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ATOMS, MOLECULES AND CLUSTERS IN MOTION

Bound and unbound rovibrational states of the methane-argon dimer

Dávid Ferenc and Edit Mátyus

Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary

ABSTRACT
Peculiarities of the intermolecular rovibrational quantum dynamics of the methane-argon com-
plex are studied using a new, ab initio potential energy surface [Y.N. Kalugina, S.E. Lokshtanov, V.N.
Cherepanov, and A.A. Vigasin, J. Chem. Phys. 144, 054304 (2016)], variational rovibrational compu-
tations, and detailed symmetry considerations within the molecular symmetry group of this floppy
complex aswell aswithin the point groups corresponding to the localminimumstructures. The com-
puted (ro)vibrational states up to and beyond the dissociation asymptote are characterised using
two limitingmodels: the rigidly rotatingmolecule’smodel and the coupled-rotormodel of the rigidly
rotating methane and an argon atom orbiting around it.
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1. Introduction

Methane is an abundant molecule not only on Earth, but
in the Universe [1,2]. On Earth it has the third largest
contribution to the greenhouse effect, after water vapour
and carbon-dioxide, meanwhile on Titan, the moon of
Saturn it is the most important greenhouse gas [3].
Therefore, the interaction of methane with other simple
molecules is of interest for astrochemistry and for atmo-
spheric chemistry. There are several experimental and
theoretical results for such systems including methane-
water, CH4·H2O [4,5], methane-fluoride, CH4·F−, [6],
and the mehane dimer, CH4·CH4 [7].

The first measurements for the methane-argon gas
mixture at several temperatures were reported by Dore
and Filabozzi [8]. The infrared spectrum was reported
first by McKellar et al. in 1994 [9], then Pak et al.
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Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2018.1547430

measured the high-resolution spectra of the CH4·Ar and
CH4·Kr complexes in the 7μm region. Later on, further
high-resolution measurements and ab initio computa-
tions were performed for the CH4·Ar system [2,10].

In spite of repeated attempts, the spectral lines within
the bound region of the complex have remained elu-
sive to experimentalists due to the very low induced
dipole moment of the complex dominated by dispersion
interactions (both isolated methane and isolated argon
are apolar). This region is however well accessible to
theoretical investigations due to the low dimensional-
ity (3D) of the intermolecular degrees of freedom and
the excellent rigid-monomer approximation.On the con-
trary, the experimentally well-accessible transitions to
predissociative states of the complex are extremely chal-
lenging for theory due to the high-dimensionality (12D)
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of the six-atomic methane-argon system. A rigorous full-
dimensional rovibrational study has not been completed,
and full-dimensional, ab initio potential energy surface
have not been developed yet. At the same time, the
energy and lifetime of predissociative states carry ample
information on the fine details of the inter- and intra-
molecular quantum dynamics taking place under the
influence of weak (here: dispersion) interactions. Due to
the very weakly bound nature of this complex and the
high-order symmetry of the methane molecule, it has
been anticipated that kinetic couplings play an important
role in its intermolecular and predissociative dynamics.

In the present work we take the opportunity to use a
new, ab initio atom-molecule interaction potential energy
surface of this dimer [1] to study peculiarities of the
rovibrational dynamics and related symmetry consider-
ations.

2. Computational details

a. Intermolecular potential energy surface. We use the
three–dimensional potential energy surface (PES) deter-
mined by Kalugina et al. by ab initio computations at
the CCSD(T)/CBS level of theory, and by fitting an
analytic functional form to the data points [1]. The
ab initio computations were carried out with a regular
tetrahedral methane structure with rCH = 2.06735 bohr.
There are two non–equivalent minima on this PES: the
argon atom is in face configuration at the global mini-
mum (GM) structure corresponding to an R=6.95 bohr
carbon-argon distance, and in edge configuration with
a larger, R=7.34 bohr value at the secondary minimum
(SM) structure. The saddle point connecting the two
non-equivalent minima is located at the vertex posi-
tion of the argon atom (Figure 1). The dissociation
energy (De) of the complex from the global minimum is
141.47 cm−1 and it is 115.06 cm−1 from the secondary
minimum.

b. Rovibrational computations. We carried out rovi-
brational computation on this intermolecular PES using
the GENIUSH programme [11,12]. GENIUSH stands
for GENeral Internal-coordinate, USer-define Hamilto-
nians, and it has been successfully used for the compu-
tation of bound and resonance states of floppy molec-
ular systems, including ArNO+ [13], HeH+

2 [14], NH3
[11,12], H+

5 [15], CH+
5 [16], CH4·H2O [4,5], with vari-

ous internal coordinate and frame definitions. An inter-
esting feature, the existence of formally negative-energy
rotational excitations [4,5,15,17–19] had been observed
in a growing number of floppy systems and led to the
introduction of the notion of astructural molecules in
Ref. [15]. Ref. [15] also presented a one-dimensional tor-
sionalmodel to better highlight the phenomenon. Ref. [4]

Figure 1. Angular dependence of the potential energy surface of
Ref. [1] represented in terms of (R, θ ,φ) spherical polar coordi-
nates. For each θ value in the plot the R coordinate was chosen
to minimise the interaction energy, while φ was set to 0.0◦.

reported an elaborate study on the quantum dynamical
background of these special features for the example of
the methane-water dimer using a quantum mechanical,
coupled-rotor model of the subsystems.

The general rovibrational Hamiltonian implemented
in GENIUSH is

Ĥ = 1
2

D∑
kl=1

g̃−1/4p̂kGklg̃1/2p̂lg̃−1/4

+ 1
2

D∑
k

3∑
α

(
p̂kGk,D+α + Gk,D+α p̂k

)
Ĵα

+ 1
2

3∑
α

GD+α,D+α Ĵ2α

+ 1
2

3∑
α

3∑
β>α

GD+α,D+β
(
Ĵα Ĵβ + Ĵβ Ĵα

)
+ V , (1)

where p̂k = −i∂/∂qk is a differential operator corre-
sponding to the qk internal coordinate, and Ĵα (α =
x, y, z) labels the body-fixed angular momentum oper-
ators. The quantities Gkl = (g−1)kl and g̃ = det(g) are
obtained from the gkl mass-weighted metric tensor,
defined as

gkl =
N∑
i=1

mitTiktil, k, l ∈ {1, 2, . . . ,D + 3} (2)

tik = ∂ri
∂qk

, (3)

tD+α = eα × ri, (4)
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Table 1. Internal coordinate, basis function, number of DVR
points (N), and grid intervals used in the computations.

Coordinate Basis function N Grid interval

R [Å] Laguerre 51 [2.65–15]
cos θ Legendre 81 Unscaled
φ [◦] Fourier 21 [0–360)

which are evaluated over a direct product grid in the
programme using the user-defined body-fixed Cartesian
coordinates in terms of the internal coordinates.

Geometrical constraints (in the present case for the
methane molecule) are accounted for in an automated
fashion by choosing D being equal to the number of
active vibrational dimensions (D=3 for the present
case) in Equation (1). This choice is equivalent to fix-
ing the structural parameter (and a corresponding zero
velocity) in the classical Lagrangian [11]. The Hamilto-
nian matrix is obtained as the matrix representation of
Equation (1) constructed with the discrete variable rep-
resentation (DVR) for the vibrational degrees of freedom,
and using the Wang functions for rotations. The kinetic
energy operator is evaluated numerically over a direct
product DVR grid. The eigenvalues and eigenfunctions
of the Hamiltonianmatrix are computed with an iterative
Lanczos eigensolver.

We define the body-fixed Cartesian coordinates for
the methane-argon complex, as follows: we place the
carbon atom in the origin, two hydrogen atoms are
in the y−z plane and the other two are in the x−y
plane with the same methane geometry as the PES
[1]. The position of the argon atom is defined by the
R, cos θ , and φ spherical polar coordinates, which are
the active vibrational coordinates (for the basis func-
tions, detailed intervals andDVRparameters seeTable 1).
The coordinate definition is completed by shifting the
system to the centre of mass of the complex. We used
atomic masses [20], mH = 1.007 825 032 23 u, mD =
2.014 101 778 12 u, mT = 3.016 049 277 9 u, mC =
12 u, and mAr = 39.962 383 123 7 u, throughout the
computations.

3. Symmetry considerations and analysis tools

This section is dedicated to a general description of the
symmetry analysis and symmetry properties of the lim-
iting (rigid-rotor and coupled-rotor) models, which will
be used to understand the numerical results in Section 4.

3.1. Point groups and themolecular symmetry
group of themethane-argon dimer

The PES of Ref. [1] features two non-equivalent min-
ima. The global minimum has a C3v point-group (PG)

Figure 2. The global minimum has C3v point-group symmetry,
whereas the local minimum has C2v point-group symmetry (this
particular numbering of the nuclei is used in the derivation in the
text).

symmetry, while the secondary minimum has C2v PG
symmetry (Figures 1 and 2). With the low barriers and
the almost freely rotating methane unit in the dimer,
there is an interchange among the four GM and the six
SM structures that gives rise to a rich splitting pattern.

The methane-argon dimer belongs to the Td(M)
molecular symmetry (MS) group and all symmetry
species of the MS group are physically existing [21].

3.2. General considerations about the tunnelling
splitting of vibrational states

The splitting of vibrational states, classified by PG irre-
ducible representation (irrep) labels, will be derived by
starting out from a simple picture. Let us imagine that the
system exhibits only small (ε) amplitude vibrations about
the minimum structures (of one of the PG symmetries).
This system is almost ‘frozen’ at the near proximity of
these equilibrium structures, and thus its molecular sym-
metry group is the permutation-inversion group isomor-
phic to the PG (with a selected numbering of the nuclei).
Hence, these ε-vibrations can be characterised by irreps
of the PG, C3v (PG) or C2v (PG), but they can also be
characterised by the C3v (M) and C2v (M) permutation-
inversion (PI) groups. These PI groups share elements
with the MS group (here Td(M)), which will be used
later.

For a general derivation of the vibrational splittings
due to the large-amplitude motions, we proceed as fol-
lows. First, we construct the symmetry-adapted basis
functions for the irreps of the PI group (isomorphic
with the PG) of the minimum structure. Then, we con-
sider the transformation properties of these functions
under the symmetry operations of the MS group, deter-
mine the characters for each class of the MS group, and
reduce the representation. We carry out the derivation
for a general pair of MS and PI (∼PG) groups, labelled
withG and g, respectively. At the end of the derivation, we
calculate the splittings for the case of methane-argon.

(1) Let us consider a function f0 localised at an arbitrar-
ily selected version of the molecule.
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(2) Map the f0 basis function onto all feasible versions,
fi = Ôif0, by using all Ôi i ∈ {1, 2, . . . ,N} MS group
operations (N = |G| is the order of G).

(3) It is always possible to choose f0 in such way that
〈fi|fj〉 = δij (i, j = 1, . . . ,N).

(4) Construct a linear combination of the fi (i =
1, . . . ,N) functions which transform according to
the 	 irrep of g:

φ
(	)
i = 1

n

n∑
k=1

c(	)k P̂kfi, i = 1, . . . ,N (5)

where P̂k ∈ g and n = |g| is the order of g.
(5) In order to determine the characters in G, the trace

of the matrix representation of ÔR ∈ G is calcu-
lated corresponding to the {φ(	)i ; ı = 1, . . . ,N} set of
functions:

χ(	)(ÔR) =
N∑
i=1

〈φ(	)i |ÔR|φ(	)i 〉

= 1
n2

N∑
i=1

n∑
k=1

n∑
l=1

c(	)k c(	)∗l 〈P̂kfi|ÔR|P̂lfi〉

(6)

(6) In order to evaluate the trace in Equation (6), we first
identify the non-vanishing integrals by reordering
the operators as

〈P̂kfi| ÔR |P̂lfi〉 = 〈fi| P̂−1
k ÔRP̂l |fi〉 . (7)

Since g ⊂ G and due to the closure property of a
group, P̂−1

k ÔRP̂l ∈ G. Since the set of (localized) fi
functions was created bymapping f0 with all possible
operations of G, and the functions are orthogonal, a
non-vanishing integral is obtained only if the prod-
uct of the three operators, P̂−1

k , ÔR, and P̂l equal the
identity:

P̂−1
k ÔRP̂l = Î (8)

ÔR = P̂kP̂−1
l . (9)

(7) The integral is non-vanishing for a selected ÔR ∈ G,
if ∃P̂r ∈ g: P̂r = ÔR:

n∑
k=1

n∑
l=1

〈fi| P̂−1
k ÔRP̂l |fi〉 = n. (10)

Then, if	 is the totally symmetric irrep (assume that
it is labelled with A1) of g, all c

(A1)
k characters equal

1, and we obtain:

χ	(ÔR) = 1
n2

N∑
i=1

n∑
k=1

n∑
l=1

cA1
k cA1

l 〈P̂kfi| ÔR |P̂lfi〉
(11)

=
⎧⎨
⎩

1
n2

Nn = N
n
, if ∃ P̂r ∈ g : P̂r = ÔR

0, otherwise
(12)

For a different labelling of the atoms the ÔR opera-
tors in the same class have different characters, thus
we average over the χ(ÔR) values within a class of
the group. (Equivalently, we could have considered
all possible labelling of the molecule at the begin-
ning.) Let us denote the class of ÔR as R and KR
is the number of elements in this class of G. Then,
we obtain

χ	(R) = 1
KR

∑

ÔR∈R
χ(ÔR) (13)

=
⎧⎨
⎩

kr
KR

N
n
, if ∃ P̂r ∈ g : P̂r = ÔR ∈ R

0, otherwise,
(14)

and kr is the number of operations in theR class of
G for which ∃ P̂r ∈ g : P̂r = ÔR. It can be seen that
this kr number of operations equals the number of
elements in the class of g which contains P̂r.

(8) In general for a 	 irrep of g, the characters for theR
class of G are

χ(	)(R) =

⎧⎪⎪⎨
⎪⎪⎩

c(	)r
kr
KR

N
n
, if ∃ P̂r ∈ g :

P̂r = ÔR ∈ R
0, otherwise.

(15)

3.3. Mathematical structure of the tunnelling
splittings inmethane-argon

First, we calculate the tunnelling splitting of the vibra-
tional states for the global minimum structure. The order
of Td(M) is N=24. The global minimum (GM) has
C3v PG symmetry, and the order of C3v (PG or PI) is
n=6. The equivalent operations and the orders of classes
in the two groups are collected in Table 2.

Table 2. Equivalent operations in the Td(M) and C3v(M) symme-
try groups for the labelling shown in Figure 2.

Td(M) E (123) (14)(23) [(1423)]* [(23)]*
KR 1 8 3 6 6
C3v(M) E (123) [(23)]*
kr 1 2 3
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Table 3. Equivalent operations in the Td(M) and C2v(M) symme-
try groups for the labelling shown in Figure 2.

Td(M) E (123) (12)(34) [(1234)]* [(12)]*
KR 1 8 3 6 6
C3v(M) E (12)(34) [(12)]*
kr 1 1 1

The Td(M) irreps for the vibrational splittings of
states corresponding to the global minimum and the C3v
PG (and its isomorphic PI) group are obtained from
Equation (15) and Table 2:

	
C3v
A1

= A1 ⊕ F2

	
C3v
A2

= A2 ⊕ F1

	
C3v
E = E ⊕ F1 ⊕ F2,

(16)

which defines the mathematical structure of the split-
ting pattern for the vibrational states assignable to
the GM.

We proceed similarly for the secondaryminimum, use
Equation (15) and Table 3 for the C2v group (of order
n=4), and obtain the splitting pattern for the vibrational
states assignable to the SM as:

	
C2v
A1

= A1 ⊕ E ⊕ F2

	
C2v
A2

= A2 ⊕ E ⊕ F1

	
C2v
B1 = F1 ⊕ F2

	
C2v
B2 = F1 ⊕ F2.

(17)

A difference in the mathematical structure of the GM
and SM splittings is that the totally symmetric vibrations
(such as the zero-point vibration) of the SM contain a
doubly-degenerate species.

3.4. Coupled-rotor decomposition

Molecular systems which can be separated into two
rigidly rotating distinct parts can be characterised by
a model which includes only the coupling of the
subsystems’ angular momenta (and neglects any PES
interactions). This scheme was introduced by Sarka
et al. in relation with the general, numerical kinetic-
energy operator approach of GENIUSH and is called the
coupled-rotor decomposition (CRD) [5].

The coupled-rotor (CR) ansatz for methane-argon
(Figure 3) is constructed from the rotational wave func-
tions of methane, φj

M

km, and of the effective diatomic rotor,
Ym
� , coupled to a total rotational angular momentum

Figure 3. Coupling of the subsystems’ angular momenta used to
define the coupled-rotor model in CH4·Ar.

Table 4. Characters and irrep decomposition of the J= 0 rota-
tional functions of the methane-argon dimer in the Td(M) molec-
ular symmetry group. ncl is the number of operations in the class.

ncl E (123) (14)(23) [(1423)]* [(23)]*

	 1 8 3 6 6 Irreps

[0, 0]00 1 1 1 1 1 A1
[1, 1]00 3 0 1 −1 1 F2
[2, 2]00 5 −1 1 −1 1 E⊕ F2
[3, 3]00 7 1 −1 1 1 A1 ⊕ F1 ⊕ F2
[4, 4]00 9 0 1 1 1 A1 ⊕ E⊕ F1 ⊕ F2
[5, 5]00 11 −1 −1 −1 1 E⊕ F1 ⊕ F2
[6, 6]00 13 1 1 −1 1 A1 ⊕ A2 ⊕ E⊕ F1 ⊕ 2 F2

state, |JM〉. Hence, the CR functions are defined as

[jM,�]JM

=
jM∑

μ=−jM

�∑
M−μ=−�

〈jM,μ,�, (M − μ)|JM〉φjMμ YM−μ
� ,

(18)

where 〈jM,μ,�, (M − μ)|JM〉 are the Clebsch–Gordan
coefficients. Based on this definition, the symmetry prop-
erties of the rotational functions, and the equivalent
(monomer) rotations of the MS group operators, closed
analytic expression can be derived for the symmetry
labels of the CR functions. The characters and irrep
decomposition in Td(M) are given in Tables 4 and 5 for
the J=0 and J=1 CR functions of methane-argon.

In order tomeasure the similarity of the CRmodel and
the ‘exact’ intermolecular wave functions, we compute
CRD overlaps defined as [5]

CRDJ
nm =

NR∑
r=1

∣∣∣∣∣∣
J∑

k=−J

N�∑
i=1


̃
J
nk(ρr,ωi)ϕ̃

J
mk(ωi)

∣∣∣∣∣∣

2

. (19)

where 
̃J
nk(ρr,ωi) is the exact variational (ro)vibrational

wave function in DVR, ρ and ω denote the radial and
(the collection of) angular coordinates respectively, and
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Table 5. Characters and irrep decomposition of the J= 1 rota-
tional functions of the methane-argon dimer in the Td(M) molec-
ular symmetry group.

ncl E (123) (14)(23) [(1423)]* [(23)]*

	 1 8 3 6 6 Irreps

[0, 1]10 1 1 1 −1 −1 A2
[1, 0]10 3 0 −1 1 −1 F1
[1, 1]10 3 0 −1 −1 1 F2
[1, 2]10 3 0 −1 1 −1 F1
[2, 1]10 5 −1 1 1 −1 E⊕ F1
[2, 2]10 5 −1 1 −1 1 E⊕ F2
[2, 3]10 5 −1 1 1 −1 E⊕ F1
[3, 2]10 7 1 −1 −1 −1 A2 ⊕ F1 ⊕ F2
[3, 3]10 7 1 −1 1 1 A1 ⊕ F1 ⊕ F2
[3, 4]10 7 1 −1 −1 −1 A2 ⊕ F1 ⊕ F2
[4, 3]10 9 0 1 −1 −1 A2 ⊕ E⊕ F1 ⊕ F2
[4, 4]10 9 0 1 1 1 A1 ⊕ E⊕ F1 ⊕ F2
[4, 5]10 9 0 1 −1 −1 A2 ⊕ E⊕ F1 ⊕ F2
[5, 4]10 11 −1 −1 1 −1 E⊕ 2 F1 ⊕ F2
[5, 5]10 11 −1 −1 −1 1 E⊕ F1 ⊕ 2 F2

ϕ̃
J
mk(ωi) are the CR functions depending only on the

angular coordinates. By identifying the dominant values
in the CRD matrix the assignment of the (ro)vibrational
states is straightforward.

In order to be able to numerically evaluate this inte-
gral in a ‘black-box fashion’ of the GENIUSH proto-
col [11], we compute the CR functions in a reduced-
dimensionality GENIUSH computation with the atom-
molecule distance fixed at its equilibrium value, the PES
switched off, and the same angular grid representation as
for the ‘full’ problem (Table 1). TheTd(M) irrep labels are
assigned to the (ro)vibrational states in an almost auto-
mated fashion by inspecting the numerical CRD matrix
and using the symmetry properties of the CR functions
(see Tables 4–5).

3.5. Rigid-rotor decomposition

In the traditional picture of molecular rotations and
vibrations, molecular rotations [21,22] are superimposed
on the (higher-energy) molecular vibrations. The rigid-
rotor decomposition (RRD) scheme was introduced [23]
to assign parent vibrational states to rovibrational wave
functions. TheRRDassignment is based on the overlap of
a direct product basis of pure vibrational functions,ψ J=0

n
and the φRR,J rigid-rotor functions with the full rovibra-
tional wave function, ψ J>0

n (computed with a selected
body-fixed frame):

|ψ J=0
n 〉 ⊗ |J,φRRl 〉 = |ψ J=0

n · φRR,Jl 〉 (20)

Snl,m = 〈ψ J=0
n · φRR,Jl |ψ J>0

m 〉. (21)

By computing the Snl,m overlap values, the dominant con-
tribution of a vibrational state to a rovibrational state can
be determined.

Table 6. Characters and irrep decomposition of the φRR,J rigid-
rotor functions in the Td(M) MS group.

ncl E (123) (14)(23) [(1423)]* [(23)]*

J 1 8 3 6 6 Irreps

0 1 1 1 1 1 A1
1 3 0 −1 1 −1 F1
2 5 −1 1 −1 1 E⊕ F2
3 7 1 −1 −1 −1 A2 ⊕ F1 ⊕ F2
4 9 0 1 1 1 A1 ⊕ E⊕ F1 ⊕ F2

In the present work, besides the analysis of the numer-
ical RRD values, we would like to better understand the
regularities in the RRD matrix introduced by symmetry
relations. First of all, we determine the symmetry assign-
ment of the φRR,J functions in the Td(M) MS group.
The equivalent rotations (α0,β0, γ0) for each class in
the Td(M) are (123): (0, 0, 2π/3); (14)(23): (π/3,π , 0);
[(1423)]*: (π/6,π/2,−π/6); [(23)]*: (0,π , 0). The char-
acters of this reducible representation are the traces of
Wigner Dmatrices.

χ j =
j∑

m=−j
Dj
m,m(α0,β0, γ0) (22)

The irrep decompositions for several J quantumnumbers
are collected in Table 6.

Since the symmetry of the RRD basis functions,
Equation (20), is determined by the direct product of the
	(ψ J=0) and 	(φRR,J>0) representations, the overlap in
Equation (21) can only be non-zero if the direct prod-
uct contains the irrep of the rovibrational state. The irrep
decomposition in Td (M) of the direct product of the
ψ

J=0
n vibrational (A1, A2, E, F1, F2) and φRR,J>0, which

is F1 for J=1:

A1 ⊗ F1 = F1
A2 ⊗ F1 = F2
E ⊗ F1 = F1 ⊕ F2
F1 ⊗ F1 = A1 ⊕ E ⊕ F1 ⊕ F2
F2 ⊗ F1 = A2 ⊕ E ⊕ F1 ⊕ F2.

(23)

This result tells us, for example, that a rovibrational state
of A2 symmetry can only originate from an F2 vibrational
state.

4. Numerical results

4.1. Vibrational states

The depth of the PES valley of the global (sec-
ondary) minimum measured from the dissociation
asymptote is −De(GM) = −141.47 cm−1 (−De(SM) =
−115.06 cm−1). By considering also the zero-point
vibration (ZPV) of the GM, the lowest-energy state
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Figure 4. CRD overlap coefficients, Equation (19), computed for the vibrational (J= 0) and rovibrational (J= 1) states of CH4·Ar (a darker
colour corresponds to a larger value of the overlap). The rows correspond to the coupled-rotor functions ϕJn, which are used to assign the
full intermolecular vibrational states,
J

n, listed in the columns.

accessible to the system has an energy −D0 = −De +
ZPVE = −88.60 cm−1, measured from the dissociation
asymptote. The PES bounds 20 vibrational states (if
we count degenerate states only once), which have

been assigned using the limiting models described in
Section 3. The computed energy levels, together with
their CRD and Td (M) irrep assignments, are collected
in Table 7 (see also Figure 4).
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Figure 5. Expectation value of the carbon-argon distance, R, for
the bound vibrational states of CH4·Ar.

First of all, by looking at the computed and assigned
list of vibrational states, we have attempted to identify
complete splitting patterns, which (would) correspond to
the traditional picture of molecular vibrations split up by
feasible interchanges between the permutation-inversion
versions. Having in mind the mathematical structure of
the splittings for GM and SM vibrations, Equations (16)
and (17), we have inspected the expectation value of
the atom-molecule separation over the bound vibra-
tional states (Figure 5). Due to the structural differ-
ences between GM and SM (Req(GM) = 6.95 bohr and
Req(SM) = 7.34, bohr respectively), an increased atom-
molecule separation can be an indication of a secondary-
minimum character. Alternatively, an increased 〈R〉
value can also indicate vibrational excitation along the
atom-molecule distance. Stretching vibrational excita-
tions and overtones can be recognised by nodes in the
wave function along the R coordinate. Figure 6 col-
lects cuts of A1-symmetry wave functions which high-
light their nodal structure along R (the Supplementary
Material contains similar cuts for all bound vibrational
states).

In addition, we repeated the vibrational computation
also for the two symmetrically substituted isotopologues,
CD4·Ar and CT4·Ar (Figure 7). According to chemical-
physical intuition, we expected that the tunnelling split-
tings should get smaller by increasing the mass of the
nuclei, which then could help the identification of the
vibrational splittings.

Based on all these considerations and the numeri-
cal results, the zero-point vibration of the global mini-
mum, ZPV(GM), could be assigned to J0.0 (0.00 cm−1,
A1) and J0.1–3 (9.01 cm−1, F2). The next six states, J0.4
(28.74 cm−1, A1), J0.5–7 (31.24 cm−1, F2), and J0.8–9
(32.08 cm−1, E) could be assigned to the zero-point

vibration of the secondary minimum, ZPV(SM), but
due to a node along the R coordinate it would be
morea appropriate to assign J0.4 (28.74 cm−1, A1) and
J0.5–7 (31.24 cm−1, F2) to the intermolecular vibra-
tional fundamental of the global minimum, Stre(GM).
In general, the overlap of the energy range of the
ZPV(SM) and Stre(GM) (and other vibrations), and the
appearance of the same symmetry species in the dif-
ferent splittings, Equations (16) and (17), an unam-
biguous identification of vibrational states (in the tra-
ditional sense, split up by feasible exchanges) is hardly
possible.

Furthermore, the higher the energy, node counting
alongR is less obvious (Figure 6).While, we can trace (the
A1 species of) the first, the second, and perhaps also the
third stretching excitations, beyond J0.25 (68.90 cm−1,
A1), the wave functions along R become more and more
oscillatory indicating that we approach the dissociation
limit.

It is interesting to note that there is not any bound
vibrational state of A2 symmetry, which would be an
‘indicator’ of a vibrational state of A2(GM) or an A2(SM)
PG symmetry, Equations (16) and (17). Table 4 shows
that the lowest-energy CR-functions, which generate an
A2-symmetry state belong to [6, 6]00. These CR functions
have ∼210 cm−1 energy, much larger than the dissocia-
tion energy, which explains the absence of bound states
of this symmetry species.

While it is difficult to use the traditional picture of
molecular vibrations, the CR model appears to be use-
ful and we could identify dominant CR functions for
all vibrational states of methane-argon (see Figure 4 and
Table 7).

Upon isotopic substitution, we could not really
observe the closure of the splittings (since there are
not any clear splittings apart from ZPV(GM)), but we
observed another regularity with respect to the increase
of the hydrogenic mass. Based on this regularity, we will
explain the change in the energy ordering of the symme-
try species along the CH4·Ar–CD4·Ar–CT4·Ar sequence
(Figure 7).

The rotational constant, and thus the rotational energy
of methane is inversely proportional to the mass of the
H (D/T) atom, and thus the energy of the [jM,�]00 CR
functions is also proportional to m−1

H to a good approx-
imation (we neglect the energetic contribution from the
diatom rotation, which is small). If we check the energy
separation of the lowest-energy vibrational states domi-
nated by the [0, 0]00 (A1), [1, 1]00 (F2), [2, 2]00 (E⊕F2),
and [3, 3]00 (A1⊕F1⊕F2) CR functions, we observe a ca.
1/2 and 1/3 reduction in this separation (indicated with
double-headed arrows in Figure 7) upon the H–D and
H–T replacement, respectively. Of course, the changes in
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Figure 6. Wave function cuts along the R coordinate for the A1-symmetry vibrational states (the energy shown above each plot is
measured from the ground vibrational state).

the vibrational energy intervals only approximately fol-
low the CR model, because the PES also plays a role in
the vibrational dynamics.

In comparison with the m−1
H relation of the CR

splittings, the energy of the atom-molecule stretching
excitations (excitation along R) changes approximately
with 1/√μ, the square root of the reduced mass of the

effective diatom (methane and argon), which brings in a
less than a 1/

√
2 and 1/

√
3 factor upon theH-D andH-T

replacements, respectively.
Hence, the energy separation of vibrational states cor-

responding to angular (CR) excitations (with similar
radial parts) is decreased by a larger extent than the
energy separation of radial (R-stretching) excitations
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Figure 7. Comparison of the bound-state vibrational energies of
CH4·Ar, CD4·Ar, and CT4·Ar.

upon isotopic substitution. Since the radial excitation
does not change the symmetry, while the angular (CR)
excitation does, we observe a rearrangement of the
energy ordering of the various symmetry species in the
deuterated and tritiated isotopologues.

4.2. Rovibrational states

The computed J=1 rovibrational results are summarised
in Table 8. The corresponding CRD matrix is shown in
Figure 4, while the RRD coefficients (obtained with the
RR functions corresponding to the symmetric-top GM
structure) are visualised in Figure 8. A clear assignment,
of the vibrational parent (with dominant overlaps) is pos-
sible only for the lower-energy range. Nevertheless, we
find it remarkable that it is possible to use the RR pic-
ture at all for this very floppy complex, in the light of the
difficulties of identifying complete vibrational splitting
manifolds (see previous section).

Surprisingly, the very first J=1 rotationally excited
state, J1.0 (0.12 cm−1, A2), has a lower energy than

Table 7. Bound-state vibrational energies given with respect to
the 52.86 cm−1 zero-point vibrational energy of CH4· Ar obtained
with GENIUSH and the PES of Ref. [1]. Each vibrational state is
characterised with its Td(M) irrep label (	) and the dominant (and
minor) CR function.

Coupled-rotor
states (J= 0)

n E [cm−1] 	 dominant minor

J0.0 52.86 A1 [0,0]00
J0.1–3 9.01 F2 [1,1]00
J0.4 28.74 A1 [0,0]00
J0.5–7 31.24 F2 [2,2]00 [1,1]00
J0.8–9 32.08 E [2,2]00
J0.10–12 44.37 F2 [1,1]00 [2,2]00
J0.13 51.98 A1 [0,0]00
J0.14–16 55.78 F2 [2,2]00 [1,1]00 & [3,3]00
J0.17–18 63.73 E [2,2]00
J0.19–21 65.53 F2 [1,1]00 [3,3]00
J0.22–24 65.81 F1 [3,3]00
J0.25 68.90 A1 [0,0]00 [3,3]00
J0.26 73.41 A1 [3,3]00 [0,0]00
J0.27–29 74.97 F2 [2,2]00 [1,1]00 & [3,3]00
J0.30–32 78.86 F2 [1,1]00 [2,2]00
J0.33 80.55 A1 [0,0]00
J0.34 86.25 A1 [0,0]00
J0.35–37 86.70 F2 [1,1]00 [2,2]00 & [1,1]00
J0.38–39 87.74 E [2,2]00
J0.40 88.33 A1 [0,0]00

its vibrational parent state (9.01 cm−1, F2) highlighted
in Figure 9. The rotational excitation of the ZPV(GM)
(0.00 cm−1, A1) appears only as the second rotational
state (9.07 cm−1, F1). This energy ordering of the rota-
tional excitation of vibrational states is surprising if
we have the traditional picture of rotating-vibrating
molecules in mind. The traditional picture fails if the
energy scale of rotations and intermolecular vibrations
overlap which is the case for the present system.

Similarly to the vibrational states, the CR picture
comes useful. The dominant CR functions in the low-
est energy rotational state and in its parent vibration are
the [0, 1]10 and [1, 1]00 functions, respectively. From this
CR assignment, it can be seen that the unusual energy
ordering is due to the rotational excitation of themethane
unit which increases the energy but decreases the total
rotational angular momentum, in the present case, due
to its coupling with the rotating diatom. The opposite
situation is observed for the second-lowest rotational
state and its parent vibration, in which the [1, 0]10 and
[0, 0]00 are the dominant CR functions, respectively. In
this case, the rotational de-excitation of the methane
molecule decreases the energy and (in this case) also
the total rotational angular momentum is reduced. The
symmetry pattern of the states follows the formal regu-
larities derived for the RR functions, Equation (23) (see
also Figure 8).
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Table 8. Bound-state rovibrational energies (J= 1), measured from the zero-point vibration energy, of CH4·Ar obtained with GENIUSH
and the PES of Ref. [1]. The assigned vibrational parent state, Td(M) irrep label (	), and the dominant (minor) coupled-rotor functions are
also shown for each rovibrational state.

Coupled-rotor
states (J= 1)

n E [cm−1] Vib. parent 	 dominant minor

J1.0 0.12 F2 [9.01] A2 [0,1]10
J1.1–3 9.07 A1 [0.00] F1 [1,0]10 [1,2]10
J1.4–6 9.91 F2 [9.01] & E [32.08] F2 [1,1]10
J1.7–9 9.98 A1 [0.00] F1 [1,2]10 [1,0]10
J1.10–11 22.57 F2 [9.01] & F2 [31.24] E [2,2]10 [2,1]10 & [2,3]10
J1.12 28.86 F2 [31.24] & F2 [44.37] A2 [0,1]10
J1.13–15 31.28 F2 [9.01] F1 [2,1]10 [1,2]10
J1.16–17 31.93 F2 [9.01] E [2,1]10 [2,3]10
J1.18–20 31.94 E [32.08] & F2 [31.24] F2 [2,2]10 [1,1]10
J1.21–23 32.01 A1 [28.74] F1 [2,3]10 [1,0]10 & [2,1]10
J1.24–26 40.45 F2 [44.37] F2 [1,1]10 [2,2]10
J1.27–29 40.46 A1 [28.74] F1 [1,0]10 [1,2]10
J1.30–31 42.82 F2 [31.24] E [2,2]10 [2,1]10 & [2,3]10
J1.32–34 44.48 E [63.73] F1 [1,2]10 [2,3]10 & [1,0]10
J1.35 52.08 F2 [55.78] & F2 [65.53] A2 [0,1]10
J1.36–37 55.69 F2 [44.37] E [2,2]10 [2,1]10
J1.38–40 55.84 F2 [31.24] F1 [2,3]10 [1,2]10 & [2,1]10
J1.41–43 58.32 F2 [55.78] F2 [1,1]10 [2,2]10
J1.44–46 58.34 F1 [51.98] F1 [1,0]10 [3,2]10 & [1,2]10
J1.47–48 63.58 F2 [44.37] E [2,3]10 [2,1]10
J1.49–51 65.55 F1 [1,2]10 [3,2]10
J1.52 65.78 F2 [31.24] & F2 [44.37] A2 [3,2]10 [3,4]10
J1.53 65.83 F1 [65.81] A1 [3,3]10
J1.54–56 65.91 F2 [65.53] & F1 [65.81] F2 [1,1]10 [3,2]10
J1.57–59 66.03 A1 [51.98] F1 [1,0]10 [3,4]10
J1.60–62 66.08 F2 [65.53] F2 [3,4]10 [1,1]10
J1.63 68.99 F2 [78.86] A2 [0,1]10
J1.64–65 71.49 F2 [55.78] & F2 [74.97] E [2,2]10 [2,3]10 & [2,1]10
J1.66 73.58 F2 [44.37] A2 [3,4]10 [3,2]10 & [0,1]10
J1.67–69 74.33 F1 [3,3]10 [3,2]10 & [2,1]10
J1.70–72 74.42 F2 [3,2]10 [3,3]10 & [3,4]10
J1.73–75 75.12 F1 [2,3]10 [3,4]10
J1.76–78 78.95 A1 [68.90] F1 [1,2]10 [1,0]10 & [2,3]10
J1.79–81 79.54 F2 [78.86] F2 [1,1]10
J1.82–84 79.55 A1 [68.90] F1 [1,0]10 [1,2]10
J1.85 80.60 A2 [0,1]10
J1.86–87 81.61 Several F2 states E [2,2]10 [2,1]10 & [2,3]10
J1.88 86.26 A2 [0,1]10
J1.89–91 86.69 F1 [1,2]10 [2,1]10 & [1,0]10
J1.92–94 87.31 F2 [86.70] & E [87.74] F2 [2,2]10 [1,1]10
J1.95–97 87.34 A1 [80.55] F1 [2,3]10 [2,1]10 & [1,0]10
J1.98–99 87.57 F2 [65.53] E [2,3]10 [2,1]10
J1.100 88.31 A2 [0,1]10

4.3. Resonance states

Twenty vibrational bound states (not counting degen-
eracies) have been identified up to the dissociation
asymptote (Table 7), and we continued the computations
beyond the dissociation limit. Repeated computations
with slightly different grid intervals of the molecule-
atomdistance allowed us to identify long-lived resonance
states using the stabilisationmethod [24] and a histogram
analysis technique [13]. TwentyGENIUSHcomputations
were carried out, and 1000 eigenvalues were computed
in each run with different box sizes. In every computa-
tion the maximal value for the R coordinate was slightly
modified, from 14.05 Å to 15 Å (the PES is defined up to

R=15 Å), incremented by 0.05 Å in each computation.
The computed eigenvalues are collected and sorted from
the lowest to the largest, then a histogram is made from
the data. The eigenvalues corresponding to the resonance
states will appear in every computation, meanwhile the
continuous eigenvalues are shifted by changing the size of
the box. The obtained histogram (bin size 0.01 cm−1) is
shown in Figure 10 and the energy positions and assign-
ment for the peaks are collected in Table 9.

It is interesting to note that we find only E and F2-
symmetry states among the identified long-lived reso-
nances. The dominant CR functions in these states are
[1, 1]00, [2, 2]00, and [3, 3]00. The lack of A1 states may be
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Figure 8. RRD overlap matrix, Equation (21), for the J= 1 rovibrational states of CH4·Ar. The ψ J=1
n rovibrational functions listed in the

columns are assigned with the product of the vibrational and rigid-rotor functions defined in Equation (20).

Figure 9. The lowest-energy J= 1 rovibrational level of
CH4·Ar (0.12 cm−1, A2) has lower energy than its vibrational
parent state, (9.01 cm−1, F2). The unusual energy ordering can be
understood by inspecting the methane’s rotational excitation in
the dominant CR functions, [0, 1]1,0 and [1, 1]0,0, respectively.

explained by the fact that highly excited vibrations along
the R (dissociation) coordinate also have A1 symmetry,
and due to the coupling of states with the same symme-
try, we do not observe any long-lived resonance of this
species.

The absence of states dominated by the [0, 0]00 CR
function tells us that a fair portion of the energy in these
long-lived resonances is carried by the angular degrees
of freedom (the excitation of which is measured by the
CRD). The presumably slow energy transfer from the
angular degrees of freedom to the radial (dissociative)
degree of freedom gives rise to a long lifetime of the
identified states.

It is also insightful to compare the energy of the
identified resonance states with the dissociation energy
D0(GM) ≈ 90 cm−1 (up to this value we can increase
the energy in the dissociative degree of freedom) and
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Figure 10. Bound (blue) and resonance (red) vibrational states
of CH4·Ar indicated by the peaks in the stabilisation histogram.
measured from the global minimum of the PES. (For some triply
degenerate states an artificial split can be observed in the his-
togram due to imperfect convergence. An unambiguous symme-
try assignment is established throughaCRDanalysis (seeTable 9).)

the CR energies of the [n, n]00 functions with n = 1, 2,
and 3 with ca. 10 cm−1, 30 cm−1, and 60 cm−1, respec-
tively. Assuming simple additivity of these energies, we
may understand the occurrence of long-lived states dom-
inated by [1, 1]00 to ca. 100 cm−1 (however, we do not

Table 9. Energyof the long-lived (J= 0) vibrational resonancesof
CH4·Ar computed with GENIUSH, the PES of Ref. [1], and the sta-
bilisation technique. The vibrational states are given with respect
to the zero-point vibration energy. Each state is characterisedwith
its Td(M) irrep label and the dominant (and minor) coupled-rotor
functions.

Coupled-rotor
states (J= 0)

n E [cm−1] 	 dominant minor

J0.41–43 93.06 F2 [1,1]00
J0.44–46 94.44 F2 [3,3]00 [2,2]00
J0.47–49 97.08 F2 [1,1]00 [2,2]00
J0.50–51 98.06 F2 [1,1]00 [2,2]00
J0.52–54 98.98 F2 [1,1]00
J0.55–56 104.36 E [2,2]00
J0.57–58 108.82 E [3,3]00
J0.59–61 110.60 F2 [3,3]00 [2,2]00
J0.62–63 114.25 E [2,2]00
J0.64–65 118.82 E [2,2]00
J0.66–67 120.03 E [2,2]00
J0.68–69 134.08 E [2,2]00 [3,3]00
J0.70–71 139.46 E [3,3]00
J0.72–74 142.34 F2 [1,1]00 [2,2]00
J0.75–77 150.45 F2 [3,3]00 [2,2]00

have any simple explanation for the J0.73–75, F2 state),
as well as occurrence of long-lived states dominated by
[2, 2]00 or [3, 3]00 up to ca. 130–140 cm−1.

The symmetry assignment by CRD and the major and
minor coupled rotor contributions are listed in Table 9.

5. Summary

Rovibrational computations have been carried out for
the methane-argon dimer using a new, ab initio atom-
molecule potential energy surface [1] and the gen-
eral rovibrational programme, GENIUSH [11,12]. This
PES, with a well depth of −De = −141.47 cm−1, sup-
ports twenty bound states (counting degenerate states
only once). The energy of the lowest accessible vibra-
tional state to the system is −D0(GM) = −88.60 cm−1,
measured from the dissociation asymptote. Although
there are two different minimum structures, with a
26.41 cm−1 energy separation, most of the computed
(ro)vibraitonal states cannot be unambiguously assigned
either to the global or to the secondary minimum. The
computed rovibrational states were analyzed using two
limiting models and detailed symmetry considerations.

The traditional picture of molecular rotations and
vibrations almost completely breaks down for this weakly
bound, floppy system. We could identify the complete
tunnelling splitting only for the zero-point vibrational
state of the global minimum. Vibrational parent states
could be determined only for the lowest few rota-
tional states with J=1 rotational quantum number.
Interestingly, the lowest-energy rotational state does not
correspond to the rotational excitation of lowest-energy



MOLECULAR PHYSICS 1707

vibrational state but it corresponds to the second lowest
vibrational state. This rotational state and its vibrational
parent represent a ‘formally’ negative-energy rotational
excitation, i.e. the rotationally excited state has a lower
energy than its parent vibration.

These unusual features, which appear strange in terms
of the traditional picture of rotating-vibrating molecules,
can be well understood using a model which consid-
ers the rotating-vibrating complex in terms of coupled
quantum rotors of rigidly rotatingmethane and the effec-
tive diatom (atom-molecule separation). All vibrational
bound and low-energy, long-lived resonance states as
well as most of the J=1 rovibrational states can be
assigned within this coupled-rotor picture.
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