
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Ordered structures formed by ultrasoft, aspherical
particles

Markus Weißenhofer, Davide Pini & Gerhard Kahl

To cite this article: Markus Weißenhofer, Davide Pini & Gerhard Kahl (2018) Ordered structures
formed by ultrasoft, aspherical particles, Molecular Physics, 116:21-22, 2872-2882, DOI:
10.1080/00268976.2018.1503353

To link to this article:  https://doi.org/10.1080/00268976.2018.1503353

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 07 Aug 2018.

Submit your article to this journal 

Article views: 343

View related articles 

View Crossmark data

Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2018.1503353
https://doi.org/10.1080/00268976.2018.1503353
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2018.1503353
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2018.1503353
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1503353&domain=pdf&date_stamp=2018-08-07
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1503353&domain=pdf&date_stamp=2018-08-07
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2018.1503353#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2018.1503353#tabModule


MOLECULAR PHYSICS
2018, VOL. 116, NOS. 21–22, 2872–2882
https://doi.org/10.1080/00268976.2018.1503353

FRENKEL SPECIAL ISSUE

Ordered structures formed by ultrasoft, aspherical particles

Markus Weißenhofera, Davide Pinib and Gerhard Kahla

aInstitut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wien, Austria; bDipartimento di Fisica “A.
Pontremoli”, Università degli Studi di Milano, Milano, Italy

ABSTRACT
We have applied the formalism of classical density functional theory to study the shape and the
orientationof thedensityprofilesρ(r) formedbyaspherical, ultrasoft particles. For simplicitywehave
considered particleswith an elliptic shape, characterised by an aspect ratio λ. The ρ(r)’s are obtained
via the minimisation of the grand-potential functional �[ρ], for which we have used a mean-field
format. The optimisation of �[ρ] is numerically realised in a free (i.e. unbiased) manner minimising
the functional with respect to the density profile, which we have discretised in the unit cell of the
lattice on 803 grid points. Keeping the temperature fixed and varying the chemical potential and λ,
we have investigated the impact of these parameters on the density profile.
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1. Introduction

It has by now become common knowledge that
anisotropy is a relevant driving force in establishing and
triggering self-assembly of colloidal particles.

In the past decade, the effect of particle shape on the
symmetry of high-density phases has been studied in
considerable detail, especially in hard ellipsoids [1] and
hard polyhedra where a range of liquid-crystalline, qua-
sicrystalline, plastic-crystalline and crystalline structures
were reported [2–6]. Besides being related to particle
shape, anisotropy can also be introduced via the effective
interactions as in the case of patchy particles, i.e. hard,
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spherical particles with an additional interaction which
is localised at specific domains on the particle surface
[7–10].

In order to grasp as faithfully as possible the impact
of anisotropy on the properties of the system, con-
siderable effort has been dedicated during the past
years to simulation-based (for an overview see [11,12])
and theoretical methods: including anisotropy in these
frameworks represents a major challenge; this holds, in
particular, in the case of theory, where it is both concep-
tually and numerically very difficult to account for it on
a quantitative level.
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Classical density functional theory (DFT) ranges
undoubtedly among the most fruitful and powerful con-
cepts that have been and are still used to describe
the structural and thermodynamic properties of (soft)
condensed-matter systems [13–15]. In this contribution,
we demonstrate that DFT allows to calculate non-trivial
single-particle density profiles ρ(r), as they obviously
arise in ordered structures formed by aspherical particles.

So far, inDFT calculations (based on some reliable for-
mat for the grand-potential energy functional �[ρ]) an
educated guess for ρ(r) was assumed, i.e. some function
which was expected to represent the density profile and
which was characterised by a few parameters. Minimi-
sation of the functional �[ρ], which thus has become a
function of these parameters, was then obtained by min-
imising the function with respect to the parameters. In a
recent contribution by Pini et al. [16] it was shown that
present day computational power in combination with
highly efficient and reliable numerical optimisation tech-
niques enable to perform the minimisation of � with
respect to ρ(r) in an unbiased manner. This could be
achieved by representing ρ(r) in a finite volume (e.g. in
a lattice cell), discretised on a sufficiently fine grid (with
typically 803 to 1003, or even more, grid points) in r-
space, avoiding thereby an a priori bias on the shape of the
density profile. Minimisation is then performed by vary-
ing the values of ρ(r) on the grid points and – if required
– by optimising the shape of the lattice cell. In [16], the
authors have shownwith this approach that even a spher-
ically symmetric two-body interaction may lead to quite
complex structures, which would have likely escaped a
biased search. The broad applicability of this method was
demonstrated in subsequentwork byRoth and coworkers
[17–19] and again by Pini and Parola [20].

This has motivated us to turn to the density pro-
file of particles that are aspherical in their shape and/or
their interaction. In our investigations we have focused
on ultrasoft (i.e. penetrable), aspherical particles. Dur-
ing the past decade, (colloidal) particles that interact
via ultrasoft potentials have often been viewed as ‘effec-
tive particles’, representing considerably more complex
macromolecules with an intricate internal structure, con-
sisting of hundreds or thousands of atomistic entities.
Examples for such ultrasoft ‘effective particles’, which
have been discussed in literature are polymers [21] or
dendrimers [22]. As will be detailed in the body of the
manuscript, some of these ultrasoft particles are able to
form particular mesophases, termed in literature ‘clus-
ter crystals’ [23]. In general these ‘effective particles’ are
assumed – mostly for simplicity – to be spherically sym-
metric, leading to a simple dependence of their interac-
tions on the distance. However, as has been evidenced
in more detailed investigations on isolated dendrimers

or ensembles of dendrimers, these macromolecules are
definitely aspherical; their shape can actually be more
appropriately represented by an ellipsoid of revolution,
whose semi-axes are determined by diagonalising their
radius of gyration tensor (RGT) [24–26].

We have then assumed for their effective interaction
a generalisation of the spherically symmetric generalised
exponential model potential [23,27], introducing in a
Gay–Berne-type fashion [28,29] anisotropy via the char-
acteristic length scale of the potential: the interaction
between two particles now depends on the centre-to-
centre vector between the particles and the respective
orientations of the particles in space. Via the assumed
functional form of the potential, the particles are ellip-
tic in their shape and are characterised by their aspect
ratio λ, i.e. the ratio of the values of their principal axes.
In an effort to reduce complexity, we have assumed that
the orientations of the particles on the lattice sites of the
underlying lattice are parallel. For the excess part of the
energy functional, we have opted for amean-field format,
justified by the fact that we consider ultrasoft (i.e. pene-
trable) particles [30]. In our numerical approach both the
lattice of the ordered equilibrium structure (expressed
via the three lattice vectors ai, i=1,2,3) and the single-
particle density profile have been obtained for a given
temperature and chemical potential via a free, i.e. unbi-
ased optimisation of the functional �[ρ] with respect to
ρ(r). By changing the temperature, the chemical poten-
tial (or, equivalently, the density) and the aspect ratio λ,
we have investigated the impact of these quantities on the
shape and on the orientation of the density profile.

The manuscript is arranged as follows: in the sub-
sequent section we briefly present our model and
the underlying interaction, we summarise the relevant
aspects of the DFT formalism and provide details about
our numerical implementation, and finally describe the
tools that allow us to analyse and to characterise the
emerging single-particle density profiles. In Section 3, we
present and discuss the results; the contribution is closed
with our concluding remarks.

2. Model andmethods

2.1. Themodel

In this contribution we have assumed that the parti-
cles interact via an aspherical, ultrasoft potential, which
can be viewed as a generalisation of the (spherically
symmetric) generalised exponential potential of index n
(GEM-n) [23,27,31,32] which is given by

�(r) = ε exp[−(r/σ)n], (1)
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Figure 1. (color online) Left panel: schematic sketch of two inter-
acting aspherical particles; u and u′ denote the respective orien-
tational unit vectors of the particles,while r is the centre-to-centre
vector. Right panel: schematic sketch of two parallel interact-
ing spherical particles, as they are studied in this contribution
(see Equation (4) for the corresponding potential, the angle ϑ is
defined in Equation (6); same notation as in the left panel).

here ε and σ are energy and length scales, respectively. If
the index n is larger than two, this interaction has been
shown to belong to the so-called Q± class, i.e. a set of
potentials for which the formation of stable clusters of
overlapping particles has been predicted [23,27,30–33];
this particular feature can be traced back to the fact
that there exists a non-vanishing k-vector for which the
Fourier transform of the potential, �̃(k), attains a nega-
tive minimum. In the following (and in order to establish
connections to the above-mentioned previous studies),
we have fixed n=4, both for the spherical and the aspher-
ical case.

Asphericity of the interaction can be introduced –
extending original ideas of Gay and Berne [28]– via ε

and σ , which are now assumed to depend on the vec-
tor r between the centres of the particles and on their
respective orientations in space (i.e. u and u′ with respect
to some arbitrary coordinate system – see left panel of
Figure 1). Thus our potential, �(r;u,u′) is given by

�(r;u,u′) = ε(r;u,u′) exp
[
−

(
r

σ(r;u,u′)

)n]
. (2)

Ever since the work of Gay and Berne [28], differ-
ent choices for the dependence of σ and ε on r, u and
u′ have been proposed in literature. In this contribu-
tion, we have opted for the following functional form of
σ(r;u,u′), which was proposed by Ghoufi et al. [29] for
particles modelled as ellipsoids of revolution with longi-
tudinal and transverse axes of length respectively σ‖, σ⊥
(see Figure 2).

σ(r;u,u′)

= σ0

⎛
⎜⎜⎝1 − χ

r2

(
(r · u)2 + (r · u′)2−

2χ(r · u)(r · u′)(u · u′)

)
1 − χ2(u · u′)2

⎞
⎟⎟⎠

−1/2

,

(3)

where σ0 sets the unit length. In the above expres-
sion, we have introduced the anisotropy parameter

Figure 2. Schematic view of an aspherical particle with ellip-
soidal shape as it is used in this contribution: the parameters σ‖
and σ⊥ define via λ = σ‖/σ⊥ the aspect ratio λ. The particle is an
ellipsoid of revolution around σ‖.

χ = (λ2 − 1)/(λ2 + 1), where λ is the aspect ratio λ =
σ‖/σ⊥. In this paper, we shall consider prolate ellip-
soids such that λ > 1. For simplicity (and unlike Ghoufi
et al. [29]) the energy scale parameter ε is assumed to be
constant, i.e. ε(r;u,u′) ≡ ε.

In our investigations the orientational unit vectors of
two particles, u and u′, that populate two different lattice
positions, are assumed to be parallel: since their direction
in space is arbitrary, but is kept fixed throughout the cal-
culations, we can set u = u′ = n (with |n| = 1); we thus
arrive at the following expression for �(r;u,u′) = �(r):

�(r) = ε exp

[
−

(
r

σ(r)

)4
]
, (4)

with

σ(r) = σ0√
1 + (λ−2 − 1)

( r·n
r

)2
= σ0√

1 + (λ−2 − 1) cos2 ϑ
, (5)

where
r · n
r

= cosϑ ; (6)

the angle ϑ is enclosed by the vectors r and n (see right
panel of Figure 1). Thus �(r) can alternatively be writ-
ten as �(r,ϑ). According to Equations (5) and (6), the
isosurfaces of �(r,ϑ) are ellipsoids with their longitu-
dinal axis parallel to n. A few examples for the r- and
ϑ-dependence of �(r,ϑ) are shown in the panels of
Figure 3, keeping either of the two arguments fixed (there
λ is assumed to be 1.5). Note that similar models – albeit
with an exponent n=2 (i.e. Gaussian potentials) – have
been used in Refs. [34,35].

In a similar manner, the Fourier transform of the
potential �̃(k), can be written as �̃(k,φ) where k = |k|
and φ is now the angle enclosed by k and the preferred
axis in k-space (see Figure 4). It is readily shown that
the isosurfaces of �̃(k,φ) are also ellipsoids. Specifically,
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Figure 3. (color online) Left panel: �(r,ϑ) as defined in Equations (4) and (5) as a function of r for selected values of ϑ (as labelled).
Right panel:�(r,ϑ) as a function of ϑ for selected values of r (as labelled). For this particular case λ = 1.5.

Figure 4. (color online) Left panel: �̃(k,φ) as defined in Equation (16) as a function of k for selected values ofφ (as labelled). Right panel:
�̃(k,φ) as a function of φ for selected values of k (as labelled). For this particular case λ = 1.5.

one has

�̃(k,φ) = εσ‖σ 2
⊥�

(
σ0k

√
1 + (λ2 − 1) cos2 φ

)
, (7)

where the function � is the same as that obtained for
spherical particles by performing the Fourier transform
of Equation (1). Therefore, also in the case of aspheric-
ity, �̃(k) shows for n>2 negative Fourier components;
however, in contrast to the spherical case, the positions of
the minima of �̃(k) show for λ > 1 an additional angu-
lar dependence. While in the spherically symmetric case
the locus where �̃(k) takes its minimum is obviously the
surface of a sphere, in the aspherical case we are dealing
with it is an ellipsoid.

2.2. Classical DFT

Working in the grand-canonical ensemble (i.e. at given
temperature T, volume V and chemical potential μ), the
central quantities of classical DFT [13,14] are the single-
particle density profile

ρ(r) =
〈∑

i
δ(r − ri)

〉
(8)

and the grand-potential functional �[ρ], given (in the
absence of an external potential) by

β�[ρ] = βFid[ρ] + βFex[ρ] − βμ

∫
V
drρ(r); (9)

in the above equations the ri are the positions of the parti-
cles, β = 1/(kBT), kB being the Boltzmann constant and
〈. . . 〉 denotes the grand-canonical ensemble average.

Fid[ρ] and Fex[ρ] are, respectively, the ideal and
excess parts of the Helmholtz free energy functionals, the
former one being given by

Fid[ρ] = kBT
∫
V
drρ(r)

{
ln

[
�3ρ(r)

] − 1
}
; (10)

� is the thermalwavelength. Aswe are dealingwith ultra-
soft potentials, we can assume – as laid out in [30] – a
mean-field format for the excess part of the free energy
functional, namely

Fex[ρ] = 1
2

∫∫
drdr′ρ(r)�(r − r′)ρ(r′). (11)

The equilibrium single-particle distribution is
obtained by minimising �[ρ] with respect to ρ(r), i.e.
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by solving
δ�[ρ]
δρ(r)

= 0. (12)

As we are looking for the equilibrium density profile
of ordered phases, we can assume that ρ(r) is periodic
with respect to an underlying lattice (specified by lattice
vectors a1, a2 and a3), i.e.

ρ(r) = ρ(r + ai) i = 1, 2, 3. (13)

The corresponding reciprocal lattice vectors are denoted
by bi, i = 1, 2, 3. The liquid (i.e. disordered) case is cov-
ered in this formalism by setting ρ(r) ≡ const. In this
case, Equations (10) and (11) give the free energy of
the compressibility route of the random-phase approxi-
mation (see, for instance, [36]), i.e. the familiar van der
Waals expression.

Due to its periodicity, ρ(r) can be expressed as a
Fourier series over the reciprocal lattice vectors, i.e.

ρ(r) =
∑
m

exp [−ikm · r] ρ̂m with

ρ̂m = 1
v

∫
C
dr exp [ikm · r] ρ(r), (14)

where C is the unit cell with volume v and with

km =
3∑

i=1
mibi m = (m1,m2,m3)

mi = 0,±1,±2, . . . . (15)

Further we introduce the Fourier transform of the
(non-periodic) potential

�̃(k) =
∫
V
dr exp [−ik · r]�(r). (16)

When solving Equation (12) numerically in practi-
cal applications of DFT, simple, parametrised functions
have been used during the past years as an ansatz (or
educated guess) for the density profile, whose parame-
ters were chosen such that �[ρ] is minimised for a given
lattice structure; comparing the ensuing results for a pre-
selected set of candidate structures have led to the final
result.

In the present contribution, on the other hand, we
shall resort to an unbiased optimisation along the lines
laid out in [16–20]. To this end, in our numerical imple-
mentation of the DFT formalism ρ(r) has been discre-
tised on N3 grid points of the unit cell C, i.e.

ρ(r) → ρn, (17)

where n stands for the N3 values of ρ(r) on this grid.
Furthermore, we introduce the nine Cartesian compo-
nents of the lattice vectors ai (or, equivalently, of the bi)

as additional parameters to be optimised in solving
Equation (12). We remark that here, at variance with
[16,20], the lattice vectors are not assumed to bemutually
orthogonal.

As discussed in [16], optimisation with respect to
the lattice vectors is of paramount importance in order
to prevent the occurrence of local minima of the
grand-potential functional such as defective configura-
tions, which would otherwise be those most frequently
observed as a consequence of the intrinsic periodicity of
the density profile being incommensurate with the size
of the box where it is sampled. Nevertheless, the regular
structures obtained by this procedure are still local min-
ima of the grand potential �, and there is no guarantee
that the outcome of a specific optimisation run coin-
cides with the absolute minimum of� for the thermody-
namic state at hand. This uncertainty is, we fear, intrinsic
to the problem, and there is little one can do about it,
except for trying to reduce it by sampling the free-energy
landscape as thoroughly as possible, e.g. by starting the
minimisation from different trial density profiles.

Once the discretisation – see Equation (17) – has been
performed, the functional �[ρ] becomes a function � of
the N3 variables ρn and of the nine variables specifying
the components of the ai (or bi), i.e.

�[ρ] → �(ρn, ai) = �(ρn, bi). (18)

�(ρn, bi) can be written after some algebra as

β

V
�(ρn, bi) = 1

N3

∑
n

ρn
[
ln(�3ρn) − 1 − βμ

]

+ β

2N6

∑
m

ρ̂m�̃(km)ρ̂−m. (19)

In this expression, the first sum is extended over theN3

grid points in the unit cell (and thus in r-space), while the
second sum extends over N3 points in reciprocal space.

In the following, we specify (and justify) the numer-
ical parameters that we have used; detailed numerical
tests have shown that for the potential at hand and for
the considered parameter range (i.e. temperature, chemi-
cal potential, density, etc.) N=80 guaranteed a sufficient
numerical accuracy (leading to a relative accuracy of �

of 10−8 to 10−9). For the numerical Fourier transform of
the potential �(r), we have used a standard fast Fourier
transform algorithm [37], where �̃(k) was discretised
on 803 grid points. The grid size was chosen in such a
way that �(r) < 10−15 at the r-value where the Fourier
integral was truncated. Moreover, in order to keep the
computational cost low, the sum overm in Equation (19)
was truncated at some appropriately chosen upper limit
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for themi. In an effort to fully grasp the asphericity in the
potential, we carefully checked the truncation in recipro-
cal space: as the results for β�σ 3

0 /V obtained for selected
cases for truncation at |mi| = 5 differed by less than 10−9

from the data obtained at |mi| = 7, we opted for the
former choice.

As a stringent test for the numerical accuracy we have
considered Poisson sum rule, i.e.

v
∑
n

�(ni, ai) =
∑
m

�̃(mi, bi), (20)

which we found to be fulfilled with a relative numerical
accuracy of at least 10−11.

The minimisation of �(ρn, bi), which – in view of
the specific numerical parameters mentioned above –
was carried out in a parameter space of ∼ 512,000
dimensions was performed via a preconditioned conju-
gate gradient algorithm with adaptive step-size, as laid
out in [16]. This can be considered as a refinement of
the basic steepest descent algorithm (see, for instance
[38]). Within this algorithm, the gradients were calcu-
lated via analytic expressions. This procedure has proved
rather robust, but in future developments other algo-
rithms could be adopted, such as the limited-memory
inverse Broyden method [17,18], which would likely
prove to be significantly more efficient.

As all the numerical calculations were rather time-
consuming, use of shared memory parallelisation via
OpenMP was imperative. The calculations were carried
out at the Vienna Scientific Cluster [39].

2.3. Analysis of the single-particle density profile

In order to analyse the single-particle density profile ρ(r)
on a quantitative level we introduce (i) its radius of gyra-
tion, Rg, and (ii) its RGT, S , i.e. quantities which are
often used to characterise the size and the shape of col-
loidal particles with complex internal shape. Based on
the related, conventional definition of these quantities
(see, for example, [40,41]), we have generalised these
expressions to our particular case.

We define the radius of gyration, Rg, and the position
of the centre of mass, Rcm, for our continuous single-
particle density profile ρ(r) via

R2g = 1
N

∫
C
dr ρ(r)(r − Rcm)2 with

Rcm = 1
N

∫
C
dr ρ(r)r (21)

and

N =
∫
C
dr ρ(r). (22)

The shape of the single-particle density profile can
most readily be characterised via the RGT S [40,41],
whose elements Sij, i, j = 1, 2, 3, have been evaluated for
our particular case via

Sij = 1
N

∫
C
dr ρ(r)(ri − Rcm,i)(rj − Rcm,j). (23)

By definition, S is symmetric and real. One can eas-
ily verify, that R2g = S11 + S22 + S33 = Tr(S). S can be
diagonalised, with the real eigenvalues E1, E2 and E3;
without loss of generality it is assumed that E1 ≥ E2 ≥
E3. The corresponding eigenvectors, which are mutually
orthogonal, are denoted by ei.

Characterising the single-particle density profile ρ(r)
by the eigenvalues of the RGT corresponds to approxi-
mating ρ(r) by an ellipsoid of revolution centred at Rcm:
the eigenvectors point along the principal axes and the
square roots of the eigenvalues, i.e.

√
Ei, set the lengths

of the three (orthogonal) semi-axes of the ellipsoid [26].
Based on the Ei, two further quantities which charac-

terise the shape of the density profile can be calculated:
(i) the asphericity parameter δ (as defined in [42]), and
the acylindricity parameter ζ (as defined in [26] and
references therein):

δ = 1 − 3
E1E2 + E1E3 + E2E3

(E1 + E2 + E3)2
(24)

ζ = E2 − E3 (≥ 0). (25)

δ ranges from 0 (for spherical symmetry) to 1 (for a
rod-like shape). In case ζ = 0 (i.e. if E2 = E3), we have
characterised the shape of the density profile via its aspect
ratio

√
E1/E2.

3. Results

In the following, we present and discuss data that we have
obtained for the particle density profile ρ(r). We remark
that from here onwards we shall drop the specification
‘single’ of the density profile, since – as will be discussed
below – also aspherical GEM-4 particles show the phe-
nomenon of multi-occupancy of the underlying lattice.
In order to understand the impact of asphericity of the
potential on the density profile, we have systematically
varied the relevant parameters, i.e. the aspect ratio λ –
see Section 3.1 and the chemical potential (and hence the
density) – see Section 3.2.

For convenience, we introduce the dimensionless tem-
perature T∗ = kBT/ε and the reduced, dimensionless
density ρ∗ = σ 3

0
∫
d3rρ(r)/V . We further introduce –
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Figure 5. (color online) Variation of the aspect ratios of the density profile,
√
E1/E2 and

√
E1/E3 (as labelled), as obtained in our DFT

calculations as the aspect ratio of the potential λ is varied. Left panel: T∗ = 1.0, ρ̄∗ = 5.5, right panel: T∗ = 1.0, ρ̄∗ = 7.0.

similar as in [16] – the density ρ̄, defined as

μex = ρ̄

∫
dr�(r), (26)

whereμex is the excess chemical potential with respect to
the ideal gas.

As mentioned above, also the disordered liquid phase
can be captured within the present DFT formalism: this
phase is characterised by a spatially constant density pro-
file. Indeed, by fixing the temperature and increasing sys-
tematically the chemical potential, we are able to obtain
the free energy F as a function of the density along a spe-
cific isotherm for the fluid phase and for the competing
ordered phases. In principle, this information allows us
to construct – e.g. via a common tangent construction –
the coexistence densities of the competing phases. How-
ever, in the following we refrain from a discussion of the
liquid phase and focus instead on the ordered phases and
the respective density profiles.

3.1. Impact of the asphericity in the potential on the
shape of the density profile

In order to study the impact of the asphericity in the inter-
particle interaction on the shape of the density profile
ρ(r), we havemade a series of runs where we have – start-
ing from the spherical case λ = 1 – gradually increased
λ up to a value of 1.5. To this end we have fixed T∗ =
1.0 and have considered two different densities, namely,
ρ̄∗ = 5.5 and ρ̄∗ = 7.

Starting with the bcc equilibrium structure for the
spherical case λ = 1 [16,23,27], we have increased λ in
small steps, using the results for the equilibrium struc-
ture and for the density profile of the preceding λ-value
as an input for the unconstrained minimisation of the
functional �[ρ] for the current λ-value.

Along this λ-variation, we observe in the high-density
case ρ̄∗ = 7 that the shape of the interaction potential
is essentially mirrored in the shape of the density pro-
file: ρ(r) has also shape of an ellipsoid of revolution

(i.e. E2 = E3) and we find throughout that
√
E1/E2  λ

(see Figure 5). This behaviour is not very surprising, if
we consider the occupancy number nc of these multiply
occupied lattices (see Figure 7 and the related discussion
below). Already for moderate densities, nc attains values
around six, meaning that the particles populating a spe-
cific lattice site experience a strong repulsion from the
particles located on the neighbouring lattice sites. The
natural consequence is that the particles of a specific site
arrange into a spatial shape that reflects the geometry of
the underlying potential; some further remarks to this
issue are summarised in the discussion of Figure 11. Fur-
thermore, our results provide evidence that, as soon as
λ starts to grow from the value 1, the eigenvector e1 of
the RGT S given by Equation (23), which corresponds to
the largest eigenvalue of S , aligns with n, i.e. the orien-
tation of the main axis of �(r) (not shown; for details
see [43]). Of course, the other eigenvectors, e2 and e3,
span the plane orthogonal to n. Moreover, increasing λ

also imposes an increasingly strong deformation of the
unit cell. This distortion can easily be quantified via the
angles enclosed by the lattice vectors ai: the cell becomes
increasingly skewed as λ increases; for an example see
Figure 6.

At the smaller density, i.e. ρ̄∗ = 5.5, the situation is at
least for λ � 1.25 markedly different: while

√
E1/E2 ≡

λ over the considered λ-range, the values of
√
E1/E3

do differ from the respective λ: thus, in this λ-regime
the density profile can no longer be approximated by an
ellipsoid of revolution. However, with increasing λ, the
density profile assumes within high numerical accuracy
the shape of ellipsoid of revolution, whose aspect ratio is
imposed by the respective value of λ for reasons similar
to the ones put forward for the high-density case.

Our results thus provide evidence that both for a high
value of the density and a relatively strong asphericity the
density profiles originating from our aspherical potential
can be locally approximated very well by an ellipsoid of
revolution which is oriented along the main axis of the
potential n, and whose shape reflects the shape of the
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Figure 6. (color online) A representation of the density profile
ρ∗(r) for λ = 1.5 and T∗ = 0.5, ρ∗ = 8.32, showing four repli-
cas of the primitive cell. The lengths of the cell axes are a= 2.09,
b= 1.60, c= 1.49 in units of σ0. The isosurfaces at which ρ∗(r) =
60, corresponding to ∼ 1% of the peak value, have been dis-
played in yellow. The upper cells show a section of ρ∗(r) inside
the domain bounded by the isosurfaces.

Figure 7. (color online) Occupation number nc as a function of
the density ρ∗. Here T∗ = 0.5 and λ = 1.5.

interaction. Only for relatively small densities and up to
intermediate values of the aspect ratio λ, deviations from
this shape can be observed in the density profile.

3.2. Variation of the density profile with the
chemical potential

To describe the dependence of the density profile ρ(r) on
the average density, we have systematically increased the
chemical potential μ, keeping the temperature fixed at
T∗ = 0.5 and setting λ = 1.5. We have carefully checked
that within the considered range of μ the ordered phase
is more stable than the disordered, liquid phase, i.e. has
the lower grand potential. Similarly to the spherically
symmetric case, the ultrasoft interaction at hand leads to
cluster crystals, whereby each lattice site is multiply occu-
pied, and the lattice site occupation number nc shows
a linear dependence on the density ρ∗, as displayed in
Figure 7. This behaviour is characteristic of the crys-
tal phases of so-called Q± potentials, and is due to the
fact that their lattice constants, unlike those of atomic
crystals, are nearly state-independent [23,30].

In the two panels of Figure 8, data for the free energy F
(in dimensionless, reduced units) and the volume of the
unit cell of the underlying lattice, v, are shown as func-
tions of the reduced density ρ∗. As expected, F increases
with increasing ρ∗, whereas v monotonously decreases
with ρ∗, but very weakly so, consistently with the above-
mentioned behaviour of the lattice constants.

We now proceed to a quantitative analysis of the den-
sity profile in the neighbourhood of a given lattice site,
starting with the radius of gyration,Rg (Figure 9), and the
asphericity δ and the acylindricity ζ parameters (both in
Figure 10). Rg decays monotonically with increasing ρ∗,
as expected for ultrasoft potentials. This rapid, non-linear
decay with the density is again imposed by the increasing
number of particles that populate the neighbouring lat-
tice sites, leading thus to an increase in the repulsion that
the particles of a specific lattice site experience: as a con-
sequence, the density profile shrinks in size. The δ-values
converge rather fast with increasing density towards a
value of δ  0.087, corresponding to a moderate devi-
ation from sphericity. The increase in δ by about 10%

Figure 8. (color online) Left panel: free energy, F, in reduced dimensionless units (as specified) as a function of ρ∗ (for T∗ = 0.5 and
λ = 1.5). Right panel: the same for the volume of the lattice unit cell, v (in units σ 3

0 ).
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Figure 10. (color online) Asphericity, δ, and acylindricity, ζ , as defined in Equations (24), (25) as functions of ρ∗ (for T∗ = 0.5 and λ =
1.5).

Figure 9. (color online) Radius of gyration, Rg (in units of σ0), as
a function of ρ∗ (for T∗ = 0.5 and λ = 1.5).

Figure 11. (color online) Aspect ratio of the density profile,
expressed via

√
E1/E2, as a function of ρ∗ (for T∗ = 0.5 and

λ = 1.5).

over the observed density range is moderate and reflects
on a quantitative level that the density profile assumes
an ellipsoidal shape. Also the acylindricity parameter ζ

is characterised by rather small values (i.e. throughout
smaller than 0.05) and vanishes for ρ∗ � 3.3.

The aspect ratio of the density profile, expressed via√
E1/E2 shown in Figure 11, differs at intermediate den-

sities from the value of the aspect ratio of the inter-
action, i.e. λ = 1.5; in this density regime the density
profile is not an ellipsoid of revolution. This observa-
tion is nicely compatible with the above discussion of

the λ dependence of the shape of the density profile (see
Section 3.1): at the lowest densities investigated, the occu-
pancy number at a given lattice site is still small enough;
therefore the particles are not able to exert a substantial
repulsion on the particles of a neighbouring lattice site,
which can therefore deviate in their density profile from
the elliptic shape. However, already for ρ∗  3, the ratio√
E1/E2 (and also

√
E1/E3, which is not shown) attains

the value of 1.5; as shown in Figure 10, the density pro-
file has now rotational symmetry around its main axis.
This limiting behaviour at high densities is reminiscent
of the alignment of the density profile parallel to themain
axis of the potential as reported in Section 3.1. Finally, we
note that at intermediate densities the main axis of the
density profile is not necessarily oriented parallel to the
direction of the main axis of the interaction: both e2 · n
and e3 · n, as well as e1 · n differ from their respective val-
ues for perfect alignment (i.e. 0 and 1, respectively) by less
than 10% (see panels of Figure 12). Further increasing the
density forces the density profile to align in the direction
of the main axis of the potential.

Summarising, results shown in Figures 10, 11, and 12
indicate that the parameters that specify the shape and
the orientation of the density profiles assume for ρ∗ � 3
essentially density-independent values.

4. Conclusions

In this contribution, we have studied the local structure
of the density profiles of ultrasoft, aspherical particles
via classical density functional theory. For the interac-
tion of the particles, we have assumed an aspherical ver-
sion of the ultrasoft generalised exponential model of
index n with n=4, where asphericity is introduced via
an intrinsic length scale parameter, which now depends
on the centre-to-centre vector between two interacting
particles and their orientations in space; the particles are
thus modelled as (prolate) ellipsoids of revolution, with
an aspect ratio λ > 1. For simplicity, we have further
assumed that particles located on different lattice sites
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Figure 12. (color online) Orientation of the main axes of the density profile, e1, e2, and e3, with respect to the orientation of the main
axis of the interaction potential, n, expressed via e1 · n, e2 · n and e3 · n, as functions of ρ∗ (for T∗ = 0.5 and λ = 1.5).

have parallel orientation. For the excess free energy func-
tional, we have used amean-field format. Optimisation of
the grand-potential functional has been performed with
respect to the lattice vectors as well as to the density pro-
file, which has been discretised on 803 grid points in the
lattice unit cell, and has been carried out in a free, i.e.
unbiased manner.

Varying the temperature, the chemical potential (and
thus the density) and the aspect ratio λ, we have inves-
tigated the impact of these parameters on the shape of
the density profile ρ(r). Variation of λ keeping the other
parameters fixed forces the orientation of the density pro-
file to align with the main axis of the interparticle inter-
action, leading also to an increasingly strong distortion
of the underlying lattice as λ increases; in addition, ρ(r)
assumes the same value of aspect ratio as the interaction.
An increase of the chemical potential leads at higher den-
sities to an ellipsoidal shape of the density profile, which
mirrors on a quantitative level the shape and the orien-
tation of the underlying interparticle potential. Only at
intermediate densities, relatively small deviations from
this behaviour can be observed.

Some of the interesting physics that can emerge from
this formalism will be postponed to future investiga-
tions and publications. Assuming a multi-component
system, one might study the case where the density pro-
files located on different lattice sites are no longer iden-
tical, but can show different shapes and orientations.
Along a different line, one could investigate if the pre-
dicted density profiles are faithful, i.e. if they describe

in a quantitative manner the related density profiles
as predicted in computer simulations on a monomeric
level, where these ‘effective particles’ on which the
current investigations are based, are represented on a
monomeric, atomistic level.
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