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Energetics of molecular motor proteins: could it pay to take a free ride?
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ABSTRACT

Molecular motor proteins are used in biological systems to generate directed motion. They consist of
one end that can bind to and then move along a filament. The other end can then bind to a cargo that
needs transporting and the motor then pulls it along. Here, we consider the energetics of this process
allowing for the friction force exerted by the surrounding fluid, given that the process takes place in
a confined geometry. In nature, not all motor/cargo complexes are bound to the filament, many are
in solution. Here, we address the question of whether this can be energetically favourable given that
the unbound complexes will be transported by the flow generated by those that are bound. A simple
theory suggests that this is the case and that there exists an optimal coverage of bound complexes.
Simulations of a model of this system that includes all the relevant hydrodynamic effects confirm
that the assumptions in the theory are valid so long as the coverage of bound complexes is not too
low. Using realistic values for the parameters involved yields an optimal coverage that is plausible
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for the biological systems involved.

Yippie.. I'm gettlng
afree nde

1. Introduction

As anyone who knows Daan knows, paying close atten-
tion to what he says at all times is a good idea. You never
know when a great idea might be heading your way. That
is not to say all Daan’s ideas are great (given the huge
number that is impossible) but there is a high probabil-
ity of it, or at worst that it is merely a good or useful one.
The title of this article contains a direct quotation from
a conversation with Daan. We were talking about trans-
port of material in cells using molecular motors and he
mused “could it pay to take a free ride?”. This article is
our attempt to answer his question.
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Molecular motor proteins are widely used in biologi-
cal systems to generate directional motion [1]. They are
used to generate actual bodily motion, such as muscle
contraction, and in cells to move material from one place
to another. Here, we are interested in the latter. Directed
transport occurs by motor proteins binding to sites on
certain semi-stiff ‘track’ filaments that are assemblies of
globular proteins with a polarity. They then process in a
given direction, determined by the polarity of the track.
The exact mechanism by which this occurs is still a mat-
ter of debate. However, the consensus is that the motors
hydrolyse ATP and undergo a configurational change
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that moves them along to the next binding site [2,3].
Motor proteins primarily differ in the track to which they
bind and in which direction they move once bound to
the track. Myosin binds to actin filaments and provides
the driving force for muscle contraction. The motors
proteins kinesin and dynein bind to microtubules. Once
bound to the track, the former heads towards the posi-
tive end of the track and the latter towards the negative
end. The end of the protein that does not bind to the
track binds to ‘cargoes’, such as proteins and vesicles.
Once attached, the motor with loaded cargo transports
it along the track. As such, this is the mechanism behind
most active transport of proteins and vesicles in the cyto-
plasm. On the scale of a typical cell, this transport takes
place over distances in the order of microns. Directed
motion over much longer scales occurs in cells such as
axons (a giraffe has an axon [4] that is 2m in length,
vying with the giant squid [5] for the record), where it
is believed to be linked to various neural dysfunctions
including Alzheimer’s disease [6].

Motors are not bound irreversibly to the track fila-
ment. They can attach and detach. A motor with cargo
can bind, travel along at a speed of about 1pm/s,
and then detach and go back into solution. A typi-
cal bound run is 100 hops [7]. Consequently, there is
a dynamic equilibrium between bound and unbound
motors.

Here we consider the fact that these molecular motors
are working in a very low Reynolds number environment
where inertia in the surrounding fluid is irrelevant and
viscous forces dominate [8]. In this regime, the issue of
efficiency is not clear cut [9,10]. The ‘Stokes’ efficiency
recognises the fact that the motor has a job to do and
that job is pulling the cargo through the viscous envi-
ronment at velocity v. The minimum amount of energy
per unit time required to do this, Py, given that the fluid
exerts a force F = —y v on the motor, is Py = yv?. Here,
y is the friction coefficient of the cargo. Approximating
the cargo as a sphere of radius a then from Stokes™ law
y = 6mxna. A 100 nm cargo in a fluid with the viscos-
ity n of water gives y ~ 2 x 10~° kg/s. For a speed of
1 wm/s, this gives a minimum energy use per unit time
of Py ~ 2 x 10721 J/s. On the other hand, given that one
hop length is 8 nm, a speed of 1 pm/s implies a hop fre-
quency of ~ 100/s, equating to an energy use (1 ATP per
hop) of ~ 10717 J/s. The Stokes efficiency S is the ratio
of the minimum energy usage P to the actual amount of
energy used per unit time. For this example we, therefore,
have § ~ 2 x 10721 /1077, that is, a Stokes efficiency of
0.02% - hardly impressive. In other words, although the
motor is efficient at using energy to move itself, it is
very inefficient when viewed in terms of its real job of
transporting cargo.
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All this takes a rather simplified view of the hydro-
dynamics. An example of the danger of making this
degree of approximation is that, including hydrodynamic
effects correctly for the collective motion of objects mov-
ing stochastically in a given direction (such as molecular
motors) yields a huge speed up in the motion relative to
the simple case above [11]. An analysis along the lines
above also leads to the conclusion that hydrodynamic
forces are negligible. The hydrodynamic friction using
the simple approach above is approximately 2 femto New-
tons compared to a motor stall force of the order of pico
Newtons. But, using Stokes” law to estimate the friction
coeflicient ignores the fact that, in practice, the motors
work in a confined geometry, not an infinite unbounded
fluid.

The experiments reported in [12] suggested that in
reality the hydrodynamic forces on the motors in con-
fined geometries (in this case, plant cells) are not negli-
gible because the velocity of the bound motors dropped
as their number decreased. An obvious explanation for
this is that the hydrodynamic force is significant and
increases with a decreasing number of bound motors.
Computer simulation showed that it is also likely that
the movement of the motors along the filament gener-
ates flow in the fluid and that this flow causes convec-
tive transport of motors that are in solution [13]. This
effect was then also observed experimentally [12]. At
this point one might ask, as Daan indeed did; if the
cargoes in solution are transported by the fluid flow
generated by the bound motors, are they effectively get-
ting a ‘free ride’? That is, being transported without
the consumption of extra ATP. Could this be energet-
ically favourable and explain why motors attach and
detach such that a significant proportion remains in
solution?

2. Energy use and the free ride hypothesis

In what follows, we only consider bound motor/cargo
complexes in solution and bound to the track filament.
We do not consider unbound motors or motors bound
to the track but without cargo. The justification for doing
so is that the motor proteins, with a size ~ 20 nm [14],
are generally considerably smaller than the cargoes. Con-
sequently, the hydrodynamic forces acting on the com-
plexes will be significantly higher than those on unbound
motors. In addition, from an efficiency point of view, the
objective of the system is to transport cargo at a given
rate and not unbound motors. We further assume that
the concentration of motors in solution is high enough
such that all cargoes have the capacity to bind to the
track. There are two reasons to justify this. Firstly, as
noted above, motor proteins only travel a relatively short
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Figure 1. Some molecular motors do all the work, while others
exploit the flow profile to get a free ride.

distance before detaching back into solution [7]. Sec-
ondly, the geometric consideration that bound motors
are confined to a surface, whereas unbound motors have
access to a volume.

To consider the influence of hydrodynamic forces on
the energetics of transport, we begin with a simple two-
dimensional model system. We do, however, allow for the
fact that motors operate in a bound environment. The
system is sketched in Figure 1. Motors move with a veloc-
ity v along a track with a bounding wall running parallel
to the track a distance d away. The space between is filled
with a fluid of viscosity 7. Let us assume the bulk con-
centration of cargo between the track and the fixed ‘top’
of the system is py. This concentration is relatively inde-
pendent of the number density of cargoes attached to the
track ng which has some maximum value (as much as
possible attached) that is still small compared to the bulk
concentration. We now expect that the movement of the
bound cargoes along the track generates a flow field in the
fluid (as sketched in Figure 1) and that, since we are in
the linear regime, the flow velocity is proportional to the
motor velocity v. The flux of unbound cargo taking a ‘free
ride’ is then simply proportional to pgv (independent of
np because the proportion of bound motors is small).
Now, the effect of the release mechanism (whereby car-
goes also hop off the track) we consider in the following
terms. Detaching cargoes reduces #np to a value below
the maximum value while hardly changing po, that is the
free ride flux is still ~ pgv. Further, we consider the effi-
ciency of the system for a given value of this flux. That is,
we examine the amount of energy required to transport
material at a given rate. The reason is that this is what a
cell must do. It is no use, for example, transporting mate-
rial very efficiently at a rate so slow, it results in death.
The question now is: is there any good energetic reason
why motors should detach to reduce the bound motor
density?

Experiments measuring the velocity, v, of the motors
under an applied external load F show that, to a reason-
able approximation, the application of load causes the
speed to drop approximately as [15]

v =1y (1 —aF), (1)

here the zero load speed vy and the constant & depend
only very weakly on ATP concentration and the viscosity
of the fluid [7,16]. Experimental data for Kinesin gives a
value for the constant a, @ ~ 2.5 x 10° szg_1 cm~ ! [15],
corresponding to a ‘stall force’ (velocity of motor negligi-
ble) of ~ 4 pN. We also have the condition, that the motor

does not go into reverse,
F < 1/a. (2)

If we assume a hopping model for the motion of the
motor, where it attempts hops with a frequency wy, and
one hop moves it a distance A, we then have

v = wa APy
= waA(l — Pyp), (3)

where Py is the probability an attempted hop is successful
and Pyy the probability an attempted hop is unsuccess-
ful. In terms of the model, the effect of an external load
is to make some attempted hops unsuccessful. Compar-
ing (1) and (3), and assuming all hops are successful if
there is no load we have

v = waA(l — aF), (4)

with oF, being the probability of an unsuccessful
attempted hop. One would expect that this is a thermo-
dynamic quantity, so it makes sense that « is independent
of the attempted hop frequency.

To proceed we need an estimate for the force acting
on the motor and cargo complex. In the experiments[15],
the force is an applied external load on a motor in an
essentially unbounded fluid. In contrast, here the load is
the additional hydrodynamic force exerted on the motor
and cargo complex by the bound fluid. Since the cargoes
are generally much larger than the motors themselves,
this will be dominated by the force on the cargo. Hydro-
dynamically, one expects that, if the density of motors
is high enough, the motor/cargo complexes will act in a
similar way to a surface moving with a velocity v subject
to a stick boundary condition (the local fluid velocity will
match the motor and cargo velocity). This being the case,
for the situation sketched in Figure 1, a force density of
F = nv/d is required to drive the flow. This force must
come from the bound motors so we have, from the con-
tinuum result for the force required to drive the flow, an



average force acting on each motor, F,

=l 5)
ng  dng
This is a simplified view because the actual force experi-
enced by an individual motor will depend on the instan-
taneous configuration of motors. The simulations that
we go on to describe do not make this approximation.
Indeed, this is one of the motivations for carrying out the
simulations.
If we now substitute this in the equation for the veloc-
ity (Equation (4)), we find

1 on -1
=—+ — 6
v <Aa)A + n3d> ©

with restriction (2) satisfied as long as
ng > B, (7)

where 8 = an/d.

What can we say about the corresponding energy
usage? Experiments have determined that, near to zero
load, the rate of consumption of ATP by the molecu-
lar motors is consistent with the hydrolysis of a single
molecule of ATP per advance of the motor. The corre-
sponding amount of energy consumed per unit length
per unit time, E, in the hopping model is therefore

E = npwaei, (8)

where €; is the energy consumed from one ATP (approx-
imately 10719]). Clearly there is a trade-off between
reducing np being useful or not useful. On the one
hand, there are less motors to drive which saves energy
(Equation (8)). On the other hand, to maintain a
given velocity the attempted hop frequency will have to
increase (Equation (6)), tending to increase energy con-
sumption. Is there an optimal density of bound motors
which minimises the energy usage?
If we combine (6) and (8), we have

E=i<—%i). 9)
A \ng— Bv

Taking the derivative, dE/dnp, we find that for a given
velocity the energy consumed does have a minimum at a
density

ny = 2Bv, (10)

(which satisfies the condition, (7), that we remain below
the stall force). We should also note that it is possible that
the dependence of the velocity on the force (Equation (1))
is in fact exponential [17]. In this case, our analysis would
be an approximation valid for anv/dnp << 1. The final
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result for the optimal density (Equation (10)) satisfies
the condition anv/dng < 1. In this range experimen-
tal results show that a linear relation is still a reasonable
approximation [15].

At this point, we can put in some numbers and see
if this optimal density is plausible as a mechanism to
increase efficiency. The upper limit on np, corresponding
to the tubule being completely full for the cargo diameter
of a, is nymax = 1/a. We, therefore, have

*

n a
B — 2una-. (11)
Mmax d

If we substitute the viscosity of water and the experimen-
tal value for «, the inverse speed no has a value 2.5 s/pum.
So, if we measure speeds in units of microns per second

*
"E 52, (12)
Mmax d
Typical values of v are 1 um/s or much less. Even with
a high-speed estimate we find that it pays to detach
(n}/nmax < 1) for d/a > 5. That is, a geometry size of
0.5 wm for a 100 nm cargo, which is still pretty small. Of
course, for larger values of d, lower values of v or smaller
values of a (all plausible), the optimal value of the bound
motor density will be much less than the maximum.
This analysis suggests that it is plausible that motors
detach from the track to minimise the energy consumed
while motors in solution are still transported at the same
rate by the flow generated by the bound motors. However,
it does consider a rather unrealistic geometry. We now
consider a geometry that is more realistic for an axon, for
example. Again we assume that the motor and cargo com-
plex acts like a surface with a stick boundary condition.
However, we now assume that this surface is a cylindrical
surface of radius r, moving with a velocity vy in the axial
y -direction. The bounding wall is a stationary cylinder
with a radius r;(r; > r2) and the two cylinders are coax-
ial. By considering the transverse momentum flux in the
direction of the flow for a hypothetical cylindrical sur-
facelocated at a distance r(r; < r < r) from the axis, the
solution of the linearised Navier-Stokes equation yields a
velocity profile of the form

——In— (13)
L)

with a corresponding force density on the inner
cylinder F

nvo

F=——pb. 14
rln 2 (14)
If the density of bound motors per unit area is equal to p,

and it is the motor cargoes that are exerting the driving
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force on the fluid, then we can calculate by way of (14),
the force exerted on each motor as being

F=—=——. (15)

F 11Vo
- = T
p  priln ﬁ

Since the result for the cylindrical symmetry is of the
same form as the result for the planar case (Equation (5))
under the substitution

d=rn lnr—z, (16)

r

we can easily derive the energy usage per unit time per

unit length
2 n
po (i (17)
A\ priln % —anv

and optimal motor density

o
o =20 1",2. (18)
rin "
In terms of the occupation fraction &:
A .
o = Zoccupied nazp, (19)
Atotal
we find the optimal occupation fraction ®*
o
®* = 2ma’v n, . (20)
r1 In ﬁ

Note that, due to the logarithmic form of the velocity pro-
file, this result is largely insensitive to the exact location of
the outer cylinder ;. Therefore, that this result may be of
value even for geometries where the concept of an ‘outer
wall’ is poorly defined, such as irregular environments or
even semi-closed geometries.

Let us assume a cargo with radius a = 100 nm. In the
worst case, the cargo is very close to the track, yielding for
the inner radius r; = a. For a cargo diameter of 100 nm
we find, taking no = 2.5s/um? and v = 1 Lm/s as we
did in the planar case, that it is energetically favourable
to detach for geometries where

2 >ys, 1)

1
that is, any geometry where the outer radius is larger than
about 4.5 times the inner radius. For a real-world sys-
tem, this would imply a channel size of about 0.5 um.
The width of the channel for which it pays to detach
decreases with smaller cargoes, lower velocities and a
larger separation between the cargo and the track. In the
analysis above we have taken the smallest possible sepa-
ration (r; = a), as well as large estimates for the motor

velocity and the cargo size. It is, therefore, likely that
detaching motors from the track will prove energetically
efficient for smaller channel widths in practice. Axons
vary widely in diameter in the range ~ 0.1 — 10 wm [18],
whereas cytoplasmic streaming occurs in cells with sizes
of up to millimetres [19]. So the answer we obtain is at
least consistent with the real systems in which this type
of transport takes place.

3. Asimple lattice Boltzmann model for the
hydrodynamics of molecular motors

In the previous section, we developed a theoretical model
that suggests that it could be energetically favourable for
motors to detach from the track because the cargoes in
solution take a ‘free ride’ with the flow generated by
the bound motors. However, we made an assumption
about the form of the hydrodynamic force. In this section,
we develop a simple numerical model, using the lattice
Boltzmann method to model the fluid [20], to test this
assumption.

One drawback of the lattice Boltzmann method is that
it is grid based. That is, the flow velocity is only known
at discrete points in space. However, if the hydrodynamic
coupling between objects in the fluid and the fluid itself
is simplified to the level of points that exert friction this
restriction can be eased [21,22]. So in the model, the
motors and cargo complexes are treated as points that
exert friction but are not restricted to discrete positions
on the Lattice Boltzmann grid.

To calculate the fluid-motor interaction, at every sim-
ulation time-step we find the lattice cell that contains each
motor cargo. In the three-dimensional case, we use tri-
linear interpolation to determine the fluid density p (r) at
the position r of the motor cargo

1

1 1
p® =3 wigp(lred + i, ] 4+ Lr] + 5,
i=0 j=0 k=0
(22)
where wiji are the weight factors for each vertex. For com-
puting the momentum j(r) an analogous procedure is
used. If we introduce the fractions vector

f=r— (Lrsl, I_ryJ> L72]), (23)

the weight factors are

wooo = (1 —f) (1 — )1 = f2)
woo1 = (1 — ) (1 — fy)fz

woro = (1 — ffy(1 — f2)

wor = (1 — ffyf



wioo = fx(1 = £,)(1 = f2)

wiolr = f(1 = f))fz

wito = fufy(1 — f2)

win = fufyfe- (24)

In the two-dimensional case, the former still applies,
but only two summations and four factors are actually
needed.

Using the fact that v = j/p, where j is the momentum
flux, the results of Equation (22) and the Stokes formula
for the drag, we then determine the force that the motor
exerts on the fluid (and vice versa)

F=—6nna <m — Vm) , (25)
p(r)

where vy, is the velocity of the motor. This force is
then applied to the fluid using the weight factors in
Equation (24).

Essentially, this approach treats the cargoes as points
that exert friction on the fluid corresponding to a sphere
with radius a. The actual physical size is only accounted
for by forbidding bound cargo/motor complexes from
having separations of less than 2a. This means that at very
small separations the finite size of the cargoes is not cor-
rectly accounted for. However, it is not clear that treating
the cargoes as actual hard spheres is particularly real-
istic (or practically possible). Our approach does, how-
ever, accurately describe the hydrodynamics on longer
length scales (the ‘“far field’) so describes collective effects
realistically.

One might also ask why, when the motors are actu-
ally distributed discretely along the track filament, we
do not simply map these points to those of the Lattice
Boltzmann grid. The reason is that, as noted above, the
cargoes are generally significantly larger than the spac-
ing between discrete binding sites. So doing this would
require a proportionately significantly larger system size.

We assume that all the motors are moving at the same
velocity v,, and impose a periodic boundary condition
in the axial direction. By making a Galilean transfor-
mation to the frame of reference of the motors, we can
dispense with actually updating the motor positions, as
all that it would achieve in the steady state would be to
move the entire system through the periodic boundary.
While this leaves us with the slightly odd situation of hav-
ing motors with a finite velocity but no displacement, it
makes the simulations vastly easier to implement, test
and interpret. To examine the two-dimensional exam-
ple discussed above we used a planar geometry. A stick
boundary condition is imposed on the top of the geom-
etry by using a bounce-back rule [20,23]. The boundary
on the track side of the motors is implemented with a slip
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(bounce-forward) rule. In the three-dimensional case, a
cylinder is approximated by rendering cells whose cen-
tre falls outside the cylinder volume impenetrable. The
interface is realised with a bounce-back rule, which cor-
responds to a stick boundary condition. A slip boundary
condition is implied between the motor/cargo complex
and track by allowing the fluid motion to evolve freely.
In the two-dimensional case, an interface on the track is
required, as that effectively forms one of the boundaries
of the system. In the three-dimensional case, the track
is completely surrounded by fluid, and no special con-
siderations are needed. One might reasonably ask why
we chose a slip condition between the motor-cargo com-
plex and the track. The reasons are as follows. Firstly, it
would be pathological to enforce a stick boundary con-
dition because then the motors could not move at all
because of lubrication forces. Secondly, the scale of the
distance between the cargo and the track is ~ 17 nm [14].
One could reasonably expect a continuum hydrodynamic
description to break down on this scale. Thirdly, the force
that we are considering is actually the additional force
due to the confinement of the fluid. There will be some
force between the motor and filament even when the fluid
is unbounded, but the load force we are considering is
the additional force. The slip boundary condition ensures
that this is the quantity we calculate because no force
arises from the track side.

4, Results

Using the model described above we performed numeri-
cal simulations to test the assumptions made in estimat-
ing the hydrodynamic force for the planar and cylindrical
geometries considered above.

We begin with the planar geometry. For the high-
density simulations we use a simulation box of 20 lat-
tice units and 60 lattice units along the track direc-
tion. For any given system, there is a minimum value
of n/fmax. So to reach low values, without chang-
ing the ratio of a to the bound dimensions, requires
that we need to increase the size of the system in the
track direction. In this regime, we prefer to fix the
number of motors present in the system and adjust
the length of the system accordingly. For the mini-
mum density used, np/nmax = 0.0425, the length of
the system grows to 2700 lattice units. We use a value
of a=0.243 for the hydrodynamic radius. The dis-
tance between the track and the cargo is 0.5 lattice
units. In all calculations, we use a motor velocity of
v, = 0.01.

In Figure 2, we show a typical flow profile obtained for
a relatively high density of bound motors. As the figure
shows, it is well approximated by the constant gradient
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Figure 2. Simulation of the flow near a trackin a planar geometry
for a relatively high coverage of molecular motors (0.1). The white
‘cargoes’ represent the actual size of the hydrodynamic radius of
the particles. The triangle-shaped figure shows the flow profile,
which has a constant gradient.

Figure 3. Simulation of the flow neara trackin a planar geometry
for a relatively low coverage (0.01) of molecular motors. As we can
see from the shape of the streamlines, the flow patterns become
axially non-uniform and complex.

profile one would expect if the motor-cargo complexes
effectively act as a stick boundary. Further this holds to
a good approximation at all points along the axial direc-
tion, regardless of the configuration of motors. That is,
the assumption made in the free ride theory is justified.
On the other hand, if the density of motors is sufficiently
low this is clearly not the case (see Figure 3). The flow
profile is more complex, notably near the motors the
streamlines bend in towards the motors. This is a kind
of “ carburettor’ effect due to the acceleration of the fluid
in the vicinity of a motor. In Figure 4, we have plot-
ted the mean flow velocity in the fluid generated by the
motor-cargo complexes and the corresponding hydrody-
namic force acting on the motors. As the figure shows, the
assumption that the force on the bound motors is given
by Equation (5) is justified only while np > 0.0371max.
The same is true for the assumption that the mean flow
velocity is proportional to the motor velocity indepen-
dent of the concentration of bound motors. Below this
point the assumption breaks down (Figure 3) and, due
to the low concentration of motors, the average fluid
velocity progressively drops below the motor velocity.
Correspondingly, the hydrodynamic load also drops (the
motors are doing less work because they are generating
less flow). Since we are operating at a regime where the
Navier-Stokes equations that govern the fluid transport
are linear, one might suspect that the drop in the force

Planar Geometry: Load on a bound motor

Calculated, simulated and effective load
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Figure 4. Results from the simulation of the flow near a trackin a
planar geometry as a function of bound motor coverage.

and mean flow velocities are proportionate, that is,

vr(np)

vf(ng — 00)’ (26)

F(np) = F(np — fmax)
This function is also plotted in Figure 4 and as the figure
shows, this is the case (to a very good approximation).
Consequently, the theory will still correctly predict the
load on each molecular motor if we relax the assumption
that the flow velocity is constant, but this contradicts our
definition of efficiency.

We now turn to the more realistic case of the coaxial
cylindrical geometry. For the high-density simulations,
we use a simulation box of 22 lattice units tall, 22 units
wide and 60 lattice units long. As we decrease the density,
quantisation of the number of motors present becomes an
issue. In this regime, again we prefer to fix the number of
motors present in the system and adjust the length of the
system accordingly. For the minimum density used, the
length of the system grows to 2500 lattice units. We use a
value of a =0.243 for the hydrodynamic radius. The dis-
tance between the track and the cargo is 0.5 lattice unit. In
all experiments, we use a motor velocity of v,, = 0.011.

A cross-sectional profile of the flow velocity is shown
in Figure 5. Again we see that the velocity profile we
expected based on treating the motors as a stick sur-
face is valid at high enough density but at low densities
the streamlines near the motor-cargo complexes are dis-
torted and the mean flow velocity decreases relative to
the motor velocity. In Figure 6, we again plot the mean
flow velocity and hydrodynamic force as a function of
bound motor density. The assumption that the action of
the motors on the track can be modelled as the solid sur-
face of a cylinder holds up to an area fraction of about
® = 0.1. Below that point, as in the planar case, the mean
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Figure 5. Flow profile cross section along the radial direction
of the coaxial cylinder geometry, for high (0.1) and low (0.01)
coverage of bound motors.
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Figure 6. Results for the load on the motors on a track in a coaxial
cylindrical geometry as a function of bound motor coverage.

flow velocity and force decrease proportionately. At the
cost of introducing an extra parameter v¢(np)/vf(np —
00), we could re-estimate the optimal motor density
based on the simulation results. We do not, however,
expect this to qualitatively change the conclusion and the
results of the simulations at least confirm that the theory
is reasonable as long as the optimal density is not too low.

5. Discussion

We have developed a simple theory that suggests that
it can be energetically favourable for motors to detach.
This is because of the free ride from the fluid flow gen-
erated by the bound motors. As the density of bound
motors is decreased the free ride flux stays the same while
the number of motors running decreases. This saves
energy. The density can be decreased to a point where the
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hydrodynamic force on the motors starts to become sig-
nificantly higher. Once this point is reached the bound
motors start to require more fuel to drag the fluid along.
This is energetically unfavourable. A trade-off between
these two effects gives an optimal density. The theory pre-
dicts an optimal density of bound motors that is plausible
(the actual density in vivo is not known). There is noth-
ing adjustable in the theory so it could give any answer
for the optimal density from zero to infinity. The fact that
it gives something sensible suggests there could well be
something in it. There are other explanations, the traffic
jam argument for example [24,25]. This notes that if the
density of the motors on tubule is too high they get in
each other’s way and the rate of transport reduces. How-
ever, these crowding effects come into play for surface
coverage of about 50%, much lower than the optimal val-
ues predicted here (at least for relatively low degrees of
confinement). There is also the possibility of generating
diffusive fluxes from an inhomogeneous distribution of
suspended motor-cargo complexes [26,27].

The simple lattice Boltzmann model we developed
confirmed the assumption as to the magnitude of the
hydrodynamic force acting on the motors at relatively
high coverage. It, in principle, also allows us to correct
for the fact that the assumption breaks down at low cov-
erage. This does not change the general conclusion from
the theory.

The numerical model allows to go further and address
more complex geometries and, importantly, transport
mechanisms. In particular, for the work reported here
the transport is unidirectional. In practice, it is often
bidirectional. That is, motors move along different fila-
ments in different directions. One would expect this to
significantly change the situation.

One question we have not addressed is how the opti-
mum coverage could be obtained. The degree of coverage
is actually determined by the kinetics of attachment and
detachment. We do not have the answer to this question
but note the following. Because the optimum coverage
uses energy at the minimum rate any other coverage will
use ATP at a faster rate. If ATP is only being supplied at
a given rate, determined by the optimum coverage, any
new state can never be a steady state because it would end
up running out of ATP. To see if there is a plausible mech-
anism based on this reasoning requires a more detailed
model that takes into account the kinetics of attachment
and detachment. At the least we have shown that there
is an optimum coverage. Nature may or may not take
advantage of it. ATP is generally abundant so maybe
it is okay to be wasteful. However, there is consider-
able interest in constructing microscopic machines using
motor proteins [28]. The tubular system we consider, for
example, could be realised as a micro pump, if it is the
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fluid rather than cargoes we are interested in transport-
ing. So even if nature does not make use of the free ride,
perhaps when constructing such machines we could?
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