
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 12-2020

MementoMap: A Web Archive Profiling Framework for Efficient MementoMap: A Web Archive Profiling Framework for Efficient

Memento Routing Memento Routing

Sawood Alam
Old Dominion University, ibnesayeed@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Alam, Sawood. "MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing" (2020).

Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/

5vnk-s536

https://digitalcommons.odu.edu/computerscience_etds/129

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/129?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MEMENTOMAP: A WEB ARCHIVE PROFILING

FRAMEWORK FOR EFFICIENT MEMENTO ROUTING

by

Sawood Alam
B.Tech. May 2008, Jamia Millia Islamia, India
M.S. August 2013, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2020

Approved by:

Michael L. Nelson (Director)

Michele C. Weigle (Member)

Jian Wu (Member)

Sampath Jayarathna (Member)

Erika F. Frydenlund (Member)

ABSTRACT

MEMENTOMAP: A WEB ARCHIVE PROFILING FRAMEWORK FOR

EFFICIENT MEMENTO ROUTING

Sawood Alam
Old Dominion University, 2020
Director: Dr. Michael L. Nelson

With the proliferation of public web archives, it is becoming more important to better

profile their contents, both to understand their immense holdings as well as to support

routing of requests in Memento aggregators. A memento is a past version of a web page and

a Memento aggregator is a tool or service that aggregates mementos from many different

web archives. To save resources, the Memento aggregator should only poll the archives that

are likely to have a copy of the requested Uniform Resource Identifier (URI). Using the

Crawler Index (CDX), we generate profiles of the archives that summarize their holdings

and use them to inform routing of the Memento aggregator’s URI requests. Additionally,

we use fulltext search (when available) or sample URI lookups to build an understanding

of an archive’s holdings. Previous work in profiling ranged from using full URIs (no false

positives, but with large profiles) to using only top-level domains (TLDs) (smaller profiles,

but with many false positives). This work explores strategies in between these two extremes.

For evaluation we used CDX files from Archive-It, UK Web Archive, Stanford Web

Archive Portal, and Arquivo.pt. Moreover, we used web server access log files from the In-

ternet Archive’s Wayback Machine, UK Web Archive, Arquivo.pt, LANL’s Memento Proxy,

and ODU’s MemGator Server. In addition, we utilized historical dataset of URIs from

DMOZ.

In early experiments with various URI-based static profiling policies we successfully

identified about 78% of the URIs that were not present in the archive with less than 1%

relative cost as compared to the complete knowledge profile and 94% URIs with less than

10% relative cost without any false negatives. In another experiment we found that we can

correctly route 80% of the requests while maintaining about 0.9 recall by discovering only

10% of the archive holdings and generating a profile that costs less than 1% of the complete

knowledge profile.

We created MementoMap, a framework that allows web archives and third parties to

express holdings and/or voids of an archive of any size with varying levels of details to fulfil

various application needs. Our archive profiling framework enables tools and services to

predict and rank archives where mementos of a requested URI are likely to be present.

In static profiling policies we predefined the maximum depth of host and path segments of

URIs for each policy that are used as URI keys. This gave us a good baseline for evaluation,

but was not suitable for merging profiles with different policies. Later, we introduced a more

flexible means to represent URI keys that uses wildcard characters to indicate whether a URI

key was truncated. Moreover, we developed an algorithm to rollup URI keys dynamically at

arbitrary depths when sufficient archiving activity is detected under certain URI prefixes.

In an experiment with dynamic profiling of archival holdings we found that a MementoMap

of less than 1.5% relative cost can correctly identify the presence or absence of 60% of the

lookup URIs in the corresponding archive without any false negatives (i.e., 100% recall).

In addition, we separately evaluated archival voids based on the most frequently accessed

resources in the access log and found that we could have avoided more than 8% of the false

positives without introducing any false negatives.

We defined a routing score that can be used for Memento routing. Using a cut-off

threshold technique on our routing score we achieved over 96% accuracy if we accept about

89% recall and for a recall of 99% we managed to get about 68% accuracy, which translates

to about 72% saving in wasted lookup requests in our Memento aggregator. Moreover,

when using top-k archives based on our routing score for routing and choosing only the

topmost archive, we missed only about 8% of the sample URIs that are present in at least

one archive, but when we selected top-2 archives, we missed less than 2% of these URIs.

We also evaluated a machine learning-based routing approach, which resulted in an overall

better accuracy, but poorer recall due to low prevalence of the sample lookup URI dataset

in different web archives.

We contributed various algorithms, such as a space and time efficient approach to ingest

large lists of URIs to generate MementoMaps and a Random Searcher Model to discover

samples of holdings of web archives. We contributed numerous tools to support various

aspects of web archiving and replay, such as MemGator (a Memento aggregator), Inter-

Planetary Wayback (a novel archival replay system), Reconstructive (a client-side request

rerouting ServiceWorker), and AccessLog Parser. Moreover, this work yielded a file for-

mat specification draft called Unified Key Value Store (UKVS) that we use for serialization

and dissemination of MementoMaps. It is a flexible and extensible file format that allows

easy interactions with Unix text processing tools. UKVS can be used in many applications

beyond MementoMaps.

iv

Copyright, 2020, by Sawood Alam, All Rights Reserved.

v

Beneath my mother’s feet...

vi

ACKNOWLEDGEMENTS

All praises be to the Almighty to bring me this far. I am deeply grateful for the help,

support, and contributions from numerous people and organizations in this journey.

My advisor during my masters and doctorate degree programs, Dr. Michael L. Nelson,

has been a tremendous support to me in my academic journey and career. If I were to

lead a team in the future, punctual weekly progress meetings and rigorous practice sessions

before every upcoming presentation are the two lessons I have learned from him that I would

replicate. My co-advisor Dr. Michele C. Weigle helped me learn how to express research

findings more effectively using suitable information visualization techniques for various types

of results and telling stories with properly annotated figures. These two people get the lion

share of credits for turning me into a researcher and teaching me techniques of effective

scholarly communication.

My doctoral dissertation committee members Dr. Jian Wu and Dr. Sampath Jayarathna

were helpful beyond this research. They were available for discussions on many research

topics and were supportive in finding job opportunities for me. Dr. Erika F. Frydenlund

provided an outsider’s perspective and her reflections improved the readability of my dis-

sertation for those unfamiliar with my research discipline.

Prior works of Dr. Robert Sanderson and Dr. Ahmed AlSum formed the basis of this

research. I got the opportunity to work with Dr. David S. H. Rosenthal, Dr. Herbert

Van de Sompel, Dr. Martin Klein, Dr. Lyudmila L. Balakireva, and Harihar Shankar

during the IIPC funded preliminary exploration phase of this archive profiling work. Dr.

Rosenthal’s blog post reviews after his retirement from Stanford kept this work in check and

reassured that I was on the right track. Dr. Sanderson reflected his thoughts and provided

constructive feedback on our MementoMap framework during JCDL ’19. Dr. Edward A.

Fox from Virginia Tech reflected his thoughts on our URI Key concept and showed interest

on potential future collaborations.

Numerous IIPC member organizations and individuals contributed to this work with

datasets and feedback. Kris Carpenter and Jefferson Bailey from the Internet Archive helped

us with the Archive-It WARC dataset. Joseph E. Ruettgers helped us with the petabytes

of storage space setup at ODU. Daniel Gomes and Fernando Melo were very generous in

sharing complete dataset of CDX files and access logs from Arquivo.pt web archive. Nicholas

Taylor shared Stanford Web Archive Portal’s CDX datasets. Dr. Andrew Jackson from the

British Library shared CDX files and a sample of access logs from the UK Web Archive

vii

and provided feedback on the IIPC funded archive profiling project. Kristinn Sigurðsson

provided feedback during the early days of the project. Garth Stewart shared CDX files

from the National Records of Scotland. Ilya Kreymer contributed to the discussion about

CDXJ profile serialization format and shared OldWeb.today access logs. Alex Osborne and

Dr. Paul Koerbin worked on sharing the web archive index from the National Library of

Australia. Olga Holownia from the British Library helped the progress of IIPC funded

project in numerous ways. Dr. Ian Milligan gave me the opportunity to attend multiple

Archives Unleashed datathons, an event where InterPlanetary Wayback was created.

Many people provided early feedback on this work during the Doctoral Consortium

events of JCDL and TPDL. Dr. Nattiya Kanhabua offered some really good suggestions

and potential related work references.

Dr. M. M. Sufyan Beg, Dr. Mohammad Zubair, and Dr. Hussein Abdel-Wahab were

the key people who helped me join the Old Dominion University. Dr. Ravi Mukkamala has

always been helpful in administrative matters and beyond. Dr. Stephan Olariu has been

available to discuss random interesting research topics every time I approached him. Dr.

Steven Zeil helped me with the logistics of teaching when I offered the Web Server Design

course. Ajay Gupta and many members of the Systems Group ensured that necessary

computing resources were available and were in good shape. Ariel Sturtevant and Phyllis

Woods took care of all the paper work.

Mark Graham and Brewster Kahle supported me by keeping the workload on me to the

minimum while I was finalizing my dissertation and working for the Internet Archive. Na-

tional Digital Stewardship Alliance recognized my work on the digital preservation, including

this work, and honored me with the Future Steward Innovation Award.

The list of past and ongoing collaborations with Dr. Mat Kelly are too long to list here,

but the routine of taking a break and going for a campus walk while exchanging ideas was

perhaps one of the most valuable memories we shared together. Dr. Alexander Nwala was

my go-to person for discussing matters related to language modeling, machine learning, and

classification. Dr. Mohamed Aturban and I shared the lab till late night and we collaborated

on archival fixity. Dr. Lulwah M. Alkwai and family are the ones I can count on even after

they have gone back to their home country. Dr. Justin F. Brunelle and family were my

tailgate hosts during Football season. Shawn M. Jones always had crisp and unambiguous

ideas and very receptive of feedback, someone I am looking forward to collaborate with on

formal publications in the future. John A. Berlin contributed to the Reconstructive project.

Plinio Vargas and I used to begin our day by solving puzzles and riddles and I enjoyed

viii

collaborating with him on a web archiving issue related to Twitter. Nauman Siddique

and Hussam Hallak were my friends I could call for help in person anytime. Himarsha

Jayanetti and Kritika Garg were my students and mentees I enjoyed working with and they

contributed to this work in the analysis of Arquivo.pt access logs. I have a long list of good

memories with every Web Science and Digital Libraries Research Group member I shared

the academic timeline with.

The Urdu community on UrduWeb is my home on the internet. I need to get back to it

and put fresh energy into numerous projects that are on hold and need to be mobilized.

My mother Sitara Begum, elder brother Masood Alam, maternal uncle Dr. Shabbir

Ahmad Khan, and maternal aunt Naseema Khatoon are the four most significant people

in my life due to their immense support and sacrifices towards my upbringing and growth

during the most unfavorable times. I am determined to continue working towards fulfilling

their dreams. I missed seeing my father Sayeed Ahmad all these years of my graduation

life. My wife Rehana Khatoon and daughter Fareeha Khan were always there for me and

they took care of all my needs silently. Abida, Aqeela, Wadood, Faizan, Raihan, Sumbul,

Nabeel, Raed, Manal, Shaima, and the rest of the extended family members, I love you all

and I miss you. My thoughts are with my grandparents I will never get to see them again,

may you all rest in peace.

This work was supported in part by the International Internet Preservation Consortium,

the National Science Foundation, and the Andrew W. Mellon Foundation.

ix

TABLE OF CONTENTS

Page

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 3

1.1.1 WHY AGGREGATE WEB ARCHIVES ANYWAY? 3
1.1.2 WHY AGGREGATE SMALL WEB ARCHIVES? 9
1.1.3 WHY PROFILE WEB ARCHIVES? . 11
1.1.4 WHY ROUTE LOOKUP REQUESTS? . 12

1.2 RESEARCH QUESTIONS. 16
1.2.1 LEARNING ABOUT THE HOLDINGS OF AN ARCHIVE. 17
1.2.2 EXPRESSING AND DISSEMINATING ARCHIVE PROFILES 17
1.2.3 ARCHIVE PROFILES FOR MEMENTO ROUTING 18

1.3 CHAPTER SUMMARY . 19

2. BACKGROUND . 21
2.1 HYPERTEXT TRANSFER PROTOCOL (HTTP) . 21

2.1.1 HTTP MESSAGE . 21
2.1.2 HTTP METHOD . 22
2.1.3 HTTP STATUS CODE . 22
2.1.4 SOFT-404 . 25

2.2 HTTP ACCESS LOGS . 25
2.3 WEB ARCHIVING AND WEB ARCHIVES . 27

2.3.1 ARCHIVE COLLECTION POLICY . 28
2.4 MEMENTO . 29

2.4.1 TIMEGATE . 29
2.4.2 TIMEMAP . 32
2.4.3 NOT-ARCHIVED VS. ARCHIVED-404 . 32

2.5 MEMENTO AGGREGATOR . 33
2.6 URI AND URI TRANSFORMATIONS . 37

2.6.1 URI NORMALIZATION/CANONICALIZATION 38
2.6.2 SORT-FRIENDLY URI REORDERING TRANSFORM (SURT) 41

2.7 ARCHIVE FILE FORMATS . 41
2.7.1 WARC . 42
2.7.2 WEB BUNDLES . 42
2.7.3 WAT, WANE, AND WET. 43
2.7.4 CDX/CDXJ . 44

x

2.8 SYNDICATION AND DISCOVERY . 46
2.8.1 RSS/ATOM FEED . 46
2.8.2 SITEMAPS . 47
2.8.3 ROBOTS EXCLUSION PROTOCOL . 49
2.8.4 WELL-KNOWN URIS . 51

2.9 INVERTED INDEX . 51
2.10 CHAPTER SUMMARY . 53

3. RELATED WORK. 55
3.1 SURFACE WEB CRAWLING . 55
3.2 DEEP/HIDDEN/DARK WEB CRAWLING . 57

3.2.1 DESCRIBING TEXTUAL DATABASES . 58
3.2.2 SEARCH FORM DETECTION . 59

3.3 FOCUSED CRAWLING . 60
3.4 ON-PREMISE INDEXING . 61
3.5 QUERY ROUTING. 61
3.6 BLOOM FILTERS . 64
3.7 ARCHIVAL COVERAGE OF THE WEB . 65
3.8 WEB ARCHIVE SEARCHING. 66
3.9 ARCHIVE PROFILING . 67

3.9.1 URI-R PROFILING . 68
3.9.2 TLD PROFILING . 68
3.9.3 RESPONSE CACHE PROFILING . 69
3.9.4 URI-KEY PROFILING . 70

3.10 CHAPTER SUMMARY . 70

4. MEMENTOMAP FRAMEWORK . 71
4.1 RESEARCH QUESTIONS. 71

4.1.1 RQ1: HOW TO LEARN AN ARCHIVE’S HOLDINGS AND VOIDS? 71
4.1.2 RQ2: HOW TO SUMMARIZE AND SERIALIZE ARCHIVAL HOLD-

INGS FOR DISSEMINATION? . 73
4.1.3 RQ3: HOW TO UTILIZE MEMENTOMAPS FOR MEMENTO ROUT-

ING? . 75
4.2 MEMENTOMAP COMPONENTS . 76

4.2.1 INGESTION . 77
4.2.2 SUMMARIZATION AND SERIALIZATION . 77
4.2.3 ROUTING . 77

4.3 EVALUATION PLAN . 77
4.3.1 COST . 79
4.3.2 ACCURACY . 79
4.3.3 FRESHNESS . 79
4.3.4 ROUTING EFFICIENCY . 79

4.4 CHAPTER SUMMARY . 80

xi

5. TOOLS IMPLEMENTATION. 81
5.1 INTERPLANETARY WAYBACK . 81
5.2 RECONSTRUCTIVE . 82
5.3 MEMGATOR . 83
5.4 RANDOM SEARCHER . 84
5.5 ACCESSLOG PARSER . 85
5.6 MEMENTOMAP. 85
5.7 UNIFIED KEY VALUE STORE . 85
5.8 CHAPTER SUMMARY . 86

6. LEARNING ARCHIVAL HOLDINGS . 87
6.1 ARCHIVE PROFILE DATA STRUCTURE . 88
6.2 URI-KEYS AND PROFILING POLICIES . 88

6.2.1 HMPN POLICY . 88
6.2.2 DLIM POLICY . 89
6.2.3 URI-KEY GENERATION . 90

6.3 PROFILING THROUGH CDX SUMMARIZATION . 91
6.3.1 DATASETS . 91
6.3.2 PROFILE GROWTH ANALYSIS . 93
6.3.3 ROUTING EFFICIENCY . 98

6.4 PROFILING THROUGH FULLTEXT SEARCH . 105
6.4.1 RANDOM SEARCHER MODEL. 107
6.4.2 IMPLEMENTATION . 112
6.4.3 RSM EVALUATION . 112

6.5 CHAPTER SUMMARY . 116

7. LEARNING ARCHIVAL VOIDS . 117
7.1 INTRODUCTION AND MOTIVATION . 117
7.2 SOURCES OF TRUTH . 118
7.3 EVALUATION . 119

7.3.1 ACCESS LOGS DATASET . 120
7.3.2 ACCESS PATTERNS . 120
7.3.3 SOFT-404 TIMEMAPS . 124
7.3.4 STATUS CODE CHANGES OVER TIME . 127
7.3.5 ROUTING ACCURACY . 129

7.4 WHO SHOULD PROFILE ARCHIVAL VOIDS? . 130
7.5 RECOMMENDATIONS . 131
7.6 CHAPTER SUMMARY . 132

8. SERIALIZATION AND DISSEMINATION . 134
8.1 UNIFIED KEY VALUE STORE (UKVS) . 134
8.2 MEMENTOMAP FILE FORMAT . 136

8.2.1 THE SURT FIELD . 137
8.2.2 THE FREQUENCY FIELD . 138
8.2.3 THE DATETIME FIELD . 142

xii

8.2.4 OTHER FIELDS. 144
8.3 MEMENTOMAP IMPLEMENTATION . 144

8.3.1 MEMENTOMAP GENERATION . 144
8.3.2 MEMENTOMAP COMPACTION. 144
8.3.3 LOOKUP IN A MEMENTOMAP . 146

8.4 MEMENTOMAP DISSEMINATION . 146
8.5 EVALUATION . 146

8.5.1 ARCHIVED VS. ACCESSED RESOURCES . 149
8.5.2 HOLDINGS OF ARQUIVO.PT . 152
8.5.3 THE SHAPE OF ARCHIVED URI TREE . 155
8.5.4 MEMENTOMAP COST AND ACCURACY . 160

8.6 CHAPTER SUMMARY . 164

9. MEMENTO ROUTING. 165
9.1 MEMENTO AGGREGATION AND ROUTING . 165
9.2 METHODOLOGY . 166

9.2.1 DENSITY SCORE . 166
9.2.2 CLOSENESS SCORE . 168
9.2.3 ROUTING SCORE . 169
9.2.4 INVERTED INDEX . 172
9.2.5 MEMENTOMAP AND INVERTED INDEX LOOKUP 172

9.3 CLASSIFIER REBORN . 175
9.4 EVALUATION . 177

9.4.1 DATASETS . 177
9.4.2 COLLECTION DIFFUSION . 179
9.4.3 BASELINE ROUTING . 180
9.4.4 HEURISTIC ROUTING . 181
9.4.5 MACHINE LEARNING-BASED ROUTING . 183

9.5 CHAPTER SUMMARY . 184

10. CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS . 186
10.1 CONTRIBUTIONS . 186

10.1.1 ALGORITHMS . 186
10.1.2 TERMINOLOGY AND METRICS . 187
10.1.3 SOFTWARE/TOOLS . 188
10.1.4 DATASETS . 188
10.1.5 SPECIFICATIONS . 189

10.2 FUTURE WORK . 189
10.3 CONCLUSIONS . 192

REFERENCES. 197

APPENDICES
A. ROBOTS EXCLUSION FILES (ROBOTS.TXT) . 220

xiii

B. DOWNCASING IN SURT . 222
C. TOOLS HELP MANUALS . 223

VITA. 228

xiv

LIST OF TABLES

Table Page

1 Common HTTP Methods . 23

2 Purpose of Various HTTP Status Code Classes . 23

3 Archive Dataset Size . 92

4 Presence of the Sample Query URI-Rs in Each Archive . 92

5 Relative Cost of Various Profiling Policies for UKWA . 96

6 Confusion Matrix of Memento Routing . 97

7 Relative Cost, Precision, Specificity, and Accuracy of Profiling Policy Groups . . . 98

8 RSM Operation Mode Mapping With Policies . 110

9 Cost Comparison of RSM Operating Modes . 113

10 Arquivo.pt Access Logs Summary . 120

11 Most Frequently Accessed Resources from Arquivo.pt . 123

12 Yearly Access Frequency of Top TLDs in Arquivo.pt . 124

13 Soft-404 TimeMap Response Bytes . 126

14 Status Code Distribution of TimeMaps in Arquivo.pt Access Logs 127

15 Status Code Fluctuations of URI-Rs in Arquivo.pt Access Logs 129

16 404-Only URI-R Repetitions in Arquivo.pt Access Logs and False Positive Re-
duction Due to the Archival Void Profile . 130

17 An Example of Sparse Tabular Data . 134

18 Top Arquivo.pt TLDs . 148

19 Arquivo.pt Index Statistics . 149

20 MemGator Log Responses from Various Archives . 150

21 URI-M vs. URI-R Summary of Arquivo.pt . 152

xv

22 Most Archived URI-Rs in Arquivo.pt . 153

23 Yearly Distribution of URI-Rs, URI-Ms, and Status Codes in Arquivo.pt 154

24 Unique Items With Exact Host and Path Depths . 156

25 Host and Path Depth Statistics of Unique HxPx Keys in Arquivo.pt 158

26 MementoMap Generation, Compaction, and Lookup Statistics for Arquivo.pt . . . 161

27 Datasets of Web Archival Holdings and Voids Profiles . 177

28 Archival Holdings of Primary Targets . 179

29 Recall, Accuracy, and Request Cost of Various Baseline Routing Policies 180

30 Recall, Accuracy, and Request Saving With the Heuristic Routing Score Thresh-
old on Holdings and Voids Profiles . 182

31 Recall, Accuracy, and Request Savings in Machine Learning-Based Routing 184

xvi

LIST OF FIGURES

Figure Page

1 Early Mementos of the Smithsonian Institution Home Page 2

(a) First Memento of the Smithsonian Institution in Arquivo.pt 2

(b) First Memento of the Smithsonian Institution in the Internet Archive . . 2

2 Over a Trillion Mementos and 468 Billion Web Pages in IA. 4

3 Growth of Mementos and Web Pages in IA Over Time. 5

4 MemGator Demonstration at the Library of Congress on June 15, 2016, While
IA was Under a DDoS Attack . 6

5 Dennis Ritchie’s Homepage at Bell Labs After Site Restructuring 8

(a) The Live Page is Missing and Inaccessible in IA . 8

(b) Archives Other Than IA Have Some Copies . 8

(c) Presence in IA Discovered Later After robots.txt is Removed 8

6 Expedia Serves Pages in Different Languages to Different Geo-locations 10

(a) Arquivo.pt Observed the Page in Spanish . 10

(b) Internet Archive Observed the Page in English . 10

7 Sample Lookup URI Overlap in Archive-It, UKWA, and Stanford Web Archives 11

(a) Overlap of DMOZ . 11

(b) Overlap of IA Wayback . 11

(c) Overlap of Memento Proxy . 11

(d) Overlap of UK Wayback . 11

8 Unclear Holdings of Archival Collections . 12

9 OldWeb.today Caused Excessive Load at loc.gov . 13

(a) LC Contacted Us About MemGator Causing Issues 13

xvii

(b) We Responded With Potential Source of Traffic Surge 13

(c) OldWeb.today Informed Us About an Exclusion Request 13

10 MemGator’s Default Archives’ List Explicitly Disabled PastPages 14

11 Request-Response Cycle of Memento Aggregator and Various Archives 16

(a) Request to All Known Archives . 16

(b) Response from a Few Archives . 16

(c) Memento Aggregator With Profile Based Routing 16

12 HTTP Request and Response Messages . 22

13 A Sample Soft-404 Response . 25

14 A Sample Extended Access Log . 26

15 Content Negotiation Using the Memento TimeGate of the Original Server 30

16 Content Negotiation Using a Generic Memento TimeGate of the Internet Archive 31

17 A TimeMap from the Internet Archive . 33

18 Not-Archived vs. Archived-404 . 34

19 Content Negotiation Using a Generic Memento TimeGate of a Memento Aggregator 35

20 An Aggregated TimeMap from MemGator Server . 36

21 A Generic URI Example . 37

22 URI Normalization Process . 40

23 Sort-friendly URI Reordering Transform (SURT) Process . 40

24 A WARC File With a Request and Corresponding Response Records 43

25 WAT File Structure . 44

26 Sample CDX File . 45

27 Sample CDXJ File . 45

28 Example Atom Feed . 47

xviii

29 Example Sitemap . 49

30 Example Index Sitemap . 49

31 Example robots.txt File . 49

32 A Sample Document Index . 52

33 A Sample Document Index . 52

34 A Sample Inverted Index . 53

35 Memento Routing Matrix . 78

36 Tools Contributions in the Web Archiving Ecosystem . 82

37 IPWB Indexing and Replay Workflow . 83

38 Reconstructive Intercepts a Zombie Resource and Reroutes to its Archived Copy 83

39 MemGator Workflow Diagram . 84

40 Sample Archive Profile Data Structure . 89

41 Illustration of URI-Key Generation . 90

42 Growth and Costs Analysis for Different Profiling Policies in UKWA 94

(a) URI-Ms Growth With CDX Size . 94

(b) URI-R Growth With URI-M Count . 94

(c) Space Cost . 94

(d) Time Cost . 94

43 Resource Requirement for Various Profiling Policies and Collection Sizes 97

(a) URI-Key Count . 97

(b) Profile Size . 97

44 Routing Precision of Different Profiling Policies in Different Archives 99

(a) Archive-It: Precision . 99

(b) Archive-It: Precision vs. Cost . 99

xix

(c) UKWA: Precision . 99

(d) UKWA: Precision vs. Cost . 99

(e) Stanford: Precision . 99

(f) Stanford: Precision vs. Cost . 99

45 Routing Specificity of Different Profiling Policies in Different Archives 100

(a) Archive-It: Specificity . 100

(b) Archive-It: Specificity vs. Cost . 100

(c) UKWA: Specificity . 100

(d) UKWA: Specificity vs. Cost . 100

(e) Stanford: Specificity . 100

(f) Stanford: Specificity vs. Cost . 100

46 Routing Accuracy of Different Profiling Policies in Different Archives 101

(a) Archive-It: Accuracy . 101

(b) Archive-It: Accuracy vs. Cost . 101

(c) UKWA: Accuracy . 101

(d) UKWA: Accuracy vs. Cost . 101

(e) Stanford: Accuracy . 101

(f) Stanford: Accuracy vs. Cost . 101

47 Random Searcher Model Overview . 111

(a) Flowchart of the Random Searcher Model . 111

(b) An Example Illustration of the Random Searcher Model 111

48 Searches Needed vs. Required Coverage . 114

(a) H1P0 Profile . 114

(b) DDom Profile . 114

xx

(c) HxP1 Profile . 114

(d) URIR Profile . 114

49 Incremental Accuracy vs. Recall as a Function of Archive Knowledge 115

(a) DMOZ . 115

(b) IA Wayback . 115

(c) Memento Proxy . 115

(d) UKWA Wayback . 115

50 Access Patterns in Six Years of Daily Log Files of Arquivo.pt 121

(a) Daily Arquivo.pt Access Log Records . 121

(b) Monthly Arquivo.pt Access Log Records . 121

51 Arquivo.pt Excluded Bots from Accessing Its Archival Replay 122

52 Monthly TimeMap Access of Arquivo.pt from Various Sources 125

53 A Potential Soft-404 TimeMap . 126

54 An Example of Structured Data With Mandatory and Optional Fields 135

55 UKVS Generic Record Format . 136

56 A Basic MementoMap Example File . 137

57 Illustration of SURTs With Wildcards . 139

(a) A Sample List of Sorted SURTs . 139

(b) A Visual Representation of SURTs as a Tree . 139

58 Extended Backus–Naur Form (EBNF) Grammar for the frequency Field. 140

59 Variations in frequency Field Value of a MementoMap . 140

60 Zero frequency for a More Specific URI Subtree in a MementoMap 140

61 Zero Mementos of Non-Zero URI-Rs in a MementoMap . 140

62 Non-Precise Frequencies in a MementoMap . 141

xxi

63 Optional Memento Distribution Over Time in a MementoMap 142

64 Mandatory Memento Distribution Over Time in a MementoMap 142

65 Various Datetime Range Examples in a MementoMap . 143

66 MementoMap Compaction (and Generation) Procedure . 145

67 MementoMap Lookup Procedure . 147

68 Overlap Between Archived and Accessed Resources in Arquivo.pt 151

69 Distribution of Mementos Over URI-Rs in Arquivo.pt . 153

(a) Percentage of URI-Rs by Popularity vs. Cumulative Percentage of Me-
mentos . 153

(b) Gini coefficient of memento over URI-R population 153

70 Cumulative Growth of URI-Rs and URI-Ms in Arquivo.pt . 155

71 The Shape of HxPx Key Tree of Arquivo.pt . 157

(a) Parents and Children at Each Host Depth . 157

(b) Parents and Children at Each Path Depth . 157

72 Global and Incremental Host and Path Segment Reduction 159

(a) Global HxPx Reduction Rate at Host . 159

(b) Global HxPx Reduction Rate at Path . 159

(c) Incremental Host Children Reduction . 159

(d) Incremental Path Children Reduction . 159

73 Growth of Compacted MementoMap vs. Lines Processed from an Input Memen-
toMap . 160

74 Relative Cost vs. Lookup Routing Accuracy . 163

75 Routing Score Calculation Procedure for Archives With Different Types of Profiles171

76 A Sample Inverted Index of Web Archive Profiles . 173

77 MementoMap Samples from Different Web Archives . 174

xxii

(a) A Sample MementoMap from Arquivo.pt With Both Holdings and Voids
Profiles . 174

(b) A Sample MementoMap from Perma.cc With Only Holdings Profile . . . 174

(c) A Sample MementoMap from Archive.is With Only Voids Profile 174

78 Variations of Inverted Indexes in UKVS Format from the Same Set of Memen-
toMaps . 175

(a) Inverted Index With the Archive Secondary Key Column and Density
Score as the Value Column . 175

(b) Inverted Index With the Archive Key and Density Score Collapsed in
the JSON Block . 175

79 A Sample Inverted Index Lookup Result . 176

80 Quora’s robots.txt File Excludes the Internet Archive With a Note About User
Privacy . 220

81 Historical robots.txt of Bell Labs . 221

82 Original SURT Implementation in Java . 222

83 InterPlanetary Wayback CLI Reference . 223

84 Reconstructive Reference . 224

85 Reconstructive Banner Reference . 224

86 MemGator CLI Reference . 225

87 AccessLog Parser CLI Reference . 226

88 MementoMap CLI Reference . 227

1

CHAPTER 1

INTRODUCTION

Web archives capture web pages from the live web, index them, and make them available

for replay later. The Memento protocol [245] provides a uniform means to lookup archived

resources in various web archives in the form of a list of all the captures, or mementos, of a

web page or a specific memento closest to a given date and time in the past. The number of

public web archives of varying sizes and collection policies supporting this protocol natively

or through proxies continues to grow [118, 141, 204, 240].

Figure 1 shows two copies of the early versions of the Smithsonian Institution’s home

page in two different web archives. Past versions of web pages are called mementos. A

memento of a resource can be served from the original server itself (e.g., a revision of a wiki

page) or from a web archive (even after the original server is gone).

Discoverability of archived resources is in the interest of both users and web archives.

Users want to find mementos that accurately represent the state of the resource at a given

time in the past which is more likely to be the case if there are many mementos of the

same resource (potentially in many different archives) over the period of the life of the web

page. Web archives want their collections to be utilized whenever they have a memento

that a user might be interested in. Memento aggregators are services that perform lookup

for mementos of web pages across many different web archives using the Memento protocol

and provide consolidated results. Without an aggregator, small archives will never get the

exposure that the Internet Archive (IA)1 gets (which has an Alexa ranking close to 200 for

the last several years2).

In this work we establish a framework for archive profiles to systematically describe

holdings of various web archives whether they are generated by the archives themselves or

third parties. Depending on the application, available resources, and the level of access to

the archives, one may generate a brief summary of holdings, a detailed ledger, or anything

in between. Among many use cases of archive profiles the primary purpose is efficient

Memento aggregation. There is a tradeoff between increasing exposure to web archives

(hence mementos) and managing load (hence resources and response time). The goal is to

1https://web.archive.org/
2https://www.alexa.com/siteinfo/archive.org

https://web.archive.org/
https://www.alexa.com/siteinfo/archive.org

2

(a) First Memento of the Smithsonian Institution in Arquivo.pt from

October 1996. https://arquivo.pt/wayback/19961013204418/http:

//www.si.edu/

(b) First Memento of the Smithsonian Institution in the Internet

Archive from December 1997 (JavaScript in the home page changes

the location to “newstart.htm”). https://web.archive.org/web/

19971210203441/http://www.si.edu/newstart.htm

Fig. 1. Early Mementos of the Smithsonian Institution Home Page

https://arquivo.pt/wayback/19961013204418/http://www.si.edu/
https://arquivo.pt/wayback/19961013204418/http://www.si.edu/
https://web.archive.org/web/19971210203441/http://www.si.edu/newstart.htm
https://web.archive.org/web/19971210203441/http://www.si.edu/newstart.htm

3

identify a few potential archives among all archives known to the aggregator that are likely

to return good results for a given page lookup.

1.1 MOTIVATION

A brief discussion on the following questions can help understanding the purpose and

importance of this work:

• Why aggregate web archives anyway?

• Why aggregate small web archives?

• Why profile web archives?

• Why route lookup requests?

1.1.1 WHY AGGREGATE WEB ARCHIVES ANYWAY?

The Internet Archive, the first web archive founded in 1996, has over a trillion mementos

of which about half are web pages (IA defines a “web page” as an HTML, text, or PDF

file [114]) as illustrated in Figure 2. Currently, it is adding roughly 1.6 billion mementos

each week as shown in Figure 3. According to an engineer at IA, every URI (Uniform

Resource Identifier) is captured on average about 2.1 times [115]. With that estimate, IA

has about 476 billion unique original URIs and 223 billion unique original web page URIs

as of October, 2020.

In November 2016, Google’s How Search Works page3 estimated the size of the web to

be over 130 trillion individual pages [219]. On one hand, this number does not reflect the

size of Google’s search index which is smaller (a few hundred billion4 or at least above 50

billion [92, 247]). On the other hand, this also does not include the number of historical

pages that are long gone, which, when included, would make the size of the web even larger.

IA’s seemingly large numbers, when put in perspective of the size of the web, become

small, relatively. This shows that while IA is the oldest and largest web archive, it still holds

only a small sample of the historical web. A recent study estimates that about two-thirds

of the entire web traffic is not archivable by public archives [126], where personal/private

web archiving can play an important role. Aggregating results from many archives helps

discovering more archived resources.

3https://www.google.com/search/howsearchworks/
4https://www.google.com/search/howsearchworks/crawling-indexing/

https://www.google.com/search/howsearchworks/
https://www.google.com/search/howsearchworks/crawling-indexing/

4

Fig. 2. Over a Trillion Mementos and 468 Billion Web Pages in IA as of October 26, 2020

5

Fig. 3. Growth of Mementos and Web Pages in IA Over Time [16] (IA started reporting

web page count instead of memento count on its homepage since October 2016).

IA has been blocked (or occasionally gets blocked) for years or months in many countries,

including China [123], Russia [99], Jordan [4, 75], and India [229, 151, 74]. Comcast, the

largest home Internet service provider in the United States, once blocked IA [73]. Being the

largest web archive, IA is susceptible to many threats, including natural disasters, hacking,

and Internet censorship. IA itself recognizes these threats and is trying to create mirrors in

different web archives for diversity in jurisdictions, countries, and geography, including the

most recent initiative of the Internet Archive of Canada [87]. Aggregation can help make

the long tail of smaller web archives available to everyone even when the largest archive is

inaccessible.

On June 15, 2016, I publicly demonstrated MemGator5, our newly created Memento

aggregator tool, at the Library of Congress (LC) for the first time. In the live demo I

illustrated many useful functionalities using MemGator as a command-line tool. One of

those examples was to count the number of mementos of a given URI for every year across

various archives (as illustrated in Figure 4). Later we found that IA was down during the

demonstration of MemGator due to a denial-of-service (DDoS) attack [148]. However, by

the virtue of aggregating from about a dozen other web archives the demonstration worked

5https://github.com/oduwsdl/MemGator

https://github.com/oduwsdl/MemGator

6

Fig. 4. MemGator Demonstration at the Library of Congress on June 15, 2016, while IA

was under a DDoS attack.

without anyone noticing any failures, proving the tool to be more resilient to transient errors

at individual archives. This reflects the potential experience of people living in places where

certain web archives might not be accessible, if they choose to utilize Memento aggregators.

The Smithsonian Institution unveiled its first homepage (http://www.si.edu/) in May

1995. Over time it has gone through many changes, but they did not preserve the history of

changes. Later, in 2014 they attempted to find the earliest copies of their homepage in web

archives [111]. Among thousands of mementos of their homepage IA had, the earliest copy

they found there was from May 19976, which redirects to another memento from December

1997 as shown in Figure 1b. Then they utilized Time Travel7, a Memento aggregator

service, which led them to discover a functional copy of their homepage from October 1996

in Arquivo.pt (Portuguese Web Archive) that was last updated in March 1996 as shown in

Figure 1a.

6https://web.archive.org/web/19970502110751/http://si.edu)
7http://timetravel.mementoweb.org/

http://www.si.edu/
https://web.archive.org/web/19970502110751/http://si.edu
http://timetravel.mementoweb.org/

7

Using robots.txt [165], IA allows webmasters to exclude historical copies of their whole

site, specific sections, or specific pages from being replayed. The US government and mil-

itary domains are exempted from this robots.txt exclusion as of December 2016 [212,

119]. In April 2015, Bell Labs8 restructured their web pages. As a result, the home page

of Dennis Ritchie, an American computer scientist primarily known as the creator of the C

programming language and one of the developers of the Unix operating system, was moved

from http://cm.bell-labs.com/cm/cs/who/dmr/ to https://www.bell-labs.com/usr/

dmr/www/index.html. People with broken links could not find any copies in the IA (as illus-

trated in Figure 5a). At that time, the robots.txt file of the cm.bell-labs.com in effect

prevented IA from replaying any pages from that domain9 (see Figure 81 of Appendix A for

the contents of the robots.txt file). Later the robots.txt file was removed, then we found

that IA has over 200 copies of Dennis Ritchie’s original home page (as shown in Figure 5c).

However, those using aggregators could easily find copies in other archives (as shown in Fig-

ure 5b) that do not utilize robots.txt for barring replay, such as Bibliotheca Alexandrina

Web Archive10, Archive.is11, and Archive-It12.

In December 2017, an American journalist Joy-Ann Reid apologized for “insensitive

LGBT blog posts” she wrote more than a decade ago [232]. A few months later she claimed

that either her blog or the copies of her blog in IA been hacked to fabricate homophobic

posts [96]. IA denied the claim of being hacked [72], but there were no technical means

deployed to prove fixity and non-repudiation of archived content [31, 47, 86]. We investigated

the matter further and looked for copies of her relevant posts in other web archives [187,

186]. We found a few copies of her posts in other web archives, suggesting that the claim of

IA being hacked not stand. Aggregating results from multiple independent archives gives

confidence about the validity and fixity of the content or lack thereof.

Each web archive has different goals and collection policies that result in a diverse set

of mementos across different archives. Some archives strive for broader coverage and run a

crawler that tries to traverse the connected graph of the World Wide Web (WWW) while

others limit their crawling to a specific set of web pages, such as domain names related to

a specific country (for example, the Icelandic Web Archive collects *.is pages and a hand-

picked selection of other Icelandic websites under some other TLDs13). Some individuals

8https://en.wikipedia.org/wiki/Bell_Labs
9https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt

10http://archive.bibalex.org/
11http://archive.is/
12https://archive-it.org/
13https://vefsafn.is/index.php?page=english

http://cm.bell-labs.com/cm/cs/who/dmr/
https://www.bell-labs.com/usr/dmr/www/index.html
https://www.bell-labs.com/usr/dmr/www/index.html
https://en.wikipedia.org/wiki/Bell_Labs
https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt
http://archive.bibalex.org/
http://archive.is/
https://archive-it.org/
https://vefsafn.is/index.php?page=english

8

(a) The Live Page is Missing and Inaccessible in IA

(b) Archives Other Than IA Have Some Copies

(c) Presence in IA Discovered Later After robots.txt is Removed

Fig. 5. Dennis Ritchie’s Homepage at Bell Labs After Site Restructuring

9

and organizations build focused collections with curated list of important pages while others

try to capture pages related to significant events in a timely manner. Some archives focus

on high-fidelity archiving and some provide on-demand archiving of a single page at a time.

Many different archives located in different parts of the world also capture the geo-location

diversity on sites that serve different content in different places. For example, some of the

mementos of the travel booking site Expedia in Arquivo.pt are in Spanish14,15 (as shown in

Figure 6a) while the Internet Archive has mementos of the same site in English16 (as shown

in Figure 6b) around the same time. Aggregation allows discovery of all these variations

from a single convenient place.

1.1.2 WHY AGGREGATE SMALL WEB ARCHIVES?

We conducted a preliminary experiment to assess the overlap among different web

archives [8, 210]. For that we collected four random samples of 1,000,000 URIs each from

four different sources:

1. the historical collection of DMOZ17

2. Internet Archive Wayback Machine access logs

3. Memento Proxy access logs, and

4. UK Web Archive Wayback access logs

Now defunct, DMOZ was a human curated directory of web pages in nested categories.

We then checked the presence of these four million sample URIs in two large web archives

(Archive-It and UK Web Archive) and one small web archive (Stanford Web Archive Por-

tal18).

Figure 7 shows the outcome of this experiment. There are two important observations

that highlight the need for aggregation: 1) none of the three archives have more than 5%

of any sample set archived, and 2) the overlap among archives is insignificant. We observe

that the coverage is almost additive in nature as more collections are aggregated together.

This means that an unpopular resource that is found in one web archive is less likely to be

14Expedia did not support Portuguese at that time, hence Spanish was the closest language option for
that geographical region.

15http://arquivo.pt/wayback/20161101203449/https://www.expedia.com/
16https://web.archive.org/web/20161031215653/https://www.expedia.com/
17https://en.wikipedia.org/wiki/DMOZ
18https://swap.stanford.edu/

http://arquivo.pt/wayback/20161101203449/https://www.expedia.com/
https://web.archive.org/web/20161031215653/https://www.expedia.com/
https://en.wikipedia.org/wiki/DMOZ
https://swap.stanford.edu/

10

(a) Arquivo.pt Observed the Page in Spanish

(b) Internet Archive Observed the Page in English

Fig. 6. Expedia Serves Pages in Different Languages to Different Geo-locations

found in any other archive (excluding the Internet Archive). Hence, even small archives may

contribute significantly to the effectiveness of the aggregation as they are not mere subsets

of large web archives.

Small curated collections often focus on high-fidelity captures that result in a more accu-

rate replay of archived web pages than large-scale automated crawls. Rhizome’s webenact19

is a good example of such collections. Rhizome is a born-digital art institution. Their

webenact service has a collection of a few hand-picked sites that have rich and interactive

19http://webenact.rhizome.org/

http://webenact.rhizome.org/

11

(a) Overlap of DMOZ (b) Overlap of IA Wayback

(c) Overlap of Memento Proxy (d) Overlap of UK Wayback

Fig. 7. Sample Lookup URI Overlap in Archive-It, UKWA, and Stanford Web Archives

embedded media in them. These collections include properly preserved interactions like

infinite scroll, media playback, and slideshows in modal windows that are otherwise difficult

to archive using traditional crawlers. Aggregating such small archives can help surface more

high-fidelity mementos for users when available.

1.1.3 WHY PROFILE WEB ARCHIVES?

As web archives grow larger over time, even the curated collections may collect many

unintended resources while missing out on many resources that should have been captured.

This may happen due to many reasons, including vaguely configured crawling policies, scripts

12

Fig. 8. Unclear Holdings of Archival Collections

in web pages, and transient failures of web servers or crawlers. According to Andrew Jackson,

the Web Archiving Technical Lead at the British Library, “We don’t even know what we’ve

got, especially for messy collections like web archives.” (Figure 8) [144]. Archive profiles are

one way to understand the holdings of an archive at any point in time.

Being able to describe the holdings of web archives by building archive profiles can enable

many use cases. One such use case is the ability to efficiently route requests from a Memento

aggregator to only archives that might have good results for the lookup URI.

Many archives would like to advertise their holdings even if those mementos are not

yet made accessible publicly. The reasons for not being able to access a resource could

be an embargo period, legal takedowns, requested exclusions, authorization requirements,

geo-spatial restrictions, etc. These archive profiles can even enable web archives to publicly

express their holdings about mementos that are only accessible to selected people, at selected

places, or at specific time periods.

1.1.4 WHY ROUTE LOOKUP REQUESTS?

In December 2015, soon after the popularity surge of OldWeb.today [167], a service that

allows accessing historical web in historical web browsers, many archives struggled with the

increased traffic. Library of Congress contacted us about MemGator causing issues on their

web archive server (as shown in Figure 9a). They found us because we added our contact

information in MemGator’s default user-agent request HTTP header. This field is supposed

to be customized by users who run MemGator on their own. We were aware that the

newly launched OldWeb.today service used MemGator which might not have customized

13

(a) LC Contacted Us About MemGator Causing

Issues

(b) We Responded With Potential Source of Traffic

Surge

(c) OldWeb.today Informed Us About an Exclusion Request

Fig. 9. OldWeb.today Caused Excessive Load at loc.gov

the user-agent. In our response we told LC about the potential source of traffic (as shown

in Figure 9b). A while later we received an email from the administrator of OldWeb.today

about an exclusion request from an archive from being aggregated (as shown in Figure 9c).

We found that fewer than 5% of the queried URIs are present in any individual archive

other than IA. In this case, being able to identify a subset of archives that might return

good results for a particular lookup request becomes very important.

Figures 11a and 11b illustrate a naive implementation of a Memento aggregator where

each request is broadcasted to all the known archives, but only a few archives return good

results. Memento aggregators, such as the Time Travel Service or MemGator, and other

14

1 $ curl -sL https://git.io//archives \

2 > | jq '.[] | select(.id=="pastpages")'

3 {

4 "id": "pastpages",

5 "name": "PastPages Web Archive",

6 "timemap": "http://www.pastpages.org/timemap/link/",

7 "timegate": "http://www.pastpages.org/timegate/",

8 "probability": 0.001,

9 "ignore": true

10 }

Fig. 10. MemGator’s Default Archives’ List Explicitly Disabled PastPages

services, need to know which archives to poll when a request for an archived version of a file

is received. LANL’s Time Travel Service routes requests to only a subset of archives using

binary classifiers trained on the observed results from various web archives in the past. The

default list of archives in MemGator had explicitly disabled the PastPages Web Archive

(as shown in Figure 10) because it was often not returning any good results. As a result

PastPages, before it shut down in 2018 (and the content was moved to IA20), was never

requested even if it had mementos for some lookup URIs. This binary approach of either

request a given archive for every lookup request or not request for any at all is not ideal.

Efficient Memento routing in aggregators is desired from both aggregators’ and archives’

perspective. Aggregators can reduce the average response time, improve overall throughput,

and save network bandwidth. Archives benefit by the reduced number of requests for which

they have no holdings, hence saving computing resources and bandwidth.

Broadcasting becomes practically impossible for an aggregator as the number of aggre-

gation sources grow large. Archive-It (AIT), a hosted web archiving subscription service

run by IA, is currently hosting over 15 thousand collections created by about two thousand

organizations and individuals21. Aggregating mementos from these many collections can be

overwhelming and impractical if the aggregator is to return the response to the client in

a reasonable amount of time. Luckily, AIT provides a special memento endpoint (called

“all”) where results from all of the public collections on AIT are combined. However, if an

20https://archive.org/details/pastpages
21As of November 27, 2020, AIT had 1,860 organizations and 15,515 collections and adding hundreds of

collections each month.

https://archive.org/details/pastpages

15

aggregator wants to exclude some collections, it has to then individually aggregate from

the rest. There are some other subscription services that have gained popularity such as

Webrecorder (now called Conifer)22, archiveweb.eu23, and the now defunct Internet Mem-

ory Foundation (IMF)24. They do not provide a combined endpoint yet, so the aggregator

must include their collections individually. Personal web archiving (collected by individuals,

potentially from their web browsing sessions) is another interesting dimension in web archiv-

ing. It is currently not very popular due to lack of tools and awareness, but a significant

amount of research and development is ongoing for personal web archiving [61, 156, 158].

If personal web archiving practices proliferate, a significant number of small, but valuable

archival collections might come to life that will be worth aggregating (with necessary access

control).

Figure 11c illustrates a setup where a Memento aggregator first queries an archive profile

service for the lookup URI. It receives a list of archives sorted in the order of the likelihood

of finding archived copies of the queried file in them. The aggregator then chooses the top-k

archives from the list that are above certain threshold to route the lookup request.

Previous work proved that simple rules are insufficient to accurately model a web archive’s

holdings [40, 39] (see Section 3.9.2 of Chapter 3 for more details). For example, simply rout-

ing requests for *.uk URIs to the UK National Archives is insufficient: many other archives

hold *.uk URIs, and the UK National Archives holds much more than just *.uk URIs. This

is true for the many other national web archives as well, such as Arquivo.pt is not limited

to *.pt and Vefsafn.is is not limited to *.is URIs. Earlier, we discussed the case of the

first copy of the Smithsonian Institution’s homepage was found in Arquivo.pt (as shown in

Figure 1a), which is not a page of primary interest of Portuguese people.

Using an informed routing at Memento aggregators can avoid overloading archives of any

size, where the aggregator only makes requests to a selected subset of archives where a given

lookup URI is likely to be found. It can help new archives with limited resources to flourish

while still being utilized when people look for archived mementos held by them. This can

result in an efficient aggregation, decreased response times, and good user experience while

saving resources of users, aggregators, and web archives.

22https://conifer.rhizome.org/
23https://www.archiefweb.eu/
24https://collections.internetmemory.org/

https://conifer.rhizome.org/
https://www.archiefweb.eu/
https://collections.internetmemory.org/

16

(a) Request to All Known Archives (b) Response from a Few Archives

(c) Memento Aggregator With Profile Based Routing

Fig. 11. Request-Response Cycle of Memento Aggregator and Various Archives

1.2 RESEARCH QUESTIONS

The above motivational examples helped identify the problem space that is the focus of

this research. The process of learning involves gathering information from different sources,

organizing the knowledge in a way that is easy to understand and express, and utilizing

the knowledge to solve other problems. We explore the following three primary research

questions and evaluate their potential solutions.

• RQ1: How to learn about the holdings and voids of an archive?

• RQ2: How to build an archive profile that will best summarize an archive’s hold-

ings/voids and allow for dissemination and exchange?

• RQ3: How to utilize archive profiles for the routing of URI lookup requests?

17

1.2.1 LEARNING ABOUT THE HOLDINGS OF AN ARCHIVE

Different people, based on their association with a web archive (or lack thereof), may

have varying levels of access to information of that archive’s holdings. Web archives generally

have an index of all the URIs they have collected one or more times. Having access to such

indexes can give a complete knowledge about their holdings. However, this information is

often not available publicly due to some practical problems such as logistics, security, or

privacy concerns. Entities that do not have direct access to an archive’s index can still

learn about its holdings by observing externally. We can perform searches using random

keywords in web archives that support fulltext search and note all the URIs returned in

their responses. This way, we can learn about a few new URIs from the archive’s holdings

with each search. In the case of web archives that do not support fulltext search, we can

observe their responses as we lookup individual URIs.

Each of these approaches have their own learning rate, associated cost, and usefulness

that needs to be studied and analyzed. There are many opportunities of optimization in

each of these approaches. For example, we need to identify a mechanism to generate a

list of keywords that yields maximum number of unique URIs in search results in the least

number of searches in a given web archive. Similarly, in the case where fulltext search is not

available and learning rate is one URI per lookup, we need to find a suitable list of diverse

URIs that maximizes the understanding of archive’s holdings.

The Random Searcher Model, one of our contributions (as discussed in Section 6.4.1

of Chapter 6), provides a means of discovery of an archive’s holdings via fulltext search.

Access logs collected by the running instances of MemGator, another contribution of this

work (described in Chapter 5), provide a longitudinal data of which URI lookups were

successful or unsuccessful in various web archives over time.

1.2.2 EXPRESSING AND DISSEMINATING ARCHIVE PROFILES

As we learn about the holdings of various archives, it becomes important to store and

organize that knowledge to make it useful. We call this organized knowledge about a web

archive’s holdings an Archive Profile. The purpose of an archive profile is to express the

holdings of an archive by the archive owners themselves or by a third party. A simple

archive profile can be a list of URIs present in an archive along with the date and time

when the archive observed each of those URIs. However, such simple profiles can become

significantly large for large archives. On the contrary, if a profile only stores the top-level

18

domains (TLDs) that are present in an archive, the profile will be small in size, but not very

effective for most of the use cases. We can also find a suitable middle ground of a partial

URI (such as just the domain name or up to one path depth) which is between the two

extremes of full URI and only the TLD. Alternatively, we can have full URIs recorded for

sites that are not well archived, but relatively shorter partial URIs for well-archived sites to

minimize the repetition and profile size. So, there is a tradeoff among factors like frequency

of updates, accuracy, size of the profile, granularity of details, and usefulness.

Depending on the purpose of the profile, one might want to store more metadata about

each record in the profile (e.g., MIME type, byte size, HTTP status code, or access restric-

tions). Another possibility is to only record a unique URI once and not repeat it each time

it was observed by the archive; instead, write down the number of observations made to

that URI. One might want to organize URIs in buckets of time slots of varying granularity

such as yearly, monthly, or daily. These profiles can be generated by different entities at

different times with different levels of details.

There is a need to define a suitable format for archive profiles that is flexible enough

to express varying levels of details, easy to parse and understand, compact in size, easy to

merge with other profiles or split arbitrarily in small chunks, and allows incremental growth

and versioning. The format should also be suitable for publishing on the web and easy to

exchange with other parties.

We introduced a file format called, Unified Key Value Store (UKVS), which fulfills

these needs of archive profiles’ serialization and dissemination (as described in Chapter 8).

Furthermore, we implemented the MementoMap tool (described in Section 5.6 of Chapter 5)

that ingests a list of URIs collected from CDX files, search results, access logs, or any other

means and produces a MementoMap of the archive in the UKVS format based on supplied

options to control the level of details.

1.2.3 ARCHIVE PROFILES FOR MEMENTO ROUTING

While there can be many use cases of archive profiles, the primary focus of this work

is to efficiently route memento aggregation requests to appropriate archives. We can build

algorithms to calculate routing scores for a given lookup URI to be present in different

archives based on the information in their corresponding profiles. Alternatively, we can

build binary or probabilistic classifiers for each archive (using data in their corresponding

profiles) to predict whether a given lookup URI is present in them individually. These

approaches can be useful when the number of archives to be aggregated is not significantly

19

large, as these approaches are not scalable beyond a limit.

Another way to look at this problem is to convert it into an information retrieval (IR)

problem and utilize many existing well-established techniques for the task such as language

modeling or vector space modeling [91]. In simple terms, IR is the task of searching for

resources from a collection that are relevant to a given query. This is generally performed

on a collection of documents where search keywords are generally words that appear in those

documents. In the case of memento routing, we can have a collection of archive profiles where

profiles are analogous to documents and the URIs present in them are analogous to words.

Then the task of memento routing converts into the task of finding relevant profiles (hence,

related archives) for a given URI lookup. It is worth noting that many IR tasks (such as

tokenization and stemming) will be different for URIs than for conventional documents.

Also, the document size (both the byte size as well as the word count) can be several orders

of magnitude larger for large archive profiles than general text documents.

1.3 CHAPTER SUMMARY

In this chapter we briefly described web archives, the Memento framework, Memento

aggregation and archive profiles. With the help of some real life examples we highlighted

the need for aggregating archives. We described that the rate of growth of the web will likely

always be faster than the ability to archive it, so we will always need techniques to efficiently

aggregate as many archives as possible, no matter how large certain archives get. We gave

examples of censorship of web archives, transient errors and attacks, lack of timely captures

of important events in a single archive, potentially unintentional exclusions, a means for

the validity and fixity, and the lack of variety in mementos. Then, we demonstrated the

significance of aggregating small archives by showing the little overlap among archives. We

showed that even small archives may bring some unique archived resources when aggregated.

We also highlighted the significance of small archives due to their focus on niche features

such as high-fidelity captures.

Furthermore, we described the usefulness of understanding the holdings of various web

archives by creating their archive profiles. We noted that even the curated collections

start to include many undesired resources and exclude many desired ones over time where

archive profiles can be helpful to understand their holdings. We also described the role of

archive profiles in expressing dark or restricted holdings in collections that are otherwise

not accessible publicly.

Using the example of an incident where LC was unable to handle a sudden surge of

20

traffic, we demonstrated how broadcasting lookup requests can be wasteful and problematic.

This establishes the need for a smart routing in Memento aggregators to avoid overloading

archives and to allow new archives to flourish. We envisioned that archive profiles can be a

means to implement an efficient and smart Memento aggregator.

We then established our three primary research questions related to learning holdings of

web archives, expressing and disseminating this information, and utilizing it for memento

aggregation routing. Finally, we described what we explore about each of these questions

and how.

The remainder of this document is organized as follows:

• Chapter 2 gives background information about various related terminologies that will

be helpful to understand the problems this work is addressing and their solutions.

• Chapter 3 explores and reviews published scholarly works in various related areas.

• Chapter 4 describes our MementoMap framework, research questions, and evaluation

plan.

• Chapter 5 describes various tools we built during our research as part of deliverables

and to help our research process.

• Chapter 6 describes our work around RQ1 in which we explore different approaches

to learn about holdings of web archives with different levels of access.

• Chapter 7 describes our work around RQ1 in which we discuss how to learn about

resources that are not present in a web archive.

• Chapter 8 describes our work around RQ2 in which we explore serialization and

dissemination methods of archive profiles.

• Chapter 9 describes our work around RQ3 in which we combine profiles of various

web archives and route Memento lookup queries to suitable archives.

• Chapter 10 enumerates our contributions, discusses potential future work, and con-

cludes by summarizing this work.

21

CHAPTER 2

BACKGROUND

In order to understand web archive profiling it would be helpful to be familiar with some

related terminologies. In this chapter we briefly describe Hypertext Transfer Protocol, web

archiving, Memento, aggregation, URI transformations, and some file formats.

2.1 HYPERTEXT TRANSFER PROTOCOL (HTTP)

Hypertext Transfer Protocol (HTTP) is a stateless client and server communication

protocol [103, 102, 110, 33, 26]. HTTP is a widely adopted protocol on the World Wide

Web (WWW). The monolithic specification of HTTP version 1.1 was later split in small

pieces, each covering a specific aspect of the protocol [108, 109, 107, 104, 105, 106]. HTTP up

to version 1.1 has been a text-based protocol, but HTTP version 2 and later are binary [235,

58]. In this work we primarily illustrate and focus on HTTP/1.1 as the later versions, despite

being binary encoded, are conceptually the same, especially, in the aspects of HTTP this

work has the focus on.

HTTP is relevant to this work at many levels. For example, Web archives preserve

HTTP exchanges and replay them using HTTP later.

2.1.1 HTTP MESSAGE

In HTTP a client user agent (such as a web browser) sends an HTTP Request Message to

a server using one of the supported methods (e.g., GET, POST, PUT, or DELETE), some headers,

and an optional payload. The server processes the request, and returns an appropriate

HTTP Response Message back to the client with a suitable status code (e.g., 200, 201, 301,

404, or 500), some headers, and an optional payload.

Figure 12 illustrates a typical HTTP request response exchange. The second line shown

in the figure is called a Request Line that contains the HTTP method, request URI, and the

HTTP version (in this example, “GET”, “/hello”, and “HTTP/1.1” respectively). Following

the Request Line there can be zero or more consecutive lines of headers with their names and

values separated by a colon sign (in this example, lines 3 and 4). Headers are terminated

by an empty line followed by an optional payload, which is absent in this example request

22

1 $ curl -ivs https://example.com/ 2>&1 | grep "^<\|^>"

2 > GET /hello HTTP/1.1

3 > Host: example.com

4 > User-Agent: curl/7.58.0

5 >

6 < HTTP/1.1 200 OK

7 < Date: Thu, 08 Aug 2019 15:47:15 GMT

8 < Server: Apache

9 < Last-Modified: Fri, 02 Aug 2019 03:35:56 GMT

10 < Content-Type: text/plain

11 < Content-Length: 16

12 <

13 < Hello Archives!

Fig. 12. HTTP Request and Response Messages (Characters > and < are not part of the

messages, they are annotations to identify request and response portions, respectively.)

message. Line 6 is the start of an HTTP Response Message which is called a Status Line

that consists of the HTTP version, status code, and a status message (in this example,

“HTTP/1.1”, “200”, and “OK” respectively). Same as the request message, the response

message has consecutive lines of headers, an empty line, and an optional payload (in this

example, lines 7–11 are headers and line 13 is the response payload).

2.1.2 HTTP METHOD

An HTTP method is a verb that indicates a generic action a client intends to perform

on a resource identified by a URI. It is a single token written using all upper-case letters

such as GET, POST, DELETE, etc. The base HTTP specification defines various common

methods, but other specifications extend the HTTP method space to include more methods.

Table 1 lists common HTTP methods among which the GET and POST are the most utilized

methods on the web [18]. A safe HTTP method does not change the state of the resource,

hence has no side-effects (with the exception of logging or change in the last access time).

An idempotent method means the overall effect of repeating the request is going to be the

same as a single successful attempt. Traditional web archiving systems focused only on the

GET method, both for capture and replay, but modern systems are accounting for other

methods as well.

23

Table 1. Common HTTP Methods

Method Description Safe Idempotent

GET Retrieve a representation of a resource Yes Yes

HEAD Same as GET, but omits the payload Yes Yes

POST Create a new resource No No

PUT Create or update a resource at a given URI No Yes

PATCH Partially update a resource No Yes

DELETE Remove a resource No Yes

OPTIONS Query available communication options Yes Yes

CONNECT Create a tunnel Yes Yes

TRACE Echo back the request Yes Yes

Table 2. Purpose of Various HTTP Status Code Classes

Status Class Code Range Description

1xx 100–199 Informational responses

2xx 200–299 Successful responses

3xx 300–399 Redirects

4xx 400–499 Client errors

5xx 500–599 Server errors

2.1.3 HTTP STATUS CODE

When a client sends an HTTP request to an HTTP server, the server communicates

the overall status of the HTTP exchange using response status codes. These status codes

are three-digit decimal numbers ranging from 100 to 599. The leftmost digit describes one

of the five response status classes as described in Table 2. Many existing HTTP-related

Request for Comments (RFCs) standardize various status codes and their semantics in each

class, but many codes in each range are still available for future extension. However, even

if a client does not know the exact semantics of a given status code, the class of the code

still gives a generic understanding of the response.

Status codes in the 1xx class are informational in nature such as, 100 Continue (an

24

interim response to indicate everything OK so far, wait for the actual response) or 103

Early Hints (to tell the client what other requests it might want to make in order to

preload necessary resources). This class of status codes is not very common in practice.

Status codes in the 2xx class indicate success. The 200 OK status is the most popular

(and often misused) status code, but other common codes in the class include 201 Created

(when one or more resources are creates as a result of a request), 202 Accepted (when

the request is accepted for asynchronous processing), 204 No Content (when the request

is successfully, but there is no content to send), and 206 Partial Content (when only a

subset of the response payload is returned).

Status codes in the 3xx class indicate a redirect. The response may contain a Location

header that the client may choose to follow to access the resource where the server is redirect-

ing. Common status codes of this class include 300 Multiple Choices (when a content-

negotiation cannot be resolved to one unique representation of the resource by the server

and results in an agent-driven negotiation), 301 Moved Permanently (when the resource

is moved to a new location, often used when domain names or URI structure of a website

are changed), 302 Found (when the resource is available at a different URI, but the server

wants the client to continue to come back to the current URI for content negotiation in the

future), 303 See Other (when a related resources is available at a different URI), and 304

Not Modified (when the content is not modified as per the conditions provided in the re-

quest and the client can leverage the corresponding cached resources instead). Status codes

307 Temporary Redirect and 308 Permanent Redirect are similar to the 302 and 301,

respectively, with one difference that these indicate that the client should not change the

request method when following the redirect.

Status codes in the 4xx class indicate a client error. Generally, a client should not

attempt to repeat the request that received a status of this class without making any changes

to the request. The 404 Not Found (the server does not have a resource representation for

the target resource or is not willing to disclose) is the most common status code in this

class. Some other common status codes in the 4xx class include 400 Bad Request (when

the request message is malformed), 401 Unauthorized (when authentication is needed to

access the resource), 403 Forbidden (when an authenticated user is not allowed to access

the resources), 405 Method Not Allowed (when the requested HTTP method is not allowed

on the resource), 410 Gone (when the resource identified by the URI is gone forever), 413

Payload Too Large (when the request payload is larger than configured for the server),

and 414 URI Too Long (when the URI is larger than configured for an HTTP server).

25

1 $ curl -i https://example.com/absent.html

2 HTTP/1.1 200 OK

3 Content-Type: text/plain

4 Date: Thu, 08 Aug 2019 21:13:04 GMT

5 Server: Apache

6 Content-Length: 40

7

8 Sorry, the requested page was not found!

Fig. 13. A Sample Soft-404 Response

Status codes in the 5xx class indicate a server error. Common status codes in the class

include 500 Internal Server Error (when the server encounters an unhandled error while

processing the request), 501 Not Implemented (when the requested HTTP method is not

implemented), 502 Bad Gateway (when the server acting as a gateway to another service

like a database or an external API received an invalid response), 503 Service Unavailable

(when the server is overloaded or down for maintenance, generally provides a Retry-After

header), 504 Gateway Timeout (when the server is acting as a gateway and the upstream

service did not return a response in time), and 505 HTTP Version Not Supported (when

the request HTTP version is unsupported by the server).

2.1.4 SOFT-404

As per the HTTP standards, if a resource is accessed that is not present on the requested

URI, the server should return the 404 Not Found status code, and if the resource is present

and is accessible then the response should be 200 OK. However, some poorly written web

applications may return 200 OK status code even for resources that are not present (as

illustrated in Figure 13). They often advertise the unavailability of the resource via the

response body instead of the status code. This behavior is called Soft-404 [180]. Moreover,

the term Soft-404 is commonly used as an umbrella term for any error page that is returned

with the 200 OK response code due to the prevalence of 404 Not Found errors over other

error pages on the web. Soft-404 is relevant to our work as some poorly implemented web

archives may return it, As a result, we may need to find workarounds to identify them and

isolate them from real 200 OK responses.

26

1 172.17.0.1 - - [13/Nov/2020:19:01:18 +0000] "GET / HTTP/1.1" 200 45

"-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/87.0.4280.66 Safari/537.36"

→֒

→֒

2 172.17.0.1 - - [13/Nov/2020:19:01:18 +0000] "GET /favicon.ico

HTTP/1.1" 200 238 "http://localhost/" "Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66

Safari/537.36"

→֒

→֒

→֒

3 172.17.0.1 - - [13/Nov/2020:19:02:42 +0000] "GET /img/logo.png

HTTP/1.1" 200 2906 "http://localhost/" "Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66

Safari/537.36"

→֒

→֒

→֒

4 172.17.0.1 - - [13/Nov/2020:19:03:12 +0000] "GET /img/unicorn.svg

HTTP/1.1" 404 196 "http://localhost/" "Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66

Safari/537.36"

→֒

→֒

→֒

5 172.17.0.9 - - [13/Nov/2020:19:05:36 +0000] "POST /login HTTP/1.1" 401

234 "-" "curl/7.58.0"→֒

Fig. 14. A Sample Extended Access Log

2.2 HTTP ACCESS LOGS

Many HTTP servers write a log in the standard Common Log Format or extended

Combined Log Format [41]. Figure 14 illustrates a typical access log file. It is a textual file

format that contains the following information about all the HTTP accesses, when available

(where any missing field is represented with a hyphen):

• IP address of the client

• User identity (often empty)

• Authenticated user’s ID (often empty)

• Date and time

• HTTP method, request path, and HTTP version

• HTTP status code

• Size of the response in bytes

Extended log versions may include additional fields as shown below:

27

• Referrer

• User-agent

• Cookies

• Request processing duration

• Any other headers if configured

However, not many web webmasters configure their server logging to include many useful

headers beyond the default fields (which usually only include referrer and user-agent on top

of the Common Log Format). For example, it would have been useful to know what language

preferences various clients had when accessing different resources from web archives, but the

access logs we collected from different web archives did not include this information. In this

work, we leverage access logs of web archives to learn about frequently accessed resources

that are not present in the archive. To process web archive access logs we have implemented

a generic HTTP access log parser with added capabilities for web archives (as discussed in

Chapter 5).

2.3 WEB ARCHIVING AND WEB ARCHIVES

Web archiving is the practice of collecting and preserving subsets of the WWW with the

intent to make them available in the future as historical records. The scope of web archiving

can be anything from a single web page saved by an individual for personal records to the

entire WWW captured by an institute or organization.

Institutions that capture the Web for preservation are called web archives. For example,

the Internet Archive is a large-scale web archive, founded in 1996 as a non-profit organiza-

tion. However, there are various other commercial, non-profit, institutional, and national

web archives around the world with different policies, goals, and focuses [51, 52, 241]. Some

web archives are on-demand (e.g., Archive.is and WebCite [100, 101]) as they capture web

pages and all the page requisites when requested explicitly by a client. Other web archives

are crawler-based that are configured to crawl certain portions of the WWW using standard

web crawling techniques.

The act of web archiving usually involves the following tasks [179] (our work relates to

and/or contributes to most of these aspects of web archiving as illustrated in Figure 36 of

Chapter 5 on Page 82):

28

• Collection policy making, seed selection, and crawling frequency configuration

• Capturing/Crawling

• Data storage

• Indexing

• Replay

Usually the coverage of the archival collection depends on the collection policy and

frequency of crawling, while the quality of capture depends on the tools used to capture

the web. Various open-source tools for capture/crawling, indexing, and replay are available

that can be used to set up a small or large-scale personal or institutional web archive.

2.3.1 ARCHIVE COLLECTION POLICY

Different web archives have different archival collection policies that control what gets

archived and what gets excluded. These policies shape the holdings and voids of a web

archive. For example, a web wide crawler can have more widespread coverage while crawling

popular resources more frequently. In contrast a focused crawler may collect many deep URIs

from the domains in scope that might be missed in a shallow web wide crawl. On-demand

one-page-at-a-time archives (e.g., Perma.cc [95, 205] and Archive.is) collect only pages (and

their page requisites) that users show an interest in, which may include deep links that would

otherwise not be discovered, but such archives cannot be as dense as crawler-based archives.

Moreover, there are various national web archives (e.g., Arquivo.pt [117, 89] and the UK

Web Archive [53, 145, 76]) that perform wide crawls, but they scope their crawlers primarily

to their national TLDs/gTLDs. Such crawlers may include resources from other parts of

the web, but their density will be low. Similarly, there are event-based collections that focus

on crawling resources related to specific events (e.g., COVID19 [134, 136, 218, 57, 135]).

These types of collections often require manual seed collection, which limits the number

of resources individual curators or collaborators can collect for archiving. In some cases a

collection can be made from a curated seed list by setting up a wide or deep crawling policy

starting from the seed URIs. A good example of this would be the End of Term crawl [113,

125, 49], which includes a curated list of domains/pages and many federal sites under the

.gov and .mil TLDs that is crawled a few times around the US presidential elections.

29

2.4 MEMENTO

Memento [245, 246, 189] is a protocol that adds the dimension of time on the web.

In other words, it is an HTTP framework for time-based access to resource states. The

framework is applicable to any web resource for time-based content negotiation (i.e., a

client can negotiate with a server to retrieve a historical version of a resource). However,

it has a greater focus towards web archives where time-based content negotiation is at the

core.

The Memento framework introduced a uniform Application Programming Interface (API)

for web archives to interoperate. This interoperability enabled memento aggregation for

cross-archive consolidation of archived resources.

The term Memento (as a proper noun) refers to the framework itself. However, the

common noun form memento is used for a prior state or a timestamped version of the

representation of an original resource. A memento is identified by a memento URI (or

URI-M) which often resolves to an archived copy in a web archive. An original resource

is identified by a resource URI (or URI-R) which used to exist in the past and might still

exist.

2.4.1 TIMEGATE

A TimeGate is a resource that acts as a gateway for datetime negotiation for a URI-

R. A TimeGate of a URI-R is identified by a corresponding TimeGate URI (or URI-G).

The client sends an Accept-Datetime request header to a URI-G for datetime negotiation.

The TimeGate then identifies the closest memento with respect to the requested datetime

and returns a 302 Found response with the corresponding URI-M in the Location header

as illustrated in Figure 15. The Memento framework covers various datetime negotiation

patterns in detail under Section 4 of its specifications [245]. A valid memento response

contains a Memento-Datetime response header that represents the datetime of a prior state

of the resource.

A TimeGate is an intermediate layer that may exist on the same host as the URI-R,

on a web archive, or on a Memento aggregator that consolidates various archives using

their TimeGate endpoints. If a web service implements the Memento protocol, ideally all

the URI-Rs of that service should advertise their URI-Gs in the Link response header.

However, if a URI-R does not advertise its TimeGate or does not exist anymore then a

generic TimeGate endpoint of a web archive (or a Memento aggregator) can be used, which

30

1 $ curl -I https://www.w3.org/wiki/Main_Page
2 HTTP/1.1 200 OK

3 Date: Tue, 16 Jul 2019 03:16:01 GMT

4 Link: <https://www.w3.org/wiki/Main_Page>; rel="original latest-version",

5 <https://www.w3.org/wiki/Special:TimeGate/Main_Page>; rel="timegate",

6 <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";

7 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";

8 until="Fri, 16 Nov 2018 19:10:23 GMT",

9 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";

10 datetime="Thu, 01 Jan 1970 00:00:00 GMT",

11 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";

12 datetime="Fri, 16 Nov 2018 19:10:23 GMT"

13 Content-Language: en

14 Vary: Accept-Encoding,Cookie

15 Cache-Control: s-maxage=18000, must-revalidate, max-age=0

16 Last-Modified: Mon, 15 Jul 2019 22:16:01 GMT

17 Content-Type: text/html; charset=UTF-8

18

19 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
20 https://www.w3.org/wiki/Special:TimeGate/Main_Page
21 HTTP/1.1 302 Found

22 Date: Tue, 16 Jul 2019 03:16:21 GMT

23 Vary: Accept-Encoding,Cookie,Accept-Datetime

24 Location: https://www.w3.org/wiki/index.php?title=Main_Page&oldid=80125

25 Link: <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";

26 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";

27 until="Fri, 16 Nov 2018 19:10:23 GMT",

28 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";

29 datetime="Thu, 01 Jan 1970 00:00:00 GMT",

30 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";

31 datetime="Fri, 16 Nov 2018 19:10:23 GMT",

32 <https://www.w3.org/wiki/Main_Page>; rel="original latest-version"

33 Content-Type: text/html; charset=UTF-8

34

35 HTTP/1.1 200 OK

36 Date: Tue, 16 Jul 2019 03:16:23 GMT

37 X-Content-Type-Options: nosniff

38 Memento-Datetime: Sat, 20 Dec 2014 11:34:08 GMT

39 Link: <https://www.w3.org/wiki/Main_Page>; rel="original latest-version",

40 <https://www.w3.org/wiki/Special:TimeGate/Main_Page>; rel="timegate",

41 <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";

42 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";

43 until="Fri, 16 Nov 2018 19:10:23 GMT",

44 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";

45 datetime="Thu, 01 Jan 1970 00:00:00 GMT",

46 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";

47 datetime="Fri, 16 Nov 2018 19:10:23 GMT"

48 Content-Language: en

49 Vary: Accept-Encoding,Cookie

50 Expires: Thu, 01 Jan 1970 00:00:00 GMT

51 Cache-Control: private, must-revalidate, max-age=0

52 Content-Type: text/html; charset=UTF-8

Fig. 15. Content Negotiation Using the Memento TimeGate of the Original Server to Access

a Specific Version of a Wiki Page

often allows a template-based URI-G formation where the URI-R is passed as a path or

query parameter as illustrated in Figure 16.

Figure 15 illustrates the case where an original resource itself supports temporal content

negotiation. We make a HEAD request to a Wiki page (line 1, where “-I” flag asks curl

to make a HEAD request). The server responds with the status code 200 and a Link

31

1 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
2 https://web.archive.org/web/https://example.com/
3 HTTP/1.1 302 FOUND

4 Server: nginx/1.15.8

5 Date: Mon, 20 Jul 2020 20:11:04 GMT

6 Vary: accept-datetime

7 Location: https://web.archive.org/web/20141220124831/http://www.example.com/

8 Link: <https://example.com/>; rel="original",

9 <https://web.archive.org/web/20141220124831/http://www.example.com/>;

10 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",

11 <https://web.archive.org/web/timemap/link/https://example.com/>;

12 rel="timemap"; type="application/link-format"

13 Content-Type: text/plain; charset=utf-8

14 Content-Length: 0

15 Connection: keep-alive

16

17 HTTP/1.1 200 OK

18 Server: nginx/1.15.8

19 Date: Mon, 20 Jul 2020 20:11:07 GMT

20 Memento-Datetime: Sat, 20 Dec 2014 12:48:31 GMT

21 Link: <http://www.example.com/>; rel="original",

22 <https://web.archive.org/web/http://www.example.com/>; rel="timegate",

23 <https://web.archive.org/web/timemap/link/http://www.example.com/>;

24 rel="timemap"; type="application/link-format",

25 <https://web.archive.org/web/20020120142510/http://example.com:80/>;

26 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",

27 <https://web.archive.org/web/20141220115400/http://example.com/>;

28 rel="prev memento"; datetime="Sat, 20 Dec 2014 11:54:00 GMT",

29 <https://web.archive.org/web/20141220124831/http://www.example.com/>;

30 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",

31 <https://web.archive.org/web/20141220135303/http://www.example.com/>;

32 rel="next memento"; datetime="Sat, 20 Dec 2014 13:53:03 GMT",

33 <https://web.archive.org/web/20200720172043/https://example.com/>;

34 rel="last memento"; datetime="Mon, 20 Jul 2020 17:20:43 GMT"

35 Content-Type: text/html; charset=utf-8

36 Content-Length: 4064

37 X-Archive-Orig-Accept-Ranges: bytes

38 X-Archive-Orig-Cache-Control: max-age=604800

39 X-Archive-Orig-Date: Sat, 20 Dec 2014 12:48:31 GMT

40 X-Archive-Orig-Etag: "359670651"

41 X-Archive-Orig-Expires: Sat, 27 Dec 2014 12:48:31 GMT

42 X-Archive-Orig-Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT

43 X-Archive-Orig-Server: ECS (rhv/818F)

44 X-Archive-Orig-X-Cache: HIT

45 X-Archive-Orig-x-ec-custom-error: 1

46 X-Archive-Orig-Content-Length: 1270

47 X-Archive-Orig-Connection: close

48 X-Archive-Guessed-Content-Type: text/html

49 X-Archive-Guessed-Charset: utf-8

50 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'

51 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org

52 Connection: keep-alive

Fig. 16. Content Negotiation Using a Generic Memento TimeGate of the Internet Archive

to Access an Archived Version of a Resource When the Origin Server Is Not Available or

Does Not Support Memento

header that contains a link with relation type “timegate” (line 5). This response suggests

that the original Wiki page that we are interested in has an associated TimeGate resource

available from where we can access its past states. We then use this newly discovered URI-G

and make another HEAD request with an Accept-Datetime header to access a version of

32

the resource as it was on Dec 20, 2014, at 12:30:00 (lines 19–20). The server returns

a 302 response code (line 21), which suggests that a resource was found that satisfies the

request and it can be accessed from the URI returned in the Location header (line 24). The

response returned includes Accept-Datetime in its Vary header (line 23) as an indicator of

availability of temporal content negotiation. We follow the 302 redirect automatically (as

curl is configured to follow the Location header in line 19 using “-L” flag) to access the

matching memento. We receive a 200 status code (line 35) and a Memento-Datetime header

(line 38) that indicates a version of the resource at 11:34:08 (about 25 minutes prior to the

requested time). Since a wiki is a content management system that preserves a history of

all of its changes [146], we can believe that the state of the resource at the requested time

in the past was the same as in the response, although the response indicated a slightly older

version when the resource was changed (i.e., the closest past version).

Figure 16 illustrates the case where we look for historical versions of an original resource

using a generic TimeGate endpoint of a web archive independent from the original resource.

In this example, we performed content negotiation on a resource from example.com in the

temporal dimension in an independent domain web.archive.org, which is a web archive.

We skip the first step of discovering a link relation type “timegate” for a URI-R and

use our out of band knowledge to form a URI-G (as shown in line 2 where the URI-

R https://example.com/ is concatenated to the generic TimeGate endpoint of the web

archive). The remaining steps are the same as described above in the previous example. It

is worth noting that the actual state of the resource at the requested datetime might have

been different from what we get from the web archive, which is a version observed after

about 19 minutes from the requested datetime (i.e., closest future version).

2.4.2 TIMEMAP

A TimeMap is a collection resource that lists links and their relations with an original

resource. A TimeMap of a URI-R is identified by a corresponding TimeMap URI (or URI-

T). The primary purpose of a TimeMap is to list all mementos with their URI-Ms and

corresponding Memento-Datetime as illustrated in Figure 17. Generally, the media type of

the entity body of a TimeMap resource is “application/web-link” [192, 221], but recent

implementations are experimenting with alternate formats like JSON.

2.4.3 NOT-ARCHIVED VS. ARCHIVED-404

A web archival replay system is yet another HTTP server that replays HTTP responses

https://example.com/

33

1 $ curl -i https://web.archive.org/web/timemap/link/http://example.org/index.html

2 HTTP/1.1 200 OK

3 Server: nginx/1.15.8

4 Date: Fri, 09 Aug 2019 21:58:23 GMT

5 Content-Type: application/link-format

6 Transfer-Encoding: chunked

7 Connection: keep-alive

8

9 <http://www.example.org:80/index.html>; rel="original",

10 <https://web.archive.org/web/timemap/link/http://example.org/index.html>; rel="self";

11 type="application/link-format"; from="Wed, 16 Oct 2002 10:13:37 GMT",

12 <https://web.archive.org/web/http://example.org/index.html>; rel="timegate",

13 <https://web.archive.org/web/20021016101337/http://www.example.org:80/index.html>;

14 rel="first memento"; datetime="Wed, 16 Oct 2002 10:13:37 GMT",

15 <https://web.archive.org/web/20031207031049/http://www.example.org:80/index.html>;

16 rel="memento"; datetime="Sun, 07 Dec 2003 03:10:49 GMT",

17 <https://web.archive.org/web/20040305230707/http://www.example.org:80/index.html>;

18 rel="memento"; datetime="Fri, 05 Mar 2004 23:07:07 GMT",

19 [... TRUNCATED ...]

20 <https://web.archive.org/web/20190731130056/http://www.example.org/index.html>;

21 rel="memento"; datetime="Wed, 31 Jul 2019 13:00:56 GMT",

Fig. 17. A TimeMap from the Internet Archive

captured from other HTTP servers in the past with necessary changes. This means there

are situations where the client may not be sure whether a status code reflects the state of

a resource on the web archival server or the original server corresponding to the URI-R.

For example, when accessing URI-M, if the archive returns 404 Not Found, should this be

interpreted as the archive does not have that memento (i.e., not-archived) or the crawler

of the archive received a 404 Not Found response from the origin server when attempting

to access the corresponding resource in the past, which is being replayed (i.e., archive-404).

Similarly, there can be confusion about other HTTP status codes in the redirect, client

error, and server error status classes. To resolve this confusion we look for signatures of a

memento in the response headers. If the response contains the Memento-Datetime header

and a Link header with relation type memento, then we know it is an archived resource

with the corresponding status code, otherwise we consider that the status code reflects the

state of the resource in the web archive server. Figure 18 illustrates the two cases in which

the example.com/absent.html is not archived, but the example.com/404.html is archived

with the 404 Not Found status code.

2.5 MEMENTO AGGREGATOR

A Memento Aggregator is a service that consolidates various web archives using the

Memento protocol. The primary function of a Memento aggregator is to provide HTTP

34

1 $ curl -I https://web.archive.org/web/20201109011314/http://example.com/absent.html
2 HTTP/1.1 404 Not Found

3 Server: nginx/1.15.8

4 Date: Wed, 11 Nov 2020 00:02:04 GMT

5 Content-Type: text/html; charset=utf-8

6 Connection: keep-alive

7

8 $ curl -I https://web.archive.org/web/20201109011314/http://example.com/404.html
9 HTTP/1.1 404 Not Found

10 Server: nginx/1.15.8

11 Date: Wed, 11 Nov 2020 00:03:16 GMT

12 Memento-Datetime: Mon, 09 Nov 2020 01:13:14 GMT

13 Link: <http://example.com/404.html>; rel="original",

14 <https://web.archive.org/web/http://example.com/404.html>; rel="timegate",

15 <https://web.archive.org/web/timemap/link/http://example.com/404.html>;

16 rel="timemap"; type="application/link-format",

17 <https://web.archive.org/web/20020401195232/http://www.example.com:80/404.html>;

18 rel="first memento"; datetime="Mon, 01 Apr 2002 19:52:32 GMT",

19 <https://web.archive.org/web/20200912032554/http://example.com/404.html>;

20 rel="prev memento"; datetime="Sat, 12 Sep 2020 03:25:54 GMT",

21 <https://web.archive.org/web/20201109011314/http://example.com/404.html>;

22 rel="memento"; datetime="Mon, 09 Nov 2020 01:13:14 GMT",

23 <https://web.archive.org/web/20201109011314/http://example.com/404.html>;

24 rel="last memento"; datetime="Mon, 09 Nov 2020 01:13:14 GMT"

25 Content-Type: text/html; charset=UTF-8

26 Content-Length: 2885

27 Connection: keep-alive

28 X-Archive-Orig-Age: 257886

29 X-Archive-Orig-Cache-Control: max-age=604800

30 X-Archive-Orig-Date: Mon, 09 Nov 2020 01:13:14 GMT

31 X-Archive-Orig-Expires: Mon, 16 Nov 2020 01:13:14 GMT

32 X-Archive-Orig-Last-Modified: Fri, 06 Nov 2020 01:35:08 GMT

33 X-Archive-Orig-Server: ECS (nyb/1D35)

34 X-Archive-Orig-Vary: Accept-Encoding

35 X-Archive-Orig-X-Cache: 404-HIT

36 X-Archive-Orig-Content-Length: 1256

37 X-Archive-Guessed-Content-Type: text/html

38 X-Archive-Guessed-Charset: utf-8

39 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'

40 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org

Fig. 18. Not-Archived vs. Archived-404

API endpoints for consolidated TimeGate and TimeMap. When a client performs datetime

negotiation with a Memento aggregator’s TimeGate endpoint, the aggregator performs the

same negotiation with all the known web archives and returns 302 Found response by se-

lecting the closest URI-M with respect to the requested datetime among various responses

received from upstream web archives as shown in Figure 19. The matching Memento in this

case is coming from the Internet Archive (as shown in lines 30–65). The actual state of the

resource at the requested datetime might have been different from what we get from the

web archive, which is a version observed after about 19 minutes from the requested datetime

(i.e., closest future version), but we do not have any other mementos closer to the requested

datetime in any of the aggregated web archives.

When a client asks an aggregator for the TimeMap of a URI-R, the aggregator fetches

35

1 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
2 https://memgator.cs.odu.edu/timegate/https://example.com/
3 HTTP/1.1 302 Found

4 Date: Mon, 20 Jul 2020 20:32:00 GMT

5 Vary: Accept-Datetime

6 Location: https://web.archive.org/web/20141220124831/http://www.example.com/

7 Link: <https://example.com/>; rel="original",

8 <http://web.archive.bibalex.org:80/web/20020120142510/https://example.com/>;

9 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",

10 <https://wayback.archive-it.org/all/20141220085500/https://example.com/>;

11 rel="prev memento"; datetime="Sat, 20 Dec 2014 08:55:00 GMT",

12 <https://web.archive.org/web/20141220124831/http://www.example.com/>;

13 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",

14 <https://wayback.archive-it.org/all/20141220171028/https://example.com/>;

15 rel="next memento"; datetime="Sat, 20 Dec 2014 17:10:28 GMT",

16 <https://wayback.archive-it.org/all/20200719170744/https://example.com/>;

17 rel="last memento"; datetime="Sun, 19 Jul 2020 17:07:44 GMT",

18 <https://memgator.cs.odu.edu/timemap/link/https://example.com/>;

19 rel="timemap"; type="application/link-format",

20 <https://memgator.cs.odu.edu/timemap/json/https://example.com/>;

21 rel="timemap"; type="application/json",

22 <https://memgator.cs.odu.edu/timemap/cdxj/https://example.com/>;

23 rel="timemap"; type="application/cdxj+ors",

24 <https://memgator.cs.odu.edu/timegate/https://example.com/>; rel="timegate"

25 Access-Control-Allow-Origin: *
26 Access-Control-Expose-Headers: Link, Location, X-Memento-Count, Server

27 Content-Type: text/html; charset=utf-8

28 Server: MemGator/1.0-rc8

29

30 HTTP/1.1 200 OK

31 Server: nginx/1.15.8

32 Date: Mon, 20 Jul 2020 20:32:17 GMT

33 Memento-Datetime: Sat, 20 Dec 2014 12:48:31 GMT

34 Link: <http://www.example.com/>; rel="original",

35 <https://web.archive.org/web/http://www.example.com/>; rel="timegate",

36 <https://web.archive.org/web/timemap/link/http://www.example.com/>;

37 rel="timemap"; type="application/link-format",

38 <https://web.archive.org/web/20020120142510/http://example.com:80/>;

39 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",

40 <https://web.archive.org/web/20141220115400/http://example.com/>;

41 rel="prev memento"; datetime="Sat, 20 Dec 2014 11:54:00 GMT",

42 <https://web.archive.org/web/20141220124831/http://www.example.com/>;

43 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",

44 <https://web.archive.org/web/20141220135303/http://www.example.com/>;

45 rel="next memento"; datetime="Sat, 20 Dec 2014 13:53:03 GMT",

46 <https://web.archive.org/web/20200720172043/https://example.com/>;

47 rel="last memento"; datetime="Mon, 20 Jul 2020 17:20:43 GMT"

48 Content-Type: text/html; charset=utf-8

49 Content-Length: 4064

50 X-Archive-Orig-Accept-Ranges: bytes

51 X-Archive-Orig-Cache-Control: max-age=604800

52 X-Archive-Orig-Date: Sat, 20 Dec 2014 12:48:31 GMT

53 X-Archive-Orig-Etag: "359670651"

54 X-Archive-Orig-Expires: Sat, 27 Dec 2014 12:48:31 GMT

55 X-Archive-Orig-Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT

56 X-Archive-Orig-Server: ECS (rhv/818F)

57 X-Archive-Orig-X-Cache: HIT

58 X-Archive-Orig-x-ec-custom-error: 1

59 X-Archive-Orig-Content-Length: 1270

60 X-Archive-Orig-Connection: close

61 X-Archive-Guessed-Content-Type: text/html

62 X-Archive-Guessed-Charset: utf-8

63 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'

64 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org

65 Connection: keep-alive

Fig. 19. Content Negotiation Using a Generic Memento TimeGate of a Memento Aggregator

to Access an Archived Version of a Resource from a Web Archive When the Origin Server

Is Not Available or Does Not Support Memento

36

1 $ curl -i https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html

2 HTTP/1.1 200 OK

3 Content-Type: application/link-format

4 Date: Fri, 09 Aug 2019 21:53:10 GMT

5 X-Generator: MemGator:1.0-rc7

6 X-Memento-Count: 162

7 Transfer-Encoding: chunked

8

9 <http://example.org/index.html>; rel="original",

10 <https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html>; rel="self";

11 type="application/link-format",

12 <https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html>; rel="timemap";

13 type="application/link-format",

14 <https://memgator.cs.odu.edu/timemap/json/http://example.org/index.html>; rel="timemap";

15 type="application/json",

16 <https://memgator.cs.odu.edu/timegate/http://example.org/index.html>; rel="timegate",

17 <http://web.archive.org/web/20021016101337/http://www.example.org:80/index.html>;

18 rel="first memento"; datetime="Wed, 16 Oct 2002 10:13:37 GMT",

19 <http://web.archive.org/web/20031207031049/http://www.example.org:80/index.html>;

20 rel="memento"; datetime="Sun, 07 Dec 2003 03:10:49 GMT",

21 <http://archive.md/20070621200621/http://example.org/index.html>;

22 rel="memento"; datetime="Thu, 21 Jun 2007 20:06:21 GMT",

23 <http://wayback.archive-it.org/all/20170717191800/http://www.example.org/index.html>;

24 rel="memento"; datetime="Mon, 17 Jul 2017 19:18:00 GMT",

25 [... TRUNCATED ...]

26 <http://web.archive.org/web/20190731130056/http://www.example.org/index.html>;

27 rel="last memento"; datetime="Wed, 31 Jul 2019 13:00:56 GMT"

Fig. 20. An Aggregated TimeMap from MemGator Server

TimeMaps for the same URI-R from all known web archives and combines all successful

responses to return a more complete TimeMap. This is illustrated in Figure 20 where an ag-

gregated TimeMap from MemGator includes URI-Ms from web.archive.org, archive.md,

and wayback.archive-it.org web archive domains. This response was consolidated from

many different TimeMaps fetched from individual upstream web archives that support Me-

mento. Individual web archives may be sparse in capturing a rapidly changing resource ad-

equately, hence missing many updates. Depending on the crawling policy, web archives may

sample a small subset of the WWW. TimeMaps, when aggregated across various archives,

give a more complete picture of the past web.

Popular Memento aggregators such as Memento Time Travel1 and MemGator [10] may

generate a lot of traffic for the upstream web archives. Aggregating responses from all

known web archives is useful, but broadcasting each request to every web archive is wasteful,

because for a given request very few archives return a useful response. Aggregator services

often use local caches to reduce the amount of traffic they cause to upstream web archives.

Caching is helpful for popular resources that are requested very often (e.g., CDN-hosted

1http://timetravel.mementoweb.org/guide/api/

web.archive.org
archive.md
wayback.archive-it.org
http://timetravel.mementoweb.org/guide/api/

37

userinfo host port

http://user:pass@example.com:8080/img/logo.png?width=90&height=30#top

scheme authority path query fragment

Fig. 21. A Generic URI Example

jQuery2 that is commonly used in many web pages). However, caching failed responses

(such as 404 Not Found) or caching frequently archived resources may cause the freshness

issue. Additionally, less frequently requested resources may spoil the cache (depending on

the caching policy) while being ineffective in reducing upstream traffic. Our web archive

profiling work can solve this issue by making a prediction of top-K potential web archives

where mementos of a URI-R might be present to avoid aggregation request broadcasting.

2.6 URI AND URI TRANSFORMATIONS

A Uniform Resource Identifier (URI) [62] is a systematically formatted compact string

that is used to identify a resource (as illustrated in Figure 21). A Uniform Resource Locator

(URL) is a subset of URIs that has an additional capability of locating a resource (such as on

a network). URIs are at the core of web archives in many stages such as crawling, indexing,

analysis, and replay. While there are hundreds of registered URI schemes [139], web archives

primarily only focus on “http” and “https” because these are the most common ones on

the web.

A URI cannot identify multiple resources at the same time, but multiple URIs can

identify a single resource. Moreover, a single URI can be represented in more than one ways

due to the following reasons:

• http and https schemes generally point to the same resource

• Scheme and host segments are case-insensitive

• Percent-encoded hexadecimal digits are case-insensitive

• Some web services treat their path and/or query segments as case-insensitive as well

2http://jquery.com/download/#using-jquery-with-a-cdn

http://jquery.com/download/#using-jquery-with-a-cdn

38

• www sub-domain is generally optional

• Generally, an index.* file is loaded when the path portion of the URI ends with a

forward slash (i.e., a directory path) without an explicit filename

• Default ports 80 and 443 (of http and https respectively) are optional

• Paths can have single or double dots (e.g., ./..) for relative paths and multiple

consecutive forward slashes (e.g., //...) as path segment separator (like in Unix file

systems [202])

• Individual name-value pairs of query parameters can appear in any order

• Some well-known query parameters such as utm_* and jsessionid are used for track-

ing or session management, not to identify a resource

2.6.1 URI NORMALIZATION/CANONICALIZATION

When an entity can have many different representations, it is sometimes desired to

recognize one of those representations as the standard form. Suppose, we are given the task

to find whether a given substring is present in a base string of characters irrespective of the

case of letters (i.e., case-insensitive search). One possible approach to attempt this task is

to search for all possible variations of the lookup substring, but the cost of such lookup will

grow exponentially as the number of alphabet letters grow in the lookup substring (i.e., 2N

for a lookup string with N letters that can either be in upper or lower case). An alternate

approach is to decide an application-specific standard representation, such as all lower case

letters, and transform both the lookup and base strings to that form before performing

the search. After such transformation, this search is performed only once, irrespective of

the size of the lookup substring. This process of transformation of an entity to a standard

representation is called Normalization or Canonicalization (i.e., transforming to a normal

or canonical form).

Since a URI can be represented in many different ways, search engines, caching prox-

ies, web browsers, and web archives try to normalize URIs when they are used as storage

keys [54]. This way multiple variations of a URI are transformed into a unique repre-

sentation. For example, while loading a web page, a web browser encounters two im-

age elements with their source attributes set to http://example.com:80/logo.png and

HTTP://EXAMPLE.COM/logo.png respectively, which are the same URI represented in two

http://example.com:80/logo.png
HTTP://EXAMPLE.COM/logo.png

39

different forms. Making two different requests for these will be a network bandwidth wastage

and caching those responses under two different keys would be a storage wastage. This is why

web browsers (and many other components of the web infrastructure) normalize URIs using

the rules standardized under Section 6 of the URI RFC [62]. The URI normalization [62]

process involves one or more of the following steps:

• Remove scheme, “www”, port number, fragment identifier, and some well-known unnec-

essary query parameters

• Remove the “?” when the query is empty

• Remove directory index file name (e.g., index.html)

• Add trailing slash for directories

• Normalize path (such as removing dots and duplicate consecutive forward slashes) [202]

• Downcase hostname (path and query params are case sensitive)

• Upcase percent-encoded hexadecimal digits

• Sort name-value pairs of query params lexicographically

Some of these normalization steps (such as removing scheme, “www”, or directory index

file) change the semantics of the URI, but are commonly performed for practical reasons.

Figure 22 illustrates the URI normalization process. For example, from the URI represen-

tation shown in line 4 we removed “http://”, changed “NEWS.BBC.CO.UK” to lower case, re-

moved “:80”, collapsed duplicate forward slashes in the path (i.e., “//images//Logo.png”),

sorted query parameters (i.e., “height”, “width”, and “rotate”), changed percent-encoded

characters to upper case (i.e., “%c2%b0”, which represents the “°” symbol), and removed the

segment identifier “#top”.

It is worth noting that the terms Normalization and Canonicalization have slightly

different semantics in the context of URIs. A canonical URI can be something that we

may not be able to deduce using standard URI normalization rules and may need some

out of band information. For example, a company may register domain names under many

different TLDs to preserve its brand (e.g., example.com, example.org, example.us, and

example.co.uk) and serve the same resources on all these domains. However, it is equally

possible that some of these domain names are registered by different entities. Similarly,

example.com
example.org
example.us
example.co.uk

40

1. https://news.bbc.co.uk/images/Logo.png?width=200&height=80&rotate=90%C2%B0#top

2. http://www.news.BBC.co.uk/images/Logo.png?width=200&height=80&rotate=90%c2%b0#top

3. http://www.news.bbc.co.uk/images/Logo.png?rotate=90%c2%B0&width=200&height=80

4. http://NEWS.BBC.CO.UK:80//images//Logo.png?height=80&width=200&rotate=90%c2%b0#top

And many other variations of the URI...

↓ NORMALIZATION ↓

* Remove scheme, "www", port number, fragment identifier, and some unnecessary query parameters

* Normalize path (such as removing dots and duplicate consecutive forward slashes)

* Downcase hostname (path and query params are case sensitive)

* Upcase percent-encoded hexadecimal digits

* Sort name-value pairs of query params lexicographically

=> news.bbc.co.uk/images/Logo.png?height=80&rotate=90%C2%B0&width=200

Fig. 22. URI Normalization Process

A normalized/canonicalized URI

news.bbc.co.uk/images/Logo.png?height=80&rotate=90%C2%B0&width=200

↓ SURT ↓

* Downcase everything

* Reverse the hostname segments and separate them by commas

* Separate authority and path by a closing parenthesis

=> uk,co,bbc,news,)/images/logo.png?height=80&rotate=90%c2%b0&width=200

Fig. 23. Sort-friendly URI Reordering Transform (SURT) Process

sometimes webmasters introduce different URIs (under the same domain or a different one)

for the same resource for purposes like testing, cache bursting, or tracking. Search engines

do not like duplicate resources associated with many different URIs, so for the sake of

search engine optimization webmasters may include a link with relation type “canonical”

to indicate that the resource should be associated with the advertized canonical URI as the

single origin of truth [198].

However, in the web archiving community and in this work the terms Normalization

and Canonicalization are used interchangeably (unless specified otherwise) where the latter

is more common [226]. Canonicalization is very important in web archiving to minimize

the effort of a crawler and to improve the discovery of archived resources at the time of

replay. For this reason, many web archives use more aggressive canonicalization rules than

standard web browsers and proxy caches. However, canonicalization based on per-domain

rules, multi-domain ownership, and URI reorganization over time is an open research area

in the context of web archiving, which is out of scope for this work. Such a canonicalization

41

can reduce false positives and false negatives in web archive replay and discovery systems,

but will require some architectural changes.

2.6.2 SORT-FRIENDLY URI REORDERING TRANSFORM (SURT)

In addition to URI normalization/canonicalization SURT (Sort-friendly URI Reordering

Transform) [227] is used to place related URIs together when sorted. This spatial locality is

important for efficient indexing of large URI collections. In a traditional URI the hostname

parts are organized differently than paths. In the hostname section, the root of the Domain

Name System (DNS) chain (i.e., the Top-Level Domain, or TLD) comes at the end towards

the right hand side while registered domain name portion and subdomain sections are placed

towards the left hand side. In contrast, in the path section, the root path comes first followed

by deeper nodes of the path tree towards the right side. As a consequence, if a list of three

domain names example.com, foo.example.com, and example.net are sorted, the latter

with a different TLD will sit in between the other two. As opposed to this the SURT

reverses the order of domain name tokens (originally, separated by dots) and uses a comma

as the new delimiter. SURTs are commonly used in archival index files and many other

places where a URI is used as a lookup key field, including MementoMap (which is an

outcome of this research work).

Figure 23 illustrates how a normalized/canonicalized URI is converted to its correspond-

ing SURT. Due to the aggressive downcasing, SURTs are lossy (i.e., not completely re-

versible), hence only suitable as lookup keys in an index. This decision was made with a prac-

tical assumption that there will be very rare occasions where a site will have files/directories

at a given path depth with names that only differ in their letter casing or will have query

parameter values that collide due to case-sensitively (See Appendix B for comments in the

original Java implementation of SURT). The advantage of this decision is that mementos of

twitter.com/BarackObama and twitter.com/barackobama are consolidated (which point

to the same resource), but as a consequence bit.ly/A and bit.ly/a collide (which are two

different resources).

We can extend SURT and utilize it for archive profile serialization and dissemination.

Our extension includes support for wildcards inspired by “robots.txt” (discussed in Sec-

tion 2.8.3).

2.7 ARCHIVE FILE FORMATS

Web archives usually use special file formats to store the data, collection analysis, and

42

index for lookup. Following are some of the commonly used file formats by web archives

that are well supported in web archiving tools and can be used for archive profiling.

2.7.1 WARC

WARC (Web ARChive) file format [142, 15] is the de facto standard for web archives to

store their output including DNS (Domain Name System) lookup, HTTP requests, HTTP

responses (including headers and payload), and some other things. These files are the

default output of the commonly used Heritrix crawler [184], but it can also be generated

using WGet [220] or other tools such as WARCreate [158]. Figure 24 illustrates a sample

WARC file with two related WARC records of types request and response respectively.

A typical WARC file contains an arbitrary number of records which reduces the number of

inodes [207] on the file system, stores inline metadata, and eliminates the possibility of name

collisions in contrast to storing archival data in plain files. In the early days of web archiving

the Internet Archive introduced ARC file format that formed the basis of the WARC file

format [71].

WARC/ARC files can be used for archive profiling. However, it will be more efficient

to use their index instead. Web Archive Collection Zipped (WACZ) is a related file format

that bundles WARC files with their indexes and other metadata files [166]. It is still in the

draft phase, but is a potential candidate of an archive profiling source.

2.7.2 WEB BUNDLES

Web Bundles (also known as, Web Packaging) is an emerging web standard that bundles

multiple HTTP transactions (request and response pairs) in a single file for transporta-

tion [243, 251, 250, 249, 208, 164, 209]. The primary purpose of Web Bundles is to deliver

them to a user-agent (such as a web browser) via a third party (such as content delivery net-

work) and make the user-agent believe that the bundle was originally prepared and signed

by the main origin. This way, web pages can be shared offline and other means such as

store and forward on demand. It shares a lot in common with WARC files, but is optimized

for transportation while WARC is optimized for lossless long-term preservation of resources.

Unlike WARC, Web Bundles is a binary format file. Moreover, Web Bundles have a built-in

index, so each bundle is self-sufficient. It is more likely that bundled resources will be closely

related (such as, all the page requisites of one or more pages from the site), while WARC

records are put together more arbitrarily.

This is still a work in progress, but when ready, it is expected to benefit web archives in

43

1 WARC/1.0

2 WARC-IP-Address: 93.184.216.34

3 WARC-Type: request

4 WARC-Record-ID: <urn:uuid:9b1f7afd-c251-4cb3-a7e9-3690925dc462>

5 WARC-Concurrent-To: <urn:uuid:57ffb7a4-996b-47e8-8078-769362cbcbd3>

6 WARC-Target-URI: https://example.com/hello

7 WARC-Date: 2019-08-08T15:47:15Z

8 WARC-Payload-Digest: sha1:HI7YB5JPCEVFF54CDGIDSB3IUM75WU3U

9 WARC-Block-Digest: sha1:OGJKUHULUFYCBFFUT5Z5AKKRWUHXRKKN

10 Content-Type: application/http; msgtype=request

11 Content-Length: 67

12

13 GET /hello HTTP/1.1

14 Host: example.com

15 User-Agent: curl/7.58.0

16

17

18 WARC/1.0

19 WARC-IP-Address: 93.184.216.34

20 WARC-Type: response

21 WARC-Record-ID: <urn:uuid:57ffb7a4-996b-47e8-8078-769362cbcbd3>

22 WARC-Target-URI: https://example.com/hello

23 WARC-Date: 2019-08-08T15:47:15Z

24 WARC-Payload-Digest: sha1:LDEVQLI2LNVAXZU2JUJMUXYTG3YDXASI

25 WARC-Block-Digest: sha1:NHNS5CS6LO7FFJKDSVFSI4WQLBBE6SSU

26 Content-Type: application/http; msgtype=response

27 Content-Length: 180

28

29 HTTP/1.1 200 OK

30 Date: Thu, 08 Aug 2019 15:47:15 GMT

31 Server: Apache

32 Last-Modified: Fri, 02 Aug 2019 03:35:56 GMT

33 Content-Type: text/plain

34 Content-Length: 16

35

36 Hello Archives!

Fig. 24. A WARC File With a Request and Corresponding Response Records

capturing and replaying in a more coherent manner [31, 211]. This affects archive profiling in

a way that we might profile only the HTML pages of a website, leaving other page requisites

come from the same archive from where the HTML page is coming.

2.7.3 WAT, WANE, AND WET

Web Archive Transformation (WAT), Web Archive Named Entities (WANE), and WARC

Encapsulated Text (WET) files are derived formats from WARC [236, 182, 233, 85, 50]. A

WARC file is usually generated at the crawl time, which is post-processed for optimization

and creation of derivatives. WAT files contain JSON-formatted metadata about selected

WARC records such as title and outlinks of an HTML page. WANE files contain JSON-

formatted named entities (such as people, places, organizations, etc.) extracted from a

44

1 Envelope

2 WARC-Header-Metadata

3 WARC-Target-URI

4 WARC-Type

5 WARC-Date

6 ...

7 Payload-Metadata

8 HTTP-Response-Metadata

9 Headers

10 Content-Language

11 ...

12 HTML-Metadata

13 Head

14 Title

15 ...

16 Links [list]

17 Headers-Length

18 Entity-Length

19 ...

20 Container

21 Gzip-Metadata

22 Compressed?

23 Offset

Fig. 25. WAT File Structure

WARC record. WET files contain the plain text version of a WARC record after stripping

off all the markup and other structures. These derived files are helpful in tasks like un-

derstanding collections, text analysis, knowledge graph building, machine learning, fulltext

search, etc.

Figure 25 illustrates the structure of WAT record. These derived records are generally

placed in a WARC file using metadata or conversion WARC-Type records. All these

derived formats contain the original URI and the datetime when the corresponding WARC

record was created which can be utilized for archive profiling.

2.7.4 CDX/CDXJ

CDX (Capture inDeX) [138] is a CSV -like text file-based index format (as shown in

Figure 26) that has traditionally been used by the IA and was one of the primarily supported

index formats of OpenWayback3. It is very rigid in nature and has a predefined list of fields

that are not extendable. Each block of WARC files is indexed as a CDX line. Each entry in

the CDX file stores the canonical URI and observation time (Memento-Datetime) as lookup

keys and associated data such as the status code, content-type, content digest, record offset

3https://github.com/iipc/openwayback

https://github.com/iipc/openwayback

45

1 CDX N b a m s k r M S V g

2 com,example)/ 20140103030321 http://example.com text/html 200 B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A

- - 1043 333 example.warc.gz→֒

3 com,example)/ 20140103030341 http://example.com warc/revisit - B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A

- - 553 1864 example.warc.gz→֒

4 org,iana)/domains/example 20140128051539 http://www.iana.org/domains/example text/html 302

JZ622UA23G5ZU6Y3XAKH4LINONUEICEG - - 577 2907 example.warc.gz→֒

Fig. 26. Sample CDX File

1 com,example)/ 20140103030321 {"url": "http://example.com", "digest":

"B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A", "length": "1043", "offset": "333", "filename":

"example.warc.gz"}

→֒

→֒

2 com,example)/ 20140103030341 {"url": "http://example.com", "mime": "warc/revisit", "digest":

"B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A", "length": "553", "offset": "1864", "filename":

"example.warc.gz"}

→֒

→֒

3 org,iana)/domains/example 20140128051539 {"url": "http://www.iana.org/domains/example",

"digest": "JZ622UA23G5ZU6Y3XAKH4LINONUEICEG", "length": "577", "offset": "2907",

"filename": "example.warc.gz"}

→֒

→֒

Fig. 27. Sample CDXJ File

in the WARC file, content length, and the WARC file name. The latter three are generally

used to locate the capture in a WARC file.

CDXJ [25] is an evolution of the classic CDX format. In this file format, lookup key

fields (URI-R and Datetime) are placed at the beginning of each line which is followed by

a single-line compact JSON [90] block that holds other fields that can vary in number and

be extended as needed (as shown in Figure 27). This format is primarily used by archival

replay systems including PyWB4 and our InterPlanetary Wayback (IPWB) [152].

Both of these formats are sort-friendly to enable binary search on file when performing

lookups. These CDX/CDXJ files are just indexes, hence these are significantly smaller

than WARC files. Having access to an archive’s CDX files gives complete knowledge of

its holdings in terms of what URIs it captured, when, and how often. This information is

sufficient to build a lightweight profile for the archive. Additionally, we can use a CDXJ-like

format for web archive profile serialization.

4https://github.com/webrecorder/pywb

https://github.com/webrecorder/pywb

46

2.8 SYNDICATION AND DISCOVERY

WWW is a decentralized publishing platform where webmasters or content creators/owners

can publish, update, or redact their resources independently. This decentralized nature, with

all its virtues, poses the challenge of content discovery for users. Search engines try to solve

the discovery problem by indexing the web at large scale and make relevant resources avail-

able via keyword searching. However, this means users needs to know in advance what

they are looking for, but this may not be the case if, for example, someone is interested

in the latest news. In the recent years after the rise of social media, content creators can

promote their content to subscribers directly, which is somewhat equivalent to newsletter

subscription of the pre-social media era. People have explored different means to make

their content discoverable by search engines and users, which emerged as various standards

or widely adopted practices on the web. In this section we explore some well-established

protocols to identify how they can inspire web archive summarization and discovery of web

archive holdings.

2.8.1 RSS/ATOM FEED

Really Simple Syndication (RSS) or Atom Feed are popular and competing standards

for web feeds [213, 194]. Atom tries to improve on some limitations of RSS [214]. A web

feed is a way to summarize recent changes in a web site and make it available to clients on

demand. Web sites that provide an RSS/Atom feed usually add their feed URIs in their

site’s markup with “alternate” link relation type for the discovery of feed sources. Web

browsers in the past used to highlight the presence of a feed link in a page in the toolbar

and give users easy controls to add the link in their feed readers, but in the recent years

some browsers like Google Chrome and Mozilla Firefox have removed it [201, 83]. However,

it is still possible to enable feed detection and subscription using browser add-ons.

Before the popularity of Web Push Notifications [63], periodic polling for recent changes

was a common practice for users to keep up with topics they are interested in. For example,

a user can subscribe to various blogs and news sites by adding their web feed URIs in a feed

reader software, these sites can add new content independently at any time and update their

Atom/RSS feed to reflect new changes, user’s feed reader can periodically poll all the feed

documents from all the sources it tracks to identify new content (that are not present in feed

reader’s cache or have timestamps past the last check), and make the new content available

for the user to read later. Figure 28 illustrates an Atom feed that contains metadata for

47

1 <?xml version="1.0" encoding="utf-8"?>

2 <feed xmlns="https://www.w3.org/2005/Atom">

3 <title>An Example Feed</title>

4 <subtitle>A blog that does not exist</subtitle>

5 <link href="https://example.org/blog/atom.xml" rel="self" />

6 <link href="https://example.org/blog/" rel="alternate" type="text/html" />

7 <id>urn:uuid:7a839982-a407-45f4-bf80-be7eb9ff7da3</id>

8 <updated>2020-06-21T09:24:28Z</updated>

9 <entry>

10 <title>Lorem Ipsum</title>

11 <link href="https://example.org/2020/06/21/lorem-ipsum" />

12 <id>urn:uuid:44bd656a-5cd8-4e0c-916b-1c3ed09f1821</id>

13 <updated>2020-06-21T09:24:28Z</updated>

14 <summary>

15 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

16 Integer vel ligula blandit dolor mattis varius id nec magna.

17 </summary>

18 <author>

19 <name>Jane Doe</name>

20 <email>jdoe@example.com</email>

21 </author>

22 </entry>

23 <entry>

24 <!-- Second entry -->

25 </entry>

26 <entry>

27 <!-- Third entry -->

28 </entry>

29 </feed>

Fig. 28. Example Atom Feed

the website (lines 3–8) and individual resources (lines 9–22). There are entries for each

individual resource that the website wants to summarize in the recent changes (lines 23–

28). These entries are usually present in the reverse chronological order of the resource

update time with pagination support.

2.8.2 SITEMAPS

HTML is a markup language that used to generate static documents, but later many

executable environments (such as Adobe Flash, Silverlight, Java Applets, and JavaScript)

emerged that can be embedded in an HTML document to change its state and manipulate

the markup after the web page is loaded in a capable client (such as a web browser). This

posed a serious challenge to web crawlers that parse web pages to extract external links

and embedded resources to be added in their frontier queue without necessarily rendering

those pages. Rendering pages for crawling (for example, in a headless browser or in a virtual

machine) to discover all the out-links and necessary resource URIs is difficult, costly, and

sometimes impossible [70]. This affects search engines as they fail to discover and index

many important pages of a website. This also affects web archives as they may fail to

48

archive some webpages with all their page requisites, resulting in a damaged replay [69].

To overcome this discovery problem Google introduced Sitemaps protocol as a Search

Engine Optimization (SEO) technique [224, 191, 230]. Webmasters can make better deci-

sions about which resources on their website are non-trivial and can automate the process

of listing important resources to be harvested by crawlers [188]. A sitemap is an XML

document, often placed at the web root of a domain as “/sitemap.xml”, that lists links to

resources that webmasters want search engines to index from their websites. Web crawlers

usually check for the presence of a sitemap at this well-known location before starting to

crawl a domain. This saves crawlers from doing extra work to parse each page they down-

load to extract more links. Sitemaps can also list resources that are otherwise disconnected

and not linked from other pages. In addition to listing resources, a sitemap can annotate

each entry with its last modified time, relative importance value, as well as change frequency

to further optimize crawler efforts. Moreover, sitemaps can have links to other sitemaps of

the domain to allow large sitemaps to be split in smaller parts for pagination and easier

management and update.

Figure 29 illustrates a typical sitemap where the “url” XML element is repeated for each

entry under which only the “loc” element is mandatory; other fields are optional. Figure 30

illustrates an index sitemap where the “sitemap” XML element is repeated to link to two

compressed sitemap pages.

We considered using sitemaps to summarize web archive holdings along the lines of how

it formed the basis for the ResourceSync framework [82, 130, 244]. However, we realized

the following drawbacks:

• It is good for listing all the resources, but not the summary of holdings at various path

depths, which means archives exposing their entire index.

• It is impractical for large archives to generate sitemaps of their collections and costly

for the consumers to download them and keep them synchronized.

• It is inherently verbose due to XML format.

However, we can still leverage some sitemaps concepts such as pagination in our Me-

mentoMap framework.

49

1 <?xml version="1.0" encoding="utf-8"?>

2 <urlset xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">

3 <url>

4 <loc>https://example.com/</loc>

5 <lastmod>2020-06-21T09:24:28+00:00</lastmod>

6 <changefreq>daily</changefreq>

7 <priority>0.9</priority>

8 </url>

9 <url>

10 <loc>https://example.org/2020/06/21/lorem-ipsum</loc>

11 <lastmod>2020-06-21T09:24:28+00:00</lastmod>

12 </url>

13 </urlset>

Fig. 29. Example Sitemap

1 <?xml version="1.0" encoding="UTF-8"?>

2 <sitemapindex xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">

3 <sitemap>

4 <loc>https://example.com/sitemap-1.xml.gz</loc>

5 <lastmod>2020-06-21T09:24:34+00:00</lastmod>

6 </sitemap>

7 <sitemap>

8 <loc>https://example.com/sitemap-2.xml.gz</loc>

9 <lastmod>2020-06-21T09:24:58+00:00</lastmod>

10 </sitemap>

11 </sitemapindex>

Fig. 30. Example Index Sitemap

1 User-agent: Googlebot

2 User-agent: bingbot

3 Disallow: /admin/

4 Disallow: /data/

5 Allow: /data/summary/*.html

6 Crawl-delay: 20

7

8 User-agent: *
9 Disallow: /

Fig. 31. Example robots.txt File

2.8.3 ROBOTS EXCLUSION PROTOCOL

Robots Exclusion Protocol (REP) (often called as “robots.txt”) is a means to tell crawler

bots which sections of a website they should not attempt to crawl [165, 253]. It is suggestive

in nature and does not prevent a crawler from accessing excluded sections of the website, but

50

a good crawler should respect the advice of webmasters to avoid being blocked later [225].

There can be many reasons why a webmaster would want to make certain resources accessible

online, but not want a search engine crawler to spend time on them, for example, large binary

files, admin interfaces, infinite pagination (such as calendars), and other crawler traps [133].

Usually, web crawlers check for the presence of “/robots.txt” before starting to crawl a

domain, which is a well-known location for it.

The format of the file is very simple. It starts with specifying one or more user-agents,

followed by one or more allow/disallow path directives that will be applicable to specified

user-agents above them. Both the user-agent directive and allow/disallow path directives

support wildcards. Furthermore, some non-standard extensions also added additional direc-

tives to specify crawl delay and the location of the primary “sitemap.xml” file (if it is not

present at the root of the website).

Figure 31 shows an example robots.txt file in which lines 1–2 suggest that “Googlebot”

and “bingbot” should respect directives that follow. Lines 3–4 suggests them to not index

any URIs that start with “/admin/” or “/data/”, but line 5 allows them to index any HTML

file that is present under “/data/summary/” path. Line 6 suggests them to pause for at least

20 seconds before making another request to the domain. Finally, lines 8–9 suggest every

other bot to not crawl anything from the website.

Unlike a sitemap.xml file that always expect full URIs, robots.txt support path pre-

fixes and wildcards that can be very helpful in summarizing specific sections of a website.

This behavior aligns well with the objective of web archive summarization. However, due

to the following reasons we cannot use robots.txt for archive profiling in its current form:

• It is an exclusion document, which means it suggests what not to look for rather than

summarizing what is present under a domain.

• Its allow/disallow directives usually refer to paths under the same domain rather than

full URIs, which in the case of web archives, there are numerous domains that they

collect resources from and replay.

• It does not allow additional attributes to be associated with each specified path pre-

fix/directive (e.g., we would want to report an estimate of number of resources that

are present under a domain or a path depth).

A sitemap.xml file allows expressing holdings of a website, but it is comprehensive in

nature. On the contrary, a robots.txt file allows summarized representation, but it is

51

not meant to express holdings. However, by combining the desired features of these two

protocols we can come up with something that can allow summarizing holdings of web

archives in an efficient manner.

2.8.4 WELL-KNOWN URIS

In the last two sections we mentioned that web crawlers look for special files under the

root of the domain at “/sitemap.xml” and “/robots.txt”. These are well-know locations

for these special files that provide metadata about the origin. Over time the need for more

such special metadata files emerged, but placing every special file under the root of the

domain has some drawbacks. For example, such file names may collide with other special

files or existing resources on certain domains and limit the control of the origin over its URI

space.

To avoid polluting the web root of origins and to minimize collisions a separate namespace

“/.well-known/” was proposed and a registry was created [193, 140]. This means all special

files in the future can be namespaced under this special path. Namespace is a common

means to solve such problems where many independent entities work in a shared space

and may cause collisions. A similar problem was identified in GNU/Linux desktops where

various applications create/expect application-specific files (such as, user configurations and

caches) under the “$HOME” directory of the user, which results in a growing number of

hidden files in users’ home directory as they install more applications over time. This was

solved by introducing special hidden folder like “$HOME/.config” and “$HOME/.cache”, so

that individual applications can create (and look for) their special files and folders under

these namespaces [56]. Many new applications now utilize these namespaces while existing

applications are gradually updating to support them.

We plan to register “/.well-known/mementomap” as a well-known URI for web archives

to server their primary MementoMap at. This will allow automatic discovery of the summary

of archive holdings by applications like Memento aggregators.

2.9 INVERTED INDEX

An Inverted Index is a simple data structure that is commonly used in fulltext search-

ing [254]. In a simple term, if a document is considered to be a collection of words, then

an Inverted Index lists documents containing each word. Depending on the use case, an

Inverted Index may also contain frequency, relevance score, or other weight and indicators

of each word in each document.

52

1 D1: W1 W1 W1 W4 W4

2 D2: W1 W3 W3 W3 W3

3 D3: W1 W1 W1 W1 W2 W2 W4 W4 W4

4 D4: W4 W4 W4 W4 W4 W4

Fig. 32. A Sample Document Index (where each row represents a separate document)

1 D1: [(W1, 3), (W4, 2)]

2 D2: [(W3, 4), (W2, 1)]

3 D3: [(W1, 4), (W4, 3), (W2, 2)]

4 D4: [(W4, 6)]

Fig. 33. A Sample Document Index

Suppose we have a collection of documents ({D1, D2, D3, ...}) and each document is made

of a set of words ({W1,W2,W3, ...}) where each word may appear multiple times in the same

document as shown in Figure 32. Suppose we want to answer questions like, “what are the

top-k words in a given document of the collection?” (i.e., most relevant words to a given

document), without the need of scanning each document each time. This is a common

question for classification tasks. For this purpose we can create an index. An index in

this case can have a key field containing the name or the identifier of each document in

the collection and the value can have a sorted list of tuples containing words and their

corresponding term frequencies. To make the lookup in the index fast, the index is sorted

by its key field as shown in Figure 33.

Now, suppose we want to answer questions like, “what are the top-k documents of the

collection that contain a given word?” (i.e., most relevant documents to a given word),

without the need of scanning each document each time. This is a common question for

fulltext search tasks. For this purpose we can create an inverted index. As opposed to the

document index described above, words are being used as keys in an inverted index and the

documents those words appear in become part of the value field. To make the lookup in the

inverted index fast, the index is sorted by its key field (i.e., words) as shown in Figure 34.

Inverted indexes have traditionally been used in the Information Retrieval discipline. In

situations where case-sensitive search is not needed, words are canonicalized (e.g., changing

53

1 W1: [(D3, 4), (D1, 3)]

2 W2: [(D3, 2), (D2, 1)]

3 W3: [(D2, 4)]

4 W4: [(D4, 6), (D3, 3), (D1, 2)]

Fig. 34. A Sample Inverted Index

the word to all lowercase letters in languages where applicable) before they are added to

the inverted index. To associate variations of the same root word, stemming is performed

on words [173] before adding them to the inverted index so that a lookup for “book” also

matches words like “books”, “booked”, “booking”, etc.

A regular document index grows linearly as more documents are added to the collection.

This means for each new document added in the collection, there is one added entry or row

in the index. On the contrary, the growth of an inverted index follows Heaps’ Law, which

initially grows rapidly, but the growth slows down over time as each new document does not

introduce as many new words. The index is capped by the maximum size of the vocabulary

(or stems) of the language. However, the value field of the inverted index becomes denser

as more documents are added to the collection.

We can use an Inverted Index of archive profiles for Memento routing. Here, we consider

an archive profile serialized as a MementoMap (see Chapter 4 for details) to be a document

that describes holdings of the corresponding web archive and lookup SURT keys in the

MementoMap as words. While the number of profiles is small, it would be easy to perform

lookup in each profile individually, but as the number of archives (and corresponding Me-

mentoMaps) grow, it would become an impractical approach. Creating an inverted index

of MementoMaps can solve the scaling problem of Memento aggregators.

2.10 CHAPTER SUMMARY

In this chapter we briefly described various terminologies and technologies that will be

helpful in understanding problems this work addresses and the solutions we propose. We first

described HTTP and its components, such as HTTP methods and status codes, Soft-404,

and access logs. After that we discussed web archiving, web archives, and collection policies.

Then we discussed Memento and related terminologies such as TimeGate and TimeMap

along with a brief discussion on HTTP status codes in the context of web archives. Then we

54

talked about Memento Aggregators. Furthermore, we described URIs and transformations

of URIs such as normalization/canonicalization and SURT that are necessary for indexing.

After that we discussed various web archiving related file formats including: WARC, WAT,

WANE, WET, CDX, and CDXJ. Then we described various protocols used for syndication

and discovery including: RSS/Atom Feed, Sitemap, REP (or robots.txt), and Well-Known

URIs. Finally, we described Inverted Index which is primarily used in fulltext searching. We

included necessary illustrations for each terminology and established the purpose, relevance,

or usefulness of each in the context of this work.

55

CHAPTER 3

RELATED WORK

Archive profiling and Memento routing are niche fields that are not explored by many

researchers beyond a small community. In this chapter we describe work published by us

and a small number of researchers in the web archiving community. We also describe some

closely related works from the information retrieval community. Some of the relevant fields

of research to this work include: hidden/deep web, query routing, and profiling web archives.

3.1 SURFACE WEB CRAWLING

Estimating the size of the Surface Web that is publicly accessible, interlinked, and easily

indexable by web crawlers has been of great interest both for researchers and web crawling

practitioners. However, it is a difficult problem to estimate it accurately, which results in

different numbers reported by different researchers.

The WorldWideWebSize.com is a well-known site that is making a longitudinal data

available about the size of search indexes of various independent large-scale web search

engines [92, 247]. They select an unrelated pair of search keywords and use them to perform

a lookup in each search engine. They extract the number of matching documents for the

search terms as reported on the result page of each search engine. They use these numbers

to estimate the size of the index of one search engine relative to the other. Their data

suggests that for the past many years the average size of Google search index (the most

dominating one) was steady between 45 and 50 billion pages. At the start of the year 2019

it jumped up and averaged between 55 and 60 billion pages. Empirical evidence such as,

a growing number of open-source software documentation, wiki pages, online news, videos,

social media, etc. suggest that both private and public web is growing in size over time,

even after we subtract the number of pages that disappear from the web (i.e., there are

probably more pages added to the web than removed from it). However, their numbers do

not indicate any linear or exponential growth patterns. We can think of two possible reasons

behind it: 1) number of matching documents reported by search engines are not updated

frequently, and/or 2) search engines limit their index size to something that is sufficient

for users’ search needs, leaving any low quality pages out of the index. This means their

WorldWideWebSize.com

56

estimates reflect the size of search engine indexes, which might not be an indicator of the

size of the public web.

Lawrence and Giles estimated the size of the indexable web to be at least 320 million

pages in 1997 [169]. They estimated index sizes of six different search engines and analyzed

pairs of search engines to estimate the size of the indexable web. They reported that no

single search engine has indexed more than one third of their estimated indexable web. In

the same year Bharat and Broder estimated the lower bound of static pages on the public

web to be 200 million [64]. Later in 2004, Dobra and Fienberg estimated the site of the web

with a lower bound of 520 million [94]. They argued that the size of the web was at least

twice as big in 1997 as it was reported by the above two papers.

More recently, in 2012, Alarifi et al. estimated over 2 billion Arabic web pages indexed

in search engines [34]. They used more recent search engines (like Google, Yahoo, and Bing)

that operate on a much larger scale than those used in the past researches (like Alta Vista,

Excite, HotBot, and Lycos), many of which are not operational anymore. It is worth nothing

that their estimate is only about Arabic web pages, the overall indexed web is arguably much

larger than 2 billion pages.

In 2014, Khabsa and Giles estimated the number of English scholarly documents acces-

sible on the web over 140 million [160]. They used Google Scholar and Microsoft Academic

Search for estimation and reported that about 100 million are indexed in Google Scholar.

They further reported that about one quarter of these indexed scholarly documents are

freely accessible. Furthermore, they estimated the distribution of these documents in 15

different research fields and found that some fields have more freely available documents (as

big as 50%) than others (as low as 12%). There is a growing interest in bringing the two

disciplines of web archiving and scholarly communications closer to work as complements

to each other. These efforts are done from both ways, web archives trying to index and

preserve publicly accessible scholarly documents [190] and digital libraries enriching their

collections with scholarly documents found in public web archives [48, 200].

Size of the indexable web is of our interest as it gives an upper bound on how much of

the web can be archived, if we exclude personal web archiving behind session walls. These

research works on estimating the size of the web give the motivation to aggregate mementos

from many web archives as no single web archive is big enough to capture the scale of the

ever-growing web.

57

3.2 DEEP/HIDDEN/DARK WEB CRAWLING

The Surface Web is the portion of public WWW that is interconnected with links as a

graph [67] and can easily be crawled and indexed by search engine crawlers. In contrast,

the Deep/Hidden Web is the part of WWW that is kept behind paywalls, login walls, or

accessible by filling out a search form. Moreover, the Dark Web is portion of the web that

is intentionally kept inaccessible by standard web browsers such as the content in the Tor

network [116]. However, some of these terminologies are often used interchangeably [228].

Raghavan and Garcia-Molina developed a hidden Web crawler called the Hidden Web

Exposer (HiWE) and described its architecture [203]. The system was built to explore

electronic datasets and web resources that are only accessible via search forms or after

authorization/login.

Ntoulas et al. built a framework of query generation to effectively discover resources

from the hidden/deep web [195]. Unlike the surface web, hidden web is usually explored by

filling out HTML search forms with one or more fields instead of following hyperlinks. For

efficient discovery of resources it is critical to identify suitable values for each field and their

suitable combinations otherwise the search might not return any useful results. Ntoulas et

al. reported that one of their experiments discovered more than 90% of resources from a

large web site using less than 100 queries using one of their policies.

Wu et al. explored the query selection problem for discovering hidden web datasets [248].

The issue is not just to form queries that are likely to return good results, but also target to

get more unique results that were not discovered in any previous queries. To optimize the

query plan they converted hidden dataset discovery into a graph problem known as Minimum

Weighted Dominating Set [222] by modeling structured datasets as nodes connected with

relational links. This is a known NP-Complete problem [121] for which they proposed a

heuristically optimized approach and evaluated against real web datasets.

Sheng et al. proposed algorithms to find dataset tuples from the hidden web and estab-

lished theoretical upper and lower bounds for their proposed algorithms [223]. They stated

that their suggested algorithms are asymptotically optimal. To establish their claim they

evaluated their proposed techniques against real datasets.

Hernández et al. surveyed deep web crawling [132]. They discussed various aspects of

deep web crawling, such as discovery of sites with deep web resources, form filling, crawling

path learning, and evaluation datasets. They concluded that the field of crawler evaluation

needs more research and standardized datasets/metrics. Moreover, they suggested that

future deep web crawlers should account for ever-evolving web technologies.

58

While some small web archives allow browsing their collections, others mostly rely on

a URI lookup or fulltext search for the discovery of their holdings. Additionally, archived

contents span over a long period of time, which causes a disconnect between old and con-

temporary pages. As a result, hyperlink based shallow crawling might only discover a

temporal sub-graph of the holdings. This means archived content is mostly in the Deep

Web and cannot be indexed using Surface Web crawlers for profiling an archive by a third

party. Techniques used in hidden web crawling can be leveraged to query web archives

using search keywords when fulltext searching is available, otherwise using sample lookup

URIs as search keywords. Our Random Searcher Model (RSM), described in Section 6.4.1

of Chapter 6, is closely related to prior work in the field of Deep Web crawling. In RSM

we query a web archive that supports fulltext searching with some seed keywords, collect

links from returned results as part of that archive’s holdings sample, fetch a page using one

of the returned links, extract keywords from that page, and use these keywords to perform

more searches until the URI sampling need is fulfilled.

3.2.1 DESCRIBING TEXTUAL DATABASES

As described above, many textual databases on the web are part of the hidden web. One

approach to understand and describe a textual database relies on a fulltext search sample.

In this approach a handful of fulltext search queries are sent to the database and returned

responses are analyzed to both describe the dataset as well as finding more query terms

suitable for further exploration. The process initially learns about the database rapidly, but

the learning rate slows down as it starts to see more results that have already been seen in

previous queries. The learning rate often follows Heaps’ law [97] and asymptotically reaches

the complete knowledge.

Callan and Connell sampled text databases using fulltext queries to generate description

of databases [77]. They found that the resource description created by their sampling-

based technique was sufficiently similar to the one created with complete knowledge. The

sampling-based approach works independent of whether a database is willing to cooperate

and is requires less resources. Apart from using a query-based sampling technique, our work

is closely related to this in another aspect that we are not interested in the actual resources

held by web archives, but establishing only a way to summarize and describe their holdings.

Agichtein et al. discuss the problem of discovering textual databases that are not

crawlable, but expose a fulltext search interface [2, 1]. In this process, generally the crawler

is initialized with a small set of query terms that are used to perform fulltext search in the

59

database. From there, new search terms are discovered from the returned results to perform

further queries to discover more resources. If the system fails to produce any new terms,

then the search comes to a halt, irrespective of whether all the documents are discovered.

Agichtein et al. introduced a reachability metic to assess the completeness of the discovery

according to the need of an application.

These works on modeling textual databases inspire our fulltext search based archived

content discovery work [30]. After collecting a significant sample of holdings of a web

archive, we create archive profiles that act as a description of the archives and can be used

for Memento routing.

3.2.2 SEARCH FORM DETECTION

Deep web databases generally make their data searchable via an HTML search form.

However, HTML forms can be of many other types and purposes such as login forms, com-

ment posts, subscription, shopping carts, etc. Identifying an HTML form as a search form

usually requires textual and structural analysis of the form elements and their surroundings.

Cope et al. described a technique for distributed search application to detect HTML

search forms automatically [88]. To classify whether a form is a search form, they used

certain HTML attributes like name, value, and type of input elements, name of the form

element itself, and tokens present in the action attribute of the form (that sets the target

URI where the form is to be submitted). Using decision trees on these features they were

able to achieve about 85% accuracy.

Barbosa and Freire proposed a hierarchical form classifier architecture in which they

leverage both textual and structural features of form elements and the surroundings of

input elements [55]. In the first level of classification they identify generic forms using

structural attributes and then in the second layer they identify a domain-specific form using

the textual content of the form. They reported that their modular approach resulted in

high accuracy, precision, and recall.

Khare et al. wrote a survey paper on automatic detection of web search forms [161].

They described various research papers and approaches of search form detection and con-

cluded that a significant progress has been made in data extraction from deep web sources

in about a decade. They also noted that over time a shift from the rule-based form detection

to the model-based search interface identification is visible.

In our work, being able to identify a URI lookup or fulltext search form on web archives in

many different languages automatically can be helpful in profiling web archives. Currently,

60

there are only a limited number of web archives with search interfaces, so automating their

discovery is not worth the trouble, but it could be done if/when we need to. However, this

may not be a necessity if majority of web archives were to expose their indexes via a uniform

standard API [127].

3.3 FOCUSED CRAWLING

Unlike traditional general purpose search engines, a focused crawler identifies resources

that belong to a specific topic and downloads them selectively. This practice optimizes

resource and network usage while discovering documents related to a specific topic.

Micarelli and Gasparetti presented an overview of focused crawling [183]. They described

systems that are adaptive in nature and can change their behavior during the search process

according to the environment and given input parameters.

Bergmark et al. described that web crawling was traditionally been used for indexing

the web for searching, but later digital libraries recognized its potential for collection build-

ing [60]. Instead of using an open-ended crawl, a focused crawling on a specific topic can be

useful in keeping the collection in scope. They utilized a combination of focused crawling

and tunneling for collection building, where tunneling is a technique to estimate the value of

a link in addition to its relevance score before adding it to the frontier queue of the crawler.

Li et al. combined the properties of deep web crawlers and focused crawlers [171].

They proposed a multi-layered intelligent crawler caller iCrawler that classifies pages that

potentially belong to the search domain, links that point to such pages, and HTML forms

that search in a relevant database. A link is added to the frontier queue only when it

surpasses certain threshold of relevance and a search form is filled in with relevant values

when it is identified as a potential candidate for deep web search in a relevant database.

They reported that their harvest rate and coverage rate was better than existing deep web

form-based focused crawlers.

Focused crawling is relevant to our work in the limited scope of situations when a third

party is profiling an archive and the web archive returns some resources that are not part of

its archival collections. For example, the Internet Archive has collections of games, music,

television news, books, and many other types are artifacts that are not served via their

Wayback Machine. Profiling these collections can be useful in some applications, but mixing

them with mementos has limited value for memento aggregators. Generally, web archives

serve their mementos under a separate URI scope, so filtering non-memento resources is easy

and it does not require looking into the content itself. However, if for some web archives this

61

is not the case then using focused crawling techniques can be helpful in identifying resources

that are in scope from those that should be excluded from their profiles.

3.4 ON-PREMISE INDEXING

When dealing with a limited number of servers, it is possible to perform on-premise

indexing and summarization of the holdings of a database and transfer only the summary

to interested parties. In this approach, code for processing data is sent and executed where

data resides instead of bringing data to the code for processing. However, this approach

would require cooperation and willingness of the database owners to run code shipped by

a search engine on their infrastructure, which is not possible without sufficient review and

scrutiny, close partnership, and convincing advantages to the database owners. As a result,

this is not a scalable approach on the independently running web, but may prove helpful

for a handful of large databases.

Hammer and Fiedler proposed an approach to index hidden web by sending the crawler

to the database and running it in close proximity to where the data lives [128] This greatly

reduces the network cost as only finalized indexes are sent back to the search engine instead

of downloading actual documents, indexing them, and throwing them away. Kumar and

Bhatia also tried a similar approach to move indexing process to where the data resides and

sending back indexes to the search engine [168].

In the case of web archive profiling it is possible and more practical to ask a finite number

of large web archives to run profiling code on their servers while relatively smaller archives

can be profiled remotely. During our work we have experienced both logistical and technical

challenges in transferring large amounts of index files or running fulltext queries over large

collections to create a representative sample of holdings. Being able to run profiling code on

the servers of the cooperating web archives and only transferring the summary would have

been much easier.

3.5 QUERY ROUTING

Query routing is the task of identifying suitable sources of information from a larger set

of sources for a given query. Suppose there are a large number of libraries that collect books

on specific topics and there is a meta-search engine that indexes them all based on their

collection topics. When a user performs a lookup, the search engine classifies the query and

identifies the topic(s) the query may belong to, then it routes the search query to a subset

of libraries that collect books on those topics. It avoids broadcasting, saves resources, and

62

makes the lookup efficient. Query routing is a rigorously researched topic in various fields

including networked databases, meta searching, and search aggregation.

Gravano et al. described protocol and system called STARTS [122]. This was a project

steered by Stanford Digital Library in association with about a dozen organizations and

companies. The aim of this system was to enable searching across multiple document sources

with different interfaces and query models. The system was proposed at time when many

organizations used external search engines to get their data indexed (i.e., they outsourced the

search capability). These external search engines had different query models, incompatible

to each other, and did not expose adequate metadata. This means merging search results

from multiple document sources was difficult. The STARTS aimed to tackle this issue of

allowing search across organizations and document sources on the Internet.

Liu describes a query routing system to better handle multiple relevant results for a given

keyword query [172]. They system builds profiles of data sources as well as user queries. By

combining these two independent profiles a better relevance can be achieved. They reported

that their system performs a more fine-grained user interest matching than those query

routing systems that only rely on keyword search.

Callan et al. describe an approach of query-based language model creation for query

routing [78]. Traditional systems of query routing for textual databases required that each

database provides its language model that can be used to determine appropriate databases

for a given query. However, they found that such cooperation is not needed because their

query sampling-based system can construct language models for each database. They re-

ported that running about one hundred queries and retrieving a few hundred documents is

sufficient to create a reasonably accurate language model of a textual database for query

routing.

Jie Lu and Jamie Callan described a federated search query routing systems in hierarchi-

cal hybrid peer-to-peer networks [174, 175]. In this system there are some directory nodes

that construct content models of neighboring nodes for query routing while leaf nodes per-

form content-based retrieval of relevant document. While such a hierarchical system is out

of scope of this work, we think it will be a good future work to combine our work with this

federated routing when the number of public web archive grow beyond a limit. We envision

different regional or special-purpose Memento aggregators (e.g., an aggregator for european

web archives and one run by Webrecorder/Conifer for its subscription-based archives) that

can be queried individually or be aggregated as needed while each aggregator is responsible

of understanding the holdings of only a small subset of web archives.

63

Sugiura and Etzioni described the architecture of an automatic query routing system

called Q-Pilot [237]. They built topic models of 144 specialized search engines to dynamically

identify the best subset of candidate search engines for given search queries. They reported

a query category identification accuracy of 70% and about 40% of the time the best search

engine was one of the top three from the result set.

Tran and Zhang described a query routing system from structured and linked datasets [239].

Their system returns top-k potential data sources or combinations for a given query key-

word based on a multi-level scoring mechanism. They performed experiments on 150 public

databases on the web and reported a P@1 of 0.92 and mean reciprocal rank of 0.89.

Meng et al. surveyed meta searching techniques [181]. Unlike query routing systems

a metasearch engine, in addition to identifying relevant search engines, retrieves results

from identified subset of relevant search engines, combines results, and ranks the aggregated

result before returning it to the user. They compared and contrasted various approaches

and algorithms used to solve these underlying aspects of metasearch engines.

Klusch et al. briefly reviewed semantic web service search [163]. In this paper they

looked for state or the art systems for identifying and composing relevant web services

via formal ontology-based representations such as Web Service Description Language, Web

Application Description Language, or REST APIs.

Greengrass extensively surveyed information retrieval [124]. They survey covers a great

deal of techniques and systems related to classification and query routing among many other

IR tasks.

Query routing would be a critical component of a Memento aggregator that aggregates

a large set of web archives. A Memento aggregator needs to identify a subset of candidate

web archives that are likely to return good results for a given lookup URI. However, query

routing has not been explored in the context of Memento routing extensively. In this work

we build a high-level understanding of holdings of various web archives and route URI lookup

requests at a Memento aggregator to a subset of web archives that are likely to return any

mementos for the given lookup URI.

In our work we used two terms “query” and “ lookup” with different semantics. A query

to a web archive refers to fulltext (or partial URI) searching that may result in references

to multiple (i.e., zero or more) resources ranked by their relevance to the query terms. In

the case of a lookup, the resource is predetermined and we are only checking whether it is

present. The response to a lookup, if successful, may return multiple versions of the same

resource, but not multiple resources. Results of lookups are binary (yes/no) in nature and

64

have no ranking or concepts of relevance. It is worth noting that Memento routing is a

lookup routing where the lookup URI acts as the identifier of the resources in every archive.

In traditional information retrieval systems it is easy to route queries when given query

terms/phrases have enough signals to identify their membership to certain topics or collec-

tions. However, in URI lookup routing given URIs can be opaque, resulting in lack of signals

for classification. For example, the lookup URI https://cdc.gov/coronavirus/2019-

ncov/ has sufficient tokens to identify that it may be present in COVID19 -related web

archival collections, but https://youtube.com/watch?v=QNo5ZDvKuHg does not1. This is

why in this work we only rely on the structural features of a URI, not the natural language

semantics, both for profiling and lookup routing.

3.6 BLOOM FILTERS

A Bloom filter is randomized space-efficient probabilistic membership set data structure.

When performing a lookup Bloom filters allow false positives, but no false negatives. Bloom

filters are useful in situations where an attempt to access a record is costly, especially, when

often the record may not be present in the system. In such situations Bloom filters allow a

quick and efficient way of knowing the absence of the record in a given system and short-

circuit the lookup. However, they report false positives with some probability, in which case

the lookup will be performed that will eventually fail to retrieve the record.

In the Bloom filter data structure a bit-array of size m is used that is initialized with

every bit set to “0”. As items are indexed one by one, they go through k number of different

hash functions that each yield a number up to m (the size of the bit-array) and bits of

corresponding positions are set to “1”, if not already. During lookup, the key goes through

the same k hash functions and if all the returned positions are already set to “1” in the

bit-array, the item is predicted to be present. However, it is possible that all the positions

corresponding to the lookup key were set to “1” by some other existing items even if the

lookup item itself is not present, which causes a false positive result. The probability p of

such collisions causing false positives increases as the number of indexed items n grows with

the finite size of the bit-array.

Bloom proposed the idea of hash coding with allowable errors in 1970, which was later

named after him as Bloom filters [65]. Bloom filters are being used in many applications,

such as network routing, database lookup, search query routing, spell checking, cache lookup,

1https://youtube.com/watch?v=QNo5ZDvKuHg points to the official “CDC Briefing Room: COVID-19
Update and Risks” video.

https://cdc.gov/coronavirus/2019-ncov/
https://cdc.gov/coronavirus/2019-ncov/
https://youtube.com/watch?v=QNo5ZDvKuHg
https://youtube.com/watch?v=QNo5ZDvKuHg

65

and peer-to-peer networks.

Majkowski explored Bloom filters while analyzing IP spoofing in Cloudflare networks [177].

He wanted to quickly identify whether the source IP address of a packet arriving to a given

data center belongs to the corresponding geo-locations. The article describes various issues

in using Bloom filters for the purpose and introduces “mmuniq-hash” [176], which helped

address the problem more efficiently while reducing the probability of false positives.

Broder and Mitzenmacher surveyed many different network applications of Bloom fil-

ters [68]. First, they described Bloom filters in detail and briefly mentioned their usage in

application other than networks, such as databases and spell checking. After that, they cov-

ered many different network applications such as resources routing, peer-to-peer networks,

caching, CDNs, etc. and how Bloom filters we modified to fit certain application needs.

While Bloom filters cannot describe holdings of a web archive, they do look promising

for Memento routing, but they have some drawbacks that limits their usefulness. A Bloom

filter is an in-memory data structure, which is costly to scale. While adding an item in the

filter is easy, deleting them is not possible because some bits of the bit-array corresponding

to an deletion-candidate item may belong to some other items still in the system. One

might think that adding a secondary Bloom filter for deleted items can solve the issue, but

a collision in that filter may yield false negatives, which defeats the purpose. Additionally,

adding a deleted item back will pose the same challenge which introduced the secondary

filter. Another drawback of Bloom filters is the inability to scale the bit-array later when

collision probability p increases, as it would require rebuilding the filter from scratch and

indexing all the items again. Our MementoMap framework achieves the benefits of Bloom

filters while avoiding most of their drawbacks.

3.7 ARCHIVAL COVERAGE OF THE WEB

Ainsworth et al. attempted to answer the question, “How much of the web is archived?”,

in 2011 [3]. Their results showed the answer to this question depends on how we sample the

web. This means the accuracy of the answer will depend on how well a sample represents

the web. They sampled URIs from DMOZ (a curated directory of web pages), Delicious

(a social bookmarking service), Bitly (a URL shortner server), and search engine indexes

and queried them against web archives to see how many copies each URI in their samples

has. They found that the variance in resulting numbers for each sample was too large to

generalize the outcome. For example, they found that the number of URIs that had at least

one archived copy in any of the web archive were as low as 35% in one sample and as high as

66

90% in another sample. They reported that about 15% to 31% (depending on the sample)

URIs are archived at least once per month.

Alkwai revisited the archival rate question in 2015, but for web pages of specific lan-

guages [36, 35]. They collected over 15,000 URI samples from English, Arabic, Danish,

and Korean languages to find out how much of the pages from each of these languages are

archived. They found that 72%, 53%, 36%, and 33% of their sampled URIs were archived

in these languages respectively. They also noted that if a URI is present in the DMOZ

collection, it has a higher chance of getting archived. Furthermore, they identified that very

few of the sampled Arabic URIs had an Arabic country TLD (e.g., “.sa” for Saudi Arabia)

and were hosted in an Arabic country. However, this was not the case with Danish and

Korean languages.

The GDELT Project, a platform that monitors the world’s news media, reported in 2015

that around 2% of the news articles disappear in a couple of weeks and up to 14% in a couple

of months [238]. Similarly, SalahEldeen and Nelson reported that about 11% of the resources

shared on social media during the 2011 Egyptian Revolution were lost after a year [215]. This

is an alarming rate with which resources on the web disappear. Leetaru investigated how

much of the web is being archived by the Wayback Machine of the Internet Archive [170].

He looked at the holdings of the Wayback Machine from many different angles and reported

various statistics. He expressed the need for more documentation and transparency on

policies and algorithms that control what URIs will be archived. He recommended that web

archives must adopt acquisition and collection decisions based on the community engagement

the way libraries do. Moreover, he noted that we have limited understanding of what is inside

of massive web archival datasets, which is one of the core motivations of our work towards

web archive profiling.

Hallak estimated recently that almost two thirds of the web traffic is not publicly archiv-

able because it goes to sites that are behind session walls or paywalls, to which some social

media sites are big contributors of [126]. Kelly et al. developed a framework to archive the

private web and integrate it with the public web to fill some of these cavities [155, 159].

These works identify archival voids as they show some biases in web archiving as well as

quantify the small portion of the web many archives hold. These works further motivate us

for Memento aggregation.

3.8 WEB ARCHIVE SEARCHING

Web archives are often large collections of historical versions of web pages from numerous

67

domains where each original URI may have one or more temporal copies. While researchers

and archive exploration tools may interact with an archive using APIs or datasets directly,

regular users interact with web archives using one of the three interfaces: 1) browsing, 2)

fulltext searching, and 3) URI lookup. Browsing works well for small curated collections, but

it becomes impractical for large and unstructured collections. Fulltext searching requires

indexing existing and ever-growing collections, which is a costly and resource-intensive task.

Consequently, large web archives (e.g., the Internet Archive) struggled to make their entire

collection searchable. Due to limited fulltext search support in web archives we do not have

a meta search engine that can perform keyword searching across web archives. URI lookup

is the only approach that works on all web archives, which enables utilities like Memento

aggregators. However, the downside of URI lookup is that the user needs to know the exact

URI of the desired resource in advance.

Gomes et al. described their fulltext search architecture, challenges, and lessons learned

in the process of making the Portuguese Web Archive (PWA) searchable [117]. At the time

of their publication in 2013, PWA was the largest public web archive with fulltext search

support over 1.2 billion resources. In a related study, Costa et al. surveyed various fulltext

architectures and efforts on making web archives searchable [89]. They assessed aspects

of scalability, reliability, time-awareness, an performance of Wayback Machine, PWA, and

Everlast. Time-awareness is an aspect that is unique to indexing web archive or other

temporal collections, which poses unique challenges not only in indexing and ranking, but

also in providing an intuitive query interface and a meaningful representation of results.

Kanhabua et al. proposed a clever approach of searching IA without indexing it [150].

They leverage the index of an existing general purpose web search engine (in their example

they used Bing) to indirectly search IA. When user makes a query, they retrieve a ranked

list of relevant URIs from Bing, then use these URIs to perform lookup in IA to see which

of these URIs have any mementos. One downside of their approach is the lack of ability

to surface historical resources that are not live on the web, hence recency-focused search

engines may not retain such references in their index.

3.9 ARCHIVE PROFILING

Memento query routing was earlier explored in the two content-based archive profil-

ing efforts described below in Sections 3.9.1 and 3.9.2, but they explored extreme cases of

profiling. In an earlier study [28], we found that an intermediate approach that gives flexi-

bility with regards to balancing accuracy and effort can result in better and more effective

68

Memento routing.

Memento query routing was also explored in an aggregator’s usage-based archive profiling

effort. We found that traffic from MemGator (our Memento aggregator service) requested

less than 0.003% of the archived resources in Arquivo.pt. There is a need for content-based

archive profiling which can express what is present in archives, irrespective of whether or

not it is being looked for.

3.9.1 URI-R PROFILING

Sanderson et al. created comprehensive content-based profiles [217, 216] of various In-

ternational Internet Preservation Consortium (IIPC)2 member archives by collecting their

CDX files and extracting URI-Rs from them. This approach gave them complete knowl-

edge of the holdings in each participating archive, hence they can route queries precisely

to archives that have any mementos for the given URI-R. This approach yielded no false

positives or false negatives (i.e., 100% Accuracy) while the CDX files were fresh. However,

these collected CDX files would go stale very quickly because many web archives keep crawl-

ing the web constantly and add more mementos to their collections regularly after indexing

batches of crawled data. In addition to that, on-demand web archives such as Save Page

Now (a service from the Internet Archive to submit URIs for immediate archiving) [120]

add hundreds of mementos to their collections every second [149] and make them available

almost immediately. It is a resource and time intensive task to generate such profiles and

some archives may be unwilling or unable to provide their CDX files. Such profiles are so

large in size (typically, a few billion URI-R keys) that they require special infrastructure to

support fast lookup. Acquiring fresh CDX files from various archives and updating these

profiles regularly is not easy.

3.9.2 TLD PROFILING

In contrast, AlSum et al. explored a minimal form of archive profiling using only the

TLDs and Content-Language [39, 40]. They created profiles of 15 public archives using

access logs of those archives (if available) and fulltext search queries. They found that by

sending requests to only the top three archives matching the criteria for the lookup URI

based on their profile, they can discover about 96% of TimeMaps. When they excluded

IA from the list and performed the same experiment on the remaining archives, they were

2https://netpreserve.org/

https://netpreserve.org/

69

able to discover about 65% of TimeMaps using the remaining top three archives. Excluding

IA was an important aspect of evaluation as its dominance can cause bias in results. This

exclusion experiment also showed the importance of smaller archives and the impact of

aggregating their holdings. This minimal approach had many false positives, but no false

negatives.

3.9.3 RESPONSE CACHE PROFILING

Later, Bornand et al. implemented a different approach for Memento routing by building

binary classifiers from LANL’s Time Travel aggregator cache data [66]. They analyzed

responses from various archives in the aggregator’s cache over a period of time to learn

about the holdings of different archives. They reported a 77% reduction in the number of

requests and a 42% reduction in response time while maintaining 85% Recall.

Klein et al. revisited the performance of the above binary classifier-based approach after

running the service for over a couple of years [162]. They reported an average Recall of

about 0.73 (i.e., about 12% reduction from the originally reported results) which means

the classifier misses more than one quarter of resources that are present in a given archive.

They plotted absolute numbers of false positives in 13 archives and also provided the total

number of entries (about 2.6 million) from the classifier log that they evaluated. However,

it is not clear if each log entry corresponds to one archive or has a combined entry for all

the archives. That is why it is difficult to assess the accuracy of the classifier. They also

reported that a more frequent retraining of the models can improve the prediction accuracy.

These approaches can be categorized as usage-based profiling in which access logs or

caches are used to observe what people were looking for in archives and which of those

lookups had a hit or miss in the past. While usage-based profiling can be useful for Memento

lookup routing, it may not give the complete picture of archives’ holdings, producing both

false negatives and false positives because the results are sensitive to the queries used to

train the model3. In Section 8.5.1 of Chapter 8 we will discuss that our MemGator logs

only reveal a tiny portion of an archive’s holdings. In Figure 68 of Chapter 8 on Page 151

we illustrate that most of the frequently archived resources are never accessed (a blind spot

for usage-based profiles) and most of the frequently requested resources are never archived

(a blind spot for content-based profiles).

3https://groups.google.com/forum/#!topic/memento-dev/YE4rt6L5ICg

https://groups.google.com/forum/#!topic/memento-dev/YE4rt6L5ICg

70

3.9.4 URI-KEY PROFILING

In previous work [28, 29] (described in detail in Chapter 6), we explored the middle

ground where archive profiles are neither as minimal as storing just the TLD (which results

in many false positives) nor as detailed as collecting every URI-R present in every archive

(which goes stale very quickly and is difficult to maintain). We first defined various profiling

policies, summarized CDX files according to those policies, evaluated associated costs and

benefits, and prepared gold standard datasets [28, 29]. In our experiments, we correctly

identified about 78% of the URIs that were or were not present in the archive with less than

1% relative cost as compared to the complete knowledge profile and identified 94% URIs

with less than 10% relative cost without any false negatives. Based on the archive profiling

framework we established, we further investigated the possibility of content-based profiling

by issuing fulltext search queries (when available) and observing returned results [30] if access

to the CDX data is not possible. We were able to make routing decisions of 80% of the

requests correctly while maintaining about 90% Recall by discovering only 10% of the archive

holdings and generating a profile that costs less than 1% of the complete knowledge profile.

3.10 CHAPTER SUMMARY

In this chapter we reviewed scholarly literature on various related topics. We first de-

scribed Surface Web, Deep/Hidden Web, and Dark Web and discussed work done to index

them. We then reviewed various research papers on textual database summarization and

search form detection. Moreover, we reviewed various scholarly works on focused crawling

and on-premise indexing. We also described how these are related to web archives and

archive profiling. Furthermore, we discussed some work done in query routing and its rele-

vance with Memento routing. After that we discussed Bloom filters, their relevance to our

work, and their shortcomings. Then we reviewed some work that attempt to estimate the size

of search engine indexes and the size of the indexable web. Furthermore, we reviewed works

that explore the archival coverage of the web, the web that cannot be archived by public web

archives, and potential approaches to integrate private web archiving with public archives.

We then reviewed some work on making large-scale web archive collections searchable. Then

we discussed initial efforts on Memento routing via both content-based and usage-based pro-

files. Finally, we discussed our own preliminary work on archive profiling to complete the

context that will be further explored in the later chapters in a more detailed manner.

71

CHAPTER 4

MEMENTOMAP FRAMEWORK

In this chapter we describe the MementoMap framework for web archive profiling. The

intent of this framework is to build a high-level understanding of a web archive’s holdings,

express it in a format that is easy to disseminate, and utilize a collection of MementoMaps

from various web archives to perform efficient Memento routing in Memento aggregators.

We first describe three research questions and how each question addresses certain aspects of

the framework. Then we describe three main components of the framework that correspond

to each of the research questions. Finally, we lay out an evaluation plan to assess the

effectiveness of the framework.

4.1 RESEARCH QUESTIONS

We divide this work in three primary research questions about ingestion of archival hold-

ings and voids, serialization of the summary, and utilization of the summary for Memento

routing. We discuss our research questions one by one below.

4.1.1 RQ1: HOW TO LEARN AN ARCHIVE’S HOLDINGS AND VOIDS?

Under this research question we explore various ways to identify resources that are

present in an archive or absent from it. Learning about an archive’s holdings in this con-

text means knowing URIs it contains and voids means knowing URIs it does not contain.

Moreover, we are also interested in the datetime of mementos and the content language,

when available. However, we are not interested in the content of mementos. This research

question is explored in more details in Chapters 6 and 7. Another related question can be

about “who would generate these profiles?” and the answer is both web archives and third

parties, but since their access levels to the archival holdings would be different so will be

their generated profiles.

We broadly divide the task of learning archival holdings in two categories, content- and

usage-based.

72

Content-based Profiling

In the content-based profiling web archives tell what they contain. This is usually performed

by accessing archival index or certain APIs they provide. We have two primary means of

building content-based profiles:

• CDX Profiling – In CDX profiling we access archival indexes of a web archive as

static files or through an API. We then build a higher-level understanding of archival

holdings after filtering certain unnecessary index records off. CDX profiling gives the

most comprehensive knowledge of archive’s holdings. It is the fastest way to build an

effective profile, but acquiring CDX data and keeping it up to date is difficult task.

CDX files are gold-standard, but there are both organizational barriers and engineering

challenges for most archives sharing this data. As such, we cannot assume it will be

available. This can more effectively be done by web archives themselves, ideally by

integrating MementoMap feature in archival replay systems.

• Fulltext Search Profiling – Some web archives provide fulltext search feature. Al-

though, we are not interested in the content mementos, fulltext search gives a way to

discover many URIs that are present in a archive. In this process we make fulltext

search queries in web archives that support it and record URIs from returned results.

In this mechanism we can learn at a maximum of N URIs per search query where

N is the number of results returned per page by the fulltext search, which could be

different for each archive. This value generally defaults to 10 or 20, but sometimes it

is possible to customize how many results are desired by the client. It is worth noting

that not all queries return a full page response. Also, as we continue to perform more

queries we start to get some results that we have already learned about, so the overall

learning rate slows down. Another down side of this approach is that it generally only

surfaces textual URIs (i.e., those that point to HTML or text pages that are fulltext

indexable).

Usage-based Profiling

In the usage-based profiling we observe web archives’ responses as we attempt to fetch

mementos or TimeMaps. In this process we learn about both absence and presence of

queried URIs in the archive. In this approach the learning rate is slow as we learn about a

single resource in each request. To avoid false negatives, these profiles are kept very high

73

level (for example only at the level of TLDs), which means they return more false positives.

We can perform usage-based profiling in two ways:

• Sample URI Profiling – In the sample URI profiling we first build a sample URI

set from a source (such as a directory or social media) depending of the purpose of

the profile. Then we check to see if those URIs are absent or present in a number of

web archives. Based on our observation we profile those archives’ holdings.

• Response Cache Profiling – The response cache profiling is a special case of the

sample URI profiling in which the sample of URIs is not built in advance, but the

profiling is performed gradually as users access an archive. This profiling takes a long

time to build and needs a constant feedback loop as the state of archiving changes over

time (i.e., new resources are archived and some previously archived resources become

inaccessible). This can be done at a Memento aggregator or at an archive itself by

analyzing their access logs. LANL’s Time Travel service uses this technique to train

binary classifiers for Memento routing based on the past observations.

4.1.2 RQ2: HOW TO SUMMARIZE AND SERIALIZE ARCHIVAL HOLD-

INGS FOR DISSEMINATION?

Once we learn about a web archive’s holdings, we need to summarize it and serialize for

dissemination. For summarization, we first introduced various profiling policies under HmPn

and DLim categories that are described in detail in Chapter 6. These policies summarized

grouping URIs based on common prefixes up to a certain host or path depth and some other

similar criteria. However, we later found these profiling policies were not very flexible as they

did not allow merging profiles of two different policies. We then explored a more flexible

summarization and serialization approach by adding wildcard support in SURT which is

discussed and evaluated in Chapter 8.

We introduce a serialization file format called MementoMap for which we introduce a

Unified Key Value Store (UKVS) [14] format that can be useful in many web archiving

and other applications. Chapter 8 describes various ways to use this serialization format to

express summarized holdings of an archive in many different ways as necessary for certain

applications.

74

Generation and Compaction

We supply a list of URIs that are present in a web archive or a list of URIs that are absent

from a web archive learned by various techniques described under RQ1 as an input to

generate a MementoMap. Additionally, we also provide various configuration options that

control the level of details in the MementoMap, which in turn decides when a URI prefix

needs to be rolled up into a higher level group. This decision also considers the depth of the

host or path segment in question and some heuristic values that we learned by analyzing

a large archival index. We designed a single-pass, memory-efficient, and parallelization-

friendly algorithm for MementoMap generation.

To limit or reduce the overall size of a MementoMap (either by the bytes count or num-

ber of records) we allow compaction of existing MementoMaps. A user can supply more

aggressive compaction parameters and provide an existing MementoMap as input to get a

reduced sized MementoMap. The compaction procedure iteratively and dynamically iden-

tifies sections of the MementoMap that can be rolled up into higher level nodes, reducing

the size at the cost of a less detailed profiling in certain sub-trees of URIs. Like the gener-

ation procedure, we designed the compaction algorithm to be single-pass, memory-efficient,

and parallelization-friendly, too. The generation algorithm internally uses the compaction

procedure with appropriate parameters. These procedures are described in Chapter 8.

Updates and Merger

Many web archival collections evolve gradually over time while others grow in periodic

batches. Hence, it is important to have a means to accommodate new changes in the holdings

of an archive to its MementoMap. A naive approach would be to regenerate the complete

MementoMap every once in a while from scratch, but this is wasteful, especially for large web

archives. We allow incremental updates to existing MementoMaps by generating smaller

MementoMaps from the freshly added data then merging it into the primary MementoMap

and running the compaction procedure on it.

Pagination

Our MementoMap framework also allows arbitrary split of data which is essential for an

effective pagination. Pagination is desired due to many practical reasons for example:

• An entity might want to store and disseminate its large MementoMap in chunks of

manageable size

75

• An entity might want to organize smaller MementoMaps by time (such as yearly) or

by structure (such as TLDs)

• An entity might want to avoid frequent updates and merger by providing smaller

MementoMaps of freshly archived resources along with the old data on which the dust

is settled already

• An entity might want to keep its MementoMaps separate for URIs it holds and URIs

it does not, for maintainability

Dissemination and Discovery

For dissemination and discovery of MementoMaps we propose that web archives make their

MementoMap available at the well-known URI [193] “/.well-known/mementomap” under

their domain names. Alternatively, a custom URI can be advertised using the “mementomap”

link relation (or “rel”) in an HTTP Link header or HTML <link> element. Third parties

hosting MementoMaps of other archives can use the “anchor ” attribute of the Link header

to advertise a different context. This primary entry point is for initial discovery, more Me-

mentoMaps (such as pages of the same profile or profiles made with different levels of details

for different purposes) can be discovered from there using link relations or corresponding

metadata of the primary MementoMap.

4.1.3 RQ3: HOW TO UTILIZE MEMENTOMAPS FOR MEMENTO ROUT-

ING?

A MementoMap can support many applications such as coordinated crawling between

archives, visualization of the archive’s holdings, or routing of requests from a Memento

Aggregator to the right archive. It is the latter application that is the focus of this work.

Considering a MementoMap as a document that describes holdings of a web archive, if a

set of MementoMaps of a number of archives is provided, it is possible to predict candidate

archives that might contain a given lookup URI. Essentially, by this analogy we convert

this routing problem into an information retrieval problem. A few potential approaches of

routing could be as following:

• Binary Classifier – In this approach we can build individual binary classifiers for

each archive. For a given lookup URI we ask every classifier to predict the presence

or absence of it in the corresponding web archive, then route the look up request to

76

archives with the positive response from the classifier. This approach was explored by

Bornand et al. and used in the LANL Memento aggregator [66]. This approach keeps

the prediction model of every archive separate and independent which allows easy

update and per-archive tweaks. However, the down side of this approach is scalability.

If the number of archives grows to hundreds or thousands, it becomes impractical to

run as many classifiers and query every classifier in parallel.

• Inverted Index – In this approach we create an inverted index of keys from every

MementoMap and keep record of their corresponding frequencies or other weights.

This approach scales well with the growth of number of archives or MementoMaps

as the index is precomputed and can always return only the relevant references to

archives. MementoMaps of various archive can be more detailed than we need for

routing purposes, in that case they can be further optimized during index creation.

For example, Arquivo.pt focusses primarily on archiving *.pt sites among many other

TLDs, so its profile can have more detailed summary of *.pt URIs. However, a

Memento aggregator may not be getting a significant number of requests for *.pt

sites, it we may choose to keep only the TLD-level entry for pt,* in the Inverted

Index. This practice can significantly reduce the size of the index.

• Routing Score Estimation – In this approach we can leverage various machine

learning techniques to estimate the likelihood of finding a URI in a web archive rep-

resented by one or more MementoMaps. Some available signals for model building

include the host and path depths (say, token count) of the lookup URI, token count

of the matched key in MementoMap (which can either be an exact match or a partial

key with a wildcard), difference of the two counts, and stored frequency values. After

estimating routing scores in each candidate archive above certain threshold we can

rank them for routing and let the aggregator choose top-k archives or archives above

certain threshold to aggregate from.

4.2 MEMENTOMAP COMPONENTS

We have divided the MementoMap framework in three major components that can be

implemented and leveraged independently. These components are roughly parallel to the

three research questions described above, but have an implementation perspective.

77

4.2.1 INGESTION

The ingestion component creates a uniform input for summarization and serialization

step for a given web archive in the form of a list of URIs it holds and/or a list of URIs it

does not. This component can process static CDX files, CDX server API, or access logs.

Moreover, this component can also learn about the holdings of an archive via fulltext search

or sample URI lookups.

4.2.2 SUMMARIZATION AND SERIALIZATION

The serialization component takes a list of URIs (sample or comprehensive) that are

present in a web archive and/or a list of URIs that are absent from an archive as the input,

identifies higher level groups of URIs that are present or absent in the archive, and yields

a compact representation of the summary of archival holdings. These serialized represen-

tations can then be advertized on the web for automated discovery or disseminated using

some other means. We use UKVS data format for serialization of MementoMaps.

While we provide an independent CLI tool and library for MementoMap creation and

management, integrating it in every archival replay system is out of scope. Furthermore, we

have seen interest in this work from the Portuguese Web Archive, the UK Web Archive, and

the National Library of Australia, but ensuring adoption of MementoMap by web archives

and aggregators is out of scope.

4.2.3 ROUTING

For efficient Memento routing we create an Inverted Index from MementoMaps of var-

ious web archives and perform binary search in it for all possible URI-Keys of the lookup

URI. Then we utilize Routing Score Estimation technique as described above on matched

index records to create a rank ordered list of archives as potential candidates for Memento

routing. Combining these two approaches allows the system to scale well as the Inverted

Index provides a small subset of an arbitrary number of web archives for further ranking

evaluation. We intend to have a reference implementation of this approach and have it be

used by our MemGator tool in the future.

4.3 EVALUATION PLAN

In this work we evaluate individual MementoMaps on cost vs. accuracy and the ag-

gregated index of multiple archives for Memento routing will be evaluated on its routing

78

Fig. 35. Memento Routing Matrix

efficiency. Additionally, we also evaluate the freshness of MementoMaps as archives evolve

over time.

In Figure 35 we illustrate how we map measures of Memento Routing to the traditional

classification concept of Information Retrieval in the form of a confusion matrix. The outer

large rectangle shown in the figure represents a set of sample URIs for which we want to

measure routing statistic against a web archive using its profile. The rectangle is divided by

a vertical line, on the left hand side of which are all the URIs from the sample set that are

actually present in the archive and on the right hand side are the URIs that are not present.

Inside area of the oval represents all the URIs that an archive profile predicts to be present

in the archive and their corresponding requests should be routed to the archive while the

outside area represents set of URIs from the sample that are not likely to be present in the

archive based on the profile and should not be routed. Ideally, we would like to minimize

false negatives (FN; when we fail to route a URI lookup to an archive that has the URI)

and false positives (FP; when we route a URI lookup to an archive that does not have the

URI) and maximize true positives (TP; when we route a URI lookup to an archive that has

the URI) and true negatives (TN; when we do not route a URI lookup to an archive that

does not have the URI). However, due to the inherent nature of classifiers an attempt to

minimize FN would result in increased FP and an attempt to maximize TN would result

in decreased TP. It is worth noting that the cost of false positives affects the infrastructure

79

(i.e., unnecessary work) while the cost of false negatives affects users (i.e., failure to discover

resources of interest).

By analyzing many different configurations to generate archive profiles (i.e., Memen-

toMaps) we can identify the relationship and right balance among precision, recall, and

associated costs that are suitable for different application needs. We describe many relevant

statistical measures (such as precision, recall, specificity, accuracy, and routing efficiency)

in Chapter 6.

4.3.1 COST

Cost in this context means a lot of things including time of data acquisition and ingestion,

time of processing, storage space, as well as the network bandwidth for dissemination. There

is also some cost associated with incremental or periodic updates and synchronization of

MementoMaps.

4.3.2 ACCURACY

Accuracy is the measurement of correctly identifying presence or absence of a set of

URIs in an archive represented by a MementoMap (i.e., in the Information Retrieval sense,

(TP+TN)/All). A more detailed MementoMap generally yields a better accuracy, but costs

more to generate and maintain. We evaluate this inherent cost vs. accuracy relationship to

identify a suitable balance depending on various factors such as available resources and the

application of the MementoMap.

4.3.3 FRESHNESS

As an archive collects more resources or changes the state of existing mementos its cor-

responding MementoMaps will go stale as they will end up producing more false negatives

and/or false positives (resulting in reduced accuracy). Factors that control the freshness

include the rate and frequency of archiving and the level of detail of corresponding Me-

mentoMaps. A web archive that archives a lot of web resources and frequently indexes

them for replay will need more frequent updates to its MementoMaps. On the other hand

a less detailed MementoMap would require less frequent updates, but it has the inherent

cost of producing more false positives (hence, low accuracy) in the first place. We evaluate

these relationships to come up with some guidelines about the frequency of updates for

MementoMaps.

80

4.3.4 ROUTING EFFICIENCY

Once we have a number of MementoMaps from various archives we create an Inverted

Index from them and build a routing score estimator. By changing the level of details in

the index and the cut-off value of routing scores we evaluate the accuracy of routing across

a number of web archives. This will involve measuring the number of archives that we

requested, but had no relevant mementos and the number of archives the we missed which

had corresponding mementos to return for a given set of URIs. Along with measuring the

number of archives, we also measure the number of mementos that we miss with varying

configurations.

4.4 CHAPTER SUMMARY

In this chapter we outlined our MementoMap framework. We described our three pri-

mary research questions about learning an archive’s holdings, summarizing and serializing

it, and using it for Memento routing. We then described three major components of the

framework parallel to these research question. Finally, we set out an evaluation plan for

various aspects involving this framework such as cost, accuracy, freshness, and efficiency.

81

CHAPTER 5

TOOLS IMPLEMENTATION

During our work we implemented various related tools to aid the research process (such as

processing and indexing WARC/CDX/access log data received from web archives, replaying

mementos, aggregating web archives, generating/evaluating archive profiles, and dissemi-

nating archive profiles) and released them publicly under the open-source MIT license [199].

These tools include an archival replay system, a Memento aggregator, an archive profiler,

an access log parser, and a reference implementation of MementoMap generator. Figure 36

summarizes our tool and software contributions in the web archiving ecosystem and anno-

tates the functional placement of each tool. Some of these tools helped other researchers in

carrying out their research both at Old Dominion University and outside, including inter-

national institutions. In this chapter we briefly describe these tools.

5.1 INTERPLANETARY WAYBACK

InterPlanetary Wayback (IPWB) [152, 20, 23, 22] is a distributed archival replay system

that facilitates permanence and collaboration in web archives by disseminating contents

of WARC files into the InterPlanetary File System (IPFS) [59] network. IPFS is a peer-

to-peer content-addressable file system that inherently allows deduplication and facilitates

opt-in replication. IPWB splits the header and payload of WARC response records before

disseminating into IPFS to leverage deduplication, builds a CDXJ index with references to

the IPFS hashes returns, and combines the header and payload from IPFS at the time of

replay.

Figure 37 illustrates the indexing and replay process of IPWB. The indexer extracts

records from the WARC store one record at a time, splits each record into HTTP header

and payload, stores the two pieces into IPFS, and generates a CDXJ record using the

returned references and some other metadata from the WARC record. The replay receives

requests from users containing a lookup URI and optionally a datetime, queries for matching

record in the CDXJ, fetches the corresponding header and payload from the IPFS Store

(using references returned from the index record), combines them, and performs necessary

transformation to build the response to the user. The software is made available under MIT

license [19]. See Figure 83 (Appendix C) for the reference manual.

82

Fig. 36. Tools Contributions in the Web Archiving Ecosystem

IPWB is a Memento-compliant archival replay system with the potential to integrate

MementoMap framework natively.

5.2 RECONSTRUCTIVE

Reconstructive is a JavaScript library that we built to facilitate client-side URL rerout-

ing [21] and an unobtrusive archival banner inclusion [24] in the IPWB. It utilizes JavaScript’s

ServiceWorker API to intercept requests and reroutes them to their appropriate archived

version as illustrated in Figure 38. We made both the rerouting and banner components

available under MIT license as an independent library so that they can be utilized in other

tools [17]. See Figures 84 and 85 (Appendix C) for the reference manual.

83

Fig. 37. IPWB Indexing and Replay Workflow

Fig. 38. Reconstructive Intercepts a Zombie Resource and Reroutes to its Archived Copy

5.3 MEMGATOR

MemGator is an open-source, easy to use, portable, concurrent, cross-platform, and self-

documented Memento aggregator CLI and server tool written in Go [27]. Currently, there

are two well-known Memento aggregator implementations: a closed-source one that powers

LANL’s Time Travel service and our open-source MemGator. MemGator works as a drop-in

replacement of Time Travel API when used as a service, but has added features like the

ability to use it as a CLI tool. While there are a few other open-source Memento clients, they

are either not full-featured or not maintained [38, 143]. MemGator implements all the basic

features of a Memento aggregator (e.g., TimeMap and TimeGate) and gives the ability to

customize various options including which archives are aggregated and a selection of response

84

Fig. 39. MemGator Workflow Diagram

formats suitable for different application needs. It is being used heavily by tools and services

such as Mink [157], WAIL [61, 156], OldWeb.today, and archiving research projects and has

proved to be reliable even in conditions of extreme load [131]. The software is made available

under MIT license [10].

Figure 39 illustrates the workflow of the MemGator implementation. The main thread

(the request listener) loads the list of archives and other configuration options. When

a lookup request is received, MemGator spins off goroutines (lightweight threads of Go

language) for each individual archive. These individual goroutines fetch the TimeMap from

individual archives independently. If the response is successful, the goroutine passes the

data to a TimeMap parser via a channel (message passing mechanism of Go), which makes

a linked list of the responses in a chronological order. The parser sends the linked list data to

the collator which accumulates responses from each individual goroutine and merges them

while maintaining the sorting. Once all goroutines are completed or timeout occurs, the

accumulator passes the aggregated linked list to the serializer. Depending on the format

requested by the client (such as Link or JSON), the data is serialized and returned as the

response to the user. See Figure 86 (Appendix C) for the reference manual.

We have been running an instance of MemGator in server mode since early 2016 which

is accessible publicly. This has provided useful logs for longitudinal study of Memento

aggregators. MemGator is also the prime candidate of utilizing MementoMap framework

for efficient Memento routing.

5.4 RANDOM SEARCHER

Random Searcher is a script to interact with the fulltext search interface of web archives

to perform a random walk to discover a sample of the holdings of an archive. It is an

implementation of the Random Searcher Model as described in Section 6.4.1 of Chapter 6.

The script is made available under the Archive Profiler repository [6]. Since web archives

85

lack a unified standard fulltext search API, the script currently only supports Archive-It

collections. However, it is possible to write modules to extend it to make it work with other

archives in the future.

5.5 ACCESSLOG PARSER

AccessLog Parser is a Python package to parse Common Log Format and Combined Log

Format [41] web server access logs. The package comes with a built-in CLI tool. While

the package and too works with any general web server log file, it has some added fea-

tures to recognize web archive replay access logs and extracts some web archive-specific

attributes when present. These attributes include extraction of various known endpoints

(e.g., Memento, TimeMap, TimeGate, and calendar), original URI (i.e., URI-R), any me-

mento datetime value, optional type modifiers (e.g., “id_”, “if_”, “im_”, etc.). The tool

provides means to transform access datetime to formats that are friendly for sorting and

arithmetic operations. Moreover, it provides various types of filters and output formatting

options to meet users needs. The tool is made available publicly under MIT license [5]. See

Figure 87 (Appendix C) for the reference manual.

5.6 MEMENTOMAP

Initially, we created a collection of scripts to process CDX files, build archive profiles with

various profiling policies, evaluate effectiveness of generated profiles, and prepare analysis

reports. This was our early implementation attempt which helped us create baseline gold

standard datasets. We learned a lot from this and identified some shortcomings of our

preliminary approaches. These scripts are still available publicly for reference under the

Archive Profiler repository [6].

MementoMap tool is the reincarnation of now defunct Archive Profiler. It implements

the most recent proposal of the MementoMap framework. The tool allows generation of

MementoMaps, compaction of existing ones, and lookup of an individual URI or a batch of

URIs in a given MementoMap file. This tool is described in more details in Chapter 8 under

Section 8.3.

The tool can be used as a Python module to facilitate native MementoMap support in

various archival replay systems such as IPWB and PyWB. Additionally, it can be extended

to run as a service to provide and HTTP API for many MementoMaps, which can then be

utilized by aggregators to avoid broadcasting. The software is made available under MIT

license [9]. See Figure 88 (Appendix C) for the reference manual.

86

5.7 UNIFIED KEY VALUE STORE

Unified Key Value Store is a file format that we discuss under Chapter 8. While we

do not have an independent generator and parser script of the format, we have its support

added in the InterPlanetary Wayback and MementoMap tools as described above in Sec-

tions 5.1 and 5.6. We plan to extract it into a separate library/tool in the future to be used

independently in other places.

5.8 CHAPTER SUMMARY

In this chapter we described various open-source tools, libraries, and scripts that we

built and released during our research. These include: InterPlanetary Wayback (an archival

replay system), Reconstructive (a client-side URL rerouting and archival banner injection

script), MemGator (a Memento aggregator), Archive Profiler (a set of script to profile and

analyze holdings of web archives), Random Searcher (a script to sample holding of web

archives via fulltext search), AccessLog Parser (a web server access log parser with added

features for web archives), MementoMap (a tool and module to generate, manage, and

utilize archive profiles), and Unified Key Value Store (a file format for flexible and efficient

key-value data storage). These tools are contributions of this work some of which can be

useful in other research and development works beyond the scope of archive profiling.

87

CHAPTER 6

LEARNING ARCHIVAL HOLDINGS

In order to route lookup requests to the archives that are likely to return good results,

we need to learn about the holdings of various archives. This chapter addresses our first

research question, “RQ1: How to learn about the holdings and voids of an archive? ”. In

this chapter we only explore the first part of this question that concerns how to learn about

the holdings of an archive. In Chapter 7 we will address the second part of the question

that deals with archival voids.

We examine various strategies of learning about the holding of web archives. We have

the following four approaches to discover the holdings of an archive:

1. CDX Profiling – If an archive’s CDX files are available, then we can generate profiles

with complete knowledge of their holdings [28, 29].

2. Fulltext Search Profiling – Random query terms are sent to the fulltext search

interface of the archive (if present) and from the search response we learn the URIs

that it holds. These URIs are then utilized to build archive profiles [30].

3. Sample URI Profiling – A sample set of URIs are used to query the archive and

build the profile from the successful responses. This is quite wasteful, as <5% of

the sample URIs are found in any archive. AlSum et al. explored the Sample URI

Profiling, but only on Top-Level Domains (TLDs) [40].

4. Response Cache Profiling – This approach depends on the response data collected

by an aggregator over a period of time as queries are made to the archive. Cached

responses are analyzed to learn about their holdings. As a result the Response Cache

Profiling is based on what people were looking for as opposed to what is in the archives.

This approach is different from the first two in a way that it is a usage-based profiling

approach while the first two are content-based. Bornand et al. explored this approach

by building binary classifiers from LANL’s Time Travel aggregator cache data [66].

An archive profile has an inherent trade-off in its size vs. its ability to accurately describe

the holdings of the archive. If a profile records each individual original URI the size of the

88

profile can grow quite large and difficult to share, query, and update. On the one hand,

an aggregator making routing decisions will have perfect knowledge about whether or not

an archive holds archived copies of the page, or Mementos. On the other hand, if a profile

contains just the summaries of top-level domains (TLDs) of an archive the profile size will

be small but can result in many unnecessary queries being sent to the archive. For example,

the presence of a single Memento of bbc.co.uk will result in the profile advertising .uk

holdings even though this may not be reflective of the archive’s collection policy. In this

chapter we examine various policies for generating profiles, from the extremes of using the

entire URI-R to just the TLD.

6.1 ARCHIVE PROFILE DATA STRUCTURE

In simple terms an archive profile data structure is a key-value store with some additional

metadata. Keys are some form of a URI transformation (optionally, some other fields such

as date, language, etc.) and the value is an indicator of the holdings in the given archive

corresponding to the key. We discuss this further in Chapter 8.

Figure 40 illustrates a sample archive profile. Lines 1–4 of Figure 40 contain some

metadata about the archive and the profile itself. Line 3 describes that there is only one

field used as the lookup key which is SURT of the lookup URI. If there were multiple lookup

fields (space separated), “!keys” would hold an array of those filed names in the order they

appear in the data. The “type” attribute of the metadata describes that the document is a

URI-Key profile using the policy H3P1 (as discussed in Section 6.2). Lines 5–8 illustrate the

statistical data about the archive holdings. Each line of the data section holds one record

which has one or more key fields followed by a single line JSON as the value. There can be

an arbitrary number of attributes in the JSON block, but in this example we use the sum

of URI-M counts from all the profiles under each URI-Key as “frequency” and keep track of

the number of profiles they came from as “spread”.

6.2 URI-KEYS AND PROFILING POLICIES

URI-Key is a term we introduce to describe the keys generated by transforming URIs

based on various policies. This is used as a lookup key in the profile. Initially, we have

created policies that can be classified in two structural categories, HmPn and DLim. These

policies enabled a baseline for evaluation. Later, we introduced wild-card support in URI-

Keys to get away with rigid profiling policies and make them more flexible.

bbc.co.uk
.uk

89

1 !context ["https://oduwsdl.github.io/contexts/archiveprofile"]

2 !id {"uri": "http://www.webarchive.org.uk/ukwa/"}

3 !keys ["surt"]

4 !meta {"name": "UKWA Collection", "type": "urikey#H3P1", "...": "..."}

5 com,dilos,)/region {"frequency": 14, "spread": 2}

6 edu,orst,)/groups {"frequency": 3, "spread": 1}

7 uk,ac,rpms,)/ {"frequency": 124, "spread": 1}

8 uk,co,bbc,)/images {"frequency": 152, "spread": 3}

Fig. 40. Sample Archive Profile Data Structure

6.2.1 HMPN POLICY

Policies of the generic form HmPn mean that the keys will have a maximum of “m”

segments from the hostname and a maximum of “n” segments from the path. A URI-Key

policy with only one hostname segment and no path segments (H1P0) is called TLD-only

policy (as discussed in Section 3.9.2). H3P0 policy covers most of the registered domains

(that have one or two segments in their suffix [185], such as .com or .co.uk). If the number

of segments are not limited, they are denoted with an “x”, for example, HxP1 policy covers

any number of hostname segments with maximum of one path segment and HxPx means

any number of hostname and path segments. Note that the HxPx policy is not the same as

the URIR policy (as discussed in Section 3.9.1) as HxPx strips off the query parameters from

the URI, while the URIR policy stores complete URIs. For example, https://youtube.

com/watch?v=QNo5ZDvKuHg becomes com,youtube,)/watch?v=QNo5ZDvKuHg under URIR

policy and com,youtube,)/watch under HxPx policy.

6.2.2 DLIM POLICY

Policies of the generic form DLim are based on the registered domain name (RD), the

number of segments in subdomain (#S), path (#P), and query (#Q) sections of a URI, and

the initial letter of the path (PI). A generic template for this category of URI-Keys can be

given as “RD[#S[/#P[/#Q[/PI]]]]”. The DDom policy includes only the registered domain

name in SURT format, while DSub, DPth, DQry, and DIni policies also include sections of

the template up to #S, #P, #Q, and PI respectively. In addition to these, RD can be further

decomposed to form DSuf and DTld as domain suffix and top-level domain respectively.

DTld is equivalent to H1P0, but may or may not be the same as DSuf (e.g., .com can be

https://youtube.com/watch?v=QNo5ZDvKuHg
https://youtube.com/watch?v=QNo5ZDvKuHg

90

A canonicalized SURT

uk,co,bbc,news,)/images/logo.png?height=80&rotate=90%c2%b0&width=200

↓ URI FEATURE EXTRACTION ↓

Registered Domain (RD): uk,co,bbc,)/

Path Initial (PI): i

Subdomain (#S): 1

Path (#P): 2

Query (#Q): 3

↓ URI-Key GENERATION ↓

HmPn:

H1P0: uk,)/

H3P0: uk,co,bbc,)/

HxP1: uk,co,bbc,news,)/images

DLim:

DDom: uk,co,bbc,)/

DPth: uk,co,bbc,)/1/2

DIni: uk,co,bbc,)/1/2/3/i

Fig. 41. Illustration of URI-Key Generation

both a TLD and domain suffix, but .co.uk is only a domain suffix).

6.2.3 URI-KEY GENERATION

Figure 41 illustrates the process of generating URI-Keys from a URI. URIs are first

canonicalized then go through SURT. For HmPn policies, query section and fragment iden-

tifier of the URI are removed (if present), then depending on the values of “m” and “n”

any excess portions from the SURT URL are chopped off. The hostname segments are

given precedence over the path segments in a way that no path segment is added until

all the hostname segments are included, hence uk,co,)/images is an invalid URI-Key,

but uk,co,bbc,news,)/images would be valid if the hostname is news.bbc.co.uk or

www.news.bbc.co.uk. For DLim policies, the registered domain name is extracted with

the help of the Public Suffix list (which is updated periodically). Then depending on the

individual policies, segments from zero or more sections (such as subdomain and path) of

the URI are counted, and if necessary, the initial letter of the first path segment is extracted

(replaced with a “-” if not alphanumeric). These values are then placed inside the template

to form the URI-Key.

uk,co,)/images
uk,co,bbc,news,)/images
news.bbc.co.uk
www.news.bbc.co.uk

91

6.3 PROFILING THROUGH CDX SUMMARIZATION

We first collected CDX files from three different web archives of different sizes. Then

we generated 23 different profiles (with 17 HmPn policies, five DLim policies, and one

URIR policy) for each archive’s dataset to measure their resource requirement and routing

efficiency.

6.3.1 DATASETS

For the evaluation we prepared two types of datasets, archive profiles and query URI-Rs.

For profiles, we used three archives (Table 3):

1. Archive-It Collections – We acquired the complete holdings of Archive-It [137]

before 2013 and indexed the collections (in CDX format) to create a dark archive of

the service. The archive has 2,952 collections with more than 5.3 billion URI-Ms and

about 1.9 billion unique URI-Rs. It has more than 1.9 million ARC/WARC files that

take about 230 TB disk space in compressed format. We created URI-Key profiles

with various policies for the entire archive from the CDX files.

2. UK Web Archive – We acquired a publicly available CDX index dataset from

UKWA [242]. The dataset has separate CDX files for each year (starting from year

1996). We created individual URI-Key profiles from each of the early 10 years of CDX

files (from year 1996 to 2005) with different profiling policies. We also created a com-

bined profile by incrementally accumulating data for each successive year to analyze

the growth. These 10 years of CDX files have about 1.7 billion URI-Ms and about 0.7

billion unique URI-Rs.

3. Stanford University Archive – We acquired the complete CDX files of the Stanford

Web Archive Portal [234]. This dataset is relatively smaller than the above two and

has data ranging from the year 2013 to 2015. It has about 25 million URI-Ms and 12

million unique URI-Rs.

We created the second dataset by collecting four million URIs; one million random unique

URI-R samples from each of these four sources:

1. DMOZ Archive – URIs used in a study of HTTP methods [18].

2. IA Wayback Access Log – URIs extracted from the access log used in a study of

links to the Internet Archive (IA) content [37].

92

Table 3. Archive Dataset Size

Archive URI-Rs URI-Ms Size

Archive-It 1.9B 5.3B 1.8TB

UKWA 0.7B 1.7B 0.5TB

Stanford 12M 25M 8.3GB

Table 4. Presence of the Sample Query URI-Rs in Each Archive

Sample

(1M URIs Each)
Archive-It UKWA Stanford

Union of

{AIT, UKWA, SUA}

DMOZ 4.097% 3.594% 0.034% 7.575%

Memento Proxy Logs 4.182% 0.408% 0.046% 4.527%

IA Wayback Logs 3.716% 0.519% 0.039% 4.165%

UKWA Wayback Logs 0.108% 0.034% 0.002% 0.134%

3. Memento Aggregator Access Log – URIs extracted from the access log used in a

previous archive profiling study [40].

4. UKWA Wayback Access Log – URIs extracted from an anonymized sample of the

recent UKWA Wayback access logs.

We then checked to see how much of each sample set is archived in each archive (or

prevalence in statistical terms). Table 4 shows that out of 1 million sample query URI-Rs

from DMOZ only 40,969 (or 4.097%) URI-R are archived in Archive-It, 35,936 (or 3.594%)

in UKWA, and 341 (or 0.034%) in Stanford. The union of the archived URI-Rs is 75,745 (or

7.575%), almost same as the summation of the individual values, which shows there is little

overlap among these archives. The table also shows that none of the individual archives

have more than 5% of any sample set, which means the prevalence is <5% for any pair of

an archive and a sample set.

We also examined how much of the archived URIs from different sample sets overlap

in various archives. Figure 7 (Chapter 1) shows that few request URI-Rs are held in any

archive and very few are held in all archives. For example, there are only two URI-Rs in

1 million DMOZ sample URI-Rs that are archived in all the three archives and no archive

93

has more than 4.1% of the URI-Rs, while 924,255 (or 92.426%) URI-Rs are not archive in

any of the three archives as illustrated in Figure 7a.

6.3.2 PROFILE GROWTH ANALYSIS

In commonly used CDX files each entry corresponds to a URI-M1 (as described in Sec-

tion 2.7.4 of Chapter 2). The length of each line in a CDX file depends on the length of the

URI-R in it. Our experiment shows that the average number of bytes per line (α) in our

dataset is about 275, which means every one gigabyte of CDX file holds about 3.9 million

URI-Ms. Equation 1 approximates the pattern shown in Figure 42a where Cm denotes the

number of URI-Ms and Sc denotes the total size of CDX files in bytes.

Cm =
Sc

α
(1)

Figure 42b shows the relationship between URI-M Count (Cm) and URI-R Count (Cr)

in two ways; 1) for each year of UKWA CDX files individually as if they were separate

collections and 2) accumulated ten consecutive years of data one year at a time while each

time it recalculates total number of unique URI-Rs visited. The ratio of URI-M Count to

URI-R Count (γ) as shown in Equation 2 is indicative of the average number of revisits

per URI-R for any given time period. The value of γ varies from one archive to the other

because some archives perform shallow archiving while others revisit old URI-Rs regularly

to capture as many changes to those resources as possible [178]. In our dataset γUKWA=2.46

and γAIT=2.87. The accumulated trend better accounts for how archives actually grow over

time. It follows Heaps’ Law [97] as shown in Equation 3 where URI-Rs are analogous to

unique words in a corpus. K and β are free parameters that are affected by the value of

γ, but the actual values are determined empirically. For the UKWA dataset K=2.686 and

β=0.911.

γ =
Cm

Cr

(2)

Cr = KCβ
m (3)

URI-Keys are used as lookup keys in a profile. The number of URI-Keys is a function

of URI-Rs, not URI-Ms, hence increasing URI-Ms without introducing new URI-Rs does

1In our dataset Archive-It has 0.71% non-HTTP entries (such as DNS queries or malformed records) in
their CDX files while UKWA has no non-HTTP entries.

94

(a) URI-Ms Growth With CDX Size (b) URI-R Growth With URI-M Count

(c) Space Cost (d) Time Cost

Fig. 42. Growth and Costs Analysis for Different Profiling Policies in UKWA

not affect the number of URI-Keys, instead, it only changes the statistical values (such

as “frequency”) stored for the corresponding key. Figure 42c shows the number of unique

URI-Keys (Ck) generated for different numbers of unique URI-Rs (Cr) on different profiling

policies. Every profiling policy follows a straight line with a slope value (φpolicy) and zero

y-axis intersect because for zero URI-Rs there will be zero URI-Keys. For a given profile

policy, we define the ratio of URI-Key Count (Ck) to URI-R Count (Cr) as Relative Cost

(φpolicy) as shown in Equation 4. The Relative Cost varies from one archive to the other

based on their crawling policy. Archives that crawl only a few URIs from each domain

will have relatively higher Relative Cost than those who crawl most of the URIs from each

domain they visit. Table 5 lists φpolicy values for UKWA dataset.

95

φpolicy =
Ck

Cr

(4)

Figure 42d illustrates the time required to generate profiles with different policies and

different data sizes. Previously we used a memory based profiling approach, but now we use

a file based approach instead. The latter approach scales better and allows for distributed

processing. Our experiment shows that the profiling time is mostly independent of the policy

used, but we found that DLim policies take slightly more time than HmPn policies because

they require more effort to extract the registered domain based on the public suffix list.

We found that about 95% of the profiling time is spent on generating keys from URIs and

storing them in a temporary file while the remaining time is used for sorting and counting

the keys and writing the final profile file. Hence, a memory based key-value store can be

used for the temporary data to speed up the process. Also, when an archive has a high value

of γ, we can save significant amount of time by generating keys from each URI-R only once

then adjust the “frequency” according to the number of occurrences of the corresponding

URI-Rs. However, when profiles are generated on small sub-sets of the archive (for example,

for incremental updates) there is a lower chance of revisits in the small subset. The mean

time to generate a key for one CDX entry τ can be estimated using Equation 5 where T

is the time required to generate a profile from a CDX file with Cm URI-Ms. The value of

τ depends on the processing power, memory, and I/O speed of the machine. On our test

machine it was between 5.7×10−5 to 6.2×10−5 seconds per URI-M (wall clock time). As a

result, we were able to generate a profile from a 45GB CDX file with 181 million URI-Ms

and 96 million unique URI-Rs in approximately three hours.

τ =
T

Cm

(5)

Figure 43 illustrates the correlation among the number of URI-Keys 43a and profile

size on disk 43b for various collection sizes with various profiling policies. The policies are

sorted in the increasing order of their resource requirement. If these generated profiles are

compressed (using gzip [93, 112] with the default compression level), for bigger profiles they

use about 15 times less storage than uncompressed profiles, but result in a similar growth

trend. These figures are helpful in identifying the right profiling policy depending on the

available resources such as storage, memory, computing power. Here are some common

observations in these figures:

• For host segments less than three, path segments do not make a significant difference

as they are not included unless all the host segments of the URI are already included.

96

Table 5. Relative Cost of Various Profiling Policies for UKWA

Policy Relative Cost (φpolicy)

H1P0 <0.00001

H2P0 0.00026

H2P1 0.00038

H2P2 0.00056

DDom 0.00857

H3P0 0.00858

DSub 0.00876

H4P0 0.01340

H5P0 0.01368

HxP0 0.01371

DPth 0.01577

DQry 0.01838

DIni 0.06892

H3P1 0.11812

HxP1 0.16247

H3P2 0.25379

H3P3 0.34668

HxP2 0.36298

HxP3 0.49902

HxP4 0.58442

HxP5 0.64365

HxPx 0.70583

URIR 1.00000

97

(a) URI-Key Count (b) Profile Size

Fig. 43. Resource Requirement for Various Profiling Policies and Collection Sizes

Table 6. Confusion Matrix of Memento Routing

Actual

Present Absent

Predicted
Routed True Positives (TP) False Positives (FP)

Not Routed False Negatives (FN) True Negatives (TN)

• Keeping either the hostname or path segments constant while increasing the other

increases in the value, but the growth rate decreases as the segment count increases.

• The last data-point (HxPx) shows a different trend, it is not just one path segment

ahead of its predecessor (HxP5), but any path segments more than 5 are included in

it.

• Growth due to path segments is significantly faster than the growth due to hostname

segments.

• If a single path segment is to be included, it is better to include all host segments,

which provides more details without causing any significant cost overhead.

98

Table 7. Relative Cost, Precision, Specificity, and Accuracy of Profiling Policy Groups

Group Policies Cost Precision
Specificity and

Accuracy

G1 H1P0/TLD Bound by # of TLDs < 0.05 ≈ 0.01

G2 H3P0, DDom,

DSub, DPth, DQry

< 0.01 ≈ 2G1 ≈ 0.78

G3 DIni ≈ 2G2 ≈ 3G1 – 4G1 ≈ 0.88

G4 HxP1 ≈ 5G3 ≈ 5G1 – 7G1 ≈ 0.94

G5 Higher HmPn 0.4 – 0.7 Not Explored Not Explored

G6 URIR 1.0 1.0 1.0

6.3.3 ROUTING EFFICIENCY

To analyze the routing efficiency of profiles, we picked eight policies from the 23 policies

we have used to generate profiles for all three archives in our dataset. These policies are

TLD-only (H1P0), H3P0, HxP1, and all the five variations of the DLim policies. We then

examined the presence of resources in the archives for our four query URI sample sets, each

containing one million unique URI-Rs. Based on the profiling policy, a query URI-R is

transformed into a URI-Key then it is looked up in the URI-Key profile keys to predict its

presence.

When a sample set of URI-Rs is examined against an archive using a profile to route

the matching URIs to the archive, each URI from the sample set may fall in one of the four

categories; 1) present in the archive and routed to the archive by the profile (true positive or

TP), 2) not present in the archive and not routed to the archive by the profile (true negative

or TN), 3) not present in the archive, but routed to the archive by the profile (false positive

or FP), and 4) present in the archive, but not routed to the archive by the profile (Table 6).

For example, if the query URI (in SURT format) is uk,co,bbc,)/images/test.png and it

is examined against the profile illustrated in Figure 40 then it will be routed to the archive

because the profile has a matching key uk,co,bbc,)/images in it. In this case, if the query

URI is actually present in the archive it will be a true positive otherwise a false positive.

Similarly, if the query URI is uk,co,bbc,)/videos/test.mp4, it will not be routed by the

profile to the archive because the profile does not have a matching key. In this case, if

99

(a) Archive-It: Precision (b) Archive-It: Precision vs. Cost

(c) UKWA: Precision (d) UKWA: Precision vs. Cost

(e) Stanford: Precision (f) Stanford: Precision vs. Cost

Fig. 44. Routing Precision of Different Profiling Policies in Different Archives

100

(a) Archive-It: Specificity (b) Archive-It: Specificity vs. Cost

(c) UKWA: Specificity (d) UKWA: Specificity vs. Cost

(e) Stanford: Specificity (f) Stanford: Specificity vs. Cost

Fig. 45. Routing Specificity of Different Profiling Policies in Different Archives

101

(a) Archive-It: Accuracy (b) Archive-It: Accuracy vs. Cost

(c) UKWA: Accuracy (d) UKWA: Accuracy vs. Cost

(e) Stanford: Accuracy (f) Stanford: Accuracy vs. Cost

Fig. 46. Routing Accuracy of Different Profiling Policies in Different Archives

102

the query URI is actually present in the archive it will be a false negative otherwise a true

negative.

Prevalence =
|Sample URI-Rs Present in an Archive|

|Total URI-Rs in a Sample|
(6)

Recallpolicy =
|URI-Rs Correctly Routed by Profilepolicy to an Archive|

|URI-Rs Present in an Archive|
(7)

Precisionpolicy =
|URI-Rs Correctly Routed by Profilepolicy to an Archive|

|URI-Rs Routed by Profilepolicy to an Archive|
(8)

Specificitypolicy =
|URI-Rs Correctly Not Routed by Profilepolicy to an Archive|

|URI-Rs Not Present in an Archive|
(9)

Accuracypolicy =
|URI-Rs Correctly Routed or Not Routed by Profilepolicy to an Archive|

|Total URI-Rs in the Sample|

(10)

High values of true positives and true negatives indicate the ability of the profile to

accurately route or not route a lookup to an archive. However, a high value of false positives

indicates that in many cases the profile predicts that the lookup URI-Rs are present in an

archive, but they are not. This does not affect the client much, as the intent of a client,

usually, is to increase the Recall (to get as many Mementos as possible), but it costs the

aggregator and archives in the form of unnecessary work. In contrast, a high value of false

negatives indicates that in many cases the profile fails to predict the presence of Mementos in

an archive for the given lookup URI-Rs. This saves resources of the aggregator and archives,

but affects the ability of a client to discover all the Mementos of a query URI-R. Small profiles

(such as H1P0) remain fresh for long time, but yield a high FP value. However, detailed

profiles (such as HxPx) yield low FP, but become stale quickly as an archive crawls more

resources, hence require regular updates. The FN value does not depend on how detailed

a profile is, instead how much a profile knows about an archive’s holdings. A profile will

yield FNs if it has an incomplete knowledge of an archive (such as when the profile becomes

stale) or the profile is utilized in a way that the values of “frequency” and “spread” below

certain threshold are ignored.

To establish a baseline, we only check to see if the lookup key is present in the profile

and do not use the statistical values (such as their frequency) present in the profile. This

brings some false positives in the result, but no false negatives, hence we do not miss any

URI-Ms from the archive for the query URI-R. In other words, the Recall value is always

1.0. With this in mind, we can utilize some statistical measures to estimate the routing

103

efficiency:

• Prevalence – [(TP + FN)/(TP + TN + FP + FN)]

This is the ratio of the number of URI-Rs in the sample set that are present in the

archive to the total size of the sample set (as defined in Equation 6). Due to the sparse

nature of web archives, this value is often very low. In our dataset it is less than 0.05

(Table 4).

• Recall – [TP/(TP + FN)]

This value estimates how many URIs from the sample set that are present in the

archive are actually routed to the archive by the profile (as defined in Equation 7).

Since our dataset represents the complete knowledge of archives for a given time period

and we do not set a threshold on the values of “frequency” and “spread”, hence the

Recall is always 1.0.

• Precision – [TP/(TP + FP)]

This value estimates how many URIs from the sample set that are routed to the archive

by the profile are actually present in the archive (as defined in Equation 8). Since the

Prevalence value is low in our dataset, a small change in the percentage of FP affects

the Precision significantly, hence the Precision may not be very effective to estimate

the routing efficiency. In our dataset this value is below 0.35 for profiles ranging from

H1P0 to HxP1.

• Specificity – [TN/(TN + FP)]

This value estimates how many URIs from the sample set that are not present in the

archive are actually not routed to the archive by the profile (as defined in Equation 9).

Since the Prevalence value is low in our dataset, this becomes the significant measure

to estimate the routing efficiency as it tells how much unnecessary work a profile can

avoid. In our dataset this value is above 0.5 and often close to 1.0 for any profiles

other than H1P0.

• Accuracy – [(TP + TN)/(TP + TN + FP + FN)]

This value estimates how many URIs from the sample set are correctly routed or not

routed to the archive by the profile (as defined in Equation 10). The accuracy value

combines the essence of the Precision and the Specificity. In our experiment, there

are no false negatives, hence the Accuracy can be simplified as (TP + TN)/(TP +

TN + FP). Additionally, in our dataset, TP ≪ TN due to the low Prevalence, the

104

Accuracy can further be approximated to ≈ (TN)/(TN + FP) which is Specificity.

As a result, due to the sparse nature of archives, the Accuracy is very close to the

Specificity.

Figure 7 (Chapter 1) and Table 4 are good indicators of why archive profiles are useful:

since all the three archives have <5% of any of the query sets, there would be many unnec-

essary queries if an aggregator simply broadcasted all queries to all archives. Essentially,

broadcasting would yield a high number of false positives.

As illustrated in Figures 44a, 44c, and 44e, from all three archives it can be seen that

the Precision grows when a profile with higher Relative Cost is chosen. Figure 44 shows

that DDom profile doubles the precision as compared to the TLD-only profile and the HxP1

profile brings five fold increment in the precision. These figures also show that inclusion of

subdomain count does not affect the results much as there are not many domains that are

utilizing more than one subdomain. Figures 44b, 44d, and 44f show that there is significant

gain in Precision with little increment in Relative Cost. The difference in the trends of

Figure 44 can be understood by means of the following factors:

• Small Prevalence values of the sample URIs (as shown in Table 4) affect the growth

in Precision (on y-axis) from one profile to the next.

• Small Prevalence also makes the Precision a less stable measure of the routing effi-

ciency as it can change significantly with a slight change in the percentage of false pos-

itives. This is why DMOZ sample has the highest Precision in UKWA (Figure 44d),

but IAWayback and MementoProxy perform better in the other two archives (Fig-

ures 44b and 44f).

• The UKWA uses a shallow crawling policy which results in higher Relative Cost (φ).

This increases the distance (on x-axis) from one profile to the next.

• The UKWayback sample is based on a recent Wayback access log of the UKWA. How-

ever, the UKWA dataset is older and may not completely reflect what the archive had

at the time when the access log was captured. Also, an access log shows what clients

are looking for in the archive rather than what the archive holds. For these reasons,

the Prevalence of UKWayback is 0.001 for UKWA (i.e., <0.1% of the sample URI-Rs

are archived in UKWA). Additionally, the UKWayback sample is biased towards *.uk

URI-Rs that is not the primary focus of the other two archives, which is why the

Prevalence is even smaller for the two archives (0.034% and 0.002%).

105

• The Stanford archive is a small and focused archive and <0.05% of any sample set

is archived in it. Hence, this low Prevalence causes instability in the Precision and

shows some unexpected behavior such as decreased Precision on increased Relative

Cost (Figure 44f).

The precision value is useful when the intent is to know what is in the archive. However,

from the Memento routing perspective with such a small prevalence value (<0.05) it becomes

more important to know which URI-Rs not to route to an archive. For this purpose we

measure the routing efficiency in terms of the specificity as illustrated in Figure 45. As

illustrated in Figures 45a, 45c, and 45e, from all three archives it can be seen that the

Specificity of the H1P0 profile is very poor and it grows significantly when a profile with

higher Relative Cost is chosen. Figures 45b, 45d, and 45f show the Relative Cost it takes to

increase the Specificity.

To combine the essence of the precision and the specificity, we also measure the routing

efficiency in terms of the accuracy as illustrated in Figure 46. As illustrated in Figures 46a,

46c, and 46e, from all three archives it can be seen that the Accuracy of the H1P0 profile

is very poor and it grows significantly when a profile with higher Relative Cost is chosen.

Figures 46b, 46d, and 46f show the Relative Cost it takes to increase the Accuracy. We have

explained earlier that due to the sparse nature of archives, the values of the specificity and

the accuracy are almost the same as shown in Figures 45 and 46.

Figures 44, 45, and 46 also show that some profiling policies are quite similar in the

Relative Cost and their corresponding Precision, Specificity, and Accuracy values. Based

on this assessment, we grouped some policies together in Table 7 to provide a simpler cost

and efficiency estimate. We took the average of all the values from different archives and

samples in each group to estimate the Specificity and the Accuracy of each group. However,

the Precision values were less stable (due to small prevalence), hence we provided a relative

range instead.

A URI-Key profile is more robust than a URIR profile because it can predict the presence

of resources in an archive that were added in the archive after the profile was generated.

For example, if a new image named Large-Logo.png is added under bbc.co.uk/images,

it is very likely that the archives that crawl BBC will capture the new image. The URI-

Key profile illustrated in Figure 40 will be able to predict the presence of the new resource

without any updates, but a URIR profile will need an update to include the new URI-R

before it can predict the presence of the new image.

Large-Logo.png
bbc.co.uk/images

106

6.4 PROFILING THROUGH FULLTEXT SEARCH

If a web archive provides fulltext searching in its collection, it can be leveraged to discover

the holdings of the archive. In this approach, we send some random query terms to the

archive and collect the resulting URIs returned from the archive. Although with each

successful response we learn some new URIs, the learning rate slows down as we go forward

because of the fact that some of the URIs returned in a response may have been already

seen in earlier queries. This follows Heaps’ Law [97].

With carefully chosen values of various advanced search attributes and selection of a

suitable list of keywords, we can affect the parameters of Heaps’ Law and maximize the

learning rate. In this section we analyze different fulltext approaches to discover holdings

of an archive. We also explore different ways to perform the search when the language of

the archive is unknown or a list of suitable keywords is not available for that language.

For our experiments we chose the Archive-It hosted North Carolina State Government

Web Site Archive collection2 which is the largest collection in Archive-It and provides fulltext

search. Since we have Archive-It data (up to 2013) hosted in our dark archive at Old

Dominion University (ODU), it was easier for us to perform the coverage analysis on this

dataset.

We started our experiment by searching for stop-words. For example when we searched

for the term “a” it returned 26M+ results, which is very close to the number of the HTML

resources in the collection up till March 2013. However, each page only contains 20 results,

hence, in order to learn all the 26M+ URIs we will have to make 1.3M+ HTTP GET

requests. Our goal was to make as few requests as possible to learn a diverse set of URIs

in the collection. Additionally, this approach cannot be generalized, as not all archives will

behave the same on stop-words.

In the next step we built static and dynamic word lists and searched for those words as

query terms. For each term we only record the URIs in the first resulting page and move on

to the next word in the list. Having a configurable pagination would have benefited us by

choosing a larger number of results per page, but Archive-It has it fixed to 20 results and

does not allow any changes.

1. Top Words – We collected top the 2,000 English nouns3 and used them as the

query terms. We accumulated the first page results to plot the learning curve, but

2https://www.archive-it.org/collections/194
3http://worddetail.org/most_common/nouns

https://www.archive-it.org/collections/194
http://worddetail.org/most_common/nouns

107

also extracted other information such as the result count for each search term. As

expected, these top terms yielded high values for the result count for each terms.

Additionally, each term yielded more than one page of results, hence no effort was

unsuccessful. We also observed that the response time is correlated with the result

count, so the same number of top terms would take longer to fetch than a random

word list.

2. Random Linux Dictionary – We ran the same procedure on a randomly chosen

set of 2,000 unique words from the built-in Linux dictionary. This time the average

number of results per terms was lower, but there were many terms for which the

collection returned no results or fewer than 20 (page size) results.

3. Dynamically Discovered Word List – The above two experiments were based on

the static lists of words. This static word list approach requires the knowledge of the

language (and field) of the collection to choose a static list of words for that language,

which may not be easily available. Additionally, the list would be finite and may not

be enough to discover a sufficient number of the collection holdings. To overcome this

issue, we build a model (discussed in Section 6.4.1) that can dynamically discover new

words from the searched pages and utilize those words to perform further searching.

We introduced different policies in the dynamic discovery model based on how the new

words are learned and how the next word for searching is chosen. We then analyzed

the learning rate and the number of HTTP requests for each policy.

6.4.1 RANDOM SEARCHER MODEL

To perform searches on a static or dynamic word list, we developed a general Random

Searcher Model (RSM) that can be configured to operate in one of the four modes with

the help of configurable Vocabulary Seeding and Word Selection policies. To understand

the model we discuss different data structures, policies, operation modes, and procedures

separately then put them together to describe the overall working.

Data Structure

The RSM has the following data structures to hold various intermediate statistics and states:

1. Vocabulary – A data structure to hold the list of words to be searched. Depending on

some policies it may or may not allow duplicates. This data structure should provide

108

the number of total or unique words in the list. The data structure should support

functions to overwrite the list, add more words to the list, pop a random word from

the list, and remove all occurrences of the popped word in the list.

2. SearchLog – A data structure to hold the record of each search attempt. It con-

tains the searched word, attempt result (success or failure), and any additional meta

information such as the response result count and newly discovered URIs. An imple-

mentation may choose to offload some results to a separate data structure or include

more attributes for analysis. This data structure should provide the number of total or

successful searches. The data structure should support functions to add new records,

querying if a given word is present, and randomly selecting a successful searched word.

3. ResultBank – A dictionary like data structure to hold all the discovered URI-Rs and

their respective memento counts. This data structure should provide the number of

total URI-Rs (or dictionary keys). The data structure should support functions to

add new records and iterate over all the records.

Policies

Policies control the behavior of the RSM. We have defined two different policies with various

valid configuration values as described below:

1. Vocabulary Seeding Policy – This policy controls how the Vocabulary is seeded

and how often. Valid values are:

• Static – The Vocabulary is manually seeded in the beginning with a static list of

search keywords. It allows seeding only once and the procedure terminates when

all the seeded keywords are consumed.

• Progressive – The Vocabulary is initialized with a few words, but it is aggressively

overwritten after each successful search with the newly discovered words, except

when there are no new words discovered.

• Conservative – The Vocabulary is initialized with a few words and new words

discovery is only performed when all the words from the Vocabulary are consumed.

The Vocabulary is only reseeded when it is empty.

2. Word Selection Policy – This policy controls how search words are selected from

the Vocabulary. Valid values are:

109

• Popularity Biased – Randomly select one word from the Vocabulary where the

probability of a word being selected is proportional to the term frequency in the

Vocabulary normalized by the total number of terms in the Vocabulary. A simple

implementation of this policy would consider the Vocabulary as a bag of random

words (with duplicates allowed) to select a random word from it. There are other

memory efficient approaches possible, but this simple approach illustrates the

concept naturally.

• Equal Opportunity – Randomly select one word from the list of unique words in

the Vocabulary.

Operation Modes

An operation mode is a valid combination of Vocabulary Seeding and Word Selection policies

(as mapped in Table 8). Not all combinations of the two policies are valid. We recognize

the following four as valid modes of the RSM :

1. Static – This mode operates on a static word list that is known in advance so it

does not have to make additional fetches to discover more words. However, finding a

suitable word list for a given collection could be difficult.

2. PopularityBiased – In this mode the searcher randomly picks a URI from the re-

turned result and fetches that page to discover new words. Once the words are fetched,

it randomly picks a word from that and repeats the search operation. In this way the

searcher has to fetch a page after every search attempt to search for the next word.

Selection of the words is random, but the duplicates are not removed so the words

with higher frequency in the page have higher chance of being selected.

3. EqualOpportunity – This mode works the same way as the PopularityBiased mode

does, but it picks the next word from the unique list of words so a rare word on the

page has the same probability of being selected as a high frequency one.

4. Conservative – The PopularityBiased and the EqualOpportunity modes have the

drawback of being twice as costly in terms of number of HTTP requests as compared

to a static word list of the same size. The reason for this is that after every successful

search, there is a page fetch to learn new words. However, this Conservative mode does

not throw away previously learned words and consumes each of them. It makes a page

110

Table 8. RSM Operation Mode Mapping With Policies

Operation Mode Vocabulary Seeding Word Selection

Static Static Equal Opportunity

PopularityBiased Progressive Popularity Biased

EqualOpportunity Progressive Equal Opportunity

Conservative Conservative Equal Opportunity

fetch to learn new words only when all the previously learned words are consumed.

This reduces the number of HTTP requests significantly.

Procedures

The RSM has the following public procedures:

• Initialize() – This method initializes a Random Searcher instance with supplied

configuration options and Vocabulary seed.

• TerminationCondition() – This method returns True if the conditions are met to

terminate the NextWord iterator. It returns False otherwise.

• NextWord() – This method pops the next word from the Vocabulary based on the

Word Selection Policy (and removes all the occurrences of the word in the Vocabulary,

if any). If the Vocabulary is empty and the terminating condition is not met then it

randomly picks a successful searched word from the SearchLog. This is a generator

function that can act as an iterator until the configured termination condition is met.

• Search() – This method searches the collection for a given search keyword and pop-

ulates the SearchLog and the ResultBank with appropriate values from the search

result. Depending on the configured policies it may also select a URI from the result

to extract words from it to seed the Vocabulary.

• ExtractWords() – This method fetches the page at the given URI, sanitizes it (by

stripping off the markup, scripts, and styles), tokenizes the text to split in non-empty

words, and returns the bag of words (duplicates included, if any) in the order they

appeared in the document.

111

(a) Flowchart of the Random Searcher Model

(b) An Example Illustration of the Random Searcher Model

Fig. 47. Random Searcher Model Overview

• GenerateProfile() – This method iterates over all the items in the ResultBank and

generates an Archive Profile based on the supplied profiling policy.

112

To run the Random Searcher an instance of the RSM is initialized with one of the

four possible modes, some initial seed words, termination condition configuration, tokenizer

pattern, and other configurations. Then the NextWord generator is iterated over to discover

next word for searching until it hits the termination condition. For every word, the Search

method is called which internally performs the collection lookup and updates various data

structures of the RSM instance. Once the iterator terminates, GenerateProfile method is

called to serialize collected statistics in an Archive Profile. An overview of the RSM is shown

in Figure 47a as a flowchart diagram and in Figure 47b as a working example illustration.

6.4.2 IMPLEMENTATION

We implemented the RSM in Python and made the code available publicly [6]. However,

due to the lack of a uniform search API across archives, the implementation is not generic

enough to run on any archive. The page scraping part of the code that extracts useful

pieces of information from the search result page and assembles them in a data structure

needs custom implementation for each archive. The Archive-It search interface has an

undocumented JSON API that we used to avoid HTML parsing. Our implementation has

some additional intermediate data structures and logging in place for the sake of analysis

which is not needed for production purposes.

6.4.3 RSM EVALUATION

To evaluate the RSM we estimated the search cost of different operation modes for discov-

ering certain portion of the archive holdings in terms of a given profiling policy. To evaluate

generated archive profiles we measured how much of the archive holdings we must discover in

order to gain a satisfactory Recall and corresponding routing efficiency for a given profiling

policy. In this analysis we have used four different profiling policies. Examples are derived

from the URI https://www.news.BBC.co.uk/Images/Logo.png?width=80&height=40.

• H1P0 – Only TLDs are used as keys (212 unique keys in the collection). E.g., uk)/.

• DDom – Only registered domain name is used as keys (91,629 unique keys in the

collection). E.g., uk,co,bbc)/.

• HxP1 – All host segments and one path segment are used as keys (1,724,284 unique

keys in the collection). E.g., uk,co,bbc,news)/Images.

113

Table 9. Cost Comparison of RSM Operating Modes

Operation Mode Query Cost HTTP Cost

Static C C

PopularityBiased C 2C

EqualOpportunity C 2C

Conservative C C + δ (where δ ≪ C)

• URIR – SURTed URI-Rs are used as keys (30,800,406 unique keys in the collection).

E.g., uk,co,bbc,news)/Images/Logo.png?height=80&width=200.

Estimating Searches Needed

Figure 48 illustrates the projected estimate of the search cost for each of the four profiling

policies based on the initial 2,000 searches. Each graph is extended up to the 100% limit

of each profiling policy on the y-axis. For example, there are total 212 unique TLDs in the

collection, hence the upper y-axis limit in Figure 48a is set to 212. The RSM operation modes

in which an additional HTTP request is made to fetch a Memento to extract words causes

additional HTTP GET overhead. Table 9 shows the HTTP cost of each RSM operation

mode with respect to the corresponding query cost. The value of δ is quite small as compared

to C. In our experiments we found that for C = 2, 000 the value of δ was 8. Which means for

making 2,000 queries we only needed eight additional HTTP GETs to extract new words in

Conservative mode. The Conservative mode is an overall winner. It shows a higher learning

rate and does not require a static list of words to be supplied. It is also good because it

does not have much overhead HTTP request cost for the term discovery.

Profile Routing Efficiency

Unlike CDX analysis, a fulltext search based archive profile will often be created based on

partial knowledge of the archive holdings. This may cause incomplete Recall in Memento

routing, which means that an archive might have some Mementos unknown to the profile

and as a result it may not have a matching key in it to route the query there. Hence, it

is important to analyze the incremental changes in the confusion matrix as we know more

and more of the archive’s holdings. Table 6 illustrates the confusion matrix in the Memento

routing context. For this analysis we selected the first ten years of UKWA dataset as the gold

114

(a) H1P0 Profile (b) DDom Profile

(c) HxP1 Profile (d) URIR Profile

Fig. 48. Searches Needed vs. Required Coverage

dataset, then we extracted the unique URI-Rs from it and randomized it. The randomized

URI-R list was then split into ten equal chunks. We then profiled these chunks incrementally

using different policies to see how these policies perform against a sample set of query URIs

when we know only 10%, 20%, 30%, ... to 100% of the archive. We repeated this process

for four different query URI sample sets of one million each. In each case we calculated the

confusion matrix and plotted Accuracy vs. Recall graph to estimate the routing efficiency.

Accuracy here means how often an archive profile is correct in routing or not routing a query

to the archive.

Figure 49 shows that if the complete archive is known, we should choose higher order

profiles such as HxP1. The HxP1 profile has Accuracy almost as good as the URIR pro-

file. The cost of the HxP1 profile is less than one sixth of the cost of the URIR profile.

115

(a) DMOZ (b) IA Wayback

(c) Memento Proxy (d) UKWA Wayback

Fig. 49. Incremental Accuracy vs. Recall as a Function of Archive Knowledge

Additionally, the HxP1 profile has higher Recall than the URIR profile when the complete

archive is not known. However, since we cannot afford to lose much of the Recall, we favor

smaller profiles such as DDom when we have partial access to the archive (such as when

using fulltext search). The DDom profile (that has less than 1% cost as compared to the

URIR profile) can have about 0.9 Recall while correctly routing (or not routing) more than

80% of the URIs by only knowing 10% of the archive. Cases where only a tiny fraction of the

archive is known by sampling (such as when neither CDX is available nor fulltext search),

we favor the smallest profile H1P0/TLD-only to maintain an acceptable Recall value. Even

though the URIR profile always yields 100% Accuracy, it suffers from poor Recall. With

the complete CDX accessible, the URIR policy costs a lot compared to other policies. Ad-

ditionally, the URIR policy does not have any predictive powers for unseen URIs, hence

116

maintaining the freshness of the profile is challenging as the archives acquire more URI-Rs.

6.5 CHAPTER SUMMARY

In this chapter we outlined four approaches of learning an archive’s holdings: 1) CDX

Profiling, 2) Fulltext Search Profiling, 3) Sample URI Profiling, and 4) Response Cache

Profiling. We performed exhaustive analysis of the first two approaches, but left the other

two as those were explored by other researchers already. We briefly described the data

structure of archive profiles, defined the term URI-Key, and outlined numerous profiling

policies with varying levels of details. We described and illustrated the URI-Key generation

method for each profiling policy.

For CDX summarization we described various datasets that we collected. We described

various relevant statistical measures for evaluation. Then we evaluated the overlap among

archives, growth of profiles with different policies, and their cost vs. routing efficiency. We

found that the growth of the profile with respect to the growth of the archive follows Heaps’

law, but the values of free parameters are archive-dependent. With accuracy defined as

correctly predicting that the requested URI-R is present or not present in the archive, we

gained about 78% routing accuracy with less than 1% relative cost and 94% routing accuracy

with less than 10% relative cost without any false negatives. The registered domain profile

doubles the routing precision with respect to the TLD-only profile, while a profile with

complete hostname and one path segment gives ten fold routing precision.

For fulltext search profiling we described another set of datasets. We then introduced

our contribution called Random Searcher Model. We described its data structure, policies,

operation modes, procedures, and reference implementation. For evaluation we selected

four distinct and diverse profiling policies. Then we evaluated number of search operations

needed to discover certain fraction of holdings of an archive and the cost of these searches.

Finally, we evaluated the routing efficiency of profiles created using Random Searcher Model.

We concluded that the DDom profile (that has less than 1% cost as compared to the URIR

profile) can have about 0.9 Recall while correctly routing (or not routing) more than 80%

of the URIs by only knowing 10% of the archive.

117

CHAPTER 7

LEARNING ARCHIVAL VOIDS

In order to not route lookup requests to the archives that are not likely to return good

results, it can be useful to learn about the voids of various archives. This chapter addresses

our first research question, “RQ1: How to learn about the holdings and voids of an archive? ”.

In this chapter we only explore the second part of this question that concerns how to learn

about the voids of an archive.

In Chapter 6 we explored various means to identify and summarize resources that an

archive holds. Knowing about the summary of holdings of an archive allowed us to improve

Memento routing accuracy without any false negatives. In this chapter we explore various

means to identify resources that are not present in an archival collection or a web archive

is not willing to serve. This will further improve the routing accuracy by reducing false

positives.

7.1 INTRODUCTION AND MOTIVATION

We introduce the term Archival Voids to describe what is missing from a web archive as

opposed to Archival Holdings that describe what a web archive holds. This can be defined as

a function that takes two arguments, a URI Key and a web archive, and returns the measure

of the archival void under the given URI scope (e.g., a TLD, a domain, or a domain name

with a path prefix) in the archive. However, a reliable estimate of a void required knowing

the set of URIs under the scope that ever existed and the set of URIs under that scope that

are present in the archive. Knowing the cardinalities and overlap or difference of these sets

is often not practical as it might require crawling a whole domain or TLD. However, in some

cases it is possible to estimate the archival voids. For example, a webmaster who knows all

the URIs of a website with finite resources can query a web archives to know how many of

those resources are present in or absent from the archive. In some cases, it might be possible

to estimate the number of URIs in scope by querying a public search engine and extracting

the number of hits, but this number may not be reliable as it may not contain historical

pages or non-textual resources. That said, in this work we are generating an archival voids

profile based on what a web archive knows, so in this case we will only report portions of

the web that have zero resources archived/accessible and are requested frequently.

118

“Why do we care about archival voids?” This is an obvious question to ask, especially

after knowing what is present in an archive. One might argue that if we already know

what is present in an archive then everything else can be considered to be missing from

the archive. This statement will be true if we had a complete knowledge profile (which

we already discussed in Chapter 6 that it is not practical and has its own issues when it

comes to freshness). On the contrary, if we had an archival holdings profile based on URI

sampling then we may not have an accurate knowledge of what is present in the archive,

hence we cannot deduce what is not present in it. Similarly, when we have a summarized

profile (using one of the profiling policies discussed in Chapter 6), we may conclude many

URIs to be present in an archive, but they might be absent from it (i.e., false positives).

To understand this, lets assume that an archive holds resources at paths “/a/1”, “/a/2”,

“/a/3”, “/b/1”, and “/b/2” under “example.com” domain. This needs five different keys in

the profile to describe these holdings, but we can summarize it as “com,example)/a/*” and

“com,example)/b/*” (here we are using wildcard character to illustrate that we have all

variations at the path depth 2). While this summary ensures that we do not assume “/c/1”

is present, it does suggest that “/a/1/z”, “/a/4” and “/b/3” (and many others) are present.

If we could list or summarize resources that applications might be interested in, but are not

present in the archive, we can further improve the accuracy by reducing false positives.

An aggressively summarized archival holdings profile improves the freshness, but inher-

ently introduces many false positives. An archival voids profile can compensate for that by

identifying those false positives and explicitly denying their presence in the archive. This

means an archival holdings profile and an archival voids profile can work together as op-

posing forces to find the sweet spot for an increased routing accuracy while minimizing the

profile size and maximizing freshness.

An archival voids profile has some use cases beyond Memento routing. For example,

an archive can identify voids in its collections to crawl those resources and fill the cavities

while those resources are still live on the web. Another use case could be public disclosure

of resources that an archive does not want to collect/serve due to their collection policies.

Moreover, it can be helpful in coordinating with other archives, like IIPC members do. For

example, if an archive has a void in a specific URI space, but another archive has holdings

for the same, then they have complementary holdings.

7.2 SOURCES OF TRUTH

The URI space is infinite and the web is vast. Many people have attempted to estimate

119

the size of the web at different times and have come up with different numbers from a few

billions to a few trillions (as discussed in Section 3.1 of Chapter 3). However, knowing the

size of the web and web archive holdings can only lead us to estimating how much of the

web is not archived. If we want to know what sections of the web are not archived, we need

to know all the existing URIs, not just their number. Knowing URIs of all the existing

resources on the web or creating a representative sample of the web is hard. However, we

can sample URIs from certain sources (e.g., DMOZ, social media, or access logs) that are

of interest for a specific application, while knowing that these samples will have their own

purposes and biases. We can create archive profiles of archival voids in the following ways:

• Perform lookups of sample URIs in an archive and record all the URIs that are not

archived.

• Use access logs of a Memento aggregator or the archive itself to identify resources that

are absent from an archive.

• Use URLs from the access control lists (ACL), approved take down requests, resources

blocked by robots.txt, and domains/TLDs blocked by an archive’s policy.

URIs collected by the means listed above can be summarized to form archival voids

profile. In the previous chapter we described Random Searcher Model (RSM) (Section 6.4.1)

to learn about the holdings of an archive using fulltext search. However, fulltext searching

is not a suitable technique for archival void detection because it only returns resources that

are present in an archive. In this chapter, we only investigate archival voids profiling using

access logs of an archive. Other approaches are either inefficient or beyond our abilities

(e.g., we do not have access to archiving policies or ACLs of any web archive).

7.3 EVALUATION

To evaluate our process for estimating archival voids, we use access logs of a web archive.

We extract URI-Rs from the access logs and identify URI-Rs that have always returned “404

Not Found” responses (ignoring any “3xx” or “5xx” responses). Then we filter URI-Rs out

that are not accessed frequently, so that we profile only the popular resources. Figure 68

(in Chapter 8) shows that there are many URIs that are accessed frequently, but are not

archived. Being able to summarize them can improve routing efficiency.

120

Table 10. Arquivo.pt Access Logs Summary

Feature Value

Number of files (1 file per day) 2,220

Total size 461G

Total size (GZipped) 37G

Total lines (requests) 1,647,573,303

Logs start date 2013-12-02

Logs end date 2019-12-31

Missing date (filled with an empty file) 2016-09-08

Memento support start date 2016-06-03

Log configuration changed (a field added) 2019-09-17

Major replay system upgrade (fixed many issues) 2019-11-18

TimeMap endpoint changed (/timemap/*/ → /timemap/link/) 2019-11-18

7.3.1 ACCESS LOGS DATASET

With the generous support from Arquivo.pt, we have access to over six years of their

web archives’ access logs. Table 10 summarizes the access logs data we acquired. These

log files contain about 1.6 billion records, but not all of these records are Memento related.

Memento support was added to Arquivo.pt in June 2016. To analyze these access logs we

created an access log parser with unique features for web archive access logs (as described

in Section 5.5 of Chapter 5).

7.3.2 ACCESS PATTERNS

Figure 50 illustrates daily and monthly access patterns of Arquivo.pt. There is a sig-

nificant increase in traffic for last few months of a 2017 and for the most part of 2018.

On further investigation on user-agents and status code distribution, we found that this

increase in traffic was primarily from Googlebot and a small portion of it was coming from

YandexBot. Together, these two bots were responsible for over 80% of the traffic.

On November 23, 2018, Arquivo.pt updated their robots.txt file to exclude all the

bots from accessing their resources under “/wayback” path under which their archival replay

operates. In Figure 51 we illustrate two versions of their robots.txt from the same day,

on which the latter shows corresponding change made to the file. The timing of this change

Arquivo.pt

121

(a) Daily Arquivo.pt Access Log Records

(b) Monthly Arquivo.pt Access Log Records

Fig. 50. Access Patterns in Six Years of Daily Log Files of Arquivo.pt

corresponds to the drop in traffic coming from search engine bots.

Furthermore, we noticed an increased bot activity in 2019 that attempt to access Ar-

quivo.pt’s robots.txt file many times every second. These requests are coming from many

122

1 $ curl https://web.archive.org/web/20181123104043id_/https://arquivo.pt/robots.txt

2 User-agent: Arquivo-web-crawler

3 Disallow: /wayback

4

5 User-agent: *
6 Disallow: /nutchwax/search

7 Disallow: /search

8

9 $ curl https://web.archive.org/web/20181123125853id_/https://arquivo.pt/robots.txt

10 User-agent: Arquivo-web-crawler

11 Disallow: /wayback

12 Disallow: /noFrame/replay

13

14 User-agent: *
15 Disallow: /wayback

16 Disallow: /noFrame/replay

17 Disallow: /nutchwax/search

18 Disallow: /search

Fig. 51. Arquivo.pt Excluded Bots from Accessing Its Archival Replay on November 23,

2018

different locations, and some of those hosts belong to Google. They all have the same re-

quest signature (i.e., the same request URI, user-agent, and referrer). While we do not fully

know the purpose and origin of these requests yet, it does not concern us much because the

requests are not about mementos or their replay system, so they are out of our scope for

this work.

Table 11 shows most frequent URIs that were accessed at least 10,000 times from Ar-

quivo.pt over the period of six years. While their own domain fccn.pt and some other

globally popular websites are present in this list, the high frequency of some less obvious

resources suggest that they are perhaps coming from some browser add-ons or some pages

that some people/tools open often where these resources are embedded.

Table 12 describes how often resources from various TLDs were accessed from the archive

each year. The top five TLDs include “.pt”, “.com”, “.org”, “.net”, and “.eu”. When

preparing these statistics, we removed any TLDs that did not appear in all years as they

were insignificant, and often malformed entries. This table only shows statistics on requests

that are related to a memento (i.e., they have a URI-R in their path). Such requests can

be URI-Ms, URI-Gs, or URI-Ts. The grand total is a little over one billion requests, which

is two thirds of the total number of requests in their logs. Numbers under the 2018 column

are larger than other years due to increased activity from search engine bots in the year

2018. The “.au” TLD shows an interesting trend as it was not as popular as some of the

fccn.pt

123

Table 11. Most Frequently Accessed Resources from Arquivo.pt

URI Count

fccn.pt/ 102,953

google.com/ 44,673

youtube.com/ 29,418

facebook.com/ 16,778

connect.facebook.net/en_us/sdk.js 16,462

discovery.dundee.ac.uk/admin/.../editor/contributiontojournaleditor.xhtml 14.608

tripadvisor.com.tr/cookiepingback?early=true 13,556

publico.pt/ 13,022

lamonitor.com/ 11,901

static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943b.js 11,781

static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943a.js 11,041

youtube.com/watch 10,563

other TLDs below it, but search engine bots seemed more interested in it in the year 2018,

which made it go significantly up in the table. This suggests the need for periodic updates

of archival voids profiles as the demand of certain sections of the web changes over time.

Considering TimeMaps, being one the most accessed resources by Memento aggregators,

we decided to see what other user-agents are interested in them. There were about 42

million TimeMap requests in their logs. We found that LANL’s TimeTravel Service is the

largest source of traffic to Arquivo.pt’s TimeMap endpoint. The first few months after

Arquivo.pt added Memento support LANL’s aggregator was making a significant number of

requests, but it slowed down after a few months. For the first few months LANL was using

an old Memento aggregator written in Java, which was later replaced by a new code that

utilizes a classifier and an improved caching stack. The increased traffic during the first

few months was likely caused by the cache front-loading and data collection for training

the classifier. The second source of traffic was our own MemGator instance, running at

Old Dominion University. There is a spike in July 2018, from our service, because someone

used our service to access TimeMaps of a long list of URIs, which changed our regular

usage pattern significantly. OldWeb.today uses our MemGator tool on its own servers to

reconstruct Mementos in old browsers, which was another significant source of traffic to

TimeMaps. Other sources include a variety of user-agents, often pointing to cURL, HTTP

libraries in different languages, or research projects. Two notable user-agents among them

which caused increased traffic on certain months pointed to an in-house script of Arquivo.pt

fccn.pt/
google.com/
youtube.com/
facebook.com/
connect.facebook.net/en_us/sdk.js
discovery.dundee.ac.uk/admin/.../editor/contributiontojournaleditor.xhtml
tripadvisor.com.tr/cookiepingback?early=true
publico.pt/
lamonitor.com/
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943b.js
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943a.js
youtube.com/watch

124

Table 12. Yearly Access Frequency of Top TLDs in Arquivo.pt

TLD 2014 2015 2016 2017 2018 2019 Total

.pt 1,769,211 5,638,317 42,105,411 139,685,874 455,617,209 75,585,184 720,401,206

.com 188,937 1,041,797 12,113,651 84,960,808 122,007,623 26,912,173 247,224,989

.org 14,594 76,424 1,106,144 5,383,964 35,025,928 2,411,604 44,018,658

.net 17,035 74,222 167,770 7,421,125 18,903,068 2,938,864 29,522,084

.eu 1,089 19,539 388,764 2,727,154 20,129,910 1,346,343 24,612,799

.au 10 189 815 30,275 4,147,213 92,882 4,271,384

.gov 172 3,258 16,502 485,699 1,930,423 479,466 2,915,520

.uk 5,061 3,920 14,400 391,839 1,364,946 343,796 2,123,962

.edu 627 5,945 16,230 192,558 1,385,982 291,992 1,893,334

.br 5,901 39,667 329,656 132,944 1,030,141 266,208 1,804,517

.ru 442 637 2,666 113,716 1,179,413 95,298 1,392,172

.de 564 2,613 22,047 143,661 737,228 444,187 1,350,300

.io 9 1,501 24,598 46,006 1,150,983 79,497 1,302,594

.pl 2 743 5,787 61,107 1,071,524 116,270 1,255,433

.int 160 894 2,617 97,603 731,551 204,840 1,037,665

.fr 149 3,009 19,283 142,771 644,848 195,730 1,005,790

OTHERS 34,717 125,950 171,235 721,084 3,335,357 1,441,533 5,829,876

ALL 2,038,680 7,038,625 56,507,576 242,738,188 670,393,347 113,245,867 1,091,962,283

(which we believe they use for periodic service quality/health check) and a MediaWiki bot,

called WaybackMedic [79], that fixes broken links.

7.3.3 SOFT-404 TIMEMAPS

To build an archival voids profile from access logs, it is important to isolate records that

have never been “200 OK”. When we tried to see the distribution of TimeMap responses

over different status codes, we found an insignificant number of “404s”, except in the last

two months. This was counter intuitive because our MemGator logs suggest that in more

than 96% requests Arquivo.pt returns no mementos in its TimeMap as shown in Table 20

(Chapter 8). After further investigation, we found that their old replay system had bugs,

causing it to return Soft-404 TimeMaps (as described in Section 2.1.4 of Chapter 2), until

it was upgraded on November 18, 2019.

Now we had two choices, either profile only the last six weeks of data or somehow identify

Soft-404 responses. Logs do not contain the response body, so we could not do much about

125

Fig. 52. Monthly TimeMap Access of Arquivo.pt from Various Sources

classifying responses. However, these access logs contain number bytes they returned in

each response. We could think of two possibilities of what their TimeMap response might

have been for resources they do not have any memento of: 1) there could be a plain message

saying something like “the resource is not found”, or 2) the response included the URI-R one

or more times along with some other template body. In the first case, number of bytes will

be exactly the same for all the failed TimeMap requests, but we did not see a single byte size

over-represented. In the second case, number of bytes in response will be a linear function

of the size of the request URI as shown in Equation 11. In this equation K represents the

number of times URI-R appeared in the response and C is the constant size of the template

body.

Response Bytes = K ∗ URI-R Size + C (11)

To investigate our hypothesis we checked for TimeMap requests in December 2019 access

logs (when the Soft-404 issue was fixed) to find resources that are consistently returning

126

Table 13. Soft-404 TimeMap Response Bytes

Timestamp Request Bytes

1546885931 /wayback/timemap/*/http://matkelly.com/wail 222

1546885968 /wayback/timemap/*/http://matkelly.com/wail/ 225

1547238957 /wayback/timemap/*/http://matkelly.com/wail 222

1547239466 /wayback/timemap/*/http://matkelly.com/wail 222

1547239877 /wayback/timemap/*/http://matkelly.com/wail 222

1 <https://arquivo.pt/wayback/timemap/*/http://matkelly.com/wail>;

rel="self"; type="application/link-format",→֒

2 <https://arquivo.pt/wayback/http://matkelly.com/wail>; rel="timegate",

3 <http://matkelly.com/wail>; rel="original"

Fig. 53. A Potential Soft-404 TimeMap

404s and checked responses corresponding to them in the past logs. Table 13 shows Soft-

404 records of one such resource. In this table all the rows have a consistent number of bytes

(222) except the second one (225). However, the second row also has a trailing forward slash

in its URI-R, which is missing from the other rows. This was a clear indication that the

URI-R was repeated three times in the Soft-404 response body, which increased the byte

size of the response by 3 when only one extra character was added to the URI-R. Now,

we knew the value of K = 3 and the size of URI-R; using Equation 11 we can compute

C = 150. With this insight, we tried it on some other requests and found it working, which

gave us more confidence.

In Figure 53 we tried to reconstruct what the Soft-404 response might have been, which

matches our calculated numbers and looks like a reasonable representation. From this

response we think we know the nature of the bug in their code. They, were perhaps not

checking for the existence of any mementos for a given URI-R before generating the response.

Instead they were creating the obvious initial lines of the response and then looping over all

the mementos, which would loop zero times if there were no mementos and only the initial

lines will be returned.

With this ability to identify Soft-404s reliably, we went through all the TimeMap requests

127

Table 14. Status Code Distribution of TimeMaps in Arquivo.pt Access Logs

Status Requests

200 2,614,615

301 2,455

302 224,535

400 98,267

404 38,615,290

429 42,720

500 134,858

503 1,015

TOTAL 41,733,755

and fixed the status code (“404” for “200”) in a copy of logs. We used these amended logs

for further analysis.

7.3.4 STATUS CODE CHANGES OVER TIME

To ensure that we only profile URIs that never returned a successful response (after

amending Soft-404s), we decided to investigate how often URIs change from one status code

to the other. In the case of a URI-M there are many status codes possible, both due to

observed status codes from the origin and the state of the replay server. However, in the

case of a TimeMap we anticipated a limited number of different status codes. Actual status

code distribution of TimeMaps is shown in Table 14. If there are no mementos for the given

URI-R, the status should be 404, otherwise 200. In rare cases we expect 5xx status codes,

in case the server is facing any issues. However, the last two months of data had many

302 responses as well. On further investigation we found that when Arquivo.pt upgraded

their replay system, they also changed some of their service endpoints (in this case, their

TimeMap changed from /timemap/*/ to /timemap/link/), for which they put redirects in

place. In addition to this, they also had a few 301 responses for certain TimeMaps where the

URI-R contained Facebook’s tracking token in the query parameter, which they redirected

to a URI-R without the tracking token. After knowing this, we removed all the redirect

responses because they were not adding anything to our assessment of the popularity or

unavailability of resources.

128

After this cleanup we sorted entries primarily on their canonical representation and a

secondary sort on their time, so that we can know how each URI changed from one status

to the other. We were expecting that a few resources that were 404 before would become

200 when they are eventually crawled and are made available and a few resources might go

the other way if they are taken down for some reason. Other status code transformations

were expected to be less likely (e.g., the server returning 5xx response occasionally).

However, when we analyzed our data, we found that there were many fluctuations

between 200 and 404, where some resources changed their status codes back and forth

hundreds of times. It turned out that it was caused by lack of proper URI normaliza-

tion/canonicalization (see Section 2.6.1 of Chapter 2). For example, when a TimeMap was

requested for apple.com they returned 200, but for Apple.com or APPLE.COM they returned

404 instead. We thought about a few approaches to amend this effect as well, but that could

change our result in ways that can be harmful, so we decided to exclude all the requests that

include any upper case letter in the hostname portion of their URI-R and started over. After

excluding entries with any upper case letter in their hostname the number of fluctuations

went down, but there were still many entries with hundreds of fluctuations back and forth

between 200 and 404. We concluded that lack of URI canonicalization was not limited to

just hostnames in Arquivo.pt, but perhaps they had little to no canonicalization in place.

After that we decided to work with the dataset without any canonicalization or filtering,

considering each URI-R in the logs as an independent resource. This means we will have

many non-canonical URIs that will always report 404 while their corresponding canonical

version may or may not behave the same way. This may increase the size of our void profiles,

but we expect the prevalence of many unique non-canonical URI-Rs to be small, which may

fall below the threshold to be included.

Table 15 summarizes status code fluctuations of URI-Rs in the access logs of Arquivo.pt.

There are 15,502,081 unique non-canonical URIs that have always returned the 404 status

code and 680,328 URIs have always returned the 200 status code. We believe that the

number of URIs returning 200 status code would have been a little larger and 404 status

code a little smaller if Arquivo.pt were to exercise URI canonicalization from the beginning.

There were 36,447 URIs that returned 404 status code in the past, but later started to

return 200 while there were only 685 URIs that gone from 200 to 404. These numbers

confirm our intuition about more URIs becoming available over time while a few of the

existing resources disappearing (for example, blocked or taken down after reports or policy

reviews). This table does not reflect how many times and for how long certain status codes

apple.com
Apple.com
APPLE.COM

129

Table 15. Status Code Fluctuations of URI-Rs in Arquivo.pt Access Logs

Status Codes Over Time URI-Rs

404 15,502,081

200 680,328

404,200 36,447

200,404 685

200,404,200 648

404,200,404 48

404,200,404,200 43

200,404,200,404,200++ 40

remained associated with a given URI.

While analyzing data for status code fluctuations without any URI canonicalization

we found that one specific URI was still exhibiting about 150 fluctuations back and forth

between 200 and 404 status codes. On further investigation we found that it was http:

//www.fccn.pt/ (this domain belongs to Arquivo.pt) which appeared a total of 102,799

times in the access log and 88,807 times with status codes 200 or 404. This URI returned

200 status code only 105 times while 404 status code 88,702 times. We further investigated

the status code fluctuation pattern for this URI and found that it would return 404 status

code hundreds of times in a row with occasional 200 status code every once in a while.

It turned out that the server always returned the 404 status code for requests coming

from a specific IP address which has the “Mozilla/5.0+(compatible; UptimeRobot/2.0;

http://www.uptimerobot.com/)” user-agent, but the 200 status code to everyone else (such

as MemGator or the TimeTravel Service). From the user-agent string we can tell it is a server

health check service which periodically polls specific resources, but we do not know why the

server behaves differently for this user-agent.

7.3.5 ROUTING ACCURACY

After we identified most frequently accessed resources that have never returned a suc-

cessful response for any of their canonical or non-canonical URI-Rs, we created archival void

profiles with these. Table 16 shows the repetition breakdown of the number of URIs that

have always returned the 404 status code. There are over 13 million canonicalized URIs that

http://www.fccn.pt/
http://www.fccn.pt/

130

Table 16. 404-Only URI-R Repetitions in Arquivo.pt Access Logs and False Positive Re-

duction Due to the Archival Void Profile

Repetitions URI-Rs MemGator Requests Saving %

1s 13,673,599 64.67

10s 698,959 17.00

100s 2,319 8.42

1,000s 99 2.85

10,000s 2 0.00

have always returned the 404 status code, but each of them appeared only 1–9 times while

about 0.7 million 404 URIs appeared 10–99 times. The long-tail of low frequency URIs are

not suitable for profiling voids as they will increase the size of the profile disproportionately.

For example, going from the request saving of 8.42% to 64.67% it would require an increase

of about four orders of magnitude in the number of URIs in a voids profile. An attempt to

use less detailed profiling policies to reduce the size of the profile would introduce false neg-

atives. However, the last few rows of the Table 16 represent only a few URIs that have been

requested thousands or tens of thousands of times and have always returned the 404 status

code. Creating a void profile with these would cut the false positives down significantly.

There are over seven million entries in the Arquivo.pt access logs that originated from

the MemGator server running at ODU. We analyzed the percentage of requests that could

have been avoided if archival voids profiles of various frequencies were made available based

on the access log alone. Table 16 shows that about 2.85% false positive requests could

have been avoided by only profiling URIs that have appeared thousands of times and have

always returned the 404 status code. This saving could have been around 8.42% if we

included URIs that were repeated more than hundreds of times. We have reported lower

bounds to avoid any false negatives while we believe that the numbers would have been even

better if Arquivo.pt had a proper URI canonicalization in place from the beginning.

7.4 WHO SHOULD PROFILE ARCHIVAL VOIDS?

It is very important to keep the profile of archival voids fresh, otherwise false negatives

will increase very quickly. Unlike archival holdings profiles, aggressively reducing the URI

key size can be harmful in archival voids profiles as users will fail to discover many resources

131

that are present in a web archive.

An archival voids profile is expected to complement an archival holdings profile, so the

entries about what is missing can be very specific. However, it is possible to use an archival

voids profile independently, and is ideal for large web archives such as the Internet Archive.

If an archive is going to return good results for most of the requests, then it will be wasteful

to profile its holdings for the sake of routing. Knowing what it does not contain or is not

willing to serve is a more compact way to improve routing accuracy for such web archives.

In 2015, a Twitter bot called ICanHazMemento was launched which polls Twitter pe-

riodically to fetch new Tweets that contain the hashtag “#ICanHazMemento” and a URI in

their conversation chain and replies to them with a URI-M, pointing to a memento of the

URI in a web archive [197]. To find a suitable URI-M, it would perform a lookup in LANL’s

TimeTravel service and link back to it. If it does not find any mementos for the URI-R, it

attempts to save the resource in one or more archives and then tweet about them. How-

ever, the TimeTravel service had caching in place, so it would fail to recognize that a new

memento was created for the resource it returned “404 Not Found” response and cached

it a moment ago. Consequently, users following the link posted as a reply to their tweets

will fail to access a memento that was created. The issue was noticed and was fixed soon

after by configuring the TimeTravel service to not cache “404” responses. An archival voids

profile generated by a third party can have a similar issue.

Because of the potential danger of false negatives due to stale archival voids profiles,

it is recommended that an archival voids profile is generated by an entity that is close

to the source of truth (e.g., a web archive itself). When third parties (e.g., a Memento

aggregator) generate such profiles, they should add very specific entries and should update

the profile frequently. Also, they should only add resources in such profiles when they have

gained enough confidence that the resource is indeed missing and has very little chance to

be available anytime soon (e.g., due to successive failure responses of frequently queried

resources).

7.5 RECOMMENDATIONS

Based on our assessment, we have some recommendations for those generating such

profiles (most likely, web archives themselves or Memento aggregators):

• Keep archival voids profile separate as a paginated resource so that it can be up-

dated and consumed independently and more frequently (which is also a more logical

132

approach because the data source for the holdings profile would primarily be CDX

indexes while voids profiles will be generated using access logs and collection policies).

• Be more specific in including URIs in the voids profile and include shorter URI keys

only when the confidence is very high or a domain or TLD is blocked by the collection

policy (e.g., pornographic TLD “.xxx”).

• Update frequently from the list of take down requests from domain owners or govern-

ments.

• Include only resources that are high in demand, but missing or prohibited, because

listing items that no one is requesting for is not going to benefit in saving unnecessary

traffic while exposing more information in public and making the profile big.

On the utilization side proper order of evaluation will be important when there are

many competing URI keys for the lookup URI in both the archival holdings profile as well

as archival voids profile with different host/path depths.

7.6 CHAPTER SUMMARY

In this chapter we defined and discussed Archival Voids and established a means to

represent portions of URI spaces that are not present in web archives. With the help of

examples we explained the purpose of creating archival void profiles and illustrated how it

works in conjunction with the archival holdings profile in a hierarchical manner to describe

holdings and voids in more specific portions of the URI spaces. We discussed various sources

of truth that can be used to create archival voids profiles. For evaluation we used access logs

from Arquivo.pt to create an archival voids profile and analyzed it against our MemGator

access logs. In the process we described access patterns in Arquivo.pt and surfaced various

corner cases and issues that were present in it. We discussed prevalent Soft-404 TimeMaps in

the access logs for many years and techniques we used to remedy that in order to make a more

meaningful analysis of the dataset. We discussed the distribution of HTTP response status

codes in the access logs and reported how these status codes changed over time for various

URIs. We evaluated the routing accuracy against various archival voids profiles created from

these access logs and found that we could have avoided more than 8% of the false positives

(on top of the accuracy we got from archival holdings profile as discussed in Chapter 6)

if Arquivo.pt were to provide an archival voids profile based on URIs that were requested

133

hundreds of times and never returned a success response. Finally, we discussed who should

create archival voids profile and provided some guidelines based on our understanding.

134

CHAPTER 8

SERIALIZATION AND DISSEMINATION

In this chapter we describe our extended form of SURT that we use as URI-Keys in our flex-

ible archive profiles. We also describe a Unified Key Value Store file format that we evolved

from CDXJ. We utilize these for archive profile serialization and call it a MementoMap [32].

Finally, we evaluate various aspects of MementoMaps generated with different levels of de-

tails. This chapter addresses our second research question, “RQ2: How to build an archive

profile that will best summarize an archive’s holdings/voids and allow for dissemination and

exchange? ”

8.1 UNIFIED KEY VALUE STORE (UKVS)

Unified Key Value Store (UKVS) [14] is an evolving file format proposal that is a con-

tribution of this MementoMap work. It is an evolution of the CDXJ format that we earlier

proposed to be used by Archive Profiles [29]. This format utilizes extended SURT with

wildcard support and improves various other aspects to simplify it and eliminate some limi-

tations of our prior proposal (such as not being able to express URIs that are absent from an

archive or lack of support to merge two profiles generated with different profiling policies).

We generalized the format to be more inclusive and flexible after we realized its utility in

many web archiving related use cases (such as indexing, replay access control list (ACL),

fixity blocks [47], and extended TimeMaps) and many other places such as extended server

logging.

Suppose we want to store records of people in which their last and first names will make

the combined lookup key and their degree and profession along with an arbitrary number

Table 17. An Example of Sparse Tabular Data

LName FName Degree Profession Twitter DoB Award1 Award2

Doe Jane PhD Professor @jdoe - - -

Doe John MS Consultant - - - -

Roe Richard PhD Scientist - May 7, 1920 Fiction 42 Mad Scientist

Shmoe Joe - Lab Asst. - - - -

135

1 !fields {keys: ["LName", "FName"], values: ["Degree", "Profession"]}

2 Doe Jane PhD Professor {Twitter: "@jdoe"}

3 Doe John Masters Consultant

4 Roe Richard PhD Scientist {DoB: "May 7, 1920", Awards: ["Fiction 42", "Mad Scientist"]}

5 Shmoe Joe - "Lab Asst."

Fig. 54. An Example of Structured Data With Mandatory and Optional Fields

of other optional attributes will be the value stored in each record. We can use a fixed

column tabular data format for this (as shown in Table 17), but it will have two major

disadvantages: 1) fields with sparse values are wasteful and 2) adding a new field (e.g.,

“Award3”) will affect all existing records. Additionally, the tabular formats like CSV/TSV

have no information about what fields can be used as lookup keys. Other structured data

formats like JSON, XML, or YAML can be more expressive, but they are not friendly to

Unix text processing tools.

Our proposed UKVS data format solves these issues as illustrated in Figure 54. UKVS

is a textual file format for storing data that has one or more key fields for lookup and

corresponding value fields. UKVS also allows an optional object to annotate, enrich, or

subdivide each record. It uses Object Resource Stream (ORS) [25] syntax with some well-

defined fields and structure. UKVS format has the simplicity of popular file formats such

as Comma Separated Values (CSV) while being flexible like JavaScript Object Notation

(JSON). This makes it suitable for streaming and simple to process using traditional text

processing tools, irrespective of the number of records in the file. If the file is sorted, this

formats enables quick lookup using binary search, even in large files, which makes it suitable

for indexing records.

UKVS consists of some metadata records in the header followed by the body containing

data records with one line per record. The format of UKVS data record entries is illustrated

in Figure 55. The names of the fields of the data records that belong to keys and values are

advertised in the metadata headers in their respective order as shown in Figure 54 Line 1.

The “!fields” metadata here describes the structure of the data records where the first two

fields “LName” and “FName” are primary and secondary lookup keys respectively. The third

and fourth fields represent corresponding values as “Degree” and “Profession” respectively.

These four fields are mandatory, so their missing or unknown values must be filled with a

placeholder (as illustrated in Figure 54 Line 5 with a “-” sign). Fields other than Optional

Single Line JSON (OSLJ) are separated by whitespace and multi-token values are quoted in

136

1 <key fields...> <value fields...> {<optional single line JSON block>}

Fig. 55. UKVS Generic Record Format

double quotes. While multiple consecutive whitespace characters are allowed for readability,

they should be avoided to save bytes as per the application needs. This format is similar to

CSV/TSV files (or other tabular data formats), but the addition of the OSLJ block allows

each record to have arbitrary data, unique to each record, in a structured way.

8.2 MEMENTOMAP FILE FORMAT

MementoMap is our proposed format to serialize archive profiles in a flexible and concise

manner. It uses UKVS data format and adds a semantic layer on top of it by defining

various keywords and fields. It is inspired by the simplicity of sitemap and robots.txt,

but different from them in some aspects:

• Unlike sitemap and robots.txt, MementoMap of an archive can be published by third

parties, not just the archives

• Unlike sitemap, MementoMap may use wildcards in URIs (similar to robots.txt) to

reduce the number of records significantly

• Unlike sitemap, MementoMap can have flat pagination (generally more suitable for

sorted resources) where page can link to next, previous, first, and last pages instead

of a nested index of MementoMap pages

• Unlike robots.txt, MementoMap is safe to sort, split, and merge

• MementoMap provides means of variations in organizing various fields to optimize for

space and application-specif usability while keeping the essence of records the same

• MementoMap enables means to limit the size of the file or the number of records and

dynamically adapt to it

The example shown in Figure 56 has two parts, first five lines are headers and the last

five lines are data records. The !context entry in the header section describes where to look

for definitions and descriptions of terms used in the document. The !id entry points to the

137

1 !context ["http://oduwsdl.github.io/contexts/ukvs"]

2 !id {uri: "http://archive.example.org/"}

3 !fields {keys: ["surt"], values: ["frequency"]}

4 !meta {type: "MementoMap", name: "A Test Web Archive", year: 1996}

5 !meta {updated_at: "2018-09-03T13:27:52Z"}

6 * 54321

7 com,* 10000

8 com,twitter)/ 100

9 com,twitter)/* 250

10 uk,co,bbc)/images/* 300

Fig. 56. A Basic MementoMap Example File

web archive the MementoMap is about. The !fields entry suggests that in the data records

there are only two mandatory fields of which the first one is a SURT (a transformation of

URIs that we describe below) of the lookup URI that is used as the key and the second field

holds the frequency of archiving for a given SURT key. The first data row * 54321 suggests

that there are a total of 54321 mementos of all the URIs in the archive while com,* 10000

suggests that there are 10000 mementos that have .com TLD in their URIs. The next two

entries suggest that the root page of twitter.com has 100 mementos, but all the URIs from

twitter.com collectively have a total of 250 mementos. Finally, there are 300 mementos of

resources from bbc.co.uk who’s path begins with /images/.

8.2.1 THE SURT FIELD

We described basic SURT in Chapter 2 (Section 2.6.2). Figure 57a illustrates a sample

of sorted SURTs and highlights different segments. We have extended SURTs to support

wildcard to allow grouping of URI Keys with the same prefix and roll them up into a single

key. A visual representation of these SURTs is illustrated in Figure 57b in the form of a

tree that segregates layers of Scheme, Host, Path, and Query. It further annotates various

depths of Host and Path segments as H0, H1, H2. . . and P0, P1, P2. . . that will be

useful in understanding some terminologies used later. SURTs also allow credentials and

port numbers, but we omitted them from the illustration for brevity. It is worth noting

that the scheme portion is common in all HTTP/HTTPS URIs and has no informational

value, hence the “https://(” prefix is often omitted. SURT are generally reversible, but in

the MementoMap context (and anywhere where they are used as index keys) we can add

138

support for partial SURTs with the help of wildcards to represent a collection of URIs.

8.2.2 THE FREQUENCY FIELD

The frequency field is a concise way to represent the archival activity of a URI or a

set of URIs (represented by a SURT with wildcard). Figure 58 illustrates the grammar for

parsing the frequency field.

In its simple form it represents the number of mementos (or URI-M counts) of a URI

or all the URIs in a set. However, it also allows to express number of unique URIs (URI-R

counts) along with their URI-M counts for a given set of URIs using a wildcard as illustrated

in Figure 59.

The format of the frequency field here is [<urim-count>]/[<urir-count>]. The first

record in this example suggests that there are 300 mementos of all the URIs from apple.com.

The second record suggests that there are a total of 100 unique URI-Rs (original URIs)

from cnn.com that are archived a total of 400 times, that means on an average each URI

is archived four times. In the next entry, 200/ suggests that there are 200 URI-Ms from

example.com, but the number of unique URI-Rs is unknown. This entry is equivalent to

saying 200 as the separator sign (i.e., forward slash /) is optional when only the URI-M

count is known. The decision to make the separator optional here is to save bytes in the

case that is goint to be potentially more common as counting mementos (URI-Ms) and

updating URI-M counts are generally easier than counting unique URI-Rs and updating

the URI-R count later. In the next entry, /50 suggests that the number of unique URI-Rs

from facebook.com that are archived is 50, but how many times are they archived (URI-M

count) in unknown. The separator in this case is mandatory to avoid ambiguity. When

neither URI-M nor URI-R counts are known, an explicit / is mandatory (as illustrated for

google.com) to be used as the placeholder and to signify that none of the counts are known.

An explicit value of zero URI-Ms (as illustrated for twitter.com) gives a means to

express absence of resources matching the key, which can be useful for big archives like

the Internet Archive, as their positive profile (i.e., the profile that lists resources that are

present) might be huge, so they can instead advertise sets of URIs that they do not have

(or can not serve) any mementos for, but get a lot of replay requests. These entries with

zeros are how we serialize archival voids as discussed in Chapter 7.

An explicit zero memento count in a MementoMap is also useful to express holdings of a

bigger set, but lack of holdings in some of its subsets as illustrated in Figure 60. This example

139

http://(com,cnn)/*
http://(com,cnn,cdn)/img/logos/logo.png?h=20&w=30
http://(com,nytimes)/2018/10/*
http://(com,nytimes)/2018/11/*
http://(edu,odu,cs,ws-dl)/
http://(org,arxiv)/*
http://(org,arxiv)/pdf/*
http://(uk,bl,*
http://(uk,co,bbc)/news/world?lang=ar
http://(uk,co,bbc)/news/world?lang=en
http://(uk,gov,*)/

(a) A sample list of sorted SURTs. Different colors signify Scheme, Host, Path, and Query segments. The

“https://(” prefix is common in all SURTs, hence removed in practice.

(b) A visual representation of SURTs as a tree. Different colored regions signify Scheme, Host, Path,

and Query segments. Each node of the tree contains a token and each edge denotes the separator of the

corresponding segment. Dotted lines indicate transition from one segment to the next. Dotted triangles

with a wildcard character “*” denote a sub-tree. Trailing slashes are removed from this representation.

Labels on the right hand side (i.e., S, H0–Hn, P0–Pn, and Q) denote corresponding depth in each segment.

Fig. 57. Illustration of SURTs With Wildcards

140

1 zero = "0" ;

2 nonzero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

3 digit = zero | nonzero ;

4 number = nonzero, { digit } ;

5 approx = "~" | "+" | "-" ;

6 count = zero | number, [approx] ;

7 frequency = count | [count], "/", [count] ;

Fig. 58. Extended Backus–Naur Form (EBNF) Grammar for the frequency Field.

1 !fields {keys: ["surt"], values: ["frequency"]}

2 com,apple)/* 300

3 com,cnn)/* 400/100

4 com,example)/* 200/

5 com,facebook)/* /50

6 com,google)/* /

7 com,twitter)/* 0

Fig. 59. Variations in frequency Field Value of a MementoMap

1 !fields {keys: ["surt"], values: ["frequency"]}

2 com,cnn)/* 400

3 com,cnn)/profiles/* 0

4 com,cnn)/world 0

Fig. 60. Zero frequency for a More Specific URI Subtree in a MementoMap

1 !fields {keys: ["surt"], values: ["frequency"]}

2 com,yahoo)/* 0/20

Fig. 61. Zero Mementos of Non-Zero URI-Rs in a MementoMap

141

1 !fields {keys: ["surt"], values: ["frequency"]}

2 com,apple)/* 300

3 com,cnn)/* 400+/100

4 com,example)/* 200-/150~

5 com,facebook)/* /50+

Fig. 62. Non-Precise Frequencies in a MementoMap

suggests that there are a total of 400 URI-Ms for example.com, but zero mementos for URI-

Rs that start with cnn.com/profiles/ and zero mementos for the URI-R cnn.com/world.

The last two entries here are more specific subsets that override a more general record set

by the first entry.

There could be another case where a zero URI-M count is reported, but has a non-zero

URI-R count as shown in Figure 61. This can be useful to report the number of URI-Rs

that are blocked for legal reasons, in an embargo period, or added in the seed list or frontier

queue of the crawler, but not yet ready to be replayed.

Counting mementos and unique original URIs and keeping track of these numbers as

the archive grows is a difficult task. For third-party observers it is often impractical to

estimate exact values of these counts. Additionally, when counting is performed on subsets

of the archival collection and merged, it is difficult to maintain the accuracy of these counts.

Luckily, in many use cases a rough estimate might be good enough while avoiding the cost

of maintaining exact values. However, it is important to acknowledge whether a frequency

value is exact or a rough estimate. This can be expressed using following symbol suffixes to

either of the URI-M or URI-R counts (or both):

• No suffix for an exact value

• + suffix for a lower boundary

• - suffix for an upper boundary

• ˜ suffix for an approximate value

These looseness symbols can optionally be used with any numeric values of URI-M and

URI-R counts independently to form different combinations. The example in Figure 62

illustrates that there are:

142

1 !fields {keys: ["surt"], values: ["frequency"]}

2 com,twitter)/* 100/35 {datetime: {"2014": "20~/10", "2015": "60+/30+"}}

Fig. 63. Optional Memento Distribution Over Time in a MementoMap

1 !fields {keys: ["surt", "datetime"], values: ["frequency"]}

2 com,twitter)/* : 100/35

3 com,twitter)/* 2014 20~/10

4 com,twitter)/* 2015 60+/30+

Fig. 64. Mandatory Memento Distribution Over Time in a MementoMap

• exactly 300 mementos for apple.com URI-Rs,

• at least 400 mementos for exactly 100 unique cnn.com URI-Rs,

• at most 200 mementos for approximately 150 unique example.com URI-Rs, and

• an unknown number of mementos for at least 50 unique facebook.com URI-Rs

8.2.3 THE DATETIME FIELD

So far, we have been using surt as the only lookup key with no information about how

the archiving activity of a URI-R or a set of URI-Rs is distributed over time. Knowing

about the temporal activity could be very helpful for Memento routing (and many other

applications) for resources that were actively archived during a short period of time and

hardly had any archival activity for the rest of the time. To express the distribution of

archiving activity over time the Optional Single Line JSON (OSLJ) block can be utilized as

illustrated in Figure 63.

This example suggests that there are a total of exactly 100 mementos of exactly 35

unique URI-Rs from twitter.com. The OSLJ block further decomposes this frequency

value and suggests that in the year 2014 exactly 10 unique URI-Rs were archived about 20

times and more than 30 unique URI-Rs were archived more than 60 times in 2015.

Alternatively, this information can be expressed with a different organization as illus-

trated in Figure 64. We have moved the information buried inside of the OSLJ into a

143

1 !fields {keys: ["surt", "datetime"], values: ["frequency"]}

2 com,apple)/ 20160213052637 1

3 com,apple)/* 20160213 20

4 com,apple)/* 2010:2012 100

5 com,apple)/* :2009 50

6 com,apple)/* 201603: 120

7 com,apple)/* : 300

Fig. 65. Various Datetime Range Examples in a MementoMap

secondary key field as the first two columns ["surt", "datetime"] are now lookup keys,

making it easier to process using traditional text processing tools. We have also avoided

unnecessary bytes that were only present to format a valid JSON block and moved the name

of the field in the UKVS headers instead of repeating it with each record. However, we have

introduced more lines that repeat the value of the surt field. Also, if not all entries have

frequency values decomposed over time, then the corresponding column will have unneces-

sary placeholder (a “:” symbol in this case). So, there is clearly a trade-off here that can

be evaluated based on the nature of an archive and the application to optimize accordingly.

Potential values of the datetime field include valid substrings of the 14-digit date and

time format (YYYY[MM[DD[hh[mm[ss]]]]]) or a range composed of such substrings sepa-

rated by a colon “:” symbol. If the start or the end of the range is not given it is considered

the beginning of archiving and the current time respectively.

The example in Figure 65 (intentionally unsorted for gradual explanation) illustrates

different scenarios datetime field can be specified. The first entry suggests that the root

page of the apple.com is archive exactly once at the exact time 20160213052637 (i.e.,

2016-02-13T05:26:37Z). The second line suggests that URI-Rs from apple.com were archived

a total of 20 times on February 13, 2016 (i.e., their Memento-Datetime in 14-digit format has

a prefix of 20160213). The next entry of 2010:2012 suggests that there are 100 mementos

of apple.com URIs from year 2010 to 2012. The next line with :2009 suggests that there

are 50 mementos with datetime in 2009 and before. The entry with 201603: suggests that

there are a total of 120 mementos starting from March 2016 till now. Finally, the last line

suggests that there are an overall 300 mementos of apple.com URI-Rs.

144

8.2.4 OTHER FIELDS

A MementoMap may also contain frequency information decomposed over other useful

fields such as status, language, mime, etc. One or more of these fields can be included in the

OSLJ or as key fields (or a combination of both) as described the usage of the datetime field

above. Knowing the distribution of certain mementos over their status codes could help

reduce unnecessary traffic for resources that were captured numerous times, but resulted

largely in 5xx codes. Similarly, knowing about the number of redirects (i.e., recorded 3xx

responses) can give a better estimate of useful holdings of resources in an archive. The OSLJ

block is also open for application specific data or custom fields for specific human-friendly

notes.

8.3 MEMENTOMAP IMPLEMENTATION

We have a reference implementation described in Chapter 5 Section 5.6. It can generate

MementoMaps from CDX files or a list of URIs, compact them based on certain set of

parameters, and enable fast lookup in them.

8.3.1 MEMENTOMAP GENERATION

Generating a MementoMap begins by scanning CDX/CDXJ files, performing fulltext

search, filtering access logs, or any other means to identify what URIs an archive holds (or

does not hold). These URIs are then converted to SURTs (if not already) and their query

section is stripped off. We call these partial SURTs as HxPx URI Keys (which means a URI

Key that has all the host and path parts, but no query parameters). Previously, we found

that removing query parameters from these SURTs reduces the file size and the number of

unique URI Keys significantly without any significant loss in the lookup Accuracy [29]. We

then create a text file with its first column containing HxPx Keys and the second column as

their respective frequencies. The frequency column in its simplest form can be the count of

each HxPx Key. Finally, necessary metadata is added and the file is sorted as the baseline

MementoMap.

8.3.2 MEMENTOMAP COMPACTION

In order to make a less detailed MementoMap (which is desired for efficient dissemination

and long-lasting freshness at the cost of increased false positives), we pass a detailed Memen-

toMap through a compaction procedure which yields a summarized output that contains

145

1 func host_keys(surt)

2 s = surt.split(")")[0].split(",", MAXHOSTDEPTH)

3 return [s[:i].join(",") for i in 1..len(s)]

4

5 func path_keys(surt)

6 s = surt.split("?")[0].split("/", MAXPATHDEPTH)

7 return [s[:i].join("/") for i in 1..len(s)]

8

9 func compact(imap, omap, opts)

10 htrail = [None] * MAXHOSTDEPTH

11 ptrail = [None] * MAXPATHDEPTH

12 for line in imap

13 key, freq, *_ = line.split()

14 k = host_keys(key)

15 for i in range(len(k))

16 if htrail[i] == k[i] # Existing branch

17 htrail[i][1] += freq

18 else # New branch

19 for j in range(i, MAXHOSTDEPTH)

20 if rollup_threshold_reached

21 omap.seek(htrail[j][3]) # Move back

22 omap.write(htrail[j][:1].join(",* "))

23 reset_remaining_trail(ptrail, 0)

24 reset_remaining_trail(htrail, i)

25 if !htrail[i] # New tree node

26 htrail[i] = [k[i], freq, 0, omap.tell()]

27 htrail[i-1][2]++ # Incr parent's children

28 # Repeat similar logic for path segment

29 omap.write(line)

30 omap.truncate() # Clear any rollup residue

Fig. 66. MementoMap Compaction (and Generation) Procedure

fewer lookup keys by rolling sub-trees with many children nodes up and replacing them

with corresponding wildcard keys. Our compaction algorithm is illustrated with pseudo-

code in Figure 66. As opposed to an in-memory tree building (which will not scale), it is

a single-pass procedure with minimal memory requirements and does not need any special

hardware to process a MementoMap of any size. We leverage the fact that the input Me-

mentoMap is sorted, hence, we can easily detect at what depth of host or path segments

a branch differed from the previous line. We keep track of the most recent state of host

and path keys at each depth (up to MAXHOSTDEPTH and MAXPATHDEPTH), their corresponding

cumulative frequencies, how many children nodes each of them have seen so far, and the

byte position of the output file when these keys were seen the first time. Each time we

146

encounter a new branch at any depth, we check to see if a roll up action is applicable at

that depth or further down in the existing tree based on the most recent states and the

compaction parameters supplied. If so, we move the write pointer in the output file back

to the position where the corresponding key was observed first, then we reset the state of

all the deeper depths and update them with the current state. As a consequence of this

progressive processing, the trailing part of the output file is overwritten many times. The

input file does not have to be the baseline MementoMap, any MementoMap can be supplied

as input with fresh compaction parameters to attempt to further compact it. Our algorithm

is parallel processing-friendly if the input data is partitioned strategically (e.g., processing

each TLD ’s records on separate machines and combining all compacted output files). It is

worth noting that sub-trees of the path section are neither independent trees nor have a

single root node (as shown in Figure 57b), as a result, certain implementation details can

be more complex than a simple tree pruning algorithm.

8.3.3 LOOKUP IN A MEMENTOMAP

The algorithm for lookup in a MementoMap is illustrated with pseudo-code in Figure 67.

Given a URI, we first generate all possible lookup keys, in which all keys but the longest one

have a wildcard suffix (e.g., “Www.Example.COM/a/b?x=y&c=d” yields “com,example)/a/b”,

“com,example)/a/b/*”, “com,example)/a/*”, “com,example)/*”, and “com,*” as lookup

keys). We then perform a binary search in the MementoMap with lookup keys in decreasing

specificity until we find a match or all the keys are exhausted. In the case of a match, we

return the matched lookup key and corresponding frequency results.

8.4 MEMENTOMAP DISSEMINATION

For dissemination and discovery of MementoMaps we propose that web archives make

their MementoMap available at the well-known URI “/.well-known/mementomap” under

their domain names. Alternatively, a custom URI can be advertised using the “mementomap”

link relation (or “rel”) in an HTTP Link header or HTML <link> element (after this

link relation is registered in the IANA registry). Third parties hosting MementoMaps of

other archives can use the “anchor ” attribute of the Link header to advertise a different

context. Moreover, MementoMaps are self-descriptive as they contain sufficient metadata

in their headers to establish a relationship with their corresponding archives. MementoMaps

support pagination that can be discovered after retrieving the primary MementoMap from

a well-known URI or by any other means.

147

1 func lookp_keys(uri)

2 key = surtify(uri).split("?")[0].strip("/")

3 keys = [key]

4 while "," in key

5 keys.append(sub("(.+[,/]).+$", "\1*", key))

6 key = sub("(.+)[,/].+$", "\1", key)

7 return keys

8

9 func bin_search(mmap, key)

10 surtk, freq, *_ = mmap.readline().split()

11 if key == surtk # First line matched

12 return [surtk, freq]

13 left = 0

14 mmap.seek(0, 2) # Go to the EOF

15 right = mmap.tell()

16 while (right - left > 1)

17 mid = (right + left) / 2

18 mmap.seek(mid)

19 mmap.readline() # Skip partial line

20 surtk, freq, *_ = mmap.readline().split()

21 if key == surtk

22 return [surtk, freq]

23 elif key > surtk

24 left = mid

25 else:

26 right = mid

27

28 func lookup(mmap, uri)

29 for key in lookp_keys(uri)

30 result = bin_search(mmap, key)

31 if result

32 return [key, result]

Fig. 67. MementoMap Lookup Procedure

8.5 EVALUATION

For evaluation we used the complete index of Arquivo.pt, complete logs of our MemGa-

tor service, and generated MementoMaps. We first examine logs, then describe holdings

of Arquivo.pt in detail, and finally measure the effectiveness of various MementoMaps. Ar-

quivo.pt [117] was founded in 2008 with the aim to preserve web content of interest to the

Portuguese community, but not limited to just the .pt TLD (as shown in Table 18). It has

since archived about 5B mementos of which some data was donated to it by other archives,

148

Table 18. Top Arquivo.pt TLDs

TLD URI-R% URI-M%

.pt 61.422 68.266

.com 19.610 19.643

.eu 8.665 4.262

.net 1.973 1.829

.org 1.790 1.263

.de 0.635 0.343

.br 0.617 0.470

.uk 0.449 0.260

.fr 0.347 0.173

.nl 0.274 0.131

.mz 0.236 0.414

.pl 0.226 0.104

.io 0.223 0.208

.edu 0.201 0.096

.es 0.200 0.126

.it 0.198 0.109

.cv 0.198 0.335

.ru 0.196 0.203

.ao 0.156 0.295

.us 0.142 0.102

.cz 0.117 0.057

.info 0.113 0.160

IP Addresses 0.070 0.050

Other TLDs 1.941 1.149

including IA, explaining why its temporal spread extends back before the Arquivo.pt ’s found-

ing date. We analyzed 1.8T of Arquivo.pt ’s complete CDXJ index in production. A brief

summary of the dataset is shown in Table 19. We used it along with ODU’s MemGator

server logs to evaluate this work.

149

Table 19. Arquivo.pt Index Statistics

Attributes Values

CDXJ files 70

Total file size 1.8T

Compressed file size 262G

Temporal coverage 1992–2018

CDXJ lines 5.0B

Mementos (URI-Ms) 4.9B

Unique URI-Rs 2.0B

Unique HxPx keys 1.1B

Unique hosts 5.8M

Unique IP addresses 15K

8.5.1 ARCHIVED VS. ACCESSED RESOURCES

We analyzed over three years of our MemGator logs containing records about 14 different

web archives. In its lifetime it has served a total of 5,241,771 requests for 3,282,155 unique

URIs. Table 20 shows the summary of our log analysis in which IA has over 35% hit rate, and

every other archive is below 10% (down to zero) in decreasing order of hit rate. Arquivo.pt is

showing a 3.35% hit rate, so we cross checked it with the full index and found that there are

only 1.64% unique URI-Rs from the MemGator logs that are present in Arquivo.pt (note

that the CDX data even includes recent mementos that would have generated a miss prior to

them being archived). The difference in these numbers is perhaps a result of some archived

URIs being looked for more frequently. We also found that these URI-Rs represent less

than 0.003% of the holdings of Arquivo.pt, which shows the poor utilization of the archive

by users of our MemGator server. This low percentage of overlap in access logs and archive

indexes conforms to our earlier findings [29]. The table shows an overall 93% miss rate,

which is all wasted traffic and delayed response time. Identifying sources of such a large

miss rate can save resources and time significantly, which is the primary motivation of this

work.

There are some other notable entries in Table 20 such as low number of requests to

PastPages which was excluded from being polled in the early days due to its zero hit rate

and high error rate and eventual shutdown in 2018. NRS (National Records of Scotland) is

150

Table 20. MemGator log responses from various archives. Data ranges from 2015-10-25 to

2019-01-16.

Archive Request Hit% Miss% Err% Sleep

Internet Archive 4,723,880 35.76 63.68 0.56 1,594

Archive-It 5,011,385 9.14 90.38 0.48 1,556

Archive Today 5,151,720 8.44 88.96 2.60 1,920

Library of Congress 4,862,458 4.77 94.31 0.92 2,705

Arquivo.pt 4,300,221 3.35 96.29 0.36 1,153

Icelandic 5,126,706 2.22 97.14 0.64 3,143

Stanford 5,178,835 1.54 98.02 0.43 1,482

UK Web Archive 5,113,984 1.49 86.30 12.20 2,779

Perma 4,116,099 1.32 98.67 0.01 46

PRONI 5,165,805 0.75 98.72 0.54 1,608

UK Parliament 5,181,991 0.63 98.85 0.52 1,542

NRS 2,683,311 0.21 99.77 0.01 46

UK National 5,178,184 0.10 99.45 0.45 1,457

PastPages 22,058 0.00 62.90 37.10 0

All 61,816,637 5.44 92.92 1.64 21,031

a new addition to the list, hence it shows a low number of requests. The high error rate of

the UK Web Archive was primarily caused by a bug in the Go language (used to develop

MemGator) that was not cleaning idle TCP connections that were already closed by the

application. As a result, UKWA’s firewall was seeing an ever increasing number of open,

but idle connections, hence dropping packets after a hard limit of 20 concurrent connections

per host. This has since been fixed after the release of the Go language version 1.7. We

have later introduced an automatic dormant feature that puts an upstream archive to sleep

for a configurable amount of time after a set number of successive errors. This new feature

also addresses situations when archives go out of service and the maintainers of aggregators

do not notice it in a timely manner [43, 44, 45, 46].

Figure 68 shows a breakdown of what people are looking for in archives and what web

archives hold. The 1.1K entry in the “Ones” row and “Tens” column shows that there are

over a thousand URI-Rs that were requested 10–99 times in MemGator and each has 1–9

151

Fig. 68. Overlap between archived and accessed resources in Arquivo.pt. Ones denote single

digit non-zero numbers (i.e., 1–9), Tens denote two digit numbers (i.e., 10–99), and so on.

The Zero column shows the number of mementos of various URI-Rs that are never accessed

using MemGator. The Zero row shows the number of access requests for various URI-Rs

using MemGator that are not archived. The (Zero, Zero) cell denotes N/A because the

number of resources that are neither archived nor accessed is unknown.

mementos in Arquivo.pt. Large numbers in the “Zero” column show there are a lot of me-

mentos that are never requested from MemGator. Similarly, the “Zero” row shows there

are a lot of requests that have zero mementos in Arquivo.pt. Another way to look at it is

that a content-based archive profile will not know about the “Zero” row and a usage-based

profile will miss out the content in the “Zero” column. Active archives may want to profile

their access logs periodically to identify potential seed URIs of frequently requested missing

152

Table 21. URI-M vs. URI-R Summary of Arquivo.pt

Attributes Values

Unique URI-Rs 1,999,790,376

Total number of mementos 4,923,080,506

Maximum mementos for any URI-R 2,308,634

Median (and Minimum) 1

Mean mementos per URI-R (γ) 2.46

Standard Deviation 57.20

Gini Coefficient 0.42

Pareto Break Point 70/30

resources that are within the scope of the archive. Ideally, we would like more activity

along the diagonal that passes from the (Zero, Zero) corner, except the corner itself, which

suggests there are undetermined number of URI-Rs that were never archived or accessed.

8.5.2 HOLDINGS OF ARQUIVO.PT

Table 21 and Figure 69 summarize the distribution of URI-Ms over URI-Rs in Arquivo.pt.

Almost 2M unique URI-Rs in Arquivo.pt have an average of 2.46 mementos per URI-R (γ

value [29]), but this distribution is not uniform. The top 30% URI-Rs account for 70% of

the mementos, for a Gini Coefficient of 0.42 [252]. Additionally, the Median is one, which

means at least half of the URI-Rs have only one memento. Furthermore, the most frequently

archived URI-R has 2.3M mementos (i.e., 0.05% of total), so we decided to investigate it

further. Table 22 lists the six most archived URI-Rs, and they are mostly one pixel clear

images and corner graphics primarily used in web designing in the pre-CSS3 era. The

only HTML page that shows up in the top list is a login page. We further investigated

all the mementos from all the subdomains of the top URI-R’s domain and found that

the blank.gif image was archived out of proportion. This shows another use for archive

profiling – identifying such unintentional biases due to misconfigured crawling policies or

bugs in crawlers’ frontier queue management.

Furthermore, we partitioned Arquivo.pt ’s index into yearly buckets for analysis as shown

in Table 23. Data prior to year 2008 is mostly donated from other sources in the form of

many small files, as Arquivo.pt was not yet established. However, when everything is put

153

(a) Percentage of URI-Rs by Popularity vs. Cu-

mulative Percentage of Mementos

(b) Gini coefficient of memento over URI-R pop-

ulation

Fig. 69. Distribution of Mementos Over URI-Rs in Arquivo.pt

Table 22. Most archived URI-Rs in Arquivo.pt. Most of these resources are either single

pixel blank images or corner graphics used for styling in the pre-CSS3 era.

URIs URI-Ms

com,wunderground,icons)/graphics/blank.gif 2,308,634

com,wunderground,icons)/graphics/wuicorner.gif 768,250

pt,ipleiria,inscricoes)/logon.aspx 238,292

com,wunderground,icons)/graphics/wuicorner2.gif 207,448

com,lygo)/ly/i/inv/dot_clear.gif 115,221

com,listbot)/subscribe_button.gif 108,530

com,wunderground,icons)/* (including top URI-R) 3,336,086

com,wunderground,* (41 sub-domains) 3,392,676

154

Table 23. Yearly distribution of URI-Rs, URI-Ms, and status codes in Arquivo.pt. The

symbol γ denotes the ratio of URI-Ms vs. URI-Rs. Column names with a “+” superscript

denote cumulative values as yearly data is processed incrementally. While URI-M+ repre-

sents a running total, URI-R+ does not, because some URI-Rs are already seen in previous

years. Status codes for the last two years (still in embargo period) do not add up to 100%

because a significant portion of their entries are either revisit records or screenshots.

Year URI-R URI-R+ URI-M URI-M+
Dup.

URI-R%
γ γ+ 2xx% 3xx% 4xx% 5xx%

1992 1 1 1 1 0.00 1.00 1.00 100.00 0.00 0.00 0.00

1993 1 2 1 2 0.00 1.00 1.00 100.00 0.00 0.00 0.00

1994 128 130 225 227 0.00 1.76 1.75 100.00 0.00 0.00 0.00

1995 642 772 742 969 0.00 1.16 1.26 100.00 0.00 0.00 0.00

1996 110,531 111,303 126,600 127,569 0.00 1.15 1.15 99.96 0.01 0.00 0.00

1997 466,515 563,734 847,783 975,352 3.02 1.82 1.73 100.00 0.00 0.00 0.00

1998 447,042 928,112 747,114 1,722,466 18.49 1.67 1.86 99.23 0.77 0.00 0.00

1999 732,866 1,513,381 1,233,994 2,956,460 20.14 1.68 1.95 76.52 10.61 12.84 0.00

2000 1,710,099 2,874,152 13,413,518 16,369,978 20.43 7.84 5.70 86.99 7.24 5.73 0.00

2001 4,837,012 7,286,174 7,873,642 24,243,620 8.79 1.63 3.33 93.87 4.87 1.25 0.01

2002 7,675,876 13,364,488 13,048,749 37,292,369 20.81 1.70 2.79 90.96 5.11 3.92 0.01

2003 11,043,675 21,565,730 19,989,725 57,282,094 25.74 1.81 2.66 92.12 4.45 3.41 0.03

2004 11,550,512 29,460,627 22,810,763 80,092,857 31.65 1.97 2.72 92.00 5.11 2.88 0.01

2005 9,057,866 35,249,604 19,839,405 99,932,262 36.09 2.19 2.83 93.99 3.94 2.07 0.01

2006 5,979,310 39,609,628 15,388,836 115,321,098 27.08 2.57 2.91 92.33 6.29 1.37 0.01

2007 26,841,427 63,396,199 43,021,527 158,342,625 11.38 1.60 2.50 83.03 14.88 2.08 0.01

2008 113,915,969 166,926,098 174,996,303 333,338,928 9.12 1.54 2.00 85.87 8.95 6.18 0.37

2009 249,069,391 383,960,128 355,833,394 689,172,322 12.86 1.43 1.79 87.37 6.55 6.49 0.36

2010 174,786,328 487,044,797 352,019,433 1,041,191,755 41.02 2.01 2.14 87.39 6.83 6.49 0.42

2011 206,966,813 634,061,322 465,274,765 1,506,466,520 28.97 2.25 2.38 89.13 6.21 6.99 0.58

2012 118,916,669 703,235,309 200,042,923 1,706,509,443 41.83 1.68 2.43 87.79 6.66 7.96 0.46

2013 174,913,693 827,924,633 236,583,969 1,943,093,412 28.71 1.35 2.35 84.03 7.28 10.90 0.57

2014 430,555,712 1,166,054,663 536,560,181 2,479,653,593 21.47 1.25 2.13 80.50 7.10 13.47 0.52

2015 558,504,002 1,563,688,006 1,087,680,516 3,567,334,109 28.80 1.95 2.28 78.32 5.12 17.75 0.32

2016 719,889,903 1,999,522,571 1,353,786,928 4,921,121,037 39.46 1.88 2.46 73.20 6.46 20.78 1.30

2017 685,097 1,999,687,103 1,111,999 4,922,233,036 75.98 1.62 2.46 57.82 5.44 7.89 0.22

2018 106,186 1,999,790,376 847,470 4,923,080,506 2.74 7.98 2.46 22.07 5.63 1.38 0.00

All 1,999,790,376 1,999,790,376 4,923,080,506 4,923,080,506 0.00 2.46 2.46 80.74 6.42 13.86 0.66

together it looks like the archiving activity took off significantly in 2007. Low numbers

in years 2017 and 2018 are due to Arquivo.pt ’s embargo policy. It shows that Arquivo.pt ’s

collection is growing by a healthy pace by mostly collecting new URI-Rs as well as revisiting

on an average 26% of older ones on a yearly basis. We expected γ would change gradually

over time, but years 2000 and 2018 had significantly high values with respect to other years.

So, we looked for the possibility of increased 3xx status codes in those years as a potential

155

Fig. 70. Cumulative growth of URI-Rs and URI-Ms in Arquivo.pt. Almost half of the

mementos are captured in the last two active years alone.

source of increase in γ (e.g., http URIs redirecting to corresponding https version [153,

154]), but we did not see any correlation there. However, the data for these years seems to

have come from another source and overall they are insignificant, hence, the cumulative γ+

is fairly stable between 2 and 3. We noted a significant and steady growth in 4xx status

codes which has crossed the 20% mark in year 2016. Status codes for the last two years (still

in embargo period) do not sum up to 100% because a significant portion of their entries

are either revisit records or screenshots that do not report status codes. In Figure 70 we

plotted a cumulative growth graph of both URI-Ms and URI-Rs to see the shape [147] of

Arquivo.pt during the active region. Their archiving rate is increasing over time as almost

half of the total mementos were archived in the last two active years alone.

8.5.3 THE SHAPE OF ARCHIVED URI TREE

To understand the shape of the URI Keys tree in MementoMap we first investigated the

number of unique Domains and HxPx Keys that have certain host or path depths as shown

in Table 24. These numbers are relative to the size of the Arquivo.pt index, but we believe

156

Table 24. Unique Items With Exact Host and Path Depths.

Depth Host (Domains) Host (HxPx) Path (HxPx)

0 1 1 4,456,831

1 119 6,479 113,022,403

2 1,949,845 508,607,506 225,489,773

3 2,097,254 429,000,297 334,455,187

4 1,316,005 161,912,251 174,429,887

5 234,110 21,825,084 127,484,179

6 95,492 7,935,125 68,578,693

7 28,121 3,252,943 45,819,300

8 64,716 3,722,893 22,178,800

9 55,801 2,660,529 15,553,102

10 5 50 6,596,158

11+ 5 12 858,856

Total 5,841,473 1,138,923,169 1,138,923,169

a similar trend should be seen in other archives, unless their collection is manually curated

and crawled using a more or less capable tool than what is currently being used by many

large web archives [184]. There were some outliers in the data that showed a host depth of

up to 15 and path depths up to 130, but those were very few in number. These numbers

gave us a good starting point to decide how deep we need to analyze hosts and paths for

profiling.

Figure 71 shows the shape of the total 1,138,923,169 unique HxPx Keys of Arquivo.pt ’s

current index put together in the form of a tree as the URI Key space changes on each

host and path depth. The tree is broken down in host and path segments (i.e., Figure 71a

and 71b) instead of one continuous tree and the latter is scaled down 70 times as compared

with the host segment to ensure that the shape of path segment is distinguishable from one

depth to the next. In the host segment, at each host level (after H1) a significant portion

leads to P0 (i.e., root path), but the remainder has further children host segments (i.e.,

sub-domains). Figure 71a shows that hostnames with depth more than four (i.e., H5 and

beyond) are significantly small in number. In the path segment, at each level a significant

portion terminates, but the remainder branches out into deeper path segments. The shape

157

(a) Parents and Children at each Host depth.

All the terminating host nodes at each level

lead to the root path (i.e., P0) shown at the

bottom.

(b) Parents and Children at each Path depth.

The root path (i.e., P0) shown at the top is

scaled 70 times down as compared with the

bottom row of the Host segment tree.

Fig. 71. The shape of HxPx Key tree of Arquivo.pt. Labels on the left denote Host and

Path depths. Corresponding pair of labels on the right denote number of Parents and

Children respectively. Darker nodes have higher number of Mean Children. Host and Path

segments are plotted separately with different scales while the bottom row of the Host

segment corresponds to the top row of the Path segment.

of the path segment in Figure 71b shows that the tree starts to shrink from P4 and the bulk

tree is around P3. Any effort to reduce the URI Key space near this level can significantly

reduce the Relative Cost.

Table 25 is based on the total 1,138,923,169 unique HxPx Keys of Arquivo.pt ’s current

index. For example, the H3 (see Figure 57b for naming convention) row means there are

a total of 2,158,880 unique H3 prefixes that cover a sum of 630,309,184 HxPx Keys of

which the most popular prefix covers 51,849,377 keys alone. The Mean number of keys per

prefix at H3 is 291.96 with a Median of 7 and Standard Deviation of 37,641.59. The RedQ

(Reduction Coefficient) column represents a derived quantity that we defined as the amount

of reduction in keys it would cause if HxPx Keys longer than a given depth are stripped

off at that depth and only counted reduced unique prefixes. This can be calculated using

Equation 12 at depth d where |HxPx Keys≥d| is the number of HxPx Keys with depth ≥ d

158

Table 25. Host and Path depth statistics of unique HxPx Keys in Arquivo.pt. Sorted HxPx

Keys no shorter than a given depth are chopped at that depth, number of occurrences of

these keys is Count, their total is Sum, and various other statistical measures are reported

based on these numbers. The RedQ value is calculated using Equation 12, Parents is the

number of non-terminal nodes of the previous depth, Children is the number of unique nodes

at a given depth, and MeanChld is the average number of Children per Parent.

Depth Count Sum Max Mean Med. StdDev RedQ Parents Children
Mean

Child

H1 973 1,138,923,169 616,372,626 1,170,527.41 930 21,620,107.00 1.00000 1 973 973.00

H2 2,068,333 1,138,916,690 109,176,956 550.64 5 91,308.66 0.99818 904 2,068,333 2,287.98

H3 2,158,880 630,309,184 51,849,377 291.96 7 37,641.59 0.55153 253,091 2,158,880 8.53

H4 1,329,137 201,308,887 3,765,122 151.46 10 4,797.10 0.17559 148,589 1,329,137 8.95

H5 245,881 39,396,636 376,969 160.23 5 3,420.96 0.03438 31,635 245,881 7.77

H6 103,579 17,571,552 105,591 169.64 27 1,106.03 0.01534 16,496 103,579 6.28

H7 34,380 9,636,427 19,572 280.29 20 450.16 0.00843 10,061 34,380 3.42

H8 69,829 6,383,484 535 91.42 120 45.75 0.00554 15,359 69,829 4.55

H9 55,811 2,660,591 80 47.67 56 19.6 0.00229 55,811 55,811 1.00

H10+ 10 62 19 6.20 2 6.51 0.00000 10 10 1.00

P0 5,841,503 1,138,923,169 2,264,623 194.97 7 3,059.43 0.99487 5,841,503 5,841,503 1.00

P1 145,687,459 1,134,466,338 2,242,344 7.79 1 376.64 0.86817 5,828,059 145,687,459 25.00

P2 290,761,965 1,021,443,935 603,840 3.51 1 130.76 0.64156 40,130,355 290,761,965 7.25

P3 392,635,328 795,954,162 565,043 2.03 1 78.14 0.35412 79,234,027 392,635,328 4.96

P4 215,251,988 461,498,975 512,098 2.14 1 80.01 0.21621 66,059,544 215,251,988 3.26

P5 158,256,277 287,069,088 512,098 1.81 1 65.72 0.11310 48,163,114 158,256,277 3.29

P6 91,334,214 159,584,909 50,384 1.75 1 22.3 0.05993 33,776,599 91,334,214 2.70

P7 60,099,825 91,006,216 44,114 1.51 1 17.24 0.02714 24,201,781 60,099,825 2.48

P8 31,101,768 45,186,916 24,631 1.45 1 15.54 0.01237 14,890,308 31,101,768 2.09

P9 18,601,197 23,008,116 10,247 1.24 1 9.74 0.00387 9,233,634 18,601,197 2.01

P10 6,817,122 7,455,014 5,858 1.09 1 9.36 0.00056 3,206,260 6,817,122 2.13

P11+ 858,772 858,856 2 1.00 1 0.01 0.00000 222,432 392,565 1.76

and |URI Keysd| is the number of unique partial URI Keys stripped at depth d (reported

under the Sum and Count columns of Table 25 respectively). Figures 72a and 72b show the

cumulative reduction as the top most frequent keys are rolled up at a host and path depth

respectively. Furthermore, there are 253,091 nodes in the tree one depth above (i.e., H2)

that lead to 2,158,880 nodes at the current depth. While the Mean Child count at H3 is

8.53, the distribution is not uniform. Figures 72c and 72d show the cumulative reduction

in immediate children count as the most popular parents leading to the current depth are

rolled up incrementally from bottom up. The purpose of the Reduction Coefficient is to

understand the impact and importance of various host and path depths globally while the

Mean Child count gives an estimate of a more localized impact at a given depth. For this

159

(a) Global HxPx Reduction Rate at Host (b) Global HxPx Reduction Rate at Path

(c) Incremental Host Children Reduction (d) Incremental Path Children Reduction

Fig. 72. Global and Incremental Host and Path Segment Reduction. Global reductions

describe the change in the total number of HxPx Keys (or the size of sub-trees) when keys

are rolled up at a given Host or Path depth. Incremental children reductions describe the

change caused by roll ups of immediate children nodes into their corresponding parent nodes

at a given Host or Path depth. Nodes with larger sub-trees and children counts in the two

cases respectively are rolled up first.

work we have used the latter as a factor to decide when to roll a sub-tree up while compacting

a MementoMap. Rolling the sub-tree up at H1, H2, and P0 are not applicable for evaluation

160

Fig. 73. Growth of compacted MementoMap vs. lines processed from an input Memen-

toMap. This plot illustrates a very small portion of the entire process to highlight the

compaction behavior at a micro level. The size of the output MementoMap decreases each

time a roll up happens. A roll up at smaller depth often reduces the size more significantly.

here because H1 means shrinking everything into a single record of “*” key, H2 would require

out-of-band information (because not every TLD is equally popular), and P0 being the root

of the path has nothing to roll up into (though compaction might happen in the relevant

host segment independently). We fit the remaining values of Mean Child count on Power

Law [84] curves (other curve fittings are also possible) for both host and path segments to

find a and k parameters and use these empirical values for compaction decision making.

RedQd =
|HxPx Keys≥d| − |URI Keysd|

|HxPx Keys|
(12)

8.5.4 MEMENTOMAP COST AND ACCURACY

Web archives are messy collections that contain many malformed records often caused by

configuration issues in web servers, poorly written web applications, bugs in archiving tools,

incompatible file transformations, or even security vulnerabilities [18]. Archive profiling can

161

Table 26. MementoMap generation, compaction, and lookup statistics for Arquivo.pt. Out-

put of one step is used as the input of the next step in a chain as the next step has at least

one smaller weight. The first record was created using some Linux commands instead of

the script, that is why some values are reported as N/A.

Input Wh Wp Lines Size (bytes)
Gzipped

(MB)
Rollups

Time

(sec)
RelCost Accuracy

CDXJ ∞ ∞ 447,107,301 30,753,644,382 3,449 N/A N/A 0.464 0.946

H∞P∞ 4.00 4.00 27,010,037 1,443,292,676 218 4,574,305 8,643 0.028 0.646

H4.00P4.00 4.00 2.00 14,143,676 662,171,623 119 703,394 507 0.015 0.600

H4.00P2.00 4.00 1.00 7,528,548 315,946,553 63 537,341 264 0.008 0.539

H4.00P1.00 4.00 0.50 4,269,344 162,132,599 35 483,779 151 0.004 0.482

H4.00P0.50 4.00 0.25 3,054,686 107,784,353 24 411,843 87 0.003 0.426

H4.00P0.25 4.00 0.00 1,673,784 40,446,417 11 1,411,579 70 0.002 0.275

H4.00P4.00 2.00 4.00 24,937,984 1,316,371,599 205 9,572 500 0.026 0.626

H2.00P4.00 2.00 2.00 12,867,647 585,142,758 111 669,670 468 0.013 0.588

H2.00P2.00 2.00 1.00 6,584,376 257,905,766 58 512,413 241 0.007 0.525

H2.00P1.00 2.00 0.50 3,615,997 121,452,813 32 458,681 124 0.004 0.472

H2.00P0.50 2.00 0.25 2,542,869 76,274,453 21 349,700 70 0.003 0.422

H2.00P0.25 2.00 0.00 1,529,328 33,658,544 10 1,171,377 56 0.002 0.270

H2.00P4.00 1.00 4.00 23,840,710 1,252,548,065 196 4,671 466 0.025 0.581

H1.00P4.00 1.00 2.00 12,313,036 555,628,348 107 640,163 448 0.013 0.549

H1.00P2.00 1.00 1.00 6,307,180 244,402,690 56 489,942 232 0.007 0.501

H1.00P1.00 1.00 0.50 3,465,689 114,755,789 30 439,647 116 0.004 0.453

H1.00P0.50 1.00 0.25 2,437,451 71,797,863 20 333,087 67 0.003 0.403

H1.00P0.25 1.00 0.00 1,474,541 31,881,496 10 1,117,830 58 0.002 0.261

H1.00P4.00 0.50 4.00 22,315,969 1,162,107,385 184 6,516 447 0.023 0.540

H0.50P4.00 0.50 2.00 11,729,408 525,115,243 101 594,779 420 0.012 0.520

H0.50P2.00 0.50 1.00 6,056,959 232,945,804 53 461,516 218 0.006 0.476

H0.50P1.00 0.50 0.50 3,342,092 109,798,250 29 417,912 112 0.003 0.433

H0.50P0.50 0.50 0.25 2,358,976 68,957,985 20 316,782 65 0.002 0.388

H0.50P0.25 0.50 0.00 1,434,084 30,800,396 9 1,071,071 51 0.001 0.253

H0.50P4.00 0.25 4.00 21,197,676 1,096,034,790 174 9,533 416 0.022 0.511

H0.25P4.00 0.25 2.00 11,217,682 498,573,523 97 558,528 392 0.012 0.495

H0.25P2.00 0.25 1.00 5,842,652 223,237,207 51 435,916 204 0.006 0.461

H0.25P1.00 0.25 0.50 3,241,589 105,791,213 28 398,097 109 0.003 0.420

H0.25P0.50 0.25 0.25 2,298,413 66,763,014 19 302,762 64 0.002 0.377

H0.25P0.25 0.25 0.00 1,404,993 30,018,340 9 1,031,775 53 0.001 0.249

H0.25P4.00 0.00 4.00 17,391,655 882,144,079 142 118,082 392 0.018 0.391

H0.00P4.00 0.00 2.00 9,453,810 410,205,661 81 560,039 324 0.010 0.385

H0.00P2.00 0.00 1.00 5,054,662 187,327,280 43 471,696 179 0.005 0.373

H0.00P1.00 0.00 0.50 2,901,796 91,419,782 25 440,818 95 0.003 0.354

H0.00P0.50 0.00 0.25 2,107,245 59,036,815 17 366,330 57 0.002 0.326

H0.00P0.25 0.00 0.00 1,339,475 27,946,167 8 986,664 48 0.001 0.236

162

uncover some of these as we found many malformed MIME-Type [11] and Status Code [12]

entries in Arquivo.pt.

To run our experiments we decided to filter only the clean records out from these CDXJ

files. We further limited our scope to only HTML pages that returned a 200 status code.

Additionally, we excluded any robots.txt and sitemap.xml files that were served wrongly

as “text/html”. With these filters in place we reduced mementos by almost half of the total

index size to only 2,671,653,766. Now, there are 962,832,513 filtered unique URI-Rs, which

means the γ value is increased slightly to 2.77. Also, the HxPx Keys count is reduced to

447,107,301, which is 39% of the overall number. From these keys we created the baseline

MementoMap with compressed file size of 3.4G (as shown in the first record of Table 26)

which is already reduced to 1.3% of the original index size. This baseline MementoMap has

46.4% Relative Cost (i.e., the ratio of reduced number of unique lookup keys vs. number of

unique URI-Rs) that yields 94.6% Accuracy.

In the next step we supplied this baseline MementoMap as input for compaction with

host and path compaction weights Wh = 4.00 and Wp = 4.0 respectively. These weights

are multiplied by their corresponding estimated Mean Child value at each depth to find the

cutoff number when the sub-tree is to be rolled up. A small weight will roll the sub-tree

up more aggressively than a large value, resulting in a more compact MementoMap. This

process produced a MementoMap with only 27,010,037 lines (i.e., 6.0% of the baseline or

2.8% Relative Cost) after going through 4,574,305 recursive roll ups. The process took

2.4 hours to complete on our Network File System (NFS) storage. The time taken to

complete the compaction process is a function of the number of lines to process from the

input, number of lines to be written out, and the number of roll ups to occur (along with

the read and write speeds of the disk). Since the process is I/O intensive, using faster

storage can reduce the time significantly, which we verified by repeating the experiment on

TMPFS [231]. We generated 36 variations of MementoMaps with all possible pairs of Wh

and Wp weights from values 4.00, 2.00, 1.00, 0.50, 0.25, and 0.00 as shown in Table 26. To

generate MementoMaps with smaller weights we used MementoMaps of immediate larger

weight pairs as inputs (e.g., input one with Wh = 2.00,Wp = 0.50 to generate one with

Wh = 1.00,Wp = 0.25). This technique of chaining the output as input to the next step

reduced the generation time for subsequent MementoMaps from hours to a few minutes and

also illustrated that MementoMaps can easily be compacted further when needed.

Figure 73 shows a portion of the roll up activity during the compaction process. The

size of the output grows linearly, but on a micro-scale whenever there is a roll up activity,

163

Fig. 74. Relative Cost vs. Lookup Routing Accuracy. A MementoMap generated/compacted

using Wh = 4.00 and Wp = 2.0 yielded 60% Accuracy with only 1.5% Relative Cost (high-

lighted with the red star).

the output size goes down depending on at what depth roll up happened and how big of a

sub-tree was affected.

Finally, we used MemGator logs to perform lookups in these 36 MementoMaps generated

with different host and path weight pairs to see how well they perform. Figure 74 shows

the Relative Cost and corresponding Lookup Routing Accuracy of these MementoMaps. The

Accuracy here is defined as the ratio of correctly identified URIs for their presence or absence

vs. all the lookup URIs. In this experiment MementoMaps with weights Wh = 4.00,Wp =

2.00 and Wh = 2.00,Wp = 2.00 yielded about 60% Routing Accuracy with less 1.5% Relative

Cost without any false negatives (i.e., 100% Recall). Since Arquivo.pt had only a 3.35% hit

rate in the past three years, MemGator could have avoided almost 60% of the wasted traffic

to Arquivo.pt without missing any good results if Arquivo.pt were to advertise its holdings

via a small MementoMap of about 111MB in size. The accuracy can further be improved by

164

1) exploring other optimal configurations for sub-tree pruning, 2) generating MementoMaps

with the full index, not just a sample, and 3) including entries for absent resources from the

“Zero” row of the Figure 68.

8.6 CHAPTER SUMMARY

In this chapter we first described UKVS, the file format we use for serialization of Me-

mentoMaps. We illustrated a list of sorted SURTs with wildcards and organized them in a

tree to elaborate on the structure of URI-Keys. We then described various structures and

attributes of MementoMap files suitable for different needs.

We discussed a reference implementation that allows generation and compaction of Me-

mentoMaps as well as fast lookup in them. Then we described a few standard means of

disseminating generated MementoMaps by archives or third parties.

To evaluate the serialization format we used and its effectiveness we used the complete

index of Arquivo.pt and our MemGator service logs of over three years. We measured the

overlap of archived vs. accessed resources. We then analyzed the holdings of Arquivo.pt in

detail and the shape of their URI tree. Finally, we compared the cost and routing accuracy

of these MementoMaps and found that a MementoMap of less than 1.5% Relative Cost can

correctly identify the presence or absence of 60% of the lookup URIs in the corresponding

archive without any false negatives. We identified that inclusion of an absence list (i.e., an

archival voids profile) will improve the accuracy significantly.

165

CHAPTER 9

MEMENTO ROUTING

In the past three chapters we established the MementoMap framework to discover and

quantify archival holdings and voids for different URI spaces. Moreover, we established an

efficient and flexible means of serializing this information for dissemination. We evaluated

those MementoMaps for individual web archives without allowing any false negatives. Now,

we can leverage these serialized archive profiles (MementoMaps) to make routing decisions

by a Memento aggregator for multiple web archives together. This chapter addresses our

third research question, “RQ3: How to utilize archive profiles for the routing of URI lookup

requests? ”

9.1 MEMENTO AGGREGATION AND ROUTING

It is inconvenient and impractical for users to perform URI lookups in many different

public web archives one by one to find any or the most suitable Memento of a resource

closest to a given time in the past. It is a tedious task to repeatedly perform the same

lookup in tens of public web archives. Moreover, users might not be aware of all the public

web archives available at a given time as new web archives come to existence and existing

ones disappear or move to other domains every now and then [42, 43, 44, 45, 46]. To

address this issues there exist services and tools that provide a unified interface to interact

with many different public web archives at once using their Memento API. This practice

is called Memento Aggregation and such tools/services are called Memento Aggregators (as

described in Section 2.5 of Chapter 2). LANL runs a public Memento Aggregator called the

“Time Travel Service” and we developed and released an open-source Memento Aggregator

called “MemGator” that allows people to run their own Memento Aggregators as a CLI tool

or a web service.

Memento Aggregators are configured to aggregate a set of known public web archives.

In the most basic form an aggregator might poll all members of the set of web archives

for every single lookup request. This naive approach is called broadcasting and is wasteful

as only a few web archives return any good results for a given lookup URI. Though, the

subset of web archives that return good results can be different for different lookup URIs. In

166

Chapter 1 we gave examples to establish that broadcasting can be problematic for small web

archives with limited capacity to serve web requests, which they would not want to waste

for lookup requests that are not in their collection scope. Moreover, another downside

of broadcasting is that the client needs to wait for responses from all the web archives,

which sometimes causes a long delay by some archives that eventually do not return any

good results. Identifying potentially suitable candidate archives for a given lookup URI and

aggregating archives selectively is called Memento Routing. Our MementoMap framework

enables this capability by profiling web archives and creating a high level summary of their

archival holdings and/or archival voids.

9.2 METHODOLOGY

In this chapter our goal is to assign normalized scores to each web archive from a given

set of web archives for a given lookup URI. Based on those scores, an application (such as

a Memento aggregator) can decide which subset of archives it wants to poll for the lookup

URI. An application may choose to route a lookup request to the top-k archives or every

archive above a certain threshold.

We first define a density score that is derived from the frequency value reported in the

MementoMap as described in Section 9.2.1. This represents how densely a subtree of the URI

space (represented by a URI keys) is archived in a web archive. Then we define a closeness

score between a lookup URI key and the longest matching URI key prefix in a MementoMap

as described in Section 9.2.2. This score depends on the length of the matching URI key

prefix and the difference in lengths of the two keys. Finally, we define a routing score as a

product of these two scores as described in Section 9.2.3. We address many special cases as

well. Moreover, we describe both uniform and weighted normalized relative routing scores

when multiple web archives are combined for ranking.

We describe an inverted index with examples and how we use it to consolidate Memen-

toMaps from multiple web archives for efficient and scalable lookup. Finally, we illustrate

how we search the inverted index, extract matching records, and transform them into a

consumable result for a Memento aggregator.

9.2.1 DENSITY SCORE

We define density as a normalized score that captures the essence of how much of the

archival efforts in a web archive are concentrated around a given URI Key relative to the

overall size of the web archive. It is the logarithmic ratio of number of URI-Rs under a

167

given URI Key in a web archive to the total number of URI-Rs in the web archive. This

value ranges from “0” to “1” (inclusive of both, i.e., 0 ≤ µ ≤ 1) where a value of “0” means

URIs corresponding to the key are not archived and a value of “1” means all the archiving

activity is concentrated to URIs under the scope of the URI key. We denote density by µa,k

as shown in Equation 13 for a key “k” in an archive “a” with a set of URI-Rs “Ra”.

µa,k =
log(1 + ra,k)

log(1 + |Ra|)
(13)

The quantity ra,k is an exact or approximate value of the number of URI-Rs under the

URI key “k” in the archive “a”. It is calculated based on the frequency value (as described in

Section 8.2.2 of Chapter 8) returned from the MementoMap lookup as shown in Equation 14.

The frequency value has the [<urim-count>]/[<urir-count>] form. The frequency value

may also contain one of the three approximation notations when the reported values are not

exact, but we ignore these notations for density estimation because their primary purpose is

to minimize the number of insignificant changes in the MementoMap. For density estimation

we are interested in the URI-R count. However, it is possible that for a given URI Key either

the URI-R count (Cr) or the URI-M count (Cm) is missing. If the URI-R count is missing,

we can estimate it based on the reported URI-M count with the help of γ vale as defined

earlier in Equation 2 in Chapter 6. It is worth noting that if there is an exact match of

the lookup key (i.e., not a partial wildcard match) then the URI-R count is “1”. If γ is not

known for an archive, a default value between “2” and “3” can be used because we found

that many web archives have the average URI-M to URI-R ratio close to this range (e.g.,

for the Internet Archive γ = 2.1 and for Arquivo.pt γ = 2.5).

ra,k =

1, if there is an exact match of the lookup key

Cr, if the URI-R count is present

Cm

γ
, otherwise

(14)

We are using a log scale for both the numerator and denominator in Equation 13 to make

sure large archives with diverse set of URIs are not punished. Moreover, we are adding “1” in

both the log function inputs to avoid the condition of undefined “log(0)”. Also, this addition

of “1” nicely translates to a density value of “0” for archival voids that are represented with

a frequency value of “0” as described in Chapters 7 and 8.

Suppose we perform a lookup for “org,example)/a/b/c/d/e” in a MementoMap of a web

archive that has over a million unique URI-Rs in it. Suppose we find the longest prefix match

168

in the MementoMap as “org,example)/a/b/c/*”. We know it is not an exact match, so

there might be multiple URI-Rs present in the archive with prefix “org,example)/a/b/c/”.

If the MementoMap returns a frequency of “200/100” or “/100” then we know there are 100

URI-Rs under the matching URI key prefix (we can ignore the URI-M count when URI-Rs

counts are reported). However, if the frequency value is “200” or “200/” then we only know

the URI-M count and need to estimate the number of URI-Rs for the matching URI key

prefix. In this case we can divide the URI-M count with the value of γ (the average number

of URI-Ms per URI-R for the archive, say “2”) to get an estimated number of URI-Rs (say,

“100”). This means we get a density score µ = log(1 + 100)/ log(1 + 1000000) ≈ 0.334 for

the URI key in the archive.

9.2.2 CLOSENESS SCORE

We define closeness as a normalized score to describe how closely a returned Memen-

toMap URI key matches with the lookup URI (in SURT format). We denote closeness by

χl,k as shown in Equation 15 for a lookup URI “l” and corresponding returned URI key “k”

in a given MementoMap. The quantities Ll and Lk are representing the number of segments

(both host and paths combined) in the lookup URI and the returned URI key, respectively.

The difference in lengths of the two SURTs (l and k) Ll−Lk will be zero if there is an exact

match or the only additional segment in the URI key is a wildcard character “*” (which rep-

resents zero or more segments), otherwise a positive integer (because Ll ≥ Lk as a matching

prefix key cannot be longer than the lookup URI). The larger the difference (in denomina-

tor) is, the poorer the match is, resulting in a smaller closeness score. By adding “1” in the

denominator we ensure that we avoid division by zero and at the same time keeping the

closeness value between “0” and “1” (inclusive of both, i.e., 0 ≤ χ ≤ 1). We also want the

length of the longest matching URI key prefix (Lk) to play a role in the closeness score, but

effect should not be as prominent as the difference in lengths. Also, as we go from left to

right in the a SURT, the importance of segments goes down as they become more specific.

For these two reasons, we used a log scale in the numerator. We added “1” in the argument

of the log function to avoid the condition of undefined “log(0)” when there is no matching

key returned (i.e., Lk is “0”). Moreover, this addition of “1” nicely translates to a closeness

value of “0” when there is no matching key found in the MementoMap. To keep the closeness

value normalized (i.e., between zero and one) we make sure the numerator never goes above

“1” as the smallest value the denominator can have is “1”. For this reason, we use a min

function with one of its arguments as “1”. This condition will arrive when the length of the

169

URI key is greater than or equal to the base “b” of the log function. A suitable value of “b”

depends on the longest URI keys in a MementoMap that represent a significant portion of

the MementoMap (i.e., excluding any long but rare keys). From Chapter 8 we learned that

the bulk of URIs (about 95%) from a web archive can be represented in a MementoMap

with keys smaller than 10 segments (Figure 71 on Page 157 shows that there are very few

URIs with host segments > 4 and paths segments > 6), which means a log of base 10 (i.e.,

b = 10) is a suitable choice for the general case.

χl,k =
min(logb(1 + Lk), 1)

1 + Ll − Lk

(15)

Suppose we perform a lookup for the key “org,example)/a/b/c/d/e” (i.e., Ll = 7)

in a MementoMap and find the matching URI key prefix “org,example)/a/b/c/*” (i.e.,

Lk = 5). This means we get a closeness score χ = min(log(1 + 5), 1)/(1 + 7 − 5) ≈ 0.259

between the lookup key and corresponding matching URI key prefix.

In our TimeMap lookup use case the URI key is always going to be a prefix of the lookup

URI key. However, this closeness score can be generalized for any two independent URIs if

a use case emerges in the future. We first convert the two URIs to their SURT forms (say,

“s1” and ‘s2’), then identify the longest common URI key prefix between them (say, “k”),

and then take the product of the closeness scores of the two SURTs against their common

prefix (i.e., “χs1,k ·χs2,k”) while using the length of the longest of the two SURTs as the base

of the log (i.e., “b = max(Ls1 , Ls2)”). This way, the product of the closeness scores will be

a “1” if the two URIs (or their SURTs) are identical, a “0” if their TLDs are different, and

a fraction between the two otherwise.

Suppose we want to find the closeness score between “org,example)/a/b/c/d/e” (i.e.,

Ls1 = 7) and “org,example)/a/x/y” (i.e., Ls2 = 5). The longest length of the two SURTs

to serve as the base of the log function is 7 (i.e., “max(7, 5)”). The common prefix in this

case is “org,example)/a” (i.e., Lk = 3). In this case the closeness scores of “s1” and “s2”

to the common prefix “k” would be χ1 = min(log7(1 + 3), 1)/(1 + 7 − 3) ≈ 0.142 and

χ2 = min(log7(1 + 3), 1)/(1 + 5− 3) ≈ 0.237, respectively. This means we get the combined

closeness score χ = χ1 · χ2 ≈ 0.142 · 0.237 ≈ 0.034 for the two URIs.

9.2.3 ROUTING SCORE

With the key metrics density µ and closeness χ described above, we define the routing

score as a normalized score to assess whether a lookup URI is present in an archive with a

MementoMap (i.e., whether the request should be routed to the archive). We denote the

170

routing score with ρa,l,k as shown in Equation 16 for the likelihood of a lookup URI “l” to

be found in an archive “a” with a MementoMap that returns the longest matching URI key

prefix “k” with the corresponding frequency score when queried.

ρa,l,k =

1, if there is an exact match of the lookup key and µa,k > 0

µa,k · χl,k, otherwise
(16)

The above routing score is a means to estimate the likelihood of finding a lookup URI in

an archive independent of any other web archives that are being aggregated by a Memento

aggregator. It is not a linear quantity (due to logarithmic metrics involved), instead, a

normalized score that can be used to set a heuristic threshold for Memento routing. It is

a product of two normalized scores, both often being fractions, which means it is ≤ the

smaller of the two scores. This means if there are two web archives with routing scores “ρa1”

and “ρa2” for a lookup URI, where “ρa1 = 2ρa2”, it does not necessarily mean that a1 is twice

as likely to return a good result as a2, instead, it means that a1 is more likely to return a

good result than a2. If the heuristic routing threshold falls between the two scores then the

higher one will be routed and the other will not.

Suppose we perform a lookup for the key “org,example)/a/b/c/d/e” in a MementoMap

of a web archive and find the matching URI key prefix “org,example)/a/b/c/*” with fre-

quency value “200/100”. The corresponding density score would be µ ≈ 0.334 (as illustrated

in Section 9.2.1) and the closeness score would be χ ≈ 0.259 (as illustrated in Section 9.2.2).

Since this is not an exact match, the routing score would be ρ = µ ·χ ≈ 0.334 ·0.259 ≈ 0.087

for this lookup. If we have a cut-off threshold of “≥ 0.01” for the web archive then the

lookup will be routed to it, but if the cut-off threshold is set to “≥ 0.1” then the lookup will

not be routed to the web archive.

Relative and Weighted Routing Scores

If a ranked ordered list of web archives with their corresponding normalized relative routing

scores is desired for certain applications (as illustrated in Figure 11c in Chapter 1 on Page 16)

it can be calculated for each archive by dividing their routing score with the sum of the

routing scores of all the aggregated archives. We denote the normalized relative routing

score of each archive “ai” from a set of “N ” aggregated archives ai ∈ {a1, a2, ..., aN} and

their corresponding returned URI keys ki ∈ {k1, k2, ..., kN} for a lookup URI “l” by ρ′ai,l,ki
as shown in Equation 17.

171

1 if archive not profiled:

2 # Return a default non-zero routing score

3 # if neither the holdings nor the voids of the archive are profiled

4 return DEFAULT_ROUTING_SCORE

5

6 if archival holdings profiled:

7 # Initialize with a routing score of 0

8 # if the holdings of the archive are profiled

9 # irrespective of the state of the voids profiling

10 routing_score = 0

11 else:

12 # Initialize with a routing score of 1

13 # if only the voids of the archive are profiled

14 routing_score = 1

15

16 if uri_key prefix match found:

17 # Calculate and update the initialized routing score

18 # if a corresponding URI key is found in any profile of the archive

19 routing_score = calculate_routing_score(archive, lookup_uri, uri_key)

20

21 # Return the initialized/updated routing score

22 return routing_score

Fig. 75. Routing Score Calculation Procedure for Archives With Different Types of Profiles

ρ′ai,l,ki =
ρai,l,ki

N
∑

j=1

ρaj ,l,kj

(17)

It is worth noting that if a Memento aggregator does not have MementoMaps for all the

archives it aggregates, it should assign some default routing scores to web archives it does

not have a MementoMap of to make sure those archives show up in the ranked ordered list.

Moreover, we can assign different weights (or importance factor) Wi ∈ {W1,W2, ...,WN}

to each aggregated archive to calculate corresponding normalized relative weighted routing

scores ρ′′ai,l,ki as shown in Equation 18.

ρ′′ai,l,ki =
Wi · ρai,l,ki

N
∑

j=1

Wj · ρaj ,l,kj

(18)

172

It is not necessary to have either of the holdings or voids profiled for each web archive

being aggregated by a Memento Aggregator. Moreover, not every lookup URI will have a

matching URI key prefix in a MementoMap. However, in order to create a ranked ordered

list of archives for a given lookup URI we must assign some routing scores to each archive.

In Figure 75 we illustrate a procedure to achieve this. This procedure returns a default

routing score for web archives that are not profiled yet. If an archive’s holdings are profiled

(irrespective of whether its voids are profiled), we initialize the routing score with “0” so that

an appropriate score is assigned only if a matching URI key is found. However, if only the

voids of an archive are profiled then we initialize the routing score with “1”, which will be

changed to “0” later if a matching URI key is found. The latter condition is suitable for big

web archives (such as the Internet Archive) that return good results for the most lookups,

but want to avoid frequently requested resources that they do not contain or not willing to

return as per their policies. The function calculate_routing_score in the pseudo code is

not illustrated as it refers to the routing score calculation as described in Equation 16.

9.2.4 INVERTED INDEX

We take the analogy of documents and inverted indexes as described in Section 2.9 of

Chapter 2 and apply it to our MementoMap framework for Memento routing. In our case

a collection is a set of web archives that are aggregated by a Memento aggregator, each

web archive represented by its corresponding MementoMap is a document, URI-Rs in the

archive are words that are canonicalized and stemmed to form URI keys of MementoMaps,

and their corresponding frequency values as term frequencies. We may choose to transform

the frequency values from MementoMaps in a more compact and normalized form density

(as described in Section 9.2.1) before adding to an inverted index. Suppose, we have a set of

“N ” archives ({a1, a2, ...aN}) that each contain a subset of URI keys from a set of “M ” keys

({k1, k2, ...kN}) with density scores corresponding each archive and URI key pair from a set

of densities ({µ1, µ2, µ3...}). A sample inverted index for these web archives is illustrated in

Figure 76.

9.2.5 MEMENTOMAP AND INVERTED INDEX LOOKUP

In Chapter 8 we introduced a file format called UKVS and used it to serialize Memen-

toMaps of web archives. This format is sort friendly, which when used for MementoMaps,

allows binary search in URI keys on disk. This means if a Memento aggregator is aggre-

gating a small number of web archives, it can perform searches in MementoMaps of each

173

1 k1: [(a1, µ1), (a2, µ2)]

2 k2: [(a2, µ3)]

3 k3: [(a1, µ4), (a2, µ5), (a3, µ6)]

Fig. 76. A Sample Inverted Index of Web Archive Profiles

archive in parallel to identify which archives are likely to return good results for the lookup

URI.

However, this parallel search is not scalable beyond a small number of archives. To work

on a large set of web archives we can process their MementoMaps and make a combined

inverted index from them. Moreover, we can leverage our UKVS file format to serialize

inverted index as well, so that we get all the benefits of arbitrary split and merge, binary

search on disk, and incremental updates that have for MementoMaps. Additionally, if an

archive has published a more detailed MementoMap than needed by an application (e.g.,

a Memento aggregator), then it is possible for the application to abridge the MementoMap

when ingesting it for an inverted index using the MementoMap Compaction algorithm de-

scribed in Chapter 8. An inverted index works for small number of archives as well, but its

benefits would be more visible at large scale.

Suppose we have three MementoMaps from three different archives (as illustrated in

Figure 77):

• arquivo.pt – with both of its archival holdings and voids profiled

• perma.cc – with only its archival holdings profiled

• archive.is – with only its archival voids profiled

We can combine these to create an inverted index using UKVS format in many different

ways as shown in Figure 78. Numeric scores in the inverted index files do not match with that

in the MementoMap files because the value column on MementoMap shows the frequency

score while we have transformed it to the density score in inverted indexes. These keys

and values are for illustration purpose only, they do not reflect holdings or voids of actual

archives. In Figure 78a we placed the identifier of corresponding archive as a secondary key

column while we collapsed this with corresponding score in the JSON block in Figure 78b.

The latter format grows slower when many archives have a significant number of shared URI

arquivo.pt
perma.cc
archive.is

174

!context ["https://oduwsdl.github.io/contexts/ukvs"]

!id {uri: "https://arquivo.pt/"}

!fields {keys: ["surt"], values: ["frequency"]}

!meta {type: "MementoMap", profile: "both"}

!meta {updated_at: "2020-02-05T21:49:03Z"}

com,example)/ 200

com,facebook)/* 0

org,example)/a/* 20

(a) A Sample MementoMap from Arquivo.pt With Both Holdings and Voids Profiles

!context ["https://oduwsdl.github.io/contexts/ukvs"]

!id {uri: "https://perma.cc/"}

!fields {keys: ["surt"], values: ["frequency"]}

!meta {type: "MementoMap", profile: "holdings"}

!meta {updated_at: "2020-04-22T05:11:09Z"}

com,example)/ 100

org,example)/a/b/c/* 10

(b) A Sample MementoMap from Perma.cc With Only Holdings Profile

!context ["https://oduwsdl.github.io/contexts/ukvs"]

!id {uri: "https://archive.is/"}

!fields {keys: ["surt"], values: ["frequency"]}

!meta {type: "MementoMap", profile: "voids"}

!meta {updated_at: "2019-11-14T10:26:32Z"}

com,example)/ 0

org,example)/a/* 0

(c) A Sample MementoMap from Archive.is With Only Voids Profile

Fig. 77. MementoMap Samples from Different Web Archives

keys. Both of these inverted index formats benefit from the spatial locality on disk when

performing binary search for a lookup URI.

Once we have an inverted index in place, we can perform lookups in it to find records to

estimate the likelihood of finding a lookup URI (e.g., “http://example.org/a/b/c/d/e?x=y”)

in many different web archives. We first transform the lookup URI to SURT and remove

any query parameters from it to form a lookup key (e.g., “org,example)/a/b/c/d/e”). We

then perform a binary search in the inverted index to fetch all the records related to the

longest URI key prefix matches for each archive. In a sorted inverted index these records

are collocated (e.g., the last two lines of Figure 78b), making it easy and efficient to perform

175

!context ["https://oduwsdl.github.io/contexts/ukvs"]

!id {uri: "https://memgator.cs.odu.edu/"}

!fields {keys: ["surt", "archive"], values: ["density"]}

!meta {type: "InvertedIndex"}

!meta {updated_at: "2020-07-11T21:38:19Z"}

com,example)/ archive.is 0

com,example)/ arquivo.pt 0.2

com,example)/ perma.cc 0.08

com,facebook)/* arquivo.pt 0

org,example)/a/* archive.is 0

org,example)/a/* arquivo.pt 0.02

org,example)/a/b/c/* perma.cc 0.01

(a) Inverted Index With the Archive Secondary Key Column and Density Score as the Value Column

!context ["https://oduwsdl.github.io/contexts/ukvs"]

!id {uri: "https://memgator.cs.odu.edu/"}

!fields {keys: ["surt"], values: []}

!meta {type: "InvertedIndex"}

!meta {updated_at: "2020-07-11T21:44:25Z"}

com,example)/ {"archive.is": 0, "arquivo.pt": 0.2, "perma.cc": 0.08}

com,facebook)/* {"arquivo.pt": 0}

org,example)/a/* {"archive.is": 0, "arquivo.pt": 0.02}

org,example)/a/b/c/* {"perma.cc": 0.01}

(b) Inverted Index With the Archive Key and Density Score Collapsed in the JSON Block

Fig. 78. Variations of Inverted Indexes in UKVS Format from the Same Set of MementoMaps

the search. After ingesting all the matching records, we calculate many derived attributes

and metricses. Finally, we return a composite result as illustrated in Figure 79. This figure

includes a default routing score of 0.8 for archive.org which is not profiled and is not part

of the inverted index shown in Figure 78. The list of archives with their resulting properties

is sorted in the descending order of the routing score, as a result archive.is, which has a

matching archival voids record, is placed at the end with a “0” score.

9.3 CLASSIFIER REBORN

Classifier Reborn is an open-source classifier module written in Ruby [81]. It has a simple

implementation of a Bayesian classifier [129, 206] among a few other types of classifiers. This

module is designed to work with string input, which it converts to tokens and counts their

frequencies to perform necessary statistical calculations.

In addition to our routing score calculation approach described above, we wanted to use a

archive.org
archive.is

176

1 {

2 "lookup_uri": "http://example.org/a/b/c/d/e?x=y",

3 "lookup_key": "org,example)/a/b/c/d/e",

4 "lookup_key_length": 7,

5 "archives": [{

6 "archive": "archive.org",

7 "routing_score": 0.8,

8 "relative_routing_score": 0.588

9 }, {

10 "archive": "perma.cc",

11 "uri_key": "org,example)/a/b/c/*",

12 "uri_key_length": 5,

13 "keys_distance": 2,

14 "density": 0.01,

15 "routing_score": 0.39,

16 "relative_routing_score": 0.287

17 }, {

18 "archive": "arquivo.pt",

19 "uri_key": "org,example)/a/*",

20 "uri_key_length": 3,

21 "keys_distance": 4,

22 "density": 0.02,

23 "routing_score": 0.17,

24 "relative_routing_score": 0.125

25 }, {

26 "archive": "archive.is",

27 "uri_key": "org,example)/a/*",

28 "uri_key_length": 3,

29 "keys_distance": 4,

30 "density": 0,

31 "routing_score": 0,

32 "relative_routing_score": 0

33 }]

34 }

Fig. 79. A Sample Inverted Index Lookup Result

simple classifier that can take the certain basic features from the result of a MementoMap (or

inverted index of MementoMaps) lookup as shown in Figure 79 (e.g., lookup_key_length,

uri_key_length, keys_distance, and density) and predict whether the lookup URI is

present in the corresponding web archive. We could have used one of the many off-the-

shelf classifier implementations, but we decided to use Classifier Reborn instead as we could

177

Table 27. Datasets of Web Archival Holdings and Voids Profiles

Archive Unique URI-Rs Prevalence Holdings Keys Voids Keys

Arquivo.pt 2.0B 2.89% 14M 2.3K

Archive-It 1.9B 3.96% 13M 0.7K

UKWA 0.7B 1.18% 5.2M 0.9K

Stanford 12M 0.02% 134K 1.0K

change it more easily to fit our needs and have better understanding of its internals. In the

process we contributed a significant amount of code and documentation to improve this open-

source code repository. Our first major contribution to this repository was to overhaul its

architecture to support modular backends to store the model instead of keeping everything

in the memory of the process. We then implemented a couple of storage backends including

the process memory backend (to preserve the original behavior) and an independent Redis

backend [80]. This change allowed us to persist the trained model more easily, independent

of the lifecycle of the training and prediction process, while the model could be built and

used collaboratively by independent processes running on different hosts. Our second major

contribution was the implementation of a classifier evaluation and validation module [7].

Moreover, we modified the code for our private use to make it work with the kind of input

data we have for Memento routing.

9.4 EVALUATION

To evaluate our Memento routing models we used CDX datasets from four different

web archives of varying sizes that we have used in the previous chapters as well. In earlier

chapters we focused on establishing baselines while making sure we do not allow any false

negatives. In this chapter, we do allow false negatives to see how many requests we can safe

from being routed while giving up on some recall. We evaluated three approaches, two of

which are based on our heuristic routing score: a cut-off threshold and top-k archives and

third is a rudimentary machine learning model.

9.4.1 DATASETS

To create archival holdings profiles for Memento routing evaluation we reused the CDX

datasets from Archive-It, UKWA, and Stanford web archives that we used for evaluation in

178

Chapter 6 and from Arquivo.pt that we used in Chapter 8. When generating MementoMaps,

we used weights Wh = 4.00 and Wp = 2.0 which yielded significant accuracy with very little

relative cost (as reported in Chapter 8). However, the Stanford web archive was two orders

of magnitude smaller than the rest, so we decided to generate a more detailed profile for

this and for that we used weights Wh = 8.00 and Wp = 4.0.

We also used access logs data from Arquivo.pt to create archival voids profile that we

used in Chapter 7. To create archival voids profile we only considered URIs that were

requested at least 100 times and have always returned a “404 Not Found” response. There

were about 24,000 such URIs that turned into about 23,000 unique URI keys in the voids

profile. The reduction ratio seems poor because we did not allow any roll ups in archival

voids profiles as we wanted to make sure they are very specific (as discussed in Chapter 7).

To create the archival voids profile for the remaining three archives we used longitudinal

access logs data of our MemGator server and selected URIs for each archive that have always

returned a “404 Not Found” response. These archival voids profiles are smaller in size than

the one for Arquivo.pt because our MemGator server receives a relatively smaller amount

of traffic than the Arquivo.pt server. When creating these archival voids profiles we took

a conservative approach to select only high-frequency (> 100) URI-Rs and prevented them

from getting rolled up in smaller URI keys to make sure they do not produce any additional

false negatives.

Usage-based profiles generally boost accuracy significantly, but are likely to produce an

increasing number of false negatives over time. This behavior was observed by Klein et

al. [162]. Our own data in Table 15 of Chapter 7 (on Page 129) suggests the same as it

shows more than 5% increase in “200 OK” responses during a period of three and a half

years from URI-Rs that were returning “404 Not Found” responses in the past. This means

a stale usage-based profile (based on access logs) may produce false negatives for these.

Moreover, periodic attempts to recreate archival voids profiles from the updated access logs

may introduce new keys to the voids profile (for URIs that are gaining popularity, but are

not present in the archive), but will not be helpful in removing existing keys as those were

not requested due to their presence in the voids profile (i.e., a cyclic dependency issue).

Archival voids profiles should ideally be created by the archives themselves (as discussed in

Chapter 7), but if an aggregator decides to create these based on its past observations then

it should use some reliable techniques to update the voids profiles frequently. Below are a

couple of ways to achieve this:

• Periodically poll each archive for URIs that constituted their corresponding archival

179

Table 28. Archival Holdings of Primary Targets

Archive Primary Target Holdings %

Arquivo.pt *.pt 61.42

Archive-It *.{edu,gov} 12.20

UKWA *.uk 98.95

Stanford *.stanford.edu 0.90

voids profiles (this requires bookkeeping of complete URIs, not just the rolled up URI

keys).

• Continuous updates by allowing a small percentage of requests to hit the archive, even

if the lookup URIs had a matching URI key prefix in the voids profile of an archive.

We randomly sampled one million unique URIs from our longitudinal MemGator access

logs to create a sample lookup dataset. We annotated these sample lookup URIs with their

presence or absence in each of the four archives. We also annotated these lookup URIs

with their number of occurrences in MemGator logs. These one million URIs collectively

appeared more than 1.6 million times in MemGator access logs. The prevalence of these

lookup URIs is below 4% in any individual web archive and as low as 0.02% in the smallest

one and about 7.9% of these sample URIs are present in at least one archive. This low

prevalence means the overlap of what people look for in web archives and what is being

archived is small, which means profiling web archives for Memento routing is important.

While MemGator’s access logs are not necessarily representative of what is being accessed

from each web archive individually, we chose this dataset for evaluation because Memento

routing is needed for Memento aggregators, not for individual web archives. Moreover,

in Chapter 6 we used four different lookup URI datasets and found that the maximum

prevalence was not significantly different from this.

Using these datasets as our gold standard we evaluated our routing score and classifier

models for Memento routing. A summary of this dataset is shown in Table 27.

9.4.2 COLLECTION DIFFUSION

Table 28 shows the primary target URI space of each archive and the percentage of

holdings that belong to their primary scopes. Arquivo.pt was founded with the aim to

180

Table 29. Recall, Accuracy, and Request Cost of Various Baseline Routing Policies (With

“R” lookup requests to a Memento aggregator of “N ” web archives)

Policy Recall Accuracy Request Cost

Random-1 0.276 0.02 R

Random-2 0.531 0.02 2R

Top-1 0.918 0.07 R

Top-2 0.987 0.04 2R

Broadcast 1.000 0.02 N ·R

preserve web content of interest to the Portuguese community [117], but we see that about

40% of their collection belongs to URIs other than “.pt” TLDs. Archive-It is a subscription-

based web archiving service with its primary customers being educational institutions and

libraries. We would assume that they would primarily focus on collecting URIs from “.edu”

and “.gov” TLDs. However, only about 12% of their URIs belong to these TLDs while

containing about 55% and 20% of “.com” and “.org”, respectively. Among all these web

archives we used for evaluation, UKWA has the tightest collection policy, but even that

has over 1% of leakage of TLDs other than its primary scope (i.e., “.uk”). Stanford has

a small collection of web pages archived by the University. We would assume that their

collection will focus on their university URIs (i.e., *.stanford.edu). However, we found

less than 1% prevalence of such URIs in their collection while 52% and 28% of “.com” and

“.gov” TLDs, respectively. It is worth noting that their collection might have changed over

time as the dataset we have was transferred to us when their archive was only one year

old. These findings reinforce assessment that web archival collections diffuse over time and

simple TLD-based Memento routing is insufficient.

9.4.3 BASELINE ROUTING

There are about 79,000 sample lookup URIs that are present in at least one archive.

Table 29 illustrates recall and request cost if an aggregator decides to poll from only a few

archives for each lookup request. In the case of broadcasting the recall is 100%, but it comes

with a cost of “N · R” requests (where “R” is the number of lookup requests received by

a Memento aggregator and “N ” is the number of upstream web archives it is aggregating

from). The Accuracy in Table 29 is poor (between 2% and 7%) for all policies because in

181

this routing method the routing score does not determine how many archives will be polled

for a given lookup request, or in other words, we do not attempt to identify true negatives.

Since prevalence of lookup dataset in each archive is small, false positives would be high.

Moreover, very few URIs are present in more than one archives so a higher value of k would

increase the wastage.

If an aggregator randomly selects “k” archives (i.e., random-k) for each lookup request

(to reduce the request cost to “k ·R”) and each lookup URI is present in exactly one of the

“N ” archives, then the theoretical recall value would be “k/N ”. Our experimental results in

Table 29 confirm this, but our recall values are slightly higher than the theoretical estimate

because a small percentage of our sample lookup URIs is present in more than one archives

(though these overlaps are small, as shown in Figure 7 of Chapter 1 on Page 11).

When we selected only the topmost archive based on the routing score for each of these

lookup URIs we missed 8.23% of these, but when we selected the top-2 archives we only

missed 1.31%. While these results are promising, top-k approach should not be used in

isolation because it will generate many false positives for those URIs that are not present

in any archive. To avoid the bulk of those false positives while still leveraging the top-k

approach an application should in conjunction use a low cut-off threshold for the routing

score. Another point to note when deciding the value of k for the top-k approach for

Memento routing is whether an application is looking for some, most, or all good results as

a smaller k would cover fewer good results.

9.4.4 HEURISTIC ROUTING

We started by combining MementoMaps (both holdings and voids) from all of the four

web archives into a single inverted index. By doing so the number of records dropped from

about 32 million (all MementoMap lines combined) to about 25 million unique URI keys

(i.e., about 22% reduction). During this process we also converted frequency values (in

this case, URI-M counts) of MementoMaps to corresponding density scores as described in

Section 9.2.1.

After that we calculated the routing score for each of the one million sample lookup

URI against each of the four web archives using the model described in Section 9.2.3 and

annotated sample URI dataset with these scores. Since we already annotated each sample

URI with its presence or absence information in each archive in the process of gold dataset

creation, we only needed to evaluate how effective these routing scores are at minimizing

false positives and false negatives (i.e., maximizing accuracy while keeping a reasonably

182

Table 30. Recall, Accuracy, and Request Saving With the Heuristic Routing Score Threshold

on Holdings and Voids Profiles

Holdings Only With Voids

Archive Threshold Recall Accuracy Savings % Accuracy Savings %

≥ 10−1 0.894 0.903 89.40 0.964 94.72

Arquivo.pt ≥ 10−2 0.933 0.825 80.92 0.857 86.83

≥ 10−3 0.991 0.638 64.61 0.681 71.97

≥ 10−1 0.881 0.929 91.33 0.948 96.11

Archive-It ≥ 10−2 0.916 0.838 84.06 0.879 90.94

≥ 10−3 0.972 0.680 70.17 0.727 76.42

≥ 10−1 0.843 0.874 88.94 0.889 93.28

UKWA ≥ 10−2 0.882 0.793 81.00 0.812 87.19

≥ 10−3 0.912 0.607 63.82 0.648 71.85

≥ 10−1 0.809 0.802 85.38 0.819 89.14

Stanford ≥ 10−2 0.867 0.675 70.96 0.701 77.88

≥ 10−3 0.898 0.586 63.22 0.603 69.63

good recall) when we choose different cut-off thresholds for Memento routing.

In Table 30 we show our routing evaluation results. In this table we have three different

cut-off points (i.e., 10−1, 10−2, and 10−3) for the routing score for each web archive. If

a lookup URI in the gold dataset has a routing score above the cut-off threshold for any

archive, we consider that lookup to be routed to that archive. The Accuracy value represents

how many of the one million lookup URIs we have correctly identified to be present in or

absent from the corresponding archive with the given threshold. The Recall value shows

how many of the URIs present in an archive were routed to that archive. A Recall value

of 0.9 would mean that we missed 10% of the URIs that were present in an archive (i.e., a

10% false negatives).

The Savings column represents the percentage of 1.6 million MemGator requests (that

include repetitions of the one million unique lookup URIs we chose for our gold dataset)

that would have been avoided from being routed. When the prevalence is small the value of

request savings should be very close to the accuracy value because in that case true negatives

play the most significant role in deciding what lookups should not be routed. However, if

183

the popularity of request URIs is not uniformly distributed in FP, FN, TP, and TN then

depending on the access pattern the savings percentage can be different.

There are two sets of results in this table, one pair of Accuracy and Savings represents

routing with only the archival holdings profiles and the other pair is for the case where we

combined both holdings and voids profiles for each archive. The Recall value remains the

same for both the cases as we created archival voids profile with strict conditions that do not

produce any additional false negatives. With the inclusion of archival voids profile we get

a more significant increase in Savings than in Accuracy because for archival voids profiling

we have used URIs that are requested more frequently (i.e., once correct true negative

identification affects multiple requests).

We see an inherent trade-off between Accuracy and Recall. For example, in the case of

Arquivo.pt, if we allow about 11% reduction in recall we can get an accuracy of about 96%

that would save over 94% of our lookup requests. However, if we increase the recall to about

99%, the accuracy goes down to about 64% with only about 60% savings in lookup routing.

Archive-It had slightly better prevalence, so we would expect better routing scores for it, but

Arquivo.pt had a larger archival voids profile, which has likely increased its scores. The poor

recall in UKWA and Stanford archives was due to their significantly low prevalence. These

results show a significant improvement over LANL’s classifier-based routing that produced

a recall of 0.73 with many wasted requests [162].

Moreover, we learned that an application should use different cut-off threshold for dif-

ferent archives based on how detailed their profiling is and how large the archive is. Alter-

natively, a weighted normalized relative routing score can be used to achieve similar effects.

9.4.5 MACHINE LEARNING-BASED ROUTING

In this technique of we did not use our heuristic routing score, closenessscore, or any

cut-off thresholds. Instead, we fed lookup_key_length, uri_key_length, keys_distance,

and density metrics as returned from our inverted index lookup (as shown in Figure 79)

and the ground truth from the gold dataset to our Classifier Reborn implementation and

allowed it to build a statistical Bayesian classifier model. We built these models for each web

archive individually as well as a combined one that leverages data from all the web archives.

Finally, we performed a 10-fold cross-validation in which the gold dataset is partitioned in

ten equal parts, then nine parts are used for train and one part is set aside for testing, this

process is rotated for all ten possible combinations and a combined report is generated.

In Table 31 we show our routing evaluation results based on our Machine Learning model.

184

Table 31. Recall, Accuracy, and Request Savings in Machine Learning-Based Routing

Archive Recall Accuracy Savings %

Arquivo.pt 0.863 0.978 96.22

Archive-It 0.844 0.941 94.92

UKWA 0.629 0.933 94.11

Stanford 0.535 0.968 95.27

Combined 0.827 0.948 95.73

The overall pattern we see in these results is that the accuracy is better than our heuristic

approach, but the recall is significantly poorer. For the smallest archive with the lowest

prevalence we missed over 46% of the URIs that were present in the Stanford archive while

the accuracy was almost 97%. This is not surprising because there were only about 0.02%

lookup URIs dataset that were present in the Stanford web archive. As a result the model

was biased towards predicting almost every request to be not present in the archive while

still having good a accuracy score. Apparently, we cannot learn “a cat” without learning “not

a cat”. It will be a good future work to see how various machine learning models perform

on Memento routing using our input features when they are trained on a dataset that has

a better prevalence.

Finally, we combined the input data for every lookup URI and web archive pair to train a

generic model. We found that it performed well even for those archives with low prevalence,

though the recall was still below 83%.

9.5 CHAPTER SUMMARY

In this chapter we addressed our third research question, “RQ3: How to utilize archive

profiles for the routing of URI lookup requests? ” We combined what we learned in the last

three chapters and put them to work. We first revisited what Memento aggregation and

Memento routing mean, why they are important, and where MementoMap framework fits

in the ecosystem.

We described our methodology in which we introduced and defined three different scores

density (a normalized transformation of the frequency), closeness (a measure of how similar

two URI keys are), and routing score (a means to estimate whether a lookup URI is present

in an archive). Then we described inverted index with examples and illustrated how we can

185

use it to combine multiple MementoMaps for efficient binary searching in a file on disk. We

described how the lookup is preformed in MementoMaps (or inverted index) and how the

results are prepared for downstream consumption.

We described our external open-source contributions to Classifier Reborn, a machine

learning module written in Ruby, and how we customized and used it for our work. Our

contributions included a significant overhaul of its architecture, a brand new evaluation and

validation component, and documentation.

Finally, we evaluated Memento routing using our MementoMap framework. We first

described the gold dataset we prepared that consists of MementoMaps of four different web

archives and one million unique URI samples from our MemGator’s longitudinal access logs.

We illustrated a significant diffusion of URI scope in different web archives, which concludes

that a simple TLD-based routing is not adequate. We found that using the heuristic routing

score threshold technique we can achieve over 96% accuracy if we accept about 89% recall

and for a recall of 99% we managed to get about 68% accuracy, which translates to about

72% saving in wasted lookup requests. Moreover, when using top-k archives for routing and

choosing only the topmost archive, we missed only about 8% of the sample URIs that are

present in at least one archive, but when we selected top-2 archives, we missed less than

2% of these URIs. We also evaluated a machine learning-based routing approach, which

resulted in an overall better accuracy, but poorer recall due to low prevalence of the sample

lookup URI dataset in different web archives.

186

CHAPTER 10

CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS

Due to the inherent nature of the web and web crawlers, as web archives grow larger over

time, their collections get dispersed, despite tightly controlled collection policies (cf. Figure 8

on Page 12). As a result, it becomes difficult to describe their holdings in the URI space,

even if at first glance it would seem trivial for national archives to correspond to their

respective TLDs (e.g., .pt for Arquivo.pt and .uk for UK National Library). In this work

we established the MementoMap framework to tackle this problem space.

In this chapter we summarize major contributions of our archive profiling work and

related publications in the form of algorithms, software, tools, datasets, and specification

drafts. Furthermore, we discuss potential future research and development based on the

foundational framework laid out by this work. Finally, we conclude this work by summa-

rizing all the previous chapters and stating take away findings.

10.1 CONTRIBUTIONS

Our contributions include many components that were essential for this work as well as

some by-products that were created to help our research process. Many of our contributions

have the potential to be leveraged in the future while some of our tools have already been

utilized by others.

10.1.1 ALGORITHMS

We introduced the Random Searcher Model (RSM) to discover samples of holdings of web

archives [30]. This algorithm utilizes fulltext search interface of web archives (if available) to

query the archive with a set of keywords and collects resulting URIs that are present in the

archive. Our system works with or without a static set of search keywords as a representative

set of search keywords might not be available for certain languages and disciplines that

the archival holdings belong to. We have described RSM in detail in Chapter 6 under

Section 6.4.1. Our algorithm yielded a routing accuracy of 0.8 with a recall of 0.9 after

discovering only 10% of the archival holdings.

To generate MementoMaps from a large list of URIs we introduced a space and time

efficient algorithm [32]. Our algorithm takes a stream of sorted list of URIs (in SURT form)

187

and yields a MementoMap based on the configuration options in a single pass. The algorithm

requires a constant (and small) amount of memory to operate, irrespective of the size of

the input. The same algorithm can be used to compact down an existing more detailed

MementoMap into a smaller and less detailed one by adjusting configuration parameters.

Moreover, the algorithm can also be used to merge multiple MementoMaps into one that

were either created in parallel or updated incrementally. We have described the algorithm

in detail in Chapter 8. Our algorithm produced MementoMaps that have an accuracy of

>0.6 with a relative cost <1.5% while producing zero false negatives (i.e., a recall of 1).

10.1.2 TERMINOLOGY AND METRICS

During our research we needed many terms to describe things and many metrics for

evaluations. We reused existing terms and metrics when we found something suitable, but

described and defined a few new ones:

• URI Key – We extended SURT with the wildcard support to describe subtrees of

the URI space in the form of URI prefixes.

• Archival Holdings – A measure to describe holdings of an archive.

• Archival Voids – A measure to describe what an archive is missing.

• Relative Cost – The ratio of the number of URI keys used to describe summarized

holdings of an archive over the total number of unique URI-Rs in the archive.

• Frequency Score – A means to represent the number of URI-Ms and/or URI-Rs

under a URI key.

• Density Score – A normalized score derived from the frequency score to describe the

archiving activity under a URI key.

• Closeness Score – A normalized score to describe how similar or different two URI

keys are.

• Routing Score – A normalized score to represent how likely it is that an archive has

a URI.

188

10.1.3 SOFTWARE/TOOLS

During our research on this archive profiling work we developed many tools to aid our

research process and/or as part of our deliverables. We discussed these in Chapter 5 and

outlined their functional role in the web archiving ecosystem. Below is a list of various

significant tools and software that we released publicly. However, this is not a comprehensive

list of all the software/tools/scripts we have created during this work.

• InterPlanetary Wayback (IPWB) – A novel archival replay system based on

IPFS [152, 20, 23, 22, 19].

• Reconstructive – A client-side URL rerouting and archival banner injection Service-

Worker script [21, 24, 17].

• MemGator – A portable Memento aggregator CLI and server [27, 10].

• Random Searcher – A script to sample holding of web archives via fulltext search

(an implementation of our RSM algorithm) [30, 6].

• AccessLog Parser – A web server access log parser with added features for web

archives [5].

• Archive Profiler – A set of script to generate URI keys, profile web archives, and

analyze their holdings [6].

• MementoMap – A tool and module to generate, manage, and utilize MementoMaps

(archive profiles) in the UKVS serialization format (an implementation of our single-

pass MementoMap generation algorithm) [32, 9].

• Classifier Reborn – A Ruby implementation of Naive Bayes classifier (it is not our

original software, but we contributed extensively to its development and overhaul) [81,

7].

10.1.4 DATASETS

To evaluate our work we collected different types of datasets from various sources as

outlines below:

• WARC and/or CDX files from a few different web archives

189

• Access logs from a few web archives and Memento aggregators

• Longitudinal access logs from our own MemGator service with response behavior of

each upstream archive that we aggregate results from

• Historical list of URIs extracted from DMOZ and Reddit

• List of words from different sources

• List of public domain suffixes

We wrote many scripts to process these datasets to clean/fix malformed records, filter

unwanted entries, and create derivative datasets. Some data sources (e.g., Arquivo.pt,

Archive-It, Stanford Web Archive, and the UK Web Archive) granted us with exclusive

access to their datasets. We plan to make some of our original and/or derived datasets

available in the future as we get permission from the upstream providers to share them

publicly.

10.1.5 SPECIFICATIONS

Our work yielded a file format specification draft called Unified Key Value Store (UKVS)

as described in Chapter 8. It is the file format we use to serialize MementoMaps for dis-

semination. This format is an evolution of a prior file format specification of ours called

CDXJ, which was fusion of CDX and JSON formats with added support for metadata. It is

an extensible and flexible and friendly file format to work with traditional Unix command

line text processing tools.

To make IPWB (our archival replay system) truly decentralized, we created an early draft

of a history-aware name resolution system for IPFS called IPNS Blockchain. We proposed

two potential approaches to add history component to IPNS (the naming system form IPFS).

One of our approaches requires a Blockchain to function while the other approach works

with centralized immutable database that is publicly audited.

10.2 FUTURE WORK

The concept of URI Key we introduced in the form of a SURT prefix, both based on the

static profiling policies we introduced in Chapter 6 and dynamic roll up with the wildcard

we introduced in Chapter 8, can be used in many places where a set of URIs needs to be

190

summarized structurally. Another potential use case of this concept is in creating a URI

diversity measure for a web collection [196, 13].

The concept of Archival Voids we introduced in Chapter 7 can be further investigated

as a crawl quality measure. For example, if a crawler job is initiated with a set of seed URIs

and is configured to collect resources within certain scopes (e.g., all the URIs under .gov

and .mil TLDs) then it is desired to know how well the configured scopes were crawled and

how many resources were missed.

The UKVS file format we introduced in Chapter 8 has many potential applications in the

web archiving ecosystem and beyond where a lookup key is used to retrieve associated values.

It would be worth investigating the impact of using a unified solution for MementoMap,

archival indexing, annotations, access control, archival fixity, etc. Furthermore, independent

parser libraries need to be created for the file format in various programming languages to

make it easier to work with this file format.

In this work we have laid out the foundation for multi-faceted archive profiles that

contain more than one dimension (e.g., URI, language, and date range) in their lookup

keys. However, we have only evaluated our work for routing efficiency based on URIs, which

is the readily available and the most useful facet for our primary application. There is a

potential research opportunity to explore profiling based on different permutations of these

facets to identify sources of additional routing accuracy gains and application where these

facet permutation can be useful.

In all of our evaluations under Chapters 6, 7, and 8 we took the conservative approach

to not allow any false negatives (i.e., we maintain a 100% recall) to establish the baseline.

We believe that the accuracy can be increased by allowing a small amount of false negatives

as it would reduce the more prevalent false positives. However, this hypothesis needs to be

evaluated in a future work. It is worth noting that the cost of false positives affects the

infrastructure while the cost of false negatives affects users, and for this reason we chose not

to allow any false negatives in our baseline evaluations.

In our evaluations we reported relationship between Accuracy and Recall value pairs. We

noted the inherent tradeoff between the two, as an increase in one value cause decrease in the

other. This allows the consumer of MementoMaps to choose between optimizing their system

for either false negatives or false positives to justify their operational cost or application

needs. However, there is a future research opportunity of cost-sensitive learning where

these scores can be combined into one metric by assigning different weights to them [98].

Furthermore, cost-sensitivity can be applied at the level of individual archives to cooperate

191

with their differential capacities. For example, if an archive is resourceful enough to handle

extra traffic, we may want to allow more false positives to minimize false negatives. On the

other hand, we can assign larger weights to the Accuracy in the case of smaller archives to

allow them to flourish without the increased burden.

In Chapter 8 we used weight-based configurations that control how to roll up a branch

of a URI tree. There is a potential research opportunity to explore other policies and

methodologies to determine when to roll a branch up. We believe that such exploration

may yield in better routing accuracy, especially, if it is informed by the external knowledge

of the distribution of URIs on the web under different domain public suffixes or TLDs.

In Chapter 9 we defined a routing score metric and used it with heuristically determined

threshold values for the routing decision. We also used the Naive Bayes classifier to make

the routing decision as an alternate approach. We found that the classifier was biased

toward Accuracy at the cost of poor Recall due to low prevalence. One potential approach

to mitigate this issue would be to use the Bayesian method to get a probability score and use

it in place of the routing score to be able to adjust the balance between FPs and FNs rather

than relying on the classifier to make the routing decision. Moreover, there is a scope of

trying other classification techniques and deep learning systems on the data that is returned

from our MementoMap inverted index lookup to see if the routing decision can be improved.

By virtue of the Memento API, Memento aggregators can be chained in a hierarchy. This

means we can have multiple Memento aggregator instances at different locations or with

different policies that aggregate a subset of all the web archives. This means any one instance

would be responsible for creating and maintaining MementoMaps of only a small number

of web archives. These aggregators can then be used independently and/or aggregated by a

larger aggregator. It will be a good future work to explore the potential of such hierarchical

federated Memento aggregation architecture while leveraging the MementoMap framework

for profiling web archives at each level.

Many web archives are creating event-specific collections. However, these collections

usually do not contain a standardized metadata that allows cross-archive search in collec-

tions. Our MementoMap framework in this work is primarily based on lookup URIs. It will

be useful to explore options to enable cross-archive collection discovery and browsing. We

think MementoMap has the potential to allow such extensions in the future as it does not

restrict the key fields to be URIs.

We would like to work towards the adoption of the MementoMap framework by public

web archives. This would require development of more libraries and integration with many

192

existing archiving systems. Once the adoption reaches a critical mass, we can work towards

finalizing the standardization process and register the mementomap link relation and well-

known URI in the IANA registry.

10.3 CONCLUSIONS

In Chapter 1 we briefly introduced the web archiving discipline and related terminology

(e.g., Memento) that were necessary to understand the problem space this work addresses.

Then with the help of some real life examples, we highlighted the need of aggregating archives

to address issues like limited coverage of the web in any single web archive, censorship of web

archives, transient errors and attacks, lack of timely captures of important events, potentially

unintentional exclusions, a means for the validity and fixity, and the lack of variety in

mementos. Then, we demonstrated the significance of aggregating small archives by showing

the little overlap among archives and some unique resources that are only captured by small

focused archives. Furthermore, we described the usefulness of understanding the holdings of

various web archives by creating their archive profiles (or MementoMaps). Using a real life

example of an incident, we demonstrated how broadcasting lookup requests from Memento

aggregators can be wasteful and problematic. Finally, we established our three primary

research questions:

• RQ1: How to learn about the holdings and voids of an archive?

• RQ2: How to build an archive profile that will best summarize an archive’s hold-

ings/voids and allow for dissemination and exchange?

• RQ3: How to utilize archive profiles for the routing of URI lookup requests?

In Chapter 2 we provided necessary background information about various related ter-

minologies to help readers understand the problems this work is addressing as well as their

solutions.

We covered topics including HTTP and its components, access logs, web archiving,

web archives, collection policies, Memento and related terminologies such as TimeGate and

TimeMap, HTTP status codes in the context of web archives, Memento Aggregators, URIs

and their transformations such as normalization/canonicalization and SURT, file formats like

WARC, WAT, WANE, WET, CDX, and, CDXJ, syndication protocols like RSS/Atom feed,

Sitemaps, robots.txt, and well-known URIs, and Inverted Indexes. We included necessary

193

illustrations for each terminology and established the purpose, relevance, and usefulness of

each in the context of this work.

In Chapter 3 we reviewed published scholarly literature in various related areas. We

covered many topics including surface web, deep/hidden web, dark web, focused crawling,

textual database summarization, on-premise indexing, search form detection, query routing,

Bloom filters, size of search engine indexes, size of the indexable web, archival coverage of the

web, the web that cannot be archived by public web archives, public and private web archive

integration, large-scale web archive indexing, and initial efforts on Memento routing via both

content-based and usage-based profiles. In each section of this chapter we established the

relevance of prior work with our work and any shortcomings that we need to address.

In Chapter 4 we outlined our MementoMap framework, described our three primary

research questions in detail, and established the evaluation plan. We described three ma-

jor components of the framework parallel to corresponding research questions. We briefly

introduced various statistical measures for evaluation such as cost, accuracy, freshness, and

efficiency.

In Chapter 5 we described various open-source tools, libraries, and scripts we built during

our research as part of our deliverables and to help our research process. Some of our open-

source tools have been utilized in other research and development works by many other

people beyond the scope of archive profiling.

In Chapter 6 we addressed the first part of the RQ1 to explore ways to describe archival

holdings. We outlined four approaches of learning an archive’s holdings:

1. CDX Profiling

2. Fulltext Search Profiling

3. Sample URI Profiling

4. Response Cache Profiling

We described the data structure of archive profiles, defined the term URI-Key, and

outlined numerous profiling policies with varying levels of details and generation methods.

Moreover, we described relevant statistical measures and summarized various datasets that

we collected for evaluation. We evaluated the overlap among archives, growth of profiles

with different policies, and their cost vs. routing efficiency. We found that the growth of the

profile with respect to the growth of the archive follows Heaps’ law, but the values of free

parameters are archive-dependent. With accuracy defined as correctly predicting that the

194

requested URI-R is present or not present in the archive, we gained about 78% routing ac-

curacy with less than 1% relative cost and 94% routing accuracy with less than 10% relative

cost without any false negatives. The registered domain profile doubles the routing precision

with respect to the TLD-only profile, while a profile with complete hostname and one path

segment gives ten fold routing precision. For fulltext search profiling we then introduced

our contribution called RSM. We described its data structure, policies, operation modes,

procedures, and reference implementation. Finally, we evaluated the routing efficiency of

profiles created using RSM and concluded that the DDom profile (that has less than 1%

cost as compared to the URIR profile) can have about 0.9 Recall while correctly routing (or

not routing) more than 80% of the URIs by only knowing 10% of the archive.

In Chapter 7 we addressed the second part of the RQ1 to explore ways to describe

archival voids. We defined and discussed Archival Voids and established a means to represent

portions of URI spaces that are not present in web archives. We illustrated how archival

voids and archival holdings interact with each other in a hierarchical manner to describe

holdings and voids in more specific portions of the URI spaces. We discussed various sources

of truth that can be used to create archival voids profiles. For evaluation we used access

logs from Arquivo.pt for which we first described access patterns and surfaced various corner

cases that were present in it. We discussed prevalent Soft-404 TimeMaps in the access logs

for many years, and techniques we used to remedy that in order to make a more meaningful

analysis of the dataset. We discussed the distribution of HTTP response status codes in

the access logs and reported how these status codes changed over time for various URIs.

We evaluated the routing accuracy against various archival voids profiles created from these

access logs and found that we could have avoided more than 8% of the false positives (on

top of the accuracy we got from archival holdings profile as discussed in Chapter 6) if

Arquivo.pt were to provide an archival voids profile based on URIs that were requested

hundreds of times and never returned a success response. Finally, we discussed who should

create archival voids profile and provided some guidelines based on our understanding.

In Chapter 8 we addressed RQ2 to explored serialization and dissemination methods

of archive profiles. We first described UKVS, the file format we use for serialization of

MementoMaps. We illustrated a list of a sorted SURTs with wildcards and organized them

in a tree to elaborate on the structure of URI-Keys. We then described various structures

and attributes of MementoMap files suitable for different application needs. We described

our single-pass efficient algorithm for generation and compaction of MementoMaps and a

reference implementation of it along with binary search in file on disk. Then we described a

195

few standard means of disseminating generated MementoMaps by archives or third parties.

To evaluate the serialization format we used and its effectiveness, we measured overlap of

archived resources in Arquivo.pt against accessed resources by MemGator. We analyzed

holdings of Arquivo.pt in detail and the shape of their URI tree. Finally, we compared the

cost and routing accuracy of these MementoMaps and found that a MementoMap of less

than 1.5% Relative Cost can correctly identify the presence or absence of 60% of the lookup

URIs in the corresponding archive without any false negatives.

In Chapter 9 we addressed RQ3 in which we combined profiles of various web archives

and routed Memento lookup queries to suitable archives. We described our methodology

in which we introduced and defined three different scores: density, closeness, and routing.

Then we described inverted index and how we used it to combine multiple MementoMaps

for efficient binary searching and reported results. We described our significant external

open-source contributions to Classifier Reborn. We illustrated a significant diffusion of URI

scope in different web archives, which concludes that a simple TLD-based routing is not

adequate.

Finally, we evaluated our Memento routing models and found that using the routing

score threshold technique we can achieve over 96% accuracy if we accept about 89% recall

and for a recall of 99% we managed to get about 68% accuracy, which translates to about

72% saving in wasted lookup requests. Moreover, when using top-k archives for routing and

choosing only the topmost archive, we missed only about 8% of the sample URIs that are

present in at least one archive, but when we selected top-2 archives, we missed less than 2%

of these URIs. We also evaluated a machine learning-based routing, which resulted in an

overall better accuracy, but poorer recall due to low prevalence of the sample lookup URI

dataset in different web archives.

To summarize, we began our work by identifying serious issues related to Memento

aggregation and Memento routing, a niche yet important field, that was not explored well.

We performed thorough research by quantifying the scale of the problems, assessing their

impacts, identifying potential approaches to solve them, and evaluating those approaches.

We introduced a novel framework called MementoMap as a deliverable of our research,

which allows a flexible and scalable means to summarize and express holdings and voids of

web archives. The primarily purpose of the framework is to make Memento routing more

efficient, but it can be useful in many other applications. We reported promising results as

part of our evaluations, and we hope that these results will encourage practitioners in the

web archiving community to adopt the MementoMap framework to allow new players to

196

flourish while maximizing the yield for the end users. We hope that numerous algorithms,

terminologies, metrics, specification, datasets, and software tools we produced as part of

our work will inform future research works in related fields and be useful in many services

and applications.

197

REFERENCES

[1] Eugene Agichtein and Luis Gravano. 2003. Querying Text Databases for Efficient

Information Extraction. In Proceedings of the 19th International Conference on Data

Engineering (ICDE ’03), 113–124. doi: 10.1109/ICDE.2003.1260786.

[2] Eugene Agichtein, Panagiotis Ipeirotis, and Luis Gravano. 2003. Modeling Query-

Based Access to Text Databases. In International Workshop on Web and Databases

(WebDB ’03), 87–92.

[3] Scott Ainsworth, Ahmed Alsum, Hany SalahEldeen, Michele C. Weigle, and Michael

L. Nelson. 2011. How Much of the Web Is Archived? In Proceedings of the 11th

ACM/IEEE Joint International Conference on Digital Libraries (JCDL ’11), 133–

136. doi: 10.1145/1998076.1998100.

[4] Reem Al-Masri and James Cain. 2017. In Jordan, the ‘Invisible Hand’ Blocks Internet

Archive. https://www.7iber.com/technology/the-invisible-hand-blocks-

internet-archive/. (2017).

[5] Sawood Alam. 2019. AccessLog Parser and CLI. https://github.com/oduwsdl/

accesslog-parser. (2019).

[6] Sawood Alam. 2014. Archive Profiler: Scripts to Generate Profiles of Various Web

Archives. https://github.com/oduwsdl/archive_profiler. (2014).

[7] Sawood Alam. 2017. Classifier Validation. https : / / jekyll . github . io /

classifier-reborn/validation. (2017).

[8] Sawood Alam. 2016. Memento: Help Us Route URI Lookups to the Right Archives.

https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-

route-uri-lookups-to-the-right-archives/. (2016).

[9] Sawood Alam. 2019. MementoMap: A Tool to Summarize Web Archive Holdings.

https://github.com/oduwsdl/MementoMap. (2019).

[10] Sawood Alam. 2015. MemGator: A Memento Aggregator CLI and Server in Go.

https://github.com/oduwsdl/MemGator. (2015).

[11] Sawood Alam. 2019. Portuguese Archive MIME Types Count. https : / / gist .

github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b. (2019).

https://doi.org/10.1109/ICDE.2003.1260786
https://doi.org/10.1145/1998076.1998100
https://www.7iber.com/technology/the-invisible-hand-blocks-internet-archive/
https://www.7iber.com/technology/the-invisible-hand-blocks-internet-archive/
https://github.com/oduwsdl/accesslog-parser
https://github.com/oduwsdl/accesslog-parser
https://github.com/oduwsdl/archive_profiler
https://jekyll.github.io/classifier-reborn/validation
https://jekyll.github.io/classifier-reborn/validation
https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-route-uri-lookups-to-the-right-archives/
https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-route-uri-lookups-to-the-right-archives/
https://github.com/oduwsdl/MementoMap
https://github.com/oduwsdl/MemGator
https://gist.github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b
https://gist.github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b

198

[12] Sawood Alam. 2019. Portuguese Archive Status Codes Count. https : / / gist .

github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0. (2019).

[13] Sawood Alam. 2020. Seed Analyzer. https : / / github . com / oduwsdl / seed -

analyzer. (2020).

[14] Sawood Alam. 2019. Unified Key Value Store (UKVS). https://github.com/

oduwsdl/ORS/blob/master/ukvs.md. (2019).

[15] Sawood Alam. 2018. Web ARChive (WARC) File Format. https : / / www .

slideshare.net/ibnesayeed/web-archive-warc-file-format. (2018).

[16] Sawood Alam. 2020. Web Archives Size. https://github.com/ibnesayeed/web-

archives-size. (2020).

[17] Sawood Alam and John A. Berlin. 2017. Reconstructive: A ServiceWorker for Client-

Side Reconstruction of Composite Mementos. https : / / oduwsdl . github . io /

Reconstructive/. (2017).

[18] Sawood Alam, Charles L. Cartledge, and Michael L. Nelson. 2014. Support for Var-

ious HTTP Methods on the Web. Technical report arXiv:1405.2330.

[19] Sawood Alam and Mat Kelly. 2016. InterPlanetary Wayback: Peer-to-Peer Perma-

nence of Web Archives. https://github.com/oduwsdl/ipwb. (2016).

[20] Sawood Alam, Mat Kelly, and Michael L. Nelson. 2016. InterPlanetary Wayback: The

Permanent Web Archive. In Proceedings of the 16th ACM/IEEE-CS Joint Conference

on Digital Libraries (JCDL ’16), 273–274. doi: 10.1145/2910896.2925467.

[21] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2017. Client-

Side Reconstruction of Composite Mementos Using ServiceWorker. In Proceedings of

the 17th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’17), 237–240.

doi: 10.1109/JCDL.2017.7991579.

[22] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. InterPlan-

etary Wayback: A Distributed and Persistent Archival Replay System Using IPFS.

DWeb Summit ’18. (2018).

[23] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. Inter-

Planetary Wayback: The Next Step Towards Decentralized Web Archiving. IPFS

Lab Day ’18. (2018).

https://gist.github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0
https://gist.github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0
https://github.com/oduwsdl/seed-analyzer
https://github.com/oduwsdl/seed-analyzer
https://github.com/oduwsdl/ORS/blob/master/ukvs.md
https://github.com/oduwsdl/ORS/blob/master/ukvs.md
https://www.slideshare.net/ibnesayeed/web-archive-warc-file-format
https://www.slideshare.net/ibnesayeed/web-archive-warc-file-format
https://github.com/ibnesayeed/web-archives-size
https://github.com/ibnesayeed/web-archives-size
https://oduwsdl.github.io/Reconstructive/
https://oduwsdl.github.io/Reconstructive/
https://github.com/oduwsdl/ipwb
https://doi.org/10.1145/2910896.2925467
https://doi.org/10.1109/JCDL.2017.7991579

199

[24] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. Unobtru-

sive and Extensible Archival Replay Banners Using Custom Elements. In Proceedings

of the 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’18), 319–

320. doi: 10.1145/3197026.3203881.

[25] Sawood Alam, Ilya Kreymer, and Michael L. Nelson. 2015. Object Resource Stream

(ORS) and CDX-JSON (CDXJ) Draft. https://github.com/oduwsdl/ORS. (2015).

[26] Sawood Alam and Michael L. Nelson. 2019. CS 431/531 Web Server Design: A Course

to Develop a Standard Compliant HTTP Web Server. https://cs531-f19.github.

io/. (2019).

[27] Sawood Alam and Michael L. Nelson. 2016. MemGator - A Portable Concurrent

Memento Aggregator: Cross-Platform CLI and Server Binaries in Go. In Proceedings

of the 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’16), 243–

244. doi: 10.1145/2910896.2925452.

[28] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, Lyudmila L. Balakireva,

Harihar Shankar, and David S. H. Rosenthal. 2015. Web Archive Profiling Through

CDX Summarization. In Proceedings of the 19th International Conference on Theory

and Practice of Digital Libraries (TPDL ’15), 3–14. doi: 10.1007/978-3-319-

24592-8_1.

[29] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, Lyudmila L. Balakireva,

Harihar Shankar, and David S. H. Rosenthal. 2016. Web Archive Profiling Through

CDX Summarization. International Journal on Digital Libraries, 17, 3, 223–238. doi:

10.1007/s00799-016-0184-4.

[30] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, and David S. H. Rosenthal.

2016. Web Archive Profiling Through Fulltext Search. In Proceedings of the 20th

International Conference on Theory and Practice of Digital Libraries (TPDL ’16),

121–132. doi: 10.1007/978-3-319-43997-6_10.

[31] Sawood Alam, Michele C. Weigle, Michael L. Nelson, Martin Klein, and Herbert Van

de Sompel. 2019. Supporting Web Archiving via Web Packaging. Technical report

arXiv:1906.07104. https://arxiv.org/abs/1906.07104.

[32] Sawood Alam, Michele C. Weigle, Michael L. Nelson, Fernando Melo, Daniel Bicho,

and Daniel Gomes. 2019. MementoMap Framework for Flexible and Adaptive Web

https://doi.org/10.1145/3197026.3203881
https://github.com/oduwsdl/ORS
https://cs531-f19.github.io/
https://cs531-f19.github.io/
https://doi.org/10.1145/2910896.2925452
https://doi.org/10.1007/978-3-319-24592-8_1
https://doi.org/10.1007/978-3-319-24592-8_1
https://doi.org/10.1007/s00799-016-0184-4
https://doi.org/10.1007/978-3-319-43997-6_10
https://arxiv.org/abs/1906.07104

200

Archive Profiling. In Proceedings of the 19th ACM/IEEE-CS Joint Conference on

Digital Libraries (JCDL ’19), 172–181. doi: 10.1109/JCDL.2019.00033.

[33] Rosa Alarcon, Erik Wilde, and Jesus Bellido. 2011. Hypermedia-driven RESTful

Service Composition. Service-Oriented Computing, 111–120.

[34] Abdulrahman Alarifi, Mansour Alghamdi, Mohammad Zarour, Batoul Aloqail, Hee-

lah Alraqibah, Kholood Alsadhan, and Lamia Alkwai. 2012. Estimating the Size of

Arabic Indexed Web Content. Scientific Research and Essays, 7, 28, 2472–2483. doi:

10.5897/SRE11.1708.

[35] Lulwah M. Alkwai, Michael L. Nelson, and Michele C. Weigle. 2017. Comparing the

Archival Rate of Arabic, English, Danish, and Korean Language Web Pages. ACM

Transactions on Information Systems, 36, 1, 1:1–1:34. doi: 10.1145/3041656.

[36] Lulwah M. Alkwai, Michael L. Nelson, and Michele C. Weigle. 2015. How Well Are

Arabic Websites Archived? In Proceedings of the 15th ACM/IEEE-CE Joint Confer-

ence on Digital Libraries (JCDL ’15), 223–232. doi: 10.1145/2756406.2756912.

[37] Yasmin AlNoamany, Ahmed AlSum, Michele C. Weigle, and Michael L. Nelson. 2014.

Who and What Links to the Internet Archive. International Journal on Digital Li-

braries, 14, 3-4, 101–115. doi: 10.1007/s00799-014-0111-5.

[38] Ahmed AlSum. 2011. Memento Server. https://code.google.com/archive/p/

memento-server/. (2011).

[39] Ahmed AlSum, Michele C. Weigle, Michael L. Nelson, and Herbert Van de Sompel.

2013. Profiling Web Archive Coverage for Top-Level Domain and Content Language.

In Proceedings of the 17th International Conference on Theory and Practice of Digital

Libraries (TPDL ’13), 60–71. doi: 10.1007/978-3-642-40501-3_7.

[40] Ahmed AlSum, Michele C. Weigle, Michael L. Nelson, and Herbert Van de Sompel.

2014. Profiling Web Archive Coverage for Top-Level Domain and Content Language.

International Journal on Digital Libraries, 14, 3-4, 149–166. doi: 10.1007/s00799-

014-0118-y.

[41] Apache HTTP Server. 2013. Common Log Format and Combined Log Format.

https://httpd.apache.org/docs/trunk/logs.html. (2013).

[42] Mohamed Aturban. 2020. A Framework for Verifying the Fixity of Archived Web

Resources. PhD thesis. Old Dominion University. doi: 10.25777/pc8d-y213.

https://doi.org/10.1109/JCDL.2019.00033
https://doi.org/10.5897/SRE11.1708
https://doi.org/10.1145/3041656
https://doi.org/10.1145/2756406.2756912
https://doi.org/10.1007/s00799-014-0111-5
https://code.google.com/archive/p/memento-server/
https://code.google.com/archive/p/memento-server/
https://doi.org/10.1007/978-3-642-40501-3_7
https://doi.org/10.1007/s00799-014-0118-y
https://doi.org/10.1007/s00799-014-0118-y
https://httpd.apache.org/docs/trunk/logs.html
https://doi.org/10.25777/pc8d-y213

201

[43] Mohamed Aturban. 2019. Where Did the Archive Go? Part 1: Library and Archives

Canada. https://ws- dl.blogspot.com/2019/08/2019- 08- 30- where- did-

archive-go-part1.html. (2019).

[44] Mohamed Aturban. 2019. Where Did the Archive Go? Part 2: National Library of

Ireland. https://ws- dl.blogspot.com/2019/09/2019- 09- 10- where- did-

archive-go-part-2.html. (2019).

[45] Mohamed Aturban. 2019. Where Did the Archive Go? Part 3: Public Record Office

of Northern Ireland. https://ws-dl.blogspot.com/2019/09/2019-09-25-where-

did-archive-go-part-3.html. (2019).

[46] Mohamed Aturban. 2019. Where Did the Archive Go? Part 4: WebCite. https://ws-

dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html.

(2019).

[47] Mohamed Aturban, Sawood Alam, Michael L. Nelson, and Michele C. Weigle. 2019.

Archive Assisted Archival Fixity Verification Framework. In Proceedings of the 19th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’19), 162–171. doi:

10.1109/JCDL.2019.00032.

[48] Paul Baclace. 2020. Making A Production Classifier Ensemble. https : / /

towardsdatascience . com / making - a - production - classifier - ensemble -

2d87fbf0f486. (2020).

[49] Jefferson Bailey. 2016. Preserving U.S. Government Websites and Data as the Obama

Term Ends. http : / / blog . archive . org / 2016 / 12 / 15 / preserving - u - s -

government-websites-and-data-as-the-obama-term-ends/. (2016).

[50] Jefferson Bailey, Vinay Goel, and Mark Sullivan. 2016. WANE Overview and Techni-

cal Details. https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/

WANE+Overview+and+Technical+Details. (2016).

[51] Jefferson Bailey, Abigail Grotke, Kristine Hanna, Cathy Hartman, Edward McCain,

Christie Moffatt, and Nicholas Taylor. 2014. Web Archiving in the United States: A

2013 Survey - An NDSA Report. https://blogs.loc.gov/thesignal/2014/10/

results-from-the-2013-ndsa-u-s-web-archiving-survey/. (2014).

https://ws-dl.blogspot.com/2019/08/2019-08-30-where-did-archive-go-part1.html
https://ws-dl.blogspot.com/2019/08/2019-08-30-where-did-archive-go-part1.html
https://ws-dl.blogspot.com/2019/09/2019-09-10-where-did-archive-go-part-2.html
https://ws-dl.blogspot.com/2019/09/2019-09-10-where-did-archive-go-part-2.html
https://ws-dl.blogspot.com/2019/09/2019-09-25-where-did-archive-go-part-3.html
https://ws-dl.blogspot.com/2019/09/2019-09-25-where-did-archive-go-part-3.html
https://ws-dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html
https://ws-dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html
https://doi.org/10.1109/JCDL.2019.00032
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
http://blog.archive.org/2016/12/15/preserving-u-s-government-websites-and-data-as-the-obama-term-ends/
http://blog.archive.org/2016/12/15/preserving-u-s-government-websites-and-data-as-the-obama-term-ends/
https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/WANE+Overview+and+Technical+Details
https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/WANE+Overview+and+Technical+Details
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/

202

[52] Jefferson Bailey, Abigail Grotke, Edward McCain, Christie Moffatt, and Nicholas

Taylor. 2017. Web Archiving in the United States: A 2016 Survey - An NDSA Report.

http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.

pdf. (2017).

[53] Steve Bailey and Dave Thompson. 2006. UKWAC: Building the UK’s First Public

Web Archive. D-Lib Magazine, 12, 1. doi: 10.1045/january2006-thompson.

[54] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. 2009. Do Not Crawl in the DUST:

Different URLs With Similar Text. ACM Transactions on the Web (TWEB), 3, 1,

3:1–3:31. doi: 10.1145/1462148.1462151.

[55] Luciano Barbosa and Juliana Freire. 2007. Combining Classifiers to Identify Online

Databases. In Proceedings of the 16th International Conference on World Wide Web

(WWW ’07), 431–440. doi: 10.1145/1242572.1242631.

[56] Waldo Bastian, Ryan Lortie, and Lennart Poettering. 2010. XDG Base Direc-

tory Specification. https : / / specifications . freedesktop . org / basedir -

spec/basedir-spec-latest.html. (2010).

[57] Sylvain Belanger. 2020. Documenting COVID-19 and the Great Confinement in

Canada. https://netpreserveblog.wordpress.com/2020/07/15/documenting-

covid-19-and-the-great-confinement-in-canada/. (2020).

[58] Mike Belshe, Roberto Peon, and Martin Thomson. 2010. Hypertext Transfer Protocol

Version 2 (HTTP/2). RFC 7540. Internet Engineering Task Force, (2010).

[59] Juan Benet. 2014. IPFS - Content Addressed, Version, P2P File System. Technical

report arXiv:1407.3561.

[60] Donna Bergmark, Carl Lagoze, and Alex Sbityakov. 2002. Focused Crawls, Tunneling,

and Digital Libraries. In Proceedings of the 6th European Conference on Research and

Advanced Technology for Digital Libraries (ECDL ’02). Volume 2458, 91–106. doi:

10.1007/3-540-45747-X_7.

[61] John A. Berlin, Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2017. WAIL:

Collection-Based Personal Web Archiving. In Proceedings of the IEEE/ACM Joint

Conference on Digital Libraries (JCDL), 340–341. doi: 10 . 1109 / JCDL . 2017 .

7991619.

[62] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource

Identifier (URI): Generic Syntax. RFC 3986. Internet Engineering Task Force, (2005).

http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
https://doi.org/10.1045/january2006-thompson
https://doi.org/10.1145/1462148.1462151
https://doi.org/10.1145/1242572.1242631
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://netpreserveblog.wordpress.com/2020/07/15/documenting-covid-19-and-the-great-confinement-in-canada/
https://netpreserveblog.wordpress.com/2020/07/15/documenting-covid-19-and-the-great-confinement-in-canada/
https://doi.org/10.1007/3-540-45747-X_7
https://doi.org/10.1109/JCDL.2017.7991619
https://doi.org/10.1109/JCDL.2017.7991619

203

[63] Peter Beverloo, Martin Thomson, Michaël van Ouwerkerk, Bryan Sullivan, and Ed-

uardo Fullea. 2020. Push API. https://w3c.github.io/push-api/. (2020).

[64] Krishna Bharat and Andrei Z. Broder. 1998. A Technique for Measuring the Relative

Size and Overlap of Public Web Search Engines. Computer Networks, 30, 1-7, 379–

388. doi: 10.1016/S0169-7552(98)00127-5.

[65] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Er-

rors. Communications of the ACM, 13, 7, 422–426.

[66] Nicolas Bornand, Lyudmila Balakireva, and Herbert Van de Sompel. 2016. Rout-

ing Memento Requests Using Binary Classifiers. In Proceedings of the 16th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’16), 63–72. doi:

10.1145/2910896.2910899.

[67] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. 2000. Graph Struc-

ture in the Web. Computer Networks, 33, 1-6, 309–320. doi: 10 . 1016 / S1389 -

1286(00)00083-9.

[68] Andrei Z. Broder and Michael Mitzenmacher. 2003. Survey: Network Applications

of Bloom Filters: A Survey. Internet Mathematics, 1, 4, 485–509. doi: 10.1080/

15427951.2004.10129096.

[69] Justin F. Brunelle, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2016. The

Impact of JavaScript on Archivability. International Journal on Digital Libraries, 17,

2, 95–117. doi: 10.1007/s00799-015-0140-8.

[70] Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2017. Archival Crawlers

and JavaScript: Discover More Stuff but Crawl More Slowly. In Proceedings of the

17th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’17), 1–10. doi:

10.1109/JCDL.2017.7991554.

[71] Mike Burner and Brewster Kahle. 1996. Arc File Format. https://archive.org/

web/researcher/ArcFileFormat.php. (1996).

[72] Chris Butler. 2018. Addressing Recent Claims of ‘Manipulated’ Blog Posts in the

Wayback Machine. http://blog.archive.org/2018/04/24/addressing-recent-

claims-of-manipulated-blog-posts-in-the-wayback-machine/. (2018).

https://w3c.github.io/push-api/
https://doi.org/10.1016/S0169-7552(98)00127-5
https://doi.org/10.1145/2910896.2910899
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1007/s00799-015-0140-8
https://doi.org/10.1109/JCDL.2017.7991554
https://archive.org/web/researcher/ArcFileFormat.php
https://archive.org/web/researcher/ArcFileFormat.php
http://blog.archive.org/2018/04/24/addressing-recent-claims-of-manipulated-blog-posts-in-the-wayback-machine/
http://blog.archive.org/2018/04/24/addressing-recent-claims-of-manipulated-blog-posts-in-the-wayback-machine/

204

[73] Chris Butler. 2017. Comcast’s Blocking and Un-Blocking of Archive.org – What We

Know So Far. https://blog.archive.org/2017/06/05/comcasts-blocking-

and-un-blocking-of-archive-org-what-we-know-so-far/. (2017).

[74] Chris Butler. 2017. Statement and Questions Regarding an Indian Court’s Order to

Block archive.org. https://blog.archive.org/2017/08/09/statement-and-

questions- regarding- an- indian- courts- order- to- block- archive- org/.

(2017).

[75] Chris Butler. 2017. Who Blocked the Archive in Jordan? https://blog.archive.

org/2017/04/11/who-blocked-the-archive-in-jordan/. (2017).

[76] Helena Byrne. 2020. Reviewing Football History Through the UK Web Archive.

Soccer & Society, 21, 4, 461–474. doi: 10.1080/14660970.2020.1751474.

[77] Jamie Callan and Margaret Connell. 2001. Query-Based Sampling of Text Databases.

ACM Transactions on Information Systems (TOIS), 19, 2, 97–130. doi: 10.1145/

382979.383040.

[78] Jamie Callan, Margaret Connell, and Aiqun Du. 1999. Automatic Discovery of Lan-

guage Models for Text Databases. In Proceedings of the 1999 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD ’99), 479–490. doi: 10.

1145/304182.304224.

[79] Green Cardamom. 2016. WaybackMedic Bot. https://github.com/greencardamom/

WaybackMedic. (2016).

[80] Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co. isbn: 978-1-

61729-085-5.

[81] Lucas Carlson, David Fayram, Cameron McBride, Ivan Acosta-Rubio, Parker Moore,

Chase Gilliam, and Sawood Alam. 2014. Classifier Reborn. https://github.com/

jekyll/classifier-reborn. (2014).

[82] Todd Carpenter, Michael L. Nelson, Bernhard Haslhofer, Shlomo Sanders, Richard

Jones, Robert Sanderson, Martin Klein, Herbert Van de Sompel, Graham Klyne,

Paul Walk, Carl Lagoze, Simeon Warner, Stuart Lewis, Zhiwu Xie, Peter Murray,

and Jeff Young. 2017. ResourceSync Framework Specification (ANSI/NISO Z39.99-

2017). http://www.openarchives.org/rs/1.1/resourcesync. (2017).

https://blog.archive.org/2017/06/05/comcasts-blocking-and-un-blocking-of-archive-org-what-we-know-so-far/
https://blog.archive.org/2017/06/05/comcasts-blocking-and-un-blocking-of-archive-org-what-we-know-so-far/
https://blog.archive.org/2017/08/09/statement-and-questions-regarding-an-indian-courts-order-to-block-archive-org/
https://blog.archive.org/2017/08/09/statement-and-questions-regarding-an-indian-courts-order-to-block-archive-org/
https://blog.archive.org/2017/04/11/who-blocked-the-archive-in-jordan/
https://blog.archive.org/2017/04/11/who-blocked-the-archive-in-jordan/
https://doi.org/10.1080/14660970.2020.1751474
https://doi.org/10.1145/382979.383040
https://doi.org/10.1145/382979.383040
https://doi.org/10.1145/304182.304224
https://doi.org/10.1145/304182.304224
https://github.com/greencardamom/WaybackMedic
https://github.com/greencardamom/WaybackMedic
https://github.com/jekyll/classifier-reborn
https://github.com/jekyll/classifier-reborn
http://www.openarchives.org/rs/1.1/resourcesync

205

[83] Catalin Cimpanu. 2018. Mozilla to Remove Support for Built-In Feed Reader From

Firefox. https://www.bleepingcomputer.com/news/software/mozilla- to-

remove-support-for-built-in-feed-reader-from-firefox/. (2018).

[84] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. 2009. Power-Law

Distributions in Empirical Data. SIAM Review, 51, 4, 661–703. doi: 10 . 1137 /

070710111.

[85] Cleymour. 2015. WARC Revision 1.1 (Augmentation): Specification of the WAT

Format. https://github.com/iipc/warc-specifications/issues/16. (2015).

[86] John Collomosse, Tu Bui, Alan Brown, John Sheridan, Alexander L. Green, Mark

Bell, Jamie Fawcett, Jez Higgins, and Olivier Thereaux. 2018. ARCHANGEL:

Trusted Archives of Digital Public Documents. In Proceedings of the ACM Sym-

posium on Document Engineering 2018, DocEng 2018, 31:1–31:4. doi: 10.1145/

3209280.3229120.

[87] Kate Conger. 2016. Backing Up The History of the Internet in Canada to Save It

From Trump. https://techcrunch.com/2016/12/08/backing-up-the-history-

of-the-internet-in-canada-to-save-it-from-trump/. (2016).

[88] Jared Cope, Nick Craswell, and David Hawking. 2003. Automated Discovery of

Search Interfaces on the Web. In Proceedings of the 14th Australasian Database Con-

ference - Volume 17 (ADC ’03), 181–189.

[89] Miguel Costa, Daniel Gomes, Francisco M. Couto, and Mário J. Silva. 2013. A Survey

of Web Archive Search Architectures. In Proceedings of the Temporal Web Analytics

Workshop (TempWeb ’13), 1045–1050. doi: 10.1145/2487788.2488116.

[90] Douglas Crockford. 2006. The application/json Media Type for JavaScript Object

Notation (JSON). RFC 4627. Internet Engineering Task Force, (2006).

[91] Shuaixiang Dai, Qian Diao, and Changle Zhou. 2005. Performance Comparison of

Language Models for Information Retrieval. In Artificial Intelligence Applications

and Innovations, 721–730.

[92] Maurice de Kunder. 2018. WorldWideWebSize.com – The Size of the World Wide

Web (The Internet). http://worldwidewebsize.com/. (2018).

[93] Peter Deutsch. 1996. GZIP File Format Specification Version 4.3. RFC 1952. Internet

Engineering Task Force, (1996).

https://www.bleepingcomputer.com/news/software/mozilla-to-remove-support-for-built-in-feed-reader-from-firefox/
https://www.bleepingcomputer.com/news/software/mozilla-to-remove-support-for-built-in-feed-reader-from-firefox/
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://github.com/iipc/warc-specifications/issues/16
https://doi.org/10.1145/3209280.3229120
https://doi.org/10.1145/3209280.3229120
https://techcrunch.com/2016/12/08/backing-up-the-history-of-the-internet-in-canada-to-save-it-from-trump/
https://techcrunch.com/2016/12/08/backing-up-the-history-of-the-internet-in-canada-to-save-it-from-trump/
https://doi.org/10.1145/2487788.2488116
http://worldwidewebsize.com/

206

[94] Adrian Dobra and Stephen E. Fienberg. 2004. How Large Is the World Wide Web?

In Web Dynamics - Adapting to Change in Content, Size, Topology and Use, 23–44.

[95] Kim Dulin and Adam Ziegler. 2017. Scaling Up Perma.cc: Ensuring the Integrity

of the Digital Scholarly Record. D-Lib Magazine, 23, 5/6. doi: 10.1045/may2017-

dulin.

[96] Caleb Ecarma. 2018. EXCLUSIVE: Joy Reid Claims Newly Discovered Homophobic

Posts From Her Blog Were ‘Fabricated’. https://www.mediaite.com/online/

exclusive- joy- reid- claims- newly- discovered- homophobic- posts- from-

her-blog-were-fabricated/. (2018).

[97] Leo Egghe. 2007. Untangling Herdan’s Law and Heaps’ Law: Mathematical and In-

formetric Arguments. Journal of the American Society for Information Science and

Technology, 58, 5, 702–709.

[98] Charles Elkan. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of

the 17th International Joint Conference on Artificial Intelligence (IJCAI ’01), 973–

978.

[99] Adam Clark Estes. 2015. Russia Is Banning the Internet Archive and Blaming It On

Terrorism. https://gizmodo.com/russia-is-banning-the-internet-archive-

and-blaming-it-o-1713926987. (2015).

[100] Gunther Eysenbach. 2006. Going, Going, Still There: Using the WebCite Service to

Permanently Archive Cited Web Pages. In American Medical Informatics Association

Annual Symposium.

[101] Gunther Eysenbach. 2008. Preserving the Scholarly Record With WebCite: An

Archiving System For Long-Term Digital Preservation of Cited Webpages. In

Proceedings of the 12th International Conference on Electronic Publishing, 363–377.

[102] Roy T. Fielding. 2000. Architectural Styles and the Design of Network-Based Software

Architectures. PhD thesis. University of California.

[103] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry

Masinter, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol –

HTTP/1.1. RFC 2616. Internet Engineering Task Force, (1999).

[104] Roy T. Fielding, Yves Lafon, and Julian F. Reschke. 2014. Hypertext Transfer Pro-

tocol (HTTP/1.1): Range Requests. RFC 7233. Internet Engineering Task Force,

(2014).

https://doi.org/10.1045/may2017-dulin
https://doi.org/10.1045/may2017-dulin
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://gizmodo.com/russia-is-banning-the-internet-archive-and-blaming-it-o-1713926987
https://gizmodo.com/russia-is-banning-the-internet-archive-and-blaming-it-o-1713926987

207

[105] Roy T. Fielding, Mark Nottingham, and Julian F. Reschke. 2014. Hypertext Transfer

Protocol (HTTP/1.1): Caching. RFC 7234. Internet Engineering Task Force, (2014).

[106] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Authentication. RFC 7235. Internet Engineering Task Force, (2014).

[107] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Conditional Requests. RFC 7232. Internet Engineering Task Force,

(2014).

[108] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. RFC 7230. Internet Engineering Task

Force, (2014).

[109] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content. RFC 7231. Internet Engineering Task Force,

(2014).

[110] Roy T. Fielding and Richard N. Taylor. 2002. Principled Design of the Modern Web

Architecture. ACM Transactions on Internet Technology (TOIT), 2, 2, 115–150.

[111] Lynda Schmitz Fuhrig. 2014. Tracking Down the Elusive ‘Treasure House for Learn-

ing’. https://siarchives.si.edu/blog/tracking- down- elusive- %E2%80%

98treasure-house-learning%E2%80%99. (2014).

[112] Jean-Loup Gailly and Mark Adler. 2013. GZIP File Format. http://www.gzip.org/.

(2013).

[113] Jennifer Gavin and Abbie Grotke. 2008. Library Partnership Preserves End-of-Term

Government Web Sites. https://www.loc.gov/item/prn- 08- 139/library-

partnership-saves-government-sites/2008-08-14/. (2008).

[114] Vinay Goel. 2016. Defining Web Pages, Web Sites and Web Captures. https://

blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-

captures/. (2016).

[115] Vinay Goel and Sawood Alam. 2015. A Conversation About URI-M to URI-R Ratio.

Private Communication. (2015).

[116] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1996. Hiding Routing

Information. In Proceedings of the International Workshop on Information Hiding,

1996, 137–150. doi: 10.1007/3-540-61996-8_37.

https://siarchives.si.edu/blog/tracking-down-elusive-%E2%80%98treasure-house-learning%E2%80%99
https://siarchives.si.edu/blog/tracking-down-elusive-%E2%80%98treasure-house-learning%E2%80%99
http://www.gzip.org/
https://www.loc.gov/item/prn-08-139/library-partnership-saves-government-sites/2008-08-14/
https://www.loc.gov/item/prn-08-139/library-partnership-saves-government-sites/2008-08-14/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://doi.org/10.1007/3-540-61996-8_37

208

[117] Daniel Gomes, Miguel Costa, David Cruz, João Miranda, and Simão Fontes. 2013.

Creating a Billion-Scale Searchable Web Archive. In Proceedings of the Temporal Web

Analytics Workshop (TempWeb ’13), 1059–1066. doi: 10.1145/2487788.2488118.

[118] Daniel Gomes, João Miranda, and Miguel Costa. 2011. A Survey on Web Archiving

Initiatives. In Proceedings of the 15th International Conference on Theory and Prac-

tice of Digital Libraries (TPDL ’11), 408–420. doi: 10.1007/978-3-642-24469-

8_41.

[119] Mark Graham. 2017. Robots.txt Meant for Search Engines Don’t Work Well for Web

Archives. https://blog.archive.org/2017/04/17/robots-txt-meant-for-

search-engines-dont-work-well-for-web-archives/. (2017).

[120] Mark Graham. 2019. The Wayback Machine’s Save Page Now is New and Improved.

https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-

now-is-new-and-improved/. (2019).

[121] Fabrizio Grandoni. 2006. A Note on the Complexity of Minimum Dominating Set.

Journal of Discrete Algorithms, 4, 2, 209–214. doi: 10.1016/j.jda.2005.03.002.

[122] Luis Gravano, Chen-Chuan K. Chang, Héctor García-Molina, and Andreas Paepcke.

1997. STARTS: Stanford Proposal for Internet Meta-Searching. SIGMOD Record, 26,

2, 207–218. doi: 10.1145/253262.253299.

[123] GreatFire.org. 2018. www.archive.org Is 100% Blocked in China. http://archive.

is/JdTnl. (2018).

[124] Ed Greengrass. 2000. Information Retrieval: A Survey. https://www.csee.umbc.

edu/csee/research/cadip/readings/IR.report.120600.book.pdf. (2000).

[125] Abbie Grotke, Mark Edward Phillips, and George Barnum. 2008. Preserving Public

Government Information: The 2008 End of Term Crawl Project. https://digital.

library.unt.edu/ark:/67531/metadc28366/. (2008).

[126] Hussam Hallak. 2018. Why We Need Private Web Archives: Almost Two-Thirds of

Web Traffic IS NOT Publicly Archivable. https://ws-dl.blogspot.com/2018/07/

2018-07-18-why-we-need-private-web.html. (2018).

[127] John Erik Halse. 2016. CDX Server API. https://iipc.github.io/openwayback/

api/cdxserver-api.html. (2016).

[128] Joachim Hammer and Jan Fiedler. 2000. Using Mobile Crawlers to Search the Web

Efficiently. International Journal of Computer and Information Science, 1, 1, 36–58.

https://doi.org/10.1145/2487788.2488118
https://doi.org/10.1007/978-3-642-24469-8_41
https://doi.org/10.1007/978-3-642-24469-8_41
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-now-is-new-and-improved/
https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-now-is-new-and-improved/
https://doi.org/10.1016/j.jda.2005.03.002
https://doi.org/10.1145/253262.253299
http://archive.is/JdTnl
http://archive.is/JdTnl
https://www.csee.umbc.edu/csee/research/cadip/readings/IR.report.120600.book.pdf
https://www.csee.umbc.edu/csee/research/cadip/readings/IR.report.120600.book.pdf
https://digital.library.unt.edu/ark:/67531/metadc28366/
https://digital.library.unt.edu/ark:/67531/metadc28366/
https://ws-dl.blogspot.com/2018/07/2018-07-18-why-we-need-private-web.html
https://ws-dl.blogspot.com/2018/07/2018-07-18-why-we-need-private-web.html
https://iipc.github.io/openwayback/api/cdxserver-api.html
https://iipc.github.io/openwayback/api/cdxserver-api.html

209

[129] David J. Hand and Keming Yu. 2001. Idiot’s Bayes – Not So Stupid After All?

International Statistical Review, 69, 3, 385–398.

[130] Bernhard Haslhofer, Simeon Warner, Carl Lagoze, Martin Klein, Robert Sanderson,

Michael L. Nelson, and Herbert Van de Sompel. 2013. ResourceSync: Leveraging

Sitemaps for Resource Synchronization. Technical report arXiv:1305.1476.

[131] Anne Helmond and Fernando N. van der Vlist. 2019. Social Media and Platform

Historiography: Challenges and Opportunities. TMG Journal for Media History, 22,

1, 6–34. doi: 10.18146/tmg.434.

[132] Inma Hernández, Carlos R. Rivero, and David Ruiz. 2019. Deep Web Crawling: A

Survey. World Wide Web, 22, 4, 1577–1610. doi: 10.1007/s11280-018-0602-1.

[133] Allan Heydon and Marc Najork. 1999. Mercator: A Scalable, Extensible Web Crawler.

World Wide Web, 2, 4, 219–229. doi: 10.1023/A:1019213109274.

[134] Olga Holownia. 2020. Novel Coronavirus Outbreak: Help Us Collect Websites. https:

//netpreserveblog.wordpress.com/2020/02/13/cdg- collection- novel-

coronavirus/. (2020).

[135] Karolina Holub, Ingeborg Rudomino, and Marta Matijevic. 2020. The Croatian Web

Archive – What’s New? https://netpreserveblog.wordpress.com/2020/07/15/

the-croatian-web-archive-whats-new/. (2020).

[136] International Internet Preservation Consortium. 2020. Novel Coronavirus (COVID-

19). https://archive-it.org/collections/13529. (2020).

[137] Internet Archive. 2006. Archive-It - Web Archiving Services for Libraries and

Archives. https://www.archive-it.org/. (2006).

[138] Internet Archive. 2003. CDX File Format. http://archive.org/web/researcher/

cdx_file_format.php. (2003).

[139] Internet Assigned Numbers Authority. 2019. Uniform Resource Identifier (URI)

Schemes. https://www.iana.org/assignments/uri- schemes/uri- schemes.

xhtml. (2019).

[140] Internet Assigned Numbers Authority. 2020. Well-Known URIs. https://www.iana.

org/assignments/well-known-uris/well-known-uris.xhtml. (2020).

https://doi.org/10.18146/tmg.434
https://doi.org/10.1007/s11280-018-0602-1
https://doi.org/10.1023/A:1019213109274
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/07/15/the-croatian-web-archive-whats-new/
https://netpreserveblog.wordpress.com/2020/07/15/the-croatian-web-archive-whats-new/
https://archive-it.org/collections/13529
https://www.archive-it.org/
http://archive.org/web/researcher/cdx_file_format.php
http://archive.org/web/researcher/cdx_file_format.php
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml

210

[141] Internet Memory Foundation. 2010. Web Archiving in Europe: A Survey Pro-

vided by the Internet Memory Foundation. https : / / web . archive . org / web /

20110523234751 / internetmemory . org / images / uploads / Web _ Archiving _

Survey.pdf. (2010).

[142] ISO 28500:2017. 2017. WARC File Format. https://iso.org/standard/68004.

html. (2017).

[143] Andy Jackson. 2015. MementoWeb Client Java. https : / / github . com / ukwa /

mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/

client/MementosAggregator.java. (2015).

[144] Andy Jackson. 2014. Messy Web Archive Collections. https : / / twitter . com /

anjacks0n/status/466690812269846528. (2014).

[145] Andy Jackson. 2015. Ten Years of the UK Web Archive: What Have We Saved?

https://blogs.bl.uk/webarchive/2015/09/ten- years- of- the- uk- web-

archive-what-have-we-saved.html. (2015).

[146] Shawn M. Jones. 2019. Wikis Are Archives: Integrating Memento and Mediawiki.

https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.

html. (2019).

[147] Shawn M. Jones, Alexander Nwala, Michele C. Weigle, and Michael L. Nelson. 2018.

The Many Shapes of Archive-It. In Proceedings of the 15th International Conference

on Digital Preservation (iPRES ’18). https://hdl.handle.net/11353/10.923619.

[148] Brewster Kahle. 2016. Geez, Now Internet Insurance? https://blog.archive.org/

2016/06/16/geez-now-internet-insurance/. (2016).

[149] Brewster Kahle. 2018. Users Hitting ‘Save Page Now’ at 100 Per Second. https:

//twitter.com/brewster_kahle/status/994380510011928578. (2018).

[150] Nattiya Kanhabua, Philipp Kemkes, Wolfgang Nejdl, Tu Ngoc Nguyen, Felipe Reis,

and Nam Khanh Tran. 2016. How to Search the Internet Archive Without Indexing

It. In Proceedings of the 20th International Conference on Theory and Practice of

Digital Libraries (TPDL ’16). Volume 9819, 147–160. doi: 10.1007/978-3-319-

43997-6_12.

[151] Leo Kelion. 2017. Bollywood Blocks the Internet Archive. http://www.bbc.com/

news/technology-40875528. (2017).

https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://iso.org/standard/68004.html
https://iso.org/standard/68004.html
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://twitter.com/anjacks0n/status/466690812269846528
https://twitter.com/anjacks0n/status/466690812269846528
https://blogs.bl.uk/webarchive/2015/09/ten-years-of-the-uk-web-archive-what-have-we-saved.html
https://blogs.bl.uk/webarchive/2015/09/ten-years-of-the-uk-web-archive-what-have-we-saved.html
https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.html
https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.html
https://hdl.handle.net/11353/10.923619
https://blog.archive.org/2016/06/16/geez-now-internet-insurance/
https://blog.archive.org/2016/06/16/geez-now-internet-insurance/
https://twitter.com/brewster_kahle/status/994380510011928578
https://twitter.com/brewster_kahle/status/994380510011928578
https://doi.org/10.1007/978-3-319-43997-6_12
https://doi.org/10.1007/978-3-319-43997-6_12
http://www.bbc.com/news/technology-40875528
http://www.bbc.com/news/technology-40875528

211

[152] Mat Kelly, Sawood Alam, Michael L. Nelson, and Michele C. Weigle. 2016. Inter-

Planetary Wayback: Peer-to-Peer Permanence of Web Archives. In Proceedings of the

20th International Conference on Theory and Practice of Digital Libraries, 411–416.

doi: 10.1007/978-3-319-43997-6_35.

[153] Mat Kelly, Lulwah M. Alkwai, Sawood Alam, Michael L. Nelson, Michele C. Wei-

gle, and Herbert Van de Sompel. 2017. Impact of URI Canonicalization on Memento

Count. In Proceedings of the 17th ACM/IEEE-CS Joint Conference on Digital Li-

braries (JCDL ’17), 303–304. doi: 10.1109/JCDL.2017.7991601.

[154] Mat Kelly, Lulwah M. Alkwai, Michael L. Nelson, Michele C. Weigle, and Herbert

Van de Sompel. 2017. Impact of URI Canonicalization on Memento Count. Technical

report arXiv:1703.03302. https://arxiv.org/abs/1703.03302.

[155] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2018. A Framework for Aggre-

gating Private and Public Web Archives. In Proceedings of the 18th ACM/IEEE on

Joint Conference on Digital Libraries (JCDL ’18), 273–282. doi: 10.1145/3197026.

3197045.

[156] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2013. Making Enterprise-Level

Archive Tools Accessible for Personal Web Archiving. https://www.slideshare.

net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-

personal-web-archiving. (2013).

[157] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2014. Mink: Integrating the

Live and Archived Web Viewing Experience Using Web Browsers and Memento. In

Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries, 469–

470. doi: 10.1109/JCDL.2014.6970229.

[158] Mat Kelly and Michele C. Weigle. 2012. WARCreate - Create Wayback-Consumable

WARC Files From Any Webpage. In Proceedings of the 12th ACM/IEEE-CS Joint

Conference on Digital Libraries. ACM, 437–438. doi: 10.1145/2232817.2232930.

[159] Matt Kelly. 2019. Aggregating Private and Public Web Archives Using the Mementity

Framework. PhD thesis. Old Dominion University. doi: 10.25777/1t52-wz02.

[160] Madian Khabsa and Clyde Lee Giles. 2014. The Number of Scholarly Documents on

the Public Web. PLOS ONE, 9, 5. doi: 10.1371/journal.pone.0093949.

[161] Ritu Khare, Yuan An, and Il-Yeol Song. 2010. Understanding Deep Web Search In-

terfaces: A Survey. SIGMOD Record, 39, 1, 33–40. doi: 10.1145/1860702.1860708.

https://doi.org/10.1007/978-3-319-43997-6_35
https://doi.org/10.1109/JCDL.2017.7991601
https://arxiv.org/abs/1703.03302
https://doi.org/10.1145/3197026.3197045
https://doi.org/10.1145/3197026.3197045
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://doi.org/10.1109/JCDL.2014.6970229
https://doi.org/10.1145/2232817.2232930
https://doi.org/10.25777/1t52-wz02
https://doi.org/10.1371/journal.pone.0093949
https://doi.org/10.1145/1860702.1860708

212

[162] Martin Klein, Lyudmila Balakireva, and Harihar Shankar. 2019. Evaluating Memento

Service Optimizations. In Proceedings of the 19th ACM/IEEE-CS Joint Conference

on Digital Libraries (JCDL ’19), 182–185. doi: 10.1109/JCDL.2019.00034.

[163] Matthias Klusch, Patrick Kapahnke, Stefan Schulte, Freddy Lécué, and Abraham

Bernstein. 2016. Semantic Web Service Search: A Brief Survey. Künstliche Intelligenz,

30, 2, 139–147. doi: 10.1007/s13218-015-0415-7.

[164] Martin Knakal. 2020. Web Bundles: What Are They and Do They Pose a Threat to

the Web? https://www.cdn77.com/blog/web-bundles. (2020).

[165] Martijn Koster. 1996. A Method for Web Robots Control. http://www.robotstxt.

org/norobots-rfc.txt. (1996).

[166] Ilya Kreymer. 2020. Web Archive Collection Zipped (WACZ) Format. https://

github.com/webrecorder/wacz-format. (2020).

[167] Ilya Kreymer and David S. H. Rosenthal. 2016. Guest Post: Ilya Kreymer on old-

web.today. https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-

oldwebtoday.html. (2016).

[168] Manish Kumar and Rajesh Bhatia. 2016. Design of a Mobile Web Crawler for Hid-

den Web. In Proceedings of the 3rd International Conference on Recent Advances in

Information Technology (RAIT), 186–190.

[169] Steve Lawrence and Clyde Lee Giles. 1998. Searching the World Wide Web. Science,

280, 5360, 98–100. doi: 10.1126/science.280.5360.98.

[170] Kalev Leetaru. 2015. How Much Of The Internet Does The Wayback Machine Really

Archive? https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-

much-of-the-internet-does-the-wayback-machine-really-archive/. (2015).

[171] Yanni Li, Yuping Wang, and Erfeng Tian. 2012. A New Architecture of an Intelli-

gent Agent-Based Crawler for Domain-Specific Deep Web Databases. In Proceedings

of the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and

Intelligent Agent Technology (WI-IAT). Volume 1, 656–663.

[172] Ling Liu. 1999. Query Routing in Large-Scale Digital Library Systems. In Proceedings

of the 15th International Conference on Data Engineering, 154–163. doi: 10.1109/

ICDE.1999.754918.

[173] Julie Beth Lovins. 1968. Development of a Stemming Algorithm. Mechanical Trans-

lation and Computational Linguistics, 11, 1-2, 22–31.

https://doi.org/10.1109/JCDL.2019.00034
https://doi.org/10.1007/s13218-015-0415-7
https://www.cdn77.com/blog/web-bundles
http://www.robotstxt.org/norobots-rfc.txt
http://www.robotstxt.org/norobots-rfc.txt
https://github.com/webrecorder/wacz-format
https://github.com/webrecorder/wacz-format
https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-oldwebtoday.html
https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-oldwebtoday.html
https://doi.org/10.1126/science.280.5360.98
https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
https://doi.org/10.1109/ICDE.1999.754918
https://doi.org/10.1109/ICDE.1999.754918

213

[174] Jie Lu and James Callan. 2003. Content-Based Retrieval in Hybrid Peer-to-Peer Net-

works. In Proceedings of the 2003 ACM CIKM International Conference on Infor-

mation and Knowledge Management (CIKM ’03), 199–206. doi: 10.1145/956863.

956903.

[175] Jie Lu and Jamie Callan. 2005. Federated Search of Text-Based Digital Libraries in

Hierarchical Peer-to-Peer Networks. In Proceedings of the 27th European Conference

on IR Research, Advances in Information Retrieval (ECIR ’05). Volume 3408, 52–66.

doi: 10.1007/978-3-540-31865-1_5.

[176] Marek Majkowski. 2020. MMUniq-Hash. https : / / github . com / cloudflare /

cloudflare-blog/tree/master/2020-02-mmuniq. (2020).

[177] Marek Majkowski. 2020. When Bloom Filters Don’t Bloom. https : / / blog .

cloudflare.com/when-bloom-filters-dont-bloom/. (2020).

[178] Vijini Mallawaarachchi, Lakmal Meegahapola, Roshan Alwis, Eranga Nimalarathna,

Dulani Meedeniya, and Sampath Jayarathna. 2020. Change Detection and Notifica-

tion of Webpages: A Survey. ACM Computing Surveys, 53, 1. doi: 10.1145/3369876.

[179] Julien Masanès. 2006. Web Archiving. doi: 10.1007/978-3-540-46332-0.

[180] Luis Meneses, Richard Furuta, and Frank Shipman. 2012. Identifying ‘Soft 404’ Error

Pages: Analyzing the Lexical Signatures of Documents in Distributed Collections. In

Proceedings of the 2nd International Conference on Theory and Practice of Digital

Libraries (TPDL ’12). Volume 7489, 197–208. doi: 10.1007/978-3-642-33290-

6_22.

[181] Weiyi Meng, Clement Yu, and King-Lup Liu. 2002. Building Efficient and Effective

Metasearch Engines. ACM Computing Surveys (CSUR), 34, 1, 48–89. doi: 10.1145/

505282.505284.

[182] Stephen Merity. 2014. Navigating the WARC File Format. http://commoncrawl.

org/2014/04/navigating-the-warc-file-format/. (2014).

[183] Alessandro Micarelli and Fabio Gasparetti. 2007. Adaptive Focused Crawling. The

Adaptive Web, 4321, 231–262. doi: 10.1007/978-3-540-72079-9_7.

[184] Gordon Mohr, Michael Stack, Igor Rnitovic, Dan Avery, and Michele Kimpton. 2004.

Introduction to Heritrix. In Proceedings of the 4th International Web Archiving Work-

shop.

[185] Mozilla Foundation. 2015. Public Suffix List. https://publicsuffix.org/. (2015).

https://doi.org/10.1145/956863.956903
https://doi.org/10.1145/956863.956903
https://doi.org/10.1007/978-3-540-31865-1_5
https://github.com/cloudflare/cloudflare-blog/tree/master/2020-02-mmuniq
https://github.com/cloudflare/cloudflare-blog/tree/master/2020-02-mmuniq
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://doi.org/10.1145/3369876
https://doi.org/10.1007/978-3-540-46332-0
https://doi.org/10.1007/978-3-642-33290-6_22
https://doi.org/10.1007/978-3-642-33290-6_22
https://doi.org/10.1145/505282.505284
https://doi.org/10.1145/505282.505284
http://commoncrawl.org/2014/04/navigating-the-warc-file-format/
http://commoncrawl.org/2014/04/navigating-the-warc-file-format/
https://doi.org/10.1007/978-3-540-72079-9_7
https://publicsuffix.org/

214

[186] Michael L. Nelson. 2018. The Internet Archive Can’t Preserve the Web’s History by

Itself. https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-

the-weaponization-of-internet-archives. (2018).

[187] Michael L. Nelson. 2018. Why We Need Multiple Web Archives: The Case of

blog.reidreport.com. https://ws-dl.blogspot.com/2018/04/2018-04-24-why-

we-need-multiple-web.html. (2018).

[188] Michael L. Nelson, Joan A. Smith, Ignacio Garcia del Campo, Herbert Van de Sompel,

and Xiaoming Liu. 2006. Efficient, Automatic Web Resource Harvesting. In Proceed-

ings of the 8th ACM International Workshop on Web Information and Data Man-

agement (WIDM ’06), 43–50. doi: 10.1145/1183550.1183560.

[189] Michael L. Nelson and Herbert Van de Sompel. 2018. Adding the Dimension of Time

to HTTP. In The SAGE Handbook of Web History.

[190] Bryan Newbold. 2018. Fatcat Design Document (RFC). https://github.com/

internetarchive/fatcat/blob/master/fatcat-rfc.md. (2018).

[191] Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and Specifi-

cations: A Sketch of Web Site Design Practice. In Proceedings of the 3rd Conference

on Designing Interactive Systems: Processes, Practices, Methods, Techniques (DIS

’00), 263–274. doi: 10.1145/347642.347758.

[192] Mark Nottingham. 2010. Web Linking. RFC 5988. Internet Engineering Task Force,

(2010).

[193] Mark Nottingham. 2019. Well-Known Uniform Resource Identifiers (URIs), Internet

RFC 8615. https://tools.ietf.org/html/rfc8615. (2019).

[194] Mark Nottingham and Robert Sayre. 2005. The Atom Syndication Format. RFC

4287. Internet Engineering Task Force, (2005).

[195] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. 2005. Downloading Tex-

tual Hidden Web Content Through Keyword Queries. In Proceedings of the 5th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’05), 100–109.

[196] Alexander C. Nwala. 2018. An Exploration of URL Diversity Measures. https://ws-

dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html.

(2018).

[197] Alexander C. Nwala. 2015. I Can Haz Memento. https://ws-dl.blogspot.com/

2015/07/2015-07-22-i-can-haz-memento.html. (2015).

https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-the-weaponization-of-internet-archives
https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-the-weaponization-of-internet-archives
https://ws-dl.blogspot.com/2018/04/2018-04-24-why-we-need-multiple-web.html
https://ws-dl.blogspot.com/2018/04/2018-04-24-why-we-need-multiple-web.html
https://doi.org/10.1145/1183550.1183560
https://github.com/internetarchive/fatcat/blob/master/fatcat-rfc.md
https://github.com/internetarchive/fatcat/blob/master/fatcat-rfc.md
https://doi.org/10.1145/347642.347758
https://tools.ietf.org/html/rfc8615
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html
https://ws-dl.blogspot.com/2015/07/2015-07-22-i-can-haz-memento.html
https://ws-dl.blogspot.com/2015/07/2015-07-22-i-can-haz-memento.html

215

[198] Maile Ohye and Joachim Kupke. 2012. The Canonical Link Relation. RFC 6596.

Internet Engineering Task Force, (2012).

[199] Open Source Initiative. 2006. The MIT License. https : / / opensource . org /

licenses/MIT. (2006).

[200] Krutarth Patel, Cornelia Caragea, Mark Phillips, and Nathaniel Fox. 2020. Identi-

fying Documents In-Scope of a Collection From Web Archives. In Proceedings of the

20th ACM/IEEE on Joint Conference on Digital Libraries (JCDL ’20).

[201] Sarah Perez. 2013. It’s Not Just Reader - Google Kills Its RSS Subscription Browser

Extension, Too. https://techcrunch.com/2013/03/15/google- kills-rss/.

(2013).

[202] Rob Pike. 2000. Lexical File Names in Plan 9, or, Getting Dot-Dot Right. In Pro-

ceedings of the General Track: 2000 USENIX Annual Technical Conference, 85–92.

[203] Sriram Raghavan and Hector Garcia-Molina. 2001. Crawling the Hidden Web. In

Proceedings of the 27th International Conference on Very Large Data Bases (VLDB

’01), 129–138. isbn: 1-55860-804-4.

[204] Marcel Ras and Sara van Bussel. 2007. Web Archiving User Survey. https://www.

kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf. (2007).

[205] Andrée Rathemacher. 2020. Perma.cc: Prevent Link Rot in Scholarship. University

Libraries, University of Rhode Island.

[206] Irina Rish. 2001. An Empirical Study of the Naive Bayes Classifier. In IJCAI 2001

Workshop on Empirical Methods in Artificial Intelligence number 22. Volume 3, 41–

46.

[207] Dennis Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System. Com-

munications of the ACM (CACM), 17, 7, 365–375. doi: 10.1145/361011.361061.

[208] Alfonso de la Rocha. 2020. WebBundles Are Built for Content-Addressable Networks.

https://adlrocha.substack.com/p/adlrocha-webbundles-are-built-for.

(2020).

[209] Lara Rode. 2020. Web Bundles: The Solution to the Internet’s Shrinking Attention

Span. https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-

internets-shrinking-attention-span-210d90d0f86a. (2020).

[210] David S. H. Rosenthal. 2016. Aggregating Web Archives. https://blog.dshr.org/

2016/01/aggregating-web-archives.html. (2016).

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://techcrunch.com/2013/03/15/google-kills-rss/
https://www.kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf
https://www.kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf
https://doi.org/10.1145/361011.361061
https://adlrocha.substack.com/p/adlrocha-webbundles-are-built-for
https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-internets-shrinking-attention-span-210d90d0f86a
https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-internets-shrinking-attention-span-210d90d0f86a
https://blog.dshr.org/2016/01/aggregating-web-archives.html
https://blog.dshr.org/2016/01/aggregating-web-archives.html

216

[211] David S. H. Rosenthal. 2019. Web Packaging for Web Archiving. https://blog.

dshr.org/2019/12/web-packaging-for-web-archiving.html. (2019).

[212] Alexis Rossi. 2016. Robots.txt Files and Archiving .gov and .mil Websites. https:

//blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/. (2016).

[213] RSS Advisory Board. 2009. RSS 2.0 Specification. https://www.rssboard.org/

rss-specification. (2009).

[214] Sam Ruby. 2008. RSS 2.0 and Atom 1.0 Compared. https://www.intertwingly.

net/wiki/pie/Rss20AndAtom10Compared. (2008).

[215] Hany SalahEldeen and Michael L. Nelson. 2012. Losing My Revolution: How Many

Resources Shared on Social Media Have Been Lost? In Proceedings of the 16th In-

ternational Conference on Theory and Practice of Digital Libraries (TPDL ’12).

Volume 7489, 125–137. doi: 10.1007/978-3-642-33290-6_14.

[216] Robert Sanderson. 2012. Global Web Archive Integration With Memento. In Pro-

ceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL

’12), 379–380. doi: 10.1145/2232817.2232900.

[217] Robert Sanderson, Herbert Van de Sompel, and Michael L. Nelson. 2012. IIPC Me-

mento Aggregator Experiment. http://www.netpreserve.org/sites/default/

files/resources/Sanderson.pdf. (2012).

[218] Sabine Schostag. 2020. The Danish Coronavirus Web Collection – Coronavirus on the

Curators’ Minds. https://netpreserveblog.wordpress.com/2020/07/29/the-

danish-coronavirus-web-collection/. (2020).

[219] Barry Schwartz. 2016. Google’s Search Knows About Over 130 Trillion Pages. https:

/ / searchengineland . com / googles - search - indexes - hits - 130 - trillion -

pages-documents-263378. (2016).

[220] Giuseppe Scrivano and Hrvoje Nikšić. 1996. Wget. https://en.wikipedia.org/

wiki/Wget. (1996).

[221] Zach Shelby. 2010. Constrained RESTful Environments (CoRE) Link Format. RFC

6690. Internet Engineering Task Force, (2010).

[222] Chao Shen and Tao Li. 2010. Multi-Document Summarization via the Minimum

Dominating Set. In Proceedings of the 23rd International Conference on Computa-

tional Linguistics (COLING ’10), 984–992.

https://blog.dshr.org/2019/12/web-packaging-for-web-archiving.html
https://blog.dshr.org/2019/12/web-packaging-for-web-archiving.html
https://blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/
https://blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/
https://www.rssboard.org/rss-specification
https://www.rssboard.org/rss-specification
https://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
https://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
https://doi.org/10.1007/978-3-642-33290-6_14
https://doi.org/10.1145/2232817.2232900
http://www.netpreserve.org/sites/default/files/resources/Sanderson.pdf
http://www.netpreserve.org/sites/default/files/resources/Sanderson.pdf
https://netpreserveblog.wordpress.com/2020/07/29/the-danish-coronavirus-web-collection/
https://netpreserveblog.wordpress.com/2020/07/29/the-danish-coronavirus-web-collection/
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://en.wikipedia.org/wiki/Wget
https://en.wikipedia.org/wiki/Wget

217

[223] Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin. 2012. Optimal Algorithms for

Crawling a Hidden Database in the Web. Proceedings of the VLDB Endowment, 5,

11, 1112–1123. doi: 10.14778/2350229.2350232.

[224] Shiva Shivakumar. 2005. Webmaster-friendly. https://googleblog.blogspot.com/

2005/06/webmaster-friendly.html. (2005).

[225] Kristinn Sigurðsson. 2016. 3 Things I Shouldn’t Have To Tell You About Running

a ‘Good’ Crawler. https://kris-sigur.blogspot.com/2016/02/3-things-i-

shouldnt-have-to-tell-you.html. (2016).

[226] Kristinn Sigurðsson. 2015. URI Canonicalization in Web Archiving. https://kris-

sigur.blogspot.com/2015/03/uri- canonicalization- in- web- archiving.

html. (2015).

[227] Kristinn Sigurðsson, Michael Stack, and Igor Ranitovic. 2006. Heritrix User Man-

ual: Sort-friendly URI Reordering Transform. http : / / crawler . archive . org /

articles/user_manual/glossary.html#surt. (2006).

[228] Manveet Singh. 2014. Clearing Up Confusion – Deep Web vs. Dark Web. https:

//brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-

web/. (2014).

[229] Saurabh Singh. 2017. India Bans Wayback Machine, Makes It Harder to Catch Liars

on the Web. https://www.indiatoday.in/technology/news/story/india-bans-

wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-

2017-08-08. (2017).

[230] Sitemaps.org. 2008. Sitemaps XML Format. https : / / www . sitemaps . org /

protocol.html. (2008).

[231] Peter Snyder. 1990. tmpfs: A Virtual Memory File System. In Proceedings of the

Autumn 1990 EUUG Conference, 241–248.

[232] Brooke Sopelsa. 2018. MSNBC’s Joy Reid Apologizes for ‘Insensitive’ LGBT Blog

Posts. https://www.nbcnews.com/feature/nbc- out/msnbc- s- joy- reid-

apologizes-insensitive-lgbt-blog-posts-n826091. (2018).

[233] Stanford Libraries. 2016. Data Formats and APIs. https://library.stanford.

edu/projects/web-archiving/research-resources/data-formats-and-apis.

(2016).

https://doi.org/10.14778/2350229.2350232
https://googleblog.blogspot.com/2005/06/webmaster-friendly.html
https://googleblog.blogspot.com/2005/06/webmaster-friendly.html
https://kris-sigur.blogspot.com/2016/02/3-things-i-shouldnt-have-to-tell-you.html
https://kris-sigur.blogspot.com/2016/02/3-things-i-shouldnt-have-to-tell-you.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
http://crawler.archive.org/articles/user_manual/glossary.html#surt
http://crawler.archive.org/articles/user_manual/glossary.html#surt
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.sitemaps.org/protocol.html
https://www.sitemaps.org/protocol.html
https://www.nbcnews.com/feature/nbc-out/msnbc-s-joy-reid-apologizes-insensitive-lgbt-blog-posts-n826091
https://www.nbcnews.com/feature/nbc-out/msnbc-s-joy-reid-apologizes-insensitive-lgbt-blog-posts-n826091
https://library.stanford.edu/projects/web-archiving/research-resources/data-formats-and-apis
https://library.stanford.edu/projects/web-archiving/research-resources/data-formats-and-apis

218

[234] Stanford University Libraries. 2013. Stanford Web Archive Portal. https://swap.

stanford.edu/. (2013).

[235] Daniel Stenberg. 2014. HTTP2 Explained. Computer Communication Review, 44, 3,

120–128. doi: 10.1145/2656877.2656896.

[236] Hunter Stern and Vinay Goel. 2015. Web Archive Transformation (WAT) Speci-

fication, Utilities, and Usage Overview. https://webarchive.jira.com/wiki/

spaces / Iresearch / pages / 14484029 / Web + Archive + Transformation + WAT +

Specification+Utilities+and+Usage+Overview. (2015).

[237] Atsushi Sugiura and Oren Etzioni. 2000. Query Routing for Web Search Engines:

Architecture and Experiments. Computer Networks, 33, 1, 417–429.

[238] The GDELT Project. 2015. The Incredibly Short Lifespan of an Online News Article.

https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-

online-news-article/. (2015).

[239] Thanh Tran and Lei Zhang. 2014. Keyword Query Routing. IEEE Transactions on

Knowledge and Data Engineering, 26, 2, 363–375.

[240] Gail Truman. 2016. Web Archiving Environmental Scan. https://nrs.harvard.

edu/urn-3:HUL.InstRepos:25658314. (2016).

[241] Gail Truman and Andrea Goethals. 2016. Web Archiving Environmental Scan. In

Proceedings of the 13th International Conference on Digital Preservation (iPRES

’16). http://hdl.handle.net/11353/10.502842.

[242] UK Web Archive. 2014. Crawled URL Index JISC UK Web Domain Dataset (1996-

2013). https://data.webarchive.org.uk/opendata/ukwa.ds.2/cdx/. (2014).

doi: 10.5259/ukwa.ds.2/cdx/1.

[243] Yusuke Utsunomiya and Kenji Baheux. 2019. Get Started With Web Bundles. https:

//web.dev/web-bundles/. (2019).

[244] Herbert Van de Sompel, Michael L. Nelson, Martin Klein, and Robert Sanderson.

2013. ResourceSync: The NISO/OAI Resource Synchronization Framework. In Pro-

ceedings of the 17th International Conference on Theory and Practice of Digital Li-

braries (TPDL ’13). Volume 8092, 488–489. doi: 10.1007/978-3-642-40501-3_70.

[245] Herbert Van de Sompel, Michael L. Nelson, and Robert Sanderson. 2013. HTTP

Framework for Time-Based Access to Resource States – Memento. RFC 7089. Inter-

net Engineering Task Force, (2013).

https://swap.stanford.edu/
https://swap.stanford.edu/
https://doi.org/10.1145/2656877.2656896
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-online-news-article/
https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-online-news-article/
https://nrs.harvard.edu/urn-3:HUL.InstRepos:25658314
https://nrs.harvard.edu/urn-3:HUL.InstRepos:25658314
http://hdl.handle.net/11353/10.502842
https://data.webarchive.org.uk/opendata/ukwa.ds.2/cdx/
https://doi.org/10.5259/ukwa.ds.2/cdx/1
https://web.dev/web-bundles/
https://web.dev/web-bundles/
https://doi.org/10.1007/978-3-642-40501-3_70

219

[246] Herbert Van de Sompel, Michael L. Nelson, Robert Sanderson, Lyudmila L. Bal-

akireva, Scott Ainsworth, and Harihar Shankar. 2009. Memento: Time Travel for the

Web. Technical report arXiv:0911.1112. https://arxiv.org/abs/0911.1112.

[247] Antal van den Bosch, Toine Bogers, and Maurice de Kunder. 2016. Estimating Search

Engine Index Size Variability: A 9-Year Longitudinal Study. Scientometrics, 107, 2,

839–856. doi: 10.1007/s11192-016-1863-z.

[248] Ping Wu, Ji-Rong Wen, Huan Liu, and Wei-Ying Ma. 2006. Query Selection Tech-

niques for Efficient Crawling of Structured Web Sources. In Proceedings of the 22nd

International Conference on Data Engineering (ICDE ’06), 47–47.

[249] Jeffrey Yasskin. 2020. Loading Signed Exchanges. https : / / wicg . github . io /

webpackage/loading.html. (2020).

[250] Jeffrey Yasskin. 2020. Signed HTTP Exchanges. https://tools.ietf.org/html/

draft-yasskin-http-origin-signed-responses-09. (2020).

[251] Jeffrey Yasskin. 2020. Web Bundles. https://tools.ietf.org/html/draft-

yasskin-wpack-bundled-exchanges-03. (2020).

[252] Shlomo Yitzhaki. 1979. Relative Deprivation and the Gini Coefficient. The Quarterly

Journal of Economics, 321–324.

[253] Henner Zeller, Lizzi Harvey, and Gary Illyes. 2019. Formalizing the Robots Exclusion

Protocol Specification. https://webmasters.googleblog.com/2019/07/rep-

id.html. (2019).

[254] Justin Zobel and Alistair Moffat. 2006. Inverted Files for Text Search Engines. ACM

Computing Surveys, 38, 2, 6. doi: 10.1145/1132956.1132959.

https://arxiv.org/abs/0911.1112
https://doi.org/10.1007/s11192-016-1863-z
https://wicg.github.io/webpackage/loading.html
https://wicg.github.io/webpackage/loading.html
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-09
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-09
https://tools.ietf.org/html/draft-yasskin-wpack-bundled-exchanges-03
https://tools.ietf.org/html/draft-yasskin-wpack-bundled-exchanges-03
https://webmasters.googleblog.com/2019/07/rep-id.html
https://webmasters.googleblog.com/2019/07/rep-id.html
https://doi.org/10.1145/1132956.1132959

220

APPENDIX A

ROBOTS EXCLUSION FILES (ROBOTS.TXT)

1396 # People share a lot of sensitive material on Quora - controversial political

1397 # views, workplace gossip and compensation, and negative opinions held of

1398 # companies. Over many years, as they change jobs or change their views, it is

1399 # important that they can delete or anonymize their previously-written answers.

1400 #

1401 # We opt out of the wayback machine because inclusion would allow people to

1402 # discover the identity of authors who had written sensitive answers publicly and

1403 # later had made them anonymous, and because it would prevent authors from being

1404 # able to remove their content from the internet if they change their mind about

1405 # publishing it. As far as we can tell, there is no way for sites to selectively

1406 # programmatically remove content from the archive and so this is the only way

1407 # for us to protect writers. If they open up an API where we can remove content

1408 # from the archive when authors remove it from Quora, but leave the rest of the

1409 # content archived, we would be happy to opt back in. See the page here:

1410 #

1411 # https://archive.org/about/exclude.php

1412 #

1413 # Meanwhile, if you are looking for an older version of any content on Quora, we

1414 # have full edit history tracked and accessible in product (with the exception of

1415 # content that has been removed by the author). You can generally access this by

1416 # clicking on timestamps, or by appending "/log" to the URL of any content page.

1417 #

1418 # For any questions or feedback about this please visit our contact page

1419 # https://help.quora.com/hc/en-us/requests/new

1420

1421 User-agent: ia_archiver

1422 Disallow: /

Fig. 80. Quora’s robots.txt File Excludes the Internet Archive With a Note About User

Privacy

221

1 # robots.txt for ftp://plan9.bell-labs.com and http://plan9.bell-labs.com

2 # see http://web.nexor.co.uk/mak/doc/robots/norobots.html

3 # and http://www.conman.org/people/spc/robots2.html

4 #

5 # put recently-added features last in case they cause

6 # the reader to stop reading.

7 # Visit-time is a GMT time range of allowed access.

8 # Request-rate for us is a maximum of one page per 5 seconds, at all hours.

9 # Crawl-delay is apparently only for msnbot.

10 #

11 User-agent: Googlebot

12 User-agent: msnbot

13 # the corporate crawler

14 User-agent: LSgsa-crawler

15 Disallow: /RealAudio/

16 Disallow: /bl-traces/

17 Disallow: /fast-os/

18 Disallow: /hidden/

19 Disallow: /historic/

20 Disallow: /incoming/

21 Disallow: /inferno/

22 Disallow: /magic/

23 Disallow: /netlib.depend/

24 Disallow: /netlib/

25 Disallow: /p9trace/

26 Disallow: /plan9/sources/

27 Disallow: /sources/

28 Disallow: /tmp/

29 Disallow: /tripwire/

30 Visit-time: 0700-1200

31 Request-rate: 1/5

32 Crawl-delay: 5

33

34 User-agent: *
35 Disallow: /

36 #

37 # Also, note that the prefixes ftp:// and http:// lead to the

38 # same files.

39 #

40 # the following are aliases for the same machine.

41 # cm.bell-labs.com

42 # cs.bell-labs.com

43 # netlib.bell-labs.com

44 # outside.cs.bell-labs.com

45 # plan9.bell-labs.com

46 # plan9.cs.bell-labs.com

47 # www.cs.bell-labs.com

Fig. 81. Bell Labs’ robots.txt on 2015-04-21 at 15:44:35 (UTC) https://web.archive.

org/web/20150421154435/http://cm.bell-labs.com/robots.txt

https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt
https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt

222

APPENDIX B

DOWNCASING IN SURT

35 /**
36 * Sort-friendly URI Reordering Transform.

37 *
38 * Converts URIs of the form:

39 *
40 * scheme://userinfo@domain.tld:port/path?query#fragment

41 *
42 * ...into...

43 *
44 * scheme://(tld,domain,:port@userinfo)/path?query#fragment

45 *
46 * The '(' ')' characters serve as an unambiguous notice that the so-called

47 * 'authority' portion of the URI ([userinfo@]host[:port] in http URIs) has

48 * been transformed; the commas prevent confusion with regular hostnames.

49 *
50 * This remedies the 'problem' with standard URIs that the host portion of a

51 * regular URI, with its dotted-domains, is actually in reverse order from

52 * the natural hierarchy that's usually helpful for grouping and sorting.

53 *
54 * The value of respecting URI case variance is considered negligible: it

55 * is vanishingly rare for case-variance to be meaningful, while URI case-

56 * variance often arises from people's confusion or sloppiness, and they

57 * only correct it insofar as necessary to avoid blatant problems. Thus

58 * the usual SURT form is considered to be flattened to all lowercase, and

59 * not completely reversible.

60 *
61 * @author gojomo

62 */

63 public class SURT {

64 // [... TRUNCATED ...]

65 }

Fig. 82. Original SURT Implementation in Java https://github.com/iipc/webarchive-

commons/blob/master/src/main/java/org/archive/util/SURT.java

https://github.com/iipc/webarchive-commons/blob/master/src/main/java/org/archive/util/SURT.java
https://github.com/iipc/webarchive-commons/blob/master/src/main/java/org/archive/util/SURT.java

223

APPENDIX C

TOOLS HELP MANUALS

1 $ ipwb -h

2 usage: ipwb [-h] [-d DAEMON_ADDRESS] [-v] [-u] {index,replay} ...

3

4 InterPlanetary Wayback (ipwb)

5

6 optional arguments:

7 -h, --help show this help message and exit

8 -d DAEMON_ADDRESS, --daemon DAEMON_ADDRESS

9 Multi-address of IPFS daemon (default

10 /dns/localhost/tcp/5001/http)

11 -v, --version Report the version of ipwb

12 -u, --update-check Check whether an updated version of ipwb is available

13

14 ipwb commands:

15 Invoke using "ipwb <command>", e.g., ipwb replay <cdxjFile>

16

17 {index,replay}

18 index Index a WARC file for replay in ipwb

19 replay Start the ipwb replay system

20

21 $ ipwb index -h

22 usage: ipwb [-h] [-e] [-c] [--compressFirst] [-o OUTFILE] [--debug]

23 index <warcPath> [index <warcPath> ...]

24

25 Index a WARC file for replay in ipwb

26

27 positional arguments:

28 index <warcPath> Path to a WARC[.gz] file

29

30 optional arguments:

31 -h, --help show this help message and exit

32 -e Encrypt WARC content prior to adding to IPFS

33 -c Compress WARC content prior to adding to IPFS

34 --compressFirst Compress data before encryption, where applicable

35 -o OUTFILE, --outfile OUTFILE

36 Path to an output CDXJ file, defaults to STDOUT

37 --debug Convenience flag to help with testing and debugging

38

39 $ ipwb replay -h

40 usage: ipwb replay [-h] [-P [<host:port>]] [index]

41

42 Start the ipwb relay system

43

44 positional arguments:

45 index path, URI, or multihash of file to use for replay

46

47 optional arguments:

48 -h, --help show this help message and exit

49 -P [<host:port>], --proxy [<host:port>]

50 Proxy URL

Fig. 83. InterPlanetary Wayback CLI Reference

224

1 // Import Reconstructive module in a ServiceWorker script

2 importScripts('reconstructive.js')

3

4 // Initialize a Reconstructive object with optional customizations

5 const rc = new Reconstructive({

6 urimPattern: `${self.location.origin}/memento/<datetime>/<urir>`,

7 bannerElementLocation:`${self.location.origin}/reconstructive-banner.js`,

8 bannerLogoLocation:`${self.location.origin}/reconstructive-logo.svg`,

9 bannerLogoHref: `${self.location.origin}/`,

10 showBanner: true,

11 debug: true,

12 customColor: '#0C383B'

13 })

14

15 // Add any custom exclusions in addition to the built-in ones

16 rc.exclusions.analytics = event => event.request.url.endsWith('custom-analytics.js')

17

18 // Bind fetch event to reroute requests using the Reconstructive instance

19 self.addEventListener('fetch', rc.reroute)

Fig. 84. Reconstructive Reference

1 <!-- Load a reconstructive-banner custom element in an HTML page -->

2 <script src="reconstructive-banner.js"></script>

3

4 <!-- Add the reconstructive-banner element in the markup with appropriate attribute values -->

5 <reconstructive-banner

6 logo-src=""

7 home-href="/"

8 urir="https://example.com/"

9 memento-datetime="Mon, 06 Feb 2017 00:23:37 GMT"

10 first-urim="https://archive.host/memento/20170206002337/https://example.com/"

11 first-datetime="Mon, 06 Feb 2017 00:23:37 GMT"

12 last-urim="https://archive.host/memento/20170206002337/https://example.com/"

13 last-datetime="Mon, 06 Feb 2017 00:23:37 GMT"

14 prev-urim=""

15 prev-datetime=""

16 next-urim=""

17 next-datetime="">

18 </reconstructive-banner>

19

20 <!--

21 Note: Reconstructive ServiceWorker module injects these with appropriate values automatically

22 -->

Fig. 85. Reconstructive Banner Reference

225

1 $ memgator -h

2 _____ _______ __

3 / \ _____ _____ / _____/______/ |___________

4 / Y Y \/ __ \/ \/ \ _____ \ _/ _ _ _ \

5 / | | \ ___/ Y Y \ _\ \/ __ | | |_| | | \/

6 __/_____/______|_|__/_______/_____|__|___/|__|

7

8 # MemGator ({Version})

9

10 A Memento Aggregator CLI and Server in Go

11

12 Usage:

13 memgator [options] {URI-R} # TimeMap from CLI

14 memgator [options] {URI-R} {YYYY[MM[DD[hh[mm[ss]]]]]} # Description of the closest Memento

15 memgator [options] server # Run as a Web Service

16

17 Options:

18 -A, --agent=MemGator/{Version} <{CONTACT}> User-agent string sent to archives

19 -a, --arcs=https://git.io/archives Local/remote JSON file path/URL of list of archives

20 -b, --benchmark= Benchmark file location - defaults to Logfile

21 -c, --contact=https://git.io/MemGator Comment/Email/URL/Handle - used in the user-agent

22 -D, --static= Directory path to serve static assets from

23 -d, --dormant=15m0s Dormant period after consecutive failures

24 -F, --tolerance=-1 Failure tolerance limit for each archive

25 -f, --format=Link Output format - Link/JSON/CDXJ

26 -H, --host=localhost Host name - only used in web service mode

27 -k, --topk=-1 Aggregate only top k archives based on probability

28 -l, --log= Log file location - defaults to STDERR

29 -m, --monitor=false Benchmark monitoring via SSE

30 -P, --proxy=http://{HOST}[:{PORT}]{ROOT} Proxy URL - defaults to host, port, and root

31 -p, --port=1208 Port number - only used in web service mode

32 -R, --root=/ Service root path prefix

33 -r, --restimeout=1m0s Response timeout for each archive

34 -S, --spoof=false Spoof each request with a random user-agent

35 -T, --hdrtimeout=30s Header timeout for each archive

36 -t, --contimeout=5s Connection timeout for each archive

37 -V, --verbose=false Show Info and Profiling messages on STDERR

38 -v, --version=false Show name and version

39

40 $ memgator [options] server

41 TimeMap: http://localhost:1208/timemap/{FORMAT}/{URI-R}

42 TimeGate: http://localhost:1208/timegate/{URI-R} [Accept-Datetime]

43 Memento: http://localhost:1208/memento[/{FORMAT}|proxy]/{DATETIME}/{URI-R}

44 About: http://localhost:1208/about

45 Monitor: http://localhost:1208/monitor - (Over SSE, if enabled)

46

47 {FORMAT} => link|json|cdxj

48 {DATETIME} => YYYY[MM[DD[hh[mm[ss]]]]]

49 [Accept-Datetime] => Header in RFC1123 format

Fig. 86. MemGator CLI Reference

226

1 $ accesslog -h

2 usage: accesslog [options] [FILES ...]

3

4 A tool to parse Common Log formatted access logs with various derived fields.

5

6 positional arguments:

7 files Log files (plain/gz/bz2) to parse (reads from the STDIN, if empty or '-')

8

9 optional arguments:

10 -h, --help Show this help message and exit

11 -v, --version Show version number and exit

12 -d, --debug Show debug messages on STDERR

13 -e FIELDS, --nonempty FIELDS

14 Skip record if any of the provided fields is empty (comma separated list)

15 -i FIELDS, --valid FIELDS

16 Skip record if any of the provided field values are invalid

17 ('all' or comma separated list from 'host,request,status,size,referrer')

18 -m FIELD~RegExp, --match FIELD~RegExp

19 Skip record if field does not match the RegExp (can be used multiple times)

20 -t TFORMAT, --origtime TFORMAT

21 Original datetime format of logs (default: '%d/%b/%Y:%H:%M:%S %z')

22 -f FORMAT, --format FORMAT

23 Output format string (see available formatting fields below)

24 -j FIELDS, --json FIELDS

25 Output NDJSON with the provided fields

26 (use 'all' for all fields except 'origline')

27

28 formatting fields:

29 {origline} Original log line

30 {host} IP address of the client

31 {identity} Identity of the client, usually '-'

32 {user} User ID for authentication, usually '-'

33 {origtime} Original date and time (typically in '%d/%b/%Y:%H:%M:%S %z' format)

34 {epoch} Seconds from the Unix epoch (derived from origtime)

35 {date} UTC date in '%Y-%m-%d' format (derived from origtime)

36 {time} UTC time in '%H:%M:%S' format (derived from origtime)

37 {datetime} 14 digit datetime in '%Y%m%d%H%M%S' format (derived from origtime)

38 {request} Original HTTP request line

39 {method} HTTP method (empty for invalid request)

40 {path} Path and query (scheme and host removed, empty for invalid request)

41 {prefix} Memento endpoint path prefix (derived from path)

42 {mtime} 14 digit Memento datetime (derived from path)

43 {rflag} Memento rewrite flag (derived from path)

44 {urir} Memento URI-R (derived from path)

45 {httpv} HTTP version (empty for invalid request)

46 {status} Returned status code

47 {size} Number of bytes returned

48 {referrer} Referer header (empty, if not logged)

49 {agent} User-agent header (empty, if not logged)

50 {extras} Any additional logged fields

51 Default FORMAT: '{host} {date} {time} {method} {path} {status} {size} "{referrer}" "{agent}"'

Fig. 87. AccessLog Parser CLI Reference

227

1 $ mementomap -h

2 usage: mementomap [-h] {generate,compact,lookup,batchlookup} ...

3

4 positional arguments:

5 {generate,compact,lookup,batchlookup}

6 generate Generate a MementoMap from a sorted file with the

7 first columns as SURT (e.g., CDX/CDXJ)

8 compact Compact a large MementoMap file into a small one

9 lookup Look for a SURT into a MementoMap

10 batchlookup Look for a list of SURTs into a MementoMap

11

12 optional arguments:

13 -h, --help show this help message and exit

14

15 $ mementomap generate -h

16 usage: mementomap generate [-h] [--hcf] [--pcf] [--ha] [--pa] [--hk] [--pk]

17 [--hdepth] [--pdepth]

18 infile outfile

19

20 positional arguments:

21 infile Input SURT/CDX/CDXJ (plain or GZip) file path or '-' for STDIN

22 outfile Output MementoMap file path

23

24 optional arguments:

25 -h, --help show this help message and exit

26 --hcf Host compaction factor (deafault: Inf)

27 --pcf Path compaction factor (deafault: Inf)

28 --ha Power law alpha parameter for host (default: 16.329)

29 --pa Power law alpha parameter for path (default: 24.546)

30 --hk Power law k parameter for host (default: 0.714)

31 --pk Power law k parameter for path (default: 1.429)

32 --hdepth Max host depth (default: 8)

33 --pdepth Max path depth (default: 9)

34

35 $ mementomap lookup -h

36 usage: mementomap lookup [-h] mmap surt

37

38 positional arguments:

39 mmap MementoMap file path to look into

40 surt SURT to look for

41

42 optional arguments:

43 -h, --help show this help message and exit

Fig. 88. MementoMap CLI Reference

228

VITA

Sawood Alam

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION

Doctor of Philosophy in Computer Science (2020)

Old Dominion University, Norfolk, Virginia, USA

Dissertation: MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing

Master of Science in Computer Science (2013)

Old Dominion University, Norfolk, Virginia, USA

Thesis: HTTP Mailbox - Asynchronous Restful Communication

Bachelor of Technology in Computer Engineering (2008)

Jamia Millia Islamia, New Delhi, India

Project: WIDE: Web Integrated Development Environment

PUBLICATIONS

Publication Updates: https://ibnesayeed.com/publications

Google Scholar: https://scholar.google.com/citations?user=zXdbEQgAAAAJ

CONTACT

Homepage: https://ibnesayeed.com/

Email: ibnesayeed@gmail.com (Personal)

sawood@archive.org (Work)

Typeset using LATEX.

https://ibnesayeed.com/publications
https://scholar.google.com/citations?user=zXdbEQgAAAAJ
https://ibnesayeed.com/
mailto:ibnesayeed@gmail.com
mailto:sawood@archive.org

	MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivation
	Why Aggregate Web Archives Anyway?
	Why Aggregate Small Web Archives?
	Why Profile Web Archives?
	Why Route Lookup Requests?

	Research Questions
	Learning About the Holdings of an Archive
	Expressing and Disseminating Archive Profiles
	Archive Profiles for Memento Routing

	Chapter Summary

	Background
	Hypertext Transfer Protocol (HTTP)
	HTTP Message
	HTTP Method
	HTTP Status Code
	Soft-404

	HTTP Access Logs
	Web Archiving and Web Archives
	Archive Collection Policy

	Memento
	TimeGate
	TimeMap
	Not-Archived vs. Archived-404

	Memento Aggregator
	URI and URI Transformations
	URI Normalization/Canonicalization
	Sort-friendly URI Reordering Transform (SURT)

	Archive File Formats
	WARC
	Web Bundles
	WAT, WANE, and WET
	CDX/CDXJ

	Syndication and Discovery
	RSS/Atom Feed
	Sitemaps
	Robots Exclusion Protocol
	Well-Known URIs

	Inverted Index
	Chapter Summary

	Related Work
	Surface Web Crawling
	Deep/Hidden/Dark Web Crawling
	Describing Textual Databases
	Search Form Detection

	Focused Crawling
	On-Premise Indexing
	Query Routing
	Bloom Filters
	Archival Coverage of the Web
	Web Archive Searching
	Archive Profiling
	URI-R Profiling
	TLD Profiling
	Response Cache Profiling
	URI-Key Profiling

	Chapter Summary

	MementoMap Framework
	Research Questions
	RQ1: How to Learn an Archive's Holdings and Voids?
	RQ2: How to Summarize and Serialize Archival Holdings for Dissemination?
	RQ3: How to Utilize MementoMaps for Memento Routing?

	MementoMap Components
	Ingestion
	Summarization and Serialization
	Routing

	Evaluation Plan
	Cost
	Accuracy
	Freshness
	Routing Efficiency

	Chapter Summary

	Tools Implementation
	InterPlanetary Wayback
	Reconstructive
	MemGator
	Random Searcher
	AccessLog Parser
	MementoMap
	Unified Key Value Store
	Chapter Summary

	Learning Archival Holdings
	Archive Profile Data Structure
	URI-Keys and Profiling Policies
	HmPn Policy
	DLim Policy
	URI-Key Generation

	Profiling Through CDX Summarization
	Datasets
	Profile Growth Analysis
	Routing Efficiency

	Profiling Through Fulltext Search
	Random Searcher Model
	Implementation
	RSM Evaluation

	Chapter Summary

	Learning Archival Voids
	Introduction and Motivation
	Sources of Truth
	Evaluation
	Access Logs Dataset
	Access Patterns
	Soft-404 TimeMaps
	Status Code Changes Over Time
	Routing Accuracy

	Who Should Profile Archival Voids?
	Recommendations
	Chapter Summary

	Serialization and Dissemination
	Unified Key Value Store (UKVS)
	MementoMap File Format
	The surt Field
	The frequency Field
	The datetime Field
	Other fields

	MementoMap Implementation
	MementoMap Generation
	MementoMap Compaction
	Lookup in a MementoMap

	MementoMap Dissemination
	Evaluation
	Archived vs. Accessed Resources
	Holdings of Arquivo.pt
	The Shape of Archived URI Tree
	MementoMap Cost and Accuracy

	Chapter Summary

	Memento Routing
	Memento Aggregation and Routing
	Methodology
	Density Score
	Closeness Score
	Routing Score
	Inverted Index
	MementoMap and Inverted Index Lookup

	Classifier Reborn
	Evaluation
	Datasets
	Collection Diffusion
	Baseline Routing
	Heuristic Routing
	Machine Learning-Based Routing

	Chapter Summary

	Contributions, Future Work, and Conclusions
	Contributions
	Algorithms
	Terminology and Metrics
	Software/Tools
	Datasets
	Specifications

	Future Work
	Conclusions

	REFERENCES
	Robots Exclusion Files (robots.txt)
	Downcasing in SURT
	Tools Help Manuals

	VITA

