
Old Dominion University

ODU Digital Commons

Engineering Management & Systems Engineering
Theses & Dissertations

Engineering Management & Systems Engineering

Summer 2013

Approximate Algorithms for the Combined arrival-
Departure Aircraft Sequencing and Reactive
Scheduling Problems on Multiple Runways
Gulsah Hancerliogullari
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

Part of the Industrial Engineering Commons, and the Operational Research Commons

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has

been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU

Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Hancerliogullari, Gulsah. "Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling
Problems on Multiple Runways" (2013). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion
University, DOI: 10.25777/ezrg-tb67
https://digitalcommons.odu.edu/emse_etds/78

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/78?utm_source=digitalcommons.odu.edu%2Femse_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

APPROXIMATE ALGORITHMS FOR THE COMBINED

ARRIVAL-DEPARTURE AIRCRAFT SEQUENCING AND

REACTIVE SCHEDULING PROBLEMS ON MULTIPLE RUNWAYS

by

Gulsah Hancerliogullari
B.S. May 2008, Bilkent University, Turkey
M.S. July 2010, Bilkent University, Turkey

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
August 2013

Approved by:

Ghaith Rabadi (Director)

Resit Unal (Member

C. Arie^Rinto (Member)

eo'itpetin (Member)

ABSTRACT

APPROXIMATE ALGORITHMS FOR THE COMBINED ARRIVAL-DEPARTURE
AIRCRAFT SEQUENCING AND REACTIVE SCHEDULING PROBLEMS ON

MULTIPLE RUNWAYS

Gulsah Hancerliogullari
Old Dominion University, 2013

Director: Dr. Ghaith Rabadi

The problem addressed in this dissertation is the Aircraft Sequencing Problem

(ASP) in which a schedule must be developed to determine the assignment of each

aircraft to a runway, the appropriate sequence of aircraft on each runway, and their

departing or landing times. The dissertation examines the ASP over multiple runways,

under mixed mode operations with the objective of minimizing the total weighted

tardiness of aircraft landings and departures simultaneously. To prevent the dangers

associated with wake-vortex effects, separation times enforced by Aviation

Administrations (e.g., FAA) are considered, adding another level of complexity given

that such times are sequence-dependent. Due to the problem being NP-hard, it is

computationally difficult to solve large scale instances in a reasonable amount of time.

Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with

Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast

Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated

Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are

introduced to improve solutions initially constructed by the proposed greedy algorithms.

The performance (solution quality and computational time) of the various algorithms is

compared to the optimal solutions and to each other.

The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP)

as air traffic systems frequently encounter various disruptions due to unexpected events

such as inclement weather, aircraft failures or personnel shortages rendering the initial

plan suboptimal or even obsolete in some cases. This research considers disruptions

including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is

formulated as a multi-objective optimization problem in which both the schedule’s

quality and stability are of interest. The objectives consist o f the total weighted start times

(solution quality), total weighted start time deviation, and total weighted runway

deviation (instability measures). Repair and complete regeneration approximate

algorithms are developed for each type of disruptive events. The algorithms are tested

against difficult benchmark problems and the solutions are compared to optimal solutions

in terms of solution quality, schedule stability and computational time.

This dissertation is dedicated to my mom Kaytan and my dad Ahmet.

ACKNOWLEDGEMENTS

Even though writing a dissertation is an individual work, I could never have

succeeded in completing this dissertation without the help, support, guidance and efforts

of many people.

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Ghaith Rabadi, for his endless patience, guidance, support and encouragement.

Throughout my doctoral study, he always believed in me and always made me feel that I

could do better and better. His way of thinking, solving problems, teaching, and

understanding, led me to admire him. Not only has Professor Rabadi shaped who I am as

a scientist, but he also shaped my teaching, communication and collaboration skills. I

have always said this to everyone, but I would like to express it here, one more time that I

couldn't have finished this work without him. Thank you very much for everything

Professor!

I would like to thank other members of my dissertation committee, Dr. Resit

Unal, Dr. Ariel C. Pinto and Dr. Mecit Cetin for providing me support, feedback and

encouragement during the improvement of this dissertation.

I especially would like to thank Dr. Resit Unal for his numerous avenues of

support which include recommending opportunities to me on countless occasions. To me,

he was not only the department chair of EMSE but also a supportive role model who is

concerned with all of his students' success.

I would like to extend my special appreciation to Dean of Frank Batten College of

Engineering & Technology, Dr. Oktay Baysal and Associate Dean, Dr. Osman Akan for

providing me the opportunity to pursue my Ph.D. I also would like to thank Dr. Ahmed

Ghoniem and Farbod Farhadi from University of Massachusetts Amherst, Dr. Mohamed

Kharbeche and Dr. Ameer Al-Salem from Qatar University and Dr. Hanif D. Sherali

from Virginia Tech for their support and feedback during the collaborative research

project.

I am deeply grateful to my family for their encouragement and unbending love

not only during this study, but also throughout my life. I feel very lucky to have such a

wonderful family. My very precious thanks to my mom Kaytan, my dad Ahmet, my

sister, Basak, my brother, Dr. Kadir Oymen, my nephew Burak Emirhan and my sister-

in-law Nihal. Whenever I needed courage, talking to them helped ease everything.

I am very grateful to all of my friends and family here in the States and in Turkey.

In this long journey, miles away from home, people I have met here have made me feel

like I am home again. Many thanks to Dr. Mujde Erten Unal, Deniz Unal, Mariam

Kotachi, Dr. Ersin Ancel, Dr. Bema Eren Tokgoz. I also owe a special note of gratitude

to Cansu Kandemir, Elnaz Dario and Alireza Shahvari who I’ve known for a couple of

months but it feels like an eternity; they always cheered me up when I was in a bad mood

with their big smiles and warm friendship. Everytime I visited Turkey, all of my friends

there made me feel like I never left. These countless number of friends, who are now all

around the world, especially, Esra Agca, Ardic Kocaman, Ece Zeliha Demirci, Hatice

Calik, Pelin Damci Kurt, Gokce Akin deserve big thanks from me.

Last and most importantly, Emrah Koksalmis, who has given me the biggest

support during my doctoral study deserves the most special thanks. He always listened to

my research ideas patiently and gave me useful feedback. There are no words that can

express my gratitude to him.

NOMENCLATURE

AATCSR Adapted Apparent Tardiness Cost with Separation and Ready Times

ASP Aircraft Sequencing Problem

ATSP Asymmetric Traveling Salesman Problem

B&B Branch-and-bound

CPS Constrained Position Shifting

CSH Cheapest search heuristic

ERT Earliest Ready Time

Eurocontrol European Organisation for the Safety of Air Navigation

FAA Federal Aviation Administration

FCFS First-Come First-Served

FPI Fast Priority Index

GA Genetic Algorithm

GRASP Greedy randomized adaptive search procedure

ICAO International Civil Aviation Organization

Meta-RaPS Meta-heuristic for randomized priority search

M1LP Mixed-integer Linear Programming

SA Simulated Annealing

TMA Terminal Maneuvering Area

TABLE OF CONTENTS

Page

LIST OF TABLES... xi

LIST OF FIGURES... xiv

Chapter

1. INTRODUCTION...1
1.1 FUNDAMENTAL CONCEPTS IN AIRCRAFT SEQUENCING........................... 3
1.2 MAPPING THE ASP TO THE MACHINE SCHEDULING PROBLEM...............7
1.3 PROBLEM STATEMENT...9
1.4 RESEARCH SCOPE AND OBJECTIVES... 17

2. LITERATURE REVIEW...20
2.1 AIRCRAFT SEQUENCING PROBLEM...20
2.2 MACHINE SCHEDULING PROBLEM..32
2.3 REACTIVE SCHEDULING PROBLEM...34

3. AIRCRAFT SEQUENCING PROBLEM SOLUTION METHODOLOGY................47
3.1 MATHEMATICAL MODEL.. 48
3.2 REVIEW OF SOLUTION METHODS... 50
3.3 APPROXIMATE ALGORITHMS FOR THE ASP... 56

4. COMPUTATIONAL STUDY FOR SOLUTION METHODOLOGIES...................... 65
4.1 DATA GENERATION... 65
4.2 SA PARAMETER SETTING.. 66
4.3 Meta-RaPS PARAMETER SETTING..67
4.4 EFFECTIVENESS OF THE GREEDY ALGORITHMS..68
4.5 EFFECTIVENESS OF THE SA and Meta-RaPS ALGORITHMS........................ 70
4.6 FURTHER ANALYSIS OF THE ALGORITHMS’ EFFECTIVENESS

WITH RESPECT TO FEASIBILITY... 80

5. AIRCRAFT REACTIVE SCHEDULING PROBLEM METHODOLOGY................ 83
5.1 INTRODUCTION.. 83
5.2 DISRUPTIONS IN AIR TRAFFIC OPERATIONS.. 87
5.3 MULTI-OBJECTIVE OPTIMIZATION...88
5.4 THE MIXED INTEGER LINEAR PROGRAMMING MODEL

FOR AIRCRAFT RESCHEDULING PROBLEM.. 93
5.5 REACTIVE SCHEDULING ALGORITHMS..100

6. COMPUTATIONAL STUDY FOR AIRCRAFT REACTIVE
SCHEDULING ALGORITHMS...123

X

6.1 DATA GENERATION... 123
6.2 EFFECTIVENESS OF THE ALGORITHMS ...125

7. CONCLUSIONS AND FUTURE RESEARCH...150
7.1 CONCLUSIONS..150
7.2 CONTRIBUTIONS.. 152
7.3 FUTURE RESEARCH... 154

BIBLIOGRAPHY.. 155

APPENDICES... 167
A. T-TEST RESULTS OF THE FLIGHT DELAY ALGORITHMS.........................167
B. T-TEST RESULTS OF THE NEW FLIGHT ALGORITHMS..............................170

VITA 172

LIST OF TABLES

Table

1. Minimum time separation (in seconds) landings (FAA, 2003)..6

2. Minimum Separation Times (seconds) from Sherali et al. (2010).................................. 13

3. Sample Data...14

4. Summary of the research on parallel machine rescheduling problem........................... 42

5. Summary of the research on airport disruption management...44

6. Coded values of factor levels..67

7. Results of the Greedy Algorithms.. 69

8. Comparison of effectiveness of the Greedy Algorithms... 70

9. Results of the SA Algorithm.. 71

10. Comparison of effectiveness of the SA Algorithm with different

initial solutions.. 73

11. Test for Equal Variances: Relative Error versus Method... 73

12. Results of the Meta-RaPS Algorithm.. 74

13. Comparison of effectiveness of the Meta-RaPS Algorithm with different

initial solutions.. 76

14. Comparison of effectiveness of the AATCSR and metaheuristic algorithms 77

15. Comparison of effectiveness of the ERT and metaheuristic algorithms....................77

16. Comparison of effectiveness of the FPI and metaheuristic algorithms.....................77

17. Computational Results for the Algorithms with Congested Instances........................ 82

18. A sample experiment result for Do-Nothing algorithm.. 126

19. Average error of the algorithms for flight cancellations... 127

20. Paired T-Test and Cl: Do-Nothing-stability Left-Shift -stability............................... 129

21. Paired T-Test and Cl: Do-Nothing-quality Left-Shift -quality................................... 130

22. Average CPU time of the algorithms for flight cancelations...................................... 131

23. Average error of the algorithms for flight delays if the Left-Shift

algorithm is applied for flight cancellations..132

xii

24. Paired T-Test on average error of the RepairByEDD and RepairBy Slack

if the Left-Shift is applied for cancellation-Schedule Stability.................................. 133

25. Paired T-Test on average error of the RepairByEDD and InsertDelay

if the Left-Shift is applied for cancellation-Schedule Stability.................................. 133

26. Paired T-Test on average error of the RepairBySlack and InsertDelay

if the Left-Shift is applied for cancellation-Schedule Stability.................................. 134

27. Paired T-Test on average error of the RepairByEDD and RepairBySlack

if the Left-Shift is applied for cancellation-Solution Quality..................................... 135

28. Paired T-Test on average error of the RepairByEDD and InsertDelay

if the Left-Shift is applied for cancellation-Solution Quality..................................... 135

29. Paired T-Test on average error of the RepairBySlack and InsertDelay

if the Left-Shift is applied for cancellation-Solution Quality..................................... 136

30. Average error of the algorithms for flight delays if the Do-Nothing

algorithm is applied for flight cancellations.. 137

31. Average error of the algorithms for arrival of new flights with Left-Shift

for cancellations and RepairByEDD for delays... 140

32. Paired T-Test on average error of the RepairByTWST and InsertNew

with Left-Shift for cancellation and RepairByEDD

for delays-Schedule Stability 1 ... 141

33. Paired T-Test on average error of the RepairByTWST and InsertNew

with Left-Shift for cancellation and RepairByEDD

for flight delays-Schedule Stability 2 .. 142

34. Paired T-Test on average error of the RepairByTWST and InsertNew

with Left-Shift for cancellation and RepairByEDD

for flight delays -Solution Quality 1 ...142

35. Paired T-Test on average error of the RepairByTWST and InsertNew

with Left-Shift for cancellation and RepairByEDD

for flight delays -Solution Quality 2 ... 143

36. Average error of the algorithms for arrival of new unexpected flights

with the Do-Nothing algorithm for flight cancellations then the

RepairBySlack for flight delays..144

xiii

37. Average error of the complete regeneration algorithms... 146

38. Paired T-Test on average error of the TWST and SA-Re complete

regeneration algorithms - Schedule Stability 1..147

39. Paired T-Test on average error of the TWST and SA-Re complete

regeneration algorithms-Schedule Stability 2 ..147

40. Paired T-Test on average error of the TWST and SA-Re complete

regeneration algorithms-Solution Quality 1... 148

41. Paired T-Test on average error of the TWST and SA-Re complete

regeneration algorithms -Solution Quality 2.. 148

42. Average CPU time of the algorithms for flight cancelations...................................... 149

LIST OF FIGURES

xiv

LIST OF FIGURES

Figure

1. Graphic of wake vortices (http://www.tc.gc.ca/eng/innovation)...................................... 6

2. ICAO separations (http://www.liv.ac.uk/flightscience)... 7

3. Scheduling Time Horizon..11

4. A Feasible Schedule..15

5. The framework for the rescheduling research...35

6. Normality Test for the Greedy Algorithms... 69

7. Normality Test for the SA Algorithm: Relative Error.. 72

8. Test for Equal Variances: Relative Error versus Method... 74

9. Normality Test for the Meta-RaPS Algorithm: Relative Error...................................... 75

10. Test for Equal Variances: Relative Error versus Method-AATCSR............................78

11. Test for Equal Variances: Relative Error versus Method-ERT.................................... 78

12. Test for Equal Variances: Relative Error versus Method-FPI...................................... 79

13. Mean plots intervals at the 95% confidence level of Relative Errors...........................79

14. Mean plots intervals at the 95% confidence level of CPU Times................................80

15. Initial Schedule Before Disruption.. 99

16. Optimal Solution After Disruption.. 100

17. General Control Framework for the Rescheduling Strategy...................................... 102

18. Detailed Control Framework for the Rescheduling Strategy..................................... 103

19. Reactive Scheduling Strategies for Each Disruption Type... 105

20. A Sample Initial Schedule.. 105

21. Initial Start Times of Each Aircraft Before Any Disruptions..................................... 105

22. Affected Aircraft to Reschedule...106

23. Updated Schedule After Do-Nothing Algorithm...109

24. Start Times After Do-Nothing Algorithm... 109

25. Updated Schedule After Left-Shift Algorithm.. I l l

26. Start Times After Left-Shift Algorithm... I l l

27. Updated Schedule After Do-Nothing Algorithm (Current schedule).........................112

XV

28. Updated Start Times After Do-Nothing Algorithm (Current schedule).....................113

29. Updated Schedule After RepairBySlack Algorithm..113

30. Start times After RepairBySlack Algorithm.. 113

31. Updated Schedule After RepairByEDD Algorithm..114

32. Start Times After RepairByEDD Algorithm... 114

33. Existing Position of Flight #19 (i=0)..116

34. Insert flight #19 between 20 and 10 0 = 2)... 116

35. Insert flight #19 after flight 7 (i=6)...117

36. Updated Schedule After RepairBySlack Algorithm (Current schedule)................... 118

37. Start Times After RepairBySlack Algorithm (Current schedule)...............................118

38. Updated Schedule After RepairByTWST Algorithm..119

39. Start Times After RepairByTWST Algorithm.. 119

40. Insert Flight #21 between Flights 18 and 17 ... 120

41. Insert Flight #21 between Flights 17 and 16 ... 121

42. Insert Flight #21 between Flights 7 and 1 9 ... 121

43. Insert Flight #22 between Flights 21 and 17 ... 121

44. Insert Flight #22 between Flights 21 and 16 ... 121

45. Insert Flight #22 between Flights 9 and 8 ... 121

46. Normality test for average error...128

47. Summary of the statistical tests for flight cancellation..130

48. Summary of the statistical tests for flight delay - Part 1 ... 136

49. Summary of the statistical tests for flight delay - Part 2 ... 138

50. Summary of the statistical tests for new flight arrival - Part 1144

51. Summary of the statistical tests for new flight arrival - Part 2145

52. Summary of the statistical tests for complete regeneration algorithms......................149

1

CHAPTER 1

INTRODUCTION

The current capacity of airports is becoming insufficient due to growing air transportation

demand and a huge increase in air traffic during the last decade. Therefore, some aircraft

cannot land or depart at their preferred target-time. In order to achieve an efficient use of

critical resources such as runways, devising appropriate methods for aircraft sequencing

problem (ASP) is of great importance and is the main aim of this dissertation. Airport

terminal maneuvering area (TMA) is of great interest to decision-makers since it is a

critical link of air traffic operations chain. TMA includes managing air traffic control

operations, runway scheduling and taxiway operations. Among these operations, runway

scheduling is the one that affects the performance of the TMA the most (Sherali et al.,

1992).

Although there are many ongoing studies related to the operations that take place in the

TMA, the cost of the flight delays are still extremely high. In order to effectively use the

low capacity resources such as runways, effective decision support systems are required,

air traffic policies have to be identified, and wise planning strategies have to be proposed

which require huge amount of time and investment. Researchers have been examining

several approaches on the efficient use of runways while considering safety constraints.

Since constructing new airports or additional runways is not a near term solution,

decision-makers ought to examine competent schedules of aircraft landings and

departures to improve the runway throughput capacity. In other words, already existing

resources should be evaluated and utilized judiciously. This way, the current and the

estimated inefficiencies in operations can be eliminated, and significant advantages in

performance can be gained.

According to the U.S. Department of Transportation and Eurocontrol, the flight delays

statistics were worrisome due to the fact that in the United States compared to 2006, a

15% increase in flight delays was observed in 2007 which cost $8.1 billion in terms of

direct operating costs. Because of weather conditions, traffic volume and airport

operations, the Air Travel Consumer Report ATCR (U.S. Department of Transportation

2

2008) and “Challenges of Growth 2008” by Eurocontrol stated that more than 20% of

commercial flights were late by more than 15 minutes.

Scheduling is a decision-making process that concentrates on allocation of resources to

tasks over given time periods. Therefore, scheduling approaches can be considered for

more effective air traffic operations while maintaining up safety and efficiency. The ASP

concurrently determines the assignment of aircraft to runways, the appropriate sequence

of aircraft on each runway, and the departing or landing time on a chosen runway. It is

assumed that each runway can accommodate at most one aircraft at any time that

runways are reliable, and that they operate independently. The problem can then be

modeled as an identical parallel machine scheduling problem with the runways being

machines and the aircraft being jobs that have ready times (release times), target times

(due dates), deadlines, tardiness penalties (weights), and sequence-dependent separation

(setup) times.

As all aircraft generate wake vortices, a minimum time or a distance is set between

aircraft to prevent the adverse effect; this safety buffer is referred as the separation time.

Careful sequencing and scheduling can reduce the long separation and operating times.

Minimum separation times between consecutive and certain nonconsecutive operations,

and specified time-windows during which operations must take place are two of the

major requirements of this scheduling effort. Minimizing the total weighted tardiness is a

reasonable objective function to schedule landings and departures as close as possible to

their target times. A mixed integer linear programming (MILP) model is provided to find

optimal solutions. However, since minimizing the total weighted tardiness even for a

single machine with all weights being equal is NP-hard (Lawler, 1982), ASP is also NP-

hard, which means that it is computationally difficult to solve large scale instances in a

reasonable amount of time. Therefore, it is necessary to develop appropriate methods to

reach good quality solutions in reasonable computational times.

Passenger satisfaction is one of the key considerations for airline companies that can be

maximized by minimizing flight delays. Throughout the course of daily operations, an

airline is faced with the potential of deviations in the planned flight schedule as a result of

3

various unexpected events such as severe weather conditions and unexpected aircraft or

personnel failures. Unlike most literature, we consider in this dissertation aircraft related

disruptive events as they occur often and are much more frequent than other type of

disruptions in air traffic operations. Aircraft reactive scheduling approach is taken in this

research and schedule repair algorithms are developed to deal specifically with arrival of

new aircraft, flight cancellations and aircraft delays due to irregular events. One of the

goals of this dissertation is to propose and validate solution methodologies and heuristic

procedures to reschedule the planned flights in the event o f irregular and disruptive

operations.

1.1 Fundamental Concepts in Aircraft Sequencing

The Aircraft Sequencing Problem (ASP) is an operations research problem, whose goal

is to assign the arrival and departure aircrafts to runways and sequence them on each

runway simultaneously. Minimum separation times between consecutive and certain

nonconsecutive operations, and specified time-windows during which operations must

take place are two of the major requirements of this scheduling effort. The time-

windows, which are required for the landing and departure operations, specify the

earliest and latest times of an aircraft become available on a runway for operation. So as

to reduce the wake-vortex effect risk, minimum separation times between consecutive

and certain nonconsecutive operations are required. Aircraft operation types such as

landing or departure, aircraft weight-class such as heavy, medium, light, and sequence of

the operations decided by the air traffic controller affect the magnitude of the separation

times.

In the academic literature, ASP has attracted the researchers for over the 20 years as

surveyed by Bennell et al. (2011). The tools of operational research and management

science, and solution techniques including dynamic programming, branch and bound,

heuristics and metaheuristics for aircraft landing and take-off scheduling have been

comprehensively reviewed. According to this survey, it is noted that significantly more

attention has been dedicated to aircraft landings or departures in contrast to combined

arrival-departure cases.

4

1.1.1 Time Windows

Depending on conditions such as fuel restriction, maximum allowed delay, the airspeed,

runway availability, or meeting a connecting flight, the landing time of an aircraft must

be within a time window that consists of its earliest and latest possible landing time. This

time window should be treated as a hard constraint.

Some aircraft have target departure times, a Calculated Time of Take-off (CTOT), are

calculated for smooth congestion at busy destination airports. According to Atkin et al.

(2010), the CTOT limits the time that aircraft enters the congested areas to smooth the

traffic in the airspace and at the airports. The CTOT defines a fifteen minutes time

window for which the goal of the air traffic controllers is to assign a scheduled departure

time to each aircraft from five minutes before CTOT to ten minutes after the CTOT,

which is a soft constraint (Bennell et al., 2011).

1.1.2 First-Come-First-Served

One of the most commonly used heuristics for aircraft sequencing problem is First-

Come-First-Served (FCFS). In terminal areas, planning specialists use estimated landing

time for calculation of delays. Depending on the estimated landing time, which is based

on the route and speed of aircraft, scheduled landing time is assigned to each aircraft

(Neuman and Erzberger 1991). Although it is not always preferred for departure

sequence, the order of the aircraft queuing is the FCFS order, which provides an

estimated departure time (Carr et al. 2000).

1.1.3 Runway Capacity and Assignment

The runway capacity, which is a crucial constraint in an airport system, is the maximum

rate of aircraft arrivals or departures that can be accommodated by a single or multiple

runways. The factors that affect it are aircraft type, runway operation type (segregated or

mixed), runway occupancy time, availability of taxiways, and weather conditions

(Bazargan et al. 2002). In segregated-mode, the runway is merely used for either arrival

or departure of the aircraft, whereas mixed-mode allows both landing and departure on

the same runway. Atkin (2008) states that mixed-mode is more efficient than segregated-

5

mode; likewise Newell (1979) shows that airport capacity is greater when runways are

operated in mixed-mode.

The objective of air traffic controllers is to increase the throughput from the available

runways while satisfying safety and operational constraints. As increasing the number of

runways is not a practical solution, air traffic controllers should consider different

methods while they assign a runway to the landing/departure aircraft. The runway

assignment depends on the airport configuration (single runway, parallel or intersecting

runways or combination of these), the direction of arriving aircraft, and departure route of

the aircraft (Brinton 1992). So as to balance the number of arrivals and departures on a

runway, runway allocation, that is affected by airlines’ preferences, controllers’

considerations such as safety and shorter flight times, is done (Isaacson et al., 1997).

1.1.4 Separation

Minimum separation between aircraft landing and departure has a great impact on the

runway throughput at an airport. Careful sequencing and scheduling can reduce the

number of long separation and operating times; therefore, the separation time makes

aircraft sequencing and scheduling problem an important and non-trivial. Reason for

setting minimum separation is to prevent the adverse effect of vortices. Because of the

rolling moment it can impose on a following aircraft, a wake vortex (WV) is dangerous.

The illustration of wake vortex effect is shown in Figure 1.

In order to have safe flight operations, the International Civil Aviation Organization

(ICAO) regulates and puts into action separation standards between the leader and the

follower aircraft for both landings and departures. The separation standard for landing is

based on distance; however, for departure it is based on time (Beasley et al. 2001).

The U.S Federal Aviation Administration (FAA) has established minimum spacing

requirements between landing aircraft to prevent the turbulence from wake vortices

(Aeronautical Information Manual/Federal Aviation Regulation, 2003).

6

Figure 1. Graphic of wake vortices (http://www.tc.gc.ca/eng/innovation)

For safety reasons, landing/departing a large aircraft necessitates longer time delay before

other aircraft can land or depart. On the other hand, a small aircraft generates little air

turbulence and therefore it needs only a short time delay. This is illustrated by the

International Civil Aviation Organization (ICAO) as follows in Figure 2.

For separation purposes, the FAA divides aircraft into three weight classes, based on the

maximum take-off weight capability. Heavy aircraft class is capable of having a

maximum takeoff weight of 255,000 lbs or more, Large aircraft class can have more than

41,000 lbs and up to 255,000 lbs maximum takeoff weight, and Small aircraft class is

incapable of carrying more than 41,000 lbs takeoff weight. A sample of separation times

on landing are shown in Table 1.

Leading Aircraft Time for Trailing Aircralft (seconds)
Heavy Large Small

Heavy 96 157 196
Large 60 69 131
Small 60 69 82

Table 1. Minimum time separation (in seconds) landings (FAA, 2003)

http://www.tc.gc.ca/eng/innovation

7

medkjm 7 * 3B 1

h s a v y
> 1S6!

Lea^irtg airirfift sm a ll

ii

fs;nelli>' ig* <7? -=||hi =-« !«■#» ^

M d a ie t ;> separator
for heavy air-salt

r

Figure 2. ICAO separations (http://www.liv.ac.uk/flightsciencel

Generally, the WV separation rules depend on sequence airspeeds, landing/departure

routes, size and types of aircraft, and are asymmetric; i.e., s £y =£ Sy£. Note that s £y = Sy£

only if i and j belong to the same weight class and same operation type. For consecutive

operations, separation requirements satisfy the triangle inequality; that is sik < s £y + Sjk ,

Vi,Vk =£ i, V/ ¥=■ i,k, where s£y is the WV separation between aircraft classes, if the

leading aircraft belongs to class i, and the trailing aircraft belongs to class j (Balakrishnan

and Chandran 2006). Flowever, note that in practice separation rules do not obey triangle

inequality; it is not adequate just consider the separation from the immediately preceding

aircraft. In this research, we will consider separation standards not only for consecutive

but also for nonconsecutive operations, which means that the separation times may not

necessarily satisfy the triangle inequality.

1.2 Mapping the ASP to Machine Scheduling Problem

Many real life scheduling problems can be modeled as parallel machine scheduling

problems. In the classical parallel machine scheduling problem, there are n jobs and m

machines. Each job needs to be executed on one of the machines during a fixed

processing time. A parallel machine scheduling problem involves both resource

http://www.liv.ac.uk/flightsciencel

8

allocation and sequencing. It allocates jobs to machines and determines the sequence of

jobs on allocated machine. Machines may be identical, on which the processing time of

each job is independent of the assigned machine; uniform where each machine may be

have a different speed with known speed factor; or unrelated where the processing time

of each job is dependent on the assigned machine without a particular relationship. The

aim is to find a schedule that optimizes a certain performance measure(s) such as

makespan, maximum lateness or weighted tardiness.

The Aircraft Sequencing and Scheduling Problem can be defined as determining the

assignment of each aircraft (job) to runway (machine) and the start time of the operation

(landing or departure) for the aircrafts. In order to map this problem to a classical

scheduling problem, the following assumptions have to be considered (Blazewicz et al.,

2007):

1. Any job can be processed on at most one machine at any time.

2. Preemption is not allowed, meaning that once an operation is started, it must be

completed without interruption.

3. Ready times of all jobs are zero, i.e. all jobs are available at the commencement of

processing.

4. Machines are always available and reliable.

5. Each machine can process at most one job at any time.

6. Sequence dependent setup times, weights, technological constraints and due dates

are deterministic and known in advance where appropriate.

Consequently, the following assumptions are considered for the ASP:

1. Any aircraft can operate on at most one runway at any time.

2. There exists a non-preemptive system where a process cannot be interrupted until

it is finished.

3. Ready time can be defined as the earliest available time to take-off at runway end

or to land where the taxi time is not included (i.e., ready times are not necessarily

zero).

4. Runways are always available and reliable.

5. At most one aircraft is allowed to operate on each runway at any time

9

6. Sequence dependent separation times, ready times, target times, deadlines,

technological constraints, operation type, aircraft sizes and associated penalty

weights are deterministic and known in advance.

1.3 Problem Statement

One can imagine a set of aircraft to land/depart, and a decision problem can be stated as

which aircraft should land/depart next using which runway. Over the course of a working

day, this problem is one that has to be solved repeatedly. If a decision support tool could

be developed to assist the controller in making this decision then perhaps more effective

use of runway capacity could be made. Actually, one has to do more than decide which

aircraft lands/departs next. The air traffic controller has to think ahead and (implicitly or

explicitly) form the set of aircraft waiting to land/depart; namely, decide the order in

which the aircraft will land/depart as well as their landing/departure. The controller has to

guarantee that an aircraft has time to safely reach to the runways so as to land/depart at

the proper position in the sequence that an aircraft does not run low on fuel while

airborne and that aircraft do not land/depart too close together. The first two conditions

imply that for each aircraft, there is a window of time within which it must land/depart,

and the final condition means that a reasonable amount of time or distance must elapse

between successive landings/departing.

The following the problem elements and definition are used throughout this dissertation:

J = { 1 , 2 , n } : A set of n aircraft (landing or departing).

M={1,2,..., m}: A set of m identical runways.

Ready time (rj): The earliest time that aircraft j is ready to take-off at runway end or to

land (taxi time is not included). Thus, an aircraft cannot be scheduled before rj.

Target time (8j): Planned time for aircraft j to take-off at runway end or land (taxi time is

not included). Landing/departing after the target time is allowed, but then a weighted

tardiness penalty is incurred.

10

Deadline (dj): Allowable latest time that aircraft j to take-off or land after which the

operation is infeasible. It is the upper bound of the target-to-deadline window, where

Tj < Sj < d j , V; G J.

Operation type (Oj): Operation type of aircraft j, being a landing or a departure

Size class (Cj): Size class of aircraft j, e.g., heavy, large, or small

Weight (wj): Penalty cost/weight per unit o f tardiness for aircraft j . It is assigned to

aircraft j based on its operation type (landing or departure) and its size class (heavy,

large, or small). In particular, higher priority is usually assigned to landings over

departures and to heavy aircraft over large and small ones. Moreover, in the test-bed

Wj] =wj2 if Oj]=Oj2 and Cji=Cj2.

Sequence-dependent separation time (%): Minimum separation time required between

aircraft k and j if they are respectively the leading and the following aircraft, V k ,j e

J ,k ^ j. This separation time is dependent on sequence, aircraft k and j in terms of

operation type and aircraft weight class, and independent of the runway.

Start time (tj): The start time of aircraft j . (i.e., the time for departure or landing). That is,

Vj < tj < Dj, and it is desirable to have tj as close to Sj as possible.

Piecewise tardiness (Tj): piecewise tardiness of aircraft j with respect to its target-time,

V j E j .

Target time-to-Deadline window (dj - Sj): Missing the target time is allowed but not

preferred, and a weighted tardiness cost is incurred; on the other hand, missing the

deadline is not allowed. For the problem where dj > tj > Sj, the tardiness cost is

Tj = max(t; — Sj, 0). An aircraft is labeled infeasible and not scheduled, if its start time

misses the deadline, where tj > dj. A time horizon that illustrates the nature of problem

is provided in Figure 3.

11

Flight number (Starting time)

Departurei
TArrival

Scheduling Time Window for Aircraft 1
+ ►

Operation type o f Aircraft 1: Departure

I
Sj s 2 D1 D2

Operation type o f Aircraft 2: Arrival

Scheduling Time Window for Aircraft 2
•«--- p.

Figure 3. Scheduling Time Horizon

Hancerliogullari et al. (2013) studied the ASP over multiple runways, under mixed mode

operations with the objective of minimizing the total weighted tardiness of aircraft

landings and departures simultaneously. A scheduling problem is described by a triplet a

| P | y. The a field describes the machine environment, the /? field provides details of

processing characteristics and constraints, and the y field describes the objective to be

minimized and often contains a single entry (Pinedo, 2008). Using the a \ /? | y notation of

Lawler et al. (1982), the representation of the problem being researched is

Pm\rj,Sj, d.j,Skj,time window\SwjTj. The ASP can be defined as scheduling n aircraft

(jobs) on m identical runways (machines). Each aircraft (j= 1, ...,ri) has a penalty weight

Wj, becomes ready to operate on a runway at ready time 7}- (i.e., aircraft cannot be

scheduled before ?}•), ought to start its operation (land or depart) by target time Sj

(planned latest time of an aircraft to operate) and before deadline dj. A sequence-

dependent separation time skj is enforced to avoid the dangers of wake-vortex effects

1 2

when aircraft j operates after aircraft k. skj values depend on aircraft operations

(departures, arrivals) and the size-class of the aircraft (small, large, heavy) (Federal

Aviation Administration, 2003, Rabadi et al., 2012, Hancerliogullari et al., 2013). For

instance, a heavy aircraft requires a larger separation time before a smaller aircraft can

land/depart; on the other hand, a small aircraft generates little air turbulence and,

therefore, less separation time is necessary if it is scheduled ahead of a larger aircraft.

Note that the wake-vortex separation requirements for departures-only or arrivals-only

operations satisfy the triangular inequality, which is sab + sbc > sac , if the separation

time required between leading aircraft a and trailing aircraft b is sab. The implication is

that when the spacing requirements between successive aircraft are ensured, the spacing

requirements for all pairs of aircraft are met. However, the triangle inequality does not

necessarily hold when both arrivals and departures are scheduled simultaneously

(Balakrishnan and Chandran, 2010), which makes the problem harder to solve.

The start time of the operation for aircraft j is denoted by tj, and the tardiness by 7) =

max(ty_ Sj, 0). Missing the target time for aircraft j is possible at a weighted tardiness

cost of wjTj if it misses its target-time. Missing the deadline, however, is not permitted

where if aircraft j misses dj, it will not be assigned to a runway, and the aircraft in such

case is labeled as “unscheduled” resulting in an infeasible schedule. Target time-to-

deadline window is the time window during which weighted tardiness cost is incurred; on

the other hand, ready time-to-deadline window is the scheduling window in which

aircraft have to operate. The scheduling objective is the minimization of the total

weighted tardiness (TWT) which is expressed as £y=i W/7}.

The minimum separation times adopted in this dissertation are specified in Table 2. These

minimum safety separation times are enforced by the Federal Aviation Administration

(FAA), the national aviation authority of the United States. This precaution is necessary

because the triangle inequality does not systematically hold for the separation times. It

has been noted in Sherali et al. (2010) and Balakrishnan and Chandran (2010) that the

separation times in Table 2 do not automatically ensure proper separation between any

pair of aircraft having the same operation type that are interspersed with an aircraft

13

operation of the opposite type (e.g., two landings separated by a departure or two

departures interspersed with a landing).

Arrival Departure Case

Leading\F ollowing Heavy Large Small
Heavy 40 40 40

Large 35 35 35

Small 30 30 30

Arrival -► Arrival Case

LeadingVF ollowing Heavy Large Small
Heavy 99 133 196
Large 74 107 131

Small 74 80 98

Departure -*• Departure Case

Leading\Following Heavy Large Small
Heavy 60 90 120
Large 60 60 90
Small 60 60 60

Departure -► Arrival Case

LeadingVF ollowing Heavy Large Small
Heavy 50 53 65

Large 50 53 65

Small 50 53 65

Table 2. Minimum Separation Times (seconds) from Sherali et al. (2010)

Due to the specific separation times used in this dissertation, which are similar to those in

Sherali et al. (2010), it is necessary to ensure the separation of an aircraft between at most

four consecutive aircraft.

14

By denoting the start time of the aircraft in the k th position by and the separation time

between aircraft at positions kx and k2 by S[kl,k2]> the start time of an aircraft operation k

for up to 4 positions can be obtained by Equations (1) through (4).

f [i] = r [i]; (*)

t [2] = max{r[2], t [x] + s [1(2]}; (2)

t[3] = max{r[3], t tl] + s [1>3], t [2] + s [2>3]}; (3)

t[fc] = max{r[kp + s [ft_ljlc], t [k_2] + S[k_ 2jk] , t [k_ 3] + S[fc_ 3(fc] } , V/c = 4, ...,n (4)

In order to illustrate the problem, sample data is given in Table 3.

j r i % d, ° i Ci Wj

1 19 79 619 1 3 1
2 30 90 630 0 3 4
3 54 114 654 0 3 4
4 64 124 664 1 3 1
5 135 195 735 1 2 2
6 26 86 626 0 1 6
7 78 138 678 0 3 4
8 130 190 730 1 1 3
9 128 188 728 0 1 6
10 177 237 1 1 1 1 1 3

S/q 1 2 3 4 5 6 7 8 9 10
1 30 65 65 60 60 50 65 60 50 60
2 30 30 98 30 30 74 98 30 74 30
3 30 98 30 30 30 74 98 30 74 30
4 60 65 65 30 60 50 65 60 50 60
5 90 65 65 90 40 50 65 60 50 60
6 40 196 196 40 40 40 196 40 99 40
7 30 98 98 30 30 74 30 30 74 30
8 120 65 65 120 90 50 65 50 50 60
9 40 196 196 40 40 99 196 40 40 40
10 120 65 65 120 90 50 65 60 50 50

Table 3. Sample Data

15

In the problem, there are two identical parallel runways (i.e. runways #1 and #2), 10

aircraft, and each aircraft has its own ready time, target time, deadline, operation type,

size class, weight/penalty and sequence dependent separation time values. A feasible

schedule for the problem set is provided in Figure 4 where the notation A(B) refers to

Runway number (Start time).

Runway # 1

2(30) 7 (128) 3(226)

T
i

Runway # 2

1(60) 8(158)

6(26) 9(128)

I
T

1
4(66) 5(168)

Figure 4. A Feasible Schedule

10(228)

Utilizing the Equations (l)-(4), the start times for a given schedule are calculated as

follows:

On the 1st runway:

t 2 = r2 = 30;

= m axfr^ ti + s21} = max {19, 30+30} = 60;

t 7 = m ax fo .ti + s17, t 2 + s27} = max {78, 60+65, 30+98} = 128;

16

t8 = max{r8, t7 + s78, tt + s18, t2 + s28} = max {130,128 + 30,60 + 60,30 +

30} = 158;

t3 = max{r3, t8 + s83, t7 + s73, t t + s13} = max {54,158 + 65,128 + 98,60 +

65}= 226;

On the 2nd runway:

t6 = r6 = 26;

t4 = max{r4, t 6 + s64} = max {64, 26+40} = 66;

t9 = max{rg, t 4 + s49, t 6 + s69} = max {128,66+50, 26+99} = 128;

t 5 = max{r5, t 9 + s95, t4 + s45, t 6 + s65} = max {135,128 + 40,66 + 60,26 +

40} = 168;

t 10 = max{r10, t 5 + s5_10, t 9 + s9_10, t4 + s4_10} = max {177,168 + 60,128 +

40,66 + 60} = 228

Once the start times are determined, the piecewise tardiness and the total weighted

tardiness are calculated as follows:

Tx = max{0, 60-79} = 0;

T2 = max{0, 30-90} = 0;

T3 = max{0, 226-114} = 112;

T4 = max{0, 66-124} = 0;

Ts = max{0,168-195} = 0;

T6 = max{0, 26-86} = 0;

T7 = max{0,128-138} = 0;

17

T8 = max{0,158-190} = 0;

T9 = max{0,128-188} = 0;

T10 = max{0, 228-237} = 0;

X j1®! WjTj = WiTi + w 2T2 + — I- w10T10 = 4 x 112 = 448

1.4 Research Scope and Objectives

The research scope of this dissertation is framed around two problem areas: the aircraft

sequencing problems and the aircraft reactive scheduling problems. The scheduling and

reactive scheduling environments consist of a finite set of aircraft and a finite set of

runways. It is assumed that aircraft have unequal ready times, target times and deadlines.

There is a ready time-to-deadline window is the scheduling time window that aircraft

have to operate. Moreover, there is a target time-to-deadline window between the ready

time and deadline during which weighted tardiness cost is incurred. The solution quality

of the ASP is measured through minimizing the total weighted tardiness (i.e., minimizing

the total weighted delay from target time). From a modeling perspective, it is

advantageous to draw an analogy between the aircraft sequencing problems and

specially-structured parallel machine scheduling problems. Using this metaphor, runways

and aircraft are interpreted as machines and jobs, respectively, where it is desirable to

minimize a pertinent cost function. This dissertation research formulates a scheduling

problem from the air traffic environment as a parallel machine scheduling problem.

Effective solution methodologies are proposed for ASP by taking into account the social

and economic benefits across ever-increasing air traffic volume.

Air traffic systems frequently encounter disruptions such as bad weather conditions,

technical failures, etc. so that the schedule cannot be executed as planned; therefore, the

air traffic controllers have to update flight operations. It is assumed that a continuous

reactive scheduling approach is used to update the initial schedule when a disruption

occurs. Aircraft reactive scheduling problem is studied, and schedule repair and

rescheduling algorithms are developed to deal with aircraft related disruptions,

18

specifically, flight cancellations, aircraft delays and arrival of new aircraft. These diverse

disruptions possibly cause failure in process quality, or continuity of the process. In order

to limit the negative consequences of the disruptions, a proper course of action should be

taken. However, it is not preferable to change the existing decision significantly while

making a new decision. We prefer to maintain conformity to the initial decision, and be

unwilling to perturb it much. For this reason, the reactive scheduling problem considers

both minimizing total weighted start times and minimizing schedule instability. The

objective in the ARP takes into account not only the primary measure of schedule

performance but also the stability measure. The stability can be measured based on the

difference between the initial and final schedule. In this dissertation, the measure of

stability can be defined as differences in start times of the operations, and the runway

assignment deviation. Consideration of these objectives leads us to formulate the ARP as

a multi objective reactive scheduling problem.

The objectives of the research can be summarized as follows:

1. To formulate a scheduling problem from the air transportation environment as a

parallel machine scheduling problem, which is mostly common in production

environment.

2. To model the ASP under a mixed mode of operations where both landing and

departure flows are considered simultaneously.

3. To examine the problem of scheduling aircraft arrivals and departures over

multiple runways.

4. To develop effective and efficient solution methods to obtain initial schedules

which satisfy the constraints of the problem in a reasonable amount of time. This

is achieved by introducing greedy algorithms for the problem.

5. To improve initially constructed solutions and to find near optimal solutions using

metaheuristics including Simulated Annealing and Meta-RaPS.

6. To address the rescheduling problem by formulating the problem as a multi

objective optimization problem where total weighted start time and instability are

minimized (i.e., total weighted start time deviation and total weighted runway

deviation). This is achieved using optimization models and approximate

19

algorithms to repair and to reschedule the disrupted schedules satisfactorily

regarding multi-objectives.

The rest of this dissertation is organized as follows. In Chapter 2, related research is

summarized. Solution methodologies proposed for the aircraft arrival and departure

sequencing problem on multiple runways are provided in Chapter 3. A Computational

study for different problem sizes is described and their results are analyzed in Chapter 4.

Reactive scheduling mechanisms and solution methods for aircraft rescheduling problem

are presented in Chapter 5 followed by a computational study in Chapter 6. Finally,

conclusions and future research are presented in Chapter 7.

2 0

CHAPTER 2

LITERATURE REVIEW

In the light of problem defined earlier, related literature including solution approaches

(i.e., exact algorithms, heuristics and metaheuristics) for aircraft sequencing problem,

parallel machine scheduling problem and aircraft reactive scheduling problem are

reviewed to display practical and intellectual contributions of the dissertation research.

2.1 Aircraft Sequencing Problem

In the literature, both exact and heuristic algorithms have been proposed for the ASP,

with approximate algorithms recently gaining attention due to the fact that for large

problems it may take a long time to reach optimal solutions. Bennell et al. (2011)

provides a recent survey on ASP where a comprehensive review of operations research

techniques such as dynamic programming, branch and bound, heuristics and

metaheuristics that have been used to schedule aircraft landing and departures were

surveyed.

2.1.1 Exact Algorithms

Early work on ASP dates backs to the early 80s where Psaraftis (1980) investigated a

single machine scheduling problem for which a dynamic programming approach was

developed and applied in the context of sequencing aircraft arrival operations. For

computational convenience, it was assumed that groups of identical jobs are sequenced

with the objective of minimizing the total processing cost.

Bianco et al. (1987, 1997) used integer programming to sequence arriving aircraft inside

the Terminal Maneuvering Area (TMA). The authors showed that the ASP, combinatorial

optimization problem was NP-hard. Moreover, when the ready times are zero, it was

found that the problem reduced to the Asymmetric Traveling Salesman Problem (ATSP).

As a solution procedure, they suggest a branch-and-bound strategy using Lagrangian

lower bounding techniques, and a partitioning approach based on the characteristics of

the subsequences obtained in the solution process. However, this work ignored time

2 1

restrictions for aircraft operations and necessary separation times between certain

nonconsecutive operations. In fact, for a triplet of aircraft, enforcing separation times

between consecutive operations may not automatically satisfy the separation

requirements between the first and the third operations.

Beasley et al. (2000) proposed a mixed integer linear program (MILP) model for the

single and multiple runways aircraft sequencing problem, and applied a heuristic

algorithm which is a version of First-Come-First-Serve (FCFS) for the aircraft landing

problems (ALP).

Wen et al. (2005) developed a column generation-based exact decomposition algorithm

for the ALP. They formulated the problem as a mixed integer program, and then

reformulated it, using Dantzig-Wolfe decomposition, as a set partitioning problem with

side constraints. Based on the set partitioning formulation, a branch-and-bound algorithm

was developed to obtain the exact solution for the problem. The objective of this problem

was to minimize the total (weighted) deviation from the target landing time for each

plane. The decomposition algorithm was implemented in Matlab and they compared the

computational performances of the same problem to some other papers in the literature;

the running time in this research was substantially larger.

Due to the relative priority of landings over departures, the literature mostly focuses on

the single runway aircraft landing problem. However, Gupta et al. (2009) presented a

MILP for aircraft departures based on operations at Dallas-Fort Worth International

Airport. The model was generic and addressed various scenarios of departure queue

handling. The objective function included multiple objectives pertaining to throughput;

system delay and maximum individual delay. Constraints for wake vortex separation and

departure fix restrictions were considered. Multiple objectives relating to throughput,

efficiency and equality were taken into account. Computational improvements to the

basic MILP were provided, and tests indicated that system delay minimization has faster

solution times than for throughput. For the purpose of the comparison, randomly-

generated problems of varying sizes were used.

2 2

The combined arrival-departure ASP was studied over a single runway by Sherali et al.

(2010). The problem was modeled as an asymmetric traveling salesman problem where

the authors minimize makespan, subject to proper separation time and time-windows

restrictions. The MILP model for our problem was developed in Al-Salem et al. (2012) in

which they provided valid inequalities and symmetry-defeating constraints.

2.1.2 Approximate Algorithms

ASP is a key problem in air traffic control operations and it is well known that it is a NP-

Hard problem since minimizing the total weighted tardiness even for a single machine

with all weights being equal is NP-hard (Lawler, 1982). Within a polynomial amount of

time, there is not an efficient algorithm to find global optimal or near-optimal solutions.

In the early 1990s, researchers started focusing on the approximate algorithms for the

ASP.

2.1.2.1 Greedy Algorithms

Dear et al. (1989, 1991) presented a Constrained Position Shifting (CPS) heuristic for the

static and dynamic ALP. Termed Constrained Position Shifting (CPS) methodology is

examined and its effectiveness is tested. CPS has two steps: first it searches for those

sequences which maximize throughput, then the maximum throughput solution with

minimum delay is selected. To show the effectiveness of the algorithm, a performance

comparison between CPS and FCFS is conducted using fast-time simulation.

Computational results involving up to 500 aircraft and one runway show that smaller

delays are obtained under the heuristic than for a FCFS approach.

Neuman and Erzberger (1990) evaluated the performances of the FCFS approach, time

advanced (TA) technique and CPS heuristic, which are used in air traffic control systems.

Firstly, as an initial ordering, one of the most straightforward sequencing strategies for

arrivals, FCFS is used. For an optimization step, to maximize the throughput by speeding

up certain key aircraft during periods of heavy traffic, time advanced (TA) technique is

presented. CPS algorithm orders the aircrafts taking advantage of different separation

requirements for different aircraft classes is also used for optimization purpose. To

23

determine the statistical characteristics of the algorithms, randomly chosen traffic

samples are generated. It is found that FCFS establishes a fair order; TA method provides

reasonable results for reducing the delay of each scheduled aircraft; and CPS is the most

effective for heavy traffic with large groups of aircraft, and is successful at minimizing

the average delay per aircraft.

Venkatakrishnan et al. (1993) were interested in using existing capacity more efficiently

by improving air traffic control procedures. Their focus was air traffic delays for landing

aircraft under the assumption of a single runway at Logan Airport Boston. An empirical

model Landing Time Intervals (LTI) between aircraft in terms of two factors: landing

runway configuration and the weight-class categories of the aircraft was presented.

Furthermore, static and dynamic models were presented for ASP. In terms of the static

model, they applied the work of Psaraftis (1980), but modified for the time window

constraints. For the dynamic case, two dynamic models DASP-1 and DASP-2 were

presented with fixed and shrinking time windows respectively.

A deterministic job shop scheduling model with sequence-dependent setup times and

release dates for scheduling aircraft in TMA with multiple runways is proposed in the

paper of Bianco et al (1997). Moreover, a fast dynamic local heuristic algorithm called

the cheapest search heuristic (CSH) is developed. The performance of the model and the

algorithm are analyzed on real data sets for the TMAs of Milan-Malpensa and Rome-

Fiumicino airports. The numerical analyses indicate that on the average, delay is reduced

at least 40%, and the capacity of TMA increases by about 30%when compared to to a

FCFS based control policy.

Carr et al. (1998) introduced the concept of priority scheduling, which considers airline

arrival preferences in sequencing and scheduling algorithms for air traffic control

automation. The priority scheduling is a method of scheduling a bank of arriving aircraft

according to a preferred order instead of FCFS sequence based on estimated time of

arrival at the runway. To evaluate the feasibility of the method, fast-time simulation is

used. The numerical analysis shows that, for certain traffic conditions, the proposed

scheduling method is more successful than FCFS scheduling in reducing deviations from

24

the preferred bank arrival order though causing little or no decrease in scheduling

efficiency.

Bauerle et al. (2007) examined the queuing process of aircrafts arriving at an airport and

the implications of it for the capacity of the airport. They use the general assumption that

arrival times can be modeled by a Poisson process. An M/SM/1 queue (with dependent

service times) is used to model a single runway. Then, they concentrated on the two

runways case with a number of heuristic routing strategies such as fair coin flipping,

random splitting, round robin and variants of the join-the-least-load rule. The

performance of these strategies is compared with respect to the average delay they cause.

It turns out that join-the-least-load strategy gives the best, and simple splitting rule gives

the worst results.

In another related work, Soomer and Franx (2008) solved the single runway arrival

problem in which an arrival schedule must be determined taking airlines cost into

account. Having provided the mixed integer programming formulation of the model, as

well as a local search heuristic in which the initial feasible solution is obtained by sorting

the flights according to expected arrival times. In order to improve the initial solution,

two swap and shift neighborhoods were used. The numerical experiments conducted

showed that the heuristic is able to solve instances with over 100 flights in a few minutes

and large cost savings for the airlines compared to a schedule that resembles current

practice.

Balakrishnan and Chandran (2010) proposed that the CPS method helps to maintain

fairness among aircraft operators and increases the predictability of landing times. They

present dynamic programming algorithms for runway scheduling under CPS and other

system constraints such as time-window restrictions and precedence constraints that had

not been modeled by previous approaches. As an important objective, maximizing

runway throughput or equivalently, minimizing the completion time of a sequence of

aircraft is considered. They provide approaches to the multiple runway condition,

although their study is on single runway.

25

Yu et al. (2011) proposed an algorithm called Cellular-Automata-based Optimization

(CAO) for ALP with a single runway. The algorithm has two major steps. First, to

efficiently obtain a good landing sequence, where the aircraft landing process is

simulated using Cellular Automation (CA) model. Second, further optimization is carried

out via a stochastic local search to the landing sequence obtained in previous step. They

compare the method with LP-based Tree Search, a Heuristic method, Ant Colony

Optimization (ACO), Scatter Search (SS) and Bionomical Algorithm (BA). It is observed

that CAO is superior in terms of both the quality o f the solution and the speed of the

computation on most cases.

Different from many studies in the literature, Boysen and Fliedner (2011) researched the

impact of the landing schedule with single runway on the workload of ground staff. In

order to level the workload of ground staff, three different objectives were presented to

minimize: (1) number of passengers carried by landing aircraft, (2) landing per airline,

and (3) number of passengers per airline. In the study, separation time owing to

turbulence effect is assumed to be equal. Earliest and latest landing times for each aircraft

are not taken into consideration. For each objective function, mathematical models

(including dynamic programming), complexity results and heuristic solution procedure

were presented.

Recently, Hancerliogullari et al. (2013) worked on the ASP over multiple runways, under

mixed mode operations with the objective of minimizing the total weighted tardiness of

aircraft landings and departures simultaneously. The ASP is modeled as a parallel

machine scheduling problem with unequal ready-times, target-times and deadlines.

Furthermore, sequence-dependent separation times on each runway are considered to

prevent the dangers associated with wake-vortex effects. The greedy algorithms, namely

the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the

Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed.

2.1.2.2 Metaheuristics

Population-based (Genetic Algorithm (GA), Memetic Algorithms, Ant Colony

Optimization (ACO))

26

Some studies applied population based metaheuristics including Genetic Algorithm (GA),

Ant Colony Optimization (ACO) and Scatter Search (SS) for the ALP.

Two approaches for solving the problem of scheduling aircraft landing times were

presented in Abela et al. (1993). They looked at the arrivals problem for a set of aircraft

with landing time windows. A GA is proposed to obtain an approximate solution.

Moreover, for an exact solution, a branch and bound algorithm was formulated as a 0-1

mixed integer programming problem. They tested the algorithms on a randomly

generated large data set, and according to the results, it is concluded that for small

problem instances, the approximate algorithm performed reasonably; on the other hand,

the branch and bound algorithm consumed a large amount o f time to solve larger

problems.

Ciesielski and Scerri (1997) investigated the applicability of genetic algorithm (GA) to

the problem of real time scheduling of aircraft arrival times at airports. It was determined

that computation time could be decreased and the quality of the solutions could be

improved by seeding the GA from a previous population. The experiments were

performed data from the one of the busiest days of the year at Sydney airport. Their

preliminary results indicate that GA can produce high quality schedules in real time.

A specialized simplex lower-bounding method based on the simplex algorithm, was

presented to evaluate the landing times rapidly by Ernst et al. (1999). For single and

multiple runway problems, this method was used in both problem space search (PSS)

heuristic and branch-and-bound method. PSS heuristic is a metaheuristic that combines a

simple constructive heuristic with a GA. According to their computational studies, the

heuristic manages to produce solutions in a reasonable amount of CPU time for both

single and multiple runway problems. However, the solution quality is less consistent in

the multiple-runway case.

Practical applications are to be found in Beasley et al. (2001) where a GA was presented

to schedule aircraft arrivals at London Heathrow airport, whereas Atkin et al. (2007)

proposed a TS algorithm for aircraft departures at that same airport. The algorithm that

Beasley et al. (2001) proposed mainly solves the problem of deciding landing times

27

which lie in aircraft time windows and meet the separation distance criteria, whilst

optimizing proper objective. In the short term, it is expected that less delays for

passengers as aircraft would land quicker; in the long term, improved scheduling would

give potential for increasing the number of flights scheduled. It is concluded that the

developed algorithm is able to quickly (in a matter of seconds), and effectively schedule

aircraft landings with single runway.

Although many decision problems assume a static operational environment, Beasley et al

(2004) considered dynamic landing times. They defined a generic decision problem for

the displacement problem. This problem arises when sequences of decisions have to be

made and each new decision that must be made has an explicit link back to the previous

decision that was made. In order to solve the displacement problem, they adapt three

solution approaches: an optimal (DALP-OPT) and two heuristics (DALP-H1, DALP-

112), given previously in the literature for the static aircraft landing problem (ALP) for

multiple runway. One can expect that an optimal algorithm to always produce a solution

superior to that produced by a heuristic algorithm. However, it is observed that for 2 of

the 39 problems, population based (genetic algorithm) heuristic DALP-H2 produces a

better solution than DALP-OPT due to time limit considerations.

Capri and Ignaccolo (2004) introduced a dynamic model for departing flights to take into

account time-varying variables, and built a GA to solve the ASP on single runway. It is

observed that the algorithm is proved to be quick and efficient.

Hansen (2004) examined the segment of air traffic control, termed traffic management

adviser (TMA) that is concerned with the complex task of scheduling arriving aircraft to

the available runways. The purpose was to investigate the utility of the genetic search

approach using features of TMA problems. The reason for choosing genetic search is its

applicability to solve complex problem in domains characterized by discontinuous, non-

convex, or nonlinear problems. Four different genetic search methods were tested and

several empirical tests were included. Method 1 used two separate genomes to represent

the flight landing sequence and the runway assignment. Method 2 used a single genome

definition for the complete runway assignment, sequencing and scheduling problem.

28

Model 3 used a randomized approach that emphasizes desirable fitness values that is

similar to the standard GA approach. Method 4 incorporated genetic programming (GP)

operators to define a metric, which is then used in a recursive algorithm to derive an

efficient schedule. For problems of realistic size (i.e., 12 aircraft/3 runway) in real time,

optimal or near-optimal assignments were achieved, and GP method yielded the best

fitness values.

In order to solve the problem of position-shifting-based arrival scheduling and

sequencing (ASS), Hu and Chen (2005) introduced the concept of Receding Horizon

Control (RHC) into a GA. RHC is a N-step-ahead online optimization strategy. Within

this framework, decisions are made by looking ahead for N steps in terms of a given

cost/criterion, and only the decision for the first step is actually implemented. Then, the

implementation result is checked, and a new decision is made by taking account of

updated information and looking ahead for another N steps. Simulation studies which

were done to check the robustness of the proposed model, indicate that RHC-based GA

has much better performance than a pure GA, while requiring much less computational

time.

Pinol and Beasley (2006) addressed the multiple runway static ALP where the set of

aircraft that are waiting to land is known. They presented two population-based

metaheuristics (Scatter Search and Bionomic Algorithm). Primarily, there were two

objective functions, non-linear and linear, that are based on deviation from target times.

The idea behind the non-linear objective depends on the deviation of scheduled landing

time from the aircraft target time, and the difference between the scheduled landing time

and the target time. The linear objective used a cost for each aircraft linearly independent

on deviation of assigned landing time from target time. Computational results involving

up to 500 aircraft and 5 runways were presented. It is indicated that Bionomic algorithm

outperforms Scatter Search for the non-linear objective; on the other hand, for the linear

objective, the reverse is observed.

Hu and Paolo (2008) designed a GA based on a binary representation rather than a

permutation representation in order to solve arrival sequencing and scheduling problem

29

in single runway. In order to construct a chromosomes for the GA, the neighboring

relationship between each pair of aircraft in an optional arriving queue was used and

constructed as 0-1 valued matrices. Based on the binary matrix, a highly efficient uniform

crossover operator was designed. A simulation study was conducted, which showed that

binary representation based GA outperformed the permutation based GA.

The effects of the airport landing sequencing algorithms on Air Traffic Control (ATC)

are notes and compared in the study of Brentall and Cheng (2009). For efficiently

sequencing aircraft landings, FCFS method is widely used in practice. The FCFS method

is compared with alternative algorithms and its robustness under many conditions was

studied by utilizing statistical methods. The minimization of makespan and total tardiness

were considered. A data collection is exercised by the Eurocontrol Experimental Centre

(EEC) at Stockholm Arlanda Airport to model aircraft arrivals with single runway.

Hu et al. (2009) aimed to design efficient GAs for the aircraft arrival sequencing and

scheduling (ASS) in multi-runway systems. To do so, a highly efficient crossover

operator- uniform crossover was attempted since it is usually effective and efficient to

identify, to inherit, and to protect common genes in GAs.

Wang (2009) developed a hybrid algorithm that integrated Bee Evolutionary Genetic

Algorithm (BEGA) with modified clustering method (CM), for ALP in single runway

systems. In order to observe the effectiveness of the BEGA — CM, the experiments were

carried and compared with GA. It is noticed that at the same time, the computational cost

of the hybrid method was by far lower than GA, which concludes that BEGA - CS has a

better optimization performance than GA.

Similarly, Bencheikh et al. (2009) proposed a hybrid method for ALP with multiple

runway based on Job Shop Scheduling Problem (JSSP). There were three steps in this

study; firstly, a mathematical programming model, whose objective was to minimize the

cost deviation between the actual time of landing of all aircraft and the target time, was

proposed. Secondly, based on a graphical representation, ALP was formulated as a JSSP.

Finally, a hybrid resolution method, called ACOGA that combines ant colony

optimization (ACO) with genetic algorithm (GA), was presented. The numerical results

30

showed that ACOGA takes less time than GA. Moreover, in the majority of the cases, the

hybrid algorithm found the optimal solution or approached a near optimal one.

Atkin et al. (2010) provided an overview, comparison and critical examination of the

various ground movement models and solution methods in the literature. It was observed

that there are significant differences between both the objectives and the constraints that

are utilized in previous research because of differences between airports and various

stakeholder aims. It was determined that in these studies, the state-of-the-art approaches

use mixed integer linear programming or genetic algorithm. They suggested that since

runway sequencing for both arrivals and departures and gate assignment are highly

connected to the problem of airport ground movement, it would be beneficial to handle

them simultaneously.

Liu (2010) developed genetic local search (GLS) to solve runway dependent aircraft

landing problem. Primarily, GLS is an extension of genetic algorithm (GA) that is

obtained by integrating local search into a GA context. In order to assign the landing

sequence and schedule a landing time, aircraft safety regulations are met by satisfying the

separation requirement. Here, the objective is to minimize the sum of squared deviations

of scheduled landing time and the minimum earliest landing time of each aircraft.

Numerical results, that were obtained to investigate the effectiveness of the proposed

algorithm, were compared with GA, scatter search (SS) and a binomial algorithm (BA).

The results support the superiority of GLS specifically when the large number of aircrafts

(i.e., 12) and large number of runways (i.e., 5) are involved.

Bencheikh et al. (2011) considered the ALP on single and multiple runways as well. The

mathematical formulation of the problem with a linear and nonlinear objective function,

which is similar to Bencheikh et al. (2009), was presented. Then a heuristic was proposed

for the single runway problem, and the heuristic was incorporated into an ant colony

algorithm to solve the multiple runway case. Several priority rules were compared with

the proposed heuristic. Two types of improvement heuristics were defined: parallel

improving and global improving. The computational results reflect that up to 50 aircrafts

and five runways, the solutions of developed algorithm coincide with the optimal

31

solutions in 80% of the total number of instances, with an average deviation of 5% from

the optimal solutions for 20% of instances that remained.

The joint sequencing of aircraft arrivals and departures over a single runway in the TMA

was addressed in the study of Sherali et al. (2010) in which the objective function aimed

to minimize the total processing time, subject to minimal nonconsecutive safety

separation rules. A basic mathematical programming for the combined arrival -departure

ASP was presented. They introduced two heuristic procedures and benchmark them

against the proposed exact approaches as well as against FCFS method that is typically

adopted in practice. The first proposed heuristic was an optimization-based approach

(OBH) that exploits the proposed mathematical programming formulations. The second

heuristic was a tour construction and improvement procedure (TCIH) that takes

advantage of the problem structure. So as to test the effectiveness of the different models

and heuristic procedures, several realistic flight data sets were generated by varying the

number of aircraft included. Over a test-bed of 50 problem instances, the FCFS heuristic

resulted in a 9% deviation from optimality. The proposed heuristic TCIH, produced near-

optimal solutions within an average of 3% from optimality, and OBH was able to

overcome the inherent combinatorial complexity of the problem and yielded an average

0.57% deviation from optimality.

Trajectory - based (Simulated Annealing (SA), Tabu Search (TS))

Though not as commonly applied to the ASP as evolutionary heuristics, trajectory based

metaheuristics were also applied in some researches.

Atkin et al. (2007) presented a hybrid metaheuristic approach to the reordering of aircraft

that consider the physical holding-point structure. Tabu search (TS) is used as a

metaheuristic to search good take-off orders. Real-world constraints, for instance partially

fixed schedules and fixed routes through the holding points, maintaining required

separations have been considered. They presented that although at each iteration of the

test system has knowledge of only a subset of the aircraft, better overall schedules can be

obtained. Moreover, they have shown that if a computerized system is used in ordering

the aircraft at the holding points, then it must find good take-off schedules in real time.

32

Atkin et al. (2008) proposed a metaheuristic based solution for determining good

sequences of departure flights to help the air traffic controllers at London Heathrow

Airport which has single runway for use by departures. The objective was to increase the

throughput of the departure runway subject to several constraints, such as holding point

constraints and minimum separation times. The search heuristics, which are the first

descent, SA, steepest descent and TS, were investigated and tested. It has been concluded

that both the SA and TS algorithms perform well in very short search time period.

2.2 Machine Scheduling Problem

The multiple runway ASP has similarities with the parallel machine scheduling problem.

Therefore, it is worthwhile to focus on research addressing the scheduling of jobs on

identical parallel machines. The literature on scheduling identical parallel machines with

ready times to minimize total weighted tardiness problem is limited.

Lee and Pinedo (1997) proposed the Apparent Tardiness Cost with Setups (ATCS)

heuristic to find an initial schedule for the jobs with ready-times and sequence-dependent

setup times on identical parallel machines.

Mdnch et al. (2005) presented two decomposition approaches to minimize the total

weighted tardiness on parallel machines with unequal ready times. In the first approach,

once fixed batches are formed, the batches are assigned to the machines by GA. The

batches are then sequenced on each machines at the end. In the second approach, once

jobs are assigned to the machines by the GA, batches on each machine are formed; again

the batches are sequenced on each machine at the end. For the sequencing of batches,

they considered modifications of the ATC dispatching rule. By using stochastically

generated test data, it was concluded that the first approach usually outperforms the

second with respect to solution quality and computation time.

Pfimd et al. (2008) extended the ATCS by Lee and Pinedo (1997) by allowing non-ready

jobs to be scheduled providing an opportunity to a machine to be idle for a high priority

job arriving at a later time. They minimized the total weighted tardiness in the identical

parallel machine problem with ready times and setups. A grid approach was developed

33

which evaluates multiple values for the scaling parameters and chooses the best schedule

among the multiple solutions.

Driessel and Monch (2009) proposed the Variable Neighborhood Search (VNS) scheme

to minimize the total weighted tardiness for an identical parallel machine scheduling

problem with ready times, precedence constraints and sequence dependent setup times. It

was shown that ATC greedy rule does not perform as well as VNS.

Reichelt et al. (2006) introduced multi-objective optimization problem that minimizes

total weighted tardiness and makespan. They suggested a hybrid multi-objective GA.

Three phase scheduling approach including a batch formulation, a batch assignment and a

batch sequencing were introduced. NSGA-II metaheuristics based on GA was proposed.

Then, the NSGA-II was combined with a local search algorithm to improve the results

further.

Similar to Reichelt et al. (2006), Gharehgozli et al. (2009) considered a multi-objective

optimization problem which minimizes the total weighted flow time and total weighted

tardiness for a parallel machine scheduling problem with release and sequence-dependent

setup times. A mixed integer goal programming (MIGP) was proposed. They considered

the problem under the assumption of fuzzy processing times.

Rabadi et al. (2006) studied unrelated, parallel machine scheduling problems with setup

times and developed a metaheuristic called Meta-RAPS (Metaheuristic for Randomized

Priority Search) to solve the problem with the objective of minimizing the makespan. The

effectiveness of the Meta-RaPS algorithm was also tested by comparing it to an existing

heuristic called Partitioning Heuristic (PH), developed by Al- Salem (2004). For small

sized problems, that problem instances ranging from six to nine jobs and two to four

machines were randomly generated for which Meta- RaPS found all optimal solutions.

For large problems, ranging from twenty to hundred and twenty jobs, and two to twelve

machines, Meta-RaPS outperformed solutions obtained by the PH.

Helal et al. (2006) and Amaout et al. (2009) developed TS and Ant Colony Optimization

(ACO) algorithms respectively, to solve the same problem and to further improve the

34

quality of the solutions produced in Helal et al. (2006). According to their computational

results, TS outperformed the Partitioning Heuristic algorithm in most cases. Nevertheless,

for small sized problems they observed less robustness. In Amout et al. (2009), the

performance of ACO results showed that the ACO performed better than Meta-RaPS,

which ranked second and the TS third while the PH ranked fourth.

For the just-in-time single machine scheduling problem with setup times in which the

objective was to minimize the sum of total earliness and total tardiness, Rabadi et al.

(2007) developed two algorithms to find near-optimum solutions for large-sized problem

instances and compared the results to a local search method that was originally developed

by Rabadi et al. (2004).The first algorithm is the Shortest Adjusted processing Time

(SAPT) heuristic, which consists of two phases: a schedule constructive phase and a local

neighborhood search phase. Secondly, a Simulated Annealing (SA) algorithm was

developed. A hybrid algorithm, SAPT-SA, which was based on both of the SAPT and

SA, was also introduced. It was shown that SA provides solutions with slightly better

quality while SAPT is significantly faster than SA. SAPT-SA reached to high quality

solutions with low computational cost. In addition, Lee and Sherali (1994) proposed

effective algorithms for unrelated machine scheduling problems having time-window and

machine unavailability constraints.

2.3 Reactive Scheduling Problem

A significant amount of computational time and effort is invested in developing efficient

operational schedules for airlines which are impacted by unforeseen events. The first

priority for the airline is to restore the flight schedule as much as possible by minimizing

the number of cancellations and total delays.

One of the extensive studies including the rescheduling concepts, reviews of the

rescheduling literature, and how rescheduling affects the performance of a system is

provided by Vieira et al. (2003). According to them, the rescheduling literature includes

three major types of studies: methods for repairing a disrupted schedule, methods for

creating a robust (immune) schedules, and on how rescheduling policies’ impact on the

performance of the manufacturing systems. The framework for the rescheduling

35

research, which includes rescheduling environments, strategies, policies and methods, is

presented in Figure 5. The rescheduling environment identifies the set of jobs that needs

to be rescheduled and their nature, the strategies categorize whether or not schedules are

completely generated or repaired, the policies classify when scheduling should occur, and

the methods determine how schedules are generated and updated (Vieira et al., 2003).

Rescheduling Environments

Static (finite set of jobs) Dynamic (infinite set of jobs)

Deterministic

(all
information
given)

Stochastic

(some
information
uncertain)

No arrival
variability (cyclic
production)

Arrival
variability
(flow shop)

Process flow
variability (job
shop)

Rescheduling Strategies

Dynamic (no schedule) Predictive-reactive (generate and update)

Dispatching rules Control-theoretic Rescheduling policies

Periodic Event-driven Hybrid

Rescheduling Methods

Schedule Generation Schedule Repair

Nominal
schedules

Robust
schedules

Right-shift
scheduling

Partial
rescheduling

Complete
regeneration

Figure 5. The framework for the rescheduling research

Rescheduling has attracted researchers after 1990s due to it’s the problem’s practical

significance. A rescheduling problem with release times, and machine disruptions was

36

considered by Bean et al. (1991) who proposed a match-up scheduling method after a

machine is disrupted. The match-up approach attempts to compensate for the disruption

by matching-up with the pre-schedule. They pointed out that disruptions include machine

breakdowns, tool unavailability, unexpected new jobs arrival, new lot release and

deviation in release or target times. In addition to the match-up scheduling algorithm,

they provide integer programming, and priority rule dynamic assignment heuristic.

Although the cost of match-up scheduling is close to lower bounds, it is applicable only if

there is enough idle time existing in the original schedule.

Church and Uzsoy (1992) considered the disruption as random job arrivals with the

objective to minimize the maximum lateness on single-stage production systems

involving both single and parallel machines. They indicated that continuous rescheduling

approaches take rescheduling action at each time an event is recognized by the system;

whereas, periodic rescheduling defines a time interval between rescheduling actions that

are taken at periodic time points, also referred to as rescheduling points. Therefore, until

the following point, any events occurring between rescheduling points are ignored. As a

solution methodology, they define event-driven rescheduling as rescheduling action that

can be taken upon the recognition of a disruption event. Moreover, worst-case error

bounds for the periodic approach was developed assuming that at each scheduling point,

an optimal algorithm is used to schedule available jobs.

Wu et al. (1993) presented single-machine rescheduling problem on occurrence of an

unforeseen disruption serves as a model for machine breakdown. In order to satisfy

conflicting goals, minimizing the makespan and the deviation from the original schedule,

they used a bicriterion approach. They developed two sets of local search heuristics

considering the right-shift rescheduling; the first set is pairwise swapping methods with

weighted combination of the objectives, and the second set is based on GA.

Unal et al. (1997) considered single machine rescheduling problem with part-type

dependent setup times and deadline for the newly arrived jobs to the existing schedule.

They proposed two heuristics where the objective was to minimize either the total

37

weighted completion time or makespan of the new jobs given that the existing jobs

satisfy the deadline constraint.

Akturk and Gorgulu (1999) extended the study of Bean et al. (1991) to the concept of

modified flow shop problem where they proposed rescheduling procedures for machine

failures that are designed to match-up with a long term original schedule. They studied

multi-objectives; minimizing the tardiness of the jobs, and the match-up point to

guarantee stability of the schedule.

For unrelated parallel machine systems, Vieira et al. (2000) provided analytical models to

detect the performance measures for rescheduling strategies and determine the trade-offs

between performance measures. It is considered that jobs are dynamically arriving and

setup times occur when production changed from one job type to another. They provided

periodic, event-driven, and hybrid strategy based rescheduling heuristics. The primary

performance measures determined as average flow time, machine utilization and setup

frequency by the experimental results.

Alagoz and Azizoglu (2003) presented procedures for identical parallel machine

rescheduling problem with an objective function of minimizing the flow time and number

of disrupted jobs under machine eligibility restrictions. They proposed linear

programming model for optimal solution to the problem. A polynomial time, and two

branch and bound based heuristics are provided while considering right-shift strategy as

well.

Hall and Potts (2004) studied a single machine rescheduling problem and considered the

arrival of multiple new jobs as a disruption type. They presented a polynomial algorithm

in order to minimize the total cost including original schedule cost and cost of deviation

because of the disruption.

Curry and Peters (2005) considered the arrival of new jobs as a disruption type and they

focused on the identical parallel machine scheduling with stepwise increasing tardiness

cost objectives, non-zero machine ready times, and machine reassignment costs. They

observed the tradeoff between schedule nervousness when a scheduling procedure

38

reassign several planned operations to different machines or start times and tardiness in

single and multiple period dynamic problems. They solved this problem within a

simulation model with a branch and price algorithm.

Azizoglu and Alagoz (2005) considered rescheduling of identical parallel machine with

machine disruptions and the schedule has to be updated to recover the effects of the

disruptions. Similar to the Alagoz and Azizoglu (2003), they measured efficiency in

terms of the total flow time, and as a stability measure, the number o f disrupted jobs was

considered where a disrupted job is one that is processed on different machines in the

original and revised schedules. The optimal solution to the problem was provided and a

polynomial time algorithm was presented while considering right-shift strategy that found

efficient set of schedules.

Yang et al. (2006) studied identical parallel-machine problem with uncertain job arrival

and sequence dependent setup time. They developed a parallel insertion algorithm which

was implemented with rescheduling criterion for makespan minimization. A probabilistic

model was provided to estimate the makespan when the inter-arrival time of jobs was

exponentially distributed. As a solution approach, a dispatching rule, FCFS was

proposed.

Lee et al. (2006) presented two machine scheduling problems in a machine related

disruption environment. A polynomial algorithm was provided for optimal solution for

each problem, and pseudo-polynomial algorithm was provided for the NP-hard problems.

They assumed that if jobs, which are assigned to the disrupted machines, have not been

processed yet, they have two options: they can be moved to other available machines by

processing with additional cost and time, or can be processed by the current machine

after the disruption. The objective function contains original cost function such as total

weighted completion time and weighted deviation cost, transportation costs, and

disruption cost.

Duenas and Petrovic (2008) proposed a predictive-reactive approach to the parallel

machine scheduling problem to minimize the makespan. Material shortage and new job

arrival are the two types of disruption. The starting time deviations between predictive

39

and reactive schedules are the stability measure. Left-shifting and building new schedules

were applied as rescheduling methods.

Amaout and Rabadi (2008) considered unrelated parallel machine environment and

developed repair and rescheduling algorithms, which are right shift repair, fit job repair,

partial rescheduling, and complete rescheduling, for different rates of machine

breakdown and delays. These rescheduling methods were evaluated based on the

efficiency measure (makespan) and stability measure (number of shifted jobs).

Itayef (2009) examined multi-objective bicriteria flow shop scheduling problem with new

job arrivals. A multi-objective simulated annealing algorithm, MOSA, was implemented.

The procedure composed of two steps: first, given a fixed order of jobs, a conventional

heuristic is proposed for job-machine assignment, and second, a simulated annealing

algorithm is applied.

There are three rescheduling methods which are right shift scheduling, partial

rescheduling and schedule regeneration. Keeping the defined sequences of jobs the same,

right shift scheduling postpones each remaining operation by the amount of time needed

to obtain a feasible schedule. Partial rescheduling algorithm reschedules only the

operations affected by the disruptions. Therefore, match-up scheduling is a type of partial

rescheduling. Regeneration solves the problem from the scratch for the remaining

operations and reschedules them (Church and Uzsoy, 1992).

Research on parallel machine rescheduling is summarized in Table 4. In the reviewed

research, parallel machine rescheduling is required due to different disruptions and events

such as new job arrivals, machine breakdowns, order cancellations (Shi-jin et al., 2007),

material shortage, tool unavailability, changes in due date (Jain and ElMaraghy, 1997),

and changes in order priority. Subramaniam et al. (2005) provided about 20 types of

disruption; however, majority of the rescheduling literature has focused on two primary

types of disruptive events which are the job related (e.g. arrival of new jobs) and machine

breakdowns (Bean et al.,1991, Church and Uzsoy, 1992, Vieira et al., 2000, Alagoz and

Azizoglu, 2003, Curry and Peters, 2005, Azizoglu and Alagoz, 2005, Yang et al., 2006,

40

Lee et al., 2006, Duenas and Petrovic, 2008, Amout and Rabadi, 2008, Cheng et al.,

2009).

In addition to parallel machine rescheduling literature, there are several papers studying

the application of disruption management to the airline industry. Clausen et al. (2001)

discussed the developments in disruption management and their Operations Research

application to telecommunications, ship-building and airline industry. Restrictive weather

conditions, maintenance problems, and staff shortages are the primary disruptive events

in airline operations that cause delays, or cancellations of a flight, affect not only the

passengers but also the next planned activity and the crew.

Teodorovic and Guberinic (1984) considered the situation when there are one or more

aircraft out of commission. Due to technical reasons, and when a stand-by aircraft is not

available, disruptions arise in the planned schedule and delays occur. They used branch-

and-bound technique to minimize overall passenger delay and attempted to find the least

expensive aircraft routings assuming that the capacity of the aircrafts is the same.

Jarrah et al. (1993) focused on flight delays and cancellations because of aircraft

shortages. The reasons for such shortages were determined as weather conditions that

make flight unacceptable, mechanical problems, and delays in the schedule of incoming

flights. They developed decision support system for United Airlines by providing two

network models; one for delays, one for cancellations.

Luo and Yu (1997) considered the airline schedule perturbation problem, which is caused

by the ground delay program, and was modeled as an integer program with the objective

of minimizing maximum delay among out-flights. The schedule perturbations were

classified into three groups: perturbations caused by temporary shortage of resource,

perturbations caused by shortage of resource permanently, and perturbations that result

from change of accessibility to airport facility. In addition to exact solutions, for finding

good feasible solutions, a heuristic procedure was proposed.

Yu et al. (2003) developed a decision support system for crew scheduling and crew

recovery problem, CrewSolver, based on optimization models for Continental Airlines.

They mentioned that during the day of operations, inclement weather, mechanical

problems and crew unavailability prevent an airline’s ability to execute its schedule

planned.

42

Source Title Objective Disruption type Solution Method

B eanetal. (1991) Match-up scheduling with multiple resources, release dates
and disruptions

Minimize total tardiness

Machine breakdowns, tool
unavailability, unexpected
new job arrival, deviation
in release or target times

Match-up scheduling approach,
integer programming, priority rule
dynamic heuristic

Church and Uzsoy
(1992)

Analysis o f periodic and event driven rescheduling policies
in dynamic shops

Minimize maximum
lateness Random job arrivals

Hybrid event driven rescheduling
approach

Wu et al. (1993) One-machine rescheduling heuristics with efficiency and
stability as criteria

Minimize makespan,
deviation from original
schedule

Machine breakdown
Bicriterion approach, local search
heuristics considering right-shift
rescheduling

U naletal. (1997) Rescheduling on a single machine with part-type dependant
setup times and deadlines Minimize makespan New job arrival Heuristic based solution

Akturkand
Gorgulu (1999) Match-up scheduling under a machine breakdown Minimize the tardiness,

match-up point Machine breakdown Reactive hierarchical scheduling
approach

Vieira et al. (2000) Predicting the performance of rescheduling strategies for
parallel machine systems

Minimize average flow
time, maximize machine
utilization

New job arrival
Periodic, event-driven, and hybrid
strategy based heuristics

Alagoz and
Azizoglu (2003)

Rescheduling o f identical parallel machines under machine
eligibility constraints

Minimize flow time,
number o f disrupted
jobs

Machine eligibility
Linear Programming, branch and
bound based heuristic considering
right-shift

Azizoglu and
Alagoz (2005) Parallel-machine rescheduling with machine disruptions

Minimize flow time,
number of disrupted
jobs

Machine breakdown Polynomial time algorithm

Curry and Peters
(2005)

Rescheduling parallel machines with stepwise increasing
tardiness and machine assignment stability objectives

Minimize tardiness cost,
reassignment cost New job arrival Branch and price algorithm

Yang et al. (2006) A comparative study to minimize the makespan of parallel-
machine problem with job arrival in uncertainty Minimize makespan New job arrival Probabilistic insertion algorithm,

FIFO dispatching rule

Lee et al. (2006) Current trends in deterministic scheduling

Minimize total weighted
completion time,
weighted deviation cost,
deviation from
completion time

Machine related Polynomial and pseudo polynomial
algorithms

Duenas and
Petrovic (2008)

An approach to predictive-reactive scheduling of parallel
machines subject to disruptions

Minimize makespan,
starting time deviation

Material shortage,
New job arrival

Predictive-reactive, left shifting
methods

Amout and Rabadi
(2008)

Rescheduling of unrelated parallel machines under machine
breakdowns

Minimize makespan,
number of shifted jobs Machine breakdown

Right shift repair, fit job repair,
partial rescheduling, complete
rescheduling

Itayef (2009) Rescheduling a permutation flow shop problem under the
arrival a new set of jobs

Minimize makespan,
maximum tardiness,
stability (time and
sequence disruption)

New job arrival
Multi-objective metaheuristic
method (MOSA) Conventional
heuristic, SA algorithm

Table 4. Summary of the research on parallel machine rescheduling problem

43

Clausen et al. (2010) offered an overview of the network models for airline disruption

management of resources, including aircraft rerouting, and crew and passenger recovery.

When a disruption occurs, airlines follow a sequence to react to the problem. After

resolving the infeasibilities in the aircraft schedule, they work on crewing problems.

Then, ground problems are attended, and finally, the impact on passengers is evaluated.

Often, because of the adverse weather conditions, scheduled flights have to be delayed, or

cancelled.

As a summary of the papers that dealt specifically with airport disruptions, restrictive

weather conditions, maintenance problems, aircrafts shortages, staff shortages, crew

unavailability, delays in the schedule of incoming flights are the major disruptive events

which can cause flight delays, flight cancellations, and runway closures. Research on

airport disruption management are summarized in Table 5. If we map such disruptions to

the identical parallel machine scheduling problem, flight cancellations can correspond to

departure of an existing job from the original schedule. Flight delays may match up

changes in ready time, target time, separation time and deadline; and because of the

delays from the leading schedule, an unscheduled flight from the previous schedule may

have to be scheduled with the existing schedule, or an unexpected flight operation has to

be scheduled (e.g. emergency landing). This situation can correspond to arrival of new

jobs in the parallel machine scheduling environment. Even though it is rare, runway

closures occur in extreme cases, e.g. a snow storm, this may be mapped to machine

breakdown.

In conclusion, there is a gap in the corresponding area of aircraft sequencing problem and

reactive scheduling problem with unequal ready time, target time, deadline, sequence-

dependent separation time. In this dissertation, we make the following contributions.

First, contrary to most existing studies that treat departures as separate from landings

(i.e., segregated mode), we model the ASP under a mixed mode of operations where both

landing and departure flows are considered simultaneously.

44

Source Title Disruption type Solution Method

Clausen et al. (2001) Disruption management Weather conditions, maintenance
problems, staff shortages

Teodorovic and
Guberinic (1984)

Optimal dispatching strategy on an airline
network after a schedule perturbation

Aircraft shortages (technical
reasons, unavailable stand-by
aircraft)

Branch and bound algorithm

Jarrah et al. (1993) A decision support framework for airline flight
cancellations

Aircraft shortages (weather
conditions, mechanical problems,
delays in the schedule of
incoming flights)

Decision support system by providing
network models

Luo and Yu (1997) On the airline schedule perturbation problem
caused by the ground delay program

Resource shortages, accessibility
to airport facility

Integer programming, heuristic
procedure

Arguello et al. (1997) A GRASP for aircraft routing in response to
groundings and delays

Aircraft shortages, delays

(weather conditions), flight
cancellations

Greedy randomized adaptive search
procedure (GRASP)

Yu et al. (2003) A new era for crew recovery Continental
Airlines

Weather conditions, mechanical
problems, crew unavailability

Decision support system for crew
scheduling and crew recovery

Clausen et al. (2010) Disruption management in the airline industry-
concepts, models and methods

Flight cancellations, delays
(weather conditions)

Overview of the network models for
airline disruption (aircraft rerouting,
crew and passenger recovery)

Table 5. Summary of the research on airport disruption management

45

In general, a landing aircraft in the air has more risk than a departing aircraft on the

ground; therefore, for instance, when two aircraft (i.e., one landing, one departing) belong

to the same weight class, we assign higher priority, Wj, to the aircraft that is landing.

Sequence-dependent separation times for the different operation types (landing,

departure), and consequently the calculation of the value of a start time, tj, increases the

complexity of the problem, which is explained in detail in Section 2. Second, besides the

single runway problem, we examine the problem of scheduling aircraft arrivals and

departures over multiple runways. Even though the runways are assumed to be identical,

the complexity of the multiple runway problem increases when compared with the single

runway system. When a single runway is considered, one merely has to determine the

sequence of the aircraft allocated to a runway. On the other hand, scheduling over

multiple runways is a two-step process; first, one has to determine the assignment of

aircraft to runways, then the sequence of the aircraft on each runway. It is well known in

the scheduling literature that parallel machine scheduling problems are in general more

complex than a single machine with the same objective and constraints (Pinedo, 2008,

Koulamas, 2010). Third, and to our knowledge, we are considering more aspects to the

problem than any other previous work where we propose greedy algorithms (AATCSR,

ERT and FPI) for the combined arrival-departure ASP with unequal ready-time, target

time, deadline, and sequence-dependent separation time. Finally, two metaheuristics (SA

and Meta-RaPS) are introduced for the problem for the first time to improve initially

constructed solutions by the proposed greedy algorithms.

The research that address multi-objective optimization problem in aircraft reactive

scheduling problem that are liable to flight related disruptions is very limited. To fill this

research gap, this dissertation updates mixed integer linear programming with normalized

objective function to find optimal solutions, and proposes approximate algorithms and

potential decision support system to obtain near optimal schedules efficiently. The trade

off between the objectives is evaluated; the components of the multi-objective function

are the total weighted start time which represents solution quality, and the total weighted

start time deviation and total weighted runway deviation which represent solution

stability. Unlike the studies in the literature which focus on one disruption type at a time,

46

in this dissertation, different types of disruptions with multiple disruptive events are

considered simultaneously. Therefore, the sequential evaluation methodology is

developed to treat the disruptions and revise the schedules periodically. Alternative

reactive scheduling approaches for different disruptions are proposed in which the model

itself dynamically select the most appropriate from several candidate solution methods

with respect to (conflicting) objectives of quality and stability.

47

CHAPTER 3

AIRCRAFT SEQUENCING PROBLEM SOLUTION METHODOLOGY

Consider a system that schedules n aircrafts on m identical runways where each aircraft j

has a priority weight Wj, it becomes ready to operate at ready time rj, should start its

operation (land or depart) by target time Sj and before deadline dj. Furthermore,

sequence-dependent separation time skj is required when an aircraft j operates (lands or

departs) after an aircraft k to prevent the dangers of wake-vortex effects. If the start time

of the operation for aircraft j is denoted by tj, the tardiness is represented as 7} =

max(t;-_ Sj, 0). The objective function of the aircraft sequencing problem is the

minimization of the total weighted tardiness, £ /= i WjTj. Therefore, The ASP can be

represented as Pm\rj,Sj, dj,skj,time window\EwjTj. Recall that, ASP has the following

assumptions: any aircraft j can operate on at most one runway at any time; a scheduling

discipline is non-preemptive (i.e., once an operation is started, it is executed until

complete); runways are always available and reliable; each runway can allow at most one

aircraft at any time; parameters (i.e., ready times, target times, deadlines, operation type,

aircraft sizes, priority weights) and constraints of the problem are deterministic and

known in advance.

In this chapter, a mixed integer linear programming (MILP) formulation of the problem,

which was developed in Al-Salem et al. (2012) to find optimal solutions for the ASP, is

provided. It is known that minimizing the total weighted tardiness even for a single

machine with all weights being equal is NP-hard (Du & Leung, 1990), and when the jobs

have different weights, the problem is strongly NP-hard (Lawler et al., 1982); hence ASP

is also NP-hard combinatorial optimization problem. Consequently, it is necessary to

develop efficient and effective solution approaches with reasonable computation times.

Therefore, the ASP proposed in this dissertation mainly belong to a set of difficult

optimization problems. When the problem size is low, it is sensible to use exact solution

methods for solution quality and efficiency; however, in order to solve larger instances in

reasonable computational time, it is necessary to develop efficient and effective solution

approaches with reasonable computation times.

48

3.1 Mathematical Model

The mixed-integer 0-1 programming formulation of the problem was provided in Al-

Salem et al. (2012) involving multiple runways with both immediate and general

precedence decision variables. The complete MILP model for the problem is presented

below:

3.1.1 Index Sets and Notation

M={1,2, ..., mj: A set of m identical runways.

J={1,2, ..., n}: A set of n aircraft (landing or departures).

rj- ready time for aircraft j to take-off at runway end/to land (taxi time is not included),

v / e j

S j: target time for aircraft j to take-off at runway end/to land (taxi time is not included),

V; e j

dj: deadline for aircraft j to take-off at runway end/to land (taxi time is not included),

V / G /

Oj, operation type of aircraft j, being a landing or a departure, V/ G J.

Cj: weight class of aircraft j, e.g., heavy, large, or small, V/ E J.
\

Wj.- weight assigned to aircraft j based on its operation type and its weight class, Vy G / .In

particular, higher priority has been assigned to landings over departures and to heavy

aircraft over large and small ones. Moreover, in the test-bed Wji=Wj2 if Oji=Oj2 and

Cji=Cj2.

s^: minimum separation time required between aircraft k and j if they are respectively the

leading and the following aircraft, V k ,j E J ,k =£ j .

3.1.2 Decision Variables

tj: the start time of aircraft j, V j E /.

Tf piecewise tardiness of aircraft j with respect to its target-time, V j E J

_ f l, if aircraft j is assigned to runway i, V i E M ,j E / .
iJ I 0, otherwise

ykj =

fl, if aircraft k and j are assigned to the same runway and tk > tj, V k ,j £ j , k & j
(.0, otherwise

3.1.3 A Mixed Integer Programming Formulation

Minimize Sysy Wj Tj (5)

l ieuziJ = l , Vj e j (6)

ISS yE/ Zy < ; [£ | , V i E M (7)

rj < t j < d j.v j € } (8)

t/ — tfc + skj ~ (l yfcy)(f̂ fc — ty "F V k ,j E J ,k zfc j (9)

Vkj + yjk ^ Zik + z ij - 1 , v i E M , v k . j e j , k * j (10)

Tj > tj - Sj, V j e j (11)

0 < T j < d j - 6 j , V j EJ (12)

z ij, Vkj binary V i E M, V k .j E / (13)

The objective function (5) minimizes the total weighted tardiness. Constraint (6) assigns

every aircraft to exactly one of the m runways, whereas Constraint (7) introduces lower

and upper bounds on the number of aircraft assigned to any runway in order to balance

the loads across runways. Constraint (8) specifies allowable time-window restrictions.

50

Constraint (9) ensures that proper separations between any pair of aircraft are assigned to

the same runway. Constraint (10) activates the sequencing variables between any pair of

aircraft that are assigned to the same runway. Constraint (11) expresses aircraft tardiness,

with respect to target-times. Constraint (12) enforces non-negativity restrictions and

upper bounds on aircraft tardiness. Constraint (13) defines binary decision variables.

3.2 Review of Solution Methods

Exact algorithms and approximate algorithms are commonly used to find qualified

solutions for optimization problems. The optimal solution for a small sized problem can

be obtained by exact algorithms. On the other hand, in order to solve large sized

instances, approximate algorithms are developed to yield a quick and reasonable solution

to the problem although the approximate algorithms cannot guarantee optimality.

3.2.1 Exact Algorithms

Exact methods aim to find an optimal solution in a polynomial amount of time for every

finite size of a combinatorial optimization problem. Mixed integer programming, branch

and bound algorithms, and decomposition methods are the most common exact methods

for the scheduling problems. Nevertheless, it is difficult to obtain optimal solutions for

the problem in a reasonable time especially as the problem size becomes large.

Consequently, it becomes necessary to develop qualified approximate solutions for the

ASP.

3.2.2 Approximate Algorithms

Approximate algorithms are generally classified as constructive algorithms, local search

and metaheuristics.

3.2.2.1 Constructive Algorithms

Although some exceptional implementations may need high computational times,

constructive algorithms are generally the fastest approximate algorithms. Starting from

scratch, the solutions are generated by adding parts of the solution in the constructive

algorithms. Due to their easy implementation and low computational requirements,

51

dispatching (priority) rules are the most widely used constructive algorithms. They are

functional to start with a reasonably good schedule with regard to a single objective

(Pinedo, 2008). Moreover, some priority rules generate the optimum solution for certain

problems such as Shortest Processing Time (SPT) Rule is used to minimize the total

completion time of a single machine scheduling problem. A number of dispatching rules

such as the Shortest Processing Time (SPT), Minimum SLACK (MSLACK), and Slack

per Remaining Processing Time (S/RPT) have been applied to solve total tardiness,

weighted tardiness, and maximum tardiness related problems (Lee and Pinedo, 1997).

Although some constructive algorithms perform very well in certain cases, there is not

any specific rule that can be applied to all problems and perform satisfactorily.

3.2.2.2 Local Search Algorithms

Starting from an initial solution, that may be generated randomly or via a constructive

algorithm, local search algorithms try to replace part or the whole solution with a better

one iteratively. The solution or solutions with the best objective function value in those

neighborhoods of solutions are called local optimum solutions. Getting easily trapped in

local optima is the primary drawback of the local search algorithms. Local search

algorithm with proper moves can be very helpful in exploring a neighborhood of an

initial solution; however, there is not such a mechanism that searches other far

neighborhoods of the solution space in which the global optimum may exist. To

overcome this issue, new modem search methods have been developed with embedded

meta-strategies to guide the search process.

3.2.2.3 Metaheuristic Algorithms

A metaheuristic is a heuristic procedure that is applied to difficult combinatorial

optimization problems to achieve reasonable solutions. The purpose of the methodology

is to explore the search space effectively by logical movements that can help avoiding

local optimum solutions; allowing worsening moves is one way to do that. Another

approach is that rather than just providing random initial solutions, one can generate new

starting solutions for the local search in a more intelligent way. Metaheuristics iteratively

obtain better solution until a stopping criterion such as total number of iterations or

52

number of consecutive iterations without any improvement is met. Candidate solutions

are evaluated; a record of the best solution obtained so far is maintained. Although the

implementation of the metaheuristics is more difficult than simpler heuristics, they are

superior in terms of solution robustness. Simulated annealing, tabu search, genetic

algorithms, ant colony optimization, and metaheuristic for randomized priority are

examples of metaheuristic algorithms which are going to be discussed.

Genetic Algorithm (GA)

It was first introduced by Holland (1975). Genetic Algorithm (GA) is a population-based

metaheuristic rooted in natural selection and evolutional theory in order to find a good

solution. A solution is represented by knowledge structures (i.e., chromosomes) that are

composed of genes. A set of solutions contains a population that evolves over time

through competition. Each member of the population (i.e., individual) is evaluated and

assigned a fitness value and then the next population is formed in two steps. Firstly,

individuals with high fitness values are selected for reproduction and a crossover operator

generates two offspring from two parents. The crossover operator forms new fit

individuals from fit parents. Then, a mutation operator changes one or more components

of a selected individual. The mutation operator serves as a secondary search that

guarantees that the points in the search domain are reachable. Until a stopping criterion is

met, the incumbent solution is expected to improve as populations are generated. GA

differs from SA and TS that at each iterative step, several schedules are generated and

carried over the next step. On the other hand, in simulated annealing and tabu search,

single schedule is generated and it is carried over from one iteration to another.

Therefore, the neighborhood search concept of GA is dependent on a set of schedules,

rather than a single schedule (Hazir et al., 2008).

Ant Colony Optimization (ACO)

Similar to GA, the ant colony optimization (ACO) algorithm is population-based

metaheuristic. It is motivated by the collective behavior of ants for the continued

existence of their colonies. For the food sources, ants deposit pheromone on their trail.

The capability of other ants to recognize this substance enables them to find the shortest

53

path between their nest and the food. When more ants cooperatively follow a trail, the

trail becomes more attractive for being followed in the future. The ability of a single ant

to place food is limited; however, the shared information helps the colony to locate

efficient paths to a food source. Dorigo and Gambardella (1997) introduced this feature in

solving combinatorial optimization problems. By applying a stochastic local search

policy, each ant could construct a solution. A tour ends when all ants of the colony

produce solutions of dissimilar quality. The knowledge gathered at the end of each tour is

updated through a global pheromone updating rule. By using the information in the next

tour, it is expected that the ants generate better solutions.

Metaheuristic for Randomized Priority Search (Meta-RaPS)

Meta-RaPS is a generic, high-level strategy used to modify greedy algorithms based on

the insertion of a random element. Meta-RaPS integrates priority rules, randomness, and

sampling in each iteration to avoid getting stuck in local optima. The general steps in

applying the Meta-RaPS methodology to any combinatorial problem are as follows: study

the structure of the problem to be solved, find priority rules that construct feasible

solutions, modify priority rules to incorporate randomness, construct feasible solutions

using priority rule and randomness, improve selected solutions, keep the best solution

found by Meta-RAPS for both construction and improvement stages. Report the best

solution found at the end of maximum number of iterations (Moraga, 2002).

Simulated Annealing (SA)

SA was first proposed by Kirkpatrick et al. (1983). Simulated annealing (SA) is one of

the oldest and most frequently used metaheuristics to find global optimum or near

optimum to combinatorial optimization problems. SA is a robust random search

technique, improvement heuristic with a clever mechanism to avoid getting trapped at

local optima. The SA algorithm generates a new solution in the neighborhood of an initial

(current) solution constructed by a greedy heuristic. Initial solutions can be constructed

by greedy algorithms. Although improving moves are preferred, a particular structure

sometimes allows moves to worse solutions to improve the search domain and avoid

getting trapped at local optima. It can deal with nonlinear models and many constraints

54

(Hazir et al., 2008). There is a clear tradeoff between the quality of the solutions and the

time required to compute them. Subsequently, Johnson et al. (1989, 1991) examined the

effects of various parameters on the solution quality and computational requirements.

Tabu Search (TS)

Similar to SA, Tabu search (TS) is a local-search improvement heuristic that tries to

avoid a local minimum by punishing the moves which creates cycling among previously

observed solution points. These forbidden moves are called “tabu”. TS algorithm keeps a

list of such moves for a specific number of iterations. The cycling occurrence depends on

the length of the tabu list. If the length of the tabu list is small, the process may have a

high possibility of cycling (Lee et al., 1997). The major advantage of TS is the use of

memory which accelerates the solution space search process (Zobolas et al., 2008). Two

commonly used strategies to obtain good solutions are diversification and intensification.

Diversification is used to direct the search into less visited regions of the search space,

whereas intensification is used to fully explore a certain region. Glover’s studies on TS

have attracted numerous researchers to use the metaheuristic to solve problems from

various fields due to its potential to solve difficult combinatorial optimization problems.

The technique is straightforwardly applied to continuous functions by choosing a discrete

encoding of the problem. Many of the applications in the literature involve integer

programming problems, scheduling, etc. (Hazir et al., 2008).

Comparison o f the Metaheuristics

Decision areas, problem size, available time to develop are the factors that affect the

choice of which metaheuristic algorithm to use. In order to have a rational approach to

perform the metaheuristics for effective ASP solutions, a review for comparative studies

in scheduling problems would be useful. There are two types of metaheuristic algorithms:

population based and single point search. Population-based metaheuristic methods such

as GA and ACO work with a group of solutions to generate new solutions; on the other

hand, single point search methods such as SA and TS start with a single solution and try

to improve it via neighborhood search.

55

The single point search methods start with an initial feasible solution and generate more

solutions iteratively. The time needed to implement SA or simple TS is relatively short

compared to the population-based metaheuristics. Both TS and SA have usually been

found to provide comparable quality in acceptable time. SA however is simpler to

implement and requires less computer memory. SA and TS may be considered as special

forms of GA with the number of individual in each generation limited to one. The GA

keeps track of multiple solutions at each iteration which makes it slower. In GA, the

neighborhood concept is not based on a single solution, but rather on a set of solutions. A

new solution can be constructed by combining different parts from different schedules

within the set. Therefore, GA fails to intensify the search to the most promising regions

of a neighborhood (Lee et al., 1997).

Kim et al. (1996) reviewed several approximate algorithms including SA and GA with

the objective of minimizing mean tardiness. Simulated annealing algorithm considering

insertion neighborhood search algorithm, outperformed the remaining metaheuristics.

Parthasarathy and Rajendran (1998) proposed SA where the initial solution was provided

by a specific rule. Results were compared to the other heuristics including TS, and the SA

algorithm produced the best rules. Vallada et al. (2008) provided comprehensive review

of heuristic and metaheuristic approaches for the flowshop scheduling problem with the

objective of minimizing total weighted tardiness. The SA algorithm outperformed all the

other methods evaluated including GA and TS.

The performances of SA, TS, GA and ACO metaheuristics on the customer order

scheduling problem were compared in Hazir et al. (2008). Their results indicate that the

output quality of a metaheuirstic were dependent on the problem size; among the

algorithms, SA performs the best. Moreover, it was mentioned that the implementation of

SA was easier than the implementation of the others. Jungwattanaakit et al. (2009)

investigated SA, TS, GA algorithms for minimizing the convex combination of makespan

and the number of tardy jobs with unrelated parallel machines and setup times. They

investigated the performance of the algorithms for the recommended SA, TS, GA

parameters, and found that SA based algorithm outperformed the other algorithms.

56

To sum up, the parameter setting, the problem type, the platform where the study is

conducted affect the outcome of each comparative study. However, it is clear that

simulated annealing is easy to implement while obtaining good solutions.

3.3 Approximate Algorithms for the ASP

Exact solution methods can be used to find optimal solutions for scheduling problems.

However, as minimizing the TWT with a single machine (i | \ZwjTj) is NP-hard (Lawler,

1982), minimizing the TWT with parallel machines with ready times (Pm\rj\EwjTj) is also

NP-hard. According to the complexity of hierarchy (Pinedo, 2008), the problem

Pm\rj,Sj, dj,s^,time window\ZwjTj, which is a general case of the single machine

problem, can also be considered NP-hard. Therefore, it is necessary to develop

appropriate methods to reach good quality solutions in reasonable computational times.

In this section, we propose greedy algorithms and metaheuristics to solve the problem.

The greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation

and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index

(FPI) are proposed. Moreover, metaheuristics, specifically SA and Meta-RaPS are

introduced for the ASP to improve the initially constructed solutions by greedy

algorithms. The AATCSR is constructed by extending the ATCS rule, which is

commonly used for TWT problems. The FPI rule is a modification of AATCSR, and the

ERT is a version of the FCFS. SA and Meta-RaPS have been applied to different

scheduling problems in order to find near-optimal solutions, and are applied for the first

time to the ASP. Another reason for proposing metaheuristics is the possibility of

observing a condition where the greedy algorithms cannot find a feasible schedule for a

particular instance. This indicates that at least one aircraft is “unscheduled” since its start

time exceeds its dedicated deadline. In such a case, the neighborhood search structures in

the SA and Meta-RaPS would suffice to efficiently generate feasible solutions.

3.3.1 Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR)

We introduce here the AATCSR composite greedy algorithm for the ASP as an extension

of the ATCS rale that was introduced by Lee and Pinedo (1997). In the AATCSR, we

57

include new terms to take into account the deadlines and ready-times. The proposed

AATCSR heuristic is dynamic in a sense that after each aircraft is assigned to a runway,

the remaining aircraft are prioritized according to the priority index given in Equation

(14). While the deadline constraint is satisfied, the priority index is computed for each

aircraft that has not been scheduled yet and the one with the highest index value is

assigned to the runway on which the aircraft can start to operate the earliest.

j i j (t , k) = Wj x e x p { - max(r; - t, 0)) x e x p { —s kj) x e x p { - max(5; - t, 0)) x e x p { - max(d, —

t. 0)) (14)

where nj (t, k) is the index for aircraft j at time t given that k is the last aircraft operated

on the runway that was just freed, and t is the decision time for an assignment. The

urgency of an aircraft is measured by the slack factors for the ready times max (r; —

t, 0), separation times (sk;), target times max (Sj — t, 0), and deadlines max {dj — t, 0).

The rationale of this rule is to exponentially increase aircraft priorities as they approach

their ready times, target times, and deadlines, as well as for those whose separation times

are short. Once the slack factors have negative values, they will not have an impact on the

priority as exp (0) =1. In other words, target-time Sj for job j does not have any impact on

the index value when the aircraft’s target time is already behind the assignment decision

time (i.e.,6) < t). In this problem, whenever an aircraft is assigned to a runway, it is

assumed that the “job is completed” because the processing times are considered

negligible. That is, the start times, which are the decision variables, and the completion

times are the same. The pseudo code for AATCSR is given below.

t: decision time for assignment

tj: the start time for aircraft j, V j E J

PSTi(t): potential start time for aircraft j on runway i to take-off/land at time t

CmaXi(t): throughput/makespan of the runway i at time t

Uj{t, k): priority of aircraft j at time t given that k is the last aircraft operated on the

runway that was just freed

M: set of runways

58

J: set of aircraft that are not scheduled yet

n: number of aircraft

m: number of runways

Dj deadline for aircraft j to take-off at runway end/to land (taxi time is not included),

Vj e J

1. Set t=0,tj = 0, J = {1,2,..., n}, M = {1,2,..., m},Cmaxi(t') = 0, Vj 6 J.Vi E M

2. Calculate Uj{t, kj Vj G / by using Equation (14)

3. while 0

4. while tj < dj, Vj E J

5. Find j = {je J: itj (t, k) = maxk i e j { n t (t, kj}}

6. Find i = {ieM: P ST^tj — minm6M{P5rjn(t)}} where PST is calculated according

to Equations (l)-(4)

7. Update tj = PST^t)

8. Update Cmaxt(t) = tj

9. Update t - minmeM {Cmaxm(t)}} and remove aircraft j from J

10. end while

11. end while

12. Calculate and display the total weighted tardiness

3.3.2 Earliest Ready Time (ERT)

In the ERT rule, aircraft are assigned to the runways in increasing order of their ready

times. This rule resembles the FCFS rule which is the most widely used heuristic in

terminal areas for the aircraft sequencing. In addition to the total weighted tardiness

minimization, ERT rule has also been applied to problems with different objective

functions such as minimization of the makespan and the maximum lateness (Larson and

Dessouky, 1978, Damodaran and Gallego, 2010). In the ERT, an aircraft to be scheduled

with the earliest ready time is assigned to the runway on which the aircraft can start the

operation the earliest. Such an approach has been used in the literature (e.g., Tsai and

Lee, 1996 and Jeong and Kim, 2008) to successfully construct a good initial solution.

59

Moreover, the solution quality and computational times of the ERT rule can be used as a

baseline to which other methods can be compared.

3.3.3 Fast Priority Index (FPI) Rule

The FPI index in equation (15) is computed for each aircraft to be scheduled when a

runway is free at time t and the aircraft with the highest priority index value is assigned to

the runway on which the aircraft can start the operation the earliest.

FPI;(t, k) = I V i X T “ r X r X t-— r X — (15)
J ' J m ax(rj-t,l) max(<Sy-t,l) max(d; - t , l) s^j

where FPIj (t, k) is the index for aircraft j at time t given that k is the last one operated on

the runway that was just freed. Different from the AATCSR, in FPI the urgency of

scheduling aircraft in FPI is treated in a linear manner rather than exponential, which

makes it much faster in terms of computational time. Note that the maximum of slack or

1 is used in the denominators to avoid dividing by zero.

3.3.4 Simulated Annealing (SA) Algorithm

SA is one of the well-known metaheuristic algorithms which is based on the work of

Metropolis et al. (1956) that simulated the energy levels in cooling solids by producing a

sequence of physical states. Kirkpatrick et al. (1983) applied this approach to solve

combinatorial optimization problems for finding the global optimum, or near-optimum,

of a cost function. Since it generally provides good solution and statistically guarantees

finding an optimal solution, it is considered a robust metaheuristic. It has a mechanism to

escape local optima by sometimes accepting a worse neighborhood move with an

acceptance probability of e ~ ^ T, where A is the difference in the objective function values

of the current solution and candidate solution, T is a temperature control parameter

corresponding to the temperature in the analogy of physical annealing. When T is high,

most moves (better and worse) will be accepted, and as T is reduced, worse moves will

more likely be rejected. Therefore, to prevent getting trapped in a local minimum, a

relatively high value of T is set at the beginning of the algorithm. Specifically in our

problem, instead of a constant value, the initial temperature is defined as a function of the

60

objective function value of the current solution, which enables the initial temperature to

be more flexible and to take reasonable values. While the SA goes through k drops in

temperature according to the function Tk = aTk_t , at each temperature, it explores the

neighborhood of the current solution.

The logic behind the neighborhood search in SA is to avoid getting stuck in local optima.

Aircraft exchange_1 and Aircraft exchange 2 functions are used to perturb the current

solution locally.

Aircraft exchange 1: When there is a randomly selected unscheduled aircraft j , it is

exchanged with another randomly selected aircraft i such that rj < rt and dj < di.

Aircraft exchange_2: If there are no unscheduled aircraft, then randomly selected

aircraft j is exchanged with randomly selected aircraft i. This neighborhood is applied

to all aircraft across the runways.

The difference between both is that Aircraft exchange_1 is applied when there is an

unscheduled aircraft (i.e.,dy < Cy); otherwise Aircraft exchange d is executed. The

performance of the SA depends on several parameters: the maximum number of inner

loop iterations (imax)> the maximum number of iterations (tmax), the initial temperature

coefficient (k), and the temperature cooling coefficient (a). These parameters are tuned in

Section 4.2. The SA algorithms proposed in this dissertation generate new solutions in

the neighborhood of the initial/current solution constructed by the proposed greedy

algorithms. Therefore, the SA algorithm that integrates the AATCSR is called S A aatcsr-

Similarly, the implementation with the ERT is called S A ert and when integrated with

FPI is called S A fpi- The pseudo code for the S A is given below.

S: search area

0: current solution

O’: neighbor solution of the current solution

0*: best solution

f(0) : objective function value of the current solution (the total weighted tardiness value)

61

N(6) : neighborhood of 0

M: memory set of current best solution and objective function value

i: inner loop iteration counter

imax: max number of inner loop iterations

c : iteration counter

tmax: max number of iterations

T: temperature

k : initial temperature coefficient

a: temperature cooling coefficient

1. Get ERT, FPI or AATCSR solution as an initial solution G from S

2. Calculate f(0)

3. Initialize memory, Memory MO ~{(G, f(G))}

4. Set iteration counters i - 0, c = 0

5. Set initial temperature T = k.f(G)

6. while c < tmax

7. while i < imax

8. Choose G'eN(Q) Q S where MO= {(0,/(0'))}> do neighborhood search

algorithm

if there is at least one unscheduled aircraft, use Aircraft exchange l

else use Aircraft exchange_2

9. Calculate / (0 ')
&e

10. i f / (0 ') — / (0) < 0 or rand [0,1] < e r , where A0 = / (# ') — / (0) then

11. M O = { (0 , / (0 ')) }

12. end if

13. i = i+J

14. c =c+J

15. end while

16. Update temperature T - a.T

17. end while

18. Output 6* and /(0*)

62

3.3.5 Metaheuristic for Randomized Priority Search (Meta-RaPS) Algorithm

Meta-RaPS is based on the work by DePuy and Whitehouse (2001) as the result of

research conducted on the application of a modified version of Computer Method of

Sequencing Operations for Assembly Lines (COMSOAL) approach that was developed

by Arcus (1966). Meta-RaPS was then formally introduced by Moraga (2002) who

defined it as a generic, high-level strategy used to modify greedy algorithms based on the

insertion of a random element, which integrates priority rules, randomness and sampling.

Meta-RaPS is composed of two phases: a constructive phase and an improvement phase.

In the constructive phase, feasible solutions are generated through randomized priority

rules until a stopping criterion is met. In the improvement phase, the solutions obtained at

constructive phase might be improved if they pass a specific criterion. In this dissertation,

ERT, AATCSR, FPI greedy algorithms are independently used as the priority rules in

initial stage. Therefore, the Meta-RaPS algorithm that integrates the ERT rule as a basis

for selecting the next aircraft to schedule is called Meta-RaPSERT. Similarly, the

implementation with the AATCSR is called M e ta -R a P S A A T C S R and when combined with

the FPI is called Meta-RaPSppj. To prevent getting trapped in local optima, Meta-RaPS

modifies the constructive algorithm such that the next aircraft to schedule does not

always have to be the one with the best priority value. As an alternative, an aircraft is

sometimes selected randomly from a candidate list (CL) of feasible aircraft.

Meta-RaPS involves the use of four parameters where the performance of the algorithm

depends on: the number of iterations (i), the priority percentage (p%), the restriction

percentage (r%) and the improvement percentage (ip%). The number of constructed

feasible solutions is determined by the number of iterations. The percentage of time the

aircraft with the best priority value is added to the solution is called the priority

percentage. Implicitly, 100%-/?% determines percentage of time the aircraft is randomly

selected from a CL, which is a set of aircraft whose priority values are within the

restriction percentage of the best priority value. The improvement percentage is used to

decide if the solution created at the constructive stage is worthy of being improved in the

improvement phase. Therefore, only solutions with promising values are improved by

63

using neighborhood search algorithms, which are similar to those used in the SA

algorithm. The rationale of selectively improving solutions is not to waste computational

time on very inferior solutions, but rather improve solutions that have the potential to

reach a global optimum. The pseudo code for Meta-RaPSAATcsR is given below.

9: solution from constructive phase

f(6): objective function value o f the constructive phase

I: number o f iterations

p%: the priority percentage

r%: the restriction percentage

ip%: the improvement percentage

1. Set t=0,tj = 0 , J = {1,2,..., n}, M = {1,2,..., m} ,Cmaxf t) — 0, Vy G / , Vi G M

2. Calculate nj(t, k) vy G J by using Equation (14)

3. while 0

4. while tj < dj ,Vj E j

5. Find j = {je J: Jij (t, k) = maxk t e j {nt (t, fc)}}

6. Find i = {ieM: PSTf t)= minTneM{P5T7n(t)}} where PST is calculated according

to Equations (1)-(4)

7. P = RND (0,1)

8. ifP</?% then

9. Set aircraft to schedule index, s = j

10. else

11. Randomly choose aircraft / from Candidate List = {I: I e J \ m (t,k) > tzj (t,k).r%}

12. Set aircraft to schedule index, s = I and Candidate List = 0

13. end if

14. Update tj = PST f t)

15. Update Cmax f t) = tj

16. Update t = m m meM{Crnaxm(t)}} and remove aircraft j from J

17. end while

18. end while

64

19. Calculate f (0)

20. if f(0) < fbest (fworst -fb est)- ip% then

20. Find 6 e N(0) do neighborhood search algorithm

if there is at least one unscheduled aircraft, use Aircraft exchange_1

else use Aircraft exchange J2

21. Calculate / (0)

21. end if

22. Update Memory, Report/ best

In this chapter, several solution methodologies and heuristic procedures are proposed for

the Aircraft Sequencing Problem. Three greedy algorithms, namely the Adapted

Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest

Ready Time (ERT) and the Fast Priority Index (FPI) were developed to construct initial

solutions. In addition to greedy algorithms, metaheuristics including Simulated

Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) were

introduced to improve solutions initially constructed by the proposed greedy algorithms.

The performance (solution quality and computational time) of the various algorithms is

compared to the optimal solutions and to each other in Chapter 4.

65

CHAPTER 4

COMPUTATIONAL STUDY FOR SOLUTION METHODOLOGIES

Computational study for the ASP heuristic algorithms aims to determine the performance

of the proposed algorithms for a wide range of problem sizes. The effectiveness and

efficiency of the ERT, AATCSR, FPI, SA, Meta-RaPS algorithms are evaluated for

problems with a number of aircraft n = 15,20,25 and number of runways m = 2,3,4,5;

15-aircraft instances with 2,3,4 runways, 20 and 25 aircraft instances with 2,3,4,5

runways. For each combination of n and m, 5 instances were generated totaling 55

problem instances that are publicly available at

http://ahmed.ghoniem.info/download/MASP-SET.txt. The proposed algorithms were

implemented in C and run on an Intel Core 2 Duo 2.10 GHz CPU with 4.00 GB of RAM

laptop. According to Ghoniem and Farhadi (2012), the optimal solutions were obtained

by mixed-integer formulations which were coded with AMPL and solved using CPLEX

12.4 on Intel Core i7-2600 CPU with 3.40 GHz and 12 GB RAM laptop. For the optimal

solutions, they imposed a time limit of 1 CPU hour on the solver.

4.1 Data Generation

In the data used, each aircraft is characterized by its operational type (i.e, arrival or

departure), weight-class (i.e, heavy, large, or small), priority (aircraft tardiness penalty),

ready time, target time, deadline, and separation times. Data were generated as in

Ghoniem and Farhadi (2012) as follows:

1. Aircraft operation types were randomly generated as 0 or 1 to represent an arrival and

departure respectively.

2. Aircraft weight classes were randomly generated as 1,2, 3 to represent heavy, medium

or light aircraft respectively.

3. The aircraft tardiness penalty (priority) Wj varies between 1 and 6 and was introduced

as a function of the aircraft weight class and its operation type, where the least weight of

http://ahmed.ghoniem.info/download/MASP-SET.txt

66

1 was assigned to small departures and the greatest weight of 6 was given to heavy

arrivals.

4. The ready-times ry were randomly generated using a discrete uniform distribution over

the interval (0, y ̂), where y is a parameter that was randomly selected between 30 and

90.

5. Every aircraft was prescribed a time-window of 600 seconds. Therefore, deadlines d j

were calculated by r ; + 600.

6. Target times Sj were calculated by r ; + 20.

7. As presented in Sherali et al. (2010) and shown in Table 1, the minimum separation

times skj are given and range between 30 and 200 seconds depending on aircraft type

(light, medium or heavy), and the type of operation (landing vs. departure) that the actual

values are enforced by aviation authorities.

4.2 SA Param eter Setting

The solution quality and the speed of the metaheuristics depend on the values of their

parameters. One of the Design of Experiments (DoE) methods, Taguchi design, was used

in order to tune the parameters of the SA algorithm. A subset of problems from the entire

problem set of instances up to 25 aircraft were selected randomly. For each of the four

design factors (i.e., parameters of the SA algorithm) two possible levels were defined,

and the experiments were conducted to obtain appropriate parameter values while

considering the qualities of the average relative error and average CPU times. For the SA

algorithm, two levels were determined as follows: maximum number of iterations (tmax=

1000,2000), maximum number of inner loop iterations (i m a x = 10, 20), initial temperature

coefficient (£= 1 ,10) and temperature cooling coefficient (a = 0.8, 0.95). Considering

not only the main effects (e.g. , t m a x , i m a x) but also the interaction effects (e.g. , t m a x x

im a X) , we solved five random problem instances 20 times using SA starting from initial

solutions constructed by the AATCSR, ERT and FPI.

67

After completing regression analysis of the average relative error values and average

CPU, the R2 values were 0.92 and 0.88 respectively for the AATCSR case; R2= 0.92 and

0.88 respectively for the FPI case; and R2= 0.91 and 0.88 respectively for the ERT case.

Accordingly, the following parameter levels were selected for best performance:

maximum number of iterations t m a x = 1000, maximum number of inner loop iterations

i m a x ~ 10> initial temperature coefficient k = 1 with the initial temperature being the

corresponding weighted tardiness of the initial solution, and temperature cooling

coefficient a = 0.8 for S A e r t , S A a a t c s r and SAppi.

4.3 Meta-RaPS Parameter Setting

A similar DoE approach was used to set the appropriate parameter values for Meta-RaPS

for its four parameters. Two-level factorial design was used and the levels are identified

in Table 6. For each experiment, we selected 5 problem instances randomly from the

entire problem set, and we solved them 20 times by Meta-RaPS using the AATCSR, ERT

and FPI as priority rules in its construction stage.

Level Coded Parameter
/ r % d % iD %

Low -1 2000 0.25 0.75 0.75
High +1 5000 0.5 0.9 0.5

Table 6. Coded values of factor levels

Regression analysis of the average relative error values and average CPU time values

revealed R2= 0.97 and 0.98 respectively for the AATCSR case; R2= 0.97 and 0.97

respectively for the FPI case; and R2= 0.96 and 0.97 respectively for the ERT case.

Accordingly, the following parameter levels were selected for best solution quality:

number of iterations 7=5000, the priority percentage p%=0.15, the restriction percentage

r%=0.25 and the improvement percentage i p % = 0.9. The same parameters were used for

Meta-RaPSERT, Meta-RaPSAATcsR and Meta-RaPSppi.

68

4.4 Effectiveness of the Greedy Algorithms (AATCSR, ERT, FPI)

The performance of the ERT, AATCSR and FPI algorithms are evaluated in terms of

average relative error, number of times each heuristic solution reaches optimal solutions

and CPU times. The relative error (i.e., deviation from optimal) is calculated via Equation

(16) for each test problem.

Relative Error = (16)
TWT optimal

where TWTALG is the objective function value (i.e., total weighted tardiness) of the

proposed greedy algorithm and TWT0ptimai is the objective function value of the optimal

solution for a test problem.

Optimal solutions were obtained using the MILP formulation presented in Section 4.

Average relative errors for the greedy algorithms and average CPU times are obtained by

averaging the values for the five instances for each aircraft-runway combination. The

results in Table 7 show that the performances of the three greedy algorithms are similar

in terms of average CPU time. The ERT performs slightly better than the AATCSR and

the FPI in terms of the frequency of reaching optimal solutions. However, the average

relative error metric indicates that it does not perform as well as the AATCSR and the

FPI. Finally, it is worth noting that CPU times of the proposed solution methods are

considerably shorter than the optimal solutions.

The relative error data and CPU time performance for each combination are not normally

distributed according to Anderson-Darling normality test as stated in Figure 6. Therefore,

the performances of the algorithms are analyzed statistically by nonparametric test,

Kruskal-Wallis.

69

n m Average Relative Error from Optimal # of optimal solutions Average CPU (s)

AATCSR ERT FPI AATCSR ERT FPI Optimal AATCSR ERT FPI

15 2 0.728 0.888 0.844 0 1 0 25.37 0.000 0.000 0.000
3 0.873 1.172 1.171 0 0 0 74.222 0.000 0.000 0.000
4 0.446 0.563 0.563 0 3 0 1684.228 0.000 0.000 0.000

20 2 0.726 0.834 0.834 0 0 0 4.456 0.001 0.000 0.000
3 1.304 1.507 1.505 0 0 0 583.98 0.000 0.000 0.000
4 1.708 1.708 1.708 0 0 0 2458.94 0.000 0.000 0.000
5 0.819 0.825 0.819 0 0 0 2596.48 0.000 0.000 0.000

25 2 1.183 1.205 1.205 1 1 1 1.28 0.000 0.000 0.000
3 0.577 0.947 0.940 0 0 0 723.514 0.000 0.000 0.000
4 1.297 1.370 1.297 0 0 0 495.628 0.000 0.000 0.000
5 0.540 0.540 0.540 0 0 0 1308.014 0.000 0.000 0.000

Table 7. Results of the Greedy Algorithms

The statistical software program, Minitab 15.1 is used for analysis.

Probability Plot of Relaltive Error
N orm al

99.9

99

95
90

80
70
60
50
40
3020
10
5'

1
0.1

-2 -1
Error

AD
P-Vatue

1.006
0.7593

165
4.702

<0.005

Probability Plot of CPU
N orm al

0.0000- 0.0010 >0.0005 0.0005 0.0010

Mean 0.00007879
StDev 0.0002702
N 165
AD 56.570
P-Vatue <0.005

Figure 6. Normality Test for the Greedy Algorithms

70

Table 8 shows that AATCSR has performed better since the median of AATCSR relative

errors is less than the median values of the ERT and FPI. On the other hand, AATCSR,

ERT and FPI have similar CPU time performance.

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR 55 0.7031 76.9 -1.15
ERT 55 0.7659 86.4 0.64
FPI 55 0.7613 85.7 0.51
Overall 165 83.0

H= 1.33 DF = 2 P = 0.514
H = 1.33 DF = 2 P = 0.514 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR 55 0.000000000 93.0 1.90
ERT 55 0.000000000 78.0 -0.95
FPI 55 0.000000000 78.0 -0.95
Overall 165 83.0

H = 3.61 DF = 2 P = 0.164
H = 16.60 DF = 2 P = 0.000 (adjusted for ties)

Table 8. Comparison of effectiveness of the Greedy Algorithms

4.5 Effectiveness of the SA and Meta-RaPS Algorithms

Three versions of the SA and the Meta-RaPS were applied to the problem with the main

difference being the way that the initial solutions are generated using ERT, AATCSR, or

FPI algorithms. The performances of the SA and the Meta-RaPS are compared in terms

of the relative error, the number of times each heuristic solution reached optimal

solutions and the CPU times. Equation (16) is used to calculate the relative error for each

test problem with TWTALG being the objective function value of the proposed

metaheuristic.

Hancerliogullari et al. (2013) introduced SA and the Metaheuristic for Randomized

Priority Search (Meta-RaPS) to the ASP to improve the initially constructed solutions by

greedy algorithms. The algorithms’ solutions are compared to optimal solutions and their

71

performances are evaluated in terms of solution quality and CPU time. According to

Table 9, the average relative error and the number of optimal solutions reached by the

metaheuristics indicate that S A a a t c s r performs better than SAFP[and S A e r t - Also, the

average CPU times of the algorithms are less than one second on average. The

performance measures reflect that solving the problem with the SA is advantageous since

in the majority of time the SA could find optimal solutions.

n M
Average Relative Error tom Optimal # of optimal solutions Average CPU (s)

SAaatcsr SAert SAfpi SARandom SAaatcsr SAert SAfpi SARandom SAaatcsr SAert SAppi SARandom
15 2 0 0.002 0 0.004 5 3 4 1 0.417 0.412 0.406 0.422

3 0.024 0.055 0.05 0.063 3 2 3 0 0.438 0.371 0.445 0.441
4 0 0.004 0 0.005 5 3 3 1 0.502 0.371 0.381 0.384

20 2 0.018 0.037 0.02 0.045 2 1 2 0 0.583 0.549 0.619 0.556
3 0.006 0.045 0.02 0.053 4 0 1 0 0.62 0.486 0.523 0.595
4 0.004 0.044 0.01 0.050 4 0 3 0 0.58 0.561 0.431 0,571
5 0.002 0.013 0.01 0.009 4 2 3 1 0.43 0.484 0.438 0.49

25 2 0 0.009 0.01 0.009 4 2 3 1 0.756 0.678 0.828 0.692

3 0.005 0.151 0.03 0.082 2 0 1 0 0.762 0.699 0.725 0.701
4 0.018 0.092 0.05 0.095 3 0 2 0 0.538 0.577 0.585 0.581

5 0.021 0.089 0.08 0.102 2 0 2 0 0.513 0.53 0.513 0.542

Table 9. Results of the SA Algorithm

Moreover, the performance of the SA algorithm starting with a randomly generated initial

solution (SARandom) is evaluated. The corresponding average relative error, the number of

optimal solutions reached by the S ARandom, and average CPU times are also summarized

in Table 9. The results show that S A a a t c s r still performs the best among the S A e r t ,

SAppi, SARandom in terms of solution quality. On the other hand, the CPU time

performance of the algorithms are close to each other and considerably low. It is

concluded that generating new starting solutions for local search improvement heuristic,

SA, using greedy algorithms (AATCSR, ERT, FPI) is more intelligent way than just

generating random initial solutions. There is an advantage in starting from a better initial

solution than random solution in problems where good solutions cannot be easily

obtained through a small number of elementary transformations of a random solution

(Pirlot, 1996).

72

Since the relative error data for each combination does not follow a normal distribution

according to Anderson-Darling normality test in Figure 7, the statistical significance of

performance between algorithms is analyzed using non-parametric Kruskal-Wallis test.

Probability Plot of Relative Error- SA
Normal

99.9

99-

95-
90-

e
I

60-
50-

S 40-
£ 30-

20 -

10-

01
0.0- 0.2 - 0.1 0.1 0.2 0.3 0.4

Mean 0.02769
StDev 0.05684
N 165
AO 26.020
P-VaJue <0.005

Error

Figure 7. Normality Test for the SA Algorithm: Relative Error

Table 10 shows that there is a statistical difference between the population mean values

of S A a a t c s r , S A e r t and S A f p i in terms of relative error (p=0.000<a=0.05). It can be

inferred that S A a a t c s r has the best performance because median of relative errors is less

than median value of S A e r t and SAppi; moreover, S A f p i performs better than S A e r t . On

the other hand, the CPU time performances of the algorithms are almost indifferent.

Another important measure is Levene’s test when the data is continuous but not

necessarily normally distributed. In order to measure the robustness of the proposed

algorithms, test of equal variance is used. Table 11 shows that there exists significant

difference between variances for the relative errors (p=0.002<a=0.05). S A a a t c s r

algorithm has lower confidence intervals for relative error which indicates that it is more

robust for the problem compared to S A e r t and SAppi.

73

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-SA 55 0.000000000 60.4 -4.30
ERT-SA 55 0.024637681 106.5 4.47
FPI-SA 55 0.004854369 82.1 -0.17
Overall 165 83.0

H = 25.63 DF = 2 P = 0.000
H = 28.53 DF = 2 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR 55 0.000000000 93.0 1.90
ERT 55 0.000000000 78.0 -0.95
FPI 55 0.000000000 78.0 -0.95
Overall 165 83.0

FI = 3.61 DF = 2 P = 0.164
H = 16.60 DF = 2 P = 0.000 (adjusted for ties)

Table 10. Comparison of effectiveness of the SA Algorithm with different initial

solutions

Figure 8 also confirms that S A a a t c s r has the best performance in terms of relative error.

Test for Equal Variances: Relative E rror
95% Bonferroni confidence intervals for standard deviations

Method N Lower StDev Upper
AATCSR-SA 55 0.0169324 0.0208642 0.026979
ERT-SA 55 0.0632537 0.0779418 0.100786
FPI-SA 55 0.0402559 0.0496037 0.064142

Levene's Test (Any Continuous Distribution)
Test statistic = 6.29, p-value = 0.002____________________

Table 11. Test for Equal Variances: Relative Error versus Method

74

Test for Equal Variances for Relative Error

BametrsTest
Test Statistic
P-Vatue

75.69

0.000MA A T C S R -S A -
Lev ene*s Test

Test Statistic
P-Vaiue

E R T - S A -

F P I- S A -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
95% Bonferroni Confidence Intervals for StDevs

Figure 8. Test for Equal Variances: Relative Error versus Method

According to Table 12, the solution quality of Meta-RaPSAATCSR outperforms that of

Meta-RaPSERT and Meta-RaPSppi in terms of the relative error and the number of optimal

solutions reached by the Meta-RaPS. However, the drawback of Meta-RaPSAATCSR is that

it requires longer CPU time.

n M Average Relative Error from optimal # o f optimal solutions Average CPU (s)

Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta-
RaPSAATCSR RaPSERT RaPSppi R uP S aaTCSR RaPSERT RaPSppi RaPSAATCSR RaPSERT RaPSFPi

15 2 0.001 0.261 0.160 4 0 2 7.394 1.327 0.171
3 0.047 0.225 0.187 3 0 3 8.400 1.399 0.191
4 0.112 0.216 0.184 0 0 0 8.873 1.399 1.702

20 2 0.021 0.464 0.264 1 0 1 12.841 2.149 0.271
3 0.029 0.644 0.535 0 0 0 16.261 2.559 0.230
4 0.853 1.041 0.969 0 0 0 17.202 2.749 2.816
5 0.456 0.482 0.456 1 0 0 13.760 3.413 2.954

25 2 0.008 0.418 0.276 3 2 3 23.068 3.151 0.374
3 0.009 0.411 0.262 1 0 1 23.265 3.522 0.280
4 0.431 0.848 0.565 1 0 0 20.690 4.133 4.116
5 0.234 0.311 0.274 0 0 0 21.065 3.891 4.223

Table 12. Results of the Meta-RaPS Algorithm

75

Similar to SA, since the relative error data for each combination in Meta-RaPS does not

follow a normal distribution according to Anderson-Darling normality test in Figure 9,

the statistical significance of performance between algorithms are analyzed using non-

parametric Kruskal-Wallis test Table 13 shows that there is a statistical difference

between the population mean values of Meta-RaPS a a t c s r , Meta-RaPS e r t and Meta-

RaPS f p i in terms of relative error (p= 0.000<a=0.05). Meta-RaPS a a t c s r has the best

performance because median of relative errors is less than median value of Meta-RaPS

e r t and Meta-RaPS f p i ; moreover, Meta-RaPS f p i performs better than Meta-RaPS e r t -

Probability Plot of Relative Error- Meta-RaPS
Normal

Mean 0.3532
StDev 0.3785
N 165
AD 7.204
P-value <0.005

'“ -1.0 -0.5 o!o 0.5 1.0 l!s 2!o 2^
Error

Figure 9. Normality Test for the Meta-RaPS Algorithm: Relative Error

Furthermore, it can be determined that there is a statistical difference between the CPU

time values of Meta-RaPS algorithms that use different dispatching algorithms as priority

rules in the initial stage. Meta-RaPS a a t c s r has worse CPU time performance compared

to Meta-RaPS e r t and Meta-RaPS f p i .

76

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-METARAPS 55 0.03884 54.1 -5.49
ERT-METARAPS 55 0.36946 104.0 3.99
FPI-METARAPS 55 0.26413 90.9 1.50
Overall 165 83.0

H = 32.16 DF = 2 P = 0.000
H = 32.21 DF = 2 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR-METARAPS 55 15.0010 138.0 10.46
ERT-METARAPS 55 2.7300 67.1 3.02
FPI-METARAPS 55 0.3910 43.9 -7.44
Overall 165 83.0

H = 115.85 DF = 2 P = 0.000
H = 117.22 DF = 2 P = 0.000 (adjusted for ties)__________________________________

Table 13. Comparison of effectiveness of the Meta-RaPS Algorithm with different initial

solutions

The performances of both SA and Meta-RaPS are compared when they use the same

greedy algorithm in their initial stages. As expected, the general trend of the results

indicates that SA and Meta-RaPS that use greedy algorithms as initial solutions perform

better than the greedy algorithms alone (i.e., S A a a t c s r is superior to AATCSR, and

Meta-RaPSERT is superior to ERT). When Tables 14 and 15 are compared, it is observed

that the solution quality o f SA is usually better than that of the Meta-RaPS when the same

greedy algorithms are considered for initial solutions (i.e., S A a a t c s r is superior to Meta-

RaPSa a t c s r , S A f p i is superior to Meta-RaPSFpi).

The statistical significance of performance between algorithms is analyzed using non-

parametric Kruskal-Wallis Tables 14, 15 and 16 show that there is a statistical difference

between the population mean values of Meta-RaPS a a t c s r , S A a a t c s r and AATCSR;

Meta-RaPS e r t , S A e r t and ERT; and Meta-RaPS f p i , SAppi and FPI in terms of relative

77

error (p= 0.000<a=0.05). S A a a t c s r has the best performance because median of relative

errors is less than median value of Meta-RaPS a a t c s r and AATCSR. Similarly, S A e r t

performs best among Meta-RaPSERT and ERT because median of relative errors is less

than median value of Meta-RaPS e r t and ERT; and S A f p i has the best performance

because median of relative errors is less than median value of Meta-RaPS f p i and FPI

(0.004<0.761).

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-METARAPS 55 0.038844622 79.1 -0.74
AATCSR-SA 55 0.000000000 42.3 -7.73
AATCSR 55 0.703125000 127.6 8.47
Overall 165 83.0

H = 88.07 DF = 2 P = 0.000
H = 92.07 DF = 2 P = 0.000 (adjusted for ties)

Table 14. Comparison of effectiveness of the AATCSR and metaheuristic algorithms

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
ERT 55 0.76587 123.2 7.65
ERT-METARAPS 55 0.36946 92.6 1.83
ERT-SA 55 0.02464 33.1 -9.48
Overall 165 83.0

H = 101.20 DF = 2 P = 0.000
H = 101.26 DF = 2 P = 0.000 (adjusted for ties)

Table 15. Comparison of effectiveness of the ERT and metaheuristic algorithms

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
FPI 55 0.761347 126.8 8.33
FPI-METARAPS 55 0.264126 89.1 1.15
FPI-SA 55 0.004854 33.1 -9.48
Overall 165 83.0

H = 106.99 DF = 2 P = 0.000
H = 107.57 DF = 2 P = 0.000 (adjusted for ties)

Table 16. Comparison of effectiveness of the FPI and metaheuristic algorithms

78

According to the Levene’s test, Figures 10,11, and 12 show that there exists significant

difference between variances for the relative errors (p=0.002<a=0.05).

Test for Equal Variances for Relative Error

A A T C SR -M E TA R A PS -

A A T C S R -S A -

A A T C S R -

1.00.0 0.2 0.4 0.6 0.8

Bartlett's T ea
Test Statistic 326.35
P-Vatue_________0.000

Lefene'sTest
Test Statistic 28.20
P-Vatue 0.000

95% Bonferroni Confidence intervals for StOevs

Figure 10. Test for Equal Variances: Relative Error versus Method-AATCSR

Test for Equal Variances for Relative Error

E R T -

1 E R T -M E T A R A P S -
I

E R T -S A -

0.0 0.2 0.4 0.6 1.00.8

Bartlett's Test
Test Statistic 178.94
P-Vatue 0000

P-Vatue

95% Bonferroni Confidence Intervals for StOevs

Figure 11. Test for Equal Variances: Relative Error versus Method-ERT

79

Test for Equal Variances for Relative Error

Bartlett's Test

Test Statistic
P-Vatue

229.32
0.000FPI-

Levene's Test

Test Statistic
P-Vatue i

31.52
0.000

£ FPI-METARAPS •

FPI-SA -

0.0 0.2 0.4 0.6
95% Bonferroni Confidence Intervals for StDevs

0.8 1.0

Figure 12. Test for Equal Variances: Relative Error versus Method-FPI

To sum up, Figures 13 and 14 illustrate that the mean plots of all problem instances at

95% confidence level. Figure 13 clearly shows that there are statistically significant

differences between the relative error values of the greedy algorithms and the

metaheuristic algorithms since there is no overlap between them (e.g., AATCSR does not

overlap with S A a a t c s r and M e ta -R a P S A A T C S R)-

Figure 14Figure 14 illustrates that the CPU times of the proposed algorithms are quite

similar, and they are considerably low compared to the optimal solution.

1.4-I

1.2 -

1.0 -

0.8 -

0 .6 -

0.4-

0 .2 -

0 .0 -

Figure 13. Mean plots intervals at the 95% confidence level of Relative Errors

80

14004

1200-

1000-

600-u
400 -

200 -

Figure 14. Mean plots intervals at the 95% confidence level of CPU Times

4.6 Further Analysis of the Algorithms’ Effectiveness with respect to Feasibility

In this section, we focus on analyzing the algorithms’ effectiveness in terms of producing

initial feasible solutions especially for congested schedules. Table 17 summarizes the

objective function values obtained by MILP (i.e. optimal), each greedy algorithm (i.e.,

AATCSR, ERT, FPI) and each corresponding integrated metaheuristic (i.e., S A a a t c s r ,

Meta-RaPSAATCSR, S A Er t , Meta-RaPSERT, SAppi, Meta-RaPSppi) for 55 instances
generated in Ghoniem and Farhadi (2012); except that each aircraft was prescribed a

time-window of 300 seconds. By reducing the time-window by half (from rj+600 to

ij+300), we obtain more congested instances for which it is more difficult to obtain

feasible solutions. The greedy heuristics generated more infeasible solutions than before

(denoted as “-”). The table shows that out of 55 instances, AATCSR, FPI and ERT could

not find any feasible solution for three, six and eleven instances respectively. SA and

Meta-RaPS are applied to the problem with specific neighborhood schemes to efficiently

generate feasible solutions (e.g., instance #9), improve initially constructed solutions by

the proposed greedy algorithms (e.g., instance #1), and reach the optimal solutions

(denoted as *) (e.g., instance #3). Therefore, it can be concluded through Table 17 that

even though some of the initial solutions obtained by the greedy heuristics are infeasible,

81

with the help of problem specific neighborhood search structures, the metaheuristics can

find feasible, and sometimes optimal, solutions.

82

Objective Function Value

n m Instance Optimal AATCSR S A aatcsr
Meta-

RaPSAATCSR
ERT S A ert

Meta-
RaPSERT

FPI S A m
Meta-

RaPSppi

15 2 1 2139 3137 2139* 2139* 3415 2139* 2346 3415 2139* 2311
2 2173 4384 2173* 2173* 5232 2173* 2647 5232 2173* 2374
3 6606 - 6606* 6631 - 6631 7782 - 6631 7774
4 3352 4816 3352* 3352* 4886 3372 3765 4886 3352* 3352*
5 1240 3322 1240* 1240* 3050 1240* 1999 3050 1240* 1240*

3 6 581 1222 581* 581* - 581* 627 1222 581* 581*
7 1366 2406 1366* 1366* - 1381 1699 2406 1366* 1366*
8 761 1620 761* 962 1895 761* 1026 1895 761* 761*
9 2349 3618 2519 2798 3831 2837 2888 3831 2855 2855
10 753 1393 788 853 1803 787 918 1803 787 787

4 11 2910 3447 2910* 2952 3463 2931 3225 3463 2931 3225
12 3061 3107 3061* 3253 3746 3107 3513 3586 3107 3513
13 2310 2768 2310* 2434 3019 2310* 2480 3019 2310* 2498
14 452 936 452* 607 935 452* 648 935 452* 655
15 468 732 468* 508 948 508 606 948 468* 542

20 2 16 5383 8208 5425 8040 - 5495 8757 - 5495 5495
17 2186 4268 2186* 2187 - 2197 3360 5045 2186* 2947
18 669 774 669* 669* 774 669* 774 774 669* 669*
19 1004 1743 1058 1332 1743 1043 1080 1743 1043 1043
20 1024 1744 1067 1278 1744 1068 1524 1744 1068 1068

3 21 471 1326 471* 475 - 497 878 1326 475 475
22 1575 4616 1575* 2391 5007 1616 2676 5007 1616 2654
23 1783 3248 1839 1844 - 1862 2635 - 1839 1839
24 1044 2287 1044* 1949 2287 1079 1994 2287 1115 1115
25 2080 3673 2080 2670 3667 2148 2670 3667 2098 2098

4 26 354 1157 361 849 1157 361 821 1157 361 859
27 632 2046 657 1478 2046 681 1290 . 2046 657 1633
28 666 1120 666* 1008 1120 972 972 1120 689 972
29 521 1608 563 796 1608 600 1034 1608 586 1080
30 587 1464 587* 1034 1464 587* 1022 1464 591 1012

5 31 1645 2271 1685 1685 2271 1685 1819 1685 1645* 1819
32 340 697 340* 340* 697 340* 604 697 340* 604
33 690 1118 690* 1115 1118 707 1047 1118 707 1047
34 352 869 357 648 869 356 648 869 356 648
35 571 934 571* 587 917 571* 609 917 571* 609

25 2 36 51 51* 51* 51* 51* 51* 51* 51* 51* 51*
37 1801 2705 1803 1803 - 1850 2711 - 1803 1850
38 203 808 203* 203* 808 203* 203* 808 203* 203*
39 1232 1952 1232* 1232* 2032 1238 1535 2032 1232* 1232*
40 2798 5792 2798* 5401 5921 2829 4558 5921 2829 2829

3 41 888 952 894 944 - 944 1352 1042 924 944
42 235 354 302 317 360 259 354 360 259 345
43 75 237 75* 75* 267 105 120 237 75* 75*
44 4442 6613 4487 5295 7330 4460 6083 7330 4519 4519
45 1602 - 1602* 1855 - 1679 1855 - 1644 1644

4 46 356 365 356* 365 365 365 365 365 365 365
47 345 938 375 624 938 412 751 938 407 702
48 412 2087 412* 790 1935 451 1290 1935 412* 790
49 2084 2923 2090 2681 2923 2114 2627 2923 2139 2681
50 125 205 125* 146 205 140 199 205 125* 155

5 51 1094 1690 1094* 1161 1690 1117 1219 1690 1094* 1219
52 123 186 125 162 186 143 168 186 143 168
53 2978 - 1689 1772 - 1745 1772 - 1689 1772
54 1379 2144 1387 1857 2144 1420 1857 2144 1420 2114
55 857 1458 930 1196 1458 1027 1279 1458 1027 1279

Table 17. Computational Results for the Algorithms with Congested Instances

83

CHAPTER 5

AIRCRAFT REACTIVE SCHEDULING PROBLEM METHODOLOGY

5.1 Introduction

We generally tend to assume the operational environment for decision making problems

is stationary. Nevertheless, as the time passes by, a latest update on the situation requires

reviewing the existing decisions that have been previously made. Such conditions are

dynamic in a sense that as the operational settings change, the projected plans have to

constantly be revised.

Diverse disruptions may occur during the execution of already planned service process

due to the dynamic and uncertain operational environment, which could possibly cause

failure in process quality, or continuity. In order to limit the negative consequences of

disruptions, one should take a proper course of action. However it is quite clear that, it is

not preferable to alter the existing decision significantly. For this reason, when we adopt

a course of action, the existing decision has to be taken into account since we prefer to

maintain conformity to the initial decision, and not perturb it much.

In industrial setting, the preplanned production schedules rarely remain fixed due to

unexpected events. It frequently happens in manufacturing environment that an initial

schedule is usually exposed to disruptions, and this makes rescheduling inevitable.

Rescheduling is a dynamic approach where an original production schedule is updated in

response to disruptions (Vieira et al., 2003). Examples of common disruptions are the

arrival of new orders, order cancellations, due date changes, rush orders, machine

breakdowns, resource unavailability, etc. Kanet and Sridharan (1990) stated that a

production planning method which supports an effective rescheduling is necessary if one

is looking for a quick and efficient response after disruptions or other changes.

In order to cope with dynamic structure in a scheduling environment, two scheduling

approaches are considered: reactive scheduling and proactive scheduling.

84

Reactive Scheduling

Reactive Scheduling is an improvement of pre-computed predictive schedules which

revises the schedule after the disruptions occur. In general, the reactive scheduling action

is based on two strategies: rescheduling and schedule repair. A possible intuitive

approach while reacting to the disruptions is generating a new schedule from scratch,

which is called rescheduling. It is expected that this form of reactive scheduling generates

a solution whose solution quality in terms of efficiency measure is superior to any

repaired schedule. On the other hand, in practice, it is encouraged to ensure conformity to

the initial schedule; therefore, generating a new schedule that is very dissimilar to the old

one is not preferable. Schedule repair; on the other hand, modifies the existing initial

schedule and provides relatively similar schedule to the old one. Heuristic based schedule

repair algorithms may involve simple rules such as right-shift rule. When the disruptions

are minor, the initial schedule can be adapted to the new conditions by schedule repair

strategy. However, if the disruptions are frequent and large, rescheduling is may be better

to apply.

Proactive Scheduling

Proactive Scheduling considers the uncertainty in generating schedules; where it is

developed prior the start of the operations. Since proactive scheduling takes into account

potential future disruptions, it tries to minimize their effect on performance measures

while constructing an initial solution. The constructed schedule does not have to be

optimal; however, it has to perform well in uncertain environment. Contrary to reactive

scheduling, one of the main concerns while executing a proactive scheduling is

optimizing the robustness (Wu et al.1993).

Due to the random events that change the system’s state frequently, the schedules have to

be reviewed at some points in time. Therefore, the timing, and the way that the review

have to be done are the important parameters of reactive scheduling decision, which are

going to be discussed in detail. There are different approaches to make a decision on

timing of reactive scheduling. The system is periodically considered for scheduling in

the periodic scheduling', the length of period can be either variable or constant. The

85

reactive scheduling policies are considered at the beginning of each fixed-time in the

constant-time interval. On the other hand, in the variable case, decisions are made after a

certain amount of schedule is realized; however, in practice, constant-time interval

method is more preferable. The schedule is updated after following a certain number of

disruptions in the continuous scheduling. For instance, it takes a reactive scheduling

action each time a random event occurs (Raman, Rachamadugu and Talbot, 1989).

Another approach is adaptive scheduling where the schedule is reviewed after a

predetermined amount of deviation from the initial schedule is observed (Sabuncuoglu,

Karabuk, 1999). Event-driven scheduling, which is a hybrid method, revises the

schedules both periodically and continuously as applied in periodic scheduling and

continuous scheduling respectively.

The way that the schedules are revised consists of several components, and it is as crucial

as timing for the reactive scheduling decision. The scheduling scheme, which can be off

line, on-line or quasi-online (i.e., hybrid, combination of off-line and on-line), is one of

the components. Off-line scheduling method schedules all activities for the whole

scheduling period providing a global perspective; alternatively, on-line scheduling

scheme makes a decision one by one (e.g., dispatching rules), and it accommodates

flexibility. Quasi-online scheduling method schedules a subset of the activities, and

leaves the rest of the activities for future (Wu, Byeon and Storer, 1999).

The second component is amount of data used while generating a schedule. Forecast

window, the time span of job release data; and simulation window, length of the

simulation runs that scheduling decisions is made were defined in Kutanoglu and

Sabuncuoglu (2001). The value of the simulation window may be equal to or smaller than

the forecast window. If the simulation window is equal to the forecast window, it

indicates that all available information is used. When the simulation window is smaller

than the forecast window, only a part of the available information is used, and it is called

partial scheduling.

Another component of the way that the schedules should be revised is the response types,

which are used to manage unexpected events. The responses are categorized as do

86

nothing, reschedule all operations from scratch and repair the schedule by making

alteration to the initial schedule. However, the weakness and strengths of each response

type are not analytically studied.

The last component is the performance metric. Generally, scheduling research has been

concentrated around the schedule quality which includes objective functions such as the

total weighted tardiness, makespan, earliness, and tardiness among others. However,

when the operational environment is dynamic, stability and robustness performance

measures must also be considered. These measures are related to the difference between

the initial schedule and revised one. Uncertainty and unforeseen disruptions degrade

schedule performances and cause variability. Robustness is concerned with the

performance of the realized schedule. The revised schedule is robust if the objective

function value of the new schedule does not deteriorate much (Wu, Storer and Chang,

1993). Stability, on the other hand, is concerned with the difference between the intial

and realized schedules themselves, not just their performance metric. The revised

schedule is called stable if it does not deviate much from the initial schedule when there

is a disruption. Moreover, there is a trade-off between stability and robustness

performance measures, and observing the conditions under which a measure is more

important than another may lead to better understanding, comparison and selection of

reactive scheduling methodologies (Wu et al., 1993).

As was mentioned, reactive scheduling problems consider both primary measure of

schedule performance and stability measure of disruption caused by the rescheduling.

Therefore, the objective in the aircraft reactive scheduling problem (ARSP) is not only

minimizing the schedule’s quality metric (the total weighted start times in this research)

but also minimizing the schedule instability. The reason for using the total weighted start

times as an objective function is that we would like to schedule the aircraft as early as

possible to the runways. By this way, we can also minimize the start time of the latest

positioned flight. The stability can be measured based on number of disrupted operations,

differences between operation start times, or number of schedule changes made. In this

research, the measure of stability can be defined as the difference in operations’ start

87

times, and deviation of runway assignment. Consideration of these objectives leads us to

formulate the ARSP as a multi objective reactive scheduling problem.

5.2 Disruptions in Air Traffic Operations

Passenger satisfaction is one of the key considerations for airline companies that can be

maximized by minimizing flight delays. Throughout the course of daily operations, an

airline is faced with the potential of deviations in the planned flight schedule as a result of

various unexpected events such as severe weather conditions and unexpected aircraft or

personnel failures. However, very little research has been conducted on the problem

disruptive events are considered. The main goal of this chapter is to propose and validate

solution methodologies and heuristic procedures to reschedule the planned flights in the

event of irregular operations. A mathematical formulation introduced by Ghoniem and

Kharbeche (2013) of the aircraft rescheduling problem is utilized to obtain optimal

solutions.

One of the most important aspects of tactical planning is to develop an airline’s published

flight schedule which requires a major effort. Generally, the schedule’s planning process

starts several months ahead of the actual operation of a given flight; and it is dependent

on a broad array of information. Airlines are constantly faced with disruptions which may

cause great variations from its planned flight schedules. The first priority for the airline is

to restore the initial flight schedule as much as possible by minimizing the effects of

numerous cancellations and delays. Therefore, real-time decisions should be made to

treat the overall operations over some period of time.

In this dissertation, aircraft related disruptive events are studied because they occur much

more frequent than other type of disruptions in air traffic operations. Aircraft reactive

sequencing is studied and schedule repair algorithms are developed to deal specifically

with the arrival of new aircraft, flight cancellations and aircraft delays due to unexpected

events such as severe weather conditions, unexpected aircraft or personnel failures.

According to U.S. Department of Transportation, bad weather conditions are cited as the

major cause of disruptions in the airline system accounting for 10% of the disruptions on

88

the average. Due to Hurricane Sandy in 2012 for example, airlines cancelled over 20,000

flights in North America, which cost the U.S. carriers around $300 million.

At the majority of airline operation centers throughout the world, flight disruptions are

mainly dealt with manually. With a reliance on the air traffic controller or responsible

decision makers, and their past experience, the assessments are done, and decision about

the schedules is made. Although it might be sufficient to deal with the irregularity for

now, given the complexity of the problem, the airline operations control center needs

effective real-time decision making tools and strategic schedules that minimizes the

overall impact of disruptions on profitability, and operations.

5.3 Multi-Objective Optimization

Multi-objective optimization (MOO) is the process of optimizing a collection of objective

functions systematically and simultaneously (Marler and Arora, 2004). A general multi

objective optimization problem is stated as follows:

Minimize F(x)=[F/(x), F2(x), ..., F*(x)]T

subject to gj (x) < 0, j = 1,2,..., i

ht (x) = 0,j = 1,2, ...,e (17)

where k is the number of objective functions, i is the number of inequality constraints,

and e is the number of equality constraints.

In contrast to single-objective optimization problem, there is no single global solution in

the multi-objective problem that minimizes all objectives simultaneously because the

objective functions usually conflict with each other. When the solution quality improves,

the other objective function, stability in our case, typically deteriorates. Pareto optimality

is defined to describe the solutions for multi-objective optimization problem (Pareto,

1906).

89

Pareto Optimality

A point x* £ X is Pareto optimal if and only if no other feasible xG X exists such that

(x) < F(x*) , and Ff x) < Ffx*) for at least one objective function.

Sometimes, algorithms provide solutions that satisfy some criteria but may not be Pareto

optimal but weakly Pareto optimal.

Weakly Pareto Optimal

A point x* G X is weakly Pareto optimal if and only if no other feasible xG X exists such

that F(x) < F(x*). It can be inferred that weakly Pareto optimal points are not Pareto

optimal but Pareto optimal points are weakly Pareto optimal (Marler and Arora, 2005).

5.3.1 Multi-Objective Optimization Methods

There are four basic multi-objective optimization methods that are categorized according

to the preferences of the decision maker in the solution process: no-preference methods,

priori methods, posteriori methods, interactive methods.

No-preference Methods

If there is not any decision maker and his/her preference information available, it can be

considered as no-preference method. It can obtain some unbiased compromised solution

without any additional preference information.

Priori Methods

In order to obtain a single Pareto optimal point, the decision makers express the relative

importance of the objective functions and then the method looks for a Pareto optimal

solution satisfying the preferences as much as possible (Miettinen and Hakanen, 2009).

Hierarchical approaches and simultaneous approaches are two primary approaches used

with this method. When the decision maker arranges the objectives according to their

importance for subsequent solution by a single objective optimization method (Azizoglu

and Alagoz, 2005), it is called a lexicographic optimization. The lexicographic

90

optimization would be an example for hierarchical approach. A simultaneous approach

contains value function methods that include the original objectives and preferences of

the decision makers for optimization, and then a single objective optimization problem is

solved. The weighted sum method, which will be discussed in this dissertation, is an

example for simultaneous approach. Since a scalarized objective function is used in the

rescheduling problem, the weighted sum method can be used as a posteriori method so

that different weights are set to generate different Pareto optimal solutions, and then the

decision maker can select the most satisfactory one.

Posteriori Methods

Population based methods such as multi-objective simulated annealing, differential

evolution and nondominated sorting genetic algorithm belong to the posteriori methods

(Rangaiagh, 2008). A representation of the entire Pareto optimal set is generated and a

single solution is selected from a set of mathematically equivalent solutions which satisfy

the preferences. This can be obtained by solving a series of MOO problems by changing

the coefficients of the objective functions (Marler and Arora, 2005). Posteriori methods

may provide many Pareto optimal solutions, which may be computationally expensive, to

the decision makers who review and select one for implementation (Miettinen and

Hakanen, 2009). In this way, the decision makers get an overview of the solutions;

however, it might be difficult for them to analyze a large amount of information.

Interactive Methods

In these methods, a solution pattern is formed and repeated, and the decision maker can

specify the preference information progressively during the solution process. During the

solution of the multi-objective optimization problem, these methods require interaction

with the decision makers. Several interactive methods exist in the literature, and none of

them is superior to all the others; however, some of them may fit different decision

makers and problems better than the others. Examples of these methods are reference

point approaches, satisficing trade-off method, the NIMBUS method (Miettinen and

Hakanen, 2009).

91

5.3.2 Weighted Sum Method

The most common approach to multi-objective optimization is the weighted sum method

in which, a convex combination of functions is reformulated. The general multi-objective

optimization problem is stated below:

minJJi=1AiFi(x)

s.t. gj (x) < J

h f x) < 0; 1=1, 2,..., L

2f=iAi = l (18)

where A* is the weighting factor for the ith objective function, the weights are non

negative Aj > 0 for all i=l,2, J. Changing the weighting factor’s relative values

changes the orientation of the contours for the weighted sum. Minimizing the weighted

sum can yield Pareto optimality (Miettinen and Hakanen, 2009). Mathematically, the

weights are related to the decision maker’s preference function in Steur (1999).

5.3.3. Normalization in the weighted sum method

For the sake of consistent evaluation of objective function values, it is advantageous to

transform the original objective functions; this is especially true with scalarization

methods, which involve a priori expression of preferences. When the objective functions

for a problem have significantly different orders of magnitude, determining suitable

weighting factor is difficult. Therefore, the objective functions should be transformed by

the normalization techniques such that functions are dimensionless. Some common

normalization methods are summarized by Marler and Arora (2005) as follows:

Normalization by the minimum o f the objective functions

This approach yields non-dimensional objective function value with a lower limit of one.

It is referred to as the lower-bound approach, and a common approach to function

transformation is given as:

92

r n o rm a l = f i W HQ'*
s i |y?min|

where f imtnis the minimum value for objective i, and can be defined as an ideal point

such as / £min = f i (x*) where f f x *) is the optimum value of objective i when it is

optimized individually disregarding the other objectives .The upper limit of the f jnormal is

unbounded; on the other hand, the lower limit of f inormalis restricted to non-negative

when /™ n > 0.

Alternatively, the numerator may also be modified which also provides a non-

dimensional objective function in which case, the lower limit of fP-ormalis restricted to

zero. It is referred to as the alternate lower-bound approach, and transformation is given

as follows.

rn o r m a l DfOJi v ^ /

Normalization by the maximum o f the objective functions

Known as the upper-bound approach, is a variation on lower-bound approach that uses

the maximum value of the function in the denominator rather than f f 1171 as follows:

f n o rm a l _ /i(*) ^
J i j m a x * /

where f N ^ i s the maximum value for objective /. This approach yields non-dimensional

objective function value such that f.normal <1 with no restriction on the lower value.

The most robust approach to normalize the objective functions, regardless of their

original range is called the upper-lower bound approach, and is given as follows:

fn o r m a l _ f j(.x) ~ f jnin
J i ^ m a x _ ^ m i n (Z Z)

The denominator of the formulation is the length of the intervals over which the objective

functions vary within the Pareto optimal set. In this case, f.normal gets values between

93

zero and one, and unlike previous approaches, the denominator is guaranteed to be

positive since/}7710* > /}mm.

According to Grodzevich and Romanko (2006), since the objective functions are

normalized by the true values of their variation over the Pareto optimal set, upper-lower

bound approach provides relatively robust normalization. The following scalarized

objective function is used for the multi-objective optimization problem (Rangaiah, 2008).

i AO)-ACO , ^ ^ AO)-AO*)
M m x /,”■“ - / , (« •) + (1 " A) (23)

where 0 < 2 < 1 is a weighting factor. /i(x*) and / 2(x*) are the optimal values of the

individual objectives when they are optimized individually, and /}ma*and f™171 are the

respective maximum and minimum values of the individual objectives. The provided

upper-lower boung approach will be used for the normalization since it is one of the most

robust approaches to normalize the objective functions.

5.4 The Mixed Integer Linear Programming Model for Aircraft Rescheduling

Problem

5.4.1 The Initial MILP Model

The initial MILP model for ARSP is provided in Ghoniem and Kharbeche (2013) where

runway re-assignment and constrained position shifting (CPS) are allowed but penalized.

In addition to existing scheduling constraints discussed in section 3.1 the objective

function, new parameters, decision variables and constraints are modified. Initial runway

assignments and start times are used as input in the revised model. In order to consider

both the solution quality and stability in the objective function, a multi-objective model is

constructed.

Index Sets and Notation

M ={1,2,..., m}: A set of m identical runways; runways are indexed using i=l,2,..., m.

94

J={1,2,..., n}: A set of n aircraft (i.e., landing or departing) from the initial schedule

which can be rescheduled.

D Q J: A set of delayed aircraft.

E <= J={1,2,..., n}: Set of cancelled aircraft.

A: a set of new aircraft arrivals

J = (J — E')UA = A set that includes all aircraft that are considered for rescheduling.

r7 ; ready time for aircraft j to take-off or land (taxi time is not included), V; e J

S j : target time for aircraft j to take-off or land, V/' e J

dj: deadline for aircraft j to take-off or land, V/ e J

Oj. operation type of aircraft j, being a landing or a departure, V; E J.

Cy. weight class of aircraft j, e.g., heavy, medium, or light, V/ E J.

wj: weight assigned to aircraft j based on its operation type and its weight class, V) G / . In

particular, higher priority has been assigned to landings over departures and to heavy

aircraft over medium and light ones. Moreover, in the test-bed wji=Wj2 if Oji=Oj2 and

Cji=Cj2.

dj: Penalty cost of deviation from the initial start time of aircraft j, V) E] — (D U E)

Penalty cost of deviation from the initial assignment o f the aircraft j , Vj E J — (D U

E)

Skj: sequence-dependent minimum separation time required between aircraft k and j if

they are respectively the leading and the following aircraft, V k ,j E J ,k =£ j.

n x\ Preemptive coefficient for the deviation from the initial start times and the initial

runway assignment for all aircraft that are being rescheduled but not experiencing any

disruption.

95

7t2: Preemptive coefficient for the sum of the total weighted start times of all aircraft that

are being rescheduled.

The solution associated with the initial schedule are now input for the ARSP

tf. the start time of the operation for aircraft j in the initial schedule, V/ G /

- _ fl, if aircraft j has been assigned to runway i in the initial schedule, V i e M, V/ 6 /.
l] I 0, otherwise

Decision Variables

tj: the start time of aircraft j (i.e. the time for departure or landing), V j £ J.

_ fl, if aircraft j is assigned to runway i, V i £ M ,j £ J.
iJ I 0, otherwise

_ (1, i f both a irc ra ft k and j are assigned to the same runw ay
~ (0, otherwise where tk > tj, V k ,j £ j , k =£ j

Min 7r1(£ j 6;-(du£) a j(g j + qt) + 2 ;£ /- (due) Pj(uj + O/)) + n2 Z je j Wjtj (24)

s.t. I ieMZij = l ,V j £ J (25)

r) < tj < dj, V; £ J (26)

tj > t k + skj - (1 - y kj){ d k - rj + skj), V k ,j £ j , k * j (27)

y kj + yjk ^ z ik + Zij 1, V i G M, V k ,j £ J ,k =£ j (28)

tj + g j - qj - tj, v j £ J — (D U £■) (29)

SieM "i- — Oj = Si6M »V _/ G / — (D U E) (30)

y, z binary, g, q, u, o > 0. (31)

The objective function (24) minimizes respectively the components, the sum of the total

weighted deviation from the initial start times, the total weighted deviation from the

96

initial runway assignments for all aircraft are rescheduled but not experiencing any

disruption, and the total weighted start times of all aircraft. The aircraft that are

experiencing any disruption (i.e., cancelled), are not included in the calculation of total

weighted start time deviation and total weighted runway deviation since for instance, the

start time deviation of a cancelled flight is impractical to measure. Constraint (25)

satisfies that every aircraft is assigned to exactly one of the m runways. Constraint (26)

specifies allowable ready time-deadline time-window restrictions. Constraint (27)

satisfies minimal separation times between aircraft that are assigned to the same runway.

Constraint (28) specifies that if two aircraft are assigned to the same runway, then one

must operate before the other. Constraint (29) reflects the deviation from initial start

times. Constraint (30) reflects the deviation from initial runway assignments. Constraint

(31) defines the binary and sequencing decision variables.

5.4.2 The Revised MILP Model

In order to have a fair analysis, and study the contribution of each objective function

component on the total objective function, a set of three new coefficients is introduced

for the three different components as follows:

n x: coefficient/weighting factor for the total weighted start time deviation (TWSD) from

the initial start times for all aircraft that are being rescheduled but not experiencing any

disruption.

7t2: coefficient/weighting factor for the total weighted runway deviation (TWRD) from

the initial runway assignment for all aircraft that are being rescheduled but not

experiencing any disruption.

7r3: coefficient/weighting factor for the sum of the total weighted start times (TWS) of all

aircraft that are being rescheduled.

Referring to Section 5.3.3, we have revised the MILP model to incorporate the

normalized objective function. At first, the MILP model is updated as follows:

M innx 'Ljej-{DvE)aj (gj + qj) + n 2 £ye; - (DuE)/?; (u; + Oj) + n3 'Zj e wj tj (32)

97

where + n 2 + n 3 = 1. Then, the objective function is rewritten in a normalized

format to minimize a linear convex combination of normalized instability and total

weighted start time objectives where each objective function component has an allocated

weighting factor indicating its relative importance. The objective function of the ARSP is

as follows:

A/TJ (f T W S D (x) ~ f TW S D (x *) \ , „ (f T W R D W - f T W R D (x *) \ , _ (/ t W ' s (x) - / t W ' s (* *) \

1 I) 2 V « « D - / V W * - >) + I m - t t s i x -)) <33)

Or

M in (?‘j£ J - < .D u e) a j (. 9 j +tl j) - f T W S D (. X * ') \ f ' Z j £ J - (D u E) P j (u j + 0 j) ~ f T W R D (x ') \

1 V) 2 \ f r W D - f T W R D (x ’)) +

3 V ^ }

where f TwsD(x*), f TWRD{x*), f Tws(x*), frwsb* frwRD’ frw s are the estimates of the

optimal and the maximum values of the individual objective components. Each represent

a theoretical optimistic or a pessimistic objective value for an individual objective. In

order to find these values, it is required to implement the MILP model three times by

using different combinations of 7r1# n2,n 3. For instance, frwsD (**) is the estimate value

of the minimum total weighted start time deviation for a given instance, and can be

estimated after the first run by setting

7Tj = 1 — ti2 — n 3, if n2 = n3 = e, where £ is a very small positive real number.

Similarly, f Twso(x*) is the estimate value of the minimum total weighted start time

deviation for a given instance, and can be estimated after the first run by setting

7T2 = 1 — n-L — n 3, if 7T! = 7t3 = E, where e is a very small positive real number.

Finally, f TWS (**)> which is the estimate value of the minimum total weighted start time

for a given instance, and can be estimated after the second run by setting n 3 = 1 — n 1 —

n 2, where n1 = n 2 — s.

98

frwsDix *) = 0, optimistic TWSD value of the case that start times of the aircraft are not

affected by the disruption.

fr w R D (**) = optimistic TWRD value of the case that the runway assignments of the

aircraft are not affected by the disruption.

fr w s ix *) — optimistic TWS value of the case that start times of the aircraft are

minimum.

frwsD = pessimistic TWSD value of the case that start times of aircraft get worst after

the disruption.

frw R D = pessimistic TWRD value of the case that the runway assignments of aircraft get

worst after the disruption.

f™ s = pessimistic TWS value of the case that start times of all aircraft get worst after

the disruption.

In order to clarify the methodology of estimating the minimum and maximum values of

objective functions, a sample data for the problem with 15 aircraft and 2 runways is given

as follows:

Aircraft = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Ready Times = [35, 51, 76, 218, 237, 264, 203, 57, 109, 165, 122, 252, 354, 441, 276]

Target Times = [95, 111, 136, 278, 297, 324, 263, 117, 169, 225, 182,312,414, 501,

336]

Deadlines = [635, 651,676, 818, 837, 864, 803, 657, 709, 765, 722, 852, 954, 1041, 876]

Weights = [6, 2, 6,4, 1, 5, 3 ,2 ,2 , 2, 3, 6,1, 5, 5]

For the given problem instance, the best total weighted start time value is 177 obtained by

exact solution. The initial schedule is shown in Figure 15 with the following operation

start times and runway assignments.

99

Start times = [35, 75, 107, 231, 299, 264, 261, 57, 147, 207, 135, 311,406, 478, 371]

Runway Assignment = [[1 0], [1 0], [0 1], [1 0], [0 1],[0 1], [1 0], [0 1],[0 1], [0 1], [1

0] j [1 0], [0 1], [0 1],[0 1]] where [1 0] means that an aircraft is assigned to runway 1 and

[0 1] is that it is assigned to runway 2.

Runway #1 1 2 11 4 7 12
Runway #2 8 3 9 10 6 5 15 13 14

Figure 15. Initial Schedule Before Disruption

Suppose that there is an aircraft cancellation, which is aircraft # 3, and only the aircraft

that might be affected by the disruption are going to be repaired. Since the aircraft on the

1st runway are not affected by the cancelation, and aircraft 8 is assigned prior to 3, they

are then removed from the aircraft set that need repair leaving the set of aircraft to repair

as aircraft # 5,6,9,10,13,14,15. In order to estimate f r ^ D(x*),/n r a D ^ ’)-Aws(^*)»

frwsD’ frwRD and frws > initially, the data set is updated based on the disruption

information (i.e., the parameter values for aircraft #3 are omitted since it is cancelled).

Then, by setting

i) nx = 1 - 7t2 — 7r3 when n 2 = tc3 = s = 8.854 x 10-12 regarding the total

weighted start time deviation.

f r w s D (**) = 0= where there is no start time deviation

ii) 7t2 = 1 — n x — n3 when nx — n 3 — e regarding the total weighted runway

deviation.

frwRD(x*) = where there is no runway assignment deviation

f tr ia x = i 0 7 <r^
JTWSD

iii) n 3 = l — n x —n2 when n x — n 2 — e

100

frw s(.x *) = 10752, where the total weighted start times is minimized

/m a x _ -5 9 /m a x 9 1 3 1 4 JTWRD JTWS

As a summary, it is estimated that the [/twsd(**) » / twrd (**) >frws(.x *)] =

[0,0,10752] and U W o f ^ D ^ s] =] = [10752,32,21314],

Accordingly, the objective function for this problem is updated as follows:

Min 7rx (frwsoM-0\ (/ twrdM - o\ f l W *) - 107S2N
1 V. 1 0 7 5 2 -0 J * \ 3 2 - 0 / s \ 2 1 3 1 4 -1 0 7 5 2 / v '

The optimal schedule obtained for the ARSP by using the objective function with

n i ~ n 2 = 0.5, 7T3 = 0 is shown in Figure 16.This solution has the objective value of 0

with TWSD=0, TWRD=0, and TWS=11430.

Runway #1 1 2 11 4 7 12
Runway #2 8 9 10 6 5 15 13 14

Figure 16. Optimal Solution After Disruption

In the computation study chapter, the experiments will be conducted with various

weighting factor for analysis.

5.5 Reactive Scheduling Algorithms

Suppose that the initial schedule (i.e., initial assignment of each aircraft to a runway, and

operation start times) is given and that we periodically receive disruption information of

flight cancellations, flight delays, and new flight arrivals. If there is a flight cancellation,

the number and indices of the cancelled flights are provided. If there is a flight delay,

number of delayed flight and amount of delay are provided. Finally, if there is a new

unexpected flight arrival, the number of the new aircraft, index of the new aircraft, the

parameter information (e.g., ready time, target time, deadline, etc.) of the new flight are

provided. The data is updated based on the disruption information. Once the status is

101

updated, the response strategies to each corresponding disruption are executed; and the

revised schedules are obtained. The general control framework of the rescheduling

strategy problem is provided in Figure 17.

In this dissertation, unlike the studies in the literature which focus on one type of

disruption at a time, different types of disruptions with multiple disruptive events are

considered simultaneously. Therefore, the sequential evaluation methodology is

developed to treat the disruptions and revise the schedules periodically. When there is at

least one disruption, firstly, we check whether a flight cancellation is observed or not. If

that is the case, a response algorithm is executed for cancellation, and a revised schedule

is generated as the current schedule. Then, the next step is to check whether a flight delay

is observed in which case a response algorithm is executed for delay, the schedule is

repaired based on a response, and the obtained new schedule is updated as a current

schedule. Finally, we check whether a new unexpected flight arrival is observed or not,

and respond accordingly. The detailed framework of the control phase employed in this

research is depicted in Figure 18.

Church and Uzsoy (1992) state that the disrupted schedules can be repaired by three

reactive scheduling methods: right shift rescheduling, partial rescheduling and complete

regeneration. In the right shift rescheduling, each remaining operation is postponed by the

amount needed to obtain a feasible schedule. Partial rescheduling algorithm reschedules

only the operations that are affected. Complete regeneration algorithm reschedules the

entire set of operations from scratch.

The problem addressed here is a multi-objective optimization problem where both

solution quality (i.e., total weighted start time) and stability (i.e., total weighted start time

deviation, total weighted runway deviation) of the solution are considered by a decision

maker.

102

C h e c k D isruption
Inform ation

I f D isruption
O c c u rs?

T y p e o f D isruption:
F light C an ce lla tio n
F light D elay
U n e x p e c te d Flight

If flight If flight d e la y If u n e x p e c te d flightc an ce lla tio n

Data:
N um ber of
cance lla tion
T h e in d ex of
c a n ce lled flight

D ata:
N um ber of de lay
T h e in d ex of
d e la y ed flight
T h e a m o u n t of
delay

S ta tu s U p d a te

D ata:
N u m b er o f u n e x p e c te d
flight
T h e in d ex of
u n e x p e c te d flight
R e a d y tim e, ta rg e t tim e.
w e ight, etc ._____________

R e s p o n d to
d isrup tion :
G e n e ra te a

re v ise d s c h e d u le

P ro v id e S olu tion

Figure 17. General Control Framework for the Rescheduling Strategy

103

disruption?

Flight U nexpected
Flight?Flight Delay?

Run Algorithm for
Unexpected

Flight

Flight Delay?

Unexpected
Flight? for ju st Flight

Cancellation

for just
Unexpected

Flight

revised schedule,
U pdate a s new

revised schedule.
Update a s new

Run Algorithm for
Unexpected

Flight

revised schedule.
U pdate a s new

evised schedule.
U pdate a s new

Provide Solution
for ju st Flight

Delay

Flight Delay

for Flight

Run Algorithm for
U nexpected

Flight

C heck Disruption

Run Algorithm for
Flight Delay

Run Algorithm for
Flight Delay

revised schedule.
U pdate a s new

Run Algorithm for
Unexpected Flight

schedule, Update

Unexpected
v Flight?

Flight Cancellation,
Flight D elay and

U nexpected Flight

Provide Solution for
Flight Delay and

U nexpected Flight

Flight Cancellation
a n d U nexpected

Flight

U pdate a s new
Run Algorithm for

Flight CanceWation

Figure 18. Detailed Control Framework for the Rescheduling Strategy

104

Therefore, we developed alternative reactive scheduling strategies that consist of

repairing and rescheduling algorithms for each type of disruptive event to incorporate the

multi-objectivity and to update the schedule. A complete regeneration method, TWST

Algorithm, is a greedy mle which treats flight cancellation, delay and unexpected arrivals

simultaneously. Another complete regeneration method is a hybrid-metaheuristic called

SA-Re Algorithm, which gets the initial solution from the TWST Algorithm and then

applies simulated annealing algorithm. In addition to complete regeneration methods,

partial repair methods are also proposed. The proposed responses for each disruption are

considered at every decision point, and then, the best (i.e., the one with the minimum

objective function value) reactive sequencing policy is identified from several candidates.

Do-Nothing and Left-Shift are the repair strategies which are considered specifically for

the flight cancellation disruption. Partial repair strategies, RepairBySlack (Reschedule the

affected flights by minimum slack time), RepairByEDD(Reschedule the affected flights

by earliest deadline) and InsertDelayed Algorithms (Insert the delayed flights to the best

position), are proposed to repair the schedule after the delays in particular.

RepairByTWST and InsertNew Algorithms are the repair strategies for the unexpected

flight arrival disruption. Figure 19 illustrates the reactive scheduling strategies for

corresponding disruptive event.

These response strategies require an initialization stage to determine the rescheduling

point and the set of aircraft that are affected by the disruption. It is assumed that the

initial schedule is given, and at the beginning of every time period, the disruption

information is updated in advance. To illustrate the problem and the solution methods, an

example is provided for the instance with the number of aircraft=20 and number of

runways=2. Suppose also that the initial aircraft schedule on each runway before any

disruption is available.

105

SA-Re
AlgorithmDo Nothing Left-Shift

Algorithm
RepairBySiack

Algorithm

TWST
Algorithm
(complete

regeneration)

InsertDelayed
Algoithm

RepairByEDD
Algorithm

RepairByTWST
Algoithm

InsertN ew
Algoithm

Flight Cancellation Flight Delay

R esp o n ses for
each Disruptions

U nexpected Flight

Figure 19. Reactive Scheduling Strategies for Each Disruption Type

The disruption information are as such that there are 2 cancellations (flights #4 and #20),

there is one delay (flight #19), and there are 3 unexpected new flights (# 21,# 22, #23).

The cancelled, the delayed and the new unexpected flights are shaded in Figure 20. The

initial start times of the aircraft on each runway before any disruption are shown in

Figure 21.

Runway #1 13 12 1 m , - 5 18 17 16
Runway #2 11 3 2 6 14 ■ l l 15 ?£> 10 | 9 8 7

Figure 20. A Sample Initial Schedule

Runway #1 121 156 216 294 329 588 668 703
Runway #2 71 169 199 282 328 388 453 483 536 573 643 678

Figure 21. Initial Start Times of Each Aircraft Before Any Disruptions

106

The set of affected aircraft; in other words, the potential set of aircraft to be rescheduled

(shaded aircraft) is provided in Figure 22.

21 22 23

/
Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 19 15 20 10 9 8 7

Figure 22. Affected Aircraft to Reschedule

5.5.1 TWST Algorithm

TWST is a complete regeneration algorithm that reschedules all flights from scratch. The

Total Weighted Start Time (TWST) Algorithm is developed to minimize TWST in a

multi-objective optimization problem. The reason for proposing this algorithm is that one

of the components of the total objective function is total weighted start time; therefore, it

would be a considerable approach to propose an algorithm to handle TWST

minimization. The procedure for TWST Algorithm is given below.

TWST Algorithm

Let J be a set of unscheduled aircraft.

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Check the disruptions information (cancellation, delay, unexpected flight).

Step 3. Update the input data (i.e., ready time, target time, etc.) according to the

following disruption types:

For cancellation: remove the cancelled flight and its parameter from the input data

For delay: update the ready time, target time and deadline with respect to the

delay time

107

For new unexpected: insert new flight and its parameters to the input data

Step 4. For V/ G {/ U A}, Calculate the ratio using W j/ (j j + s kj) where Wj,r j , skj are

the weight of flight j , ready time of flight j , and sequence-dependent separation time

between preceding flight k and flight j respectively.

Step 5. According to the ratio that is calculated in Step 4, assign the aircraft with the

largest ratio to a runway on which its operation can start earlier.

Step 6. Remove flight j from set J.

Step 7. Update the makespan of the runway where the aircraft is assigned on.

Step 8. Go to Step 4 and continue until all aircrafts are scheduled.

Step 9. Calculate the normalized total weighted start time deviation, total weighted

runway deviation and total weighted start time as an objective function.

After determining the set of aircraft to reschedule, the TWST Algorithm assigns the flight

by the largest ratio of weight to ready time plus separation time. The w,/(r; + skj) ratio is

computed for each unscheduled aircraft, and the aircraft with the largest value is assigned

to a runway on which its operation can start earliest. The rationale of using this ratio is

that the weighted shortest processing time first (WSPT) is a greedy rule that is applied for

minimizing the total weighted completion time when there is a single machine scheduling

problem in the literature (Pinedo, 2008). Considering the unequal ready time, sequence

dependent separation time and multiple resource aspect of our problem, TWST greedy

algorithm is proposed. Since the contribution of the total weighted start time to the total

objective function value is comparably high, stating an algorithm which takes care of the

solution quality is a reasonable methodology.

5.5.2 SA-Re Algorithm

SA-Re is a rescheduling algorithm that reschedules all flights from scratch. The main

algorithm is similar to the SA metaheuristic which was successfully implemented earlier

in Section 3.3. SA-Re is introduced for the problem to improve initially constructed

108

solutions by the proposed TWST algorithm. Therefore, this method primarily aims to

obtain solutions to minimize the total weighted start time as well. The procedure for SA-

Re is given below.

SA-Re Algorithm

Stepl: Get the initial solution from TWST Algorithm, and update the objective function

value.

Step 2: Set the initial temperature as a function of the current objective function value T

= k.f(6) as in Section 3.3.

Step 3: Generate a new solution in the neighborhood of the initial solution by applying

neighborhood search algorithms explained in Section 3.3.

Step 4: Compare objective function value of new candidate solution to the current value.

If the new value is better, accept it. If it is worse, then accept the new solution with a
&e

probability of acceptance (rand [0,1] < e t , where Ad = / (0 ') — / (#)) .

Step 5: Cool down/update the temperature (T = a.T).

Step 6: Go to Step 3 and continue until stopping criteria.

(c < tmax where iteration counter hits maximum number of iterations) is satisfied

Step 7: Update the solution, and objective function value.

5.5.3 Do-Nothing Algorithm

Do-Nothing strategy is a type of response that is applied when flight cancellation

disruption occurs. After taking out a flight from its position on a runway, no corrective

action is taken for the remaining flights assigned on that runway. Therefore, Do-Nothing

keeps the initial runway assignments, flights sequence on each runway and start times as

they are. The rationale behind this response is to generate a stable schedule that does not

deviate much from the initial schedule after a flight is canceled. The procedure for the

Do-Nothing strategy is given as follows:

109

Do-Nothing Algorithm

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Get the canceled flight j, V / 6 E.

Step 3. Take out the flight j from the initial schedule (Remove j from /).

Step 4. Recalculate the normalized total weighted start time and update total objective

function value

Note that the removed flight is excluded from the calculation of the objective function

value. To give an example of how Do-Nothing works, assume that an initial schedule is

given in Figure 20, and flights #4 and #20 are cancelled. After the first three steps, the set

of flights potential to apply Do-Nothing strategy is determined as {5,7,8,9,10,16,17,18}.

Consequently, after the cancellation disruption, the final schedule and the final start times

are given in Figure 23 and Figure 24 respectively.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 23. Updated Schedule After Do-Nothing Algorithm

Runway #1 121 156 216 329 588 668 703
Runway #2 71 169 199 282 328 388 453 536 573 643 678

Figure 24. Start Times After Do-Nothing Algorithm

5.5.4 Left-Shift Algorithm

Similar to Do-Nothing, Left-Shift strategy is applied when flight cancellation disruption

occurs. It is a partial repair algorithm in which minor modifications are made to the

particular runway after the disruptions. Left-Shift algorithm keeps the initial runway

assignments, and the flights sequence on each runway. After taking out a flight from its

110

position on a runway, the sequence of flight remains unchanged, all remaining flights

assigned to that runway are shifted earlier (i.e., preponed), and the start times are

updated. In general, it is expected that the value of the updated start times be smaller than

the initial start times. However, due to the existence of sequence-dependent separation

time constraint, this may not be the case all the time. The rationale behind this algorithm

is to satisfy conformity to the initial schedule while minimizing the weighted start times

after flights are canceled. The procedure for the Left-Shift strategy is given as follows:

Left-Shift Algorithm

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Get the canceled flight j (V; e E).

Step 3. Determine the position c and the runway i of the canceled flight j.

Step 3. Take out the flight j from the initial schedule (Remove j from /).

Step 4. For the flights that are scheduled on runway / after the canceled flight j.

Step 5. Update the position as the initial position -1.

Step 6. Update the start time according to the Equations (1) - (4).

Step 7. Repeat until E={).

Step 8. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

The earlier example can be used to illustrate the Left-Shift Algorithm. Suppose that the

initial schedule is given in Figure 20, and flights #4 and #20 are cancelled. After the first

three steps, the set of flights to apply Left-Shift algorithm is determined as

{5,7,8,9,10,16,17,18}. The final schedule and the final start times are given in Figure 25

and Figure 26 respectively. Due to the nature of sequence-dependent separation time, the

start times of the flights #5, #10, #9,# 8,#7 decrease because of the left-shift; however,

the values of the flights #18, #17, #16 are not affected.

I l l

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 25. Updated Schedule After Left-Shift Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 388 453 533 568 621 656

Figure 26. Start Times After Left-Shift Algorithm

5.5.5 RepairBySlack Algorithm

RepairBySlack is a partial repair algorithm that is applied to a runway in which a flight is

delayed. If there is one delayed flight, the repair algorithm is considered only for the

particular runway. If there are more than one delayed flights and they are scheduled on

different runways in the initial schedule, the runway assignments will be same for the

initial and final schedule after the disruption. The set of flights that are considered for

repair consists of the delayed flights and the flights which are scheduled after the delayed

flight (i.e., whose start times are greater than the delayed flight(s)) on the same mnway as

the delayed flights. Regarding stability, the algorithm attempts to preserve the original

sequences and the initial start times on each runway. At time t, the algorithm assigns the

flight with the minimum start time slack value (t;- — t) first. In other words, the

prioritization among the flights is set by getting closer to the flights’ initial start times.

The procedure for RepairBySlack algorithm is given below.

RepairBySlack Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j (Vy E D).

Step 3. Determine the position p and the runway i of the delayed flight j .

Step 4 For the delayed flight j and flights that are scheduled on runway i after the delayed

flighty.

112

Step 5. Set current time t as the start time of the delayed flight in the current schedule.

Step 6. While the deadline constraint satisfies t<Dj .

Step 7. Calculate the (tj — t).

Step 8. Find j = {je J: min;- {(t; — t)} and assign aircraft j to the runway i.

Step 9. Update the start time according to the Equations (1) - (4).

Step 10. Repeat until £>={}.

Step 11. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

In addition to the cancellation of flights # 4 and #20, flight # 19 is delayed in this

example. Since the disruptions are treated sequentially, the current schedule that we

should consider is not the initial schedule before any disruption; instead the schedule that

provides the minimum objective function value among the candidate responses after the

cancellation. Suppose that, at the first stage, Do-Nothing algorithm gives better

normalized total objective function value than Left-Shift; therefore, the schedule after the

execution of Do-Nothing is accepted as the current schedule which is shown in Figure 27

and Figure 28. Once the set of aircraft to be scheduled are determined (shaded below),

the current time is updated and the slack values are calculated. The schedule and

corresponding start times obtained after the RepairBySlack Algorithm are provided in

Figure 29 and Figure 30. It is clearly observed in this example that the algorithm

generates considerably stable schedules for a given instance.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 27. Updated Schedule After Do-Nothing Algorithm (Current schedule)

113

Runway #1 121 156 216 329 588 668 703
Runway #2 71 169 199 282 328 388 453 536 573 643 678

Figure 28. Updated Start Times After Do-Nothing Algorithm (Current schedule)

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 29. Updated Schedule After RepairBySlack Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 473 538 599 616 643 678

Figure 30. Start times After RepairBySlack Algorithm

5.5.6 RepairByEDD Algorithm

RepairByEDD is a partial repair algorithm, which works similar to RepairBySlack,

except that the algorithm sorts the flights by deadline, and assigns the flight with the

earliest deadline (dj) first. In other words, the prioritization among the flights is set by

getting closer to the flights’ deadlines. Runway re-assignment is not permitted. Obtaining

a feasible schedule after the disruptions is one of the targets of the rescheduling

problems. Since the deadline constraint affects a schedule being feasible or not, the

rationale behind this algorithm is obtaining a feasible schedule after disruptions.

Regarding stability, the algorithm attempts to preserve the initial schedule and start times

by repairing only the flights that can potentially be affected by the disruptions. The

procedure for RepairByEDD Algorithm is given below.

RepairByEDD Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j (V/ e D).

114

Step 3. Determine the position p and the runway i of the delayed flight j .

Step 4 For the delayed flight j and flights that are scheduled on runway i after the delayed

flighty.

Step 5. While the deadline constraint satisfies t<Dj.

Step 6. Find j = {je J: min; (d;) and assign j to the runway i .

Step 7. Update the start time according to the Equations (1) - (4).

Step 8. Repeat Step until D={}.

Step 9. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

Similar to the previous case, again suppose that, the schedule after Do-Nothing is

accepted as the current schedule as shown in Figure 23 and Figure 24. Once the set of

aircraft to be scheduled are determined (shaded below), they are rescheduled according to

their earliest deadlines. The schedule and corresponding start times obtained after running

RepairByEDD Algorithm are provided in Figure 31 and Figure 32.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 31. Updated Schedule After RepairByEDD Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 440 473 566 603 643 678

Figure 32. Start Times After RepairByEDD Algorithm

115

5.5.7 InsertDelayed Algorithm

InsertDelayed is a partial and right shift repair algorithm that is considered only for the

particular runway to which the delayed flight is initially assigned. The algorithm tries all

flight insertion alternatives for the delayed flight(s) on the same runway to find the best

insertion with the minimum value of the normalized objective function. Therefore, the

InsertDelayed emphasizes both efficiency and stability. After inserting the flight into a

position on a runway, start times of all the remaining flights assigned to that runway are

shifted if necessary. InsertDelayed attempts to keep the sequence of the aircraft on the

corresponding runway unchanged as much as possible. If there are more than one delayed

flights on the same runway, the insertion starts with the flight that is positioned earlier.

The procedure for InsertDelayed algorithm is given below.

InsertDelayed Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j (Vj E D).

Step 3. Determine the position p and the runway i of the delayed flight j.

Step 4. Determine the position piast of the last flight scheduled on runway i.

Step 5. Increase the ready time, target time and deadline of the delayed flight j by the

amount of delay.

Step 6. For the delayed flight j and flights that are scheduled on runway i after the

delayed flight j.

Step 7. Construct an insertion set / which consists ofp, p+1, p+2,..., piast-

Step 8. Insert the delayed flight into place ae I.

Step 9. Update the start time according to the Equations (1) - (4).

116

Step 10. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

Step 11. If the combined objective function value after the insertion into place a is better

than the best objective function value so far.

Step 12. Update the best objective function value and the corresponding schedule.

Step 13. Repeat until insertion set /={}.

Step 14. Display the best combined objective function value and the schedule.

The earlier example can be used again to illustrate the InsertDelayed Algorithm. For a

delayed flight #19, there exist 7 insertion alternatives; the existing position of the flight #

19, between flight #15 and # 20, 20 and 10,10 and 9,9 and 8, 8 and 7, and after flight 7.

1= {14-15,15-20,20-10,10-9,9-8,8-7,7-}

Compare the combined objective function value for i=0,l,..., 6 and select the best one in

terms of the objective function value. Insertion examples are given in Figures 33, 34 and

35.

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 m 15 20 10 9 8 7

Figure 33. Existing Position of Flight #19 (i=0)

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 20 ■ 10 9 8 7

Figure 34. Insert flight #19 between 20 and 10 (i=2)

117

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 20 10 9 8

Figure 35 Insert flight #19 after flight 7 (i=6)

5.5.8 RepairByTWST Algorithm

RepairByTWST is a partial repair algorithm, which works similar to the proposed

complete regeneration approach, TWST algorithm, and the partial repair algorithms

presented earlier to treat new unexpected flights. The RepairByTWST resembles

RepairBySlack and RepairByEDD algorithms in a sense that it repairs schedules of the

affected flights so it does not reschedule from scratch; and it resembles TWST algorithm

in a sense that the set of flights to repair are assigned to the runways by the largest

wj/(rj + skj) ratio. The set of flights that are affected and considered for repair consists of

the new unexpected flights and the flights whose start times are greater than the minimum

ready times values of the new flights. The approach aims at preserving the initial

schedule as much as possible while the total weighted start times are at minimum. Hence,

the algorithm focuses on both stability and efficiency simultaneously. The procedure for

RepairByTWST Algorithm is given below.

RepairByTWST Algorithm

Step 1. Get initial schedule (schedule after delay).

Step 2. Get the new unexpected flight j (V/ E A).

Step 3. For the new flight j and the flights whose start times are greater than the minimum

ready times values of the new flights.

W i

Step 4. Calculate the ratio using

Step 5. According to the ratio that is calculated in Step 4, assign the aircraft with the

largest ratio to a runway on which its operation can start earlier.

Step 6. Remove flight j from set J.

118

Step 7. Update the makespan of the runway where the aircraft is assigned on.

Step 8. Repeat until all aircrafts are scheduled.

Step 9. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

In the previous example, suppose that there are three new unexpected flights, flights #21,

#22 and #23. As the disruptions are treated sequentially, the current schedule that we

should consider is not the initial schedule before any disruption; instead the schedule that

provides the minimum objective function value among the candidate responses after the

delay. Assume that, RepairBySlack strategy gives the best normalized total objective

function value; therefore, the schedule after running RepairBySlack is accepted as the

current schedule as shown in Figures 36 and 37.

Once the set of aircraft to be rescheduled are determined (shaded below), they are

rescheduled according to the largest ■ ratio. The schedule and corresponding start

times obtained after the RepairByTWST Algorithm is executed are provided in Figures

38 and 39.

21 22 23

/
Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 36. Updated Schedule After RepairBySlack Algorithm (Current schedule)

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 473 538 599 616 643 678

Figure 37. Start Times After RepairBySlack Algorithm (Current schedule)

119

Runway #1 13 12 1 5 18 21 17 22 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7 23

Figure 38. Updated Schedule After RepairByTWST Algorithm

Runway #1 121 156 216 329 588 623 668 703 763
Runway #2 71 169 199 282 328 473 538 599 616 643 678 748

Figure 39. Start Times After RepairByTWST Algorithm

5.5.9 InsertNew Algorithm

InsertNew is a partial and right shift repair algorithm similar to the InsertDelayed

algorithm. The algorithm tries flight insertion alternatives of the unexpected flights to

find the best insertion with the minimum value of the normalized objective function. The

set of flights that are affected and considered for repair consists of the new unexpected

flights and the flights whose start times are greater than the minimum ready times values

of the unexpected flights. The InsertNew emphasizes both efficiency and stability

objectives. After inserting a flight into a position on a runway, start times of all remaining

flights assigned to that runway are updated. If there are more than one new unexpected

flight, the insertion starts with the flight whose deadline is the earliest. The procedure for

InsertNew algorithm is given below.

InsertNew Algorithm

Step 1. Get initial schedule (schedule after delay).

Step 2. Get the new unexpected flight j (V/ 6 A).

Step 3. For the new flight j and the flights whose start times are greater than the minimum

ready times values of the new flights.

Step 4. Denote the earliest position of the flight whose start times are greater than the

minimum ready times values of the new flights on runway i as x, (Vi € M).

120

Step 5. Denote the last position of an aircraft on runway i as /,.

Step 6. Construct an insertion set/w hich consists of x it X i+ 1 , X t+2 ,

Step 7. Insert the delayed flight into place ae I.

Step 8. Update the start time according to the Equations (1) - (4).

Step 9. Calculate the combined objective function value (total weighted start time

deviation, total weighted runway deviation and total weighted start time).

Step 10. If the combined objective function value after the insertion into place a is better

than the best objective function value so far.

Step 11. Update the best objective function value and the corresponding schedule.

Step 12. Repeat until insertion set /-{}.

Step 13. Display the best combined objective function value and the schedule.

Suppose that in addition to cancelled and delayed flights, there are 3 new unexpected

flights, flights #21, #22 and #23. Once again, suppose that the schedule after the

RepairBySlack is accepted as the current schedule which is shown in Figures 36 and 37.

The earlier example can be used again to illustrate the InsertNew Algorithm. For the new

flight #21 for instance, there exist 6 insertion alternatives; between flight #18 and #17,

17 and 16, 9 and 8, 8 and 7, after flight 16, and after flight 7.

I={18-17, 17-16,16-, 9-8, 8-7, 7-}

Compare the combined objective function value for i=0,l,..., 7 and select the one with

the best objective function value. Insertion examples are given in Figure 40- Figure 45.

Runway #1 13 12 1 4 5 18 21 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 40. Insert Flight #21 between Flights 18 and 17

121

Runway #1 13 12 1 4 5 18 17 21 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 41. Insert Flight #21 between Flights 17 and 16

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 10 9 8 7 21 19

Figure 42. Insert Flight #21 between Flights 7 and 19

Runway #1 13 12 1 4 5 18 21 22 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 43. Insert Flight #22 between Flights 21 and 17

Runway #1 13 12 1 4 5 18 17 21 22 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 44. Insert Flight #22 between Flights 21 and 16

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 10 9 22 8 7 21 19

Figure 45. Insert Flight #22 between Flights 9 and 8

In this chapter, the Aircraft Reactive Scheduling Problem (ARSP) is addressed. An

airline is faced with the potential deviations in the planned flight schedule because of the

unexpected events. In this chapter, several solution methodologies and heuristic

procedures are proposed in order to update the existing aircraft schedule dynamically.

Repair and complete regeneration algorithms are developed for each type of disruptive

events, specifically, flight cancellations, aircraft delays and the arrival of new aircraft.

122

Do-Nothing and Left-Shift are the repair strategies for the flight cancellations,

RepairBySlack, RepairByEDD, InsertDelayed algorithms are proposed to repair the

schedule for flight delays, and RepairByTWST and InsertNew are the repair algorithms

for the arrival of new aircraft. Two complete regeneration algorithms, TWST Algorithm

and SA-Re Algorithm are proposed to generate schedules from scratch to treat flight

cancellations, delays and unexpected arrivals simultaneously. The performance (solution

quality, schedule stability and computational time) of the various algorithms is compared

to the optimal solutions and to each other in Chapter 6.

123

CHAPTER 6

COMPUTATIONAL STUDY FOR AIRCRAFT REACTIVE SCHEDULING

ALGORITHMS

The computational study for the aircraft reactive scheduling algorithms presented here

aims to determine the performance of the proposed solution approaches for a wide range

of problem sizes. Solutions are compared to the optimal solutions obtained by mixed-

integer linear programming model discussed earlier. The solution quality and stability of

the reactive scheduling algorithms are evaluated for problems with a number of aircraft

n = 15,20,25 and number of runways m = 2,3,4,5. For each combination of n and m,

5 instances were generated totaling 55 problem instances.

6.1 Data Generation

Similar to Section 4.1, each aircraft is characterized by its operation type (i.e, arrival or

departure), weight-class (i.e, heavy, medium or light), priority (aircraft tardiness penalty),

ready time, target time, deadline, and separation times. In addition to these, a feasible

initial aircraft schedule before any disruption, set of delayed, unexpected new flights and

cancelled flights, and their corresponding parameter values are generated as follows:

1. Aircraft operation types were randomly generated as 0 or 1 to represent an arrival and

departure respectively.

2. Aircraft weight classes were randomly generated as 1, 2, 3 to represent heavy, medium

or light aircraft respectively.

3. The aircraft tardiness penalty (priority) Wj varies between 1 and 6 and was introduced

as a function of the aircraft weight class and its operation type, where the least weight of

1 was assigned to small departures and the greatest weight o f 6 was given to heavy

arrivals.

124

4. The ready-times 7} were randomly generated using a discrete uniform distribution over

the interval (0 ,7 ~)j where y is a parameter that was randomly selected between 30 and

90.

5. Every aircraft was prescribed a time-window of 600 seconds. Therefore, deadlines dj

were calculated by 7} + 600.

6. Target times <5) were calculated by 7}- + 60.

7. As presented in Sherali et al. (2010) and shown in Table 1, the minimum separation

times skj are given and range between 30 and 200 seconds depending on aircraft type

(small, large or heavy), and the type of operation (landing vs. departure) that the actual

values are enforced by aviation authorities.

8. The aircraft penalty cost of deviation from the initial start time a;-, Vj 6 / - (D U £)

were randomly generated between 1 and 5.

9. The aircraft penalty cost of deviation from the initial runway assignment fy, V/ e J —

(D U E) were randomly generated between 5 and 10.

10. The number of cancelled flights is randomly generated between 5% and 10 % of the

number of aircraft, and the specific cancelled flights is/are randomly generated.

11. The number of delayed flights is randomly generated between 11% and 40% of the

number of aircraft, and the specific delayed aircraft is/are randomly generated.

12. The amount of delay is randomly generated as the 50% of the difference between

maximum and minimum ready time values o f the delayed flight(s).

13. The number of new unexpected flights is randomly generated between 5% and 15%

of the number of aircraft, and the specific new unexpected aircraft is/are randomly

generated.

125

6.2 Effectiveness of the Algorithms

The proposed algorithms were implemented in C and run on an Intel Core 2 Duo 2.10

GHz CPU with 4.00 GB of RAM laptop. The optimal solutions are obtained by MILP

formulations which were coded in AMPL and solved using CPLEX 12.4 on Intel Core i7-

2600 CPU with 3.40 GHz and 8 GB RAM desktop.

The performances of the reactive scheduling algorithms are measured by computing the

error between the normalized combined objective function value of the algorithm and the

normalized optimal solution value. The error is calculated via Equation (36) for each test

problem.

Error = fALG - f optim al (36)

where fALG is the normalized combined objective function value of the proposed repair

and rescheduling algorithms and / optim al *s the normalized combined objective function

value of the optimal solution for a test problem. Optimal solutions were obtained using

the MILP formulation presented in Section 5.4.

Unlike most of literature that concentrates on one type of disruption at a time, in this

dissertation, various types of disruptions with multiple disruptive events are considered

concurrently. Therefore, as stated in Section 5.5, the sequential evaluation methodology

is developed to consider the disruptions, and revise the schedules periodically. In a

period, first, the response strategies executed for flight cancellation are evaluated in terms

of normalized combined objective function value. Once the best strategy for each

objective weight coefficient level is determined, the current schedule is updated

accordingly. Then, response strategies for flight delay are compared, and the algorithm

that provides the best objective function value for each objective weight coefficient

combination is decided. Finally, the response strategies proposed to repair or reschedule

the aircraft sequence after a disruption called new unexpected flight are evaluated.

1 2 6

6.2.1 Effectiveness of the Repair Algorithms for Flight Cancellation

Fifty five different unique problem instances with the initial schedule before any

disruptions of cancellation, delay or new flights were generated. These instances are

solved with 13 different scenarios of objective weight coefficient levels. Reactive

scheduling strategies to repair flight cancelations are evaluated under different objective

weight coefficient levels (7T1(n 2, n 3). Recall that n1 is the coefficient weight factor for

the total weighted start time deviation (TW.SD), n2 is the coefficient weight factor for the

total weighted runway deviation (TWRD), and n3 is the coefficient weight factor for the

total weighted start time (TWS). n x and n 2 reflect the importance of schedule stability,

while 7T3relects its quality. Average errors for the reactive scheduling strategies and

average CPU times are obtained by averaging the values for the instances of each

aircraft-runway combination. The performance values of the Do-Nothing and Left-Shift

repair strategies are compared. A sample experiment result is provided for the Do-

Nothing algorithm for flight cancelation with n x = 0.75, n 2 = 0 ,n3 = 0.25 in Table 18

in order to simplify the comparison results in Table 19.

Instance
Optimal D o-Nothing

TW SD TW RD TWS ^optimal TW SD TW RD TWS ^Do-Nothing

1 0 13 11430 0.016 0 0 11430 0.016 0.000

2 375 107 23799 0.158 0 0 25046 0.165 0.007

3 794 121 47564 0.237 0 0 54169 0.314 0.076

4 192 104 94083 0.251 0 0 94604 0.250 0.000

5 178 81 11037 0.022 0 0 11430 0.032 0.010

Average 0.0187

Table 18. A sample experiment result for Do-Nothing algorithm

Table 18 illustrates how the average error is calculated for a given instance. For the given

five instances, the total weighted start time deviation, total weighted runway deviation,

total weighted start time values and the normalized combined objective function value of

the Do-Nothing strategy is compared to the values o f the normalize objective function

value of the optimal solution.

127

Average error of the normalized objective function of each response strategy for 55

unique problem instances are evaluated for 13 different combinations of (n x,n 2, nr3) in

Table 19.

0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

*3 1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

Do-Nothing 0.745 0.512 0.334 0.167 0.000 0.400 0.000 0.068 0.124 0.000 0.020 0.000 0.000

Left-Shift 0.630 0.426 0.277 0.139 0.000 0.335 0.021 0.058 0.109 0.042 0.055 0.063 0.085

Table 19. Average error of the algorithms for flight cancellations

According to Table 19, for a specific weight coefficient value, the cases where an

algorithm provides the smallest average error are highlighted. For instance, when

(n1 = 0, n 2 = 0 ,7T3 = 1), Left-Shift algorithm has better mean performance than Do-

Nothing algorithm. On the other hand, when the solution quality of the schedule is more

important than the conformity to the original schedule, Do-Nothing algorithm provides

higher average error than Left-Shift algorithm. When the weight coefficient value of all

objective function components are equally important for a decision maker, {n1 =

0.33,7T2 = 0.33,7t3 = 0.33), applying the Left-Shift algorithm provides lower average

error. Left-Shift algorithm is still preferable for the cases where both weight coefficient

value of total weighted start time and weight coefficient value of either total weighted

start time deviation or total weighted runway deviation are equal ((tc1 = 0.5, n 2 =

0, 7t3 = 0.5), (n1 = 0, n 2 — 0.5, tc3 — 0.5)). Even though it is observed that the number

of cases that the Left-Shift algorithm provides better objective function value for different

weight coefficient value, Do-Nothing algorithm could find solutions that reach the

optimal solutions.

According to the Figure 46, of Anderson-Darling normality test, the average error data is

normally distributed.

128

Probability Plot of Error
Normal

Mean
StDe/
AD

0.2369
0.2136
2.240

P-Value <a005
95-

90-

70-
60-

S.
20 -

-0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Error

Figure 46. Normality test for average error

The performances of the response strategies are analyzed statistically by t-test using the

statistical software program, Minitab 15.1. The statistical analysis is conducted under two

circumstances; schedule stability and solution quality. Therefore, the analysis are focused

on the weight coefficient values nx,n 2, n 3 where schedule stability is represented by

n x, n 2 and solution quality by n 3. The runway deviation is not considered in the response

strategies for flight cancellations; so n 2 is not the leading element in this analysis.

i) Note the different combinations of weight coefficients which satisfy tcx> n 3 .

There are 5 combinations where n x> n 3 which are (n x = 0 .25 ,7r2 =

0.75, n 3 = 0), (nx = O.S,n2 = 0.5, n3 = 0), (n x = 0.75,7r2 = 0, n 3 =

0.25), (n x = 0.75, tt2 = 0.25, n 3 = 0), (n x = 1 , t c 2 = 0, n 3 = 0). For each of

the 55 problem instances, these 5 combinations are considered totaling 275

observations.

To test whether there is a significant test between the both strategies, the following

hypothesis is tested using t-test:

HQ.iix - l x 2 < 0

129

Where fa is the mean error of Do-Nothing algorithm, fa is the mean error of Left-Shift

algorithm when the stability is more important.

Table 20 shows that the average error of Do-Nothing strategy is statistically significantly

less (p-value=0.000<a = 0.05) from the average error of the Left-Shift algorithm when

stability is of more concerned. Since 7'a n_1 « 1.65 and Tstatistics = —36.51, do not

reject the Null hypothesis, H0and conclude that the Do-Nothing is better to apply when

schedule minimizing start time deviation from the initial schedule is more important than

the minimizing start time.

Paired T-Test and Cl: Do-Nothing -stability, Left-Shift -stability

P a i r e d T f o r D o - N o t h i n g - s t a b i l i t y - L e f t - S h i f t - s t a b i l i t y

N Mean S t D e v SE Mean
D o - N o t h i n g - s t a b i l i t y 2 7 5 0 . 0 0 4 1 0 0 . 0 0 8 2 1 0 . 0 0 0 4 9
L e f t - S h i f t - s t a b i l i t y 2 7 5 0 . 0 5 3 4 1 0 . 0 2 1 2 3 0 . 0 0 1 2 8
D i f f e r e n c e 2 7 5 - 0 . 0 4 9 3 1 0 . 0 2 2 4 0 0 . 0 0 1 3 5

95% C l f o r me an d i f f e r e n c e : (- 0 . 0 5 1 9 7 , - 0 . 0 4 6 6 5)
T - T e s t o f me an d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 3 6 . 5 1 P - V a l u e = 0 . 0 0 0

Table 20. Paired T-Test and Cl: Do-Nothing-stability Left-Shift -stability

ii) There are 8 combinations where n x < n 3 which are (n1 = 0, n 2 = 0, n 3 =

~ 0 ,7r2 = 0.25, 7t3 = 0.75), {fa = 0,7r2 = 0.5, n 3 = 0.5), (n1 =

0, n2 — 0.75,7T3 = 0.25), (n1 — 0 ,n2 — l , n 3 = 0), (n1 = 0.25,7r2 =

0, n3 = 0.75), (% = 0.33, 7t2 = 0.33, n 3 = 0.33), (% = 0.5,7r2 = 0, n 3 =

0.5) and for each of the 55 problem instances these 8 combinations are

considered totaling 440 observations.

To test whether there is a significant test between the both strategies, the following

hypothesis is tested using t-test:

i < 0

Hx: f a ~ f a > 0

130

Where ^ xis the mean error of Do-Nothing algorithm, n2 is the mean error of Left-Shift

algorithm when the stability is more important.

Table 21 shows that the average error of Left-Shift strategy is statistically significantly

less (p-value=0.000<a = 0.05) from the average error of the Do-Nothing algorithm when

solution quality is of more concerned. Since « 1.65 and Tstatistics 26.02, reject the

Null hypothesis, H0 and conclude that the Left-Shift is better to apply when schedule

minimizing start time is more important than the minimizing start time deviation.

Paired T-Testand Cl: Do-Nothing-quality, Left-Shift-quality

P a i r e d T f o r D o - N o t h i n g - q u a l i t y - L e f t - S h i f t - q u a l i t y

N Mean S t D e v SE Mean
D o - N o t h i n g - q u a l i t y 4 4 0 0 . 2 9 3 8 0 . 2 3 6 3 0 . 0 1 1 3
L e f t - S h i f t - q u a l i t y 4 4 0 0 . 2 4 6 8 0 . 1 9 8 7 0 . 0 0 9 5
D i f f e r e n c e 4 4 0 0 . 0 4 6 9 2 0 . 0 3 7 8 2 0 . 0 0 1 8 0

95% C l f o r me an d i f f e r e n c e : (0 . 0 4 3 3 7 , 0 . 0 5 0 4 6)
T - T e s t o f me an d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 2 6 . 0 2 P - V a l u e = 0 . 0 0 0

Table 21. Paired T-Test and Cl: Do-Nothing-quality Left-Shift -quality

According to the deviation from the optimal normalized objective function information,

the statistical analysis for the performance of the repair algorithms for flight cancellation

is summarized in Figure 47.

Fligh t C an ce lla tio n

Schedule S tability is m ore im portan t Solution Q uality is m ore im p ortan t

HSJti

W hich Has B e tte r M ean Error Perform ance ? W hich Has B e tte r M ean Error P erfo rm ance ?

Do-Nothing le ft-S h ift D o-N othing Left-Shift
Do-Nothing vs Left-Shift ✓ D o-Nothing vs Left-Shift /

Figure 47. Summary of the statistical tests for flight cancellation

131

Table 22 provides the average CPU times of the Do-Nothing and Left Shift algorithms

for 55 different unique problem instances for flight cancellations. The CPU times of the

Do-Nothing and Left-Shift are indifferent and less than 0.001 second. The average CPU

time does not change significantly with the change in n l tn 2, and 7T3 .

JT i 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

”3 1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

Do-Nothing 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Left-Shift 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 22. Average CPU time of the algorithms for flight cancelations

6.2.2 Effectiveness of the Repair Algorithms for Flight Delay

Due to the sequential evaluation methodology developed to treat disruptions, once the

performance analysis of the repair algorithms for flight cancellations are conducted and

the revised schedule is updated as the current schedule, the performance of the repair

algorithms for flight delays are evaluated next. The proposed algorithms are tested under

various flight delays and objective weight coefficient levels. Average errors for the

reactive scheduling strategies and average CPU times are obtained by averaging the

values for 55 instances for each aircraft-runway combination. The performance values of

the RepairBySlack, RepairByEDD, InsertDelayed repair strategies are compared.

6.2.2.1 Effectiveness of the Repair Algorithms for Flight Delays after Left-Shift is

Applied for Flight Cancellation

Table 23 provides the average error values of the response strategies for different unique

problem instances for flight delays given that Left-Shift algorithm is applied to update the

schedule after being disrupted by flight cancellation.

According to Table 23, for a specific weight coefficient value, the cases where an

algorithm provides the smallest average error are highlighted. For instance, when

(n1 = 0, 7t2 = 0 ,7T3 = 1), RepairByEDD algorithm has better average error performance

than RepairBySlack and InsertDelayed algorithms.

132

7Ti 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

^ 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

TTs 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByEDD 0.654 0.441 0.277 0.144 0.000 0.537 0.056 0.173 0.299 0.112 0.192 0.168 0.224

RepairBySlack 0.878 0.608 0.389 0.199 0.000 0.688 0.040 0.226 0.379 0.080 0.200 0.121 0.161

InsertDelayed 0.745 0.509 0.322 0.166 0.000 0.591 0.042 0.184 0.317 0.084 0.172 0.126 0.168

Table 23. Average error of the algorithms for flight delays if the Left-Shift algorithm is

applied for flight cancellations

When optimizing the solution quality is the primary objective of interest rather than

minimizing the instability (n1 = 0, n 2 = 0, n 3 = 1), it is more reasonable to apply

RepairByEDD algorithm that generates smaller average error. On the other hand, when

the stability of the schedule is more important, RepairBySlack algorithm provides

smallest average error. Out of thirteen weight coefficient scenarios, InsertDelayed

algorithm outperformed RepairByEDD and RepairBySlack algorithms once in terms of

average error, when the coefficient value of the total weighted start time is three times

more important than the coefficient value of the total weighted start time (7̂ =

0.75,7T2 = 0 ,7T3 = 0.25). The average error performance of RepairByEDD,

RepairBySlack, InsertDelayed algorithms are same when (7̂ = 0,7r2 = 1, n 3 = 0).

When all the objective function components are equally important for a decision maker,

applying RepairByEDD algorithm provides the best average error value.

To further analyze the performances of the repair algorithms, they are analyzed

statistically by t-test, again under two circumstances; schedule stability and solution

quality. Similar to the repair algorithms for the flight cancellations, the runway deviation

is not allowed in the design of response strategies for flight delays; therefore, 7̂ and n 3

are the foremost factors in this analysis.

When the Schedule Stability is More Important

i) The different combinations of weight coefficients which satisfy n x> n 3 are

considered.

133

Table 24 shows that there is a statistical difference (p-value=0.000<a = 0.05) between

the population mean values of performance in terms of average error for the algorithms.

RepairBySlack has better mean performance than RepairByEDD when the stability is the

more important, and when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairEDD-sta, left shift-RepairBySI-st

P a i r e d T f o r l e f t s h i f t - R e p a i r E D D - s t a b i l i t y - l e f t s h i f t - R e p a i r B y S l -
s t a b i l i t y

N Mean StD ev SE Mean
l e f t s h i f t - R e p a i r E D D - s t a 2 75 0 . 1 5 0 6 3 0 . 0 5 9 9 1 0 . 0 0 3 6 1
l e f t s h i f t - R e p a i r B y S l - s t 2 75 0 . 1 2 0 3 3 0 . 0 5 6 6 5 0 . 0 0 3 4 2
D i f f e r e n c e 2 75 0 . 0 3 0 3 0 0 . 0 2 4 9 7 0 . 0 0 1 5 1

95% Cl f o r mean d i f f e r e n c e : (0 . 0 2 7 3 3 , 0. 03326)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 2 0 . 1 2 P - V a l u e =
0 . 0 0 0

Table 24. Paired T-Test on average error of the RepairByEDD and RepairBySlack if the

Left-Shift is applied for cancellation-Schedule Stability

Table 25 shows that there is also a statistical difference (p-value=0.000<a = 0.05)

between the population mean values of performance in terms of average error for the

algorithms, and RepairByEDD has worse performance than InsertDelayed when the

stability is more important, when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairEDD-sta, left shift-lnsertDel-sta

P a i r e d T f o r l e f t s h i f t - R e p a i r E D D - s t a b i l i t y - l e f t s h i f t - I n s e r t D e l -
s t a b i l i t y

N Mean S t D ev SE Mean
l e f t s h i f t - R e p a i r E D D - s t a 275 0 . 1 5 0 6 3 0 . 0 5 9 9 1 0 . 0 0 3 6 1
l e f t s h i f t - I n s e r t D e l - s t a 275 0 . 1 1 8 6 0 0 . 0 5 0 0 2 0 . 0 0 3 0 2
D i f f e r e n c e 275 0 . 0 3 2 0 2 7 0 . 0 1 5 4 1 7 0. 0 0 0 9 3 0

95% Cl f o r mean d i f f e r e n c e : (0 . 0 3 0 1 9 7 , 0 . 0 3 3 8 5 8)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 3 4 . 4 5 P - V a l u e =
0 . 0 0 0

Table 25. Paired T-Test on average error of the RepairByEDD and InsertDelay if the

Left-Shift is applied for cancellation-Schedule Stability

134

Table 26 shows that there is a statistical difference (p-value=0.029<a = 0.05) between

the population mean values of performance in terms of average error for the algorithms,

and InsertDelayed has better performance than RepairBySlack when the stability is the

more important, when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairBySI-st, left shift-lnsertDel-sta

P a i r e d T f o r l e f t s h i f t - R e p a i r B y S l - s t a b i l i t y - l e f t s h i f t - I n s e r t D e l -
s t a b i l i t y

N Mean S t D e v SE Mean
l e f t s h i f t - R e p a i r B y S l - s t 275 0 . 1 2 0 3 3 0 . 0 5 6 6 5 0 . 0 0 3 4 2
l e f t s h i f t - I n s e r t D e l - s t a 275 0 . 1 1 8 6 0 0 . 0 5 0 0 2 0 . 0 0 3 0 2
D i f f e r e n c e 275 0 . 0 0 1 7 3 2 0 . 0 1 3 0 5 8 0 . 0 0 0 7 8 7

95% Cl f o r mean d i f f e r e n c e : (0 . 0 0 0 1 8 2 , 0 . 0 0 3 2 8 2)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 2 . 2 0 P - V a l u e =
0 . 0 2 9

Table 26. Paired T-Test on average error of the RepairBySlack and InsertDelay if the

Left-Shift is applied for cancellation-Schedule Stability

When the Solution Quality is more important

ii) Considering the different combinations of weight coefficients which satisfy

Tti < n 3.

Table 27 shows that there is a statistical difference (p-value=0.000<a = 0.05) between

the population mean values of performance in terms of average error for the algorithms.

RepairByEDD has better mean performance than RepairBySlack, unlike the Table 24,

when the quality is more important, when the Left-Shift is applied for cancellation.

Table 28 shows that it is statistically significant that (p-value=0.000<a = 0.05),

RepairByEDD has better average error performance than InsertDelayed when the

stability is the more important, when the Left-Shift is applied for cancellation.

135

Paired T-Test and Cl: left shift-RepairEDD-qua, left shift-RepairBySI-qu

P a i r e d T f o r l e f t s h i f t - R e p a i r E D D - q u a l i t y - l e f t s h i f t - R e p a i r B y S l -
q u a l i t y

N Mean S t D e v SE Mean
l e f t s h i f t - R e p a i r E D D - q u a 440 0 . 3 1 6 1 0 . 2 0 5 2 0 . 0 0 9 8
l e f t s h i f t - R e p a i r B y S 1 -q u 440 0 . 4 2 2 0 0 . 2 7 2 3 0 . 0 1 3 0
D i f f e r e n c e 440 - 0 . 1 0 5 9 1 0 . 0 6 8 4 9 0 . 0 0 3 2 6

95% Cl f o r mean d i f f e r e n c e : (- 0 . 1 1 2 3 3 , - 0 . 0 9 9 4 9)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 3 2 . 4 4 P - V a l u e =
0 . 0 0 0

Table 27. Paired T-Test on average error of the RepairByEDD and RepairBySlack if the

Left-Shift is applied for cancellation-Solution Quality

Paired T-Test and Cl: left shift-RepairEDD-qua, left shift-lnsertDel-qua

P a i r e d T f o r l e f t s h i f t - R e p a i r E D D - q u a l i t y - l e f t s h i f t - I n s e r t D e l -
q u a l i t y

N Mean S t D e v SE Mean
l e f t s h i f t - R e p a i r E D D - q u a 440 0 . 3 1 6 1 0 . 2 0 5 2 0 . 0 0 9 8
l e f t s h i f t - I n s e r t D e l - q u a 440 0 . 3 5 5 2 0 . 2 3 2 5 0 . 0 1 1 1
D i f f e r e n c e 440 - 0 . 0 3 9 0 6 0 . 0 2 9 2 8 0 . 0 0 1 4 0

95% Cl f o r mean d i f f e r e n c e : (- 0 . 0 4 1 8 0 , - 0 . 0 3 6 3 1)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 2 7 . 9 8 P - V a l u e =
0 . 0 0 0

Table 28. Paired T-Test on average error of the RepairByEDD and InsertDelay if the

Left-Shift is applied for cancellation-Solution Quality

Finally, Table 29 shows that, when the Left-Shift is applied for cancellation, there is a

statistical difference (p-value=0.029<a = 0.05) between the population mean values of

performance in terms of average error for the algorithms, and InsertDelayed has better

performance than RepairBySlack similar to the analysis in Table 26.

According to the deviation from the optimal information, the statistical analysis for the

performance of the repair algorithms for flight delays given that Left-Shift Algorithm is

applied for flight cancellation is summarized through Figure 48.

136

Paired T-Test and Cl: left shift-RepairBySI-qu, left shift-lnsertDel-qua

P a i r e d T f o r l e f t s h i f t - R e p a i r B y S l - q u a l i t y - l e f t s h i f t - I n s e r t D e l -
q u a l i t y

N Mean S tD ev SE Mean
l e f t s h i f t - R e p a i r B y S l - q u 440 0 . 4 2 2 0 0 . 2 7 2 3 0 . 0 1 3 0
l e f t s h i f t - I n s e r t D e l - q u a 440 0 . 3 5 5 2 0 . 2 3 2 5 0 . 0 1 1 1
D i f f e r e n c e 440 0 . 0 6 6 8 5 0 . 0 4 0 0 9 0 . 0 0 1 9 1

95% Cl f o r mean d i f f e r e n c e : (0 . 0 6 3 1 0 , 0 . 0 7 0 6 1)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 3 4 . 9 8 P - V a l u e =
0 . 0 0 0

Table 29. Paired T-Test on average error of the RepairBySlack and InsertDelay if the

Left-Shift is applied for cancellation-Solution Quality

F lig h t D e la y
G iv e n t h a t L e ft-S h if t i s a p p l ie d in F l ig h t C a n c e l la t io n

S c h e d u le S ta b ili ty is m o re im p o r ta n t S o lu tio n Q u a lity i s m o re im p o r ta n t

K \ > n j

fc;
:

V
I

W hich H as B e t te r M ean E rro r P e rfo rm a n c e ? W h ic h Has B e t te r M e a n E rro r P e r fo rm a n c e ?
RepairByEDD R epairB ySlack In se r tD e la y e d R epairByED D R epairB yS lack In s e r tD e la y e d

RepairByED D v s R epairB yS lack / RepairB yED D v s R epairB yS lack /
RepairByED D v s In se r tD e la y e d ✓ R ep a ir8 y E D D v s I n s e r tD e la y e d /
R epairB yS lack v s In se r tD e la y e d / R epairB yS lack v s I n s e r tD e la y e d /

Figure 48. Summary of the statistical tests for flight delay - Part 1

Depending on the initially selected strategy in the flight cancellation and the decision

maker’s interest on solution quality and stability, the performance of the repair

algorithms was evaluated. Given that Left-Shift algorithm is preferred to repair flight

cancellation disruptions, when the solution quality is more important, RepairByEDD

algorithm outperforms the RepairBySlack and InsertDelayed. Conversely, InsertDelayed

can be preferred when the schedule stability has a higher importance.

137

6.22.2 Effectiveness of the Repair Algorithms for Flight Delays Given that Do-Nothing

is Applied for Flight Cancellation

Table 30 provides the average error of the response strategies for 55 different unique

problem instances for flight delays; given that Do-Nothing algorithm is applied to update

the schedule after being disrupted by flight cancellation.

nx 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

™3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByEDD 0.693 0.520 0.347 0.173 0.000 0.577 0.057 0.307 0.460 0.114 0.344 0.170 0.227

RepairBySlack 0.917 0.687 0.458 0.229 0.000 0.703 0.015 0.326 0.489 0.031 0.275 0.046 0.061

InsertDelayed 0.784 0.588 0.392 0.196 0.000 0.609 0.021 0.290 0.435 0.043 0.260 0.064 0.086

Table 30. Average error of the algorithms for flight delays if the Do-Nothing algorithm is

applied for flight cancellations

According to Table 30, for a specific weight coefficient value, the cases where an

algorithm provides smaller average error are highlighted. When the solution quality is

more important than the stability (% = 0, n 2 = 0, n 3 = 1), RepairByEDD algorithm is

the best strategy to apply. Conversely, when the stability of the schedule is more

important than the solution quality, RepairBySlack algorithm provides the lowest average

error. When the weight coefficient values of all three objective function components are

equal (nt = 0.33, tc2 — 0.33, tt3 = 0.33); InsertDelayed algorithm performs better than

RepairByEDD and RepairBySlack in terms of the average error unlike the performance

when the Left-Shift algorithm is applied for flight cancellations. When Table 30 and

Table 23 are compared, the average error values indicate that the best strategy in each

coefficient weight combination is consistent except for two scenarios ((tix = 0.33,7r2 =

0.33, n3 = 0.33), (n1 = 0.5, 7t2 = 0 ,n 3 — 0.5)). For instance, when the weight

coefficient value of the total weighted start time is equal to or greater than the total

weighted start time deviation, the RepairByEDD is the best strategy for flight delays

when both Left-Shift algorithm and Do-Nothing algorithm are applied for flight

cancellations. Another inference is that, for these cases, the average error values of the

RepairByEDD are smaller if the Left-Shift algorithm is applied for flight cancellations.

138

Similarly, when the weight coefficient value of the total weighted start time is smaller

than the total weighted start time deviation, RepairBySlack is the best strategy among the

provided repair algorithms for flight delays in both Left-Shift algorithm and Do-Nothing

algorithm are applied for flight cancellations. Moreover, these cases, the average error

values of the RepairBySlack are smaller if the Do-Nothing algorithm is applied for flight

cancellations.

Similar to Section 6.2.2.1, the detailed statistical analysis are conducted for the proposed

repair algorithms developed for flight delays when Do-Nothing algorithm is applied for

the flight cancellations. Appendix A includes the detailed results of the paired t-tests on

average error of the RepairByEDD, RepairBySlack and InsertDelay if the Do-Nothing is

applied for cancellation. The analyses are categorized into two categories: schedule

stability and solution quality. According to the deviation from the optimal information,

the statistical analysis for the performance of the repair algorithms for flight delays given

that Left-Shift Algorithm is applied for flight cancellation is summarized through Figure

49.

F lig h t D e la y
G iv e n t h a t D o -N o th in g is a p p l ie d in F l ig h t C a n c e l la t io n

S c h e d u le S ta b ili ty is m o re im p o r ta n t S o lu tio n Q u a lity is m o re im p o r ta n t

n?n 3

W hich Has B e t te r M e a n E rror P e r fo rm a n c e ? W h ic h Has B e tte r M e a n E rro r P e r fo rm a n c e ?
RepairByEDD R epairB yS lack In s e r tD e la y e d R epairByED D R epairB yS lack In s e r tD e la y e d

RepairByEDD v s R epairB yS lack / RepairByED D v s R epairB yS lack /

RepairByEDD v s I n se r tD e la y e d ✓ R epairByED D v s In s e r tD e la y e d /

R epairB ySlack v s I n se r tD e la y e d / R epa irB yS lack v s I n s e r tD e la y e d /

Figure 49. Summary of the statistical tests for flight delay - Part 2

Depending on the initially selected strategy in the flight cancellation (i.e. Do-Nothing vs.

Left-Shift) and the decision maker’s interest on solution quality and stability, the

performance of the repair algorithms was evaluated. Given that Do-Nothing algorithm is

preferred to repair flight cancellation disruptions, when the solution quality is more

139

important, RepairByEDD algorithm still outperforms the RepairBySlack and

InsertDelayed. On the other hand, RepairBySlack can be preferred when the schedule

stability has a higher importance.

6.2.3 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight

After the performance analysis of the repair algorithms for flight delays are conducted

and the revised schedule is updated as the current schedule, and the performance of the

repair algorithms for new unexpected flight arrivals are evaluated next. Owing to the

sequential evaluation methodology developed to treat disruptions, the current schedule is

not the very initial schedule but rather the schedule after treatment for cancelation and

delay. The proposed algorithms are tested under various new unexpected arrivals and

objective weight coefficient levels. Average errors for the reactive scheduling strategies

and average CPU times are obtained by averaging the values for 55 instances for each

aircraft-runway combination. The performance values of the RepairByTWST and

InsertNew repair strategies are compared.

From Section 6.2.1, we concluded that when the weight coefficient value of the total

weighted start time is equal to or greater than the total weighted start time deviation, the

Left-Shift algorithm is the best strategy. On the other hand, Do-Nothing is the best

strategy for a decision maker who gives more importance to the total weighted start time

deviation than total weighted start time.

From Section 6.2.2, we concluded that when the weight coefficient value of the total

weighted start time is equal to or greater than the total weighted start time deviation, and

if the Left-Shift algorithm is applied for flight cancellations, then the RepairByEDD is

the best strategy among the provided repair algorithms for flight delays.

We also concluded that when the weight coefficient value of the total weighted start time

deviation is greater than the total weighted start time, and if the Do-Nothing algorithm is

applied for flight cancellations, then the RepairBySlack is the best strategy among the

provided repair algorithms for flight delays.

140

Our next step is dependent on our previous decision pattern. From the information that

we gathered from Sections 6.2.1 and 6.2.2, the average error of the response strategies for

different unique problem instances for unexpected flights arrivals are observed in two

states. The first state presents the average error of the repair algorithms RepairByTWST

and InsertNew for 55 problem instances for unexpected flight arrivals given that Left-

Shift algorithm is applied to update the schedule after being disrupted by flight

cancellation and repaired by RepairByEDD for flight delays. The second one provides

the average error of the repair algorithms RepairByTWST and InsertNew for 55 problem

instances for unexpected flight arrivals given that Do-Nothing algorithm is applied to

update the schedule after being disrupted by flight cancellation and repaired by

RepairBySlack for flight delays. The overall results of the first state and the second state

are summarized in Table 31 and Table 36 respectively.

6.2.3.1 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight

Given that Left-Shift is Applied for Flight Cancellation and repaired by RepairByEDD

JT i 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 I

n 2 0 0.25 0.5 0.75 I 0 0.75 0.33 0 0.5 0 0.25 0

1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByTWST 0.023 0.139 0.254 0.369 0.485 0.075 0.421 0.246 0.162 0.357 0.226 0.293 0.229

InsertNew 0.034 0.208 0.382 0.556 0.730 0.098 0.620 0.351 0.126 0.510 0.177 0.400 0.290

Table 31. Average error of the algorithms for arrival of new flights with Left-Shift for

cancellations and RepairByEDD for delays

According to Table 31, for the scenarios where total weighted start time is more

important than the total weighted start time deviation, RepairByTWST algorithm is the

best strategy to apply. Although in few scenarios, the performance of the InsertNew

algorithm is superior, the overall results imply that RepairByTWST would be a better

strategy to treat the unexpected flight arrivals. Different from the previous analysis for

flight cancellations and flight delays, it is worth noting that the average error values of

the proposed algorithms are nonzero when n x = 0, n 2 = 1, n 3 = 0. Unlike the repair

algorithms for flight cancellations and flight delays, the repair algorithms for new

unexpected flight arrivals allow runway deviation; therefore, we observe such difference.

141

To further test the performance of the repair algorithms, they are analyzed statistically by

t-test, again under two circumstances: schedule stability and solution quality. Unlike

repair algorithms for the flight cancellations and delays, the runway deviation is allowed

in the response strategies to new unexpected flight; therefore, nx, n 2 and n 3 are all

considered in hypothesis testing in this analysis.

When the Schedule Stability is More Important

i) Consider the different combinations of weight coefficients which satisfy

7r1>7T 3 .

Table 32 shows that there is a significant statistical difference (p-value=0.000<a = 0.05)

between the population mean values of performance in terms of average error for the

algorithms where RepairByTWST has better mean performance than InsertNew when the

stability is the more important, when the Left-Shift is applied for cancellation and

RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST- LS-RepairEDD-INSERTNEW-S

P a i r e d T f o r LS-RepairEDD-RepairTWST-STABILI - LS--RepairEDD-INSERTNEW-
STABILIT

N Mean S t D ev SE Mean
LS-RepairEDD-RepairTWST- 275 0 . 3 0 5 0 1 0 . 0 7 5 3 8 0 . 0 0 4 5 5
LS-RepairEDD-INSERTNEW-S 275 0 . 3 9 9 6 2 0 . 1 5 6 7 0 0 . 0 0 9 4 5
D i f f e r e n c e 275 - 0 . 0 9 4 6 1 0 . 0 8 5 3 5 0 . 0 0 5 1 5

95% Cl f o r mean d i f f e r e n c e : (- 0 . 1 0 4 7 4 , - 0 . 0 8 4 4 8)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 1 8 . 3 8 P - V a l u e =
0 . 0 0 0

Table 32. Paired T-Test on average error of the RepairByTWST and InsertNew with

Left-Shift for cancellation and RepairByEDD for delays-Schedule Stability 1

ii) Observe the different combinations of weight coefficients which satisfy

n 2> n3.

Table 33 shows that the overall result is same as the scenario (i), and when n 2> n 3,

RepairByTWST has better mean performance than InsertNew algorithm.

142

Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-S

P a i r e d T f o r LS-RepairEDD-RepairTWST-STABI_l - LS-RepairEDD-INSERTNEW-
STABIL_1

N Mean S t D e v SE Mean
LS-RepairEDD-RepairTWST- 275 0 . 3 8 4 9 3 0 . 0 6 4 6 2 0 . 0 0 3 9 0
LS-RepairEDD-INSERTNEW-S 275 0 . 5 6 3 3 3 0 . 1 1 0 1 5 0 . 0 0 6 6 4
D i f f e r e n c e 275 - 0 . 1 7 8 4 1 0 . 0 4 6 1 2 0 . 0 0 2 7 8

95% Cl f o r mean d i f f e r e n c e : (- 0 . 1 8 3 8 8 , - 0 . 1 7 2 9 3)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 6 4 . 1 5 P - V a l u e =
0 . 0 0 0

Table 33. Paired T-Test on average error of the RepairByTWST and InsertNew with

Left-Shift for cancellation and RepairByEDD for flight delays-Schedule Stability 2

When the Solution Quality is more important

i) Consider the different combinations of weight coefficients which satisfy

% < tt3.

Table 34 shows that there is a significant statistical difference (p-value=0.000<a =

0.05) between the population mean values of performance in terms of average error for

the algorithms where RepairByTWST has better mean performance than InsertNew if the

solution quality is the more important, when the Left-Shift is applied for cancellation and
«

RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-Q

P a i r e d T f o r LS- RepairEDD- RepairTWST- QUALITY - LS-RepairEDD-INSERTNEW-
QUALITY

N Mean S t D e v SE Mean
LS-RepairEDD-RepairTWST- 440 0 . 2 1 9 9 0 . 1 4 4 5 0 . 0 0 6 9
LS-RepairEDD-INSERTNEW-Q 440 0 . 3 1 3 6 0 . 2 2 7 2 0 . 0 1 0 8
D i f f e r e n c e 440 - 0 . 0 9 3 6 7 0 . 0 8 7 4 7 0 . 0 0 4 1 7

95% Cl f o r mean d i f f e r e n c e : (- 0 . 1 0 1 8 6 , - 0 . 0 8 5 4 7)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 2 2 . 4 6 P - V a l u e =
0 . 0 0 0

Table 34. Paired T-Test on average error of the RepairByTWST and InsertNew with

Left-Shift for cancellation and RepairByEDD for flight delays -Solution Quality 1

143

ii) Observe the different combinations of weight coefficients which satisfy

Table 35 shows that there is a significant statistical difference (p-value=0.000<a = 0.05)

between the population mean values of performance in terms of average error for the

algorithms. For n 2 < n3, RepairByTWST has better mean performance than InsertNew

when the solution quality is the more important, when the Left-Shift is applied for

cancellation and RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-Q

P a i r e d T f o r LS-RepairEDD-RepairTWST-QUALI_l - LS-RepairEDD-INSERTNEW-
QUALIT_1

95% Cl f o r mean d i f f e r e n c e : (- 0 . 0 4 4 7 4 , - 0 . 0 3 3 5 4)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = - 1 3 . 7 3 P - V a l u e =
0 . 0 0 0 __

Table 35. Paired T-Test on average error of the RepairByTWST and InsertNew with

Left-Shift for cancellation and RepairByEDD for flight delays -Solution Quality 2

According to the deviation from the optimal information, the statistical analysis for the

performance of the repair algorithms for flight delays given that Left-Shift Algorithm is

applied for flight cancellation and RepairByEDD is applied for flight delays is

summarized in Figure 50.

In conclusion, depending on the initially selected strategy in the flight cancellation (Left-

Shift) and in the flight delay (RepairByEDD), RepairByTWST outperforms the

InsertNew regardless whether the emphasis was on solution quality or schedule stability.

LS- Repa i rEDD- R epa i rTWST-
LS-RepairEDD-INSERTNEW-Q
D i f f e r e n c e

N Mean S t D e v SE Mean
44 0 0 . 1 6 8 0 3 0 . 0 8 0 2 8 0 . 0 0 3 8 3
44 0 0 . 2 0 7 1 7 0 . 1 1 6 7 3 0 . 0 0 5 5 6
44 0 - 0 . 0 3 9 1 4 0 . 0 5 9 8 0 0 . 0 0 2 8 5

144

N ew U nexpected Flight Arrival

G iven th a t Left-Shift is a p p lie d in F light C an c e lla tio n , RepairByED D in F light D elay

Schedule S tability is m ore im portan t S o lu tion Q uaity is m ore im p o rtan t

W hich Has B e tte r M ean Error P erfo rm ance ? W hich Has B e tte r Mean Error P erfo rm ance ?

RepairByTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew / RepairByTWST vs In sertN ew ✓

K i > 71, T h ^ n - i

W hich Has B etter M ean Error P erfo rm ance ? W hich Has B e tte r Mean Error P erfo rm ance ?
RepairByTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew / RepairByTWST vs In sertN ew ✓

Figure 50. Summary of the statistical tests for new flight arrival - Part 1

6.2.3.2 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight

Given that Do-Nothing is Applied for Flight Cancellation then RepairBySlack is applied

for flight delays

*1 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1
* 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0
* 3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByTWST 0.141 0.258 0367 0.426 0.485 0.157 0.506 0.283 0.172 0.405 0.177 0.304 0.203

InsertNew 0.248 0.308 0.374 0.491 0.607 0.215 0.393 0.317 0.182 0.300 0.149 0.208 0.116

Table 36. Average error of the algorithms for arrival of new unexpected flights with the

Do-Nothing algorithm for flight cancellations then the RepairBySlack for flight delays

According to Table 36, when the weight coefficient value of the total weighted start time

is equal to or greater than the total weighted start time deviation, the RepairByTWST

outperforms the InsertNew algorithm. Whereas when the stability is more important,

InsertNew algorithm performs better than RepairByTWST when {nx = 0.75, n 2 =

0, tt3 = 0.25), (n x — 0.5, n 2 = 0.5, n 3 = 0), (7̂ = 0.25,7r2 = 0.75, n 3 = 0), (n x —

0.75, 7t2 = 0.25, 7t3 = 0), (n x = l,7r2 = 0, n 3 = 0).

When n x < n 3 , the average error values of the RepairByTWST are smaller in Table 36

compared to Table 31. Whereas, when n x > n 3 , the average error values of the

InsertNew are smaller in Table 36 compared to Table 31.

145

Similar to Section 6.2.3.1, the detailed the statistical analysis are conducted for the

proposed repair algorithms for new flight arrivals when Do-Nothing algorithm is applied

for the flight cancellations and the RepairBySlack is applied for flight delays. The

detailed results of the paired t-tests on average error of the RepairByTWST and

InsertNew are provided in Appendix B. The analyses are categorized into two categories:

schedule stability and solution quality and are summarized in Figure 51.

N ew U nexpected Flight Arrival
Given th a t D o-N othing is ap p lied in F ligh t C an c e lla tio n , R epairS lack in Flight D elay

S chedule S tability is m ore im portan t S olu tion Q uaity is m ore im p o rtan t

7V\ > 7 t 3 tt, s /r3
W hich Has B e tte r M ean Error Perform ance ? W hich Has B e tte r M ean Error P erfo rm ance ?

RepairByTWST InsertN ew RepairByTWST InsertN ew
RepairByTWST vs InsertN ew ✓ RepairByTWST vs InsertN ew ✓

7T2 > 7Ci

W hich Has B e tte r M ean Error Perform ance ? W hich Has B e tte r M ean Error P erfo rm ance ?
Repair8yTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew S RepairByTWST vs InsertN ew ✓

Figure 51. Summary of the statistical tests for new flight arrival - Part 2

Depending on the initially selected strategy in the flight cancellation (Do-Nothing) and in

the flight delay (RepairBySlack), and the decision maker’s interest in solution quality and

stability, the performance of the repair algorithms was evaluated. When the solution

quality has higher importance than schedule stability, RepairByTWST outperforms the

InsertNew; otherwise, InsertNew provides lower average error.

6.2.4 Effectiveness of the Complete Regeneration Algorithms

Complete regeneration algorithms reschedule all flights from scratch that treat flight

cancellations, delays and unexpected arrivals simultaneously. The reason for proposing

rescheduling algorithm is that one of the components of the total objective function is

total weighted start time, and the percentage contribution of this metric to the overall

objective function value is the most. Therefore, it would be a considerable approach to

propose an algorithm to handle TWST minimization. The proposed algorithms are tested

under various flight cancellations, delays and unexpected flight arrivals, with objective

146

weight coefficient levels. Average errors for the TWST and SA-Re algorithms and

average CPU times are obtained by averaging the values for 55 instances for each

aircraft-runway combination. Table 37 provides the average error of the rescheduling

strategies for different unique problem instances.

TTi 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

*3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

TWST 0.166 0.142 0.126 0.226 0.141 0.156 0.474 0.446 0.475 0.452 0.181 0.211 0.126

SA-Re 0.051 0.072 0.084 0.095 0.071 0.073 0.089 0.072 0.089 0.086 0.081 0.089 0.083

Table 37. Average error of the complete regeneration algorithms

The results show that regardless of the n x, n 2, 7T3 combination, SA-Re performs better

than the TWST algorithm in terms of average error. The reason for such result is that

total weighted start time component is dominant in the objective function even though

it’s normalized.

To further test the performances of the complete regeneration algorithms, they are

analyzed statistically by t-test, again under two circumstances: schedule stability and

solution quality. Unlike repair algorithms for the flight cancellations and delays, the

runway deviation is allowed in the response strategies for new unexpected flight;

therefore, n 1, n 2 and n3 are all important in the hypothesis testing.

Table 38 and Table 39 show that there is a significant statistical difference (p-

value=0.000<a = 0.05) between the population mean values in terms of average error

for the algorithms with SA-Re performing better than TWST when the stability is more

important.

When the Schedule Stability is More Important

i) Consider the different combinations of weight coefficients which satisfy

7Ti> rr3.

147

Paired T-Test and Cl: twst-stability, sa-re-stability

P a i r e d T f o r t w s t - s t a b i l i t y - s a - r e - s t a b i l i t y

N Mean S t D e v SE Mean
t w s t - s t a b i l i t y 275 0 . 2 8 8 8 0 0 . 1 4 5 2 5 0 . 0 0 8 7 6
s a - r e - s t a b i l i t y 275 0 . 0 8 5 6 0 0 . 0 0 3 2 1 0 . 0 0 0 1 9
D i f f e r e n c e 275 0 . 2 0 3 2 0 0 . 1 4 3 4 1 0 . 0 0 8 6 5

95% Cl f o r mean d i f f e r e n c e : (0 . 1 8 6 1 7 , 0 . 2 2 0 2 3)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e =
0 . 0 0 0

23 . 5 0 P - V a l u e =

Table 38. Paired T-Test on average error of the TWST and SA-Re complete regeneration

algorithms - Schedule Stability 1

ii) Consider the different combinations of weight coefficients which satisfy

7r2> tt3.

Paired T-Test and Cl: twst-stability_1, sa-re-stability_1

P a i r e d T f o r t w s t - s t a b i l i t y _ l - s a - r e - s t a b i l i t y _ l

N Mean S t D e v SE Mean
t w s t - s t a b i l i t y _ l 275 0 . 3 0 0 8 0 0 . 1 3 5 9 3 0 . 0 0 8 2 0
s a - r e - s t a b i l i t y _ l 275 0 . 0 8 6 0 0 0 . 0 0 8 0 6 0 . 0 0 0 4 9
D i f f e r e n c e 275 0 . 2 1 4 8 0 0 . 1 3 3 2 3 0 . 0 0 8 0 3

95% Cl f o r mean d i f f e r e n c e : (0 . 1 9 8 9 8 , 0 . 2 3 0 6 2)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e =
0 . 0 0 0

2 6 . 7 4 P - V a l u e =

Table 39. Paired T-Test on average error of the TWST and SA-Re complete regeneration

algorithms-Schedule Stability 2

When the Solution Quality is more important

i) Consider the different combinations of weight coefficients which satisfy

7Ti < n3.

148

Paired T-Test and Cl: twst-quality, sa-re-quality

P a i r e d T f o r t w s t - q u a l i t y - s a - r e - q u a l i t y

N Mean S tD ev SE Mean
t w s t - q u a l i t y 440 0 . 2 3 0 4 5 0 . 1 3 0 9 4 0 . 0 0 6 2 4
s a - r e - q u a l i t y 440 0 . 0 7 5 6 7 0 . 0 1 2 6 9 0 . 0 0 0 6 1
D i f f e r e n c e 440 0 . 1 5 4 7 7 0 . 1 2 7 9 7 0 . 0 0 6 1 0

95% Cl f o r mean d i f f e r e n c e : (0 . 1 4 2 7 8 , 0 . 1 6 6 7 6)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 2 5 . 3 7 P - V a l u e =
0 . 0 0 0

Table 40. Paired T-Test on average error of the TWST and SA-Re complete regeneration

algorithms-Solution Quality 1

ii) Consider the different combinations of weight coefficients which satisfy 1r2 < n 3.

Paired T-Test and Cl: twst-quality_1, sa-re-quality_1

P a i r e d T f o r t w s t - q u a l i t y _ l - s a - r e - q u a l i t y _ l

N Mean S t D e v SE Mean
t w s t - q u a l i t y _ l 440 0 . 2 2 8 1 7 0 . 1 3 6 3 4 0 . 0 0 6 5 0
s a - r e - q u a l i t y _ l 440 0 . 0 7 5 4 8 0 . 0 1 1 0 8 0 . 0 0 0 5 3
D i f f e r e n c e 440 0 . 1 5 2 6 9 0 . 1 3 4 2 4 0 . 0 0 6 4 0

95% Cl f o r mean d i f f e r e n c e : (0 . 1 4 0 1 1 , 0 . 1 6 5 2 7)
T - T e s t o f mean d i f f e r e n c e = 0 (v s n o t = 0) : T - V a l u e = 2 3 . 8 6 P - V a l u e =
0 . 0 0 0 ___

Table 41. Paired T-Test on average error of the TWST and SA-Re complete regeneration

algorithms -Solution Quality 2

Table 40 and Table 41 show that there is a significant statistical difference (p-

value=0.000<a = 0.05) between the population mean values in terms of average error

for the algorithms where SA-Re has better mean performance than TWST when the

solution quality is the more important.

According to the deviation from the optimal information, the statistical analysis for the

performance of the complete regeneration algorithms is summarized through Figure 52. It

is can be concluded that either for solution quality or schedule stability, SA-Re performs

better than TWST algorithm in terms of average error.

149

C o m p le te R e g e n e r a t io n A p p ro a c h e s

S c h e d u le S tab ility is m o re im p o rta n t S o lu tio n Q uaity is m o re im p o r ta n t

£V
I£

W hich H as B e tte r M ean Error P e rfo rm an c e ? W hich H as B e tte r M ean Error P e rfo rm a n c e ?
TWST SA-Re TWST SA-Re

TWST vs SA-Re ✓ TWST vs SA-Re ✓

7 t i > 71 , £V
I£

W hich Has B e tte r M ean Error P e rfo rm an c e ? W hich Has B e tte r M ean Error P e r fo rm a n c e ?
TWST SA-Re TWST SA-Re

TWST vs SA-Re ✓ TWST vs SA-Re ✓

Figure 52. Summary of the statistical tests for complete regeneration algorithms

Table 42 provides the average CPU times of the TWST and SA-Re algorithms for 55

different unique problem instances for flight cancellations. SA-Re requires longer CPU

time than TWST. The average CPU time does not seem to change significantly with the

change in n ll n2, and n 3.

7T1 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

TWST 0.048 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.048 0.047 0.048 0.047 0.047

SA-Re 21.3 22.82 21.93 21.44 21.67 21.76 21.88 21.56 22.12 22.87 22.35 21.98 21.89

Table 42. Average CPU time of the algorithms for flight cancelations

150

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The dissertation addressed the Aircraft Sequencing Problem (ASP) and Aircraft Reactive

Scheduling Problem (ARSP) in a realistic operational environment requiring competent

solutions in a tolerable timeframe. The ASP was modeled as a parallel machine

scheduling problem with unequal ready times, target times and deadlines to minimize the

total weighted tardiness of aircraft landings and departures simultaneously. The problem

concurrently determines the assignment of each aircraft (job) to a runway (machine), the

appropriate sequence of aircraft on each runway, and their departing or landing times.

The dissertation examines the ASP over multiple runways, under mixed mode operations

with the sequence-dependent separation times to prevent the dangers associated with

wake-vortex effects. Since ASP is NP-hard, it is necessary to develop qualified solution

approaches to obtain solutions in reasonable computational times.

Three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation

and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index

(FPI) were developed to construct good initial solutions to the ASP. The AATCSR is an

extension of the ATC rule but with considering unequal ready times, target times,

deadlines and sequence-dependent separation times. The ERT is a version of the FCFS,

and the FPI rule is a modification of AATCSR. Different from the AATCSR, in FPI the

urgency of scheduling aircraft in FPI is treated in a linear manner rather than exponential,

which makes it much faster in terms of computational time. Moreover, metaheuristics

including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority

Search (Meta-RaPS) were introduced to improve solutions initially constructed by the

proposed greedy algorithms.

The algorithms’ solutions are compared to optimal solutions and their performances are

evaluated in terms of solution quality and CPU time. The results show the performance of

the proposed greedy algorithms is similar in terms of average CPU time. However,

151

AATCSR outperforms both FPI and ERT with low relative deviation (error) the from

optimal solutions. The performance analysis of the metaheuristics indicates that the SA

algorithm is more efficient and more effective than Meta-RaPS algorithm when the same

greedy algorithms are considered for their initial solution (i.e., S A a a t c s r is superior to

Meta-RaPSAATCSR, S A p p i is superior to Meta-RaPSppi, S A e r t is superior to Meta-

RaPSERi)- It is determined that the solution quality of SA and Meta-RaPS algorithms that

use greedy algorithms as initial solutions are better than the greedy algorithms alone (i.e.,

S A a a t c s r is superior to AATCSR, SAFpi is superior to FPI and Meta-RaPSfiRT is superior

to ERT). Statistically, it was shown that the CPU times of the proposed algorithms are

quite similar, and they are considerably low compared to the optimal solution.

Throughout the course of daily operations, air traffic systems frequently encounter

various disruptions because of the dynamic environment and unexpected events such as

severe weather, aircraft failures or personnel shortages. Therefore, the initial plan may

not be executed as designed. This dissertation addressed the Aircraft Reactive Scheduling

Problem (ARSP) to update the existing aircraft schedule dynamically. The research

considers disruptions including the arrival of new aircraft, flight cancellations and aircraft

delays. ARSP is formulated as a multi-objective optimization problem in which both the

schedule’s quality and stability are of interest. The objectives consist of minimizing the

total weighted start times (solution quality), total weighted start time deviation, and total

weighted runway deviation (instability measures). Repair and complete regeneration

approximate algorithms are developed for each type of disruptive events. Do-Nothing and

Left-Shift are the repair strategies for the flight cancellations, RepairBySlack,

RepairByEDD, InsertDelayed algorithms are proposed to repair the schedule for flight

delays, and RepairByTWST and InsertNew are the repair algorithms for the arrival of

new aircraft. Two complete regeneration algorithms, TWST Algorithm and SA-Re

Algorithm are proposed to regenerate schedules from scratch to treat flight cancellations,

delays and unexpected arrivals simultaneously.

All algorithms were tested against difficult benchmark problems and the solutions were

compared to optimal solutions and to each other in terms of solution quality, schedule

stability and computational time. A computational study was conducted for the three

152

disruptive event types of ARSP with various values of objective weight coefficients

n 2, 7T3. Initially, response strategies to repair flight cancellation disruptions were

evaluated. It was statistically illustrated that when the stability objective has a higher

importance {nx > 7T3), Do-Nothing algorithm is preferred. On the other hand, Left-Shift

algorithm has significantly performed better when < 7T3. Secondly, the repair

algorithms for flight delays were tested. Depending on the initially selected strategy in

the flight cancellation (i.e. Do-Nothing vs. Left-Shift) and the decision maker’s interest in

solution quality and stability, the performance of the repair algorithms was evaluated.

When the solution quality is more important, RepairByEDD algorithm outperforms

RepairBySlack and InsertDelayed. Conversely, InsertDelayed or RepairBySlack can be

preferred depending on the repair algorithm used for cancellations when the schedule

stability has a higher importance. Then, RepairByTWST and InsertNew repair

algorithms were compared when Left-Shift strategy is used for flight cancellation, and

RepairByEDD is used for delays. Depending on the importance of solution quality vs.

stability, the performance of the repair algorithms was evaluated; when either the solution

quality or schedule stability has higher importance, RepairByTWST outperforms the

InsertNew. On the other hand, when the initially selected strategy in the flight

cancellation is Do-Nothing, and in the flight delay is RepairBySlack, it was statistically

shown that InsertNew is a better choice than RepairBySlack when the schedule stability

is more important. Finally, the performances of the complete regeneration algorithms

were tested. Although SA-Re requires longer CPU time than TWST, it is illustrated that

either when the solution quality or schedule stability has higher importance, SA-Re

performs better than TWST algorithm in terms of average error. Moreover, the average

CPU time does not seem to change significantly with the change in n 1, n 2, and n 3.

7.2 Contributions

This dissertation research has the following contributions:

1. The ASP is modeled under a mixed mode of operations where both landing and

departure flows are considered simultaneously, contrary to most existing studies

that treat departures as separate from landings (i.e., segregated mode). Note that

153

the wake-vortex separation requirements for departures-only or arrivals-only

operations usually satisfy the triangular inequality. However, the triangle

inequality does not necessarily hold when both arrivals and departures are

scheduled simultaneously increasing the complexity of the problem.

2. The problem of scheduling aircraft arrivals and departures over multiple runways

is examined which much more dififcult than single runway problem. When a

single runway is considered, although still NP-hard, one has merely to determine

the sequence of the aircraft allocated to a runway. On the other hand, scheduling

over multiple runways is a two-step process; first, one has to determine the

assignment of aircraft to runways, then the sequence of the aircraft on each

runway.

3. The features of the problem; unequal ready time, target time, deadline, sequence-

dependent separation time, multi-resourced, single and multi-objective structure

of the problem is unique which makes the dissertation remarkable as a new

application of scheduling theory.

4. To our knowledge, more aspects to the problem are considered than any other

previous work where we propose greedy algorithms (AATCSR, ERT and FPI) for

the combined arrival-departure ASP with unequal ready-time, target-time,

deadline, and sequence-dependent separation time. Finally, two metaheuristics

(S A and Meta-RaPS) are introduced for the problem for the first time to improve

initially constructed solutions by the proposed greedy algorithms.

5. The research that address multi-objective optimization problem in aircraft reactive

scheduling problem that are liable to flight related disruptions is very limited. To

fill this research gap, this dissertation updated mixed integer linear programming

with normalized objective function to find optimal solutions, and proposed

approximate algorithms to obtain near optimal schedules efficiently. The trade

off between the objectives are evaluated; the components of the multi-objective

function are the total weighted start time which represents solution quality, and

154

the total weighted start time deviation and total weighted runway deviation which

represent solution stability.

6. Unlike most studies in the literature which focus on one disruption type at a time,

in this dissertation, different types of disruptions with multiple disruptive events

are considered simultaneously. Therefore, the sequential evaluation methodology

is developed to treat the disruptions and revise the schedules periodically.

Alternative reactive scheduling approaches (Do-Nothing, Left-Shift,

RepairByEDD, RepairBySlack, InsertDelayed, RepairByTWST, InsertNew,

TWST and SA-Re) for different disruptions are proposed in which the model

itself dynamically select the most appropriate from several candidate solution

methods with respect to (conflicting) objectives of quality and stability.

7.3 Future Research

The problem can be extended in the future to address the following aspects:

1. The disruption of the schedules affects the capacity of the airport, causes

passenger dissatisfaction and imposes substantial costs. In addition to maintaining

conformity to the initial schedule, the convenience of the passengers who have

connecting flights can be taken into account.

2. Case studies and real data analyses based on airport data from around the world

would be interesting.

3. The work can be generalized for more complex aviation regulations such as

stochastic time-windows (i.e. uncertain ready time, target time, deadline, etc.).

4. Reactive scheduling problem can be extended by considering more disruptive

events such as runway closure.

5. The problem can be revised in such a way that the impacts of the operational

settings (i.e., using the proposed algorithms) on the fuel cost savings and

greenhouse gas emission be examined empirically.

155

BIBLIOGRAPHY

Abela, J., Abramson, D., Krishnamoorthy, M., De Silva, A., Mills, G. (1993). Computing

optimal schedules for landing aircraft. Proceedings o f the 12th National ASOR

Conference, 71-90.

Akturk, M.S., & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown.

Journal o f Operational Research, 112, 81-97.

Alagoz, O., & Azizoglu, M. (2003). Rescheduling of identical parallel machines under

machine eligibility constraints. European Journal o f Operational Research, 149,

523-532.

Al-Salem, A., Farhadi, F., Kharbeche, M., Ghoniem, A. (2012). Multiple-runway aircraft

sequencing problems using mixed-integer programming. Proceedings o f the 2012

Industrial and Systems Engineering Research Conference.

Arcus, A.L. (1966). COMSOAL: a computer method of sequencing operations for

assembly lines. International Journal o f Production Research, 4, 259-277.

Arguello, M.F., Bard,J.F., Yu, G. (1997). A GRASP for Aircraft Routing in Response to

Groundings and Delays. Journal o f Combinatorial Optimization, 5, 211—228.

Amaout, J.P., & Rabadi G. (2008). Rescheduling of unrelated parallel machines under

machine breakdowns. International Journal o f Applied Management Science, 1(1).

Amaout, J-P, Rabadi, G. & Musa, R. (2009). A two-stage ant colony optimization to

minimize the makespan on unrelated parallel machines with sequence-dependent

setup times, Journal o f Intelligent Manufacturing, in press and available online.

Atkin, J.A.D., Burke, E.K., Greenwood, J.S. and Reeson, D., (2007). Hybrid

metaheuristics to aid runway scheduling at London Heathrow Airport.

Transportation Science, 41 (1), 90-106.

156

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D., (2008). A meta-heuristic

approach to departure scheduling at London Heathrow Airport. Computer Aided

Systems o f Public Transport, 235-252.

Atkin, J.A.D. (2008). On-line decision support for take-off runway scheduling at London

Heathrow airport. Ph.D. thesis, The University of Nottingham

Atkin, J.A.D., Burke, E.K., Greenwood, J.S. (2010). TSAT Allocation at London

Heathrow: the relationship between slot compliance, throughput and equity. Public

Transport, 2(3), 173-198.

Azizoglu, M., & Alagoz, O. (2005). Parallel-machine rescheduling with machine

disruptions. HE Transactions, 37, 1113-1118.

Balakrishnan, H. & Chandran, B. (2006) Scheduling aircraft landings under constrained

position shifting. AIAA guidance, navigation and control conference and exhibit,

Keystone, CO, USA.

Balakrishnan, H. and Chandran, B. (2010). Algorithms for scheduling runway operations

under constrained position shifting, Operations Research, 58 (6), 1650-1665.

Bauerle, N., Engelhardt-Funke, O., Kolonko, M. (2007), On the waiting time of arriving

aircrafts and the capacity of airports with one or two runways, European Journal of

Operational Research, 177 2 (1), 1180-1196.

Bazargan, M., Fleming, K. & Subramanian, P. (2002) A simulation study to investigate

runway capacity using TAAM. Proceeding o f the 34th winter simulation conference,

San Diego, CA, USA.

Beasley, J. E., Krishnamoorthy, M., Sharaiha, Y. M., Abramson, D. (2000).

Scheduling aircraft landings-the static case. Transportation Science, 34, 180-197.

Beasley, J., J. Sonander and P. Havelock (2001). Scheduling aircraft landings at

London Heathrow using a population heuristic. Journal o f the Operational

Research Society, 52, 483-493.

157

Beasley, J. E., M. Krishnamoorthy, Y.M. Sharaiha, and D. Abramson (2004).

Displacement problem and dynamically scheduling aircraft landings. Journal o f the

Operational Research Society, 55, 54—64.

Bean, J. C, Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Match-up scheduling with

multiple resources, release dates and disruptions. OperationsResearch, 39(3), 470-

483.

Bencheikh G., Boukachour J., Alaoui, A. E. H., and El Khoukhi F. (2009), Hybrid

method for aircraft landing scheduling based on a job shop formulation,

International Journal o f Computer Science and Network Security, 9(8).

Bennell, J. A., Mesgarpour, M., Potts, C. N. (2011). Airport runway scheduling.

OR: Quartterly Journal o f Operations Research, 9(2), 115-138.

Bianco, L., Rinaldi, G. & Sassano, A. (1987). A combinatorial optimization approach

to aircraft sequencing problem. Flow Control o f Congested Networks. NATO AS

I series, 38, 323-339.

Bianco, L., Dell'Olmo, P. & Giordani, S. (1997). Scheduling models and algorithms

for TMA traffic management. Modeling and Simulation in Air Traffic

Management. Springer, 139-167.

Blazewicz, J . , Ecker, K. H., Pesch, E., Schmidt, G. & Weglarz, J.(2007). Handbook on

Scheduling: From Theory to Applications. Springer, New York.

Boysen, N., M. Fliedner. (2011). Scheduling aircraft landings to balance workload of

ground staff. Computers & Industrial Engineering. 60(2) 206-217.

Brinton, C.R. (1992). An implicit enumeration algorithm for arrival aircraft scheduling.

Proceedings o f the IEEE/AIAA 11th digital avionics systems conference, Seattle,

WA, USA.

158

Capri S., Ignaccolo, M. (2004). Genetic algorithms for solving the aircraft-sequencing

problem:the introduction of departures into the dynamic model. Journal o f Air

Transport Management, 10, 345-351.

Carr, G.C., Erzberger, H. & Neuman, F. (2000). Fast-time study of airline-influenced

arrival sequencing and scheduling. Journal o f Guidance, Control, and Dynamics,

23,526-531.

Cheng, S-C, Shiau, D.-F., Huang, Y.-M., & Lin, Y.-T. (2009). Dynamic hardreal-time

scheduling using genetic algorithm for multiprocessor task with resource and timing

constraints. Expert Systems with Applications, 36, 852-860.

Church, L.K., & Uzsoy, R. (1992). Analysis of periodic and event driven rescheduling

policies in dynamic shops. International Journal o f Computer Integrated

Manufacturing, 5, 153-163.

Ciesielski, V. and Scerri, P. (1998). Real time genetic scheduling of aircraft landing

times, Proceedings o f the 1998 IEEE International conference on Evolutionary

Computation (ICEC98), 360-364.

Curry, J., & Peters, B. (2005). Rescheduling parallel machines with stepwise increasing

tardiness and machine assignment stability objectives. International Journal o f

Production Research, 43(15), 3231 - 3246.

Damodaran, P., Gallego, M. C. (2010). Heuristics for makespan minimization on parallel

batch processing machines with unequal job ready times. International Journal o f

Advanced Manufacturing Technologies, 49, 1119-1128.

Dear, R. G., Sherif, Y. S. (1989). The dynamic scheduling of aircraft in high density

terminal areas. Microelectrons Reliability, 29, 743-749.

Dear, R. G., Sherif, Y. S. (1991). An algorithm for computer assisted sequencing and

scheduling of terminal area operations. Transportation Research A, 25, 29-139.

159

DePuy G.W., Whitehouse, G.E., Moraga, R.J. (2001). MetaRaPS: A simple and efficient

approach for solving combinatorial problems. 29th International Conference on

Computers and Industrial Engineering, November 1-3, Montreal, Canada, 644-649.

Dorigo M., & Gambardella, L.M. (1997). Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions in Evolutionary

Computation, 1, 53-66.

Driessel, R., & Monch, L. (2009). Scheduling jobs on parallel machines with sequence-

dependent setup times, precedence constraints, and ready times using variable

neighborhood search. Proceedings o f the 2009 IEEE International Conference on

Industrial Engineering and Engineering Management.

Du, J. & Leung, J. Y. (1990). Minimizing total tardiness on one machine is NP-Hard.

Mathematics o f Operations Research, 15, 483-494.

Duenas, A., & Petrovic, D. (2008). An approach to predictive-reactive scheduling of

parallel machines subject to disruptions. Annual Operations Research, 159, 65-82.

Ernst, A.T., Krishnamoorthy, M. & Storer, R.H. (1999). Heuristic and exact algorithms

for scheduling aircraft landings. Networks, 34, 229-241.

Federal Aviation Administration. (2003). Aeronautical Information Manual/Federal

Aviation Regulation. McGraw-Hill, New York.

Gharehgozli, A. H., Tavakkoli, R., & Zaerpour, N. (2009). A fuzzy-mixed-integer goal

programming model for a parallel-machine scheduling problem with sequence-

dependent setup times and ready dates. Robotics and Computer-Integrated

Manufacturing, 25, 853-859.

Ghoniem, A., Farhadi, F. (2012). Multiple-runway aircraft sequencing problems:

Enhanced formulations and accelerated column generation Approach. Manuscript

Isenberg School o f Management, University of Massachusetts, Amherst, USA.

160

Grodzevich, O., & Romanko, O. (2006). Normalization and other topics in multiobjective

optimization. Proceedings o f the Fields-MITACS Industrial Problems Workshop.

Gupta, G., Malik, W., Jung, Y.C. (2009). A mixed integer linear program for airport

departure scheduling. 9th AIAA Aviation Technology, Integration, and Operations

Conference (ATIO). AIAA, Hilton Head, South Carolina.

Hall, N.G., & Potts, C.N. (2004). Rescheduling for new orders. OperationsResearch, 52,

440-453.

Hancerliogullari, G., Rabadi, G., Al-Salem A., Kharbeche, M. (2013). Greedy

Algorithms and Metaheuristics for a Multiple Runway Combined Arrival-Departure

Aircraft Sequencing Problem, Journal o f Air Transport Management, 32, 39-48.

Hansen, J. V. (2004). Genetic search methods in air traffic control. Computers &

Operations Research, 31, 445-459.

Hazir, O., Giinalay, Y., & Erel, E. (2008). Customer order scheduling problem: a

comparative metaheuristics study. International Journal o f Advanced Manufacturing

Technology, 37, 589-598.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor, MI.

Hu, X.B., Chen, W.H. (2005). Genetic algorithm based on receding horizon control for

arrival sequencing and scheduling. Eng. Appl. A rtif Intell. 18, 633-642.

Hu, X.B. and Paolo, E.D. (2008). Binary-representation-based genetic algorithm for

aircraft arrival sequencing and scheduling. IEEE Transactions on Intelligent

Transportation System, 9(2), 301-310.

Isaacson, D. R., Davis, T. J., & Robinson, J. E. (1997). Knowledge-based runway

assignment for arrival aircraft in the terminal area. AIAA Guidance, Navigation,

and Control Conference, New Orleans, Louisiana.

161

Itayef, A. B., Loukil, T., & Teghem, J. (2009). Rescheduling a permutation flowshop

problems under the arrival a new set of jobs. IEEE Transactions.

Jain, A.K., & ElMaraghy, H. (1997). Production scheduling/rescheduling in flexible

manufacturing. International Journal o f Production Research, 35, 281-309.

Jarrah, A.I.Z., Yu G. N., Krishnamurthy, and Rakshit, A. (1993). A decision support

framework for airline flight cancellations and delays, Transportation Science, 27 (3).

266-280.

Jeong S.J., Kim, K.S. (2008). Parallel machine scheduling with earliness-tardiness

penalties and space limits. The International Journal o f Advanced Manufacturing

Technology, 37, 793-802.

Jungwattanakit, J., Reodechaa, M., Chaovalitwongsea, P., & Wemer, F. (2009). A

comparison of scheduling algorithms for flexible flow shop problems with unrelated

parallel machines, setup times, and dual criteria, Computers & Operations Research,

36,358-378.

Kim,Y.D., Lim, H.G., & Park, M.W. (1996). Search heuristics for a flowshop scheduling

problem in a printed circuit board assembly process. European Journal o f

Operational Research, 91, 124-43.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220:671.

Koulamas, C. (2010). The single-machine total tardiness scheduling problem: Review

and extensions. European Journal o f Operational Research, 202, 1-7.

Larson, R.E., Dessouky, M.I. (1978). Heuristic procedure for the single machine

problem to minimize maximum lateness. AIIE Transactions, 10, 176-183.

Lawler, E. L., Lenstra, J.K. & Rinnooy A.H.G. (1982). Recent developments in

deterministic sequencing and scheduling. Deterministic and Stochastic

Scheduling, Reidel, Dordrecht, 35-73.

162

Lee, C.-Y., Leung, J. Y-T., & Yu, G. (2006). Two machine scheduling under disruptions

with transportation considerations. Journal o f Scheduling, 9, 35A-8.

Lee, Y.H. & Sherali, H. D. (1994). Unrelated machine scheduling with time-window

and machine- downtime constraints: An application to a naval battle-group

problem. Annuals o f Operations Research, special issue on Applications o f

Combinatorial Optimization, 50, 339-365.

Lee, Y. H., Pinedo, M.(1997). Theory and methodology: Scheduling jobs on parallel

machines with sequence-dependent setup times. European Journal o f Operational

Research, 100, 464-474.

Liu, Y.H. (2010). A genetic local search algorithm with a threshold accepting mechanism

for solving with a threshold accepting mechanism for solving the runway dependent

aircraft landing problem. Optimization Letters, 5, 229-245.

Marler, R.T., & Arora, J.S. (2004). Survey of multi-objective optimization methods for

engineering. Structural Multidisciplinary Optimization, 26, 369-395.

Marler, R.T., & Arora, J.S. (2005). Function-transformation methods for multiobjective

optimization. Engineering Optimization, 37(6), 551-570.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E. (1956). Equation of

state calculations by fast computing machines. Journal o f Chemical Physics, 21,

1087-1092.

Moraga, R. J. (2002). Meta-RAPS: An Effective Approach for Combinatorial Problems.

Ph.D. Dissertation. University of Central Florida, Orlando.

Monch, L., Balasubramanian, H., Fowler, J. W. & Pfund, M.E. (2005). Heuristic

scheduling of jobs on parallel batch machines with incompatible job families and

unequal ready times. Computers & Operations Research, 32,2731-2750.

Neuman, F., Erzberger, H. (1990). Analysis of sequencing and scheduling methods for

arrival traffic. NASA Technical Memorandum, April 1990.

163

Neuman, F. & Erzberger, H. (1991). Analysis of delay reducing and fuel saving

sequencing and spacing algorithms for arrival traffic. Technical report, TM-103880,

Ames Research Center, NASA, USA

Newell, G.F. (1979). Airport capacity and delays. Transport Science, 13, 201-241.

Parthasarathy, S., & Rajendran, C. (1998). Scheduling to minimize mean tardiness and

weighted mean tardiness in flowshop and flowline-based manufacturing cell.

Computers and Industrial Engineering, 34, 531-546.

Pfund, M., Fowler, J.W., Gadkari, A., Chen, Y. (2008). Scheduling jobs on parallel

machines with setup times and ready times. Computers and Industrial Engineering,

54, 764-782.

Pinedo, M. (2008). Scheduling Theory, Algorithms, and Systems. 3rd Ed.,Springer, New

York.

Pinol, H. and Beasley, J. E. (2006). Scatter search and bionomic algorithms for the

aircraft landing problem. European Journal o f Operational Research, 171, 439-462.

Psaraftis, H. N. (1980). Dynamic programming approach for sequencing group of

identified jobs. Operations Research, 28, 1347-1359.

Rabadi, G., Mollaghasemi, M., & Anagnostopoulos, G.C. (2004). A branch-and-bound

algorithm for the early/tardy machine scheduling problem with a common due-date

and sequence-dependent setup time. Computers & Operations Research, 31(10),

1727-1751.

Rabadi, G., Moraga, R., & Al-Salem, A. (2006). Heuristics for the unrelated

parallel machine scheduling problem with setup times. Journal o f Intelligent

Manufacturing, 17, 85-97.

Rabadi, G., Hancerliogullari, G., Kharbeche, M., Al-Salem, A. (2012). Metaheuristics for

aircraft arrival and departure scheduling on multiple runways. Proceedings o f the

2012 Industrial and Systems Engineering Research Conference.

164

Rangaiah, G. P. (2008). Multi-Objective Optimization: Techniques and Applications in

Chemical Engineering. World Scientific Publishing.

Reichelt, D., Monch, L., Gottlieb, J. & Raidl, G.R. (2006). Multi-objective scheduling of

jobs with incompatible families on parallel batch machines. EvoCOP 2006, LNCS

3906, Berlin Springer-Verlag Heidelberg, 209-221.

Sherali, H.D., Hobeika, A.G., Trani, A.A., Kim, B.J. (1992). An integrated simulation

and dynamic programming approach for determining optimal runway exit

locations. Management Science, 38, 1049-1062.

Sherali, H.D., Ghoniem, A., Baik, H. and Trani, A.A. (2010). A combined arrival-

departure aircraft sequencing problem. Manuscript, Grado Department o f

Industrial and Systems Engineering. Virginia Polytechnic Institute and State

University, 250 Durham Hall, Blacksburg, VA 24061.

Shi-jin, W., Li-feng, X. & Bing-hai, Z. (2007). Filtered-beam-search-based algorithm for

dynamic rescheduling in FMS. Robotics and Computer-Integrated Manufacturing,

23, 457-468.

Soomer, M.J. & Franx, G.J. (2008). Scheduling aircraft landings using airlines'

preferences. European Journal o f Operational Research, 190, 277-291.

Subramaniam, V., Raheja, A.S. & Reddy, K.R.B. (2005). Reactive repair tool for job

shop schedules. International Journal o f Production Research, 43, 1-23.

Tsai, W.J., Lee, S.Y. (1996). Real-time scheduling of multimedia data retrieval to

minimize buffer requirement. ACMSIGOPS Operating Systems Review, 30, 67-80.

Unal, A.T., Uzsoy, R., & Kiran, A.S. (1997). Rescheduling on a single machine with

part-type dependant setup times and deadlines. Annals o f Operations Research, 70,

93-113.

U.S. Department of Transportation (2008). Air Travel Consumer Report October

2008.URL:http://airconsumer.ost.dot.gov/reports/2008/Qctober/200810ATCR.pdf

http://airconsumer.ost.dot.gov/reports/2008/Qctober/200810ATCR.pdf

165

Vallada, E. Ruiz, R, & Minella, G. (2008). Minimising total tardiness in the mmachine

flowshop problem: A review and evaluation of heuristics and metaheuristics.

Computers and Operations Research, 35, 1350- 1373.

Venkatakrishnan, C.S., Barnett, A.I. & Odoni, A.R. (1993). Landings at Logan

Airport: Describing and increasing airport capacity. Transportation Science, 27,

211-227.

Vieira, G.E., Herrmann, J. W., & Lin E. (2000). Predicting the performance of

rescheduling strategies for parallel machine systems. Journal o f Manufacturing

Systems, 9(4), 256-266.

Vieira, G.E., Herrmann, J. W., & Lin E. (2003). Rescheduling manufacturing systems: a

framework of strategies, policies and methods. Journal o f Scheduling, 6(39), 62.

Wang, S., (2009). Solving aircraft-sequencing problem based on bee evolutionary genetic

algorithm and clustering method, 8th IEEE International Conference on

Dependable, Autonomic and Secure Computing, 157-161.

Wen, M., Larsen, J., Clausen, J. (2005). An exact algorithm for Aircraft Landing

Problem, Technical Paper.

Wu, S. D., R. H. Storer, P.-C. Chang. (1993). One-machine rescheduling heuristics with

efficiency and stability as criteria. Computers and Operations Research, 20, 1-14.

Yang, M.-H., Chung, S.-H., & Kao, C.-K. (2006). A comparative study to minimize the

makespan of parallel-machine problem with job arrival in uncertainty. HE

Conference Proceedings.

Yu, S. P., Cao, X.B., Zhang, J. (2011). A real-time schedule method for aircraft landing

scheduling problem based on cellular automation, Applied Soft Computing Journal.

166

Zobolas, G.I., Tarantilis, CD., & Ioannou, G. (2008). Exact, heuristic and metaheuristic

algorithms for solving shop scheduling problems. Studies in Computational

Intelligence, 128, 1-40.

167

APPENDICES

APPENDIX A. T-TEST RESULTS OF THE FLIGHT DELAY ALGORITHMS

Paired T-Test and Cl: do nothing-RepairEDD-sta, do nothing-RepairBySI-st

Paired T for do nothing-RepairEDD-stabilit - do nothing-
Repai rByS1-s tabi1i

N Mean StDev SE Mean
do nothing-RepairEDD-sta 275 0.18240 0.09886 0.00596
do nothing-RepairBySl-st 275 0.08554 0.09611 0.00580
Difference 275 0.09685 0.04393 0.00265

95% Cl for mean difference: (0.09164, 0.10207)
T-Test of mean difference = 0 (vs not = 0): T-Value = 36.56
P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairEDD-sta, do nothing-lnsertDel-sta

Paired T for do nothing-RepairEDD-stabilit - do nothing-
InsertDel-stabilit

N Mean StDev SE Mean
do nothing-RepairEDD-sta 275 0.18240 0.09886 0.00596
do nothing-lnsertDel-sta 275 0.09483 0.08554 0.00516
Difference 275 0.08757 0.03555 0.00214

95% Cl for mean difference: (0 . 0 8 3 3 5 , 0 . 09 179)
T-Test of mean difference = 0 (vs not = 0) : T-Value = 4 0 . 8 6
P-Value = 0 . 00 0

168

Paired T-Test and Cl: do nothing-RepairBySI-st, do nothing-lnsertDel-sta

Paired T for do nothing-RepairBySl-stabili - do nothing-
InsertDel-stabilit

N Mean StDev
Mean
do nothing-RepairBySI-st 275 0.08554 0.09611
0.00580
do nothing-lnsertDel-sta 275 0.09483 0.08554
0.00516
Difference 275 -0.009282 0.013540
0.000817

SE

95% Cl for mean difference: (-0.010889, -0.007674)
T-Test of mean difference = 0 (vs not = 0): T-Value =~ -
11.37 P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairEDD-qua, do nothing-RepairBySI-
qu

Paired T for do nothing-RepairEDD-quality - do nothing-
Repa i rByS1-qua1i ty

N Mean StDev SE Mean
do nothing-RepairEDD-qua 440 0.3835 0.2129 0.0101
do nothing-RepairBySl-qu 440 0.4762 0.27 67 0.0132
Difference 440 -0.09268 0.07408 0.00353

95% Cl for mean difference: (-0.09963, -0.08574)
T-Test of mean difference = 0 (vs not = 0): T-Value =
26.24 P-Value = 0.000

169

Paired T-Test and Cl: do nothing-RepairEDD-qua, do nothing-lnsertDel-qua

Paired T for do nothing-RepairEDD-quality - do nothing-
InsertDel-quality

N Mean StDev SE Mean
do nothing-RepairEDD-qua 440 0.3835 0.2129 0.0101
do nothing-lnsertDel-qua 440 0.4116 0.2369 0.0113
Difference 440 -0.02802 0.03772 0.00180

95% Cl for mean difference: (-0.03155, -0.02448)
T-Test of mean difference = 0 (vs not = 0): T-Value =
15.58 P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairBySI-qu, do nothing-lnsertDel-qua

Paired T for do nothing-RepairBySi-quality - do nothing-
InsertDel-quality

do nothing-RepairBySl-qu
do nothing-lnsertDel-qua
Difference

N
440
440
440

Mean
0.4762
0.4116

0.06466

StDev
0.2767
0.2369

0.04034

SE Mean
0.0132
0.0113

0.00192

95% Cl for mean difference: (0.06089, 0.06844)
T-Test of mean difference = 0 (vs not = 0): T-Value = 33.63
P-Value = 0.000

170

APPENDIX B. T-TEST RESULTS OF THE NEW FLIGHT ALGORITHMS

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK-
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-STABI - DN-
RepairSLACK-INSERTNEW-STABIL

N Mean StDev SE Mean
DN-RepairSLACK-INSERTNEW 275 0.23888 0.09743 0.00588
DN-RepairSLACK-RepairTWS 275 0.31365 0.13057 0.00787
Difference 275 -0.07477 0.05223 0.00315

95% Cl for mean difference: (-0.08097, -0.06857)
T-Test of mean difference = 0 (vs not = 0): T-Value = -
23.74 P-Value = 0.000

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK-
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-QUALI - DN-
RepairSLACK-INSERTNEW-QUALIT

N Mean StDev SE Mean
DN-RepairSLACK-RepairTWS 440 0.28900 0.12026 0.00573
DN-RepairSLACK-INSERTNEW 440 0.34440 0.13626 0.00650
Difference 440 -0.05540 0.04190 0.00200

95% Cl for mean difference: (-0.05932, -0.05147)
T-Test of mean difference = 0 (vs not = 0): T-Value =
27.73 P-Value = 0.000

171

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK-
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-STA_l - DN-
RepairSLACK- INSERTNEW-STAB_1

N Mean StDev SE Mean
DN-RepairSLACK-INSERTNEW 275 0.36239 0.09766 0.00589
DN-RepairSLACK-RepairTWS 275 0.46286 0.10220 0.00616
Difference 275 -0.10047 0.01979 0.00119

95% Cl for mean difference: (-0.10282, -0.09812)
T-Test of mean difference = 0 (vs not = 0): T-Value = -
84.17 P-Value = 0.000

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK-
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-QUA_l - DN-
RepairSLACK- INSERTNEW-QUAL_1

N Mean StDev SE Mean
DN-RepairSLACK-RepairTWS 440 0.21170 0.07929 0.00378
DN-RepairSLACK-INSERTNEW 440 0.24933 0.07368 0.00351
Difference 440 -0.03763 0.04365 0.00208

95% Cl for mean difference: (-0.04172, -0.03354)
T-Test of mean difference = 0 (vs not = 0): T-Value =
18.09 P-Value = 0.000

172

VITA

Gulsah HANCERLIOGULLARI

Engineering Management and Systems Engineering
Old Dominion University, Norfolk, VA

e-mail: ghancerl@odu.edu. gulsah 2207@hotmail.com

EDUCATION

Old Dominion University, Norfolk, VA
Ph.D., Engineering Management and Systems Engineering June 2013

Bilkent University, Ankara, Turkey
M.S., Industrial Engineering July 2010

Bilkent University, Ankara, Turkey
B.S., Industrial Engineering June 2008

RESEARCH INTERESTS

Algorithm Development for Optimization Problems, Modeling and Analysis of Scheduling
and Rescheduling Systems, Decision Support Systems, Empirical Research in Inventory
Management, Supply Chain Management for Retailers, Quality Engineering and
Experimental Design

PUBLICATIONS

Hancerliogullari, G., Rabadi, G., Al-Salem A., Kharbeche, M ., 2013. Greedy Algorithms
and Metaheuristics for a Multiple Runway Combined Arrival-Departure Aircraft
Sequencing Problem, Journal o f Air Transport Management, 32, 39-48.

Hancerliogullari, G., Rabadi, G., Kharbeche, M., Al-Salem, A. 2012. Heuristic algorithms for
aircraft sequencing problem, Proceeding o f the 2012 International Annual Conference o f the
American Society for Engineering Management.

Rabadi, G., Hancerliogullari, G., Kharbeche, M., Al-Salem, A. 2012. Meta-heuristics for
aircraft arrival and departure scheduling on multiple runways, Proceedings o f the 2012
Industrial and Systems Engineering Research Conference.

Rabadi, G., Ghoniem, A., Al-Salem, A., Kharbeche, M., Hancerliogullari, G., Shahrestanaki,
F. 2012. Aircraft Scheduling on Multiple Runways, Qatar Foundation Annual Research
Forum Proceedings.

mailto:ghancerl@odu.edu
mailto:2207@hotmail.com

	Old Dominion University
	ODU Digital Commons
	Summer 2013

	Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways
	Gulsah Hancerliogullari
	Recommended Citation

	00001.tif

