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ABSTRACT
We present an efficient method to obtain bulk isothermal compressibilities (κT ) and Kirkwood–Buff
(KB) integrals of single- and multicomponent liquids using fluctuations of the number of molecules
obtained from small-sized molecular dynamics simulations. We write finite-size versions of the Orn-
stein–Zernike and the KB integral equations and include there finite size effects related to the
statistical ensemble and the finite integration volumes required in computer simulations. Conse-
quently, we obtain analytical expressions connecting κT and the KB integrals in the thermodynamic
limit (TL) with density fluctuations in the simulated system. We validate the method by calculating
various thermodynamic quantities, including the chemical potentials of SPC/E water as a function of
the density, and of aqueous urea solutions as a function of the mole fraction. The reported results
are in excellent agreement with calculations obtained by using the best computational methods
available, thus validating the method as a tool to compute the chemical potentials of dense molec-
ular liquids andmixtures. Furthermore, the presentmethod identifies conditions in which computer
simulations can be effectively considered in the TL.
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I. Introduction

Statistical mechanics establishes the connection between
macroscopic thermodynamic quantities and the micro-
scopic interactions and components of a physical system.
In particular, integral equations relate the local structure
of a fluid with density fluctuations in the grand canoni-
cal ensemble that, in the thermodynamic limit (TL), can
be identified with equilibrium thermodynamic quanti-
ties such as the compressibility and the derivatives of
the chemical potential [1,2]. In computer simulations,
this relation is routinely employed in spite of the fact
that the systems under consideration are constrained to
the canonical ensemble and usually far away from TL
conditions. Hence, various finite-size effects need to be
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identified [3–5] and their impact should be evaluated for
an appropriate interpretation of the simulation results
[6–10].

Building on our previous work [11], in this study
we explicitly write finite-size versions of the Orn-
stein–Zernike (OZ) [12] and the Kirkwood–Buff (KB)
[13] integral equations of the theory of liquids. By includ-
ing in these equations size effects related to (i) the sta-
tistical ensemble used in computer simulations and (ii)
the finite integration volumes required when the sys-
tem is not in the TL, we derive analytical expressions
to obtain isothermal compressibilities and KB integrals
(KBIs) in the TL from relatively small-sized simulations.
The accuracy of the method presented here allows one to
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derive other thermodynamic quantities of interest such as
the chemical potential of molecular liquids, in particular
SPC/E water and aqueous urea solutions, that well repro-
duce available simulation data for these systems.

The method presented here is inspired by the block
analysismethod introduced originally by Binder [14–20].
For the OZ integral equation, we have generalised the
study of Velasco et al. on off-lattice fluids [3,4,21–23] to
molecular fluids. Moreover, we have extended the appli-
cability of this approach to multicomponent liquids via
the KBIs [11].

The paper is organised as follows: In Section II we dis-
cuss the finite-size version of the OZ integral equation
and the evaluation of the bulk isothermal compressibility
of SPC/E water which allows one to compute the chem-
ical potential as a function of the density. Section III
extends these results to multicomponent systems, where
we study urea–water liquid mixtures and obtain the KBIs
in the TL and subsequently the chemical potential of
urea as a function of mole fraction. In Section IV we
summarise our results.

II. Simple liquids

Let us consider a molecular liquid of average density ρ

at temperature T in equilibrium with a reservoir of parti-
cles, i.e. an open system. The fluctuations of the number
ofmolecules are related to the local structure of the liquid
via the OZ integral equation [1,12]

�2(N)

〈N〉 = 1 + ρ

V

∫
V

∫
V
dr1 dr2[g◦(r1, r2) − 1], (1)

where �2(N)/〈N〉 are the fluctuations of the num-
ber of particles, �2(N) = 〈N2〉 − 〈N〉2 and g◦(r1, r2)
is the pair correlation function of the open system
and r1, r2 the position vectors of a pair of fluid parti-
cles. To solve the integral in Equation (1), one assumes
that the fluid is homogeneous, isotropic and that the
system is in the TL, i.e. V → ∞, 〈N〉 → ∞ with
ρ = 〈N〉/V = constant. An infinite, homogeneous and
isotropic system is translationally invariant, therefore we
rewrite Equation (1) as [1]:

χ∞
T = �2(N)

〈N〉 = 1 + 4πρ

∫ ∞

0
dr r2(g◦(r) − 1), (2)

with χ∞
T = ρkBTκT , κT being the isothermal compress-

ibility of the bulk system.Wehave replaced g◦(r1, r2)with
g◦(r) the radial distribution function (RDF) of the open
system, with r = |r2 − r1|. Equation (2) is only valid in
the TL. However, it is routinely used in computer simu-
lations where closed systems with finite volume and fixed

number of particles are usually considered. Themodified
version of Equation (2) used in simulations reads:

χR
T = 1 + 4πρ

∫ R

0
dr r2(gc(r) − 1), (3)

where gc(r) is the RDF of the closed system and the infin-
ity upper limit in the integral on the r.h.s. of Equation (2)
is replaced by a radius ζ � R < L with ζ the correla-
tion length of the system and L the size of the simulation
box. These implicit assumptions introduce two different
finite-size effects: ensemble effects appear from assuming
go(r) = gc(r), which only holds in the TL. If R � ζ then
it is true that g◦(r > R) = 1. By contrast even small fluc-
tuations of gc(r > R)might contribute significantly to the
integral on the r.h.s. of Equation (3). Boundary effects
appear because in computer simulations the volume V
in Equation (1) is finite and therefore the step leading to
Equation (2) has to be handled with care [17]. As a mat-
ter of fact, the errors introduced by using Equation (3)
yield significant deviations that become apparent when
comparing standard molecular dynamics results with
semi-grand canonical simulations [24]. An alternative
OZ integral equation for finite-size systems was pro-
posed a long time ago [14,16,22,25]. Let us consider a
closed system with fixed number of particles N0 and
volume V0, with periodic boundary conditions (PBCs),
where fluctuations of the number of particles are com-
puted for subdomains of volume V ≤ V0. Therefore, we
define [4]

χT(V ,V0) = �2(N;V ,V0)

〈N〉V ,V0

= 1 + ρ

V

∫
V

∫
V
dr1 dr2[gc(r12) − 1], (4)

where gc(r12), r12 = |r2 − r1|, is the pair correlation
function of the closed system with total number of par-
ticles N0, and �2(N;V ,V0) = 〈N2〉V ,V0 − 〈N〉2V ,V0

. The
fluctuations of the number of particles thus depend
on both subdomain and simulation box volumes. The
question now is: is it possible to compute χ∞

T using
Equation (4) [26]?

To answer this question, we consider first the relation
between the RDFs of an open system and its closed coun-
terpart. The original idea is to write the grand canoni-
cal RDF as a sum of RDFs, in the canonical ensemble,
weighted by the probability that the system has a number
of particles N when in contact with a reservoir of parti-
cles [21,27]. For a single-component fluid of density ρ at
temperature T with fixed number of particlesN0 and vol-
ume V0, its RDF can be written in terms of an expansion



MOLECULAR PHYSICS 3303

around N0 as [21,23,25–27] :

gc(r) = g◦(r) − χ∞
T
N0

{
1 + 1

2
∂2

∂ρ2 [ρ
2(g◦(r) − 1)]

}

+ O(1/N2
0). (5)

In the following, we neglect the O(1/N2
0) terms in

Equation (5) because it has been demonstrated that, for
sufficiently large systems, their contribution can be safely
ignored [25]. By inserting Equation (5) into the integral
on the right hand side (r.h.s.) of Equation (4) we obtain

ρ

V

∫
V

∫
V
dr1 dr2(gc(r12) − 1)

= IV ,V − V
V0

χ∞
T

[
1 + 1

V
1
2

∂2

∂ρ2

(
ρIV ,V

)]
, (6)

where

IV ,V = ρ

V

∫
V

∫
V
dr1 dr2(g◦(r12) − 1), (7)

and we use that ρ = N0/V0.
At this point, we include explicitly the second finite-

size effect, i.e. the fact that the volume V is finite. For this
we rewrite IV ,V as [17]

IV ,V0−V = IV ,V0 − IV ,V

with

IV ,V0 = ρ

V

∫
V

∫
V0

dr1 dr2(g◦(r12) − 1),

IV ,V0−V = ρ

V

∫
V

∫
V0−V

dr1 dr2(g◦(r12) − 1).

To solve these equations, we recall that both inte-
grals, IV ,V and IV ,V0 , are equal when r1 and r2 are both
within the volumeV . Moreover, the integrand is zero for
r12 > ζ and therefore it does not contribute to the inte-
gral. However, for values of r12 close to the boundary of
the subdomain V, and in particular when r1 lies inside
V and r2 outside with r12 < ζ , there are contributions
missing in IV ,V that are present in IV ,V0 . Thus, the dif-
ference IV ,V0−V = IV ,V0 − IV ,V must be proportional to
the surface-to-volume ratio S/V of the subdomain, as first
discussed in [17], i.e.

IV ,V0−V = α′ρ
S
V

= − ρα

V1/3 , (8)

with α′, α > 0 proportionality constants that at this
point, we assume to be intensive. S is the surface area of
the subdomain with volume V [17].

To compute IV ,V0 , we require that Vζ < V < V0 with
Vζ = 4πζ 3/3. Since we assumed PBCs, the system is

translationally invariant. Hence, upon applying the trans-
formation r12 → r = r2 − r1, we obtain

IV ,V0 = ρ

∫
V0

dr(g◦(r) − 1) = χ∞
T − 1, (9)

where we assume that g◦(r > ζ) = 1 thus ignoring fluc-
tuations of the RDF beyond the volumeV . By combining
these two results, we obtain

IV ,V = χ∞
T − 1 + ρα

V1/3 , (10)

and by including this result in Equation (6) we obtain

ρ

V

∫
V

∫
V
dr1 dr2(gc(r12) − 1)

= χ∞
T − 1 + ρα

V1/3

− V
V0

χ∞
T

[
1 + 1

V
1
2

∂2

∂ρ2

(
ρ

{
χ∞
T − 1 + ρα

V1/3

})]
.

(11)

The expression inside the square bracket on the r.h.s.
is approximated to 1 since the term with the second
derivative with respect to ρ is proportional toV−4/3 ≈ 0.
Replacing in Equation (4) we obtain

χT(λ) = χ∞
T

(
1 − λ3

) + ρα

V1/3 (12)

with λ ≡ (V/V0)
1/3 and Vζ < V < V0. This expres-

sion is consistent with the two obvious limiting cases.
In the TL, V , V0 → ∞, the correct value is recovered,
i.e. χT(λ = 0) = χ∞

T . In the asymptotic limit λ = 1 we
obtain χT(λ = 1) = 0, that is, the fluctuations of the
number of particles for a closed system are, by definition,
equal to zero. The two size effects considered above can
be easily identified in the previous expression. First, the
term proportional to λ3 takes into account the difference
in the ensemble, i.e. gc(r) = g◦(r). Second, the term pro-
portional to V−1/3 accounts for the fact that the integra-
tion domain V is finite. We emphasise here that this last
result can be equally obtained by neglecting the derivative
with respect to the density of Equation (5), i.e. by directly
using the expression:

gc(r) = g◦(r) − χ∞
T
N0

, (13)

valid for large values of r and with an asymptotic correc-
tion independent of r.

Finally, for practical purposes [22], we multiply
Equation (12) by λ and obtain:

λχT(λ) = χ∞
T

(
1 − λ3

)
λ + ρα

V1/3
0

. (14)

To make use of Equation (14), one runs a stan-
dard NVT simulation and selects a system with volume
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Figure 1. Snapshot of a urea–water mixture simulation to illus-
trate the procedure used to obtain χT(λ). For a system with fixed
volume V0, fluctuations of the number of particles are computed
for various subdomains of volume V ≤ V0. The figure has been
rendered with VMD [28].

V0 � Vζ . Then one computes systematically the fluc-
tuations of the number of particles given by the l.h.s.
of Equation (4) for subvolumes V such that V < V0, as
schematically illustrated in Figure 1. Finally, one plots
the results as a function of λ and extracts χ∞

T from
a simple linear regression in the range (Vζ /V0)

1/3 <

λ � 1. We recall here that extrapolations of thermody-
namic properties from finite-size computer simulations
of single-component systems have been obtained in the
past. Examples include the calculation of the compress-
ibility of the Ising lattice gas [14] and hard disk fluids
[22,29], and the investigation of the gas–liquid transi-
tion in two-dimensional Lennard-Jones fluids [16,18], as
well as the calculation of the elastic constants of model
solids [20].

We have used this strategy to calculate the isothermal
compressibility of SPC/E [30] water. Molecular dynam-
ics simulations have been carried out with GROMACS
4.5.1 [31] for 8000, 16,000 and 32,000 SPC/E [30] water
molecules. To equilibrate the system, we started with a
simulation box of size such that the initial density was
≈26 waters/nm3 (≈ 776 kg/m3 ). Then, optimisation of
the system was achieved by performing steepest descent
minimisation (50,000 steps are sufficient). Finally, an
equilibration run of 3.5 ns has been carried out in the
NPT ensemble at 1 bar. During this time, the displace-
ment of a randomly chosenwatermolecule is comparable
to half the linear size of the simulation box.

Following this minimisation step, we proceeded by
alternating 3.5 ns (time step = 1 fs) constant pressure
(NPT) at P=1 bar and constant volume (NVT) sim-
ulations at T=300K. For NPT simulations we used
a Berendsen barostat [32] whereas for NVT simula-
tions temperature was enforced by a velocity rescaling
thermostat [33]. We continued with this protocol until
we verified that in the NPT ensemble the density is
33.5 waters/nm3 (1000 kg/m3) and that in the NVT sim-
ulation pressure fluctuates around the 1 bar value. For all
the cases considered in the present study, the last NVT
trajectory obtained after this sequence of NPT–NVT
equilibration runs was used for the subsequent analysis
in terms of the fluctuations of the number of molecules.

We evaluated λχT(λ) as a function of λ for a system of
8000 water molecules. These data suggest a linear regime
forλ < 0.3, consistent with Equation (14), wherewe used
simple linear regression to the data to obtain χ∞

T and α.
We report χ∞

T = 0.062 (3 % error), and by multiplying
this value by the molar mass of water and dividing by
ρkBT, we obtain 4.48 ×10−5 bar−1 in excellent agree-
ment with the widely accepted value for the isothermal
compressibility of the SPC/E model (4.50 ×10−5 bar−1)
[34]. Figure 2 shows λχT(λ) − ρα/V1/3

0 as a function
of λ for systems of 8000 (circles), 16,000 (triangles) and
32,000 (squares) water molecules. We replaced χ∞

T and
α back in Equation (14) to obtain the solid curve that
superposes on the simulation data for the full interval
0 < λ < 1. Nevertheless, one should keep in mind that
for very small values of λ, when the linear size of the
subdomain is comparable to the size of the molecules,
the statistical analysis is questionable. The three sets of
data follow the same curve, indicating that α is indeed an
intensive quantity but also suggesting that it is possible
to accurately estimate χ∞

T using the results of a relatively
small simulation.

By neglecting the term proportional to λ3 in
Equation (14), we obtained the straight line in Figure 2
that indicates that deviations from linearity indeed
become important for λ > 0.3. This limit λ � 1, where a
linear behaviour is apparent, is rather interesting. In this
regime, the volume V � V0, that is, the system is effec-
tively in the grand canonical ensemble. If V0 � Vζ we
obtain χT(λ � 1) = χ∞

T . Namely, provided that Vζ <

V < V0 in the interval λ < 0.3, both V and V0 are large
enough such that the system seems to be in the TL. A
way to challenge this argument involves the RDF: if the
system is in the TL then gc(r) = g◦(r) and Equation (3)
gives χ∞

T for R > ζ . We choose R=1.5 nm as a reason-
able value since the O-O RDF of the SPC/E model goes
to 1 at approximately 1 nm. This choice gives V1/3 =
1.5 × (4π/3)1/3 nm, and with the sizes V1/3

0 ≈ 6.2, 7.8
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Figure 2. Fluctuations of the number of water molecules as a
function of λ for systems of 8000 (circles), 16,000 (triangles) and
32,000 (squares) corresponding to the volumes indicated in the
legends. Using Equation (14) and simple linear regression to the
data for 8000watermolecules in the rangeλ < 0.3, we obtain the
curve represented by the dashed line and the solid line (neglect-
ing the λ3 term in Equation (14)).

and 9.9 nm we obtain λ ≈ 0.39, 0.31 and 0.24, respec-
tively. For these systems, we compute gc(r) and evaluate
χR
T from Equation (3). We obtain χR

T from the integral by
averaging in the interval 1.2<R<1.5 nm. As expected,
upon increasing the size of the simulation box (with λ =
0.39, 0.31 and 0.24 the integral takes the values 0.093 ±
0.004, 0.072 ± 0.003, 0.061 ± 0.003) the integral con-
verges to the value of 0.062 computed with the present
method (see Figure 3).

We conclude this part by saying that this method also
allows us to identify simulation conditions in which the
TL can be reached: in the case of SPC/Ewater, the volume
at which the RDF is computed should bemaximumof the
order of 1% of the total volume of the simulation box.

To test the accuracy of the method, we have com-
puted the isothermal compressibility of SPC/E water in
the temperature interval 260–360K.As shown in Figure 4
there is reasonable agreement with previous calculations
using directly volume fluctuations [35–37]. More impor-
tant, the efficient and accurate calculation of isothermal
compressibility for dense liquids opens the possibility to
compute other thermodynamic quantities of great inter-
est. For example, the isothermal compressibility is related
to the chemical potential μ via

κT = 1
ρ2

∂ρ

∂μ

∣∣∣∣
T
, (15)

which can be rearranged in terms of μ as:

δμ =
∫ ρ

ρ0

dρ′

ρ′2κT
(16)

Figure 3. Evaluation of Equation (3) for R = 1.5 nm using the
RDFs obtained from simulation boxes of side 6.2 (dashed line),
7.8 (dotted line) and 9.9 nm (dashed-dotted line). The horizon-
tal solid line marks the asymptotic limit, χ∞

T = 0.062, obtained
from simple linear regression on Figure 2 and Equation (14). The
panel shows the interval 1.2 < R < 1.5 nm. χR

T for large values
of R can be obtained by averaging over such an interval. These
results correspond to the horizontal lines. For V0 = (6.2)3, (7.8)3

and (9.9)3 nm3, we obtain the limits 0.093± 0.004, 0.072± 0.003
and 0.061± 0.003, respectively.

Figure 4. Isothermal compressibility for SPC/E water as a func-
tion of temperature at a fixed pressure (1 bar) using the method
described in the text (circles) and direct volume fluctuations: tri-
angles [35] and squares [36,37].

with δμ = μ − μ0 and μ0 the chemical potential of the
system at the reference density ρ0. This expression sug-
gests that, upon an accurate calculation of the compress-
ibility for different densities at fixed temperature, it is
possible to obtain the chemical potential of the system,
shifted by a constant μ0. We have computed the com-
pressibility of SPC/E water in the density interval 0.99
–1.05 g/cm3 and used the expression (16) to obtain δμ.
To estimate the shift and to prove that the method out-
lined here gives correct results, we have computed the
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Figure 5. Excess chemical potential as a function of density for
the SPC/E water model at 300 K. The triangles are the data
obtained with the SPARTIAN method [38] and the circles corre-
spond to the points computed with the method outlined in the
text. For the latter, the error bars are comparable to the point size.

excess chemical potential of SPC/E water in the same
density interval using a method recently developed by
us which can be interpreted as spatially resolved ther-
modynamic integration (SPARTIAN) [38]. To obtain
the excess chemical potential, we subtract the density-
dependent part of the chemical potential of the ideal
gas from δμ, i.e.

δμex = δμ − kBT ln ρ. (17)

Results are presented in Figure 5, and upon displacing
the point corresponding to 0.995 g/cm3 we find that both
data sets overlap remarkably well within error bars. In
this way, we have shown that with the strategy presented
here it is possible to compute efficiently the chemical
potential of dense liquids. When used in combination
with another method that allows one to calculate the
chemical potential at a reference state point, it also brings
results consistent with state-of-the-art chemical potential
calculations. Since in this context the chemical potential
is obtained via the simple evaluation of fluctuations of the
number of particles, we provide here an alternative strat-
egy useful, in particular, in cases where the high density
of the liquid becomes problematic for methods based on
particle insertion or thermodynamic integration.

III. Multicomponent systems

From the previous analysis, the generalisation to multi-
component systems is straightforward [11]. For a multi-
component fluid of species i,j in equilibrium at tempera-
ture T, analogous to the OZ integral equation, the KBI is

defined as [13]:

G◦
ij = V

( 〈NiNj〉 − 〈Ni〉〈Nj〉
〈Ni〉〈Nj〉 − δij

〈Ni〉
)

= 1
V

∫
V

∫
V
dr1 dr2[g◦

ij(r1, r2) − 1], (18)

with δij the Kronecker delta. As before, the superscript
(o) indicates that this definition holds for an open system,
i.e. a system described by the grand canonical ensemble.
g◦
ij(r1, r2) is the multicomponent pair correlation func-
tion of the open system. KB integrals connect the local
structure of a multicomponent system to density fluctu-
ations calculated in the grand canonical ensemble, that,
in theTL, are related to equilibrium quantities such as the
isothermal compressibility and derivatives of the chem-
ical potential [2]. Recently, and to illustrate the robust-
ness of this framework, KB integrals have been used to
investigate the thermodynamics of Lennard-Jones binary
mixtures [39], solvation of biomolecules [40], diffusion
in multicomponent liquids [41,42], complex phenomena
in molecular mixtures [43] and denaturation [44] and
self-assembly [45] of proteins.

As in the single-component case, by assuming that
the fluid is homogeneous and isotropic we obtain the KB
integrals in the TL:

G∞
ij = 4π

∫ ∞

0
dr r2(g◦

ij(r) − 1), (19)

where g◦
ij(r) is the multicomponent RDF of the infinite

system. However, in computer simulations, the expres-
sion

GR
ij = 4π

∫ R

0
dr r2(gcij(r) − 1) (20)

is widely used. Here, gcij(r) is the multicomponent RDF of
the finite system and R � ζ is a cut-off distance.

We explicitly include both finite-size effects: ensem-
ble and boundary effects, into an expression, analogous
to Equation (18), defined for a finite system. Let us con-
sider systems with a total fixed number of particles N0
and volume V0 with PBCs. We define [4]

Gij(V ,V0) = V
( 〈NiNj〉′ − 〈Ni〉′〈Nj〉′

〈Ni〉′〈Nj〉′ − δij

〈Ni〉′
)

= 1
V

∫
V

∫
V
dr1 dr2[gcij(r12) − 1] (21)

with gcij(r12), r12 = r2 − r1, the pair correlation function
of the closed system, and 〈Ni〉′ ≡ 〈Ni〉V ,V0 the average
number of i-particles that depends on V and V0. Thus,
we define a quantity Gij(V ,V0) that can be evaluated
by computing fluctuations of the number of particles in
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finite subdomains of volumeV inside a simulation box of
volume V0.

We have proposed an expression, valid for large sepa-
rations r, relating the open and closed RDFs of the form
[11]:

gcij(r) = g◦
ij(r) − 1

V0

(
δij

ρi
+ G∞

ij

)
, (22)

based on the asymptotic limit gcij(r → ∞) = 1 − (δij/ρi
+ G∞

ij )/V0 discussed in [2]. As expected, when the total
volume V0 → ∞ we recover gcij(r) = g◦

ij(r). We include
Equation (22) in the integral on the r.h.s. of Equation (21)
and obtain:

Gij(V ,V0) = 1
V

∫
V

∫
V
dr1 dr2[g◦

ij(r12) − 1]

− V
V0

(
δij

ρi
+ G∞

ij

)
. (23)

In analogy to the single-component case, in
Equation (22) we neglect O(1/V0) contributions that
include derivatives of g◦

ij(r) with respect to ρi, as well as
O(1/V2

0 ) terms, because their contribution to ensemble
size effects becomes negligible upon integration.

Second, for the boundary effects, by explicitly taking
into account the finite domain of integrationV, we obtain
[4,11]:

Gij(V ,V0) = 1
V

∫
V

∫
V0

dr1 dr2[g◦
ij(r12) − 1]

− V
V0

(
δij

ρi
+ G∞

ij

)
+ αij

V1/3 , (24)

where αij is a constant that depends only on intensive
thermodynamic system properties such as density and
temperature. Finally, we rewrite Equation (24) as [11]

Gij(λ) = G∞
ij (1 − λ3) − λ3

δij

ρi
+ αij

V1/3
0 λ

(25)

with λ = (V/V0)
1/3. And like in the single-component

case, we can use Equation (25) to extract the KBIs in
the TL, G∞

ij . In the case of multicomponent fluids, the
explicit inclusion of finite-size effects to obtain G∞

ij has
been attempted in the literature by either using argu-
ments from the thermodynamics of small systems [46]
where only the 1/V1/3 term appears [47] or by intro-
ducing empirical tail corrections to the RDF and eval-
uating Equation (20) with a modified kernel [48,49].
Here we identify the relevant finite-size effects at play
and use them in a simple and physically sound frame-
work that enables an accurate and efficient calculation of
G∞
ij [11]. Recently, the accuracy of this method has been

tested by computing several thermodynamic properties

of Lennard-Jonesmixtures showing good agreementwith
theoretical predictions [39].

We rewrite Equation (25) as

λGij(λ) = λG∞
ij

(
1 − λ3

) − λ4
δij

ρi
+ αij

V1/3
0

. (26)

To validate Equation (26), we have performed simu-
lations of aqueous urea solution [50,51] using the KB-
derived force field [52] and SPC/E water [30] in GRO-
MACS 4.5.1 [31] with a relatively small size of the sim-
ulation box (L ∼ 8 nm). In addition to the trajectories
from [51] we have considered four more molar concen-
trations for a total of seven molar concentrations: 2.00,
3.06, 3.90, 5.07, 6.03, 7.10 and 8.03. To equilibrate the sys-
tem, we have alternated 3.5 ns (time step = 1 fs) constant
pressure (NPT) at P=1 bar and constant volume (NVT)
simulations at T=300K. For NPT simulations, we used
a Berendsen barostat [32], whereas for NVT simulations,
temperature was enforced by a velocity rescaling thermo-
stat [33].We continuedwith this protocol (38NPT–NVT
cycles) until we verified that in the NVT simulation pres-
sure fluctuates around 1 bar. The last NVT trajectory
obtained after this NPT–NVT equilibration sequence
was used for the analysis in terms of fluctuations of the
number of molecules.

Figure 6 shows fluctuations of the number of
molecules of species i,j = urea (U), water (W) as a func-
tion of λ for a molar concentration of 2.00 M. Triangles
correspond to λGUW(λ) that goes to zero when λ →
1, as the horizontal solid line indicates. Circles repre-
sent λGUU(λ) that in the limit λ → 1 goes to 1/ρU =
1/1.208 = 0.828 as indicated by the horizontal dashed
line. As in the case of single-component systems, here
it is also clear that there is a linear region in the inter-
val 0 < λ < 0.3, indicated by the vertical solid line ( see
inset in Figure 6). From a simple linear regression in this
region,G∞

UW,G∞
UU as well as the values ofαij are obtained.

By inserting these values in Equation (26) we obtain the
solid curves that overlap the simulation data points in all
cases.

Since we can compute gc(r) directly from our trajecto-
ries, we compare the fluctuations results with the evalua-
tion of the integral Equation (20). Results for GR

UU, G
R
UW

with R=1.5 nm are presented in Figure 7 using solid
curves. To obtain a value for the KBIs we have averaged
these curves in the interval 1.3 – 1.5 nm as indicated by
the dotted horizontal lines. In addition, the dashed lines
correspond to the values G∞

UU and G∞
UW obtained from

the simple linear regression of Equation (26). Differences
in G∞

UU and the average from the curve are significant.
The reason behind such differences lies in the fact that the
concentration of urea is low, CU = 2.00M, and a larger
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Figure 6. Simulation results for a molar concentration of 2.00 M
showing λGUU (circles) and λGUW (triangles). The horizontal lines
indicate the asymptotic limits for Gij(λ → 1): GUU → 1/ρU =
1/1.208 = 0.828 and GUW → 0. The linear regime (λ < 0.3 as
seen in the inset), with slope equal to G∞

ij , is indicated by the ver-
tical solid line. The solid curves superimposing on the data for the
whole interval 0 < λ < 1 were obtained by fitting Equation (26)
in the linear regime.

Figure 7. Results for GRij obtained from Equation (20) for urea
water mixtures at CU = 2.00 M (solid curves). The dotted hori-
zontal lines indicate the average of the curve obtained between
1.3 and 1.5 nm. The dashed horizontal lines correspond to G∞

ij as
obtained from Equation (26).

simulation box is needed to correctly compute the corre-
sponding RDF. Conversely, the differences for GUW are
negligible because the size of the system is large enough
to accurately obtain the urea – water RDF.

In our previous paper, we have used these tools
to investigate solvation thermodynamics [11]. In urea–
water mixtures at pressure P, temperature T and number
density ρU the derivative of the urea activity coefficient
can be written as

γUU = 1 +
(

∂ ln γU

∂ ln ρU

)
P,T

= 1
1 + ρU(GUU − GUW)

,

(27)
with γU the activity coefficient and kBT ln γU the chemi-
cal potential of urea.Wehave computed γUU as a function

Figure 8. Derivative of the activity coefficient γUU as a function of
different urea molar concentrations CU. Experimental data (Exp. 1
[52,53] solid curve and Exp. 2 [56] dashed line) are also presented
for comparison. Concerning other simulation methods, the trian-
gles have been obtained by using Equation (20) [50,51]. Recently,
the activity coefficient has been computed by using a modified
version of Equation (20) with empirical tail corrections to the RDF.
The squares correspond to one data set extracted from [54] with
the smallest error bars and that best reproduces the experimen-
tal results. For the latter, as well as for our data, the error bars are
comparable to the symbol size.

of molar concentration and report the results in Figure 8.
These results are in good agreement with the experimen-
tal measurements [53] used to parameterise the force
field [52]. Recently, a modified version of Equation (20)
with empirical tail corrections to the RDF have been
used to compute γUU [54]. To compare with our method,
we extract [55], among the various examples provided
[54], the data set with the smallest error bars and that
best reproduces the experimental results. The results pre-
sented in Figure 8 suggest that a simple calculation of the
fluctuations of the number of particles used in combina-
tion with Equation (26) produce results consistently in
better agreement with Exp. 1 [53].

More important, we can also use KBIs to compute the
chemical potential of urea in urea–water mixtures. We
use the expression

1
kBT

(
∂μU

∂ρU

)
P,T

= 1
ρU

+ GUW − GUU

1 + ρU(GUU − GUW)
, (28)

and as in the case of single-component fluids, we inte-
grate this equation to obtain a shifted chemical potential:

δμU = kBT
∫ ρU

ρU,0

dρ′
U

[
1

ρ′
U

+ GUW − GUU

1 + ρ′
U(GUU − GUW)

]
,

(29)
where we have dropped the subindices P,T to lighten the
notation. Using a combination of different methods, the
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Figure 9. Chemical potential of urea in aqueous solution as a
functionofmole fraction xU. The results obtainedwith themethod
outlined in the text (circles) are compared with the data from [57]
(triangles).

chemical potential of urea in urea–water mixtures as a
function of mole fraction has been computed in [57].
In Figure 9 we report these results in the interval 0,0.20
using triangles. We have obtained the shifted chemical
potential of urea as a function of mole fraction using
Equation (29) and plot the results using the data for
the mole fraction xU = 0.13 (CU = 6.03) as a reference
state point (circles). The two data points are in excellent
agreement. This suggests that the method presented here
constitutes an efficient and accurate tool to compute the
chemical potential of liquid mixtures for a wide range of
concentrations.

IV. Conclusions

During the last decades, we have witnessed an exponen-
tially increasing computational capacity that allowed us
to simulate enormous systems. In some cases, like the
SPC/E example with V0 = (9.9 nm)3 discussed above,
the system could practically be considered in the ther-
modynamic limit. Usually, this situation constitutes the
exception rather than the rule, and the computation of
bulk thermodynamic quantities from small-sized simu-
lation results remains a challenging task. This limitation
did not prevent pioneer computational scientists to inves-
tigate these properties for various complex systems. On
the contrary, researchers have cleverly used the finite-size
effects present in their systems to extrapolate interesting
quantities in the TL.

Inspired by these works, we used finite-size variants
of integral equations in the theory of liquids, namely
for the OZ and KBI equations. By explicitly including
ensemble and boundary size effects, we have derived ana-
lytical expressions that allow one to accurately calculate

isothermal compressibilities and KBIs in the TL. In par-
ticular, the accurate estimation of these quantities for
various density/concentration conditions allows one to
determine, upon integration, the chemical potential for
molecular liquids and mixtures.

This protocol to compute chemical potentials sim-
ply relies on running a standard computer simulation.
Provided that the linear dimension of the simulation
box is larger than the correlation length of the system,
the obtained trajectories can be easily used to compute
the fluctuations of the number of molecules for differ-
ent subdomain sizes. This can be carried out during the
postprocessing and without any external sophisticated
computational strategies, in contrast with the standard
methods available in the literature.

The efficiency and accuracy of the method have been
demonstrated by the calculation of shifted chemical
potentials of SPC/Ewater as a function of the density, and
aqueous urea solution as a function of the mole fraction.
The reported results exhibit trends in excellent agreement
with state-of-the-art calculations. The reference chemical
potential can be calculated using an alternative, well-
established method for a single density/concentration
value. Thus, the simple estimation of density fluctuations,
as described here, provides a powerful tool to determine
the chemical potential of molecular fluids for a wide
range of density/concentration conditions.
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