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The perils of perfect performance; considering the effects of introducing
autonomous vehicles on rates of car vs cyclist conflict

Jason Thompsona,b, Gemma J. M. Readb, Jasper S. Wijnandsa and Paul M. Salmonb

aTransport, Health and Urban Design Research Hub, University of Melbourne, Melbourne, Australia; bCentre for Human Factors and
Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Australia

ABSTRACT
How humans will adapt and respond to the introduction of autonomous vehicles (AVs) is uncer-
tain. This study used an agent-based model to explore how AVs, human-operated vehicles, and
cyclists might interact based on the introduction of flawlessly performing AVs. Under two separ-
ate experimental conditions, results of experiment 1 showed that, despite no conflicts occurring
between cyclists and AVs, modelled conflicts among human-operated cars and cyclists increased
with the introduction of AVs due to cyclists’ adjusted expectations of the behaviour and capabil-
ity of human-operated and autonomous cars. Similarly, when human-operated cars were
replaced with AVs over time in experiment 2, cyclist conflict rates did not follow a linear reduc-
tion consistent with the replacement rate but decreased more slowly in the early stages of
replacement before 50% substitution. It is concluded that, although flawlessly performing AVs
might reduce total conflicts, the introduction of AVs into a transport system where humans
adjust to the behaviour and risk presented by AVs could create new sources of error that offset
some of AVs assumed safety benefits.

Practitioner summary: Ergonomics is an applied science that studies interactions between
humans and other elements of a system, including non-human agents. Agent-Based Modelling
(ABM) provides an approach for exploring dynamic and emergent interactions between agents.
In this article, we demonstrate ABM through an analysis of how cyclists and pedestrians might
interact with Autonomous Vehicles (AVs) in future road transport systems.

Abbreviations: ABM: agent-based model; AV: autonomous vehicle; ODD; overview, design con-
cepts and details; RW: rescorla-wagner
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1. Introduction

The health benefits and reduction in chronic disease
from increased physical activity gained through active
transport are well established (Woodcock et al. 2011).
However, in places where the poor separation
between motorised vehicles and vulnerable road users
exists, injury rates per kilometre travelled are compara-
tively higher than those where physical separation is
present (Morrison et al. 2019; World Health
Organization 2018). Worldwide, more than half of road
traffic deaths occur among vulnerable road users who
interact with motorised vehicles (World Health
Organization 2018). It is therefore difficult for cities to
encourage increased rates of cycling without experi-
encing concomitant (though not proportional)

increases in cycling crashes (Bhalla et al. 2007;
Stevenson et al. 2016). While investment in separated
cycling infrastructure is one solution to this problem,
high financial and political costs are often associated
with these policies in already car-dominated countries
such as the United States, Canada, Australia, and New
Zealand, when they are perceived to divert funding
and priority away from motor vehicles (Pucher, Dill,
and Handy 2010; Reynolds et al. 2009).

As an alternative to costly infrastructure changes, the
deployment of autonomous vehicles (AVs) has been for-
warded as a potential solution to the issue of mixed-
mode interaction (Combs et al. 2019; Millard-Ball 2018). If
AVs can learn to accurately identify other vehicles and vul-
nerable road users and either evade, avoid or recover
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from situations leading to crashes, the benefits in terms of
reduced injuries and trauma could be significant (Combs
et al. 2019; Parkin et al. 2016). However, the prospect of
coordination among networked AVs with vehicle-to-
vehicle communication in controlled environments is very
different to that of AVs interacting with non-networked
and less predictable humans in situ – something Hancock
(2019) refers to as mixed equipage. And while the idea of
‘flawless’ or perfectly performing AVs that do not crash
exists, the technology required to ensure AVs can operate
safely in the extreme variety of unpredictable and novel
situations vehicles face, to ‘learn’ (in an algorithmic sense)
from these experiences, and to then make acceptably
‘moral’ decisions in the case of inevitable collisions, is far
from ready (Hancock 2018). Indeed, the introduction of
AVs may lead to new types of crashes due to the pitfalls
of automation (De Winter 2019).

Further, once deployed, community expectations hold
that AVs will be safer than human drivers (Anderson et al.
2018; Fagnant and Kockelman 2014). In this context, the
financial and legal consequences for AV manufacturers’
vehicles contributing to crashes may also be higher than
for fallible human drivers (Anderson et al. 2018) and
recovery outcomes for people injured as a result of AV
errors potentially worse given resulting external attribu-
tions of responsibility for crashes (Pollanen et al. 2020;
Thompson, Berk, et al. 2014; Thompson et al. 2015;
Thompson, O’Donnell, et al. 2014).

Putting technological barriers aside, even if AV
manufacturers achieve ‘flawlessly performing’ vehicles
that never collide with humans, humans’ responses to
the introduction of AVs is uncertain. A great strength
of humans, and other intelligent animals (Legagneux
and Ducatez 2013), is adaptability; we learn to under-
stand, manipulate and exploit our environment.
Consistent with other learned behaviours across alter-
nate domains, if AVs behave differently around
humans (i.e., to drive conservatively to avoid collisions
at all costs), humans may learn to behave differently
around AVs than they had previously around manually
operated cars that bear the threat of injury (Brooks
2017; Millard-Ball 2018). This dynamic adaptation
could lead to new situations and crash risks not previ-
ously present or imagined in the transport system.
Whilst many pessimists have focussed on imperfect
AVs and their safety impacts (Hancock 2018; Salmon
2019), few have considered the potentially adverse
safety impacts of perfect automation within environ-
ments containing other imperfect actors. Indeed,
recent detailed analyses of the potential of AV tech-
nology to prevent over 3300 recorded vehicle vs ped-
estrian crashes in the United States specifically notes

the limitations of statistical models not being able to
capture human and other drivers’ adaptation to the
presence of AVs over the period of introduction
(Combs et al. 2019).

There have been many models of traffic safety
developed previously, which have taken on a variety
of forms (Young et al. 2014). Overwhelmingly, these
models have taken a static, top-down approach where
the risk of a crash (and consequent crashes) is esti-
mated using probabilities or risk gradients based on
vehicle behaviours such as speed, angle, and the mod-
elled physical proximity of vehicles to one another.
Given that most of these efforts have developed from
an engineering perspective, it is perhaps logical that
many have been produced as extensions to existing
traffic simulation models frequently used by traffic
engineers designed for understanding traffic flow in
applied situations (e.g. AIMSUN or VISSIM (Aimsun
2020; PTV Group 2020)). While efforts are regularly
made to calibrate risk profiles to real-world data in
these models (Davis and Morris 2009), the perceptual
or skill errors leading to crashes that individual drivers
experience remain black-box processes; we may know
the risk of crashing between two vehicles crossing
paths is x, but we still do not know why. Although
game-theoretical models have addressed this gap to
some extent by including static representations of
cognitive frameworks in negotiated traffic conflict sit-
uations (e.g. Bjørnskau 2017; Elvik 2014; Millard-Ball
2018), to our knowledge, there are no traffic conflict
or crash simulation models that approach the subject
from the alternative perspective; that of dynamic indi-
vidual cognitive and learning frameworks and manipu-
lation of the factors that lead to perceptual errors that
produce risky behaviours and consequent crashes.

The goal of this paper is, therefore, to better under-
stand patterns of potential crashes (referred to in the
model as ‘conflicts’) between vulnerable road users
(namely cyclists) and manually-driven cars (cars) fol-
lowing the introduction of AVs into the transport sys-
tem. We aim to explore changes in car-cyclist conflict
frequency associated with the introduction of AVs into
an existing transport system under conditions where
1) AVs perform ‘flawlessly’, 2) human drivers adapt to
the presence of cyclists, and 3) cyclists adapt to the
presence of AVs. The second goal of this paper is to
demonstrate how this question can be tackled using
methods of computational social science, namely,
agent-based modelling. A third and final goal of the
paper is to demonstrate the agent-based modelling
method and its potential utility in assisting to answer
questions in the field of ergonomics more broadly.
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2. Method

This work used agent-based modelling, henceforth
referred to as ABM. While the flexibility of ABM means
that exceptions to any fast definition can likely be found,
for the reader new to ABM, we would describe it in the
following simplified manner: Agent-based modelling is a
computational method that enables the exploration of
interactions between multiple independent synthetic
‘agents’ or entities of interest. These agents generally
make decisions and take actions in relation to a set of
flexible rules governed by preferences, other agents’
observed behaviour, and in response to the potentially
evolving nature of the environment they inhabit, which is
also influenced by other agents in a bottom-up process.
Although exogenous factors may also play a role in shap-
ing the environment, the actions agents take influence
their local environment. In turn, the environment has con-
sequences for the agent, influences their state, and in
turn, influences decisions and actions made by agents at
subsequent time-points (see Figure 1). Agents can be
modelled as independent entities at any scale; from indi-
viduals to populations, organisations or countries. Of
interest in most ABMs related to socio-technical systems
is the dynamic interplay between modelled agents at an
individual scale and how this affects patterns of behaviour
and performance of systems at a macro scale. Models are
run dynamically over ‘time steps’ which can be used to
represent any relevant time scale (i.e. from seconds to
hours, to years or simply ‘moments’). For the first intro-
duction to ABM, readers are referred to Gilbert (2008).

The present model is an adaptation of a previously
published (Thompson, Savino, and Stevenson 2016) ABM
of behavioural adaptation by car drivers to the increased
presence of cyclists represented within a simple,
‘Manhattan grid’ configuration consisting of 4356 unsign-
alised intersections, constructed in Netlogo (Wilensky
2016) (see Figure 2). A detailed description of the present
model following principles adapted from the ‘ODD
Protocol’ (Grimm et al. 2010) is available in Appendix A.
In the prior model, drivers became increasingly aware of

cyclists as more cyclists entered the road system, and,
through an individual reinforcement learning and adap-
tation process represented by Rescorla–Wagner (RW)
learning algorithms encoded within each agent (Rescorla
and Wagner 1972), adapted their driving behaviour and
likelihood of driving safely around cyclists in response.
The RW learning model is representative of ‘classical con-
ditioning’ whereby pairs of stimuli (e.g. roads and
cyclists) are perceived together by an observer (e.g. a
driver) to the extent that when presented with one
stimulus (roads), the learner then expects the second,
conditioned stimulus (e.g. cyclists), which may then trig-
ger a conditioned response (e.g. more careful observance
or driving behaviour). As with other representations of
classical conditioning processes, observers also possess
the capacity to have associations between stimuli extin-
guished if items are perceived independently.

In this paper, we extended the representation from
Thompson, Savino, and Stevenson (2016) to include an
additional class of vehicle (AVs) by also providing
cyclists with an ability to learn to recognise and adapt
behaviour towards both human-driven cars (cars) and
AVs. The process of adaptation for cyclists also followed
an RW configuration, with each cyclist possessing an
accuracy of perception, a desire to act well, a memory
for previous events, a maximum level of association
between stimuli, a timescale for building up knowledge,
and a timescale for forgetting (i.e. a memory span).

2.1. Model context

An important distinction should be made for readers
more familiar with traffic simulation models as are

Consequence 

Agenti 

Environment Agentj Agentk 

Action State 

Figure 1. Depiction of the dynamic relationship between
agents, their actions, the environment, consequences for the
agent and consequences for the agents’ state.

Figure 2. Top-down, angled view of the Netlogo model show-
ing the position of vehicles and vehicle classes represented in
the system.
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common within the engineering literature and typically
devoted to crash risk estimation and safety (e.g. see
Young et al. 2014). Firstly, expectations related to the
accurate representation of spatio-temporal elements of
the model should be put to one side. The model does
not attempt accurate representation of time, speed, nor
origin-destination matrices. Rather, it seeks to represent
features related to learning and cognition in respect of
interactions between vehicle operators of various
classes; human and non-human. In this respect, it is
more-so a model of learning and interaction applied to
the transport domain than a traffic simulation model.

Secondly, the model does not attempt an accurate
representation of traffic volumes but attempts to create
a critical number of interactions between simulated
vehicle operators that exposes only the variables of
interest to analysis. Here, an analogy can be made with
the well-known ‘El Farol Bar’ model (Arthur 1994) – one
of the first to explore the outcomes of inductive reason-
ing and bounded rationality among computational
agents. Within the El Farol Bar model, agents decide
whether they will attend a bar based on how crowded
they think it will be and this decision is based on their
previous experience of attending that bar. The focus of
the model is, therefore, the decision-making of agents
and the macro patterns of behaviour their collective rea-
soning produces. Days of the week, time of day, hang-
overs experienced by the agents, or other features that
might be used in models targeted for more pragmatic
purposes (e.g. organising adequate bar-staff rosters) are
ignored. Despite these exclusions, the model is instruct-
ive for its intended purposes in the tradition that it is
designed to be both wrong and useful (Box 1976).

2.2. Model assumptions and scope

Assumptions made in the model were that AVs acted
flawlessly by exhibiting extreme care, perfect identifi-
cation of other vehicles, and always yielded to other
human-driven cars and cyclists. AVs never collided
with other vehicles. Human drivers acted identically to
the manner they had done in Thompson, Savino, and
Stevenson (2016); while desiring to drive as safely as
they could around cyclists, their performance was
occasionally imperfect, and their skill-levels changed in
response to increasing or decreasing exposure to
cyclists, consistent with the behavioural adaptation
hypothesis (Jacobsen, Ragland, and Komanoff 2015).
The mean number of conflicts for the population of
drivers was equivalent to the inverse of the mean
level of adaptation drivers had achieved at any time;
more adaptation to cyclists, less conflict risk.

Cyclists’ adaptation in the model consisted of them
learning that AVs would not crash into them. This was
akin to cyclists developing schemata which influence
their perceptual exploration and actions on the environ-
ment (Plant and Stanton 2013; Salmon et al. 2014). In the
model, cyclist schemata incorporated flawless AVs that
do not represent a safety risk; with increasing exposure,
cyclists learned that they could safely progress through
intersections without needing to yield to AVs because
AVs operated perfectly. Like human drivers, however,
cyclists’ perceptions were not without error; they did not
always recognise the difference between manually
driven cars and AVs and occasionally put themselves in
the path of human drivers that did not have the same
capacity to avoid a collision (i.e. perfectly safe perform-
ance) that AVs possessed. This capacity to recognise AVs
in the road environment was represented through the
value of saliency, described below.

Across the transport system, where cyclists encoun-
tered increasing numbers of AVs, an increased associ-
ation between the act of cycling and the expectation
of encountering an AV at an intersection occurred.
Under these conditions, the association was expressed
as a function of time, V(tk).

Considering a given population of n cyclists, mean
association to AVs at time tk can be expressed as:

V tkð Þ ¼
Pn

i¼1ViðtkÞ
n

(1)

Where for an individual cyclist, i, the association is:

Vi tkð Þ ¼ Vi tk�1ð Þ þ DVi tkð Þ (2)

For the change in association DVi tkð Þ we assume a
relationship of the form

DVi tkð Þ ¼ aibixiri k�Vi tk�1ð Þð Þ (3)

In this equation, the values of ai and bi represent
the saliency of AVs that exist in the road environment
and saliency of the road environment, respectively (i.e.
how identifiable AVs are (aÞ, and how identifiable to
the cyclist it is that the AV is on a road shared by
them (b)). Changes to the value of these variables can
be imagined as efforts to make AVs more or less dis-
tinguishable from ‘normal’ cars or making cyclists
more or less visible (e.g. through the use of lights or
high visibility clothing) to drivers. It is assumed that
the value of road saliency for cyclists is 1 at all times,
indicating that cyclists always recognise that the AV is
on the road. The value of k represents the maximum
possible association cyclists can achieve between
cycling and expectation that cars are autonomous
(AVs), and Viðtk�1Þ is the association strength between
cycling and expectation of encountering an AV for the
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ith cyclist at the previous time step. In addition to
these features, cyclists also held a fixed level of inten-
tion to ride safely around cars ðxiÞ and a capacity to
do so ðriÞ, which assumed a range between 0 (no
intention or capacity to ride safely) and 1 (maximum
intention and capacity) for each variable, respectively.
These factors had the effect of moderating the impact
of learned behaviour on risk-taking and therefore con-
flicts in a manner analogous to the final stages of the
theory of planned behaviour (Ajzen 2011) (i.e. inten-
tion and actual behavioural control).

For cyclists in the model, the association between
cycling and expectation of interacting with AVs
remained stable for the period equivalent to a
cyclist’s memory span, m. Cyclists’ memory spans
were not infinite and the continued absence of AVs
beyond a cyclist’s memory span resulted in a loss of
association for individual cyclists. Such ‘extinction’
could occur at any stage in the learning process.
Consistent with the Rescorla-Wagner model of condi-
tioning, the decrease in association between cycling
and expectation of interacting with an AV for individ-
ual cyclists also followed Eq. (3), but with k set to 0,
reflecting the minimum possible association between
‘between cycling and expectation that cars are
autonomous (i.e. no expectation of encountering an
AV)’. This resulted in the final formulation of DVi tkð Þ
as follows:

All other relationships in the model are consistent
with those outlined in Thompson, Savino, and
Stevenson (2016) (see Appendix A), including behav-
ioural adaptation by human drivers to the presence of
cyclists. Table 1 shows values associated with each
agent class and characteristics within the model. In
each trial, values for individual agent characteristics
across vehicle saliency, capacity, and care were drawn

from a normally-distributed range with a mean as indi-
cated, and a standard deviation of 0.1. Where individ-
ual agent characteristics exceeded 1.0 for care,
capacity and vehicle saliency, or was less than 0, the
value was re-drawn.

To test the effect that the introduction of AVs had
on bicycle vs vehicle conflicts, the model was run
using two experimental approaches. In the first, a ‘pre
vs post’ comparison of conflict frequency was made
between conditions consisting of a population of 2000
cars and 500 bicycles. The change in conflict frequen-
cies was monitored before and after 500 additional
AVs were deployed in the system at time-step 100 of
200. In the second approach, an additional 500 manu-
ally driven cars were added to the system at time 100

instead of AVs. The decision to add an additional 500
(25%) vehicles was taken to consider the effect of the
policy change, only, and was not designed to reflect
realistic assumptions.

Figure 3 uses pseudo-code to describe the inter-
action of cyclists among cars and AVs at intersections
and the likelihood that cars crash into cyclists. Code
block 1 shows the likelihood that cyclists would slow

Table 1. Factors, notation, and settings associated with each trial under each experimen-
tal condition.
Factor Notation Settings

Saliency (road) a 1.0
Saliency (AV to cyclist or bicycle to driver) bi 0.6, 0.8, 1.0 (SD ¼ 0.1)
Care xi 0.6, 0.8, 1.0 (SD ¼ 0.1)
Capacity ri 0.6, 0.8, 1.0 (SD ¼ 0.1)
Memory span (time steps) m 15, 30, 45

Block 1 
ask bicycles  

   let the vehicle ahead of me be a vehicle in the area I am about to enter 
     if there is a vehicle ahead and my adaptation to AVs is low, then 
        yield to the vehicle, otherwise 

continue 

Block 2 
ask cars 

if I am in an intersection and I am moving above my minimum speed, and 
there are any bicycles here that have not slowed down to their minimum 
speed, and my level of adaptation to cyclists is low, then 

 record a crash with a cyclist, otherwise 
 continue 

Figure 3. Pseudo-code associated with behaviour of cyclists
(Block 1) and cars (Block 2) at intersections as it relates to
crash-risk.

DVi tkð Þ ¼
aibixiri k�Vi tk�1ð Þð Þ
�abixiriVi tk�1ð Þ
0

if at least 1 AV encountered in tk�1, tkð Þ;
if no AV encountered in tk�m, tkð Þ;
otherwise:

8<
: (4)
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down and yield for vehicles at intersections is depend-
ent upon their level of association (V) at that time
point. Code block 2 demonstrates that if a cyclist and
car find themselves at the same position in an inter-
section, the likelihood that conflict is recorded is
dependent upon the driver’s level of adaptation to
cyclists at that time point.

In the second experimental approach, an original
population of 2000 manually driven cars was
exchanged for AVs over 2000 time-steps. Cyclist num-
bers remained constant at 500 in each experiment.
The values of factors contained within the RW formula
for cyclists was varied across trials to determine how
this contributed to changes in overall learning (V)
among cyclists to AVs and consequent crash rates (i.e.
from the RW learning model).

Table 1 shows the conditions under which each
experimental condition was run, including variation in
elements contained within the RW learning model
described, above. In total, the model was run under a
total of 243 separate conditions, 81 under the ‘pre vs
post’ AV deployment approach, 81 under the pre vs
post manual deployment approach, and 81 under the
‘trade’ approach, varying the strength of parameters
described in Table 1.

3. Results

Results presented below represent mean statistics for
the combination of all varied parameters across all
model runs. Additional detail is also presented show-
ing variation in model outputs taking into account dif-
ferences between trials in agents’ memory span and
learning rate as moderated by the saliency of (1)
bicycles to drivers and, (2) of AVs to cyclists. We

present these results separately to demonstrate the
sensitivity of the model outputs to input parameters.
Examples of how other researchers might want to
tune model parameters for their own purposes could
be where a researcher wishes to cap the level of sali-
ency associated with a group of cyclists who do not
use lights at night, or where the researcher wishes to
model the increase in sensitivity to the presence of
cyclists among drivers who have been primed to
expect cyclists on the road through education cam-
paigns (e.g. Dalton, Sumner, and Jones 2020). To allow
for adequate model ‘burn-in’, pre vs post comparisons
in experiment 1 are made between time-steps 50–100
(pre-condition) and 100–150 (post-condition).

3.1. Experiment 1: addition of 500 AVs to an
existing population of vehicles vs 500 manually
driven cars at time-step 100

Results of experiment 1 demonstrated that after the
addition of 500 AVs at time-step 100, the mean num-
ber of conflicts in the simulated road system between
manually-driven cars (cars) and cyclists increased from
54.73 (SD ¼ 0.53) per time-step to 56.13 (SD ¼ 0.92)
(see Figure 4). Importantly, this increase occurred des-
pite AVs operating ‘flawlessly’ and never colliding with
any cyclists. Rather, the increased conflict frequency
occurred between manually operated cars and mod-
elled cyclists due to cyclists’ adjusted, imperfect
expectations about the behaviour and capability of
manually-operated and autonomous cars they were
exposed to (see Figure 5(b) later in the text). Cyclists
that had become accustomed to the safe behaviour of
AVs occasionally mistook them for manually driven
cars and expected them to operate as AVs did.

Figure 4. Mean count of car vs cyclist conflicts per time-step with additional deployment of AVs or Manual cars at time-step 100.
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Consequently, some cyclists failed to yield and were
more likely to experience conflicts with drivers, par-
ticularly if the drivers had low levels of adaptation
to cyclists. These effects were independent of the
learning rate controlled by features such as
vehicle saliency.

By comparison, the introduction of 500 manually
driven cars into the model at time-step 100 increased
mean crash rates from 54.51 (SD ¼ 0.41) to 62.94 (SD
¼ 2.20). This result suggests that although the inclu-
sion of AVs into the system increased overall conflicts,
it did so to a considerably lesser extent than adding
manually driven vehicles under our assumptions.

Closer inspection of these results reveals their sensi-
tivity to model assumptions. Figure 6(a,b) show how
the memory span of agents in the model affects total
recorded conflicts pre and post-deployment. The effect

of longer modelled memory spans (e.g. 45
time-steps) among agents is to dampen the impact of
post-deployment bicycle vs car conflicts in the pre- vs
post-conditions. This is because drivers with longer
memories are less likely to forget having seen cyclists
(i.e. levels of V remain elevated – see Appendix A).
This effect outweighed the impact of cyclists’
increased memory for having observed AVs.

Comparison of results under varying conditions of
cyclist saliency (i.e. b values associated with cyclists)
also demonstrates the reduction in conflict frequency
between manually driven cars and cyclists associated
with greater cyclist saliency in both the pre-and post-
deployment scenarios (see Figure 7(a,b)).

Finally, comparison of results under varying condi-
tions of AV saliency (i.e. b values associated with AVs)
across the pre-and post-deployment scenarios (see

Figure 5. (a) Mean count of car vs cyclist conflicts per time-step with additional deployment of 500 AVs at time-step 100 under
each of 3 AV saliency conditions, 0.6, 0.8, and 1.0. (b) Mean association between AVs and the road environment recorded for
simulated cyclists per time-step with additional deployment of 500 AVs at time-step 100 under each of 3 AV saliency conditions,
0.6, 0.8, and 1.0.
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Figure 5(a)) showed little observed difference in conflict
frequency between manually driven cars and cyclists
under the three conditions (0.6 saliency M¼ 55.86, SD
¼ 1.01, 0.8 saliency M¼ 56.21, SD ¼ 1.13, 1.0 saliency
M¼ 56.15, SD ¼ 1.15). Figure 5(b) shows the mean
strength of association (V) for cyclists across conditions
in the post-deployment phase. This demonstrates that
so long as learning occurred among cyclists and
remained strong (i.e. V remained high) the rate of learn-
ing was less consequential for the frequency of con-
flicts, at least in the short-term post AV deployment.
Interestingly, a lower (and therefore slower) learning
rate ultimately produced a higher mean association
level; a phenomenon familiar to many researchers in
the fields of AI and machine learning where learning
rates are tuned down toward the end of trials. Results
for the manual-car deployment scenario are not shown
as no AVs were deployed in that scenario.

3.2. Experiment 2: gradual introduction of AVs

Results of experimental condition 2, where manually
driven cars were gradually traded for AVs over the
course of 2000 time-steps, demonstrated another per-
spective. When manually driven cars were exchanged
for AVs over time, cyclist conflicts did not follow a
proportional linear reduction in frequency. We fitted a
cubic spline with natural end-point conditions to the
data points at time-step x¼ 0, 500, 1000, 1500 and
2000. Coefficients of the fitted spline function in the
first segment [0, 500] show the function is concave,
indicating the reduction in conflicts is non-linear and
accelerates as more human drivers are replaced by
AVs (see Figure 8). This phenomenon was caused by
two functions of the model.

Firstly, the initial non-linear reduction in conflicts
per time-step and increase in crash-risk per time-step

Figure 6. Mean count of car vs cyclist conflicts per time-step with additional deployment of (a) 500 AVs at time-step 100 under
each of 3 memory span conditions of 15, 30, and 45 time-steps. (b) 500 manually-driven cars at time-step 100 under each of 3
memory span conditions of 15, 30, and 45 time-steps.
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Figure 7. Mean count of car vs cyclist conflicts per time-step with additional deployment of (a) 500 AVs at time-step 100 under
each of 3 bicycle saliency conditions, 0.6, 0.8, and 1.0. (b) 500 manually-driven cars at time-step 100 under each of 3 bicycle sali-
ency conditions, 0.6, 0.8, and 1.0.

Figure 8. Count of car vs cyclist conflicts per time-step with trade of manually driven cars for AVs at a rate of 1 per time-step
over 2000 total time-steps alongside a fitted cubic spline curve and risk of car vs cyclist conflicts per manually driven car.
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for manually driven cars was driven by the same
behavioural adaptation function responsible for the
increase in conflicts observed in experiment 1; cyclists
that had adapted to AVs failed to yield to manually
driven cars. This trend was most noticeable up to
around time-step 500–1000 (25–50% of replacement)
as confirmed by the fitted cubic spline curve.
However, the rate of conflict reduction accelerated
after this period alongside a reduction in risk of cyclist
conflicts per manually driven car. This latter effect was
driven by an increase in an average speed of bicycles
throughout the network who were no longer stopping
to give way to AVs as frequently, which consequently
exposed remaining manually driven car drivers to
more cyclists (see Figure 9). This resulted in a gradual
increase in the level of association and behavioural
adaptation to cyclists (and increased safety) among
car drivers in the closing stages of replacement. While
this result is consistent with results of prior models
studying the behavioural adaptation hypothesis
(Thompson, Savino, and Stevenson 2016) it is unclear
whether it would hold in a real-world environment
(see Section 4.4)

4. Discussion

The interaction between AVs and vulnerable road
users is likely to represent a topic of considerable
interest to road safety researchers and the travelling
public over the next few decades (Hancock 2018;
Kyriakidis et al. 2019; Salmon and Read 2019). Whilst
most safety concerns relate to imperfect AVs that may
not interact well with cyclists and pedestrians, other
drivers or AV operators, we are unaware of other stud-
ies that have deliberately considered the negative
safety impacts of well-designed and optimally func-
tioning AVs in the context of interactions with imper-
fect humans outside the vehicle. In this study, we

used ABM to explore potential road user behaviours
and road safety outcomes during a transition period
to flawlessly performing AVs under conditions of
dynamic learning among vehicle classes.

The findings highlight that under conditions where
humans (e.g. cyclists) adapt to AVs acting flawlessly,
new sources of error could emerge that off-set the
total safety benefits of AVs to some extent. The ABM
demonstrated that even if AVs perceive and act per-
fectly, contributing no collisions from their own
actions, if humans consequently adapt to a lower-risk
environment created by their presence, it could
increase the risk of conflicts between cyclists and
manually driven cars during the transition. This could
occur where vulnerable road users do not appropri-
ately distinguish between AVs and manually driven
cars. In particular, the modelling demonstrates that,
under our assumptions, the introduction of additional
AVs into a fleet of manually driven cars and cyclists of
a static number could increase total cyclist conflicts
due to increased risk-taking by cyclists. In an alterna-
tive ‘trade’ scenario that gradually replaces manually
driven cars with AVs, we show that the reduction in
total conflicts might not decrease proportionately with
the introduction of perfectly performing AVs, but may
decrease more slowly initially, before accelerating
towards the end of the transition period (after 50%
replacement). These results suggest that clear percep-
tual distinctions between AVs and manual vehicle
classes may be required at the point of mass deploy-
ment to ensure safety benefits of AVs are not off-set
by behavioural adaptation.

4.1. The influence of schemata on road user
interactions

There is evidence in the ergonomics and safety sci-
ence literature that aligns with the present study’s
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findings. In previous work examining the interactions
between different road users, Salmon et al. (2014)
demonstrated the critical role that road users’ previous
experience and schemata play in creating safe and
unsafe interactions between drivers and cyclists. In
short, the experience of previous interactions with
other road users has a strong influence on road users’
expectations and interactions with one another. For
example, a cyclist’s schemata of how drivers behave at
intersections direct where they look, what they per-
ceive, and ultimately how they will behave.
Accordingly, features of the schemata-based percep-
tual cycle model (Neisser 1976) and Norman’s (1981)
schema-related error taxonomy are consistent with the
model’s outputs. Based on repeated interactions with
flawless AVs, cyclists will likely build AV schemata that
create a strong expectation of flawless behaviour and
low risk, which in turn will influence how they behave
around AVs. Faulty activation of schema errors, specif-
ically data driven activation errors (Norman 1981),
whereby the AV schemata is triggered by manually
driven cars which look similar to AVs, will result in
cyclists behaving as they do around AVs. The paradox
here is that, as AVs increase in number, cyclists’
‘flawless AV’ schemata will be strengthened, and colli-
sions with manually driven cars could become more
likely as cyclists’ interactions with manually driven cars
decrease. The schema explanation further explains
adaptation by human drivers to the new cyclist behav-
iour in the second experimental approach; whereby
drivers will be more likely to look for cyclists in the
environment and take care to avoid collisions with
them based on previous experience of their more risky
behaviour around road vehicles (both AVs and manu-
ally driven cars).

4.2. AVs as unruly technologies

In discussion of the benefits of a transition to AVs, it is
often reported that around 90% of road crashes are
caused by human error (Infrastructure Victoria 2018;
Parker et al. 1995). Perhaps concerningly, however, an
implicit assumption underlying the use of this statistic
for the justification of vehicle autonomy is that
removal of humans from the driving task will reduce
road crashes and trauma by a proportional extent
(Fagnant and Kockelman 2014). This ignores an
important element of accident causation across safety
domains (e.g. patient, workplace & transport safety)
that introduction of new technology designed for
safety can also introduce new sources of risk and error
of unknown severity and likelihood (Battles and Keyes

2002). These so-called ‘unruly technologies’ are a com-
mon contributory factor in major incidents (Dekker
2011; Grant et al. 2018). Moreover, there are previous
examples of unruly technologies contributing to road
trauma through the creation of new safety issues,
including mobile phones and airbags (Salmon,
McClure, and Stanton 2012). It is therefore critical that
further studies are undertaken to explore the different
emergent behaviours and risks associated with AVs.
Whilst a focus on inadequate AVs is important (e.g.
Hancock 2018), this study has highlighted that a focus
on the potential adverse impacts of optimally func-
tioning AVs is also warranted. This represents a signifi-
cant gap in current AV research and further
exploration is encouraged.

4.3. Agent-based modelling in ergonomics

By enabling the integration of a set of dynamic factors
to be combined in a single computational model, the
methods employed here demonstrate the utility of
using ABM combined with learning algorithms to pro-
vide insight into emergent risk that would be difficult
through discourse alone, or by using alternative mod-
elling methods at the level of a functioning system.
Indeed, while there is a long history of ergonomics
studies in road safety (e.g. Brown 1979; Salmon and
Read 2019; Stanton and Young 2005; Waard et al.
1995; Wagenaar and Reason 1990; Young et al. 2014)
and more recent examples that have employed game-
theoretic principles to explore interactions at non-
signalised intersections (Bjørnskau 2017; Elvik and
Bjørnskau 2017; Fox et al. 2018; Millard-Ball 2018) to
date few have employed dynamic learning algorithms
to explore the emergent behaviours associated with
the introduction of new technologies or interventions
as has been shown here. We hope this work highlights
how ergonomics researchers and practitioners can
explore and obtain new insights into phenomena
through the combined use of ABM alongside existing
models of learning and interaction both in road safety
and in other ergonomics application areas.

4.4. Study limitations and future work

The limitations of this work are many and should be
clearly noted. We explored results within a simulated,
artificial transportation system where interaction
between vehicle classes is restricted to simplified non-
signalised intersections and the cognitive capabilities
of agents are restricted to abstract (though well-
established) learning principles. Human drivers’
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adaptation to AVs is also not modelled, and no
attempt has been made to realistically model travel
demand, congestion, AV adoption patterns or other
aspects that may come to mind for the reader familiar
with traditional transportation modelling research.
However, there are two responses to these limitations.
Firstly, though what is left out of the model is sub-
stantial, what has been included is beyond what many
models using traditional methods can integrate in
terms of dynamic transition and behavioural adapta-
tion among and between vehicles. Secondly, the ABM
platform enables iterative improvement such that
researchers interested in including omitted factors or
relationships can do so, particularly because the code
for the model is available for other researchers to
access and utilise through an online repository
(https://bit.ly/2YW76s9). In this respect, the model is
open to the common criticism of many ABMs that it is
at once ‘too complex’ and also ‘too simple’ (Waldherr
and Wijermans 2013).

5. Conclusion

Humans are highly proficient at learning and adapting
quickly to new environments, resulting in novel pat-
terns of interaction. Regardless of whether AVs can
learn to operate flawlessly in a transport system or
not, humans will display new behaviours in response
to AVs’ presence, especially when there are incentives
(such as reducing travel time) to manipulate interac-
tions. Such adaptation creates potentially novel crash
situations and risks that are not typically in-scope of
discussion when considering the safety benefits of
AVs, which tend to focus on the role of vehicles or
vehicle operators, only (Hancock 2018). Understanding
how humans might adjust to future technological
change in transport (and other domains) is challeng-
ing and requires methods that are both exploratory
and empirical. We contend that dynamic modelling
methods, including ABM, that can incorporate
humans’ potential responses to AVs behaviour can be
a highly useful method in the toolbox of ergonomics
researchers.
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Appendix A

Adapted ODD Protocol (Grimm et al., 2010; Grimm, Polhill, & Touza, 2017)

ODD - Overview, Design concepts, and Details
Purpose of the model
The purpose of the model is to better understand potential patterns of crashes between vulnerable road users (namely cyclists) and cars
following the introduction of AVs into a transport system. The model explores changes in car-cyclist crash frequency associated with the introduction
of AVs into an existing transport system under conditions where AVs perform ‘flawlessly’, human drivers adapt to the presence of cyclists, and cyclists
adapt to the presence of AVs.

Entities, state variables and scales

1. Manually driven cars (Drivers)
Manually driven cars possess states of speed, location, heading, memory span, perception for bicycles, perception for the roadway, levels of care to
drive safely, capacity to drive safely, and association between cyclists and their presence on the road shared by the driver. Manually driven cars have
capacity to perceive other vehicles located in their direct path.
2. Autonomous Vehicles (AVs)
AVs possess states of speed, location, and heading. They have the capacity to perceive other vehicles located in their direct path.
3. Cyclists
Cyclists possess states of speed, location, heading, memory span, perception for autonomous vehicles, perception of the roadway, perception of manual
cars, level of care to ride safely, capacity to ride safely, association between autonomous vehicles and their presence on the road shared by the rider.
Cyclists have capacity to perceive other vehicles located in their direct path and also perceive the number of other cyclists surrounding them in a
1 unit radius.
4. Roads
Roads are locations where vehicles travelled between intersections and can perceive one another but they cannot cross paths and cannot turn
nor crash.
5. Intersections
Intersections are locations between roads where vehicles compete for space in order to continue their path. Crashes only occur at intersections.
Neither time nor distance in the model are scaled to represent real-world units.

Process overview and scheduling

Initialisation
At time step 0 (initialisation), the layout of the system is established including roads, intersections and placement of vehicles on empty roads and
intersections in the network.
State variables associated with each vehicle class listed above are allocated to individual cyclists, manual cars and autonomous vehicles including initial
location, speed, heading, association, and memory span.
Model Processing
Vehicle Class updates
At each time step, the following actions occur for members of each vehicle class:
All vehicles –
� Determine heading
� Update location
� Update speed
� Register presence of other at distance of 1 unit ahead
Drivers –
� Calculate time since last observing a cyclist on the road
� Update level of association between cyclists and roadways
� Update likelihood of potential for collisions with cyclists given an interaction at current time-step
� Record collisions with cyclists
Cyclists –
� Calculate time since last observing an AV on the road
� Update level of association between AVs and roadways
� Register presence of any manually driven cars with positive collision potentials at current location
System Updates –
� Calculate total numbers of all vehicle classes in the system
� Calculate total numbers of collisions in the system
� Introduce new AVs into the system (Transfer condition – Experiment 2)
� Remove manually driven cars from the system (Transfer condition)
� If timestep = 250, deploy 500 AVs or manually driven cars into the system (Deployment condition – Experiment 1)
Output
� Production of graphics and charts in user interface for interpretation
� Production of .csv datafile recording number of vehicles in each class, collisions, and levels of awareness among cyclists and drivers at each step

for quantitative analysis

System Design System Units

Area:
Length 130 units
Width 130 units
Area (individual patches) 16900 units
Intersections 4356

Agents:
Initial bicycles 500
Initial manually driven cars 2000
Initial autonomous vehicles 0

(continued)
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Speed per time-step:
Max speed of cars (manual and AV) 1.0 velocity unit
Max speed of bicycles 0.3 velocity units
Minimum speed of cars 0 velocity units
Minimum speed of bicycles 0.05 velocity units

Distance:
Distance units 1

Association:
Level of individual association among cyclists and drivers Between 0 (minimum association) and 1 (maximum association)

Memory Span:
Number of time units each driver is able to remember observing a bicycle for

and time each cyclist is able to remember seeing an AV for prior to association
beginning to extinguish (m)

15, 30, or 45 time steps

Awareness:
Individual driver awareness of bicycles on the road (time since last observation

of a cyclist < driver memory span)
Boolean (1 = aware, 0 = unaware)

Road saliency:
Extent to which drivers and cyclists consider paths travelled on by them to be

‘shared’ with cyclists and AVs, respectively (α)
Between 0 (not shared) and 1 (always shared) – set to 1 at all times

Bicycle Saliency:
Extent to which bicycles on the road are observed by drivers (β) Between 0 (not observable at all) and 1.0 (always observed)

Care:
Individual drivers’ intention to drive safely among cyclists (ω) Between 0 (no intention) and 1 (total intention)

Capacity:
Individual drivers’ capacity to drive safely around cyclists (θ) Between 0 (no capacity) and 1 (total capacity)

Time:
Total time-step units elapsed (tk) 200 time units (Deployment condition)

2000 time units (Transfer condition)
Change in vehicle class count per time step – Deployment condition:
Experiment a: Change in AV count +500 at time-step 100
Experiment b: Change in manually driven car count +500 at time-step 100

Change in vehicle class count per time step – Transfer condition:
Change in AV count + 1 per time step
Change in manual car count −1 per time-step

Heading:
Direction of travel for vehicles North, South, East, West

Exploration factor:
Likelihood that a vehicle of any class will change direction at any intersection 5%
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