling and mesh generation play a critical role in com-

putational biology and medicine. In this dissertation, a comprehensive computational

framework for both guaranteed quality linear and high-order automatic mesh gener-

ation is presented. Starting from segmented images, a quality 2D/3D linear mesh is

constructed. The boundary of the constructed mesh is proved to be homeomorphic

to the object surface. In addition, a guaranteed dihedral angle bound of up to 19.47◦

for the output tetrahedra is provided. Moreover, user-specified guaranteed bounds on

the distance between the boundaries of the mesh and the boundaries of the materials

are allowed. The mesh contains a small number of mesh elements that comply with

these guarantees, and the runtime is compatible in performance with other software.

Then the curvilinear mesh generator allows for a transformation of straight-sided

meshes to curvilinear meshes with C1 or C2 smooth boundaries while keeping all

elements valid and with good quality as measured by their Jacobians. The mathe-

matical proof shows that the meshes generated by our algorithm are guaranteed to

be homeomorphic to the input images, and all the elements inside the meshes are

guaranteed to be with good quality. Experimental results show that the mesh bound-

aries represent the objects’ shapes faithfully, and the accuracy of the representation

is improved compared to the corresponding linear mesh.

iii

ACKNOWLEDGMENTS

My first gratitude goes to my advisor, Dr. Andrey Chernikov. I greatly value

the opportunity and experience to work as his Ph.D. student. His rigorous attitude

on the technology, his persistence to innovations, and his continuous support and

patience are the bright lights on my doctoral research way. I thank him for his

support of many insightful discussions that helped me get a better understanding

of my research problems, and for his patience in going through all my drafts of my

papers.

I would also like to thank my committee members Dr. Danella Zhao, Dr. Jiang-

wen Sun and Dr. Nail Yamaleev, for their helpful comments and invaluable sugges-

tions to improve the contents of this work. I gratefully acknowledge the generous

support of Old Dominion University Modeling and Simulation fellowship on this

research.

I am deeply grateful to the friends who have shared both my joyful and upset

moments: Panagiotis Foteinos, Fotis Drakopoulos, Eleni adam, Christos Tsolakis,

Polykarpos Thomadakis, Thomas Kennedy, Juliette Pardue, Kevin Garner and Yixun

Liu.

Finally, I am especially grateful to my family. They always stand by me, support

me, and love me, regardless of my successes or failures.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . ix

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 1
1.2 AUTOMATIC LINEAR TRIANGULAR/TETRAHEDRAL MESH

CONSTRUCTION . 2
1.3 AUTOMATIC TWO-DIMENSIONAL CURVILINEAR MESH GEN-

ERATION . 7

2. PRELIMINARIES . 9
2.1 MULTI-MATERIAL IMAGE, IMAGE BOUNDARY, MESH

BOUNDARY AND BOUNDARY LEAF . 9
2.2 HAUSDORFF DISTANCE AND 2-TO-1 RULE 9
2.3 HOMEOMORPHISM AND D-MANIFOLD WITH BOUNDARY 10
2.4 SINGLE MANIFOLD CONDITION . 11
2.5 BÉZIER CURVES . 12
2.6 BÉZIER TRIANGLES . 14
2.7 THE JACOBIAN. 15

3. TWO- AND THREE-DIMENSIONAL LINEAR
TRIANGULAR/TETRAHEDRAL MESH CONSTRUCTION 17
3.1 METHODOLOGY . 17

3.1.1 CONSTRUCTION OF THE OCTREE. 18
3.1.2 FILLING IN THE OCTREE . 25
3.1.3 MESH DECIMATION . 28

3.2 GUARANTEES . 30
3.2.1 DIHEDRAL ANGLES . 30
3.2.2 GEOMETRIC FIDELITY . 30
3.2.3 TOPOLOGICAL FIDELITY . 31

4. TWO-DIMENSIONAL CURVILINEAR TRIANGULAR MESH GENERA-
TION . 40
4.1 SMOOTH BOUNDARY CONSTRUCTION . 40
4.2 ELEMENT VALIDITY . 42

4.2.1 VALIDITY VERIFICATION BY THE LOWER BOUND OF
THE JACOBIAN . 42

v

4.2.2 VALIDITY VERIFICATION BY THE CONTROL NET OF
THE ELEMENT . 47

4.3 MESH UNTANGLING . 50

5. EXPERIMENTAL RESULTS . 53
5.1 THREE-DIMENSIONAL LINEAR MESHING RESULTS 53

5.1.1 SYNTHETIC BENCHMARK—THREE-DIMENSIONAL
CASSINI SURFACE . 53

5.1.2 MULTI-TISSUE THREE-DIMENSIONAL MEDICAL IMAGES 57
5.2 TWO-DIMENSIONAL CURVILINEAR MESHING RESULTS 67

5.2.1 ORIGINAL INPUT IMAGES . 67
5.2.2 CONSTRUCTION OF LINEAR MESHES 67
5.2.3 CONSTRUCTION OF SMOOTH CURVED BOUNDARIES

AND THE ACCURACY EVALUATION 69
5.2.4 FINAL MESHES AND THE QUALITY EVALUATION 70
5.2.5 PERFORMANCE . 76

6. CONCLUSIONS . 78
6.1 SUMMARY AND EXTENSIONS . 78
6.2 PUBLICATIONS . 79

VITA. 87

vi

LIST OF TABLES

Table Page

1 Fifteen control values for det(J) of a cubic triangle . 44

2 The comparison of final number of tetrahedra for ORD and LD 55

3 Information about the multi-material medical images 57

4 The comparison of final number of tetrahedra for ORD and LD 61

5 The comparison of final number of tetrahedra and run time for ORD and
CGAL on head neck . 66

6 The comparison of final number of tetrahedra and run time for ORD and
CGAL on knee . 66

7 The comparison of final number of tetrahedra and run time for ORD and
CGAL on abdomen . 67

8 Accuracy of the mesh boundaries . 70

9 Run time (s) for the ten examples . 76

vii

LIST OF FIGURES

Figure Page

1 An illustration of the two-dimensional single manifold condition on a
quadtree leaf . 11

2 An illustration of the three-dimensional single manifold condition on an
octree leaf . 12

3 A cubic Bézier curve and a cubic Bézier triangle. 14

4 Reference unit triangle in local coordinates (x̂, ŷ) and the mappings
X(x̂, ŷ), C(x̂, ŷ) and T (u, v, w) . 15

5 An illustration of the main steps performed by the linear triangu-
lar/tetrahedra mesh generation algorithm . 18

6 Possible stencils for creating intersection vertices and intersection edges . . 21

7 An illustration of generating triangular patches to approximate the image
boundary in two leaves of the same size . 22

8 An illustration of generating triangular patches to approximate the image
boundary in a leaf whose face is adjacent to finer neighbors 23

9 Two examples illustrate that the piece of boundary surface has different
topology with the mesh surface in an octree leaf . 24

10 The stencils of the triangle look-up table that correspond to the stencils
of the intersection edge look-up table for creating triangles on cube faces . 25

11 An illustration of tetrahedralization in two leaves of the same size 26

12 An illustration of tetrahedralization in a leaf whose face is adjacent to
finer neighbors . 27

13 An illustration of the topological equivalence requirement during decimation 36

14 All possible shapes of the initial tetrahedra (abcd) filling a cubic leaf of
the octree, up to symmetry . 38

15 An illustration of the vertex merge operation on a topological disk 39

16 An illustration of the main steps performed by the curvilinear mesh gen-
eration algorithm . 40

viii

17 An illustration of the construction of the C1 and C2 smooth curves 41

18 An illustration of the positiveness verification on Jacobian 45

19 An illustration of the de Casteljau Algorithm for a cubic Bézier triangle . 47

20 An illustration of eliminating the element invalidity or improving the el-
ement quality. 50

21 An illustration of the iterative finite element method. 51

22 A comparison of the result of one-step FE method and the result of the
iterative FE method . 51

23 The comparison of the ORD mesh and the LD mesh on Cassini 54

24 A breakdown of the total run time of ORD and LD into the major com-
putational parts, as the diameter of the Cassini . 56

25 The ORD mesh and a cut view of the head neck . 59

26 The ORD mesh and a cut view of the knee . 59

27 The ORD mesh and a cut view of the abdomen . 60

28 The ORD mesh and a cut view of the abdomen background 60

29 Comparison of the breakdowns of the total running time into the main
computational components for ORD and LD on the four input data sets . 62

30 The breakdowns of the octree creation time into four computational com-
ponents for ORD on the four input data sets . 63

31 The breakdowns of the decimation time into four computational compo-
nents for ORD on the four input data sets . 63

32 A histogram of all dihedral angles for each of the output meshes 64

33 The original input two-dimensional images . 68

34 The linear meshes for the input original images. 69

36 The comparison of the scaled Jacobian. 71

37 Invalid mesh and corresponding corrected mesh for Human Brain I. 72

38 Invalid mesh and corresponding corrected mesh for Human Brain II. 72

ix

39 Invalid mesh and corresponding corrected mesh for Mouse Brain I. 73

40 Invalid mesh and corresponding corrected mesh for Mouse Brain II. 74

41 Bad quality curvilinear mesh and corresponding mesh with quality im-
provement for Fly Embryo. 75

42 Curvilinear meshes with coarsened elements for the original images. 75

35 The linear mesh boundaries and curved mesh boundaries with C1 and C2

smoothness requirements. 77

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Discretizations of complex shapes into simple elements are widely used in var-

ious computing areas that require a quantitative analysis of spatially dependent

attributes. One, traditional, area is the finite element analysis [1] which is used

to numerically solve partial differential equations derived using solid mechanics and

computational fluid dynamics approaches. With this approach one starts with the

knowledge of the constitutive physical laws and initial (boundary) conditions and

obtains a prediction of the observable properties of objects of interest. Another,

emerging, area is the use of discretizations for delineating homogeneous spatial zones

within objects that can be represented as units for an overall object description.

With this approach one starts with the knowledge of observable object properties

and uses statistical methods to infer the processes that govern the formation of the

object. Therefore, the second approach can be viewed as a reversal of the first ap-

proach, that still relies on a similar discretization technique. This second approach

is a useful tool for bioinformatics applications, for example gene expression pattern

analysis [2, 3, 4, 5].

Said discretizations of objects are usually called meshes, and the simple elements

that they consist of are either triangles and tetrahedra (in two and three dimensions,

respectively), or quadrilaterals and hexahedra. Furthermore, elements can have ei-

ther straight or curved sides. In previous work [2, 3] triangular meshes with straight

sides were used to discretize images of fruit fly embryos. However, the embryos, like

most biological objects, have curved shapes, and their discretizations with straight-

sided elements have limited accuracy. To obtain much higher accuracy one needs to

use curved-sided elements that match the curves of object boundaries.

Image-based mesh generation is a relatively new field. The research on mesh

generation is dominated by tetrahedra meshing algorithms, which can be grouped into

Delaunay refinement methods, advancing front methods, and space-tiling methods.

2

Delaunay refinement methods [6, 7] use the Delaunay criterion for guiding element

construction after point insertion. These methods allow for the mathematical proofs

of element quality and good grading. Quality is traditionally defined as the ratio of

the circumradius of the element to the length of its shortest edge, which does not

imply a bound on dihedral angles in 3D. Advancing front methods [8, 9, 10] build

the mesh in layers starting by dividing the boundaries of the mesh into triangular

faces and work toward the center of the region being meshed. Some of the advancing

front methods [11] combine the Delaunay triangulation and advancing front ideas,

however, no theoretical guarantees are usually available. Space-tiling methods [12, 13,

14, 15, 16] build uniform meshes from equal-sized standard cubic grid or body-centric

cubic lattice, and graded meshes from octree. Sometimes theoretical guarantees on

the quality in terms of dihedral angle are provided. This work falls into the third

category.

The key challenges scientists face on image-based mesh generation are:

• Automatic meshing techniques for heterogeneous domains with non-manifold

boundaries;

• Robust unstructured mesh generation with topology validation;

• High-order mesh construction techniques for complicated domains;

• Guaranteed validity and effectively improved quality of high-order elements.

In this dissertation, a comprehensive computational framework for both guaranteed

quality linear and high-order automatic mesh generation for heterogeneous domains

is presented. It is composed of two algorithms. Starting from a segmented image

with multiple materials, the first algorithm automatically constructs a two- or a

three-dimensional unstructured linear mesh that satisfies the quality, fidelity, and

topological guarantees. The second algorithm takes the two-dimensional linear mesh

as the input, and it transforms the straight-sided mesh to a curvilinear mesh with

C1 or C2 smooth boundaries while keeping all elements valid and with good quality

as measured by their Jacobians.

3

1.2 AUTOMATIC LINEAR TRIANGULAR/TETRAHEDRAL

MESH CONSTRUCTION

With volumetric data sets, one can generate conforming quality meshes of the

spatially realistic domains that help to produce computer-aided visualization, manip-

ulation, and quantitative analysis of the multi-dimensional image data. The domain

of interest often includes heterogeneous materials that specify functionally different

characteristic properties. In finite element analysis, each material is assigned in-

dividual attributes. Thus, meshes with conforming boundaries describing each of

the partitioned material regions need to be generated. In this dissertation, images

that are segmented into multiple homogeneous regions are our concern, unsegmented

images with noise are out of the scope.

An algorithm for constructing tetrahedral volume meshes from segmented multi-

material images is presented. It generates a mesh which satisfies all the following

criteria:

1. The mesh offers a faithful topology to the materials, i.e., there is a homeomor-

phism between the boundary of the mesh and the boundary of the materials. The

term homeomorphism, also called a continuous transformation, is a topological notion

of equivalence. Since grid-based schemes can miss important details of the surface,

correct topology usually needs extra efforts to be guaranteed. For implicit surfaces,

tools such as critical points [17, 18], Lipschitz conditions [19, 20, 18] and interval

arithmetic [21] can be used to capture the topological details. For images, we give a

sufficient condition (single manifold condition, see section 2.4) for the approximation

to offer homeomorphism.

2. Elements with arbitrarily small angles which cause the stiffness matrix in FE

analysis to be ill-conditioned do not appear in the mesh. Specifically, we guarantee

that all dihedral angles are above a user-specified lower bound which can be set to any

value up to 19.47◦. The algorithm exposes the parameter that allows for a trade-off

between the minimum dihedral angle and the final number of elements. In contrast,

the state-of-the-art guaranteed quality Delaunay method only allows for a bound on

the circumradius-to-shortest-edge ratio of tetrahedra, which in three dimensions is

not equivalent to a bound on the smallest dihedral angles.

3. The mesh is able to offer a close representation (fidelity) of the underlying

materials. In particular, the two-sided Hausdorff distance between the boundaries

of the mesh and the boundaries of the materials respects the user-specified fidelity

4

bounds. The Hausdorff distance measures how far two subsets of a metric space are

from each other (see the definition in section 2.2). This bound can be zero, which

means that the mesh is a strict matching to individual pixels boundaries of the

object. However, a strict matching to image boundaries will produce a large number

of elements that will slow down the solver. In some cases, the FE analysis requires a

loose fidelity bound but a faster solver, for example, for image registration [22]. Our

solution exposes parameters that allow for a trade-off between the fidelity and the

final number of elements.

4. The mesh contains a small number of elements that comply with the three

guarantees above. The reason for this criterion is that the cost of assembling and

solving a sparse system of linear equations in the FE method directly depends on

the number of tetrahedra [1, 23]. To achieve this goal, our method is able to offer

the ability to grade (by an octree) from small to large elements over a relatively

short distance, not only in volume but also on the surface. We also implemented a

specialized post-processing procedure to decimate the mesh such that the number of

tetrahedra in the mesh is as small as possible.

5. The mesh can be constructed within tight real-time time constraints enforced

by clinical simulation and applications that require interactive re-meshing such as

surgical simulations and image-guided interventions. The efficient implementation

described below enables our software compatible in performance with other software

such as a state-of-the-art Delaunay code.

Meshing techniques have been proposed to mesh the domain of a Piecewise Linear

Complex (PLC). It can be composed of polygons of any shape. The challenge is

that the quality of the input PLC affects the quality of the final mesh, because

the mesh has to match exactly to the boundaries of the model. For images, the

faces of each boundary voxel can be considered as the input PLC, since these faces

meet at angles of 90◦ or 180◦, thus alleviates this challenge. The most popular

technique for generating tetrahedral meshes in this category of techniques is Delaunay

refinement [24, 25, 26, 27, 28, 29]. However, the problem with Delaunay refinement

is that it only satisfies a bound on the circumradius-to-shortest-edge ratio, which

works well in two dimensions, but in three dimensions it does not imply a bound on

dihedral angles. As a consequence, tetrahedra with very small dihedral angles called

slivers can survive. Sliver exudation [27, 30, 31] or other optimization post-processing

techniques [32, 24, 26, 33, 34] can be used to eliminate degenerated elements, but

5

those methods are unable to guarantee a meaningful dihedral angle bounds(they exist

in theory but too small to even be computed).

Meshing techniques also have been proposed to mesh the domain through an

implicit function f : R3 → R such that points in different regions of interest evaluate

f differently. One guaranteed-quality technique in this category is based on the

Delaunay refinement [35, 17, 36, 37], where a piecewise-linear approximation of a

surface is generated from a finite set of sufficiently dense sample points [38, 19,

20]. Another guaranteed-quality technique in this category employs a space-tiling

background grid to guide the creation of a mesh [14, 15, 39, 40, 16], the focus of this

work.

Isosurface Stuffing [14] is a guaranteed-quality tetrahedral meshing algorithm for

general surfaces under the assumption that the surface is a smooth 2-manifold. It

offers the one-sided Hausdorff distance guarantee from the mesh to the model. If the

surface is a smooth manifold with bounded curvature, it also provides the one-sided

Hausdorff distance guarantee from the model to the mesh. Using interval arithmetic

to account for vertex movement, the dihedral angles for the mesh with uniform-sized

boundary are proved to be above 10.7◦. However, the method presented in this

dissertation is able to achieve a minimum dihedral angle bound of 19.47◦.

Expanding on the ideas from Isosurface Stuffing, Walker [15] proposed a method

for generating quasi-uniform tetrahedral meshes of solids whose boundary is a smooth

surface using edge rearrangement. If the lattice spacing is smaller than the local

feature size, then the dihedral angles are bounded above 11.4◦. As the Isosurface

Stuffing, if the surface has bounded curvature and if the background grid is sufficiently

fine, then the Hausdorff distance guarantee is two-sided. The proposed algorithm is

able to achieve a higher minimum dihedral angle bound even with a fully graded case

using an octree decomposition.

Bronson et al. designed software called Cleaver [39] based on Isosurface Stuff-

ing for generating surface and volumetric meshes from three-dimensional imaging

data. By designing a generalized stencil for lattice tetrahedra that contains different

materials, their method is able to handle volumetric domains consisting of multiple

materials. The method guarantees the element quality by proving that the dihedral

angles are bounded above 2.8◦. It offers a one-sided Hausdorff distance guarantee

from the surface mesh to the boundary of the materials. However, it is not proven

6

that the Hausdorff distance bound is two-sided and the mesh is topologically accu-

rate.

Liang and Zhang [40] proposed an octree-based dual contouring algorithm with

guaranteed mesh quality for closed smooth surfaces. The algorithm first generates

an octree, then it adjusts the octree grid points to the input surface if they are too

close to the input surface. Finally, a dual contouring method with two minimizers

is applied to generate the tetrahedral mesh. However, this method only handles the

single-material geometry model, and there is no proof of geometric accuracy. The

minimum dihedral angle bound (proved to be 12.04◦ with a small perturbation) is

smaller than our minimum dihedral angle bound 19.47◦.

Foteinos et al. [37] present a Delaunay meshing algorithm with several mathe-

matical guarantees. Using a strategy called ǫ-sample [19, 20], the mesh boundary is

proved to be ambient isotopic to the object surface. Although the circumradius-to-

shortest-edge ratio of the tetrahedra in the output mesh is proved to be less than

1.93, they didn’t provide any dihedral angle bound. Even if the radius-edge ratio is

very small, it can not avoid the almost flat tetrahedra. Furthermore, the two-sided

Hausdorff distance between the object surface and mesh boundary is bounded by

O(δ2), where δ is a small constant 0.0168. However, if the constant implied in Big-O

is very large, the two-sided Hausdorff distance bound could also be very large.

This work builds upon the Lattice Decimation (LD) method [16]. LD is a tetra-

hedral image-to-mesh conversion algorithm that allows for guaranteed bounds on the

smallest dihedral angle (up to 35.26◦) and on the 2-sided Hausdorff distance between

the boundaries of the mesh and the boundaries of the materials. The LD algorithm

constructs an octree and refines it until no leaf contains voxels from multiple materi-

als. Then it fills the octree leaves with high-quality elements. This initial mesh has

a large number of elements, because it satisfies the highest dihedral angle bounds

(35.26◦) and fidelity bounds (zero). The authors designed a post-processing deci-

mation step using vertex removal operation [41, 42] while at all times maintaining

the required fidelity and quality bounds. However, the decimation step is a greedy

algorithm which was not designed for a smooth transition in element size. In fact, it

can produce clusters of smaller elements surrounded by much larger elements. In this

work, the octree is refined to a smaller depth so that the tiny elements are avoided,

therefore, the issue can be mitigated. Moreover, although LD maintains the material

connectivity, it does not guarantee topological fidelity. A new technique is designed

7

based on the enforcement of a single manifold condition that solves this problem.

The algorithm proposed in this dissertation simultaneously satisfies the quality,

fidelity, and topology requirements. At the same time, the number of tetrahedra

in the mesh is low subject to the three requirements above. Compared to the LD

algorithm, a coarser initial mesh is constructed before decimation. As a result, the

geometric and topological fidelity needs to be taken care of both before and after

decimation.

Using a pre-defined look-up table, the boundary of the materials is approximated

with a set of triangular patches in each octree leaf. The triangular patches all together

form a water-tight surface mesh. The topological faithfulness is feasible due to the

single manifold condition. The proof of the homeomorphism between the boundaries

of the mesh and the boundary of the materials relies on it. The two-sided Hausdorff

distance between the triangular patches and the boundaries of the materials respects

a user-specified fidelity bound. This goal is achieved by constructing a sequence of

homeomorphic water-tight surface meshes until the fidelity condition is satisfied. A

second pre-defined look-up table is used to fill the octree leaves with high-quality

elements. The quality of the final mesh is proved by analyzing all possible predefined

shapes of the tetrahedra filling a cubic leaf of the octree. During decimation, the

initial mesh is coarsened to a much lower number of elements while at all times the

quality, fidelity, and topological requirements are maintained. Our measurements

show that it meshes three-dimensional images of practically significant sizes in time

that matches the performance of the LD method and a Delaunay open-source mesh

generator Computational Geometry Algorithms Library (CGAL).

1.3 AUTOMATIC TWO-DIMENSIONAL CURVILINEAR MESH

GENERATION

For automatically generating valid high-order meshes to represent curvilinear do-

mains with smooth global mesh boundaries, cubic Bézier polynomial basis is selected

for the geometric representation of the elements, because it provides a convenient

framework supporting the smooth operation and mesh validity verification. We high-

light the three contributions:

1. The curved mesh boundary is globally smooth. It satisfies C1 or C2 smoothness

requirement chosen by the user.

2. The proposed approach is robust in the sense that the invalid elements are

8

eliminated, and the mesh quality is enforced.

3. The method provides higher accuracy compared to the linear discretization.

The procedure starts with the automatic construction of a linear mesh. The

edges of those linear elements which are classified on the boundary are then curved

using cubic Bézier polynomials such that these boundary edges constitute a smooth

closed curve. Once the validity verification procedure detects invalid elements, the

method next curves the interior elements by iteratively solving for the equilibrium

configuration of an elasticity problem until all the invalid elements are eliminated.

Various procedures have also been developed and implemented by other authors

to accomplish the generation of a curvilinear mesh. Sherwin and Peiro [43] adopted

three strategies to alleviate the problem of invalidity: generating boundary con-

forming surface meshes that account for curvature; the use of a hybrid mesh with

prismatic and tetrahedral elements near the domain boundaries; refining the surface

meshes according to the curvature. The mesh spacing is decided by a user-defined

tolerance ǫ related to the curvature and a threshold to stop excessive refinement.

In this work, a method was developed that allows for an all triangle mesh which

simplifies and unifies both meshing and analysis. Persson and Peraire [44] proposed

a node relocation strategy for constructing well-shaped curved meshes. Compared to

the proposed method which iteratively solves for the equilibrium configuration of a

linear elasticity problem, they use a nonlinear elasticity analogy, and by solving for

the equilibrium configuration, vertices located in the interior are relocated as a re-

sult of a prescribed boundary displacement. Luo et al. [45] isolate singular reentrant

model entities, then generate linear elements around those features, and curve them

while maintaining the gradation. Local mesh modifications such as minimizing the

deformation, edge or facet deletion, splitting, collapsing, swapping as well as shape

manipulation are applied to eliminate invalid elements whenever they are introduced

instead of our global node relocation strategy. George and Borouchaki [46] proposed

a method for constructing tetrahedral meshes of degree two from a polynomial sur-

face mesh of degree two. Jacobian is introduced for guiding the correction of the

invalid curved elements. In contrast, the proposed method does not require a starting

curved boundary mesh, as well as produces more flexible cubic elements.

9

CHAPTER 2

PRELIMINARIES

2.1 MULTI-MATERIAL IMAGE, IMAGE BOUNDARY, MESH

BOUNDARY AND BOUNDARY LEAF

Let Ω ⊂ R3 be the domain of a multi-material segmented image composed of a

collection of voxels V . Ω contains the object Φ ⊂ Ω to be meshed. Φ is composed

of a finite set of distinct materials Φ =
⋃n

i=1 Φi. A function f : V → {0, 1, ..., n}

is defined such that each voxel v is assigned a label of a single material or of the

background. In particular, v evaluates f to a positive integer i if it belongs to the

material Φi, or to 0 if it lies in the background.

Image boundary is the union of voxel faces shared by voxels of different colors.

It includes the interior boundary and exterior boundary. The exterior boundary is

a closed manifold (or manifolds) and separates the materials from the background.

The interior boundary separates different materials.

An image boundary edge is an edge that two pixels/voxels of different colors

incident. In the three-dimensional case, an image boundary face is the face of a

voxel upon which a voxel of a different color is incident. The endpoints of image

boundary edges and the corner points of image boundary faces are called image

boundary vertices.

An octree (or a quadtree) leaf is called a proper boundary leaf if it contains more

than one material; an octree (or a quadtree) leaf is called a non-proper boundary

leaf if it contains only one material, but at least one of the voxels that are incident

upon the cube faces is adjacent to a voxel of a different color through voxel face. A

boundary leaf is either a proper boundary leaf or a non-proper boundary leaf.

The notation used in the rest of the dissertation is presented below. The image

boundary and the mesh surface generated by the algorithm are denoted as B and S

respectively. Given an octree leaf L, BL = L ∩ B denotes B restricted to the leaf L

and SL = L ∩ S denotes S restricted to the leaf L. Here L includes its boundary.

10

2.2 HAUSDORFF DISTANCE AND 2-TO-1 RULE

For image boundary B and surface mesh S, the two-sided Hausdorff distance is:

H(B,S) = max{h(B,S), h(S,B)},

where

h(X, Y) = max
x∈X

min
y∈Y

d(x, y),

and d is the Euclidean distance.

Two octree (quadtree) leaves are neighbors if they share a face (an edge). An

octree (quadtree) subdivision is considered satisfying the 2-to-1 rule if any two neigh-

bors differ at most by a factor of two in size.

2.3 HOMEOMORPHISM AND D-MANIFOLD WITH BOUNDARY

An open ball in Rn is the collection of points B = B(o, r) = {a ∈ Rn| |oa|< r}

for some point o ∈ Rn and some positive r. o is the center and r is the radius of

B. Let X be a topological space. For Y ⊆ X a neighborhood of Y in X is an open

subset of X that contains Y .

Homeomorphism is an equivalence relation and one-to-one correspondence be-

tween points in two topological spaces that is continuous in both directions. Let

X and Y be two topological spaces, X and Y are homeomorphic, written X ≈ Y ,

if there is a bijective map µ : X → Y so that µ and µ−1 are continuous. µ is a

homeomorphism between X and Y . Let d ≥ 0 be the dimension and o be the origin

of Rn, Hd = {x = (ξ1, ..., ξd) ∈ R
d| ξd ≥ 0}, and Bd = {x ∈ Rd| |ox|≤ 1}. An

open d-ball is homeomorphic to Rd, a half-open d-ball is homeomorphic to Hd, and

a closed d-ball is homeomorphic to Bd.

X ⊆ Rn is a d-manifold without boundary if each x ∈ X has an open d-ball as

a neighborhood in X . X ⊆ Rn is a d-manifold with boundary if each x ∈ X has an

open or half open d-ball as a neighborhood in X , and there is at least one x ∈ X

that has no open d-ball as a neighborhood. The set of points without open d-ball

neighborhood forms the boundary. The boundary of an d-manifold with boundary

is an (d− 1)-manifold without boundary.

A mesh generation algorithm needs more than good elements and geometric fi-

delity; it also needs to produce a mesh that is a topologically accurate approximation

of the domain it is supposed to represent. One of our goals is to ensure that the al-

gorithm generates a mesh whose surface S is topologically equivalent to the image

11

boundary B. This can be guaranteed by making sure that both the image boundary

and the surface mesh have the same topology within each leaf, i.e. each of the SL

and BL is a d-manifold with boundary. The single manifold condition below applies

to the boundary leaves. It defines the image boundary topology within each leaf.

2.4 SINGLE MANIFOLD CONDITION

Definition 1 (Single manifold condition) The intersection of the image

boundary with each of the boundary leaves is a (n − 1)-manifold with boundary, n

being the dimension.

(a) A boundary quadtree
leaf respects the single
manifold condition

(b) A boundary quadtree
leaf violates the single
manifold condition

(c) A boundary quadtree
leaf violates the single
manifold condition

FIG. 1: An illustration of the two-dimensional single manifold condition on a
quadtree leaf. Different colors in the leaf show different materials. The red segments
represent the image boundary edges. The black points show the image boundary ver-
tices that have two neighbors, and the blue points show the image boundary vertices
that have only one neighbor.

Specifically, in the two-dimensional case, the image boundary edges form a 1-

manifold with boundary. The 1-manifold with boundary is a simple chain composed

of image boundary edges. On this chain, every image boundary vertex has two image

boundary edges adjacent to it, except the first and the last ones, which have only

one adjacent image boundary edge. The endpoint of the chain, a 0-manifold, is the

boundary of the 1-manifold. The closed cycle is not considered, because it has no

boundary. Figure 1 is an illustration of the two-dimensional single manifold condition

on a quadtree leaf. Figure 1a shows a boundary quadtree leaf that contains two

materials (white and blue). It respects the single manifold condition because there

is a 1-manifold with boundary. Figure 1b shows a quadtree leaf that contains three

materials (white, blue, and gray). It violates the single manifold condition because

12

(a) A boundary octree leaf
respects the single manifold
condition

(b) A boundary octree leaf vi-
olates the single manifold con-
dition

(c) A boundary octree leaf vi-
olates the single manifold con-
dition

FIG. 2: An illustration of the three-dimensional single manifold condition on an
octree leaf. Each octree leaf contains a material displayed with blue, against the
white background. The blue squares show the image boundary faces. The blue edges
show the 2-degree image boundary edges, and the red edges show the 2-degree image
boundary edges.

there is more than one 1-manifold with boundary. Figure 1c shows a boundary

quadtree leaf that contains two materials (white and blue). It disobeys the single

manifold condition because the 1-manifold has no boundary.

In the three-dimensional case, the degree of the image boundary edge is defined

by the number of boundary faces that are incident upon the edge. Notice that the

two neighboring voxels whose colors are different share only one boundary face. In a

boundary leaf, the image boundary faces form a 2-manifold with boundary. The 2-

manifold with boundary is a simple sheet on which the 1-degree image boundary edges

form a cycle and all the other image boundary edges are 2-degree edges. The cycle

composed by the 1-degree image boundary edges, a 1-manifold, is the boundary of the

2-manifold. A closed surface is not considered as satisfying the condition, because it

is a 2-manifold without boundary. Figure 2 is an illustration of the three-dimensional

single manifold condition on an octree leaf. Figure 2a shows a boundary octree leaf

which respects the single manifold condition. In this leaf, the image boundary faces

form a sheet which is a 2-manifold with boundary. Figure 2b shows a boundary

octree leaf that violates the single manifold condition. In this leaf, there is more

than one 2-manifold with boundary. Figure 2c shows a boundary leaf that disobeys

the single manifold condition because the 2-manifold has no boundary.

13

2.5 BÉZIER CURVES

We express Bézier curves in terms of Bernstein polynomials. A n-th order Bern-

stein polynomial is defined explicitly by

Bn
i (t) =

(

n

i

)

ti(1− t)n−i, i = 0, ..., n, t ∈ [0, 1],

where the binomial coefficients are given by

(

n

i

)

=

{

n!
i!(n−i)!

if 0 ≤ i ≤ n

0 otherwise.

One of the important properties of the Bernstein polynomials is that they satisfy the

following recurrence:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

with

B0
0(t) ≡ 1, Bn

j (t) ≡ 0 for j ∈ 0, ..., n.

Now the Bézier curve of degree n can be defined in terms of Bernstein polynomials

as

bn(t) =
n

∑

i=0

Bn
i (t)Pi,

where the set of points P0, P1, ..., Pn are called control points, and the polygon P

formed by points P0, P1, ..., Pn is called control polygon of the curve bn.

The barycentric form of Bézier curves demonstrates its symmetry property nicely.

Let u and v be the barycentric coordinates, u ∈ [0, 1] and v ∈ [0, 1], u+ v = 1, the

bn(u, v) =
∑

i+j=n

Bn
ij(u, v)Pij,

where Bn
ij(u, v) = n!

i!j!
uivj, Pij ∈ R

2 are the control points. Note that this and

the following equations are in fact two equations corresponding to the two spatial

coordinates.

Specifically, the cubic Bézier curve can be written in terms of the barycentric

coordinates:

b3(u, v) =
∑

i+j=3

B3
ij(u, v)Pij = u3P03 + 3u2vP12 + 3uv2P21 + v3P30.

14

P0

P1 P2

P3

(a) A cubic Bézier curve

P300

P030 P003

P210

P120

P201

P102

P021

P012

P111

(b) A cubic Bézier triangle

FIG. 3: A cubic Bézier curve and a cubic Bézier triangle.

Figure 3a gives an example of the cubic Bézier curve with its control polygon formed

by four control points.

2.6 BÉZIER TRIANGLES

Univariate Bernstein polynomials are the terms of the binomial expansion of

[t+ (1− t)]n. In the bivariate case, a n-th order Bernstein polynomial is defined by

Bn
i
(u) =

(

n

i

)

uivjwk,

where

i = {i, j, k}, |i|= n, u = {u, v, w},

u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1] are the barycentric coordinates and u+ v+w = 1.

It follows the standard convention for the trinomial coefficients
(

n

i

)

= n!
i!j!k!

.

This leads to a simple definition of a Bézier triangle of degree n

T n(u) =
∑

i+j+k=n

Bn
i
(u)Pi,

where the set of points Pi are control points, and the net N formed by points Pi is

called control net of the Bézier triangle T n.

15

Specifically, the Bézier triangle of degree three can be written as

T 3(u) = P300u
3 + P030v

3 + P003w
3

+ 3P201u
2w + 3P210u

2v + 3P120uv
2

+ 3P102uw
2 + 3P021v

2w + 3P012vw
2

+ 6P111uvw.

Figure 3b gives an example of the cubic Bézier triangle with its control net formed

by ten control points.

2.7 THE JACOBIAN

We explore the concept of a derivative of a coordinate transformation, which is

known as the Jacobian of the transformation.

0

1

Reference coordinates

Barycentric coordinates

Cartesian coordinates

1

ŷ

x̂

y

X(x̂, ŷ)

C(x̂, ŷ)
T 3(u, v, w)

u = 0

v = 0

w = 0

u = 0

v = 0

w = 0

x

FIG. 4: Reference unit triangle in local coordinates (x̂, ŷ) and the mappings X(x̂, ŷ),

C(x̂, ŷ) and T (u, v, w). A general principle for the transformations: an one-to-one

correspondence between coordinates systems.

Because the cubic Bézier triangle is defined in terms of the barycentric coordinates

(u, v, w) with the form:

T 3(u, v, w) =
∑

i+j+k=3

B3
ijk(u, v, w)Pijk,

16

the reference triangle is first mapped to a triangle in barycentric coordinates (by the

mapping C(x̂, ŷ)) and then mapped to a curved triangle in global (x, y) coordinates

(by the mapping T (u, v, w)). This two-step mapping is presented in Figure 4.

The mapping should be bijective, because there should not be overlapped regions

inside the element. This implies that the sign of the Jacobian of the transformation

has to be strictly positive everywhere on this element. Jacobian is the determinant

of the Jacobian matrix J which is defined by all first-order partial derivatives of the

transformation:

J =

[

∂T n
x

∂x̂

∂T n
x

∂ŷ
∂T n

y

∂x̂

∂T n
y

∂ŷ

]

.

17

CHAPTER 3

TWO- AND THREE-DIMENSIONAL LINEAR

TRIANGULAR/TETRAHEDRAL MESH

CONSTRUCTION

3.1 METHODOLOGY

The proposed algorithm is described as follows: the algorithm takes a two- or a

three-dimensional multi-material image as its input. The user also specifies as input

the target fidelity bounds (two-sided Hausdorff distance) and the desired angle lower

bound. The angle lower bound should be less than or equal to the lower dihedral

angle bound of the initial mesh (this bound is proved to be 19.47◦ in section 3.2.1).

The algorithm outputs a quality mesh which is a good geometric and topological

approximation of the underlying object. The algorithm first builds an octree from

which it generates a waterproof surface mesh. The surface mesh is proved to be

homeomorphic to the boundary of the image. The two-sided Hausdorff distance

between the surface mesh and the boundaries of the image respects the user-specified

fidelity bounds. Then the octree leaves are filled with high-quality tetrahedra which

compose the volume mesh whose surface is exactly the same as the surface mesh. As

the last step, the algorithm coarsens the mesh to a much lower number of elements

while maintaining the quality, fidelity, and homeomorphism (the homeomorphism is

proved in section 3.2.3). Algorithm 1 is a high-level description of the mesh generation

algorithm.

The main steps performed by the algorithm are illustrated in Figure 5. It shows a

two-dimensional image being converted into a triangular mesh. The size of the image

is 128 × 128 voxels. It defines a slice of a simplified human brain (shown in cyan)

with a randomly selected region (which could be a tumor or a tissue with certain

properties) (shown in yellow) against a white background.

18

(a) The input two-dimensional

image of size 128 × 128. The

input angle bound is set to

19.47◦, and the fidelity bounds

are both set to two voxel side

lengths

(b) Euclidean distance trans-

form of the input image.

Darker shades correspond to

the voxels that are closer to im-

age boundaries

(c) The first quadtree O1. The

leaves whose all correspond-

ing pixels have the distance of

EDT that are smaller than or

equal to the fidelity bound are

marked with grey color

(d) The second quadtree O2.

The leaves were refined to meet

the single manifold condition

and the 2-to-1 rule. The

red segments show the surface

mesh that respects the fidelity

condition, which is two-voxel

side lengths in this example

(e) The fine mesh. 2678 trian-

gles inside the object, 4408 tri-

angles total. The minimum an-

gle is 19.47◦. The mesh bound-

ary is exactly the same as the

surface mesh in (d)

(f) The decimated mesh which

maintains quality, fidelity and

homeomorphism of the under-

lying object and the fidelity

bound. 378 triangles inside

the object, the outside trian-

gles are removed.

FIG. 5: An illustration of the main steps performed by the algorithm.

3.1.1 CONSTRUCTION OF THE OCTREE

Our octree construction algorithm is shown in Algorithm 2 (the actual implemen-

tation is slightly more involved to support efficient data structures). The algorithm

19

Algorithm 1: A high-level description of the mesh generation algorithm

1 Algorithm: Construction(I, θ̄, h̄1, h̄2)

Input : I is a two- or a three-dimensional multi-material image containing Φ,
θ̄ is the lower bound on the minimum angle bound,
h̄1 and h̄2 are the upper bounds on one-sided Hausdorff distances.

Output: A tetrahedral meshM that approximates I’s boundary B well in terms
of fidelity and topology and is composed of tetrahedra (triangles) whose
dihedral (planar) angles are larger than or equal to θ̄.

2 Construct an octree O1 that completely encloses Φ;
3 Extend I to the size of O1;
4 Compute the EDT on the extended I;
5 Split O1 until no leaf contains both pixels that have the distance of EDT that are

larger than max(h̄1, h̄2) and pixels that have the distance of EDT that are
smaller than or equal to max(h̄1, h̄2);

6 Mark the leaves of O1 whose all corresponding pixels have the distance of EDT
that are smaller than or equal to max(h̄1, h̄2);

7 O2 = octree construction(h̄1, h̄2, I, O1) ; /* Algorithm 2 */

8 M = volume construction(O2) ; /* Algorithm 3 */

9 Find the connectivity among the tetrahedra ofM;
10 Assign colors to the tetrahedra using flood filling method;
11 M = decimation(M, θ̄, h̄1, h̄2, O1) ; /* Algorithm 4 */

12 returnM;

first constructs an octree (root) that completely encloses all the materials (except

for the background voxels) from the bitmap. An extra space between the materials

and the exterior boundaries of the octree should be equal to or larger than the user-

specified fidelity bounds. We maintain a queue Q of octree leaves that are candidates

for splitting. The queue is first initialized to contain the octree root only. For every

leaf in Q, check if the leaf satisfies the simple manifold condition, and the leaf with

any its neighbor differs at most by a factor of two in size. If the leaf failed either of

the two conditions, push all neighbors into Q, and split the leaf into 8 children and

push them into Q. Otherwise, generate surface triangles for the leaf. If the surface

triangles do not form a topological disk (the image boundary in the leaf is a simple

manifold), or the surface triangles do not respect the user-specified two-sided fidelity

bound, push all neighbors into Q, and split the leaf and push the children into Q.

The reason we push all neighbors of the leaf into Q is that it’s likely that the leaf

that after split and one of its neighbor do not differ at most by a factor of two in

size. The algorithm terminates when Q is empty.

20

Waterproof surface mesh

When an octree leaf respect the single manifold condition, and the leaf with any

its neighbor differ at most by a factor of two in size, the algorithm generates tri-

angular patches from each octree leaf such that the union of all the patches forms

a waterproof surface mesh. To generate the waterproof surface mesh, an approach

reminiscent of the Marching Cubes (MC) algorithm [12] is used. MC processes the

uniform-sized cubes of the rectilinear grid one by one, and evaluates cut function f

(evaluates to positive or negative) given the vertices of each cube, then approximates

the intersection of the isosurface with that cube using triangles from a pre-defined

look-up table. In contrast, the proposed algorithm processes on an octree, and it

iterates over the six faces of the leaves, applying a modified marching-squares-like

algorithm. The selection of the appropriate stencil for each face of the leaf is deter-

mined by a key which is an ordered concatenation of label for each vertex of the face.

These labels indicate whether a vertex is inside, outside, or directly on the image

boundary. The vertices of a leaf can be evaluated to three labels: zero, positive, and

negative. A vertex of a leaf evaluates to zero if the vertex is located exactly on the

boundary between the materials. The positive label is assigned to the vertex lying

inside the material, and the negative label is assigned to the vertex lying outside the

material. Globally, assigning a vertex label is ambiguous, meaning that a vertex that

is positive from one side is negative from another side since the vertex could be inside

of one material but be outside of another. However, this problem can be bypassed

by assigning the labels locally in each leaf. If a proper boundary leaf contains only

two materials, choose any material and label the points inside it as positive, and

label the points in the other material as negative. However, when a proper boundary

leaf satisfies the simple manifold condition, it does not necessarily contain only two

materials, it could contain 3 or more materials (though such cases are very rare). A

pre-processing is done before initialing Q that the octree is split until no leaf contains

more than two materials. Instead of initializing Q with octree root, initialize it with

all the leaves after split with no more than two materials.

MC approximates the intersection of the isosurface using triangles from a look-up

table defined based on a cube. However, for the proposed algorithm, the templates

on cubes would be cumbersome, because there would be 38 cases in the look-up table

in the uniform background grid case or even much more for the graded case. To con-

struct such a huge table is labor-intensive and error-prone. Instead, an intersection

21

case 1 case 2 case 3 case 4 case 5 case 6

case 7 case 8 case 9 case 10 case 11 case 12

FIG. 6: All possible stencils for creating intersection vertices and intersection edges
by grouping cases using symmetries. Black circles show the positive vertices, white
circles show the negative vertices, and blue circles show the zero vertices. Blue
segments show the intersection edges created by the algorithm.

edge look-up table is designed on the square for each of the cube faces, so there are

totally only 34 entries in the table. In the boundary leaves, the vertices that sample

mesh surface separating two materials are called intersection vertex. Any edge on

the stencils that has two ends with opposite signs (positive and negative) contains

at least one intersection vertex. We sample an intersection vertex on the center of

each such edge. Vertices on the squares that labeled 0 are considered as intersection

vertices as well. Within each stencil, the intersection edges separating vertices with

a positive value from those with a negative value are defined by connecting the var-

ious intersection vertices. Figure 6 lists 12 stencils. Two different symmetries of the

square reduce the stencils from 81 cases to 12 cases: cases that the vertex label in all

corners reversed are grouped into one case, and rotationally symmetric cases are also

grouped into one case. The figure is used for illustration purpose, 81-case stencils

are used in the algorithm to avoid the ambiguity.

For each of the proper boundary leaves, the intersection edges on all the cube

faces are generated by the intersection edge look-up table (partly shown in Figure

6). The union of the intersection edges, if forms one and only one closed chain, are

called intersection polygon associated with the leaf. By connecting the vertices of

the intersection polygon with the center of the cube, a 2-manifold with boundary

is constructed (proved in section 3.2.3). For the non-proper boundary leaves, the

intersection polygon is exactly the same as the boundary of the cube face if all voxels

adjacent to this face are adjacent to another material (case 12 in Figure 6). In

such cases, a diagonal of this cube face is used to generate the triangular patches,

22

(a) Step1: An octree is constructed enclosing
all the materials. This figure shows a part of
the octree (two leaves of the same size) with
image boundary (grey)

(b) Step2: the signs of the cube vertices are
identified

(c) Step3: intersection edges for cube faces
is generated from the intersection edge look-
up table. The intersection edges in each leaf
form a closed loop

(d) Step4: triangular patches for each of the
intersection edge loop is created

FIG. 7: An illustration of generating triangular patches to approximate the image
boundary in two leaves of the same size. Black circles and white circles show the
positive and negative vertices respectively, blue circles show the intersection vertices,
blue edges on cube faces and blue triangles show the intersection edges and the
triangular patches respectively.

resulting in two equally sized right triangles. In those leaves, the surface mesh is

exactly the same as the image boundary. The steps of generating triangular patches

approximating the image boundary are shown in Figure 7.

One important issue that needs extra concern is the consistency between neigh-

boring leaves. Extracting the surface mesh from the octree representation is, however,

more complicated than extracting it from the uniformly sized grid. If the background

grid is composed of uniformly sized cubes, each cube can be processed independently

without paying extra attention to the consistency. Since the same decision is made

on both sides of a cube face, the extracted triangulation is guaranteed to be water-

tight. However, when octree leaves of different sizes meet, processing octree leaves

23

f

f1
f2

f3
f4

(a) If leaves are processed independently, the intersection
edge defined by face f (the left face of the right cube) will
not align with the intersection edges defined by the finer
faces f3 and f4 (the right faces of the two top adjacent
neighbors)

f

f1
f2

f3
f4

(b) Inconsistency solved by replacing the intersection
edge defined by f with intersection edges defined by the
finer faces f3 and f4

FIG. 8: An illustration of generating triangular patches to approximate the image
boundary in a leaf whose face is adjacent to finer neighbors. Blue circles show the
intersection vertices, blue segments on cube faces show the intersection edges and
blue triangles show the triangular patches.

independently can result in gaps in the faces. Figure 8a shows an example of an

inconsistent definition of edges across a face which is adjacent to four finer neigh-

boring cubes. The inconsistency in the shared face of neighboring leaves leads to

a ”hole” in the surface mesh. In order to solve this problem, the octree leaves are

processed in the order of their size, starting with the smallest. In the case that two

face-adjacent leaves are of different sizes, the intersection edges from the shared faces

of finer neighbors are duplicated to the coarser face (Figure 8b).

Two special cases need to be taken care of separately. One is that the boundary

surface exhibits multiple intersections along an edge of a leaf (see Figure 9a), another

is that the boundary surface exhibits no intersection along the edges of a leaf (see

24

(a) The piece of boundary
surface exhibits multiple in-
tersections along the edges
of the leaf (the left and
right edge of the bottom
face). Those edges connect
two equally signed corners
and the midpoint is differ-
ently signed

(b) The piece of boundary
surface exhibits no intersec-
tions along the edges of the
leaf. For the bottom face,
the four corners all agree in
sign but disagree with the
center of the face

FIG. 9: Two examples illustrate that the piece of boundary surface fulfills the single
manifold condition, but exhibits multiple intersections or no intersection along the
edges of the leaf, leading to different topology. These leaves need to be split.

Figure 9b), but both of the two cases fulfill the single manifold condition. In those

cases there is no cube edge has opposite signs, and the number of intersection edges

in such cubes is zero. This means that no mesh surface is generated in the cube, but

the cube does contain one piece of image boundary, leading to a different topology.

Same topological criteria warrant the subdivision of the cube: the leaf needs to be

refined if the intersection edges form zero closed chain.

Two-sided Hausdorff distance

The mesh has to provide a close geometric approximation of the object shape. We

measure the closeness by the fidelity tolerance, quantified by the two-sided Hausdorff

distance from the mesh to the image and the image to the mesh.

To measure the Hausdorff distance from the surface mesh to the boundaries of

the image, we compute the Euclidean distance transform (EDT) [47] of the extended

image, i.e., the image is padded with imaginary background voxels (or truncated of

the extra background voxels) to the size of the octree root node. A Euclidean distance

transform of an image is an assignment to every voxel of a distance to the nearest

boundary of the image in Euclidean metric (see Figure 5b as an example, where

25

darker shades correspond to the voxels that are closer to image boundaries). The

fidelity zone is the octree (quadtree) leaves whose all corresponding voxels have the

distance of EDT that are smaller than or equal to the fidelity bound. To compute the

fidelity zone, the second octree is constructed, and is split until the EDT values of all

the voxels in each leaf are either larger than the input fidelity bound, or smaller than

or equal to the input fidelity bound. In the implementation, we make the two octrees

one with common ancestor for efficiency and storage purpose. Then the leaves whose

all corresponding pixels have the distance of EDT that are within the input fidelity

tolerance are marked, composing the fidelity zone (see the leaves in transparent gray

in Figure 5c). If one triangle of the surface mesh intersects at least one of the leaves

marked as outside the fidelity zone, the fidelity condition is violated and the leaf is

split.

To measure the other side, the shortest distance is computed from each image

boundary vertex in the leaf to the triangular patches of the surface mesh. If one of the

image boundary vertices has a shortest distance larger than the fidelity tolerance, the

fidelity condition is violated and the leaf is split. If the fidelity condition is satisfied

in the leaf, each of the image boundary vertices is assigned to its closest triangular

patch for later use in the mesh decimation step.

3.1.2 FILLING IN THE OCTREE

case 1 case 2 case 3 case 4 case 5 case 6

case 7 case 8 case 9 case 10 case 11 case 12

FIG. 10: The stencils of the triangle look-up table that correspond to the stencils
of the intersection edge look-up table for creating triangles on cube faces. The blue
segments show the intersection edges. The template triangles respect the intersection
edges.

Now that the octree satisfies the single manifold condition, 2-to-1 rule and re-

sulting surface mesh respects the user-specified fidelity bounds, the volume mesh

26

generation can be facilitated, by subdividing the octree leaves into tetrahedra. See

Algorithm 3. For each proper boundary leaf, the faces are triangulated according to

the second pre-defined triangle look-up table in Figure 10 (here we show 12 cases cor-

responding to the stencils of the intersection edge look-up table in Figure 6, but we

use 81 cases table in the proposed algorithm). The template triangles of the triangle

look-up table respect the intersection edges of the intersection edge look-up table,

i.e., the intersection edges should be the edges of the template triangles. For non-

proper boundary leaves and non-boundary leaves, if one edge of the leaf is split by a

middle point, triangulate each face of the leaf which contains the edge by introducing

the center of the face and connecting it with all vertices on the face, and triangulate

other faces into two triangles by introducing a diagonal to it. Once all faces of the

octree leaf are triangulated, the leaf is tetrahedralized by constructing a tetrahedron

for each triangle through connecting it to the center of the cube. If no edge of the

cube is split by a midpoint, the central point of the cube is not introduced, the leaf is

tetrahedralized into six tetrahedra. Figure 11 illustrates the tetrahedralization steps.

(a) Step1: triangulating cube faces from the
triangle look-up table

(b) Step2: tetrahedralizing the leaves by
connecting each triangle on the cube faces
to the center of the cube. If no edge of the
cube is split by a midpoint, the leaf is tetra-
hedralized into six tetrahedra.

FIG. 11: An illustration of tetrahedralization in two leaves of the same size. Black
circles show the positive vertices, white circles show the negative vertices, blue circles
show the zero vertices. Black edges on cube faces show how the faces are triangulated
by the triangle look-up table. Two tetrahedra are marked by green.

Similar to the surface construction, the consistency between neighboring leaves

still needs to be considered when the octree is tetrahedralized. When octree leaves

at different resolutions meet, an inconsistent definition of triangles across the shared

face occurs. An example is illustrated in Figure 12a. To solve this problem, the

octree leaves are processed from the smallest to the largest. In the case that a face of

27

(a) If leaves are processed independently, triangles de-
fined by face f (the left face of the right cube) will not
align with triangles defined by face f1, f2, f3 and f4 (the
right faces of the four adjacent finer neighbors of the right
cube)

f

f1
f2

f3
f4

(b) Inconsistency solved by replacing the triangles defined
by f with triangles defined by f1, f2, f3 and f4

FIG. 12: An illustration of tetrahedralization in a leaf whose face is adjacent to finer
neighbors. Black circles show the positive vertices, white circles show the negative
vertices, blue circles show the zero vertices. Black edges on cube faces show how the
faces are triangulated.

a leaf is adjacent to four finer neighbors, the triangles defined from the shared faces of

finer neighbors are duplicated to the coarser face, see Figure 12b for the illustration.

If a face of a cube is shared by four finer neighbors, but another face of the cube

which is adjacent to it is shared by a neighbor of the same size, a hanging point may

appear. To eliminate the hanging points, if an edge of a triangle on a cube face has

a hanging point in the middle, the triangle is re-triangulated into two triangles by

connecting the hanging point with the vertex of the triangle which is opposite to the

edge on which the hanging point is lying.

When all the leaves are filled with tetrahedra, the connectivity among the tetra-

hedra are identified, i.e., identifying face-adjacent tetrahedra for later use in the

decimation procedure.

28

The octree (quadtree) leaves and tetrahedra (triangles) are assigned colors based

on their location with respect to the materials in the image. If a leaf contains only

one material, it derives the color from the block of voxels that it encloses. Each

tetrahedron (triangle) in such leaves derives its color from the leaf. For proper

boundary leaves, we assign the color of tetrahedra (triangles) using the flood-fill

method. The flood-fill method starts with a tetrahedron of a known color, and

assign the same color to its neighours whose color is unknown if the shared face of

the two tetrahedra is not a mesh boundary face. Therefore, all tetrahedra (triangles)

are classified with respect to the boundary of underlying materials.

3.1.3 MESH DECIMATION

Similar to the LD method [16], the vertex removal operation is used to coarsen the

mesh. A vertex is merged to a destination vertex if the vertex and the edge between

the vertex and its destination are removed from the mesh. As a consequence, all

tetrahedra (triangles) incident upon the removed edge are also removed from the

mesh. The remaining edges that were incident upon the vertex became incident

upon its destination. To achieve this goal, a queue of mesh vertices is maintained for

merging. Initially, all mesh vertices are added to the queue. Then the vertices are

removed from the queue and are evaluated if they pass the check for a merge. After

the initialization, only the vertices whose adjacent vertices were merged can be added

to the queue. The decimation procedure terminates when none of the vertices in the

queue passes the check for a merge and the queue becomes empty. The detailed

operation steps see Algorithm 4, here we only discuss the merging conditions. A

vertex cannot be merged along an edge to another vertex if it violates the following

requirements:

1. The quality requirement, i.e., if at least one of the newly created elements, as

a result of a sequence of merges, is inverted or its dihedral angle is smaller than the

input quality angle bound, the merge is discarded.

2. The fidelity requirement, i.e., if at least one of the newly created mesh boundary

faces (edges in two-dimensional case and triangles in three-dimensional case) has at

least one-sided Hausdorff distance larger than the input fidelity bound, the merge

is discarded. This check consists of two parts, for each of the one-sided Hausdorff

distances. To evaluate the Hausdorff distance from the boundaries of the submesh to

the boundaries of the corresponding material, if one of the newly created boundary

29

faces intersects at least one of the leaves marked as outside the fidelity tolerance,

the fidelity requirement is violated. To evaluate the Hausdorff distance from the

boundary of each material to the boundary of the corresponding submesh, for each

boundary face we maintain a cumulative list of the image boundary vertices. The

image boundary vertices were first assigned to the boundary faces during the fidelity

check of the octree construction. Each image boundary vertex was assigned to the

closest mesh boundary face. If at least one of the image boundary vertices, as a result

of a sequence of merges, is further away from its closest mesh boundary face than

the fidelity tolerance, the merge is discarded. After each merge, the image boundary

vertices of the mesh boundary faces which are incident upon the merged vertex are

reassigned to the closest newly created boundary faces.

3. The topological equivalence requirement, i.e., if the homeomorphism is not

maintained during operation of a merge, the merge is discarded. We apply the

following rules to maintain the original structure of both the exterior and interior

boundaries:

(1) Boundary vertices merge to boundary vertices. Applying this rule is not nec-

essary for the topological correctness, but it helps create a smoother mesh boundary

after decimation.

(2) Do not merge if a tetrahedron (triangle) has all edges are boundary edges.

(3) The topological correctness in each merge also relies on the single manifold

condition. Instead of checking if the single manifold condition is fulfilled in every

single leaf during the surface mesh construction, this check is conducted on a union

of several octree leaves. A cumulative list of the octree leaves that each boundary

face lies in is maintained. The merge happens if the union of octree leaves of the

boundary faces the merged vertex and the destination incident upon respects the

single manifold condition. Suppose a boundary vertex a merges to the destination

boundary vertex b. Fa and Fb denote the set of boundary faces that a and b incident

upon respectively. Notice that Fa ∩ Fb may not be empty. Let Fab denote Fa ∪ Fb,

and let LFab
denote the set of octree leaves that the faces of Fab lie in. If all the leaves

of LFab
as a whole satisfy the single manifold condition, the merge operation can be

executed. Specifically, in the two-dimensional case, all the image boundary edges in

leaves of LFab
form a simple chain on which only the first and the last image boundary

vertices have only one adjacent image boundary edge, all the other boundary vertices

have two image boundary edges adjacent to it. Two examples are shown in Figure 13

30

for an illustration. In the three-dimensional case, the union of the image boundary

faces in leaves of LFab
form a simple sheet on which the 1-degree image boundary

edges form a cycle and all the other image boundary edges are 2-degree edges. (4)

Each tetrahedron keeps the original color after it changes shape due to the vertex

merge. As a result, all tetrahedra (triangles) are correctly classified with respect to

the underlying materials after decimation.

3.2 GUARANTEES

The algorithm achieves the following mathematical guarantees on the output

mesh: (1) the tetrahedra of the interior mesh have good dihedral angles, (2) the

boundaries of the output mesh is geometrically close to the boundaries of the mate-

rials, and (3) the boundaries of the output mesh are homeomorphic to the boundaries

of the materials.

3.2.1 DIHEDRAL ANGLES

Theorem 3.2.1. All dihedral angles in the mesh produced by Algorithm 1 are above

a user-specified lower bound which can be set to any value up to 19.47◦.

Proof. The key to proving theorem 3.2.1 is to prove that the bound on the dihedral

angles before mesh decimation is 19.47◦. Since there is only a finite number of

stencils, and the mesh vertices have a finite number of locations in the octree leaf

(either on the corners or the center of the leaf, or on the quarters of the leaf edges),

a minimum dihedral angle of 19.47◦ is obtained by analyzing all possible resulting

leaf triangulations; see Figure 14. So the user-specified lower bound can be set to

any value up to 19.47◦. During the decimation, if at least one newly created angle

is smaller than the input quality angle bound, the merge is discarded. Therefore,

the lower bound on the dihedral angles produced by our algorithm are correct as

written.

3.2.2 GEOMETRIC FIDELITY

Since the centers of proper boundary leaves are located on the mesh surface, they

are considered as intersection vertices. By the process that the triangular patches in

these leaves are constructed, the intersection vertices always connect to intersection

31

vertices. By inspection of the intersection edge look-up table, the proposed algorithm

never connects a vertex inside the image boundary (labeled +) to one outside (labeled

-), therefore the mesh respects the image boundary. Furthermore, the boundary of

the mesh produced by the algorithm approximates the image boundary by two-sided

Hausdorff distance bound both before decimation and after decimation, therefore,

every point on the mesh surface is geometrically close to image boundary.

3.2.3 TOPOLOGICAL FIDELITY

The following lemmas help guarantee that the surface meshes of our algorithm

are topologically equivalent to the image boundary.

Lemma 3.2.2. The surface triangulation SL in each boundary leaf L is a 2-manifold

with boundary.

Proof. The proof distinguishes two cases: the first case is on proper boundary leaves,

and the second case is on boundary leaves that are not proper.

– The intersection polygon associated with any proper boundary leaf L is a closed

chain composed of the intersection edges on faces of L. Filling the intersection

polygon with triangles by connecting the intersection edges with the center of

the cube, the surface triangulation SL is obtained. This cone-like triangular

patch SL satisfies the definition of a 2-manifold with boundary.

– By the algorithm, in all the non-proper boundary leaves, the intersection poly-

gon is exactly the same as the boundary of the cube face (see Figure 4. case

12). A diagonal of this cube face is used to generate the triangular patches,

resulting in two equally sized right triangles. In this case, the surface trian-

gulation SL is exactly the same as the image boundary BL. Similarly, by the

definition, this square patch SL is a 2-manifold with boundary.

The following lemma proves the watertight property of the surface mesh.

Lemma 3.2.3. The surface mesh generated by the algorithm is watertight.

Proof. The polygons must satisfy two properties to result in a watertight surface

mesh: the extracted intersection edges on cube faces must be closed loops, and

32

each intersection edge must be shared exactly twice. Since the intersection polygon

associated to any boundary leaf is a closed chain composed of the intersection edges

on faces of the leaf, the first property is satisfied.

To prove the second property, for the intersection edges lying on the cube face,

there are two cases. The first case is that when an intersection edge is lying on the

cube face which is adjacent to a neighbor of the same size. Since the same decision

is made on both sides of the cube face, the intersection edge is shared by the two

triangles defined by the two ends of the intersection edge and the center of each of

the neighboring cubes. The second case is that when an intersection edge is lying

on the cube face which is adjacent to four finer neighbors. Since the intersection

edge is obtained by duplicating the corresponding intersection edge from one of the

shared faces of the finer neighbors, it is shared exactly twice. Thus, the second

property is fulfilled. Therefore, the surface mesh of our algorithm is guaranteed to

be watertight.

Lemma 3.2.4. Let B be the image boundary, and S be the mesh boundary before

decimation. B ≈ S.

Proof. Let L be any boundary leaf. By the simple manifold condition, BL is a

2-manifold with boundary. By Lemma 3.2.2, SL is a 2-manifold with boundary.

Thus, BL ≈ SL. Since the surface mesh generated by the algorithm is watertight

(Lemma 3.2.3), B ≈ S.

Lemma 3.2.5. Under the decimation rule of the algorithm, a 2-manifold with bound-

ary with at least two triangles after a merge from one of its vertices to an adjacent

vertex is a 2-manifold with boundary.

Proof. In this proof, the vertices refer to the vertices of the triangles that compose

the 2-manifold with boundary. We prove this lemma by case analysis.

– An interior vertex merges to an interior vertex, see Figure 15a. After the merge

the boundary of the 2-manifold with boundary is unchanged.

– An interior vertex merges to a boundary vertex, see Figure 15b. Similar to the

previous case, the boundary of the 2-manifold with boundary is unchanged.

– A boundary vertex merges to an interior vertex. In this case, the boundary

of the 2-manifold with boundary is changed, but after the merge, it still is a

33

2-manifold with boundary. In fact, we omit this case in the decimation rule so

that after merge we have smoother boundaries.

– A boundary vertex merges to a boundary vertex, see Figure 15c. In this case,

the number of edges of the boundary of the 2-manifold with boundary is de-

creased by one, but it doesn’t create a new boundary or the boundary is van-

ished (the number of boundaries is one). Moreover, by the decimation rule, the

2-manifold with boundary never became degenerated or split to two 2-manifolds

with boundary that incident on one common vertex, thus after the merge, the

topology is unchanged.

Due to the quality requirement, the merge is discarded if a newly created element is

inverted, the 2-manifold with boundary after a merge won’t lead to a self-intersecting

boundary. By enumerating all the four cases, we proved that a 2-manifold with

boundary after a merge is a 2-manifold with boundary under the decimation rule of

the algorithm.

Theorem 3.2.6. The boundary of the mesh is homeomorphic to the boundary of the

input image.

Proof. We prove this theorem by induction. We show that the basis step is true, i.e.,

there is a homeomorphism between the image boundary and the surface mesh before

decimation. This step is proved by Lemma 3.2.4.

We prove the inductive step is also true. For the inductive hypothesis we assume

that after the k-th merge, the boundary of the mesh is homeomorphic to the bound-

ary of the image. Suppose in the (k + 1)-th merge, a boundary vertex a merges to

boundary vertex b. The inductive hypothesis implies that in the leaves of LFab
if the

image boundary is a 2-manifold with boundary, the mesh boundary is a 2-manifold

with boundary. This means that if the leaves of LFab
satisfy the simple manifold con-

dition, the image boundary faces in the leaves of LFab
is a 2-manifold with boundary

as well. According to Lemma 3.2.5, the mesh boundary is a 2-manifold with bound-

ary after vertex a merged to vertex b. Therefore, after (k+1)-th merge, the boundary

of the mesh is homeomorphic to the boundary of the image.

34

Algorithm 2: A high-level description of the octree construction algorithm.

1 Algorithm: octree construction(h̄1, h̄2, I, O1)

Input : h̄1 and h̄2 are the upper bounds on one-sided Hausdorff distances,
I is a two- or a three-dimensional multi-material image containing Φ,
O1 is the octree with the leaves marked within max(h̄1, h̄2).

Output: An octree from which the surface mesh S satisfies fidelity requirement h̄1 and h̄2

and are homeomorphic to I’s boundary B.

2 S = ∅;
3 Construct an octree root O2 that completely encloses Φ;
4 Initialize a queue Q to the octree root O2;
5 while Q 6= ∅ do
6 Pick node ∈ Q;
7 Q←− Q \ {node};
8 if !single manifold condition(node) ∨ !balanced(node) then

9 Q←− Q ∪Neis ; /* Let Neis be the set of node’s neighbors */

10 Split node;
11 Q←− Q ∪ C ; /* Let C be the set of child1... child8 */

12 else

13 if node is a proper boundary leaf then

14 for each vertex x of node do

15 Compute sign of x ; /* determine whether sign of x is positive,

negative or zero */

16 end

17 E = ∅ ; /* let E be the intersection edge set of node */

18 for each face f in node do

19 index←− index(sign(x1), sign(x2), sign(x3), sign(x4)) ; /* x1, x2,

x3 and x4 are the four vertices of f */

20 E ←− E ∪ table1 lookup(index);

21 end

22 if the intersection edges in E form a closed loop then

23 S ←− S ∪ patching(E) ; /* function patching(E) introduces the

center of l and connects it with the two ends of each

intersection edge in E */

24 else

25 Q←− Q ∪Neis;
26 Split node;
27 Q←− Q ∪ C;

28 end

29 else

30 for each face f of node do

31 if all pixels adjacent to f are adjacent to another material then
32 generate two triangles using the diagonal with boundaries of f ;
33 end

34 end

35 end

36 end

37 else if !fidelity satisfied(node, S, O1, h̄1, h̄2) then

38 Q←− Q ∪Neis;
39 Split node;
40 Q←− Q ∪ C;

41 end

42 return O2;

35

Algorithm 3: A high-level description of the volume meshing algorithm

1 Algorithm: volume construction(O2)

Input : O2 is an octree from which a surface mesh S is constructed.
Output: A tetrahedral meshM that approximates I’s boundary B well in terms

of fidelity and topology and is composed of tetrahedra (triangles) whose
dihedral (planar) angles are larger than or equal to 19.47◦.

2 M = ∅;
3 for each leaf l in O2 do

4 if l is a proper boundary leaf then

5 T = ∅ ; /* let T be the triangle set of faces of l */

6 for each face f in l do

7 index←− index(sign(x1), sign(x2), sign(x3), sign(x4)) ; /* x1,

x2, x3 and x4 be the four vertices of f */

8 T ←− T ∪ table2 lookup(index);

9 end

10 M←− M ∪ tetrahedralization(T) ; /* function

tetrahedralization(T) introduces the center of l and

connects it with the vertices of the triangles in T */

11 else

12 if at least one edge of l is split by a middle point then

13 T = ∅;
14 for each face f in l do

15 if at least one edge of f is split by a middle point then

16 T ←− T ∪ triangulation 1(f) ; /* function

triangulation 1(f) triangulates f by introducing

the center of f and connecting it with all vertices

on f */

17 else

18 T ←− T ∪ triangulation 2(f) ; /* function

triangulation 2(f) triangulates f into two

triangles by introducing an diagonal to it */

19 end

20 end

21 M←− M ∪ tetrahedralization(T);

22 else

23 M←− M ∪ tetrahedralization(l) ; /* tetrahedralization(l)

triangulates l into six tetrahedra */

24 end

25 end

26 end

27 returnM;

36

l1 l2

l3 l4
a

b

e1

e3e2

e4

c

(a) Fa = {e1, e2}, Fb = {e2, e3}, Fab =
Fa ∪ Fb = {e1, e2, e3}, and LFab

=
{l1, l3, l4}. Because the image bound-
ary edges (red segments) in LFab

form a
simple chain, a can merge to b

l1 l2

l3 l4

b

e1

e3

e4

c

(b) In (a), after a merged to b, e2 is
removed from the mesh. The set of oc-
tree leaves in e1 became {l1, l3}. The
topology of the mesh boundary is still
the same as the topology of the image
boundary

l1 l2

l3 l4
a b

e1

e2

e3

e4

(c) Fa = {e1, e2}, Fb = {e3, e4}, Fab =
Fa ∪ Fb = {e1, e2, e3, e4}, and LFab

=
{l1, l2, l3, l4}. Because the image bound-
ary edges (red segments) in LFab

do not
form a simple chain, a cannot merge to
b

l1 l2

l3 l4
b

e1

e2

e3

e4

(d) In (c), if a is merged to b, the
topology of the mesh boundary is not
the same as the topology of the image
boundary

FIG. 13: An illustration of the topological equivalence requirement during decima-
tion. The red segments represent the image boundaries, and the blue segments
represent the mesh boundaries. a is the merged vertex, b is its destination.

37

Algorithm 4: A high-level description of the decimation algorithm

1 Algorithm: Decimation(M, θ̄, h̄1, h̄2, O1)

Input :M is the initial mesh,
θ̄ is the lower bound on the minimum angle bound,
h̄1 and h̄2 are the upper bounds on one-sided Hausdorff distances,
O1 is the octree with the leaves marked as the fidelity zone.

Output: A tetrahedral meshM that approximates I’s boundary B well in terms
of fidelity and topology and is composed of tetrahedra (triangles) whose
dihedral (planar) angles are larger than or equal to θ̄.

2 Initialize a queue Q to the set of all vertices inM;
3 while Q 6= ∅ do
4 Pick vi ∈ Q;
5 Q←− Q \ {vi};
6 Find A = {vj} the set of vertices adjacent to vi;
7 for each vj ∈ A do

8 if Quality(vj, θ̄) ∧ Fidelity(vj, O1, h̄1, h̄2) ∧ Topology(vj,M)
then

9 Merge vi to vj , updateM;
10 Q←− Q ∪A;
11 break;

12 end

13 end

14 end

15 returnM;

38

a b

c

d

d d d d

d d d d d

d d d d d

d d d d d

d d d d d

d d d d

a a a a

a

a

a

a a

a

a
a

a a

a a a a

a

a
a

a a a

a

a a a

b b b

b

b b b b b

b b

b b

b

b b b b b

b b
b b

b

b

b b b

c c c
c

c c
c c

c

c c

c

c c

c

c
c c

c c

c
c

c c

c

c
c

c c

45o 45o 30o 30o 54.74o

35.26o 35.26o 19.47o 45o 54.74o

45o 54.74o 35.26o 30o 19.47o

26.57o 36.87o 35.26o 60o 30.96o

45o 48.19o 26.57o 24.09o 36.87o

48.19o
45o 40.60o 41.81o

FIG. 14: All possible shapes of the initial tetrahedra (abcd) filling a cubic leaf of the
octree, up to symmetry. The smallest dihedral angles are listed on the figure. There-
fore, 19.47◦ is the lower bound for the dihedral angle in the initial three-dimensional
tetrahedralization of the octree.

39

a

b

cd

(a) A topological disk before
vertex merge operation.

b(a)

cd

(b) An interior vertex a merged
to an interior vertex b on the
topological disk.

c(ab)

(c) An interior vertex b merged
to a boundary vertex c on the
topological disk.

d(abc)

(d) A boundary vertex cmerged
to a boundary vertex d on the
topological disk.

FIG. 15: An illustration of the vertex merge operation on a topological disk. The
list of vertices in brackets shows merge history.

40

CHAPTER 4

TWO-DIMENSIONAL CURVILINEAR TRIANGULAR

MESH GENERATION

Given a bounded curved domain Ω ⊂ R2, the algorithm outputs a curvilinear

mesh of the interior of Ω with globally smooth boundary. Figure 16 illustrates the

main steps performed by our algorithm. The details are elaborated below.

(a) The input two-

dimensional image

(b) The linear mesh (c) Curved mesh boundary

(d) Smooth curved boundary

with linear edges in the inte-

rior

(e) Invalid elements are de-

tected

(f) Valid high quality curvi-

linear mesh

FIG. 16: An illustration of the main steps performed by our algorithm.

4.1 SMOOTH BOUNDARY CONSTRUCTION

We aim to find a smooth curve interpolating all the mesh boundary vertices given

in order. A curve can be described as having Cn continuity, n being the measure of

41

smoothness. Consider the segments on either side of a point on a curve: (1) C0: The

segments touch at the joint point; (2) C1: First derivatives are continuous at the

joint point; (3) C2: First and second derivatives are continuous at the joint point.

A smooth C1 piecewise cubic curve is composed of pieces of different cubic curves

glued together, and it has a first derivative everywhere and the derivative is contin-

uous. A Bézier path is C1 smooth provided that two Bézier curves share a common

tangent direction at the joint point. The basic idea is to calculate control points

around each endpoint so that they lie in a straight line with the endpoint. How-

ever, curved segments would not flow smoothly together when quadratic Bézier form

(three control points) is used. Instead, we need to go one order higher to the cubic

Bézier form (four control points) so we can build ’S’ shaped segments. We find these

control points by translating the segments formed by the lines between the previous

endpoint and the next endpoint such that these segments become the tangents of

the curves at the endpoints. We scale these segments to control the curvature. An

example is illustrated in Figure 17a. For the curve between P1 and P2, we need C2

and C3. On segment P0P2, find a point Q1 such that|P0Q1|/|Q1P2|= |P0P1|/|P1P2|.

Translate segment P0P2 so that point Q1 lies on point P1, and scale the length of

translated segment P0P2, then the new position of point P2 is the position of control

point C2. Similarly, the position of control point C3 can be found by translating

segment P1P3 such that point Q2 lies on point P2.

C1

P1

C2

Q2 C5

P3

C6

P0
Q1

C3

P2
C4

Q3

P4

(a) A smooth C1 path

P0 P1

P2

A

Q1
S

Q2

Q3

(b) An A-frame

S0

B0

S1

B1

S2

B2

S3

B3

S4 B4

S5 B5

(c) A smooth C2 curve

FIG. 17: An illustration of the construction of the C1 and C2 smooth curves. The

black points show the mesh vertices, the red points show the control points, and the

green points show the B-spline points.

The cubic Bézier form provides enough degrees of freedom to construct a cubic

spline curve that satisfies C2 smoothness requirement. Since the curvature of a

42

point on a curve is a function with respect to the first and second derivative of this

point, and if the first and the second derivative are continuous, then the curvature

at this point is continuous. We prefer C2 smooth curve to C1 smooth curve because

the boundary of the biomedical objects usually have continuous curvatures. If two

Bézier curves with control points P0, P1, P2, S and S, Q1, Q2, Q3 touch at point

S, both their first and second derivatives match at S if and only if their control

polygons fit an A-frame, which is a structure in which P2 is the midpoint of AP1,

Q1 is the midpoint of AQ2 and S is the midpoint of P2Q1 as Figure 17b shows.

To fit the A-frame in the set of cubic curves, one easy approach is to use B-spline

as an intermediate step. In Figure 17c, the junction points S (shown in black) are

mesh vertices that are classified on the boundary of the linear mesh. If the B-spline

points B (the apexes of the A-frames, shown in green) are known, the control points

(shown in red) can be calculated by computing the one third and two thirds positions

between the connection of every two adjacent B-spline points. The B-spline points

B and the junction points S satisfy a relationship:

6Si = Bi−1 + 4Bi +Bi+1.

By solving for a linear system of equations, the coordinates of B-spline points can be

obtained.

4.2 ELEMENT VALIDITY

The following two subsections present two methods to verify the validity of the

high-order mesh elements. In the first method, the element validity is evaluated by

the lower bound of the Jacobians. The Jacobians of an element can be written as a

fourth-order Bézier triangle whose convex hull provides a lower bound of the Jaco-

bians. By recursively split the Bézier triangle, a tight lower bound can be obtained

to offer an accurate validity check. In the second method, we proved that if the con-

trol net of a cubic Bézier triangle does not contain inverted control triangles, then

the cubic Bézier triangle has strictly positive Jacobians. The second method offers

a faster way to verify the element validity.

4.2.1 VALIDITY VERIFICATION BY THE LOWER BOUND OF THE

JACOBIAN

The invalid elements are usually caused by curving only the boundary mesh edges

43

while the interior mesh edges remain straight. Some of the curvilinear triangular

patches may have tangled edges. Thus, it is necessary to verify the validity and to

eliminate all the invalid elements by curving interior mesh edges as a post-processing

step once the curved mesh has been constructed. One approach to verify the pos-

itiveness of the Jacobian is sampling the Jacobian at discrete locations such as at

Gaussian points. A more precise way is to calculate the tight lower bound for the

Jacobian.

Since the Bézier basis is selected to represent the elements, the tight lower bound

can be calculated with the help of its special properties such as the convex hull

property and subdivision property [48]. We can write the Jacobian matrix J of a

cubic Bézier triangle as:

J =

[

∂T 3
x

∂u

∂T 3
x

∂v

∂T 3
x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

]

∂u
∂x̂

∂u
∂ŷ

∂v
∂x̂

∂v
∂ŷ

∂w
∂x̂

∂w
∂ŷ

=

[

∂T 3
x

∂u

∂T 3
x

∂v

∂T 3
x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

]

−1 −1

1 0

0 1

=

[

∂T 3
x

∂v
− ∂T 3

x

∂u

∂T 3
x

∂w
− ∂T 3

x

∂u
∂T 3

y

∂v
−

∂T 3
y

∂u

∂T 3
y

∂w
−

∂T 3
y

∂u

]

,

and the determinant of J can be represented as:

det(J) = (
∂T 3

∂v
−

∂T 3

∂u
)× (

∂T 3

∂w
−

∂T 3

∂u
) · n,

where n is the vector (0, 0, 1). Because the derivative of a cubic Bézier polynomial is

a quadratic Bézier polynomial, and the product of two quadratic Bézier polynomials

is a fourth order Bézier polynomial, the Jacobian is a fourth order Bézier polynomial

with fifteen control points. Notice that this Jacobian function is a scalar-valued

function, and the control points are scalar values. So in the following the scalar-

valued control points are named control values.

T 4(u, v, w) =
∑

i+j+k=4

B4
ijk(u, v, w)Pijk,

where Pijk is one of the fifteen control values, B4
ijk(u, v, w) =

4!
i!j!k!

uivjwk, u ∈ [0, 1],

v ∈ [0, 1] and w ∈ [0, 1] are the barycentric coordinates and u+v+w = 1. Therefore,

44

the fifteen control values of the Jacobian can be represented by the control points of

the cubic Bézier triangle. Because

∂T

∂v
−

∂T

∂u
= 3u2a1 + 3v2b1 + 3w2c1 + 6uwd1 + 6uve1 + 6vwf1

and
∂T

∂w
−

∂T

∂u
= 3u2a2 + 3v2b2 + 3w2c2 + 6uwd2 + 6uve2 + 6vwf2,

where a1 = P210 − P300, b1 = P030 − P120, c1 = P012 − P102, d1 = P111 − P201,

e1 = P120−P210, f1 = P021−P111, a2 = P201−P300, b2 = P021−P120, c2 = P003−P102,

d2 = P102 − P201, e2 = P111 − P210, f2 = P012 − P111, the fifteen control values can be

calculated. They are listed in Table 1.

TABLE 1: Fifteen control values for det(J) of a cubic triangle

Pijk Control value

P400 9(a1 × a2 · n)

P040 9(b1 × b2 · n)

P004 9(c1 × c2 · n)

P220
3
2
(a1 × b2 · n+ b1 × a2 · n+ 4e1 × e2 · n)

P202
3
2
(a1 × c2 · n+ c1 × a2 · n+ 4d1 × d2 · n)

P022
3
2
(b1 × c2 · n+ c1 × b2 · n+ 4f1 × f2 · n)

P301
9
2
(a1 × d2 · n+ d1 × a2 · n)

P310
9
2
(a1 × e2 · n+ e1 × a2 · n)

P130
9
2
(b1 × e2 · n+ e1 × b2 · n)

P031
9
2
(b1 × f2 · n+ f1 × b2 · n)

P103
9
2
(c1 × d2 · n+ d1 × c2 · n)

P013
9
2
(c1 × f2 · n+ f1 × c2 · n)

P211
3
2
(a1 × f2 · n+ f1 × a2 · n+ 2d1 × e2 · n+ 2e1 × d2 · n)

P121
3
2
(b1 × d2 · n+ d1 × b2 · n+ 2e1 × f2 · n+ 2f1 × e2 · n)

P112
3
2
(c1 × e2 · n+ e1 × c2 · n+ 2d1 × f2 · n+ 2f1 × d2 · n)

Due to the convex hull property, the fourth order Bézier triangle is completely

contained in its convex hull formed by the control values, thus, the minimum of

the convex hull is the lower bound of the Jacobian. If the lower bound is positive,

then the element is valid. However, if the lower bound is non-positive, it does not

45

necessarily mean that the element is invalid. Since it is only a sufficient condition,

sometimes it is overly conservative. In the cases that the lower bound is not tight,

the minimum value of the Jacobian could be positive whereas the calculated lower

bound is non-positive.

To further confirm the answer, we obtain the tighter bound by refining the convex

hull using the Bézier subdivision algorithm. The Jacobian of the element is a fourth

order Bézier triangle defined by fifteen control values. The boundary of the fourth

order Bézier triangle is three fourth order Bézier curves. The control values of the

three boundary Bézier curves are the control values of the Bézier triangle located on

the boundary. For illustration purpose, we use vector-valued function to represent

scalar-valued function in Figure 18. In Figure 18a, Pijk, i + j + k = 4 are the

control values of the fourth order Bézier triangle. The control values of the left

boundary Bézier curve is P400, P310, P220, P130 and P040, of the right boundary Bézier

curve is P400, P301, P202, P103 and P004, and of the bottom boundary Bézier curve is

P040, P031, P022, P013 and P004. The convex hull of the fourth order Bézier triangle

is a subset of the union of the convex hulls of the three boundary Bézier curves.

Thus, we refine the convex hull of the fourth order Bézier triangle by refining the

three convex hulls of its boundary curves. The minimum of the convex hull of the

fourth order Bézier triangle is the minimum of the convex hulls of the three boundary

Bézier curves. Therefore, we verify the positiveness of the Jacobian by verifying the

positiveness of the three fourth order Bézier curves.

P400

P310

P220

P130

P040

P301

P202

P103

P004

P031

P022
P013

P121 P112

P211

The control net of a fourth order Bézier triangle

P0

P01

P1
P012

P12

P0123

P2

P123

P01234

P23
P1234

P3
P234

P34

P4

The recursive subdivision algorithm on the fourth

order Bézier curve

FIG. 18: An illustration of the positiveness verification on Jacobian. The newly

created control polygons for the fourth order Bézier curve are shown in red and

green.

46

Algorithm 5 summarizes the positiveness verification on a fourth order Bézier

curve. Function Minimum() returns the minimum value of the five control values.

Function Middle() returns the middle value of the two input control values. Fig-

ure 18b illustrates the recursive subdivision algorithm for the fourth order Bézier

curve. If the five control values are positive, all the values on the Bézier curve are

positive because of the convex hull property. Notice that two of the control values

are on the ends of the curve. If at least one of the control values is non-positive, we

first verify that if the non-positive control values is on the ends of the curve. If it is,

the element is invalid because there is at least one non-positive value on the Jacobian

of this element. If both of the ends of the curve are positive, the algorithm splits

the curve into two curves and verifies the positiveness on the two sub-curves. The

Bézier subdivision algorithm recursively splits the curve and verifies the positiveness

until either all the control values of the sub-curves are positive, or found at least one

non-positive value on the curve. So the algorithm always terminates.

Algorithm 5: The positiveness verification on a fourth-order Bézier curve

1 Algorithm: Subdivision(P0, P1, P2, P3, P4)

Input : P0, P1, P2, P3, P4 are the five control points of a fourth-order Bézier
curve.

Output: A boolean value.

2 if Minimum(P0, P1, P2, P3, P4) > 0 then

3 return true
4 end

5 if P0 ≤ 0 ∨ P4 ≤ 0 then

6 return false
7 end

8 P01 = Middle(P0, P1)
9 P12 = Middle(P1, P2)

10 P23 = Middle(P2, P3)
11 P34 = Middle(P3, P4)
12 P012 = Middle(P01, P12)
13 P123 = Middle(P12, P23)
14 P234 = Middle(P23, P34)
15 P0123 = Middle(P012, P123)
16 P1234 = Middle(P123, P234)
17 P01234 = Middle(P0123, P1234)
18 returnBézierCurveSubdivision(P0, P01, P012, P0123, P01234) ∧

BézierCurveSubdivision(P01234, P1234, P234, P34, P4)

47

T 0
300

T 0
210 T 0

201

T 0
102

T 0
003

T 0
012

T 0
021

T 0
030

T 0
120

T 1
200

T 1
002

T 1
011

T 1
020

T 1
101

T 1
110

T 2
100

T 2
001

T 2
010

T 0
111

T 1
200 = uT 0

300 + vT 0
210 + wT 0

201,
T 1
110 = uT 0

210 + vT 0
120 + wT 0

111,
T 1
101 = uT 0

201 + vT 0
111 + wT 0

102,
T 1
020 = uT 0

120 + vT 0
030 + wT 0

021,
T 1
011 = uT 0

111 + vT 0
021 + wT 0

012,
T 1
002 = uT 0

102 + vT 0
012 + wT 0

003,
T 2
100 = uT 1

200 + vT 1
110 + wT 1

101,
T 2
010 = uT 1

110 + vT 1
020 + wT 1

011,
T 2
001 = uT 1

101 + vT 1
011 + wT 1

002,
T 3
000 = uT 2

100 + vT 2
010 + wT 2

001.

FIG. 19: An illustration of the de Casteljau Algorithm for a cubic Bézier triangle.
The control points T 0

i
form a control net, and the black triangles △T 0

300T
0
210T

0
201,

△T 0
210T

0
120T

0
111, △T

0
201T

0
111T

0
102, △T

0
120T

0
030T

0
021, △T

0
111T

0
021T

0
012 and △T 0

102T
0
012T

0
003 are

called control triangles.

4.2.2 VALIDITY VERIFICATION BY THE CONTROL NET OF THE

ELEMENT

Denote A(p,q, r) the signed area of the triangle △pqr,

2A(p,q, r) =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

px qx rx

py qy ry

∣

∣

∣

∣

∣

∣

∣

∣

,

and p = (px, py), q = (qx, qy), r = (rx, ry). A triangle is considered not inverted if its

vertices are labeled counterclockwise, meaning that the signed area of the triangle is

positive.

Theorem 4.2.1. A cubic Bézier triangle has strictly positive Jacobian if the control

net of the cubic Bézier triangle is not twisted, meaning that all the control triangles

(black triangles in Fig. 19 composed by control points) in the control net are not

inverted.

Proof. The proof mainly depends on the de Casteljau Algorithm for a cubic Bézier

triangle [48] (illustrated in Fig. 19). Denote e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1). Given a set of control points T 0
i
∈ R2 and barycentric coordinates u =

48

(u, v, w), set

T r
i
(u) = uT r−1

i+e1(u) + vT r−1
i+e2(u) + wT r−1

i+e3(u), r = 1, ..., n, |i|= n− r,

then T n
0
(u) is the point with parameter u on the n-th order Bézier triangle T n.

We first prove that the Jacobian has the same sign as the signed area of the

triangle △T 2
100T

2
010T

2
001 in Fig. 19, then we observe that if there is no inverted control

triangle, then the triangle △T 2
100T

2
010T

2
001 has positive area.

The Jacobian can be written as:

|J |=

∣

∣

∣

∣

∣

∂T 3
x

∂x̂

∂T 3
x

∂ŷ
∂T 3

y

∂x̂

∂T 3
y

∂ŷ

∣

∣

∣

∣

∣

=
1

3

∣

∣

∣

∣

∣

∣

∣

∣

3 0 0
∂T 3

x

∂u
+ ∂T 3

x

∂v
+ ∂T 3

x

∂w

∂T 3
x

∂x̂

∂T 3
x

∂ŷ
∂T 3

y

∂u
+

∂T 3
y

∂v
+

∂T 3
y

∂w

∂T 3
y

∂x̂

∂T 3
y

∂ŷ

∣

∣

∣

∣

∣

∣

∣

∣

.

Because u = 1− x̂− ŷ, v = x̂ and w = ŷ, we have ∂u
∂x̂

+ ∂v
∂x̂

+ ∂w
∂x̂

= 0, ∂u
∂ŷ

+ ∂v
∂ŷ

+ ∂w
∂ŷ

= 0

and
∣

∣

∣

∣

∣

∣

∣

∣

1 ∂u
∂x̂

∂u
∂ŷ

1 ∂v
∂x̂

∂v
∂ŷ

1 ∂w
∂x̂

∂w
∂ŷ

∣

∣

∣

∣

∣

∣

∣

∣

= 3,

thus

|J |=
1

3

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
∂T 3

x

∂u

∂T 3
x

∂v

∂T 3
x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ∂u
∂x̂

∂u
∂ŷ

1 ∂v
∂x̂

∂v
∂ŷ

1 ∂w
∂x̂

∂w
∂ŷ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
∂T 3

x

∂u

∂T 3
x

∂v

∂T 3
x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

∣

∣

∣

∣

∣

∣

∣

∣

.

Because
∂T 1

200

∂u
,

∂T 1

110

∂u
and

∂T 1

101

∂u
can be computed as: (refer to Fig. 19)

∂T 1
200

∂u
=

∂(uT 0
300 + vT 0

210 + wT 0
201)

∂u
= T 0

300,

∂T 1
110

∂u
=

∂(uT 0
210 + vT 0

120 + wT 0
111)

∂u
= T 0

210,

∂T 1
101

∂u
=

∂(uT 0
201 + vT 0

111 + wT 0
102)

∂u
= T 0

201,

then

∂T 2
100

∂u
=

∂(uT 1
200 + vT 1

110 + wT 1
101)

∂u

= T 1
200 + u

∂T 1
200

∂u
+ v

∂T 1
110

∂u
+ w

∂T 1
101

∂u

= T 1
200 + uT 0

300 + vT 0
210 + wT 0

201

= T 1
200 + T

1
200

= 2T 1
200.

49

And
∂T 2

010

∂u
,

∂T 2

001

∂u
can be derived similarly:

∂T 2
010

∂u
= 2T 1

110,

∂T 2
001

∂u
= 2T 1

101.

Thus,

∂T 3

∂u
=

∂(uT 2
100 + vT 2

010 + wT 2
001)

∂u

=
∂(uT 2

100)

∂u
+

∂(vT 2
010)

∂u
+

∂(wT 2
001)

∂u

= T 2
100 + u

∂T 2
100

∂u
+ v

∂T 2
010

∂u
+ w

∂T 2
001

∂u

= T 2
100 + u2T 1

200 + v2T 1
110 + w2T 1

101

= 3T 2
100.

Similarly, we derive the following equations:

∂T 3

∂v
= 3T 2

010,

∂T 3

∂w
= 3T 2

001.

Therefore, the Jacobian can be computed as

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
∂T 3

x

∂u

∂T 3
x

∂v

∂T 3
x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

3T 2
100x 3T 2

010x 3T 2
001x

3T 2
100y 3T 2

010y 3T 2
001y

∣

∣

∣

∣

∣

∣

∣

∣

= 9

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

T 2
100x T

2
010x T

2
001x

T 2
100y T

2
010y T

2
001y

∣

∣

∣

∣

∣

∣

∣

∣

= 18A(T 2
100, T

2
010, T

2
001).

So the Jacobian has the same sign as the signed area of the triangle △T 2
100T

2
010T

2
001.

Because of the structure of the control net, when the vertices of all the triangles

in the control net are in the counterclockwise order, the vertices of all the triangles

50

in the second layer control net (formed by vertices T 1
i
) are also in the counterclock-

wise order, so do the triangles in the third layer control net (formed by triangle

△T 2
100T

2
010T

2
001). Thus, the intermediate triangle △T 2

100T
2
010T

2
001 has positive area, and

therefore the Jacobian is positive.

4.3 MESH UNTANGLING

It is usually not enough to curve only the mesh boundary because some control

points may be located such that invalid elements occur. In such case, edges in the

interior of the mesh should also be curved to eliminate the invalidity or to improve

the curved element quality.

We move the control points of the interior mesh edges using a finite element

method [1]. The geometry of the domain to be meshed is represented as an elastic

solid. For each linear mesh edge, the two points which are located in the one third

and two thirds ratio of each edge are computed. These points together with the mesh

vertices are the original positions of the control points of the edges before deforma-

tion. These points form the control nets of the linear mesh elements. The control nets

together as a whole is the undeformed geometry (shown in Figure 20b). The external

loads are the displacements of the control points (red points in Figure 20c) of the

smooth curved boundary edges. The control nets are deformed such that when the

control points of the boundary edges of the linear mesh moved to the corresponding

control points of the curved boundary edge, the new positions of the control points of

the interior mesh edges are determined by solving for the equilibrium configuration

of an elasticity problem. Figure 20 illustrates these steps.

(a) Invalid mesh (b) The control nets (c) The external loads (d) The final mesh

FIG. 20: An illustration of eliminating the element invalidity or improving the ele-

ment quality.

51

(a) The mesh com-

posed of one element

(b) The invalid mesh

with twisted control

net

(c) The one-step FE

method was applied,

but the control net is

still twisted

(d) The iterative FE

method successfully

corrected the twisted

control net

FIG. 21: An illustration of the iterative finite element method.

In some cases, the one step finite element method can handle this problem suc-

cessfully. However, in the case that the curvature of the boundary edge is very large,

the interior edges may not be able to be curved enough to correct the invalidity. The

iterative finite element method successfully solves this problem. Figure 21 illustrates

the iterative FE method. In this example there is only one element in the mesh, the

black border line represents the mesh boundary, the blue point represents one control

point of the linear boundary edge. The red point represents the corresponding con-

trol point of the curved boundary edge. The green point is one of the mesh vertices

on the mesh boundary, thus it has to maintain its position. The control net is invalid

because there exists an inverted triangle. When one step FE method was applied,

the blue point was directly moved to the red point. After solving for the equilibrium

configuration, the control net is still twisted. However, when the yellow point was

considered as the intermediate displacement, the blue point was first moved to the

yellow point, then moved to the red point, the two iteration FE method successfully

corrected the twisted control net.

(a) Part of final mesh after one-step FE

method

(b) Part of final mesh after eight iterations

of iterative FE method

FIG. 22: A comparison of the result of one-step FE method and the result of the

iterative FE method. Red edges high light the tangled element.

52

The iterative FE method executes the validity check before each round. When it is

reported that an invalid element exists, the procedure divides the segments formed by

the control points of the linear boundary edges and the corresponding control points

of the curved edges. The procedure takes the endpoints of the subsegments one

by one as the intermediate external loadings, and takes the solution of the current

external loadings as the undeformed geometry of the next external loadings. The

algorithm terminates when all the invalid elements are corrected. Figure 22 shows

an example of the comparison of the result of one-step FE method and the result of

the iterative FE method.

53

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 THREE-DIMENSIONAL LINEAR MESHING RESULTS

We apply the proposed octree refinement and decimation algorithm (ORD) to

both synthetic and real medical data in the following sections. All the experiments

were conducted on a 64-bit machine equipped with two 3.06 GHz 6-Core Intel Xeon

CPU and 64 GB main memory. The algorithm was implemented in C++, in both

two and three dimensions.

Our algorithm deals with segmented images in which each voxel is associated with

a label in accordance with the material the voxel belongs to. The evaluation of our

algorithm includes the visualization of the final meshes, run time, and the number

of tetrahedra, decided by the input geometry. In the following, the first subsection

evaluates on a three-dimensional geometry (Cassini surface). The final mesh with a

fixed size and other parameters is visualized, and is compared with the final mesh

generated by LD algorithm with the same size and parameters. This way, we gain

insight into the result in terms of the topological correctness. We also evaluate the

run time with respect to different sizes of the Cassini surface and fixed quality and

fidelity parameters, and evaluate the number of tetrahedra with respect to a fixed

size of the Cassini surface and varied quality and fidelity parameters.

The second subsection evaluates on several real-world medical images: a head

neck atlas [49], a knee atlas [50], an abdomen atlas [51] and an abdomen background

atlas [51]. Each of these atlases is a segmented medical image whose domain is a

multi-domain where each subdomain corresponds to a specific tissue. We visualize

the final meshes, and evaluate the run time and the number of tetrahedra with respect

to varied quality and fidelity parameters.

For the 3D visualization of the final meshes, we used ParaView [52], an open-

source visualization software. In this section the barred symbols H̄, h̄, and θ̄ stand

for the bounds that are guaranteed by the algorithm, while the regular symbols H,

h, and θ represent the values measured from the output meshes.

54

5.1.1 SYNTHETIC BENCHMARK—THREE-DIMENSIONAL

CASSINI SURFACE

(a) Cassini data set

(b) Final mesh of ORD

(c) Final mesh of LD

FIG. 23: The comparison of the ORD mesh and the LD mesh on Cassini for

h̄(I,M) = 2, h̄(M, I) = 2 and θ̄ = 19.47◦ on topology.

Figure 23 shows the output meshes of the proposed ORD algorithm and the

LD algorithm for Cassini of a fixed size of 100 voxels in each dimension. We set

the symmetric Hausdorff distance 2 voxels and the minimum dihedral angle bound

55

19.47◦. Figure 23c shows the final mesh of the LD algorithm. From the input data

set, the original topology is ”face-to-face” connect, while the part of LD mesh in the

roomed-in view does not maintain the topology of the original image, although it

maintains the tissue connectivity. The final mesh of the ORD algorithm (shown in

23b) shows ”face-to-face” connect in the part of the mesh in the zoomed-in view,

therefore maintains the topology of the original image.

TABLE 2: The comparison of final number of tetrahedra for ORD and LD

h̄(I,M) h̄(M, I)

Resulting number of tetrahedra

θ̄ = 5◦ θ̄ = 10◦

ORD LD ORD LD

0 0 1,804,020 2,759,879 1,985,280 3,086,398

0 1 1,772,499 2,251,579 1,990,606 2,534,690

0 2 19,294 1,164,428 50,621 1,423,068

1 0 2,536,685 2,737,787 2,877,747 3,058,038

1 1 1,769,593 2,107,505 1,990,916 2,351,398

1 2 17,004 718,675 48,846 915,237

2 0 2,031,825 2,769,166 2,232,203 3,044,782

2 1 1,747,493 2,047,444 1,925,185 2,272,424

2 2 16,826 512,485 43,744 629,291

h̄(I,M) h̄(M, I)

Resulting number of tetrahedra

θ̄ = 15◦ θ̄ = 19.47◦

ORD LD ORD LD

0 0 2,198,280 3,505,180 2,799,217 5,415,193

0 1 2,338,183 2,990,277 3,419,832 4,756,283

0 2 198,320 1,940,147 866,719 4,659,695

1 0 3,263,521 3,533,180 4,253,085 5,270,459

1 1 2,329,039 2,766,013 3,414,341 4,435,609

1 2 193,271 1,368,816 856,591 3,946,446

2 0 2,454,476 3,514,740 3,137,021 5,500,846

2 1 2,186,278 2,685,738 3,029,784 4,675,325

2 2 193,687 1,034,359 855,199 3,700,563

Table 2 shows the comparison of the output mesh size of the ORD algorithm

and LD algorithm for a Cassini surface of a fixed diameter of 400 voxels. In these

tests, we fixed the size of the Cassini surface and the dihedral angle bound, and

vary each of the two one-sided Hausdorff distance bound parameters independently.

The different interesting values of the dihedral angle bound were set to 5◦, 10◦, 15◦,

and 19.47◦ spread through the range of its feasible values (0◦ to 19.47◦). As we can

see from Table 2, in every case, the size of the output mesh generated by the ORD

algorithm is smaller than the size of the output mesh generated by the LD algorithm.

56

Size of image, voxel units
100

3
150

3
200

3
225

3
250

3
275

3
300

3
310

3
320

3
330

3
340

3
350

3
360

3
370

3
380

3
390

3
400

3

T
im

e
:

(s
e

c
o

n
d

s
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200
θ = 5

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Size of image, voxel units
100

3
150

3
200

3
225

3
250

3
275

3
300

3
310

3
320

3
330

3
340

3
350

3
360

3
370

3
380

3
390

3
400

3

T
im

e
:

(s
e

c
o

n
d

s
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200
θ = 10

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Size of image, voxel units
100

3
150

3
200

3
225

3
250

3
275

3
300

3
310

3
320

3
330

3
340

3
350

3
360

3
370

3
380

3
390

3
400

3

T
im

e
:

(s
e

c
o

n
d

s
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210
θ = 15

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Size of image, voxel units
100

3
150

3
200

3
225

3
250

3
275

3
300

3
310

3
320

3
330

3
340

3
350

3
360

3
370

3
380

3
390

3
400

3

T
im

e
:

(s
e

c
o

n
d

s
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220
θ = 19.47

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

FIG. 24: A breakdown of the total run time of ORD and LD into the major com-
putational parts, as the diameter of the Cassini varies from 100 to 400 voxels.
h̄(I,M) = 2, h̄(M, I) = 2. The left bar shows the ORD time and the right bar
shows the LD time.

The reason is that LD refines the octree to the deepest level so that the initial mesh

has a large number of elements. But ORD refines the octree to a smaller depth so

that the initial mesh contains a lower number of elements. The output mesh sizes

also decrease proportional to the quality and fidelity parameters, since the weaker

constraints can be satisfied with a smaller number of tetrahedra: the output mesh

size is high when h̄(I,M) and(or) h̄(M, I) is low, and decreases as h̄(I,M) and(or)

h̄(M, I) increases. Similarly, the final number of tetrahedra decreases as the dihedral

angle bound decreases.

In time measurements we exclude the time taken by input and output and by the

process of initializing the data structure representing the initial image. Figure 24

57

shows a breakdown of the total running time into the main computational compo-

nents, as the diameter of the Cassini grows from 100 to 400 voxels, and h̄(I,M) = 2,

h̄(M, I) = 2. These parts are the computation of the distance transform, the con-

struction of the octree, the construction of the initial mesh that fills the leaves of the

octree, the finding of the connectivity among the tetrahedra of the initial mesh, and

the decimation. We conclude that all components represented in the figure grow ap-

proximately linear with respect to the total number of voxels in the image, while the

sharp jump between the diameter values of 250 and 275 corresponds to the increase

of the octree size which can only take values of powers of two. For all configurations

the ORD algorithm is less expensive than the LD algorithm. The octree construction

of the ORD algorithm is more expensive than the LD algorithm, since to generate a

much coarser mesh, extra computations have to spend on the simple manifold condi-

tion and fidelity check. However, the time was saved on the initial mesh construction,

connection, and decimation, because the number of elements in the initial ORD mesh

is much lower than the number of elements in the initial LD mesh.

5.1.2 MULTI-TISSUE THREE-DIMENSIONAL MEDICAL IMAGES

For the following examples, the input of the algorithm is segmented medical

images with multiple labels. Table 3 shows the information about the input images.

Before meshing the images, we resampled them with voxels of equal side length

corresponding to the smallest original units to obtain equally spaced images that

were used for meshing. Figure 25, 26, 27 and 28 show the final meshes produced on

these input images and the corresponding cut views.

TABLE 3: Information about the multi-material medical images

Image ID Image name Resolution Spacing (mm3) Tissues

1 head neck 255 × 255 × 229 0.97 × 0.97 × 1.40 60

2 knee 512 × 512 × 119 0.27 × 0.27 × 1.00 49

3 abdomen 512 × 512 × 219 0.96 × 0.96 × 2.40 22

4 abdomen background 512 × 512 × 219 0.96 × 0.96 × 2.40 23

In Table 4 we show the comparison of the output mesh size of the ORD algorithm

and LD algorithm for the four input images. We fixed the two-sided Hausdorff

distance bound parameters, and vary the dihedral angle bound to the value 5◦, 10◦,

15◦, and 19.47◦ spread through the range of its feasible values (0◦ to 19.47◦). For

58

each fixed value of parameter h̄(I,M) and h̄(M, I), the first row shows the number of

tetrahedra before decimation, and the rest rows show the final number of tetrahedra

after decimation with different values of parameter θ. As we can see from Table 4,

the output mesh size is low when either or both h̄(I,M) h̄(M, I) is high for all

configurations. Also, the final number of tetrahedra decreases as the dihedral angle

bound decreases. The tetrahedra generated by ORD before decimation is much fewer

than the tetrahedra generated by LD before decimation. When H̄(I,M) = 0 and

H̄(I,M) = 1, the sizes of ORD meshes are slightly smaller than the sizes of LD

meshes. However, when H̄(I,M) = 2, the ORD algorithm generated a significant

smaller number of tetrahedra compared to the number of tetrahedra generated by

the LD algorithm. We conclude that the ORD algorithm performs better in terms of

the number of tetrahedra than LD algorithm even though it maintains the topology.

Figure 29 shows breakdowns of the total running time into the main computa-

tional components as the symmetric Hausdorff distance bound set to 2 voxels and

the angle bound varies among 5◦, 10◦, 15◦ and 19.47◦ on the four input images. For

image head neck, the performance of LD algorithm is the same (when the angle bound

is 19.47◦) or slightly better than the ORD algorithm, while in all the other cases, the

ORD algorithm performs better than LD algorithm. The reason is that for a small

data set where the surface-to-volume ratio is high, most computations are spent on

constructing a coarse mesh in the octree construction step. But for large data sets,

once the coarse surface is constructed, it grades quickly towards the center.

Figure 30 and Figure 31 gives insight how the run time distributed in the octree

construction and the decimation respectively. These two figures show how we ar-

ranged the sequences of pass-fail condition evaluations such that the least expensive

conditions and those most likely to fail are evaluated first. For example, in the octree

construction, the simple manifold condition is conducted firstly and the two-sided

Hausdorff distance evaluation is conducted lastly because the evaluation of the sim-

ple manifold condition on a single leaf is not expensive. Similarly in the decimation,

the quality evaluation is conducted firstly and the topology evaluation is conducted

finally because the evaluation of the simple manifold condition on multiple leaves is

more expensive.

59

(a) Final mesh (b) A cut view

FIG. 25: The ORDmesh and a cut view of the head neck for h̄(I,M) = 2, h̄(M, I) = 2

and θ̄ = 15◦.

(a) Final mesh (b) A cut view

FIG. 26: The ORD mesh and a cut view of the knee for h̄(I,M) = 2, h̄(M, I) = 2

and θ̄ = 15◦.

60

(a) Final mesh (b) A cut view

FIG. 27: The ORD mesh and a cut view of the abdomen for h̄(I,M) = 2, h̄(M, I) = 2

and θ̄ = 19.47◦.

(a) Final mesh (b) A cut view

FIG. 28: The ORD mesh and a cut view of the abdomen background for h̄(I,M) = 2,

h̄(M, I) = 2 and θ̄ = 19.47◦.

61

TABLE 4: The comparison of final number of tetrahedra for ORD and LD

h̄(I,M) = 0, h̄(M, I) = 0

Input head neck knee

Algorithm ORD LD ORD LD

Before decimation 6,327,256 7,594,020 35,320,498 46,373,356

After decimation with θ̄ = 19.47◦ 3,426,932 3,989,203 15,444,410 20,030,904

After decimation with θ̄ = 15.00◦ 2,981,503 3,143,790 12,244,059 13,844,888

After decimation with θ̄ = 10.00◦ 2,810,071 2,924,632 11,094,344 12,412,983

After decimation with θ̄ = 5.00◦ 2,651,199 2,701,699 10,100,664 11,147,366

h̄(I,M) = 0, h̄(M, I) = 0

Input abdomen abdomen background

Algorithm ORD LD ORD LD

Before decimation 32,237,816 42,202,662 78,093,018 104,106,742

After decimation with θ̄ = 19.47◦ 14,250,189 18,163,216 33,103,866 43,542,841

After decimation with θ̄ = 15.00◦ 11,374,746 12,656,733 25,878,728 29,372,760

After decimation with θ̄ = 10.00◦ 10,328,705 11,329,731 23,334,857 26,138,425

After decimation with θ̄ = 5.00◦ 9,424,694 10,146,908 21,171,900 23,372,206

h̄(I,M) = 1, h̄(M, I) = 1

Input head neck knee

Algorithm ORD LD ORD LD

Before decimation 6,103,367 7,579,516 32,888,166 46,544,124

After decimation with θ̄ = 19.47◦ 3,260,361 3,886,950 14,068,574 19,032,469

After decimation with θ̄ = 15.00◦ 2,817,508 3,024,995 11,080,778 12,588,781

After decimation with θ̄ = 10.00◦ 2,652,812 2,806,558 10,082,613 11,160,507

After decimation with θ̄ = 5.00◦ 2,513,153 2,588,679 9,243,276 9,935,281

h̄(I,M) = 1, h̄(M, I) = 1

Input abdomen abdomen background

Algorithm ORD LD ORD LD

Before decimation 30,530,656 42,344,304 75,573,274 104,024,688

After decimation with θ̄ = 19.47◦ 13,253,140 17,608,762 31,410,834 41,943,017

After decimation with θ̄ = 15.00◦ 10,533,610 11,994,099 24,126,057 27,470,652

After decimation with θ̄ = 10.00◦ 9,607,409 10,646,685 21,706,906 24,187,838

After decimation with θ̄ = 5.00◦ 8,823,564 9,488,867 19,751,996 21,567,190

h̄(I,M) = 2, h̄(M, I) = 2

Input head neck knee

Algorithm ORD LD ORD LD

Before decimation 4,472,537 8,046,988 24,144,753 56,415,318

After decimation with θ̄ = 19.47◦ 1,013,863 1,992,313 5,677,360 14,198,097

After decimation with θ̄ = 15.00◦ 475,250 654,756 2,135,102 3,837,660

After decimation with θ̄ = 10.00◦ 302,740 456,699 1,121,325 2,335,844

After decimation with θ̄ = 5.00◦ 227,256 367,618 740,320 1,881,087

h̄(I,M) = 2, h̄(M, I) = 2

Input abdomen abdomen background

Algorithm ORD LD ORD LD

Before decimation 19,927,216 51,284,042 52,484,086 128,702,656

After decimation with θ̄ = 19.47◦ 4,189,035 12,434,028 12,961,174 35,150,634

After decimation with θ̄ = 15.00◦ 1,699,631 3,426,170 4,796,130 8,890,392

After decimation with θ̄ = 10.00◦ 980,373 2,081,046 2,298,430 5,057,907

After decimation with θ̄ = 5.00◦ 683,145 1,644,226 1,398,060 4,062,051

62

Image ID
1 2 3 4

T
im

e
:
(s

e
c
o
n
d
s
)

0

100

200

300

400

500

600

700

800

900

1000
θ = 5

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Image ID
1 2 3 4

T
im

e
:

(s
e

c
o

n
d

s
)

0

100

200

300

400

500

600

700

800

900

1000

1100
θ = 10

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Image ID
1 2 3 4

T
im

e
:

(s
e

c
o

n
d

s
)

0

100

200

300

400

500

600

700

800

900

1000

1100
θ = 15

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

Image ID
1 2 3 4

T
im

e
:

(s
e

c
o

n
d

s
)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200
θ = 19.47

°

Distance transform
Octree creation
Initial mesh
Mesh connect
Decimation

FIG. 29: Comparison of the breakdowns of the total running time into the main

computational components for ORD and LD on the four input data sets for h̄(I,M) =

2, h̄(M, I) = 2 and θ̄ varies among 5◦, 10◦, 15◦ and 19.47◦. The left bar shows the

ORD time and the right bar shows the LD time.

63

H(I, M), voxel units
0 1 2

T
im

e
:
(s

e
c
o
n
d
s
)

0

5

10

15

20

25

30
head neck

Simple manifold check
octree balancing
Fidelity check
Surface construction

H(I, M), voxel units

0 1 2
0

10

20

30

40

50

60

70

80

90

100
knee

H(I, M), voxel units

0 1 2
0

20

40

60

80

100

120
abdomen

H(I, M), voxel units

0 1 2
0

20

40

60

80

100

120

140

160

abdomen background

FIG. 30: The breakdowns of the octree creation time into four computational com-

ponents for ORD on the four input data sets. H̄(I,M) varies from 0 to 2.

θ, degree
5
°

10
°

15
°

19.47
°

T
im

e
:

(s
e

c
o

n
d

s
)

0

5

10

15

20

25

30
head neck

Quality check
Fidelity check M->I
Fidelity check I->M
Topology check

θ, degree
5
°

10
°

15
°

19.47
°

0

10

20

30

40

50

60

70

80
knee

θ, degree
5
°

10
°

15
°

19.47
°

0

10

20

30

40

50

60

70

80
abdomen

θ, degree
5
°

10
°

15
°

19.47
°

0

20

40

60

80

100

120

140
abdomen background

FIG. 31: The breakdowns of the decimation time into four computational components

for ORD on the four input data sets for h̄(I,M) = 2 and h̄(M, I) = 2 and θ̄ varies

among 5◦, 10◦, 15◦ and 19.47◦.

64

A histogram of all dihedral angles is shown for each example in Figure 32. Empty

bars show zero frequency. From Figure 32, all the dihedral angles are distributed

between 15◦ and 165◦, and the three peaks occur at 45◦, 90◦ and 135◦.
F

re
q

u
e

n
c
y

×10
5

0

0.5

1

1.5

2

2.5

3
[0

,5
)

[5
,1

0
)

[1
0

,1
5

)
[1

5
,2

0
)

[2
0

,2
5

)
[2

5
,3

0
)

[3
0

,3
5

)
[3

5
,4

0
)

[4
0

,4
5

)
[4

5
,5

0
)

[5
0

,5
5

)
[5

5
,6

0
)

[6
0

,6
5

)
[6

5
,7

0
)

[7
0

,7
5

)
[7

5
,8

0
)

[8
0

,8
5

)
[8

5
,9

0
)

[9
0

,9
5

)
[9

5
,1

0
0

)
[1

0
0

,1
0

5
)

[1
0

5
,1

1
0

)
[1

1
0

,1
1

5
)

[1
1

5
,1

2
0

)
[1

2
0

,1
2

5
)

[1
2

5
,1

3
0

)
[1

3
0

,1
3

5
)

[1
3

5
,1

4
0

)
[1

4
0

,1
4

5
)

[1
4

5
,1

5
0

)
[1

5
0

,1
5

5
)

[1
5

5
,1

6
0

)
[1

6
0

,1
6

5
)

[1
6

5
,1

7
0

)
[1

7
0

,1
7

5
)

[1
7

5
,1

8
0

)

head neck

F
re

q
u

e
n

c
y

×10
5

0

2

4

6

8

10

12

14

[0
,5

)
[5

,1
0

)
[1

0
,1

5
)

[1
5

,2
0

)
[2

0
,2

5
)

[2
5

,3
0

)
[3

0
,3

5
)

[3
5

,4
0

)
[4

0
,4

5
)

[4
5

,5
0

)
[5

0
,5

5
)

[5
5

,6
0

)
[6

0
,6

5
)

[6
5

,7
0

)
[7

0
,7

5
)

[7
5

,8
0

)
[8

0
,8

5
)

[8
5

,9
0

)
[9

0
,9

5
)

[9
5

,1
0

0
)

[1
0

0
,1

0
5

)
[1

0
5

,1
1

0
)

[1
1

0
,1

1
5

)
[1

1
5

,1
2

0
)

[1
2

0
,1

2
5

)
[1

2
5

,1
3

0
)

[1
3

0
,1

3
5

)
[1

3
5

,1
4

0
)

[1
4

0
,1

4
5

)
[1

4
5

,1
5

0
)

[1
5

0
,1

5
5

)
[1

5
5

,1
6

0
)

[1
6

0
,1

6
5

)
[1

6
5

,1
7

0
)

[1
7

0
,1

7
5

)
[1

7
5

,1
8

0
)

knee

F
re

q
u

e
n

c
y

×10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[0
,5

)
[5

,1
0

)
[1

0
,1

5
)

[1
5

,2
0

)
[2

0
,2

5
)

[2
5

,3
0

)
[3

0
,3

5
)

[3
5

,4
0

)
[4

0
,4

5
)

[4
5

,5
0

)
[5

0
,5

5
)

[5
5

,6
0

)
[6

0
,6

5
)

[6
5

,7
0

)
[7

0
,7

5
)

[7
5

,8
0

)
[8

0
,8

5
)

[8
5

,9
0

)
[9

0
,9

5
)

[9
5

,1
0

0
)

[1
0

0
,1

0
5

)
[1

0
5

,1
1

0
)

[1
1

0
,1

1
5

)
[1

1
5

,1
2

0
)

[1
2

0
,1

2
5

)
[1

2
5

,1
3

0
)

[1
3

0
,1

3
5

)
[1

3
5

,1
4

0
)

[1
4

0
,1

4
5

)
[1

4
5

,1
5

0
)

[1
5

0
,1

5
5

)
[1

5
5

,1
6

0
)

[1
6

0
,1

6
5

)
[1

6
5

,1
7

0
)

[1
7

0
,1

7
5

)
[1

7
5

,1
8

0
)

abdomen

F
re

q
u

e
n

c
y

×10
6

0

2

4

6

8

10

12

14

16

[0
,5

)
[5

,1
0

)
[1

0
,1

5
)

[1
5

,2
0

)
[2

0
,2

5
)

[2
5

,3
0

)
[3

0
,3

5
)

[3
5

,4
0

)
[4

0
,4

5
)

[4
5

,5
0

)
[5

0
,5

5
)

[5
5

,6
0

)
[6

0
,6

5
)

[6
5

,7
0

)
[7

0
,7

5
)

[7
5

,8
0

)
[8

0
,8

5
)

[8
5

,9
0

)
[9

0
,9

5
)

[9
5

,1
0

0
)

[1
0

0
,1

0
5

)
[1

0
5

,1
1

0
)

[1
1

0
,1

1
5

)
[1

1
5

,1
2

0
)

[1
2

0
,1

2
5

)
[1

2
5

,1
3

0
)

[1
3

0
,1

3
5

)
[1

3
5

,1
4

0
)

[1
4

0
,1

4
5

)
[1

4
5

,1
5

0
)

[1
5

0
,1

5
5

)
[1

5
5

,1
6

0
)

[1
6

0
,1

6
5

)
[1

6
5

,1
7

0
)

[1
7

0
,1

7
5

)
[1

7
5

,1
8

0
)

abdomen background

FIG. 32: A histogram of all dihedral angles for each of the output meshes in Figure

25, 26, 27 and 28. Empty bars show zero frequency.

We also conducted an experiment using an open source mesh generator Computa-

tional Geometry Algorithms Library (CGAL) [53] and compare the performance with

the performance of the ORD algorithm. Table 5, 6 and 7 present our experimental

evaluation of the I2M conversion functionality make mesh 3 offered by CGAL and

by ORD. The parameters of function make mesh 3 are described below:

1. Input domain: 3D labeled images head neck, knee, abdomen and abdomen back-

ground without re-sampling.

2. facet angle: A lower bound for the angle (in degree) of surface facets; we set it to

an ignored value.

3. facet size: An upper bound for the radii of surface Delaunay balls; it controls the

65

size of surface facets; we set it to an ignored value.

4. facet distance: An upper bound for the distance between the circumcenter of a

surface facet and the center of a surface Delaunay ball of this facet; it controls the

approximation error of boundary and subdivision surfaces; we varied this parameter

as shown in the table.

5. facet topology : it controls the set of topological constraints which have to be veri-

fied by each surface facet; by default, each vertex of a surface facet has to be located

on a surface patch, on a curve segment, or on a corner; it can also be set to check

whether the three vertices of a surface facet belongs to the same surface patch; we

set it to an ignored value.

6. cell radius edge ratio: an upper bound for the ratio between the circumradius of

a mesh tetrahedron and its shortest edge; we used 2.0.

7. cell size: an upper bound on the circumradii of the mesh tetrahedra; we set it to

an ignored value.

8. lloyd(), odt(), perturb(), exude(): they control which optimization processes are

performed; we used four combinations specified in the table.

In Table 5, 6 and 7, we vary the value of parameter facet distance, and show

h(M, I) and h(I,M). They are measured by resampled voxel unit. We also list the

final number of tetrahedra produced by CGAL, the minimum dihedral angle (mea-

sured by degree) and the total running time (measured by seconds). In some cases,

when the value of parameter facet distance increased, the value of h(M, I) increased,

however, there is no obvious relationship between facet distance and h(M, I). Fur-

thermore, the values of h(I,M) in all the cases are unreasonably large. We conclude

that CGAL can only approximate one-sided Hausdorff distance, while the ORD algo-

rithm can always guarantee that the Hausdorff distance bound is two-sided. CGAL

improves mesh properties such as the dihedral angles using various combinations of

optimization algorithms, however, it could only obtain the best minimum dihedral

angles 5◦. The number of tetrahedra and processing time of CGAL varies signif-

icantly, from much lower than that of the ORD algorithm to order of magnitude

higher, depending on the selection of mesh optimization algorithms.

66

TABLE 5: The comparison of final number of tetrahedra and run time for ORD and

CGAL on head neck

head neck

Opt. no lloyd(), no odt(), perturb(), exude() lloyd(), no odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.1 3 58 2.07 11,379,822 724.76 5 58 2.00 10,936,756 6190.44

ORD N/A 3 58 2.07 770,600 224.13 5 58 2.00 768,883 224.79

CGAL 0.2 2 58 1.71 2,059,641 116.20 3 58 2.26 2,018,163 821.98

ORD N/A 2 58 1.71 772,620 225.50 3 58 2.26 772,834 224.83

CGAL 0.3 2 58 2.43 984,846 55.34 2 58 2.50 970,894 353.20

ORD N/A 2 58 2.43 777,995 224.90 2 58 2.50 778,166 226.52

CGAL 0.4 2 58 3.03 558,328 32.29 2 58 3.11 551,638 191.66

ORD N/A 2 58 3.03 782,480 225.54 2 58 3.11 781,708 226.20

Opt. no lloyd(), odt(), perturb(), exude() lloyd(), odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.1 3 58 1.01 11,131,809 2693.19 3 58 1.17 10,938,526 6708.72

ORD N/A 3 58 1.01 765,806 226.82 3 58 1.17 766,055 224.97

CGAL 0.2 2 58 1.07 2,048,964 414.66300 2 58 3.02 2,017,204 872.25

ORD N/A 2 58 1.07 769,420 227.33 2 58 3.02 782,426 227.41

CGAL 0.3 2 58 0.15 985,924 189.429000 2 58 0.64 970,824 399.63

ORD N/A 2 58 0.15 766,283 226.77 2 58 0.64 767,831 226.91

CGAL 0.4 3 58 1.40 560,335 104.13300 3 59 3.06 552,930 226.41

ORD N/A 3 58 1.40 767,869 225.77 3 59 3.06 778,644 225.41

TABLE 6: The comparison of final number of tetrahedra and run time for ORD and

CGAL on knee

knee

Opt. no lloyd(), no odt(), perturb(), exude() lloyd(), no odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.1 3 29 1.50 3,077,237 139.47 3 29 1.62 3,010,499 1194.83

ORD N/A 3 29 1.50 1,885,707 775.24 3 29 1.62 1,935,538 744.58

CGAL 0.2 3 30 2.52 732,553 29.33 4 30 3.03 723,109 253.02

ORD N/A 3 30 2.52 1,935,538 744.58 4 30 3.03 1,935,538 744.58

CGAL 0.3 4 30 3.33 345,335 15.75 5 30 3.00 342,144 119.78

ORD N/A 4 30 3.33 1,961,041 745.32 5 30 3.00 1,961,041 745.32

CGAL 0.4 4 30 3.40 203,997 8.13 6 30 2.36 202,755 63.55

ORD N/A 4 30 3.40 1,963,608 743.67 6 30 2.36 1,963,608 743.67

Opt. no lloyd(), odt(), perturb(), exude() lloyd(), odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.1 6 29 0.59 3,052,342 545.65 7 29 1.01 3,023,807 1252.05

ORD N/A 6 29 0.59 1,961,041 745.32 7 29 1.01 1,870,359 781.80

CGAL 0.2 6 30 0.79 732,978 119.23 5 30 1.96 729,632 264.77

ORD N/A 6 30 0.79 1,935,538 744.58 5 30 1.96 1,910,120 746.03

CGAL 0.3 6 30 1.29 347,603 52.88 5 31 2.30 347,184 122.07

ORD N/A 6 30 1.29 1,961,041 745.32 5 31 2.30 1,904,132 716.69

CGAL 0.4 8 30 1.02 205,790 31.62 5 30 2.81 206,187 73.00

ORD N/A 8 30 1.02 1,963,608 743.67 5 30 2.81 1,933,393 746.69

67

TABLE 7: The comparison of final number of tetrahedra and run time for ORD and

CGAL on abdomen

abdomen

Opt. no lloyd(), no odt(), perturb(), exude() lloyd(), no odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.2 3 23 1.49 10,349,057 532.06 6 18 1.61 9,979,982 4558.32

ORD N/A 3 23 1.49 1,165,177 1024.49 6 18 1.61 1,160,524 1233.29

CGAL 0.4 3 23 2.26 2,042,684 95.80 4 23 1.74 2,000,988 762.00

ORD N/A 3 23 2.26 1,180,896 1024.59 4 23 1.74 1,163,455 1022.03

CGAL 0.6 4 23 2.35 862,668 39.23 4 24 2.66 849,445 299.09

ORD N/A 4 23 2.35 1,176,734 1021.54 4 24 2.66 1,193,001 1185.63

CGAL 0.8 4 23 3.05 487,277 27.99 4 24 3.20 481,107 163.09

ORD N/A 4 23 3.05 1,201,106 1022.16 4 24 3.20 1,207,731 1184.07

Opt. no lloyd(), odt(), perturb(), exude() lloyd(), odt(), perturb(), exude()

Algorithm facet dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

CGAL 0.2 5 24 1.01 10,178,967 2132.82 5 18 2.01 9,985,320 5079.16

ORD N/A 5 24 1.01 1,149,725 1179.20 5 18 2.01 1,173,067 1233.10

CGAL 0.4 7 18 0.86 2,031,462 379.13 5 18 2.17 2,002,825 800.18

ORD N/A 7 18 0.86 1,144,908 1231.44 5 18 2.17 1,172,660 1229.75

CGAL 0.6 6 19 2.04 862,156 152.53 6 19 2.07 851,196 354.28

ORD N/A 6 19 2.04 1,164,331 1025.44 6 19 2.07 1,170,672 1026.11

CGAL 0.8 8 19 3.05 487,879 85.16 8 23 5.01 481,937 178.30

ORD N/A 8 19 3.05 1,195,433 1033.67 8 23 5.01 1,257,769 1022.35

5.2 TWO-DIMENSIONAL CURVILINEAR MESHING RESULTS

We apply the algorithm to real medical data in the following sections. All the

experiments were conducted on a 64 bit machine equipped with two 3.06 GHz 6-

Core Intel Xeon CPU and 64 GB main memory. The procedure for mesh untangling

and quality improvement was implemented in MATLAB. All the other steps were

implemented in C++ for efficiency.

5.2.1 ORIGINAL INPUT IMAGES

The input data to our algorithm is a two-dimensional image. In the following

mesh examples, we meshed two slices of the mouse brain image [54], two slices of

the human brain image [54], and the fly embryo image [55]. The original images are

listed in Fig. 33.

5.2.2 CONSTRUCTION OF LINEAR MESHES

We show the linear mesh results for the original images with different requirements

in Figure 34. The fidelity tolerance was specified by 4 pixels for the first slice of the

68

Human Brain I of size 239×
233

Human Brain II of size
235× 283

Mouse Brain I of size 198× 169

Mouse Brain II of size 460× 247 Fly Embryo of size 182× 130

FIG. 33: The original images. Each pixel has side lengths of 1 unit in both x, y
directions.

human brain image, and 3 pixels for the second slice of the human brain image; we set

3 pixels for the first slice of the mouse brain image, and 6 pixels for the second slice of

the mouse brain image; for the fly embryo image, the fidelity tolerance was specified

by 2 pixels. For all the linear mesh results, the mesh vertices that are classified

on the mesh boundary were required to be located on the boundary between the

background and the tissue of the image. This requirement results in different angle

bounds for the linear mesh results: the minimum angle bound of the first slice of the

human brain image is 3.2◦, of the second slice is 5.4◦; the bound of the first slice of

the mouse brain image is 3.6◦, of the second slice is 2.8◦; of the fly embryo image, the

bound is 2.8◦. The minimum angle bound is an important measure to the quality of

the linear mesh (the higher the better), and it also directly contributes to the quality

of the curvilinear mesh. For the curved meshes, the quality can not be measured

just simply by calculating the planar angles, however, it can be measured by scaled

Jacobian [44]. The lower minimum angle bound for the linear mesh could lead to

worse scaled Jacobian after curving the linear mesh boundary to a smooth closed

69

Human Brain I Human Brain II Mouse Brain I

Mouse Brain II Fly Embryo

FIG. 34: The linear meshes for the input original images.

path, however, the scaled Jacobian can be improved by the iterative FE method. For

all the linear mesh results, the elements were not coarsened.

5.2.3 CONSTRUCTION OF SMOOTH CURVED BOUNDARIES AND

THE ACCURACY EVALUATION

For each of the above linear meshes, we show the linear mesh boundaries and

the curved boundaries with both C1 and C2 smoothness requirements. In Figure 35,

from left to right for each image, the boundaries are linear boundaries, C1 boundaries

and C2 boundaries.

The accuracy was specified by the number of misclassified pixels that composed

of background pixels that are inside the mesh and tissue pixels that are outside the

mesh. The accuracy of the linear mesh results and the corresponding curvilinear

meshes with C1 and C2 smoothness requirements are listed in Table 8.

For each of the original image with two linear meshing results and their corre-

sponding C1 and C2 smooth boundaries, we list the number of background pixels

inside the mesh, the number of tissue pixels outside the mesh, the total number of

70

misclassified pixels, the percentage for misclassified pixels out of all pixels and the

improved accuracy in percentage for both C1 and C2 smooth boundaries compared to

the linear mesh boundary. Compare the improved accuracy in percentage in Table 8,

both C1 and C2 smooth boundaries improved the accuracy of the representation.

The improved accuracy also relates to the size of the dataset, usually the larger the

image, the more improvement its curvilinear mesh obtained. However, if the linear

mesh is a very close representation of the image object, after smoothing the mesh

boundary, the accuracy can not improve much. Compare the improved accuracy of

the meshes that have C1 smooth boundaries with those of the meshes that have C2

smooth boundaries, the C2 smooth boundaries usually have higher accuracy than

the C1 smooth boundaries, but the differences are not large. We chose the results

that have better accuracy to construct the final valid high quality meshes.

TABLE 8: Accuracy of the mesh boundaries

Image Boundary #
b
ac
kg
ro
u
n
d
p
ix
el
s
in
si
d
e
m
es
h

#
ti
ss
u
e
p
ix
el
s
ou
ts
id
e
m
es
h

#
m
is
cl
as
si
fi
ed

p
ix
el
s

P
er
ce
nt
ag
e
fo
r
m
is
cl
as
si
fi
ed

p
ix
el
s
(%

)

Im
p
ro
ve
d
ac
cu
ra
cy

(%
)

Human Brain I
Linear 70 376 446 0.800 N/A
C2 138 229 307 0.659 31.166
C1 111 268 319 0.681 28.475

Human Brain II
Linear 147 314 461 0.693 N/A
C2 215 216 431 0.648 6.508
C1 206 201 407 0.648 11.714

Mouse Brain I
Linear 73 308 381 1.139 N/A
C2 128 166 294 0.879 22.835
C1 95 205 300 0.897 21.260

Mouse Brain II
Linear 293 1073 1366 1.202 N/A
C2 243 691 934 0.822 31.625
C1 260 687 947 0.834 30.673

Fly Embryo
Linear 39 101 140 0.592 N/A
C2 59 83 120 0.507 14.286
C1 52 89 123 0.520 12.143

5.2.4 FINAL MESHES AND THE QUALITY EVALUATION

When the linear mesh boundaries were curved to closed smooth paths, and the

interior mesh edges remained straight, the invalid elements were created. The number

of invalid elements for Human Brain I is 3, for Human Brain II is 1. There are 4

71

invalid elements for Mouse Brain I, and 9 for Mouse Brain II. The invalid elements

are shown in red in Figure 37a, Figure 38a, Figure 39a and Figure 40a. The iterative

FE method was applied to the invalid meshes. After 5, 5, 6 and 25 iterations, all the

invalid elements were eliminated for these invalid meshes. For Fly Embryo, there is

no invalid element (Figure 41a). We executed 10 iterations to improve the quality

of the elements. The final meshes are shown in Figure 37b, Figure 38b, Figure 39b,

Figure 40b, and Figure 41b.

The quality of the curvilinear meshes was also improved by the iterative FE

method. The measure scaled Jacobian is defined by:

I =
min|J |

max|J |
,

where |J | is the Jacobian of the mapping from the reference coordinates to the

physical coordinates. For a straight-sided element, since its Jacobian is a constant,

I = 1; for a curved element, I ≤ 1. When the curved element is invalid, I is

negative; when it gets degenerated, I approaches to 0. From Figure 36, the iterative

FE method produced more elements with larger scaled Jacobian, thus the poorly

shaped elements were improved significantly.

Scaled Jacobians
(-Inf,0] (0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

N
u
m

b
e
r

o
f
b
o
u
n
d
a
ry

 e
le

m
e
n
ts

0

5

10

15

20

25

30
Scaled Jacobians before FE method

Scaled Jacobians
(-Inf,0] (0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

N
u
m

b
e
r

o
f
b
o
u
n
d
a
ry

 e
le

m
e
n
ts

0

5

10

15

20

25

30
Scaled Jacobians after FE method Human Brain I

Human Brain II
Mouse Brain I
Mouse Brain II
Fly Embryo

FIG. 36: The comparison of the scaled Jacobian.

72

(a) Invalid mesh with red invalid elements (b) Valid final curvilinear mesh with quality

improvement

FIG. 37: Invalid mesh and corresponding corrected mesh for Human Brain I.

(a) Invalid mesh with a red invalid element (b) Valid final curvilinear mesh with quality

improvement

FIG. 38: Invalid mesh and corresponding corrected mesh for Human Brain II.

73

(a) Invalid mesh with red invalid elements

(b) Valid final curvilinear mesh with quality improvement

FIG. 39: Invalid mesh and corresponding corrected mesh for Mouse Brain I.

74

(a) Invalid mesh with red invalid elements

(b) Valid final curvilinear mesh with quality improvement

FIG. 40: Invalid mesh and corresponding corrected mesh for Mouse Brain II.

75

(a) Bad quality curvilinear mesh (b) Improved quality curvilinear mesh

FIG. 41: Bad quality curvilinear mesh and corresponding mesh with quality improve-

ment for Fly Embryo.

The algorithm can also construct curved meshes with coarsened elements inside

that have fewer elements. Figure 42 shows the coarsened curvilinear meshes for the

five original images.

Human Brain I Human Brain II Mouse Brain I

Mouse Brain II Fly Embryo

FIG. 42: Curvilinear meshes with coarsened elements for the original images.

76

5.2.5 PERFORMANCE

In Table 9, we list the total number of elements inside the mesh, the number of

invalid elements, the iterations needed to improve the quality of the mesh, the run

time of the linear mesh, the time spent on FE method and the total run time. The

high-order mesh generator is slower, and most of the time was spent on the FEM

iterations. The run time is not only decided by the number of elements inside the

mesh, but also determined by how many iterations it needs, because when there are

highly distorted invalid elements, more iterations are needed to correct them.

TABLE 9: Run time (s) for the ten examples

Image #
el
em

en
ts
in
si
de

th
e
m
es
h

#
in
va
lid

el
em

en
ts

#
it
er
at
io
ns

of
F
E
M

#
ru
n
ti
m
e
of
lin
ea
r
m
es
h
(s
)

ru
n
ti
m
e
of
F
E
M

(s
)

to
ta
l
ru
n
ti
m
e
(s
)

Human Brain I (fine) 251 3 5 0.239 23.890 24.785

Human Brain II (fine) 235 1 5 0.262 23.212 25.691

Mouse Brain I (fine) 528 4 6 0.169 88.457 89.703

Mouse Brain II (fine) 373 9 25 0.467 221.336 224.917

Fly Embryo (fine) 213 0 10 0.111 42.373 44.357

Human Brain I (coarse) 27 3 12 0.238 16.860 19.079

Human Brain II (coarse) 39 1 80 0.266 40.500 42.391

Mouse Brain I (coarse) 39 4 10 0.164 10.199 13.122

Mouse Brain II (coarse) 37 5 16 0.518 12.298 15.445

Fly Embryo (coarse) 21 3 8 0.119 10.685 14.366

77

Linear C1 C2

FIG. 35: The linear mesh boundaries and curved mesh boundaries with C1 and C2

smoothness requirements.

78

CHAPTER 6

CONCLUSIONS

6.1 SUMMARY AND EXTENSIONS

Two mesh generation algorithms have been developed:

• Automatic construction of two- and three-dimensional unstructured linear

meshes of multi-material images characterized by (i) guaranteed dihedral angle

bound for the output tetrahedra, (ii) guaranteed bounds on two-sided Haus-

dorff distance between the boundaries of the mesh and the boundaries of the

materials, (iii) the mesh boundary is proved to be homeomorphic to the object

surface, and (iv) a smaller number of mesh elements than other algorithms run

with similar parameters.

• Automatic construction of two-dimensional high-order curvilinear meshes to

represent images of objects with smooth boundaries. This technique allows for

a transformation of straight-sided meshes to curvilinear meshes with C1 or C2

smooth boundaries while keeping all elements valid and with good quality as

measured by their Jacobians.

The first algorithm creates a coarse mesh with relatively few elements with two

reasons: it generates a tetrahedral mesh based on an octrees which offers a graded

space subdivision structure; it provides a postprocessing step that decimates the mesh

into a much fewer number of elements. It is suitable for a number of applications that

impose varying requirements on the size of the elements due to the parameters of the

algorithm that allow for precise numerical bounds. Compared to similar algorithms

such as LD method, it offers a smoother transition in element size thus achieves better

grading. It also offers a topological guarantee, i.e. there is a global homeomorphism

between the boundary of the mesh and the boundary of the image. This guarantee

comes up with the single manifold condition, a condition we defined that can provide

a local homeomorphism in each boundary octree leaf. The time measurements show

that for four complex medical atlas images the performance is compatible with or even

79

faster than LD method. We also compare our implementation with a state-of-the-art

Delaunay code CGAL. CGAL could only obtain the best minimum dihedral angles

5◦, however, the best minimum dihedral angles bound of the proposed algorithm

is 19.47◦. When we set similar input parameters as CGAL, the performance has a

significant improvement in terms of runtime and number of tetrahedra.

The second algorithm takes the output of the first algorithm as the input. The

transformation of linear mesh boundaries to C1 or C2 smooth boundaries offers higher

accuracy of the representation compared to the corresponding linear mesh. By using

the Bézier basis, the Jacobians which measure the validity of the high-order mesh

element can be written as a fourth-order Bézier triangle. The split of the fourth-

order Bézier triangle provides a tight lower-bound of the Jacobians, thus offers an

accurate validity check compared to sampling Jacobian at discrete locations. The

experimental results show that the iterative finite element method is able to correct

all the invalid elements in the high-order mesh as measured by their Jacobians.

The proposed approach can be extended to the three-dimensional curvilinear

meshing problem. As the first step a three-dimensional linear mesh is generated,

then a transformation of straight-sided meshes to curvilinear meshes is performed.

Similarly, the invalid elements can be detected by their Jacobians, and finally are

corrected using the equilibrium configuration of an elasticity problem.

6.2 PUBLICATIONS

The following is a list of publications related to this dissertation:

• Jing Xu and Andrey Chernikov, Tetrahedralization of Multi-material Images

with Quality Fidelity and Topological Guarantees, unpublished manuscript in

preparation.

• Jing Xu and Andrey Chernikov, Construction of Discrete Descriptions of Bi-

ological Shapes through Curvilinear Image Meshing, International Journal of

Bioinformatics Research and Applications, vol. 15(3), pages 272-295. 2019.

• Jing Xu and Andrey Chernikov, Homeomorphic Tetrahedralization of Multi-

material Images with Quality and Fidelity Guarantees, 26th International

Meshing Roundtable, pages 40-52. Barcelona, Spain. September 2017.

• Jing Xu and Andrey Chernikov, Automatic curvilinear mesh generation with

80

smooth boundary driven by guaranteed validity and fidelity, 23rd International

Meshing Roundtable, pages 200-212. London, UK, October 2014.

• Jing Xu and Andrey Chernikov, Curvilinear triangular discretization of biomed-

ical images with smooth boundaries, 11th International Symposium on Bioin-

formatics Research and Applications, pages 343-354. Norfolk, VA, July 2015.

• Andrey Chernikov and Jing Xu, A computer-assisted proof of correctness of

a marching cubes algorithm, 22nd International Meshing Roundtable, pages

505-523. Orlando, FL, October 2013.

• Jing Xu and Andrey Chernikov, Tetrahedralization of multi-material images

with quality and Hausdorff distance guarantees, 25th International Meshing

Roundtable, Washington, D.C., USA, September 27-30, 2016. 5-page research

note.

• Jing Xu and Andrey Chernikov, A sufficient condition of validity for cubic

Bézier triangles, 24th International Meshing Roundtable, Austin, TX, October

2015. 5-page research note.

• Jing Xu and Andrey Chernikov, A guaranteed quality boundary graded triangu-

lar meshing algorithm backed by a computer-assisted proof, 22nd International

Meshing Roundtable, Orlando, FL, October 2013. 5-page research note.

• Jing Xu and Andrey Chernikov, Fidelity and quality improvement of curvilinear

image meshing on medical images, Modeling, Simulation, and Visualization

Student Capstone Conference, pages 159-166. Suffolk, VA, April 2016.

• Jing Xu and Andrey Chernikov, Automatic curvilinear quality mesh generation

with smooth mesh boundaries of medical images, Modeling, Simulation, and

Visualization Student Capstone Conference, pages 205-212. Suffolk, VA, April

2015. Best paper and best presentation awards in the Medical Simulation track.

• Jing Xu and Andrey Chernikov, Quality meshing of 2D images with guarantees

derived by a computer-assisted proof, Modeling, Simulation, and Visualization

Student Capstone Conference, pages 119-126. Suffolk, VA, April 2014.

81

• Jing Xu and Andrey Chernikov, A parallel marching cubes algorithm for ex-

tracting isosurfaces from medical images, Modeling, Simulation, and Visualiza-

tion Student Capstone Conference, pages 88-93. Suffolk, VA, April 2013.

82

BIBLIOGRAPHY

[1] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its

Basis and Fundamentals, 6th edition, Oxford: Butterworth-Heinemann, 2005.

[2] W. Zhang, D. Feng, R. Li, A. Chernikov, N. Chrisochoides, C. Osgood,

C. Konikoff, S. Newfeld, S. Kumar, S. Ji, A mesh generation and machine learn-

ing framework for Drosophila gene expression pattern image analysis, BMC

Bioinformatics 14:372.

[3] W. Zhang, R. Li, D. Feng, A. Chernikov, N. Chrisochoides, C. Osgood, S. Ji,

Evolutionary soft co-clustering: formulations, algorithms, and applications,

Data Mining and Knowledge Discovery (2014) 1–27.

[4] E. Frise, A. S. Hammonds, S. E. Celniker, Systematic image-driven analysis

of the spatial drosophila embryonic expression landscape, Molecular systems

biology 6 (1).

[5] M. Jagalur, C. Pal, E. Learned-Miller, R. T. Zoeller, D. Kulp, Analyzing in situ

gene expression in the mouse brain with image registration, feature extraction

and block clustering, BMC bioinformatics 8 (Suppl 10) (2007) S5.

[6] S.-W. Cheng, T. K. Dey, J. Shewchuk, Delaunay mesh generation, CRC Press,

2012.

[7] P.-L. George, H. Borouchaki, Delauney triangulation and meshing : application

to finite elements, Hermes Science Publications, Paris, 1998.

[8] D. L. Marcum, F. Alauzet, Unstructured mesh generation using advancing layers

and metric-based transition for viscous flowfields, in: 21st AIAA Computational

Fluid Dynamics Conference, 2013.

[9] J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on abstract

rules, Computing and Visualization in Science 1 (1) (1997) 41–52.

[10] Y. Ito, A. Shih, A. Erukala, B. Soni, A. Chernikov, N. Chrisochoides, K. Naka-

hashi, Parallel unstructured mesh generation by an advancing front method,

Mathematics and Computers in Simulation 75 (2007) 200–209.

83

[11] D. J. Mavriplis, An advancing front delaunay triangulation algorithm designed

for robustness, Journal of Computational Physics 117 (1) (1995) 90–101.

[12] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface

construction algorithm, COMPUTER GRAPHICS 21 (4) (1987) 163–169.

[13] S. A. Mitchell, S. A. Vavasis, Quality mesh generation in higher dimensions,

SIAM Journal on Computing 29 (4) (2000) 1334–1370.

[14] F. Labelle, J. R. Shewchuk, Isosurface stuffing: Fast tetrahedral meshes with

good dihedral angles, ACM Transactions on Graphics 26 (3) (2007) 57.1–57.10,

special issue on Proceedings of SIGGRAPH 2007.

[15] S. W. Walker, Tetrahedralization of isosurfaces with guaranteed-quality by edge

rearrangement (tiger), SIAM Journal on Scientific Computing 35 (1) (2013)

A294–A326.

[16] A. Chernikov, N. Chrisochoides, Multitissue tetrahedral image-to-mesh conver-

sion with guaranteed quality and fidelity, SIAM Journal on Scientific Computing

33 (2011) 3491–3508.

[17] S.-W. Cheng, T. K. Dey, E. A. Ramos, T. Ray, Sampling and meshing a surface

with guaranteed topology and geometry, SIAM Journal on Computing 37 (4)

(2007) 1199–1227.

[18] J.-D. Boissonnat, D. Cohen-Steiner, G. Vegter, Isotopic implicit surface meshing,

Discrete & Computational Geometry 39 (1) (2008) 138–157.

[19] N. Amenta, S. Choi, T. K. Dey, N. Leekha, A simple algorithm for homeomor-

phic surface reconstruction, in: Proceedings of the Sixteenth Annual Symposium

on Computational Geometry, SCG ’00, 2000, pp. 213–222.

[20] N. Amenta, T. J. Peters, A. C. Russell, Computational topology: ambient

isotopic approximation of 2-manifolds, Theoretical Computer Science 305 (1)

(2003) 3 – 15.

[21] S. Plantinga, G. Vegter, Isotopic meshing of implicit surfaces, The Visual Com-

puter 23 (1) (2007) 45–58.

84

[22] A. Chernikov, P. Foteinos, Y. Liu, M. Audette, A. Enquobahrie, N. Chriso-

choides, Tetrahedral image-to-mesh conversion approaches for surgery simula-

tion and navigation, in: Y. J. Zhang (Ed.), Image-Based Geometric Modeling

and Mesh Generation, Lecture Notes in Computational Vision and Biomechan-

ics, Vol. 3, Springer, 2013, pp. 69–84.

[23] J. F. Thompson, B. K. Soni, N. P. Weatherill (Eds.), Handbook of grid genera-

tion, CRC Press, Boca Raton, London, New York, 1999.

[24] L. P. Chew, Guaranteed-quality delaunay meshing in 3d (short version), in:

Proceedings of the Thirteenth Annual Symposium on Computational Geometry,

SCG ’97, 1997, pp. 391–393.

[25] L. Paul Chew, Constrained delaunay triangulations, Algorithmica 4 (1) (1989)

97–108.

[26] X.-Y. Li, S.-H. Teng, Generating well-shaped delaunay meshed in 3d, in: Pro-

ceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’01, 2001, pp. 28–37.

[27] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, S.-H. Teng, Silver

exudation, J. ACM 47 (5) (2000) 883–904.

[28] Conforming delaunay triangulations in 3d, Computational Geometry 28 (2)

(2004) 217 – 233.

[29] S.-W. Cheng, T. K. Dey, Quality meshing with weighted delaunay refinement,

SIAM Journal on Computing 33 (1) (2003) 69–93.

[30] H. Edelsbrunner, D. Guoy, An experimental study of sliver exudation, Engineer-

ing with Computers 18 (3) (2002) 229–240.

[31] S. Oudot, L. Rineau, M. Yvinec, Meshing Volumes Bounded by Smooth Surfaces,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 203–219.

[32] D. Boltcheva, M. Yvinec, J.-D. Boissonnat, Mesh Generation from 3D Multi-

material Images, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 283–

290.

85

[33] J. P. Pons, F. Ségonne, J. D. Boissonnat, L. Rineau, M. Yvinec, R. Keriven,

High-Quality Consistent Meshing of Multi-label Datasets, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2007, pp. 198–210.

[34] B. M. Klingner, J. R. Shewchuk, Aggressive Tetrahedral Mesh Improvement,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 3–23.

[35] J.-D. Boissonnat, S. Y. Oudot, Provably good sampling and meshing of surfaces,

Graphical Models 67 (2005) 405–451.

[36] S.-W. Cheng, T. K. Dey, E. A. Ramos, Delaunay refinement for piecewise smooth

complexes, Discrete & Computational Geometry 43 (1) (2010) 121–166.

[37] P. Foteinos, A. Chernikov, N. Chrisochoides, Guaranteed quality tetrahedral

Delaunay meshing for medical images, Computational Geometry Theory and

Applications 47 (2014) 539–562.

[38] N. Amenta, M. Bern, Surface reconstruction by voronoi filtering, Discrete &

Computational Geometry 22 (4) (1999) 481–504.

[39] J. Bronson, J. A. Levine, R. Whitaker, Lattice cleaving: A multimaterial tetra-

hedral meshing algorithm with guarantees, IEEE Transactions on Visualization

and Computer Graphics 20 (2) (2014) 223–237.

[40] X. Liang, Y. Zhang, An octree-based dual contouring method for triangular

and tetrahedral mesh generation with guaranteed angle range, Engineering with

Computers 30 (2) (2014) 211–222.

[41] W. J. Schroeder, J. A. Zarge, W. E. Lorensen, Decimation of triangle meshes,

in: Proceedings of the 19th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’92, ACM, New York, NY, USA, 1992, pp.

65–70.

[42] J. Yan, P. Shi, D. Zhang, Mesh simplification with hierarchical shape analysis

and iterative edge contraction, IEEE Transactions on Visualization and Com-

puter Graphics 10 (2) (2004) 142–151.

[43] S. Sherwin, J. Peiro, Mesh generation in curvilinear domains using high-order

elements, Int. J. Numer 00 (2000) 1–6.

86

[44] P.-O. Persson, J. Peraire, Curved Mesh Generation and Mesh Refinement us-

ing Lagrangian Solid Mechanics, in: Proceedings of the 47th AIAA Aerospace

Sciences Meeting and Exhibit, Orlando, FL, 2009.

[45] X. juan Luo, M. S. Shephard, R. M. O’Bara, R. Nastasia, M. W. Beall, Au-

tomatic p-version mesh generation for curved domains, Engineering with Com-

puters 20 (2004) 273–285.

[46] P.L.George, H.Borouchaki, Construction of tetrahedral meshes of degree two,

Int. J. Numer. Mesh. Engng 90 (2012) 1156–1182.

[47] C. R. Maurer, Jr., R. Qi, V. Raghavan, A linear time algorithm for computing

exact euclidean distance transforms of binary images in arbitrary dimensions,

IEEE Trans. Pattern Anal. Mach. Intell. 25 (2) (2003) 265–270.

[48] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, Academic

Press, 1997.

[49] M. Jakab, R. Kikinis, Head and neck atlas.

URL https://spl.harvard.edu/software-and-data-sets

[50] R. J.A., J. M., K. R, Spl knee atlas (SPL 2015 Sep).

URL https://spl.harvard.edu/software-and-data-sets

[51] Ircad Laparoscopic Center, http://www.ircad.fr/softwares/3Dircadb (2013).

[52] J. Ahrens, B. Geveci, C. Law, Paraview: An end-user tool for large data visual-

ization.

[53] Cgal, Computational Geometry Algorithms Library, http://www.cgal.org.

[54] P. Allen, Allen brain atlas, http://www.brain-map.org (2014).

URL http://www.brain-map.org

[55] Berkeley drosophila genome project, http://www.fruitfly.org/ (2014).

URL http://www.fruitfly.org/

https://spl.harvard.edu/software-and-data-sets
https://spl.harvard.edu/software-and-data-sets
https://spl.harvard.edu/software-and-data-sets
https://spl.harvard.edu/software-and-data-sets
http://www.brain-map.org
http://www.brain-map.org
http://www.brain-map.org
http://www.fruitfly.org/
http://www.fruitfly.org/
http://www.fruitfly.org/

87

VITA

Jing Xu

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

Jing Xu is a Ph.D student in the Department of Computer Science at Old Do-

minion University, USA. She received her B.S. degree in Network Engineering from

Information Engineering University, China, and her M.S. degree in Computer Sci-

ence from the Soochow University, China. Her research interests are medical and

bio-material image analysis and quality mesh generation.

	Automatic Linear and Curvilinear Mesh Generation Driven by Validity Fidelity and Topological Guarantees
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivation
	Automatic linear triangular/tetrahedral mesh construction
	Automatic two-dimensional curvilinear mesh generation

	Preliminaries
	Multi-material image, image boundary, mesh boundary and boundary leaf
	Hausdorff distance and 2-to-1 rule
	Homeomorphism and d-manifold with boundary
	Single manifold condition
	Bézier curves
	Bézier triangles
	The Jacobian

	Two- and three-dimensional linear triangular/tetrahedral mesh construction
	Methodology
	Construction of the octree
	Filling in the octree
	Mesh decimation

	Guarantees
	Dihedral angles
	Geometric Fidelity
	Topological Fidelity

	Two-dimensional curvilinear triangular mesh generation
	Smooth boundary construction
	Element validity
	Validity verification by the lower bound of the Jacobian
	Validity verification by the control net of the element

	Mesh untangling

	Experimental results
	Three-dimensional linear meshing results
	Synthetic benchmark—three-dimensional Cassini surface
	Multi-tissue three-dimensional medical images

	Two-dimensional curvilinear meshing results
	Original input images
	Construction of linear meshes
	Construction of smooth curved boundaries and the accuracy evaluation
	Final meshes and the quality evaluation
	Performance

	Conclusions
	Summary and Extensions
	Publications

	VITA

