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ABSTRACT

APPROXIMATE ALGORITHMS FOR THE COMBINED ARRIVAL-DEPARTURE 
AIRCRAFT SEQUENCING AND REACTIVE SCHEDULING PROBLEMS ON

MULTIPLE RUNWAYS

Gulsah Hancerliogullari 
Old Dominion University, 2013 

Director: Dr. Ghaith Rabadi

The problem addressed in this dissertation is the Aircraft Sequencing Problem 

(ASP) in which a schedule must be developed to determine the assignment of each 

aircraft to a runway, the appropriate sequence of aircraft on each runway, and their 

departing or landing times. The dissertation examines the ASP over multiple runways, 

under mixed mode operations with the objective of minimizing the total weighted 

tardiness of aircraft landings and departures simultaneously. To prevent the dangers 

associated with wake-vortex effects, separation times enforced by Aviation 

Administrations (e.g., FAA) are considered, adding another level of complexity given 

that such times are sequence-dependent. Due to the problem being NP-hard, it is 

computationally difficult to solve large scale instances in a reasonable amount of time. 

Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with 

Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast 

Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated 

Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are 

introduced to improve solutions initially constructed by the proposed greedy algorithms. 

The performance (solution quality and computational time) of the various algorithms is 

compared to the optimal solutions and to each other.

The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) 

as air traffic systems frequently encounter various disruptions due to unexpected events 

such as inclement weather, aircraft failures or personnel shortages rendering the initial 

plan suboptimal or even obsolete in some cases. This research considers disruptions 

including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is 

formulated as a multi-objective optimization problem in which both the schedule’s



quality and stability are of interest. The objectives consist o f the total weighted start times 

(solution quality), total weighted start time deviation, and total weighted runway 

deviation (instability measures). Repair and complete regeneration approximate 

algorithms are developed for each type of disruptive events. The algorithms are tested 

against difficult benchmark problems and the solutions are compared to optimal solutions 

in terms of solution quality, schedule stability and computational time.



This dissertation is dedicated to my mom Kaytan and my dad Ahmet.



ACKNOWLEDGEMENTS

Even though writing a dissertation is an individual work, I could never have 

succeeded in completing this dissertation without the help, support, guidance and efforts 

of many people.

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Ghaith Rabadi, for his endless patience, guidance, support and encouragement. 

Throughout my doctoral study, he always believed in me and always made me feel that I 

could do better and better. His way of thinking, solving problems, teaching, and 

understanding, led me to admire him. Not only has Professor Rabadi shaped who I am as 

a scientist, but he also shaped my teaching, communication and collaboration skills. I 

have always said this to everyone, but I would like to express it here, one more time that I 

couldn't have finished this work without him. Thank you very much for everything 

Professor!

I would like to thank other members of my dissertation committee, Dr. Resit 

Unal, Dr. Ariel C. Pinto and Dr. Mecit Cetin for providing me support, feedback and 

encouragement during the improvement of this dissertation.

I especially would like to thank Dr. Resit Unal for his numerous avenues of 

support which include recommending opportunities to me on countless occasions. To me, 

he was not only the department chair of EMSE but also a supportive role model who is 

concerned with all of his students' success.

I would like to extend my special appreciation to Dean of Frank Batten College of 

Engineering & Technology, Dr. Oktay Baysal and Associate Dean, Dr. Osman Akan for 

providing me the opportunity to pursue my Ph.D. I also would like to thank Dr. Ahmed 

Ghoniem and Farbod Farhadi from University of Massachusetts Amherst, Dr. Mohamed 

Kharbeche and Dr. Ameer Al-Salem from Qatar University and Dr. Hanif D. Sherali 

from Virginia Tech for their support and feedback during the collaborative research 

project.



I am deeply grateful to my family for their encouragement and unbending love 

not only during this study, but also throughout my life. I feel very lucky to have such a 

wonderful family. My very precious thanks to my mom Kaytan, my dad Ahmet, my 

sister, Basak, my brother, Dr. Kadir Oymen, my nephew Burak Emirhan and my sister- 

in-law Nihal. Whenever I needed courage, talking to them helped ease everything.

I am very grateful to all of my friends and family here in the States and in Turkey. 

In this long journey, miles away from home, people I have met here have made me feel 

like I am home again. Many thanks to Dr. Mujde Erten Unal, Deniz Unal, Mariam 

Kotachi, Dr. Ersin Ancel, Dr. Bema Eren Tokgoz. I also owe a special note of gratitude 

to Cansu Kandemir, Elnaz Dario and Alireza Shahvari who I’ve known for a couple of 

months but it feels like an eternity; they always cheered me up when I was in a bad mood 

with their big smiles and warm friendship. Everytime I visited Turkey, all of my friends 

there made me feel like I never left. These countless number of friends, who are now all 

around the world, especially, Esra Agca, Ardic Kocaman, Ece Zeliha Demirci, Hatice 

Calik, Pelin Damci Kurt, Gokce Akin deserve big thanks from me.

Last and most importantly, Emrah Koksalmis, who has given me the biggest 

support during my doctoral study deserves the most special thanks. He always listened to 

my research ideas patiently and gave me useful feedback. There are no words that can 

express my gratitude to him.



NOMENCLATURE

AATCSR Adapted Apparent Tardiness Cost with Separation and Ready Times

ASP Aircraft Sequencing Problem

ATSP Asymmetric Traveling Salesman Problem

B&B Branch-and-bound

CPS Constrained Position Shifting

CSH Cheapest search heuristic

ERT Earliest Ready Time

Eurocontrol European Organisation for the Safety of Air Navigation 

FAA Federal Aviation Administration

FCFS First-Come First-Served

FPI Fast Priority Index

GA Genetic Algorithm

GRASP Greedy randomized adaptive search procedure

ICAO International Civil Aviation Organization

Meta-RaPS Meta-heuristic for randomized priority search

M1LP Mixed-integer Linear Programming

SA Simulated Annealing

TMA Terminal Maneuvering Area
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CHAPTER 1 

INTRODUCTION

The current capacity of airports is becoming insufficient due to growing air transportation 

demand and a huge increase in air traffic during the last decade. Therefore, some aircraft 

cannot land or depart at their preferred target-time. In order to achieve an efficient use of 

critical resources such as runways, devising appropriate methods for aircraft sequencing 

problem (ASP) is of great importance and is the main aim of this dissertation. Airport 

terminal maneuvering area (TMA) is of great interest to decision-makers since it is a 

critical link of air traffic operations chain. TMA includes managing air traffic control 

operations, runway scheduling and taxiway operations. Among these operations, runway 

scheduling is the one that affects the performance of the TMA the most (Sherali et al., 

1992).

Although there are many ongoing studies related to the operations that take place in the 

TMA, the cost of the flight delays are still extremely high. In order to effectively use the 

low capacity resources such as runways, effective decision support systems are required, 

air traffic policies have to be identified, and wise planning strategies have to be proposed 

which require huge amount of time and investment. Researchers have been examining 

several approaches on the efficient use of runways while considering safety constraints. 

Since constructing new airports or additional runways is not a near term solution, 

decision-makers ought to examine competent schedules of aircraft landings and 

departures to improve the runway throughput capacity. In other words, already existing 

resources should be evaluated and utilized judiciously. This way, the current and the 

estimated inefficiencies in operations can be eliminated, and significant advantages in 

performance can be gained.

According to the U.S. Department of Transportation and Eurocontrol, the flight delays 

statistics were worrisome due to the fact that in the United States compared to 2006, a 

15% increase in flight delays was observed in 2007 which cost $8.1 billion in terms of 

direct operating costs. Because of weather conditions, traffic volume and airport 

operations, the Air Travel Consumer Report ATCR (U.S. Department of Transportation
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2008) and “Challenges of Growth 2008” by Eurocontrol stated that more than 20% of 

commercial flights were late by more than 15 minutes.

Scheduling is a decision-making process that concentrates on allocation of resources to 

tasks over given time periods. Therefore, scheduling approaches can be considered for 

more effective air traffic operations while maintaining up safety and efficiency. The ASP 

concurrently determines the assignment of aircraft to runways, the appropriate sequence 

of aircraft on each runway, and the departing or landing time on a chosen runway. It is 

assumed that each runway can accommodate at most one aircraft at any time that 

runways are reliable, and that they operate independently. The problem can then be 

modeled as an identical parallel machine scheduling problem with the runways being 

machines and the aircraft being jobs that have ready times (release times), target times 

(due dates), deadlines, tardiness penalties (weights), and sequence-dependent separation 

(setup) times.

As all aircraft generate wake vortices, a minimum time or a distance is set between 

aircraft to prevent the adverse effect; this safety buffer is referred as the separation time. 

Careful sequencing and scheduling can reduce the long separation and operating times. 

Minimum separation times between consecutive and certain nonconsecutive operations, 

and specified time-windows during which operations must take place are two of the 

major requirements of this scheduling effort. Minimizing the total weighted tardiness is a 

reasonable objective function to schedule landings and departures as close as possible to 

their target times. A mixed integer linear programming (MILP) model is provided to find 

optimal solutions. However, since minimizing the total weighted tardiness even for a 

single machine with all weights being equal is NP-hard (Lawler, 1982), ASP is also NP- 

hard, which means that it is computationally difficult to solve large scale instances in a 

reasonable amount of time. Therefore, it is necessary to develop appropriate methods to 

reach good quality solutions in reasonable computational times.

Passenger satisfaction is one of the key considerations for airline companies that can be 

maximized by minimizing flight delays. Throughout the course of daily operations, an 

airline is faced with the potential of deviations in the planned flight schedule as a result of
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various unexpected events such as severe weather conditions and unexpected aircraft or 

personnel failures. Unlike most literature, we consider in this dissertation aircraft related 

disruptive events as they occur often and are much more frequent than other type of 

disruptions in air traffic operations. Aircraft reactive scheduling approach is taken in this 

research and schedule repair algorithms are developed to deal specifically with arrival of 

new aircraft, flight cancellations and aircraft delays due to irregular events. One of the 

goals of this dissertation is to propose and validate solution methodologies and heuristic 

procedures to reschedule the planned flights in the event o f irregular and disruptive 

operations.

1.1 Fundamental Concepts in Aircraft Sequencing

The Aircraft Sequencing Problem (ASP) is an operations research problem, whose goal 

is to assign the arrival and departure aircrafts to runways and sequence them on each 

runway simultaneously. Minimum separation times between consecutive and certain 

nonconsecutive operations, and specified time-windows during which operations must 

take place are two of the major requirements of this scheduling effort. The time- 

windows, which are required for the landing and departure operations, specify the 

earliest and latest times of an aircraft become available on a runway for operation. So as 

to reduce the wake-vortex effect risk, minimum separation times between consecutive 

and certain nonconsecutive operations are required. Aircraft operation types such as 

landing or departure, aircraft weight-class such as heavy, medium, light, and sequence of 

the operations decided by the air traffic controller affect the magnitude of the separation 

times.

In the academic literature, ASP has attracted the researchers for over the 20 years as 

surveyed by Bennell et al. (2011). The tools of operational research and management 

science, and solution techniques including dynamic programming, branch and bound, 

heuristics and metaheuristics for aircraft landing and take-off scheduling have been 

comprehensively reviewed. According to this survey, it is noted that significantly more 

attention has been dedicated to aircraft landings or departures in contrast to combined 

arrival-departure cases.
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1.1.1 Time Windows

Depending on conditions such as fuel restriction, maximum allowed delay, the airspeed, 

runway availability, or meeting a connecting flight, the landing time of an aircraft must 

be within a time window that consists of its earliest and latest possible landing time. This 

time window should be treated as a hard constraint.

Some aircraft have target departure times, a Calculated Time of Take-off (CTOT), are 

calculated for smooth congestion at busy destination airports. According to Atkin et al. 

(2010), the CTOT limits the time that aircraft enters the congested areas to smooth the 

traffic in the airspace and at the airports. The CTOT defines a fifteen minutes time 

window for which the goal of the air traffic controllers is to assign a scheduled departure 

time to each aircraft from five minutes before CTOT to ten minutes after the CTOT, 

which is a soft constraint (Bennell et al., 2011).

1.1.2 First-Come-First-Served

One of the most commonly used heuristics for aircraft sequencing problem is First- 

Come-First-Served (FCFS). In terminal areas, planning specialists use estimated landing 

time for calculation of delays. Depending on the estimated landing time, which is based 

on the route and speed of aircraft, scheduled landing time is assigned to each aircraft 

(Neuman and Erzberger 1991). Although it is not always preferred for departure 

sequence, the order of the aircraft queuing is the FCFS order, which provides an 

estimated departure time (Carr et al. 2000).

1.1.3 Runway Capacity and Assignment

The runway capacity, which is a crucial constraint in an airport system, is the maximum 

rate of aircraft arrivals or departures that can be accommodated by a single or multiple 

runways. The factors that affect it are aircraft type, runway operation type (segregated or 

mixed), runway occupancy time, availability of taxiways, and weather conditions 

(Bazargan et al. 2002). In segregated-mode, the runway is merely used for either arrival 

or departure of the aircraft, whereas mixed-mode allows both landing and departure on 

the same runway. Atkin (2008) states that mixed-mode is more efficient than segregated-
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mode; likewise Newell (1979) shows that airport capacity is greater when runways are 

operated in mixed-mode.

The objective of air traffic controllers is to increase the throughput from the available 

runways while satisfying safety and operational constraints. As increasing the number of 

runways is not a practical solution, air traffic controllers should consider different 

methods while they assign a runway to the landing/departure aircraft. The runway 

assignment depends on the airport configuration (single runway, parallel or intersecting 

runways or combination of these), the direction of arriving aircraft, and departure route of 

the aircraft (Brinton 1992). So as to balance the number of arrivals and departures on a 

runway, runway allocation, that is affected by airlines’ preferences, controllers’ 

considerations such as safety and shorter flight times, is done (Isaacson et al., 1997).

1.1.4 Separation

Minimum separation between aircraft landing and departure has a great impact on the 

runway throughput at an airport. Careful sequencing and scheduling can reduce the 

number of long separation and operating times; therefore, the separation time makes 

aircraft sequencing and scheduling problem an important and non-trivial. Reason for 

setting minimum separation is to prevent the adverse effect of vortices. Because of the 

rolling moment it can impose on a following aircraft, a wake vortex (WV) is dangerous. 

The illustration of wake vortex effect is shown in Figure 1.

In order to have safe flight operations, the International Civil Aviation Organization 

(ICAO) regulates and puts into action separation standards between the leader and the 

follower aircraft for both landings and departures. The separation standard for landing is 

based on distance; however, for departure it is based on time (Beasley et al. 2001).

The U.S Federal Aviation Administration (FAA) has established minimum spacing 

requirements between landing aircraft to prevent the turbulence from wake vortices 

(Aeronautical Information Manual/Federal Aviation Regulation, 2003).
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Figure 1. Graphic of wake vortices (http://www.tc.gc.ca/eng/innovation)

For safety reasons, landing/departing a large aircraft necessitates longer time delay before 

other aircraft can land or depart. On the other hand, a small aircraft generates little air 

turbulence and therefore it needs only a short time delay. This is illustrated by the 

International Civil Aviation Organization (ICAO) as follows in Figure 2.

For separation purposes, the FAA divides aircraft into three weight classes, based on the 

maximum take-off weight capability. Heavy aircraft class is capable of having a 

maximum takeoff weight of 255,000 lbs or more, Large aircraft class can have more than 

41,000 lbs and up to 255,000 lbs maximum takeoff weight, and Small aircraft class is 

incapable of carrying more than 41,000 lbs takeoff weight. A sample of separation times 

on landing are shown in Table 1.

Leading Aircraft Time for Trailing Aircralft (seconds)
Heavy Large Small

Heavy 96 157 196
Large 60 69 131
Small 60 69 82

Table 1. Minimum time separation (in seconds) landings (FAA, 2003)

http://www.tc.gc.ca/eng/innovation
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Figure 2. ICAO separations (http://www.liv.ac.uk/flightsciencel

Generally, the WV separation rules depend on sequence airspeeds, landing/departure 

routes, size and types of aircraft, and are asymmetric; i.e., s £y =£ Sy£. Note that s £y =  Sy£ 

only if i and j  belong to the same weight class and same operation type. For consecutive 

operations, separation requirements satisfy the triangle inequality; that is sik < s £y + Sjk , 

Vi,Vk  =£ i, V/ ¥=■ i,k, where s£y is the WV separation between aircraft classes, if the 

leading aircraft belongs to class i, and the trailing aircraft belongs to class j  (Balakrishnan 

and Chandran 2006). Flowever, note that in practice separation rules do not obey triangle 

inequality; it is not adequate just consider the separation from the immediately preceding 

aircraft. In this research, we will consider separation standards not only for consecutive 

but also for nonconsecutive operations, which means that the separation times may not 

necessarily satisfy the triangle inequality.

1.2 Mapping the ASP to Machine Scheduling Problem

Many real life scheduling problems can be modeled as parallel machine scheduling 

problems. In the classical parallel machine scheduling problem, there are n jobs and m 

machines. Each job needs to be executed on one of the machines during a fixed 

processing time. A parallel machine scheduling problem involves both resource

http://www.liv.ac.uk/flightsciencel
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allocation and sequencing. It allocates jobs to machines and determines the sequence of 

jobs on allocated machine. Machines may be identical, on which the processing time of 

each job is independent of the assigned machine; uniform where each machine may be 

have a different speed with known speed factor; or unrelated where the processing time 

of each job is dependent on the assigned machine without a particular relationship. The 

aim is to find a schedule that optimizes a certain performance measure(s) such as 

makespan, maximum lateness or weighted tardiness.

The Aircraft Sequencing and Scheduling Problem can be defined as determining the 

assignment of each aircraft (job) to runway (machine) and the start time of the operation 

(landing or departure) for the aircrafts. In order to map this problem to a classical 

scheduling problem, the following assumptions have to be considered (Blazewicz et al., 

2007):

1. Any job can be processed on at most one machine at any time.

2. Preemption is not allowed, meaning that once an operation is started, it must be 

completed without interruption.

3. Ready times of all jobs are zero, i.e. all jobs are available at the commencement of 

processing.

4. Machines are always available and reliable.

5. Each machine can process at most one job at any time.

6. Sequence dependent setup times, weights, technological constraints and due dates 

are deterministic and known in advance where appropriate.

Consequently, the following assumptions are considered for the ASP:

1. Any aircraft can operate on at most one runway at any time.

2. There exists a non-preemptive system where a process cannot be interrupted until 

it is finished.

3. Ready time can be defined as the earliest available time to take-off at runway end 

or to land where the taxi time is not included (i.e., ready times are not necessarily 

zero).

4. Runways are always available and reliable.

5. At most one aircraft is allowed to operate on each runway at any time



9

6. Sequence dependent separation times, ready times, target times, deadlines, 

technological constraints, operation type, aircraft sizes and associated penalty 

weights are deterministic and known in advance.

1.3 Problem Statement

One can imagine a set of aircraft to land/depart, and a decision problem can be stated as 

which aircraft should land/depart next using which runway. Over the course of a working 

day, this problem is one that has to be solved repeatedly. If a decision support tool could 

be developed to assist the controller in making this decision then perhaps more effective 

use of runway capacity could be made. Actually, one has to do more than decide which 

aircraft lands/departs next. The air traffic controller has to think ahead and (implicitly or 

explicitly) form the set of aircraft waiting to land/depart; namely, decide the order in 

which the aircraft will land/depart as well as their landing/departure. The controller has to 

guarantee that an aircraft has time to safely reach to the runways so as to land/depart at 

the proper position in the sequence that an aircraft does not run low on fuel while 

airborne and that aircraft do not land/depart too close together. The first two conditions 

imply that for each aircraft, there is a window of time within which it must land/depart, 

and the final condition means that a reasonable amount of time or distance must elapse 

between successive landings/departing.

The following the problem elements and definition are used throughout this dissertation: 

J = { 1 , 2 , n } :  A set of n aircraft (landing or departing).

M={1,2,..., m}: A set of m identical runways.

Ready time (rj): The earliest time that aircraft j  is ready to take-off at runway end or to 

land (taxi time is not included). Thus, an aircraft cannot be scheduled before rj.

Target time (8j): Planned time for aircraft j  to take-off at runway end or land (taxi time is 

not included). Landing/departing after the target time is allowed, but then a weighted 

tardiness penalty is incurred.
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Deadline (dj): Allowable latest time that aircraft j  to take-off or land after which the 

operation is infeasible. It is the upper bound of the target-to-deadline window, where 

Tj < Sj <  d j , V; G J.

Operation type (Oj): Operation type of aircraft j, being a landing or a departure

Size class (Cj): Size class of aircraft j, e.g., heavy, large, or small

Weight (wj): Penalty cost/weight per unit o f tardiness for aircraft j .  It is assigned to 

aircraft j  based on its operation type (landing or departure) and its size class (heavy, 

large, or small). In particular, higher priority is usually assigned to landings over 

departures and to heavy aircraft over large and small ones. Moreover, in the test-bed 

Wj] =wj2 if Oj]=Oj2 and Cji=Cj2.

Sequence-dependent separation time (%): Minimum separation time required between 

aircraft k and j  if they are respectively the leading and the following aircraft, V k ,j  e  

J ,k  ^  j. This separation time is dependent on sequence, aircraft k  and j  in terms of 

operation type and aircraft weight class, and independent of the runway.

Start time (tj): The start time of aircraft j .  (i.e., the time for departure or landing). That is, 

Vj < tj < Dj, and it is desirable to have tj as close to Sj as possible.

Piecewise tardiness (Tj): piecewise tardiness of aircraft j  with respect to its target-time, 

V j E j .

Target time-to-Deadline window (dj - Sj): Missing the target time is allowed but not 

preferred, and a weighted tardiness cost is incurred; on the other hand, missing the 

deadline is not allowed. For the problem where dj > tj > Sj, the tardiness cost is 

Tj = max(t; — Sj, 0). An aircraft is labeled infeasible and not scheduled, if its start time 

misses the deadline, where tj > dj. A time horizon that illustrates the nature of problem 

is provided in Figure 3.
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Figure 3. Scheduling Time Horizon

Hancerliogullari et al. (2013) studied the ASP over multiple runways, under mixed mode 

operations with the objective of minimizing the total weighted tardiness of aircraft 

landings and departures simultaneously. A scheduling problem is described by a triplet a 

| P | y. The a field describes the machine environment, the /? field provides details of 

processing characteristics and constraints, and the y field describes the objective to be 

minimized and often contains a single entry (Pinedo, 2008). Using the a \ /? | y notation of 

Lawler et al. (1982), the representation of the problem being researched is 

Pm\rj,Sj, d.j,Skj,time window\SwjTj. The ASP can be defined as scheduling n aircraft 

(jobs) on m identical runways (machines). Each aircraft (j= 1, ...,ri) has a penalty weight 

Wj, becomes ready to operate on a runway at ready time 7}- (i.e., aircraft cannot be 

scheduled before ?}•), ought to start its operation (land or depart) by target time Sj 

(planned latest time of an aircraft to operate) and before deadline dj. A sequence- 

dependent separation time skj is enforced to avoid the dangers of wake-vortex effects
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when aircraft j  operates after aircraft k. skj values depend on aircraft operations 

(departures, arrivals) and the size-class of the aircraft (small, large, heavy) (Federal 

Aviation Administration, 2003, Rabadi et al., 2012, Hancerliogullari et al., 2013). For 

instance, a heavy aircraft requires a larger separation time before a smaller aircraft can 

land/depart; on the other hand, a small aircraft generates little air turbulence and, 

therefore, less separation time is necessary if it is scheduled ahead of a larger aircraft. 

Note that the wake-vortex separation requirements for departures-only or arrivals-only 

operations satisfy the triangular inequality, which is sab +  sbc > sac , if the separation 

time required between leading aircraft a and trailing aircraft b is sab. The implication is 

that when the spacing requirements between successive aircraft are ensured, the spacing 

requirements for all pairs of aircraft are met. However, the triangle inequality does not 

necessarily hold when both arrivals and departures are scheduled simultaneously 

(Balakrishnan and Chandran, 2010), which makes the problem harder to solve.

The start time of the operation for aircraft j  is denoted by tj, and the tardiness by 7) =  

max(ty_ Sj, 0). Missing the target time for aircraft j  is possible at a weighted tardiness 

cost of wjTj if it misses its target-time. Missing the deadline, however, is not permitted 

where if aircraft j  misses dj, it will not be assigned to a runway, and the aircraft in such 

case is labeled as “unscheduled” resulting in an infeasible schedule. Target time-to- 

deadline window is the time window during which weighted tardiness cost is incurred; on 

the other hand, ready time-to-deadline window is the scheduling window in which 

aircraft have to operate. The scheduling objective is the minimization of the total 

weighted tardiness (TWT) which is expressed as £y=i W/7}.

The minimum separation times adopted in this dissertation are specified in Table 2. These 

minimum safety separation times are enforced by the Federal Aviation Administration 

(FAA), the national aviation authority of the United States. This precaution is necessary 

because the triangle inequality does not systematically hold for the separation times. It 

has been noted in Sherali et al. (2010) and Balakrishnan and Chandran (2010) that the 

separation times in Table 2 do not automatically ensure proper separation between any 

pair of aircraft having the same operation type that are interspersed with an aircraft
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operation of the opposite type (e.g., two landings separated by a departure or two 

departures interspersed with a landing).

Arrival Departure Case

Leading\F ollowing Heavy Large Small
Heavy 40 40 40

Large 35 35 35

Small 30 30 30

Arrival -► Arrival Case

LeadingVF ollowing Heavy Large Small
Heavy 99 133 196
Large 74 107 131

Small 74 80 98

Departure -*• Departure Case

Leading\Following Heavy Large Small
Heavy 60 90 120
Large 60 60 90
Small 60 60 60

Departure -► Arrival Case

LeadingVF ollowing Heavy Large Small
Heavy 50 53 65

Large 50 53 65

Small 50 53 65

Table 2. Minimum Separation Times (seconds) from Sherali et al. (2010)

Due to the specific separation times used in this dissertation, which are similar to those in 

Sherali et al. (2010), it is necessary to ensure the separation of an aircraft between at most 

four consecutive aircraft.
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By denoting the start time of the aircraft in the k th position by and the separation time 

between aircraft at positions kx and k2 by S[kl,k2]> the start time of an aircraft operation k 

for up to 4 positions can be obtained by Equations (1) through (4).

f [i] =  r [i]; (*)

t [2] = max{r[2], t [x] + s [1(2]}; (2)

t[3] = max{r[3], t tl] +  s [1>3], t [2] + s [2>3]}; (3)

t[fc] = max{r[kp +  s [ft_ljlc], t [k_2] + S[k_ 2jk] , t [ k_ 3] + S[fc_ 3(fc] } ,  V/c = 4, ...,n  (4)

In order to illustrate the problem, sample data is given in Table 3.

j r i % d, ° i Ci Wj

1 19 79 619 1 3 1
2 30 90 630 0 3 4
3 54 114 654 0 3 4
4 64 124 664 1 3 1
5 135 195 735 1 2 2
6 26 86 626 0 1 6
7 78 138 678 0 3 4
8 130 190 730 1 1 3
9 128 188 728 0 1 6
10 177 237 1 1 1 1 1 3

S/q 1 2 3 4 5 6 7 8 9 10
1 30 65 65 60 60 50 65 60 50 60
2 30 30 98 30 30 74 98 30 74 30
3 30 98 30 30 30 74 98 30 74 30
4 60 65 65 30 60 50 65 60 50 60
5 90 65 65 90 40 50 65 60 50 60
6 40 196 196 40 40 40 196 40 99 40
7 30 98 98 30 30 74 30 30 74 30
8 120 65 65 120 90 50 65 50 50 60
9 40 196 196 40 40 99 196 40 40 40
10 120 65 65 120 90 50 65 60 50 50

Table 3. Sample Data
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In the problem, there are two identical parallel runways (i.e. runways #1 and #2), 10 

aircraft, and each aircraft has its own ready time, target time, deadline, operation type, 

size class, weight/penalty and sequence dependent separation time values. A feasible 

schedule for the problem set is provided in Figure 4 where the notation A(B) refers to 

Runway number (Start time).

Runway # 1

2(30) 7 (128) 3(226)

T
i

Runway # 2

1(60) 8(158)

6(26) 9(128)

I
T

1
4(66) 5(168)

Figure 4. A Feasible Schedule

10(228)

Utilizing the Equations (l)-(4), the start times for a given schedule are calculated as 

follows:

On the 1st runway: 

t 2 =  r2 =  30;

= m axfr^ ti +  s21} = max {19, 30+30} = 60;

t 7 = m ax fo .ti + s17, t 2 + s27} =  max {78, 60+65, 30+98} = 128;
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t8 =  max{r8, t7 +  s78, tt +  s18, t2 +  s28}  = max {130,128 + 30,60 + 60,30 +

30} = 158;

t3 =  max{r3, t8 + s83, t7 +  s73, t t  +  s13}  = max {54,158 + 65,128 +  98,60 + 

65}=  226;

On the 2nd runway:

t6 =  r6 =  26;

t4 = max{r4, t 6 + s64} = max {64, 26+40} = 66;

t9 =  max{rg, t 4 + s49, t 6 + s69} =  max {128,66+50, 26+99} = 128;

t 5 = max{r5, t 9 + s95, t4 + s45, t 6 +  s65} = max {135,128 + 40,66 + 60,26 +

40} =  168;

t 10 = max{r10, t 5 + s5_10, t 9 + s9_10, t4 +  s4_10} =  max {177,168 +  60,128 + 

40,66 +  60} = 228

Once the start times are determined, the piecewise tardiness and the total weighted 

tardiness are calculated as follows:

Tx =  max{0, 60-79} = 0;

T2 = max{0, 30-90} = 0;

T3 = max{0, 226-114} = 112;

T4 = max{0, 66-124} = 0;

Ts = max{0,168-195} = 0;

T6 = max{0, 26-86} =  0;

T7 = max{0,128-138} = 0;
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T8 =  max{0,158-190} = 0;

T9 = max{0,128-188} =  0;

T10 = max{0, 228-237} = 0;

X j1®! WjTj =  WiTi +  w 2T2 + — I- w10T10 = 4 x 112 = 448 

1.4 Research Scope and Objectives

The research scope of this dissertation is framed around two problem areas: the aircraft 

sequencing problems and the aircraft reactive scheduling problems. The scheduling and 

reactive scheduling environments consist of a finite set of aircraft and a finite set of 

runways. It is assumed that aircraft have unequal ready times, target times and deadlines. 

There is a ready time-to-deadline window is the scheduling time window that aircraft 

have to operate. Moreover, there is a target time-to-deadline window between the ready 

time and deadline during which weighted tardiness cost is incurred. The solution quality 

of the ASP is measured through minimizing the total weighted tardiness (i.e., minimizing 

the total weighted delay from target time). From a modeling perspective, it is 

advantageous to draw an analogy between the aircraft sequencing problems and 

specially-structured parallel machine scheduling problems. Using this metaphor, runways 

and aircraft are interpreted as machines and jobs, respectively, where it is desirable to 

minimize a pertinent cost function. This dissertation research formulates a scheduling 

problem from the air traffic environment as a parallel machine scheduling problem. 

Effective solution methodologies are proposed for ASP by taking into account the social 

and economic benefits across ever-increasing air traffic volume.

Air traffic systems frequently encounter disruptions such as bad weather conditions, 

technical failures, etc. so that the schedule cannot be executed as planned; therefore, the 

air traffic controllers have to update flight operations. It is assumed that a continuous 

reactive scheduling approach is used to update the initial schedule when a disruption 

occurs. Aircraft reactive scheduling problem is studied, and schedule repair and 

rescheduling algorithms are developed to deal with aircraft related disruptions,
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specifically, flight cancellations, aircraft delays and arrival of new aircraft. These diverse 

disruptions possibly cause failure in process quality, or continuity of the process. In order 

to limit the negative consequences of the disruptions, a proper course of action should be 

taken. However, it is not preferable to change the existing decision significantly while 

making a new decision. We prefer to maintain conformity to the initial decision, and be 

unwilling to perturb it much. For this reason, the reactive scheduling problem considers 

both minimizing total weighted start times and minimizing schedule instability. The 

objective in the ARP takes into account not only the primary measure of schedule 

performance but also the stability measure. The stability can be measured based on the 

difference between the initial and final schedule. In this dissertation, the measure of 

stability can be defined as differences in start times of the operations, and the runway 

assignment deviation. Consideration of these objectives leads us to formulate the ARP as 

a multi objective reactive scheduling problem.

The objectives of the research can be summarized as follows:

1. To formulate a scheduling problem from the air transportation environment as a 

parallel machine scheduling problem, which is mostly common in production 

environment.

2. To model the ASP under a mixed mode of operations where both landing and 

departure flows are considered simultaneously.

3. To examine the problem of scheduling aircraft arrivals and departures over 

multiple runways.

4. To develop effective and efficient solution methods to obtain initial schedules 

which satisfy the constraints of the problem in a reasonable amount of time. This 

is achieved by introducing greedy algorithms for the problem.

5. To improve initially constructed solutions and to find near optimal solutions using 

metaheuristics including Simulated Annealing and Meta-RaPS.

6. To address the rescheduling problem by formulating the problem as a multi

objective optimization problem where total weighted start time and instability are 

minimized (i.e., total weighted start time deviation and total weighted runway 

deviation). This is achieved using optimization models and approximate
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algorithms to repair and to reschedule the disrupted schedules satisfactorily 

regarding multi-objectives.

The rest of this dissertation is organized as follows. In Chapter 2, related research is 

summarized. Solution methodologies proposed for the aircraft arrival and departure 

sequencing problem on multiple runways are provided in Chapter 3. A Computational 

study for different problem sizes is described and their results are analyzed in Chapter 4. 

Reactive scheduling mechanisms and solution methods for aircraft rescheduling problem 

are presented in Chapter 5 followed by a computational study in Chapter 6. Finally, 

conclusions and future research are presented in Chapter 7.
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CHAPTER 2 

LITERATURE REVIEW

In the light of problem defined earlier, related literature including solution approaches 

(i.e., exact algorithms, heuristics and metaheuristics) for aircraft sequencing problem, 

parallel machine scheduling problem and aircraft reactive scheduling problem are 

reviewed to display practical and intellectual contributions of the dissertation research.

2.1 Aircraft Sequencing Problem

In the literature, both exact and heuristic algorithms have been proposed for the ASP, 

with approximate algorithms recently gaining attention due to the fact that for large 

problems it may take a long time to reach optimal solutions. Bennell et al. (2011) 

provides a recent survey on ASP where a comprehensive review of operations research 

techniques such as dynamic programming, branch and bound, heuristics and 

metaheuristics that have been used to schedule aircraft landing and departures were 

surveyed.

2.1.1 Exact Algorithms

Early work on ASP dates backs to the early 80s where Psaraftis (1980) investigated a 

single machine scheduling problem for which a dynamic programming approach was 

developed and applied in the context of sequencing aircraft arrival operations. For 

computational convenience, it was assumed that groups of identical jobs are sequenced 

with the objective of minimizing the total processing cost.

Bianco et al. (1987, 1997) used integer programming to sequence arriving aircraft inside 

the Terminal Maneuvering Area (TMA). The authors showed that the ASP, combinatorial 

optimization problem was NP-hard. Moreover, when the ready times are zero, it was 

found that the problem reduced to the Asymmetric Traveling Salesman Problem (ATSP). 

As a solution procedure, they suggest a branch-and-bound strategy using Lagrangian 

lower bounding techniques, and a partitioning approach based on the characteristics of 

the subsequences obtained in the solution process. However, this work ignored time
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restrictions for aircraft operations and necessary separation times between certain 

nonconsecutive operations. In fact, for a triplet of aircraft, enforcing separation times 

between consecutive operations may not automatically satisfy the separation 

requirements between the first and the third operations.

Beasley et al. (2000) proposed a mixed integer linear program (MILP) model for the 

single and multiple runways aircraft sequencing problem, and applied a heuristic 

algorithm which is a version of First-Come-First-Serve (FCFS) for the aircraft landing 

problems (ALP).

Wen et al. (2005) developed a column generation-based exact decomposition algorithm 

for the ALP. They formulated the problem as a mixed integer program, and then 

reformulated it, using Dantzig-Wolfe decomposition, as a set partitioning problem with 

side constraints. Based on the set partitioning formulation, a branch-and-bound algorithm 

was developed to obtain the exact solution for the problem. The objective of this problem 

was to minimize the total (weighted) deviation from the target landing time for each 

plane. The decomposition algorithm was implemented in Matlab and they compared the 

computational performances of the same problem to some other papers in the literature; 

the running time in this research was substantially larger.

Due to the relative priority of landings over departures, the literature mostly focuses on 

the single runway aircraft landing problem. However, Gupta et al. (2009) presented a 

MILP for aircraft departures based on operations at Dallas-Fort Worth International 

Airport. The model was generic and addressed various scenarios of departure queue 

handling. The objective function included multiple objectives pertaining to throughput; 

system delay and maximum individual delay. Constraints for wake vortex separation and 

departure fix restrictions were considered. Multiple objectives relating to throughput, 

efficiency and equality were taken into account. Computational improvements to the 

basic MILP were provided, and tests indicated that system delay minimization has faster 

solution times than for throughput. For the purpose of the comparison, randomly- 

generated problems of varying sizes were used.
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The combined arrival-departure ASP was studied over a single runway by Sherali et al. 

(2010). The problem was modeled as an asymmetric traveling salesman problem where 

the authors minimize makespan, subject to proper separation time and time-windows 

restrictions. The MILP model for our problem was developed in Al-Salem et al. (2012) in 

which they provided valid inequalities and symmetry-defeating constraints.

2.1.2 Approximate Algorithms

ASP is a key problem in air traffic control operations and it is well known that it is a NP- 

Hard problem since minimizing the total weighted tardiness even for a single machine 

with all weights being equal is NP-hard (Lawler, 1982). Within a polynomial amount of 

time, there is not an efficient algorithm to find global optimal or near-optimal solutions.

In the early 1990s, researchers started focusing on the approximate algorithms for the 

ASP.

2.1.2.1 Greedy Algorithms

Dear et al. (1989, 1991) presented a Constrained Position Shifting (CPS) heuristic for the 

static and dynamic ALP. Termed Constrained Position Shifting (CPS) methodology is 

examined and its effectiveness is tested. CPS has two steps: first it searches for those 

sequences which maximize throughput, then the maximum throughput solution with 

minimum delay is selected. To show the effectiveness of the algorithm, a performance 

comparison between CPS and FCFS is conducted using fast-time simulation. 

Computational results involving up to 500 aircraft and one runway show that smaller 

delays are obtained under the heuristic than for a FCFS approach.

Neuman and Erzberger (1990) evaluated the performances of the FCFS approach, time 

advanced (TA) technique and CPS heuristic, which are used in air traffic control systems. 

Firstly, as an initial ordering, one of the most straightforward sequencing strategies for 

arrivals, FCFS is used. For an optimization step, to maximize the throughput by speeding 

up certain key aircraft during periods of heavy traffic, time advanced (TA) technique is 

presented. CPS algorithm orders the aircrafts taking advantage of different separation 

requirements for different aircraft classes is also used for optimization purpose. To
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determine the statistical characteristics of the algorithms, randomly chosen traffic 

samples are generated. It is found that FCFS establishes a fair order; TA method provides 

reasonable results for reducing the delay of each scheduled aircraft; and CPS is the most 

effective for heavy traffic with large groups of aircraft, and is successful at minimizing 

the average delay per aircraft.

Venkatakrishnan et al. (1993) were interested in using existing capacity more efficiently 

by improving air traffic control procedures. Their focus was air traffic delays for landing 

aircraft under the assumption of a single runway at Logan Airport Boston. An empirical 

model Landing Time Intervals (LTI) between aircraft in terms of two factors: landing 

runway configuration and the weight-class categories of the aircraft was presented. 

Furthermore, static and dynamic models were presented for ASP. In terms of the static 

model, they applied the work of Psaraftis (1980), but modified for the time window 

constraints. For the dynamic case, two dynamic models DASP-1 and DASP-2 were 

presented with fixed and shrinking time windows respectively.

A deterministic job shop scheduling model with sequence-dependent setup times and 

release dates for scheduling aircraft in TMA with multiple runways is proposed in the 

paper of Bianco et al (1997). Moreover, a fast dynamic local heuristic algorithm called 

the cheapest search heuristic (CSH) is developed. The performance of the model and the 

algorithm are analyzed on real data sets for the TMAs of Milan-Malpensa and Rome- 

Fiumicino airports. The numerical analyses indicate that on the average, delay is reduced 

at least 40%, and the capacity of TMA increases by about 30%when compared to to a 

FCFS based control policy.

Carr et al. (1998) introduced the concept of priority scheduling, which considers airline 

arrival preferences in sequencing and scheduling algorithms for air traffic control 

automation. The priority scheduling is a method of scheduling a bank of arriving aircraft 

according to a preferred order instead of FCFS sequence based on estimated time of 

arrival at the runway. To evaluate the feasibility of the method, fast-time simulation is 

used. The numerical analysis shows that, for certain traffic conditions, the proposed 

scheduling method is more successful than FCFS scheduling in reducing deviations from
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the preferred bank arrival order though causing little or no decrease in scheduling 

efficiency.

Bauerle et al. (2007) examined the queuing process of aircrafts arriving at an airport and 

the implications of it for the capacity of the airport. They use the general assumption that 

arrival times can be modeled by a Poisson process. An M/SM/1 queue (with dependent 

service times) is used to model a single runway. Then, they concentrated on the two 

runways case with a number of heuristic routing strategies such as fair coin flipping, 

random splitting, round robin and variants of the join-the-least-load rule. The 

performance of these strategies is compared with respect to the average delay they cause. 

It turns out that join-the-least-load strategy gives the best, and simple splitting rule gives 

the worst results.

In another related work, Soomer and Franx (2008) solved the single runway arrival 

problem in which an arrival schedule must be determined taking airlines cost into 

account. Having provided the mixed integer programming formulation of the model, as 

well as a local search heuristic in which the initial feasible solution is obtained by sorting 

the flights according to expected arrival times. In order to improve the initial solution, 

two swap and shift neighborhoods were used. The numerical experiments conducted 

showed that the heuristic is able to solve instances with over 100 flights in a few minutes 

and large cost savings for the airlines compared to a schedule that resembles current 

practice.

Balakrishnan and Chandran (2010) proposed that the CPS method helps to maintain 

fairness among aircraft operators and increases the predictability of landing times. They 

present dynamic programming algorithms for runway scheduling under CPS and other 

system constraints such as time-window restrictions and precedence constraints that had 

not been modeled by previous approaches. As an important objective, maximizing 

runway throughput or equivalently, minimizing the completion time of a sequence of 

aircraft is considered. They provide approaches to the multiple runway condition, 

although their study is on single runway.
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Yu et al. (2011) proposed an algorithm called Cellular-Automata-based Optimization 

(CAO) for ALP with a single runway. The algorithm has two major steps. First, to 

efficiently obtain a good landing sequence, where the aircraft landing process is 

simulated using Cellular Automation (CA) model. Second, further optimization is carried 

out via a stochastic local search to the landing sequence obtained in previous step. They 

compare the method with LP-based Tree Search, a Heuristic method, Ant Colony 

Optimization (ACO), Scatter Search (SS) and Bionomical Algorithm (BA). It is observed 

that CAO is superior in terms of both the quality o f the solution and the speed of the 

computation on most cases.

Different from many studies in the literature, Boysen and Fliedner (2011) researched the 

impact of the landing schedule with single runway on the workload of ground staff. In 

order to level the workload of ground staff, three different objectives were presented to 

minimize: (1) number of passengers carried by landing aircraft, (2) landing per airline, 

and (3) number of passengers per airline. In the study, separation time owing to 

turbulence effect is assumed to be equal. Earliest and latest landing times for each aircraft 

are not taken into consideration. For each objective function, mathematical models 

(including dynamic programming), complexity results and heuristic solution procedure 

were presented.

Recently, Hancerliogullari et al. (2013) worked on the ASP over multiple runways, under 

mixed mode operations with the objective of minimizing the total weighted tardiness of 

aircraft landings and departures simultaneously. The ASP is modeled as a parallel 

machine scheduling problem with unequal ready-times, target-times and deadlines. 

Furthermore, sequence-dependent separation times on each runway are considered to 

prevent the dangers associated with wake-vortex effects. The greedy algorithms, namely 

the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the 

Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed.

2.1.2.2 Metaheuristics

Population-based (Genetic Algorithm (GA), Memetic Algorithms, Ant Colony 

Optimization (ACO))
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Some studies applied population based metaheuristics including Genetic Algorithm (GA), 

Ant Colony Optimization (ACO) and Scatter Search (SS) for the ALP.

Two approaches for solving the problem of scheduling aircraft landing times were 

presented in Abela et al. (1993). They looked at the arrivals problem for a set of aircraft 

with landing time windows. A GA is proposed to obtain an approximate solution. 

Moreover, for an exact solution, a branch and bound algorithm was formulated as a 0-1 

mixed integer programming problem. They tested the algorithms on a randomly 

generated large data set, and according to the results, it is concluded that for small 

problem instances, the approximate algorithm performed reasonably; on the other hand, 

the branch and bound algorithm consumed a large amount o f time to solve larger 

problems.

Ciesielski and Scerri (1997) investigated the applicability of genetic algorithm (GA) to 

the problem of real time scheduling of aircraft arrival times at airports. It was determined 

that computation time could be decreased and the quality of the solutions could be 

improved by seeding the GA from a previous population. The experiments were 

performed data from the one of the busiest days of the year at Sydney airport. Their 

preliminary results indicate that GA can produce high quality schedules in real time.

A specialized simplex lower-bounding method based on the simplex algorithm, was 

presented to evaluate the landing times rapidly by Ernst et al. (1999). For single and 

multiple runway problems, this method was used in both problem space search (PSS) 

heuristic and branch-and-bound method. PSS heuristic is a metaheuristic that combines a 

simple constructive heuristic with a GA. According to their computational studies, the 

heuristic manages to produce solutions in a reasonable amount of CPU time for both 

single and multiple runway problems. However, the solution quality is less consistent in 

the multiple-runway case.

Practical applications are to be found in Beasley et al. (2001) where a GA was presented 

to schedule aircraft arrivals at London Heathrow airport, whereas Atkin et al. (2007) 

proposed a TS algorithm for aircraft departures at that same airport. The algorithm that 

Beasley et al. (2001) proposed mainly solves the problem of deciding landing times
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which lie in aircraft time windows and meet the separation distance criteria, whilst 

optimizing proper objective. In the short term, it is expected that less delays for 

passengers as aircraft would land quicker; in the long term, improved scheduling would 

give potential for increasing the number of flights scheduled. It is concluded that the 

developed algorithm is able to quickly (in a matter of seconds), and effectively schedule 

aircraft landings with single runway.

Although many decision problems assume a static operational environment, Beasley et al 

(2004) considered dynamic landing times. They defined a generic decision problem for 

the displacement problem. This problem arises when sequences of decisions have to be 

made and each new decision that must be made has an explicit link back to the previous 

decision that was made. In order to solve the displacement problem, they adapt three 

solution approaches: an optimal (DALP-OPT) and two heuristics (DALP-H1, DALP- 

112), given previously in the literature for the static aircraft landing problem (ALP) for 

multiple runway. One can expect that an optimal algorithm to always produce a solution 

superior to that produced by a heuristic algorithm. However, it is observed that for 2 of 

the 39 problems, population based (genetic algorithm) heuristic DALP-H2 produces a 

better solution than DALP-OPT due to time limit considerations.

Capri and Ignaccolo (2004) introduced a dynamic model for departing flights to take into 

account time-varying variables, and built a GA to solve the ASP on single runway. It is 

observed that the algorithm is proved to be quick and efficient.

Hansen (2004) examined the segment of air traffic control, termed traffic management 

adviser (TMA) that is concerned with the complex task of scheduling arriving aircraft to 

the available runways. The purpose was to investigate the utility of the genetic search 

approach using features of TMA problems. The reason for choosing genetic search is its 

applicability to solve complex problem in domains characterized by discontinuous, non- 

convex, or nonlinear problems. Four different genetic search methods were tested and 

several empirical tests were included. Method 1 used two separate genomes to represent 

the flight landing sequence and the runway assignment. Method 2 used a single genome 

definition for the complete runway assignment, sequencing and scheduling problem.
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Model 3 used a randomized approach that emphasizes desirable fitness values that is 

similar to the standard GA approach. Method 4 incorporated genetic programming (GP) 

operators to define a metric, which is then used in a recursive algorithm to derive an 

efficient schedule. For problems of realistic size (i.e., 12 aircraft/3 runway) in real time, 

optimal or near-optimal assignments were achieved, and GP method yielded the best 

fitness values.

In order to solve the problem of position-shifting-based arrival scheduling and 

sequencing (ASS), Hu and Chen (2005) introduced the concept of Receding Horizon 

Control (RHC) into a GA. RHC is a N-step-ahead online optimization strategy. Within 

this framework, decisions are made by looking ahead for N steps in terms of a given 

cost/criterion, and only the decision for the first step is actually implemented. Then, the 

implementation result is checked, and a new decision is made by taking account of 

updated information and looking ahead for another N steps. Simulation studies which 

were done to check the robustness of the proposed model, indicate that RHC-based GA 

has much better performance than a pure GA, while requiring much less computational 

time.

Pinol and Beasley (2006) addressed the multiple runway static ALP where the set of 

aircraft that are waiting to land is known. They presented two population-based 

metaheuristics (Scatter Search and Bionomic Algorithm). Primarily, there were two 

objective functions, non-linear and linear, that are based on deviation from target times. 

The idea behind the non-linear objective depends on the deviation of scheduled landing 

time from the aircraft target time, and the difference between the scheduled landing time 

and the target time. The linear objective used a cost for each aircraft linearly independent 

on deviation of assigned landing time from target time. Computational results involving 

up to 500 aircraft and 5 runways were presented. It is indicated that Bionomic algorithm 

outperforms Scatter Search for the non-linear objective; on the other hand, for the linear 

objective, the reverse is observed.

Hu and Paolo (2008) designed a GA based on a binary representation rather than a 

permutation representation in order to solve arrival sequencing and scheduling problem
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in single runway. In order to construct a chromosomes for the GA, the neighboring 

relationship between each pair of aircraft in an optional arriving queue was used and 

constructed as 0-1 valued matrices. Based on the binary matrix, a highly efficient uniform 

crossover operator was designed. A simulation study was conducted, which showed that 

binary representation based GA outperformed the permutation based GA.

The effects of the airport landing sequencing algorithms on Air Traffic Control (ATC) 

are notes and compared in the study of Brentall and Cheng (2009). For efficiently 

sequencing aircraft landings, FCFS method is widely used in practice. The FCFS method 

is compared with alternative algorithms and its robustness under many conditions was 

studied by utilizing statistical methods. The minimization of makespan and total tardiness 

were considered. A data collection is exercised by the Eurocontrol Experimental Centre 

(EEC) at Stockholm Arlanda Airport to model aircraft arrivals with single runway.

Hu et al. (2009) aimed to design efficient GAs for the aircraft arrival sequencing and 

scheduling (ASS) in multi-runway systems. To do so, a highly efficient crossover 

operator- uniform crossover was attempted since it is usually effective and efficient to 

identify, to inherit, and to protect common genes in GAs.

Wang (2009) developed a hybrid algorithm that integrated Bee Evolutionary Genetic 

Algorithm (BEGA) with modified clustering method (CM), for ALP in single runway 

systems. In order to observe the effectiveness of the BEGA — CM, the experiments were 

carried and compared with GA. It is noticed that at the same time, the computational cost 

of the hybrid method was by far lower than GA, which concludes that BEGA -  CS has a 

better optimization performance than GA.

Similarly, Bencheikh et al. (2009) proposed a hybrid method for ALP with multiple 

runway based on Job Shop Scheduling Problem (JSSP). There were three steps in this 

study; firstly, a mathematical programming model, whose objective was to minimize the 

cost deviation between the actual time of landing of all aircraft and the target time, was 

proposed. Secondly, based on a graphical representation, ALP was formulated as a JSSP. 

Finally, a hybrid resolution method, called ACOGA that combines ant colony 

optimization (ACO) with genetic algorithm (GA), was presented. The numerical results
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showed that ACOGA takes less time than GA. Moreover, in the majority of the cases, the 

hybrid algorithm found the optimal solution or approached a near optimal one.

Atkin et al. (2010) provided an overview, comparison and critical examination of the 

various ground movement models and solution methods in the literature. It was observed 

that there are significant differences between both the objectives and the constraints that 

are utilized in previous research because of differences between airports and various 

stakeholder aims. It was determined that in these studies, the state-of-the-art approaches 

use mixed integer linear programming or genetic algorithm. They suggested that since 

runway sequencing for both arrivals and departures and gate assignment are highly 

connected to the problem of airport ground movement, it would be beneficial to handle 

them simultaneously.

Liu (2010) developed genetic local search (GLS) to solve runway dependent aircraft 

landing problem. Primarily, GLS is an extension of genetic algorithm (GA) that is 

obtained by integrating local search into a GA context. In order to assign the landing 

sequence and schedule a landing time, aircraft safety regulations are met by satisfying the 

separation requirement. Here, the objective is to minimize the sum of squared deviations 

of scheduled landing time and the minimum earliest landing time of each aircraft. 

Numerical results, that were obtained to investigate the effectiveness of the proposed 

algorithm, were compared with GA, scatter search (SS) and a binomial algorithm (BA). 

The results support the superiority of GLS specifically when the large number of aircrafts 

(i.e., 12) and large number of runways (i.e., 5) are involved.

Bencheikh et al. (2011) considered the ALP on single and multiple runways as well. The 

mathematical formulation of the problem with a linear and nonlinear objective function, 

which is similar to Bencheikh et al. (2009), was presented. Then a heuristic was proposed 

for the single runway problem, and the heuristic was incorporated into an ant colony 

algorithm to solve the multiple runway case. Several priority rules were compared with 

the proposed heuristic. Two types of improvement heuristics were defined: parallel 

improving and global improving. The computational results reflect that up to 50 aircrafts 

and five runways, the solutions of developed algorithm coincide with the optimal
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solutions in 80% of the total number of instances, with an average deviation of 5% from 

the optimal solutions for 20% of instances that remained.

The joint sequencing of aircraft arrivals and departures over a single runway in the TMA 

was addressed in the study of Sherali et al. (2010) in which the objective function aimed 

to minimize the total processing time, subject to minimal nonconsecutive safety 

separation rules. A basic mathematical programming for the combined arrival -departure 

ASP was presented. They introduced two heuristic procedures and benchmark them 

against the proposed exact approaches as well as against FCFS method that is typically 

adopted in practice. The first proposed heuristic was an optimization-based approach 

(OBH) that exploits the proposed mathematical programming formulations. The second 

heuristic was a tour construction and improvement procedure (TCIH) that takes 

advantage of the problem structure. So as to test the effectiveness of the different models 

and heuristic procedures, several realistic flight data sets were generated by varying the 

number of aircraft included. Over a test-bed of 50 problem instances, the FCFS heuristic 

resulted in a 9% deviation from optimality. The proposed heuristic TCIH, produced near- 

optimal solutions within an average of 3% from optimality, and OBH was able to 

overcome the inherent combinatorial complexity of the problem and yielded an average 

0.57% deviation from optimality.

Trajectory -  based (Simulated Annealing (SA), Tabu Search (TS))

Though not as commonly applied to the ASP as evolutionary heuristics, trajectory based 

metaheuristics were also applied in some researches.

Atkin et al. (2007) presented a hybrid metaheuristic approach to the reordering of aircraft 

that consider the physical holding-point structure. Tabu search (TS) is used as a 

metaheuristic to search good take-off orders. Real-world constraints, for instance partially 

fixed schedules and fixed routes through the holding points, maintaining required 

separations have been considered. They presented that although at each iteration of the 

test system has knowledge of only a subset of the aircraft, better overall schedules can be 

obtained. Moreover, they have shown that if a computerized system is used in ordering 

the aircraft at the holding points, then it must find good take-off schedules in real time.
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Atkin et al. (2008) proposed a metaheuristic based solution for determining good 

sequences of departure flights to help the air traffic controllers at London Heathrow 

Airport which has single runway for use by departures. The objective was to increase the 

throughput of the departure runway subject to several constraints, such as holding point 

constraints and minimum separation times. The search heuristics, which are the first 

descent, SA, steepest descent and TS, were investigated and tested. It has been concluded 

that both the SA and TS algorithms perform well in very short search time period.

2.2 Machine Scheduling Problem

The multiple runway ASP has similarities with the parallel machine scheduling problem. 

Therefore, it is worthwhile to focus on research addressing the scheduling of jobs on 

identical parallel machines. The literature on scheduling identical parallel machines with 

ready times to minimize total weighted tardiness problem is limited.

Lee and Pinedo (1997) proposed the Apparent Tardiness Cost with Setups (ATCS) 

heuristic to find an initial schedule for the jobs with ready-times and sequence-dependent 

setup times on identical parallel machines.

Mdnch et al. (2005) presented two decomposition approaches to minimize the total 

weighted tardiness on parallel machines with unequal ready times. In the first approach, 

once fixed batches are formed, the batches are assigned to the machines by GA. The 

batches are then sequenced on each machines at the end. In the second approach, once 

jobs are assigned to the machines by the GA, batches on each machine are formed; again 

the batches are sequenced on each machine at the end. For the sequencing of batches, 

they considered modifications of the ATC dispatching rule. By using stochastically 

generated test data, it was concluded that the first approach usually outperforms the 

second with respect to solution quality and computation time.

Pfimd et al. (2008) extended the ATCS by Lee and Pinedo (1997) by allowing non-ready 

jobs to be scheduled providing an opportunity to a machine to be idle for a high priority 

job arriving at a later time. They minimized the total weighted tardiness in the identical 

parallel machine problem with ready times and setups. A grid approach was developed
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which evaluates multiple values for the scaling parameters and chooses the best schedule 

among the multiple solutions.

Driessel and Monch (2009) proposed the Variable Neighborhood Search (VNS) scheme 

to minimize the total weighted tardiness for an identical parallel machine scheduling 

problem with ready times, precedence constraints and sequence dependent setup times. It 

was shown that ATC greedy rule does not perform as well as VNS.

Reichelt et al. (2006) introduced multi-objective optimization problem that minimizes 

total weighted tardiness and makespan. They suggested a hybrid multi-objective GA. 

Three phase scheduling approach including a batch formulation, a batch assignment and a 

batch sequencing were introduced. NSGA-II metaheuristics based on GA was proposed. 

Then, the NSGA-II was combined with a local search algorithm to improve the results 

further.

Similar to Reichelt et al. (2006), Gharehgozli et al. (2009) considered a multi-objective 

optimization problem which minimizes the total weighted flow time and total weighted 

tardiness for a parallel machine scheduling problem with release and sequence-dependent 

setup times. A mixed integer goal programming (MIGP) was proposed. They considered 

the problem under the assumption of fuzzy processing times.

Rabadi et al. (2006) studied unrelated, parallel machine scheduling problems with setup 

times and developed a metaheuristic called Meta-RAPS (Metaheuristic for Randomized 

Priority Search) to solve the problem with the objective of minimizing the makespan. The 

effectiveness of the Meta-RaPS algorithm was also tested by comparing it to an existing 

heuristic called Partitioning Heuristic (PH), developed by Al- Salem (2004). For small 

sized problems, that problem instances ranging from six to nine jobs and two to four 

machines were randomly generated for which Meta- RaPS found all optimal solutions. 

For large problems, ranging from twenty to hundred and twenty jobs, and two to twelve 

machines, Meta-RaPS outperformed solutions obtained by the PH.

Helal et al. (2006) and Amaout et al. (2009) developed TS and Ant Colony Optimization 

(ACO) algorithms respectively, to solve the same problem and to further improve the
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quality of the solutions produced in Helal et al. (2006). According to their computational 

results, TS outperformed the Partitioning Heuristic algorithm in most cases. Nevertheless, 

for small sized problems they observed less robustness. In Amout et al. (2009), the 

performance of ACO results showed that the ACO performed better than Meta-RaPS, 

which ranked second and the TS third while the PH ranked fourth.

For the just-in-time single machine scheduling problem with setup times in which the 

objective was to minimize the sum of total earliness and total tardiness, Rabadi et al. 

(2007) developed two algorithms to find near-optimum solutions for large-sized problem 

instances and compared the results to a local search method that was originally developed 

by Rabadi et al. (2004).The first algorithm is the Shortest Adjusted processing Time 

(SAPT) heuristic, which consists of two phases: a schedule constructive phase and a local 

neighborhood search phase. Secondly, a Simulated Annealing (SA) algorithm was 

developed. A hybrid algorithm, SAPT-SA, which was based on both of the SAPT and 

SA, was also introduced. It was shown that SA provides solutions with slightly better 

quality while SAPT is significantly faster than SA. SAPT-SA reached to high quality 

solutions with low computational cost. In addition, Lee and Sherali (1994) proposed 

effective algorithms for unrelated machine scheduling problems having time-window and 

machine unavailability constraints.

2.3 Reactive Scheduling Problem

A significant amount of computational time and effort is invested in developing efficient 

operational schedules for airlines which are impacted by unforeseen events. The first 

priority for the airline is to restore the flight schedule as much as possible by minimizing 

the number of cancellations and total delays.

One of the extensive studies including the rescheduling concepts, reviews of the 

rescheduling literature, and how rescheduling affects the performance of a system is 

provided by Vieira et al. (2003). According to them, the rescheduling literature includes 

three major types of studies: methods for repairing a disrupted schedule, methods for 

creating a robust (immune) schedules, and on how rescheduling policies’ impact on the 

performance of the manufacturing systems. The framework for the rescheduling
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research, which includes rescheduling environments, strategies, policies and methods, is 

presented in Figure 5. The rescheduling environment identifies the set of jobs that needs 

to be rescheduled and their nature, the strategies categorize whether or not schedules are 

completely generated or repaired, the policies classify when scheduling should occur, and 

the methods determine how schedules are generated and updated (Vieira et al., 2003).

Rescheduling Environments

Static (finite set of jobs) Dynamic (infinite set of jobs)

Deterministic

(all
information
given)

Stochastic

(some
information
uncertain)

No arrival 
variability (cyclic 
production)

Arrival 
variability 
(flow shop)

Process flow 
variability (job 
shop)

Rescheduling Strategies

Dynamic (no schedule) Predictive-reactive (generate and update)

Dispatching rules Control-theoretic Rescheduling policies

Periodic Event-driven Hybrid

Rescheduling Methods

Schedule Generation Schedule Repair

Nominal
schedules

Robust
schedules

Right-shift
scheduling

Partial
rescheduling

Complete
regeneration

Figure 5. The framework for the rescheduling research

Rescheduling has attracted researchers after 1990s due to it’s the problem’s practical 

significance. A rescheduling problem with release times, and machine disruptions was



36

considered by Bean et al. (1991) who proposed a match-up scheduling method after a 

machine is disrupted. The match-up approach attempts to compensate for the disruption 

by matching-up with the pre-schedule. They pointed out that disruptions include machine 

breakdowns, tool unavailability, unexpected new jobs arrival, new lot release and 

deviation in release or target times. In addition to the match-up scheduling algorithm, 

they provide integer programming, and priority rule dynamic assignment heuristic. 

Although the cost of match-up scheduling is close to lower bounds, it is applicable only if 

there is enough idle time existing in the original schedule.

Church and Uzsoy (1992) considered the disruption as random job arrivals with the 

objective to minimize the maximum lateness on single-stage production systems 

involving both single and parallel machines. They indicated that continuous rescheduling 

approaches take rescheduling action at each time an event is recognized by the system; 

whereas, periodic rescheduling defines a time interval between rescheduling actions that 

are taken at periodic time points, also referred to as rescheduling points. Therefore, until 

the following point, any events occurring between rescheduling points are ignored. As a 

solution methodology, they define event-driven rescheduling as rescheduling action that 

can be taken upon the recognition of a disruption event. Moreover, worst-case error 

bounds for the periodic approach was developed assuming that at each scheduling point, 

an optimal algorithm is used to schedule available jobs.

Wu et al. (1993) presented single-machine rescheduling problem on occurrence of an 

unforeseen disruption serves as a model for machine breakdown. In order to satisfy 

conflicting goals, minimizing the makespan and the deviation from the original schedule, 

they used a bicriterion approach. They developed two sets of local search heuristics 

considering the right-shift rescheduling; the first set is pairwise swapping methods with 

weighted combination of the objectives, and the second set is based on GA.

Unal et al. (1997) considered single machine rescheduling problem with part-type 

dependent setup times and deadline for the newly arrived jobs to the existing schedule. 

They proposed two heuristics where the objective was to minimize either the total
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weighted completion time or makespan of the new jobs given that the existing jobs 

satisfy the deadline constraint.

Akturk and Gorgulu (1999) extended the study of Bean et al. (1991) to the concept of 

modified flow shop problem where they proposed rescheduling procedures for machine 

failures that are designed to match-up with a long term original schedule. They studied 

multi-objectives; minimizing the tardiness of the jobs, and the match-up point to 

guarantee stability of the schedule.

For unrelated parallel machine systems, Vieira et al. (2000) provided analytical models to 

detect the performance measures for rescheduling strategies and determine the trade-offs 

between performance measures. It is considered that jobs are dynamically arriving and 

setup times occur when production changed from one job type to another. They provided 

periodic, event-driven, and hybrid strategy based rescheduling heuristics. The primary 

performance measures determined as average flow time, machine utilization and setup 

frequency by the experimental results.

Alagoz and Azizoglu (2003) presented procedures for identical parallel machine 

rescheduling problem with an objective function of minimizing the flow time and number 

of disrupted jobs under machine eligibility restrictions. They proposed linear 

programming model for optimal solution to the problem. A polynomial time, and two 

branch and bound based heuristics are provided while considering right-shift strategy as 

well.

Hall and Potts (2004) studied a single machine rescheduling problem and considered the 

arrival of multiple new jobs as a disruption type. They presented a polynomial algorithm 

in order to minimize the total cost including original schedule cost and cost of deviation 

because of the disruption.

Curry and Peters (2005) considered the arrival of new jobs as a disruption type and they 

focused on the identical parallel machine scheduling with stepwise increasing tardiness 

cost objectives, non-zero machine ready times, and machine reassignment costs. They 

observed the tradeoff between schedule nervousness when a scheduling procedure
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reassign several planned operations to different machines or start times and tardiness in 

single and multiple period dynamic problems. They solved this problem within a 

simulation model with a branch and price algorithm.

Azizoglu and Alagoz (2005) considered rescheduling of identical parallel machine with 

machine disruptions and the schedule has to be updated to recover the effects of the 

disruptions. Similar to the Alagoz and Azizoglu (2003), they measured efficiency in 

terms of the total flow time, and as a stability measure, the number o f disrupted jobs was 

considered where a disrupted job is one that is processed on different machines in the 

original and revised schedules. The optimal solution to the problem was provided and a 

polynomial time algorithm was presented while considering right-shift strategy that found 

efficient set of schedules.

Yang et al. (2006) studied identical parallel-machine problem with uncertain job arrival 

and sequence dependent setup time. They developed a parallel insertion algorithm which 

was implemented with rescheduling criterion for makespan minimization. A probabilistic 

model was provided to estimate the makespan when the inter-arrival time of jobs was 

exponentially distributed. As a solution approach, a dispatching rule, FCFS was 

proposed.

Lee et al. (2006) presented two machine scheduling problems in a machine related 

disruption environment. A polynomial algorithm was provided for optimal solution for 

each problem, and pseudo-polynomial algorithm was provided for the NP-hard problems. 

They assumed that if jobs, which are assigned to the disrupted machines, have not been 

processed yet, they have two options: they can be moved to other available machines by 

processing with additional cost and time, or can be processed by the current machine 

after the disruption. The objective function contains original cost function such as total 

weighted completion time and weighted deviation cost, transportation costs, and 

disruption cost.

Duenas and Petrovic (2008) proposed a predictive-reactive approach to the parallel 

machine scheduling problem to minimize the makespan. Material shortage and new job 

arrival are the two types of disruption. The starting time deviations between predictive
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and reactive schedules are the stability measure. Left-shifting and building new schedules 

were applied as rescheduling methods.

Amaout and Rabadi (2008) considered unrelated parallel machine environment and 

developed repair and rescheduling algorithms, which are right shift repair, fit job repair, 

partial rescheduling, and complete rescheduling, for different rates of machine 

breakdown and delays. These rescheduling methods were evaluated based on the 

efficiency measure (makespan) and stability measure (number of shifted jobs).

Itayef (2009) examined multi-objective bicriteria flow shop scheduling problem with new 

job arrivals. A multi-objective simulated annealing algorithm, MOSA, was implemented. 

The procedure composed of two steps: first, given a fixed order of jobs, a conventional 

heuristic is proposed for job-machine assignment, and second, a simulated annealing 

algorithm is applied.

There are three rescheduling methods which are right shift scheduling, partial 

rescheduling and schedule regeneration. Keeping the defined sequences of jobs the same, 

right shift scheduling postpones each remaining operation by the amount of time needed 

to obtain a feasible schedule. Partial rescheduling algorithm reschedules only the 

operations affected by the disruptions. Therefore, match-up scheduling is a type of partial 

rescheduling. Regeneration solves the problem from the scratch for the remaining 

operations and reschedules them (Church and Uzsoy, 1992).

Research on parallel machine rescheduling is summarized in Table 4. In the reviewed 

research, parallel machine rescheduling is required due to different disruptions and events 

such as new job arrivals, machine breakdowns, order cancellations (Shi-jin et al., 2007), 

material shortage, tool unavailability, changes in due date (Jain and ElMaraghy, 1997), 

and changes in order priority. Subramaniam et al. (2005) provided about 20 types of 

disruption; however, majority of the rescheduling literature has focused on two primary 

types of disruptive events which are the job related (e.g. arrival of new jobs) and machine 

breakdowns (Bean et al.,1991, Church and Uzsoy, 1992, Vieira et al., 2000, Alagoz and 

Azizoglu, 2003, Curry and Peters, 2005, Azizoglu and Alagoz, 2005, Yang et al., 2006,
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Lee et al., 2006, Duenas and Petrovic, 2008, Amout and Rabadi, 2008, Cheng et al.,

2009).

In addition to parallel machine rescheduling literature, there are several papers studying 

the application of disruption management to the airline industry. Clausen et al. (2001) 

discussed the developments in disruption management and their Operations Research 

application to telecommunications, ship-building and airline industry. Restrictive weather 

conditions, maintenance problems, and staff shortages are the primary disruptive events 

in airline operations that cause delays, or cancellations of a flight, affect not only the 

passengers but also the next planned activity and the crew.

Teodorovic and Guberinic (1984) considered the situation when there are one or more 

aircraft out of commission. Due to technical reasons, and when a stand-by aircraft is not 

available, disruptions arise in the planned schedule and delays occur. They used branch- 

and-bound technique to minimize overall passenger delay and attempted to find the least 

expensive aircraft routings assuming that the capacity of the aircrafts is the same.

Jarrah et al. (1993) focused on flight delays and cancellations because of aircraft 

shortages. The reasons for such shortages were determined as weather conditions that 

make flight unacceptable, mechanical problems, and delays in the schedule of incoming 

flights. They developed decision support system for United Airlines by providing two 

network models; one for delays, one for cancellations.

Luo and Yu (1997) considered the airline schedule perturbation problem, which is caused 

by the ground delay program, and was modeled as an integer program with the objective 

of minimizing maximum delay among out-flights. The schedule perturbations were 

classified into three groups: perturbations caused by temporary shortage of resource, 

perturbations caused by shortage of resource permanently, and perturbations that result 

from change of accessibility to airport facility. In addition to exact solutions, for finding 

good feasible solutions, a heuristic procedure was proposed.

Yu et al. (2003) developed a decision support system for crew scheduling and crew 

recovery problem, CrewSolver, based on optimization models for Continental Airlines.



They mentioned that during the day of operations, inclement weather, mechanical 

problems and crew unavailability prevent an airline’s ability to execute its schedule 

planned.
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Source Title Objective Disruption type Solution Method

B eanetal. (1991) Match-up scheduling with multiple resources, release dates 
and disruptions

Minimize total tardiness

Machine breakdowns, tool 
unavailability, unexpected 
new job arrival, deviation 
in release or target times

Match-up scheduling approach, 
integer programming, priority rule 
dynamic heuristic

Church and Uzsoy 
(1992)

Analysis o f periodic and event driven rescheduling policies 
in dynamic shops

Minimize maximum 
lateness Random job arrivals

Hybrid event driven rescheduling 
approach

Wu et al. (1993) One-machine rescheduling heuristics with efficiency and 
stability as criteria

Minimize makespan, 
deviation from original 
schedule

Machine breakdown
Bicriterion approach, local search 
heuristics considering right-shift 
rescheduling

U naletal. (1997) Rescheduling on a single machine with part-type dependant 
setup times and deadlines Minimize makespan New job arrival Heuristic based solution

Akturkand 
Gorgulu (1999) Match-up scheduling under a machine breakdown Minimize the tardiness, 

match-up point Machine breakdown Reactive hierarchical scheduling 
approach

Vieira et al. (2000) Predicting the performance of rescheduling strategies for 
parallel machine systems

Minimize average flow 
time, maximize machine 
utilization

New job arrival
Periodic, event-driven, and hybrid 
strategy based heuristics

Alagoz and 
Azizoglu (2003)

Rescheduling o f identical parallel machines under machine 
eligibility constraints

Minimize flow time, 
number o f disrupted 
jobs

Machine eligibility
Linear Programming, branch and 
bound based heuristic considering 
right-shift

Azizoglu and 
Alagoz (2005) Parallel-machine rescheduling with machine disruptions

Minimize flow time, 
number of disrupted 
jobs

Machine breakdown Polynomial time algorithm

Curry and Peters 
(2005)

Rescheduling parallel machines with stepwise increasing 
tardiness and machine assignment stability objectives

Minimize tardiness cost, 
reassignment cost New job arrival Branch and price algorithm

Yang et al. (2006) A comparative study to minimize the makespan of parallel- 
machine problem with job arrival in uncertainty Minimize makespan New job arrival Probabilistic insertion algorithm, 

FIFO dispatching rule

Lee et al. (2006) Current trends in deterministic scheduling

Minimize total weighted 
completion time, 
weighted deviation cost, 
deviation from 
completion time

Machine related Polynomial and pseudo polynomial 
algorithms

Duenas and 
Petrovic (2008)

An approach to predictive-reactive scheduling of parallel 
machines subject to disruptions

Minimize makespan, 
starting time deviation

Material shortage, 
New job arrival

Predictive-reactive, left shifting 
methods

Amout and Rabadi 
(2008)

Rescheduling of unrelated parallel machines under machine 
breakdowns

Minimize makespan, 
number of shifted jobs Machine breakdown

Right shift repair, fit job repair, 
partial rescheduling, complete 
rescheduling

Itayef (2009) Rescheduling a permutation flow shop problem under the 
arrival a new set of jobs

Minimize makespan, 
maximum tardiness, 
stability (time and 
sequence disruption)

New job arrival
Multi-objective metaheuristic 
method (MOSA) Conventional 
heuristic, SA algorithm

Table 4. Summary of the research on parallel machine rescheduling problem
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Clausen et al. (2010) offered an overview of the network models for airline disruption 

management of resources, including aircraft rerouting, and crew and passenger recovery. 

When a disruption occurs, airlines follow a sequence to react to the problem. After 

resolving the infeasibilities in the aircraft schedule, they work on crewing problems.

Then, ground problems are attended, and finally, the impact on passengers is evaluated. 

Often, because of the adverse weather conditions, scheduled flights have to be delayed, or 

cancelled.

As a summary of the papers that dealt specifically with airport disruptions, restrictive 

weather conditions, maintenance problems, aircrafts shortages, staff shortages, crew 

unavailability, delays in the schedule of incoming flights are the major disruptive events 

which can cause flight delays, flight cancellations, and runway closures. Research on 

airport disruption management are summarized in Table 5. If we map such disruptions to 

the identical parallel machine scheduling problem, flight cancellations can correspond to 

departure of an existing job from the original schedule. Flight delays may match up 

changes in ready time, target time, separation time and deadline; and because of the 

delays from the leading schedule, an unscheduled flight from the previous schedule may 

have to be scheduled with the existing schedule, or an unexpected flight operation has to 

be scheduled (e.g. emergency landing). This situation can correspond to arrival of new 

jobs in the parallel machine scheduling environment. Even though it is rare, runway 

closures occur in extreme cases, e.g. a snow storm, this may be mapped to machine 

breakdown.

In conclusion, there is a gap in the corresponding area of aircraft sequencing problem and 

reactive scheduling problem with unequal ready time, target time, deadline, sequence- 

dependent separation time. In this dissertation, we make the following contributions.

First, contrary to most existing studies that treat departures as separate from landings 

(i.e., segregated mode), we model the ASP under a mixed mode of operations where both 

landing and departure flows are considered simultaneously.
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Source Title Disruption type Solution Method

Clausen et al. (2001) Disruption management Weather conditions, maintenance 
problems, staff shortages

Teodorovic and 
Guberinic (1984)

Optimal dispatching strategy on an airline 
network after a schedule perturbation

Aircraft shortages (technical 
reasons, unavailable stand-by 
aircraft)

Branch and bound algorithm

Jarrah et al. (1993) A decision support framework for airline flight 
cancellations

Aircraft shortages (weather 
conditions, mechanical problems, 
delays in the schedule of 
incoming flights)

Decision support system by providing 
network models

Luo and Yu (1997) On the airline schedule perturbation problem 
caused by the ground delay program

Resource shortages, accessibility 
to airport facility

Integer programming, heuristic 
procedure

Arguello et al. (1997) A GRASP for aircraft routing in response to 
groundings and delays

Aircraft shortages, delays

(weather conditions), flight 
cancellations

Greedy randomized adaptive search 
procedure (GRASP)

Yu et al. (2003) A new era for crew recovery Continental 
Airlines

Weather conditions, mechanical 
problems, crew unavailability

Decision support system for crew 
scheduling and crew recovery

Clausen et al. (2010) Disruption management in the airline industry- 
concepts, models and methods

Flight cancellations, delays 
(weather conditions)

Overview of the network models for 
airline disruption (aircraft rerouting, 
crew and passenger recovery)

Table 5. Summary of the research on airport disruption management
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In general, a landing aircraft in the air has more risk than a departing aircraft on the 

ground; therefore, for instance, when two aircraft (i.e., one landing, one departing) belong 

to the same weight class, we assign higher priority, Wj, to the aircraft that is landing. 

Sequence-dependent separation times for the different operation types (landing, 

departure), and consequently the calculation of the value of a start time, tj, increases the 

complexity of the problem, which is explained in detail in Section 2. Second, besides the 

single runway problem, we examine the problem of scheduling aircraft arrivals and 

departures over multiple runways. Even though the runways are assumed to be identical, 

the complexity of the multiple runway problem increases when compared with the single 

runway system. When a single runway is considered, one merely has to determine the 

sequence of the aircraft allocated to a runway. On the other hand, scheduling over 

multiple runways is a two-step process; first, one has to determine the assignment of 

aircraft to runways, then the sequence of the aircraft on each runway. It is well known in 

the scheduling literature that parallel machine scheduling problems are in general more 

complex than a single machine with the same objective and constraints (Pinedo, 2008, 

Koulamas, 2010). Third, and to our knowledge, we are considering more aspects to the 

problem than any other previous work where we propose greedy algorithms (AATCSR, 

ERT and FPI) for the combined arrival-departure ASP with unequal ready-time, target

time, deadline, and sequence-dependent separation time. Finally, two metaheuristics (SA 

and Meta-RaPS) are introduced for the problem for the first time to improve initially 

constructed solutions by the proposed greedy algorithms.

The research that address multi-objective optimization problem in aircraft reactive 

scheduling problem that are liable to flight related disruptions is very limited. To fill this 

research gap, this dissertation updates mixed integer linear programming with normalized 

objective function to find optimal solutions, and proposes approximate algorithms and 

potential decision support system to obtain near optimal schedules efficiently. The trade

off between the objectives is evaluated; the components of the multi-objective function 

are the total weighted start time which represents solution quality, and the total weighted 

start time deviation and total weighted runway deviation which represent solution 

stability. Unlike the studies in the literature which focus on one disruption type at a time,
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in this dissertation, different types of disruptions with multiple disruptive events are 

considered simultaneously. Therefore, the sequential evaluation methodology is 

developed to treat the disruptions and revise the schedules periodically. Alternative 

reactive scheduling approaches for different disruptions are proposed in which the model 

itself dynamically select the most appropriate from several candidate solution methods 

with respect to (conflicting) objectives of quality and stability.
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CHAPTER 3 

AIRCRAFT SEQUENCING PROBLEM SOLUTION METHODOLOGY

Consider a system that schedules n aircrafts on m identical runways where each aircraft j  

has a priority weight Wj,  it becomes ready to operate at ready time rj, should start its 

operation (land or depart) by target time Sj and before deadline dj. Furthermore, 

sequence-dependent separation time skj is required when an aircraft j  operates (lands or 

departs) after an aircraft k to prevent the dangers of wake-vortex effects. If the start time 

of the operation for aircraft j  is denoted by tj, the tardiness is represented as 7} = 

max(t;-_ Sj, 0). The objective function of the aircraft sequencing problem is the 

minimization of the total weighted tardiness, £ /= i WjTj. Therefore, The ASP can be 

represented as Pm\rj,Sj, dj,skj,time window\EwjTj. Recall that, ASP has the following 

assumptions: any aircraft j  can operate on at most one runway at any time; a scheduling 

discipline is non-preemptive (i.e., once an operation is started, it is executed until 

complete); runways are always available and reliable; each runway can allow at most one 

aircraft at any time; parameters (i.e., ready times, target times, deadlines, operation type, 

aircraft sizes, priority weights) and constraints of the problem are deterministic and 

known in advance.

In this chapter, a mixed integer linear programming (MILP) formulation of the problem, 

which was developed in Al-Salem et al. (2012) to find optimal solutions for the ASP, is 

provided. It is known that minimizing the total weighted tardiness even for a single 

machine with all weights being equal is NP-hard (Du & Leung, 1990), and when the jobs 

have different weights, the problem is strongly NP-hard (Lawler et al., 1982); hence ASP 

is also NP-hard combinatorial optimization problem. Consequently, it is necessary to 

develop efficient and effective solution approaches with reasonable computation times. 

Therefore, the ASP proposed in this dissertation mainly belong to a set of difficult 

optimization problems. When the problem size is low, it is sensible to use exact solution 

methods for solution quality and efficiency; however, in order to solve larger instances in 

reasonable computational time, it is necessary to develop efficient and effective solution 

approaches with reasonable computation times.
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3.1 Mathematical Model

The mixed-integer 0-1 programming formulation of the problem was provided in Al- 

Salem et al. (2012) involving multiple runways with both immediate and general 

precedence decision variables. The complete MILP model for the problem is presented 

below:

3.1.1 Index Sets and Notation

M={1,2, ..., mj: A set of m identical runways.

J={1,2, ..., n}: A set of n aircraft (landing or departures).

rj- ready time for aircraft j to take-off at runway end/to land (taxi time is not included),

v /  e j

S j: target time for aircraft j  to take-off at runway end/to land (taxi time is not included), 

V; e j

dj: deadline for aircraft j  to take-off at runway end/to land (taxi time is not included), 

V / G /

Oj, operation type of aircraft j, being a landing or a departure, V/ G J.

Cj: weight class of aircraft j, e.g., heavy, large, or small, V/ E J.
\

Wj.- weight assigned to aircraft j  based on its operation type and its weight class, Vy G / .In  

particular, higher priority has been assigned to landings over departures and to heavy 

aircraft over large and small ones. Moreover, in the test-bed Wji=Wj2 if Oji=Oj2  and 

Cji=Cj2.

s^: minimum separation time required between aircraft k and j  if they are respectively the 

leading and the following aircraft, V k ,j  E  J ,k  =£ j .



3.1.2 Decision Variables

tj: the start time of aircraft j, V j  E /.

Tf piecewise tardiness of aircraft j  with respect to its target-time, V j  E J

_ f l, if aircraft j  is assigned to runway i, V i E M ,j E / .  
iJ I 0, otherwise

ykj =

fl, if aircraft k  and j  are assigned to the same runway and tk > tj, V k ,j  £ j , k  & j
(.0, otherwise

3.1.3 A Mixed Integer Programming Formulation

Minimize Sysy Wj Tj (5)

l ieuziJ = l , Vj e j  (6)

ISS yE/ Zy  < ; [ £ | , V i E M  (7)

rj < t j  < d j.v j € }  (8)

t/ — tfc + skj ~ ( l  yfcy)(f̂ fc — ty "F V k ,j  E J ,k  zfc j  (9)

Vkj +  yjk  ^  Zik +  z ij -  1 , v  i E M , v  k . j  e j , k  *  j  (10)

Tj > tj -  Sj, V j e j  (11)

0 < T j  < d j - 6 j , V j  EJ  (12)

z ij, Vkj binary V i E M,  V k .j  E /  (13)

The objective function (5) minimizes the total weighted tardiness. Constraint (6) assigns 

every aircraft to exactly one of the m runways, whereas Constraint (7) introduces lower 

and upper bounds on the number of aircraft assigned to any runway in order to balance 

the loads across runways. Constraint (8) specifies allowable time-window restrictions.
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Constraint (9) ensures that proper separations between any pair of aircraft are assigned to 

the same runway. Constraint (10) activates the sequencing variables between any pair of 

aircraft that are assigned to the same runway. Constraint (11) expresses aircraft tardiness, 

with respect to target-times. Constraint (12) enforces non-negativity restrictions and 

upper bounds on aircraft tardiness. Constraint (13) defines binary decision variables.

3.2 Review of Solution Methods

Exact algorithms and approximate algorithms are commonly used to find qualified 

solutions for optimization problems. The optimal solution for a small sized problem can 

be obtained by exact algorithms. On the other hand, in order to solve large sized 

instances, approximate algorithms are developed to yield a quick and reasonable solution 

to the problem although the approximate algorithms cannot guarantee optimality.

3.2.1 Exact Algorithms

Exact methods aim to find an optimal solution in a polynomial amount of time for every 

finite size of a combinatorial optimization problem. Mixed integer programming, branch 

and bound algorithms, and decomposition methods are the most common exact methods 

for the scheduling problems. Nevertheless, it is difficult to obtain optimal solutions for 

the problem in a reasonable time especially as the problem size becomes large. 

Consequently, it becomes necessary to develop qualified approximate solutions for the 

ASP.

3.2.2 Approximate Algorithms

Approximate algorithms are generally classified as constructive algorithms, local search 

and metaheuristics.

3.2.2.1 Constructive Algorithms

Although some exceptional implementations may need high computational times, 

constructive algorithms are generally the fastest approximate algorithms. Starting from 

scratch, the solutions are generated by adding parts of the solution in the constructive 

algorithms. Due to their easy implementation and low computational requirements,
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dispatching (priority) rules are the most widely used constructive algorithms. They are 

functional to start with a reasonably good schedule with regard to a single objective 

(Pinedo, 2008). Moreover, some priority rules generate the optimum solution for certain 

problems such as Shortest Processing Time (SPT) Rule is used to minimize the total 

completion time of a single machine scheduling problem. A number of dispatching rules 

such as the Shortest Processing Time (SPT), Minimum SLACK (MSLACK), and Slack 

per Remaining Processing Time (S/RPT) have been applied to solve total tardiness, 

weighted tardiness, and maximum tardiness related problems (Lee and Pinedo, 1997). 

Although some constructive algorithms perform very well in certain cases, there is not 

any specific rule that can be applied to all problems and perform satisfactorily.

3.2.2.2 Local Search Algorithms

Starting from an initial solution, that may be generated randomly or via a constructive 

algorithm, local search algorithms try to replace part or the whole solution with a better 

one iteratively. The solution or solutions with the best objective function value in those 

neighborhoods of solutions are called local optimum solutions. Getting easily trapped in 

local optima is the primary drawback of the local search algorithms. Local search 

algorithm with proper moves can be very helpful in exploring a neighborhood of an 

initial solution; however, there is not such a mechanism that searches other far 

neighborhoods of the solution space in which the global optimum may exist. To 

overcome this issue, new modem search methods have been developed with embedded 

meta-strategies to guide the search process.

3.2.2.3 Metaheuristic Algorithms

A metaheuristic is a heuristic procedure that is applied to difficult combinatorial 

optimization problems to achieve reasonable solutions. The purpose of the methodology 

is to explore the search space effectively by logical movements that can help avoiding 

local optimum solutions; allowing worsening moves is one way to do that. Another 

approach is that rather than just providing random initial solutions, one can generate new 

starting solutions for the local search in a more intelligent way. Metaheuristics iteratively 

obtain better solution until a stopping criterion such as total number of iterations or
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number of consecutive iterations without any improvement is met. Candidate solutions 

are evaluated; a record of the best solution obtained so far is maintained. Although the 

implementation of the metaheuristics is more difficult than simpler heuristics, they are 

superior in terms of solution robustness. Simulated annealing, tabu search, genetic 

algorithms, ant colony optimization, and metaheuristic for randomized priority are 

examples of metaheuristic algorithms which are going to be discussed.

Genetic Algorithm (GA)

It was first introduced by Holland (1975). Genetic Algorithm (GA) is a population-based 

metaheuristic rooted in natural selection and evolutional theory in order to find a good 

solution. A solution is represented by knowledge structures (i.e., chromosomes) that are 

composed of genes. A set of solutions contains a population that evolves over time 

through competition. Each member of the population (i.e., individual) is evaluated and 

assigned a fitness value and then the next population is formed in two steps. Firstly, 

individuals with high fitness values are selected for reproduction and a crossover operator 

generates two offspring from two parents. The crossover operator forms new fit 

individuals from fit parents. Then, a mutation operator changes one or more components 

of a selected individual. The mutation operator serves as a secondary search that 

guarantees that the points in the search domain are reachable. Until a stopping criterion is 

met, the incumbent solution is expected to improve as populations are generated. GA 

differs from SA and TS that at each iterative step, several schedules are generated and 

carried over the next step. On the other hand, in simulated annealing and tabu search, 

single schedule is generated and it is carried over from one iteration to another.

Therefore, the neighborhood search concept of GA is dependent on a set of schedules, 

rather than a single schedule (Hazir et al., 2008).

Ant Colony Optimization (ACO)

Similar to GA, the ant colony optimization (ACO) algorithm is population-based 

metaheuristic. It is motivated by the collective behavior of ants for the continued 

existence of their colonies. For the food sources, ants deposit pheromone on their trail. 

The capability of other ants to recognize this substance enables them to find the shortest
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path between their nest and the food. When more ants cooperatively follow a trail, the 

trail becomes more attractive for being followed in the future. The ability of a single ant 

to place food is limited; however, the shared information helps the colony to locate 

efficient paths to a food source. Dorigo and Gambardella (1997) introduced this feature in 

solving combinatorial optimization problems. By applying a stochastic local search 

policy, each ant could construct a solution. A tour ends when all ants of the colony 

produce solutions of dissimilar quality. The knowledge gathered at the end of each tour is 

updated through a global pheromone updating rule. By using the information in the next 

tour, it is expected that the ants generate better solutions.

Metaheuristic for Randomized Priority Search (Meta-RaPS)

Meta-RaPS is a generic, high-level strategy used to modify greedy algorithms based on 

the insertion of a random element. Meta-RaPS integrates priority rules, randomness, and 

sampling in each iteration to avoid getting stuck in local optima. The general steps in 

applying the Meta-RaPS methodology to any combinatorial problem are as follows: study 

the structure of the problem to be solved, find priority rules that construct feasible 

solutions, modify priority rules to incorporate randomness, construct feasible solutions 

using priority rule and randomness, improve selected solutions, keep the best solution 

found by Meta-RAPS for both construction and improvement stages. Report the best 

solution found at the end of maximum number of iterations (Moraga, 2002).

Simulated Annealing (SA)

SA was first proposed by Kirkpatrick et al. (1983). Simulated annealing (SA) is one of 

the oldest and most frequently used metaheuristics to find global optimum or near

optimum to combinatorial optimization problems. SA is a robust random search 

technique, improvement heuristic with a clever mechanism to avoid getting trapped at 

local optima. The SA algorithm generates a new solution in the neighborhood of an initial 

(current) solution constructed by a greedy heuristic. Initial solutions can be constructed 

by greedy algorithms. Although improving moves are preferred, a particular structure 

sometimes allows moves to worse solutions to improve the search domain and avoid 

getting trapped at local optima. It can deal with nonlinear models and many constraints
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(Hazir et al., 2008). There is a clear tradeoff between the quality of the solutions and the 

time required to compute them. Subsequently, Johnson et al. (1989, 1991) examined the 

effects of various parameters on the solution quality and computational requirements.

Tabu Search (TS)

Similar to SA, Tabu search (TS) is a local-search improvement heuristic that tries to 

avoid a local minimum by punishing the moves which creates cycling among previously 

observed solution points. These forbidden moves are called “tabu”. TS algorithm keeps a 

list of such moves for a specific number of iterations. The cycling occurrence depends on 

the length of the tabu list. If the length of the tabu list is small, the process may have a 

high possibility of cycling (Lee et al., 1997). The major advantage of TS is the use of 

memory which accelerates the solution space search process (Zobolas et al., 2008). Two 

commonly used strategies to obtain good solutions are diversification and intensification. 

Diversification is used to direct the search into less visited regions of the search space, 

whereas intensification is used to fully explore a certain region. Glover’s studies on TS 

have attracted numerous researchers to use the metaheuristic to solve problems from 

various fields due to its potential to solve difficult combinatorial optimization problems. 

The technique is straightforwardly applied to continuous functions by choosing a discrete 

encoding of the problem. Many of the applications in the literature involve integer 

programming problems, scheduling, etc. (Hazir et al., 2008).

Comparison o f the Metaheuristics

Decision areas, problem size, available time to develop are the factors that affect the 

choice of which metaheuristic algorithm to use. In order to have a rational approach to 

perform the metaheuristics for effective ASP solutions, a review for comparative studies 

in scheduling problems would be useful. There are two types of metaheuristic algorithms: 

population based and single point search. Population-based metaheuristic methods such 

as GA and ACO work with a group of solutions to generate new solutions; on the other 

hand, single point search methods such as SA and TS start with a single solution and try 

to improve it via neighborhood search.
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The single point search methods start with an initial feasible solution and generate more 

solutions iteratively. The time needed to implement SA or simple TS is relatively short 

compared to the population-based metaheuristics. Both TS and SA have usually been 

found to provide comparable quality in acceptable time. SA however is simpler to 

implement and requires less computer memory. SA and TS may be considered as special 

forms of GA with the number of individual in each generation limited to one. The GA 

keeps track of multiple solutions at each iteration which makes it slower. In GA, the 

neighborhood concept is not based on a single solution, but rather on a set of solutions. A 

new solution can be constructed by combining different parts from different schedules 

within the set. Therefore, GA fails to intensify the search to the most promising regions 

of a neighborhood (Lee et al., 1997).

Kim et al. (1996) reviewed several approximate algorithms including SA and GA with 

the objective of minimizing mean tardiness. Simulated annealing algorithm considering 

insertion neighborhood search algorithm, outperformed the remaining metaheuristics. 

Parthasarathy and Rajendran (1998) proposed SA where the initial solution was provided 

by a specific rule. Results were compared to the other heuristics including TS, and the SA 

algorithm produced the best rules. Vallada et al. (2008) provided comprehensive review 

of heuristic and metaheuristic approaches for the flowshop scheduling problem with the 

objective of minimizing total weighted tardiness. The SA algorithm outperformed all the 

other methods evaluated including GA and TS.

The performances of SA, TS, GA and ACO metaheuristics on the customer order 

scheduling problem were compared in Hazir et al. (2008). Their results indicate that the 

output quality of a metaheuirstic were dependent on the problem size; among the 

algorithms, SA performs the best. Moreover, it was mentioned that the implementation of 

SA was easier than the implementation of the others. Jungwattanaakit et al. (2009) 

investigated SA, TS, GA algorithms for minimizing the convex combination of makespan 

and the number of tardy jobs with unrelated parallel machines and setup times. They 

investigated the performance of the algorithms for the recommended SA, TS, GA 

parameters, and found that SA based algorithm outperformed the other algorithms.
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To sum up, the parameter setting, the problem type, the platform where the study is 

conducted affect the outcome of each comparative study. However, it is clear that 

simulated annealing is easy to implement while obtaining good solutions.

3.3 Approximate Algorithms for the ASP

Exact solution methods can be used to find optimal solutions for scheduling problems. 

However, as minimizing the TWT with a single machine (i | \ZwjTj) is NP-hard (Lawler, 

1982), minimizing the TWT with parallel machines with ready times (Pm\rj\EwjTj) is also 

NP-hard. According to the complexity of hierarchy (Pinedo, 2008), the problem 

Pm\rj,Sj, dj,s^,time window\ZwjTj, which is a general case of the single machine 

problem, can also be considered NP-hard. Therefore, it is necessary to develop 

appropriate methods to reach good quality solutions in reasonable computational times.

In this section, we propose greedy algorithms and metaheuristics to solve the problem. 

The greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation 

and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index 

(FPI) are proposed. Moreover, metaheuristics, specifically SA and Meta-RaPS are 

introduced for the ASP to improve the initially constructed solutions by greedy 

algorithms. The AATCSR is constructed by extending the ATCS rule, which is 

commonly used for TWT problems. The FPI rule is a modification of AATCSR, and the 

ERT is a version of the FCFS. SA and Meta-RaPS have been applied to different 

scheduling problems in order to find near-optimal solutions, and are applied for the first 

time to the ASP. Another reason for proposing metaheuristics is the possibility of 

observing a condition where the greedy algorithms cannot find a feasible schedule for a 

particular instance. This indicates that at least one aircraft is “unscheduled” since its start 

time exceeds its dedicated deadline. In such a case, the neighborhood search structures in 

the SA and Meta-RaPS would suffice to efficiently generate feasible solutions.

3.3.1 Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR)

We introduce here the AATCSR composite greedy algorithm for the ASP as an extension 

of the ATCS rale that was introduced by Lee and Pinedo (1997). In the AATCSR, we
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include new terms to take into account the deadlines and ready-times. The proposed 

AATCSR heuristic is dynamic in a sense that after each aircraft is assigned to a runway, 

the remaining aircraft are prioritized according to the priority index given in Equation 

(14). While the deadline constraint is satisfied, the priority index is computed for each 

aircraft that has not been scheduled yet and the one with the highest index value is 

assigned to the runway on which the aircraft can start to operate the earliest.

j i j ( t ,  k )  = Wj x e x p { -  max(r; -  t, 0)) x e x p { —s kj )  x e x p { -  max(5; -  t, 0)) x e x p { -  max(d, — 

t. 0)) (14)

where nj (t, k) is the index for aircraft j  at time t given that k is the last aircraft operated 

on the runway that was just freed, and t is the decision time for an assignment. The 

urgency of an aircraft is measured by the slack factors for the ready times max (r; — 

t, 0), separation times (sk;), target times max (Sj — t, 0), and deadlines max {dj — t, 0). 

The rationale of this rule is to exponentially increase aircraft priorities as they approach 

their ready times, target times, and deadlines, as well as for those whose separation times 

are short. Once the slack factors have negative values, they will not have an impact on the 

priority as exp (0) =1. In other words, target-time Sj for job j  does not have any impact on 

the index value when the aircraft’s target time is already behind the assignment decision 

time (i.e.,6) < t). In this problem, whenever an aircraft is assigned to a runway, it is 

assumed that the “job is completed” because the processing times are considered 

negligible. That is, the start times, which are the decision variables, and the completion 

times are the same. The pseudo code for AATCSR is given below.

t: decision time for assignment 

tj: the start time for aircraft j, V j E J

PSTi(t): potential start time for aircraft j on runway i to take-off/land at time t 

CmaXi(t): throughput/makespan of the runway i at time t

Uj{t, k): priority of aircraft j at time t given that k is the last aircraft operated on the 

runway that was just freed 

M: set of runways
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J: set of aircraft that are not scheduled yet 

n: number of aircraft 

m: number of runways

Dj deadline for aircraft j to take-off at runway end/to land (taxi time is not included),

Vj e  J

1. Set t=0,tj =  0, J  = {1,2,..., n}, M  = {1,2,..., m},Cmaxi(t') = 0, Vj 6 J.Vi  E  M

2. Calculate Uj{t, kj  Vj  G /  by using Equation (14)

3. while 0

4. while tj < dj, Vj E  J

5. Find j  = {je J: itj (t, k ) = maxk i e j { n t (t, kj}}

6. Find i = {ieM: P ST^tj — minm6M{P5rjn(t)}} where PST is calculated according

to Equations (l)-(4)

7. Update tj =  PST^t)

8. Update Cmaxt(t) = tj

9. Update t -  minmeM {Cmaxm(t)}} and remove aircraft j  from J

10. end while

11. end while

12. Calculate and display the total weighted tardiness

3.3.2 Earliest Ready Time (ERT)

In the ERT rule, aircraft are assigned to the runways in increasing order of their ready 

times. This rule resembles the FCFS rule which is the most widely used heuristic in 

terminal areas for the aircraft sequencing. In addition to the total weighted tardiness 

minimization, ERT rule has also been applied to problems with different objective 

functions such as minimization of the makespan and the maximum lateness (Larson and 

Dessouky, 1978, Damodaran and Gallego, 2010). In the ERT, an aircraft to be scheduled 

with the earliest ready time is assigned to the runway on which the aircraft can start the 

operation the earliest. Such an approach has been used in the literature (e.g., Tsai and 

Lee, 1996 and Jeong and Kim, 2008) to successfully construct a good initial solution.
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Moreover, the solution quality and computational times of the ERT rule can be used as a 

baseline to which other methods can be compared.

3.3.3 Fast Priority Index (FPI) Rule

The FPI index in equation (15) is computed for each aircraft to be scheduled when a 

runway is free at time t and the aircraft with the highest priority index value is assigned to 

the runway on which the aircraft can start the operation the earliest.

FPI;(t, k ) = I V i  X  T “  r  X   r  X t-— r X — (15)
J '  J m ax(rj-t,l) max(<Sy-t,l) max(d; - t , l )  s^j

where FPIj (t, k)  is the index for aircraft j  at time t given that k is the last one operated on 

the runway that was just freed. Different from the AATCSR, in FPI the urgency of 

scheduling aircraft in FPI is treated in a linear manner rather than exponential, which 

makes it much faster in terms of computational time. Note that the maximum of slack or 

1 is used in the denominators to avoid dividing by zero.

3.3.4 Simulated Annealing (SA) Algorithm

SA is one of the well-known metaheuristic algorithms which is based on the work of 

Metropolis et al. (1956) that simulated the energy levels in cooling solids by producing a 

sequence of physical states. Kirkpatrick et al. (1983) applied this approach to solve 

combinatorial optimization problems for finding the global optimum, or near-optimum, 

of a cost function. Since it generally provides good solution and statistically guarantees 

finding an optimal solution, it is considered a robust metaheuristic. It has a mechanism to 

escape local optima by sometimes accepting a worse neighborhood move with an 

acceptance probability of e ~ ^ T, where A is the difference in the objective function values 

of the current solution and candidate solution, T is a temperature control parameter 

corresponding to the temperature in the analogy of physical annealing. When T is high, 

most moves (better and worse) will be accepted, and as T is reduced, worse moves will 

more likely be rejected. Therefore, to prevent getting trapped in a local minimum, a 

relatively high value of T is set at the beginning of the algorithm. Specifically in our 

problem, instead of a constant value, the initial temperature is defined as a function of the
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objective function value of the current solution, which enables the initial temperature to 

be more flexible and to take reasonable values. While the SA goes through k  drops in 

temperature according to the function Tk = aTk_t , at each temperature, it explores the 

neighborhood of the current solution.

The logic behind the neighborhood search in SA is to avoid getting stuck in local optima. 

Aircraft exchange_1 and Aircraft exchange 2 functions are used to perturb the current 

solution locally.

Aircraft exchange 1: When there is a randomly selected unscheduled aircraft j ,  it is 

exchanged with another randomly selected aircraft i such that rj < rt and dj < di.

Aircraft exchange_2: If there are no unscheduled aircraft, then randomly selected 

aircraft j  is exchanged with randomly selected aircraft i. This neighborhood is applied 

to all aircraft across the runways.

The difference between both is that Aircraft exchange_1 is applied when there is an 

unscheduled aircraft (i.e.,dy <  Cy); otherwise Aircraft exchange d is executed. The 

performance of the SA depends on several parameters: the maximum number of inner 

loop iterations (imax )> the maximum number of iterations (tmax), the initial temperature 

coefficient (k), and the temperature cooling coefficient (a). These parameters are tuned in 

Section 4.2. The SA algorithms proposed in this dissertation generate new solutions in 

the neighborhood of the initial/current solution constructed by the proposed greedy 

algorithms. Therefore, the SA algorithm that integrates the AATCSR is called S A aatcsr- 

Similarly, the implementation with the ERT is called S A ert and when integrated with 

FPI is called S A fpi- The pseudo code for the S A is given below.

S: search area 

0: current solution

O’: neighbor solution of the current solution 

0*: best solution

f(0) : objective function value of the current solution (the total weighted tardiness value)
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N(6) : neighborhood of 0

M: memory set of current best solution and objective function value

i: inner loop iteration counter

imax: max number of inner loop iterations

c : iteration counter

tmax: max number of iterations

T: temperature

k : initial temperature coefficient 

a: temperature cooling coefficient

1. Get ERT, FPI or AATCSR solution as an initial solution G from S

2. Calculate f(0)

3. Initialize memory, Memory MO ~{(G, f(G))}

4. Set iteration counters i -  0, c = 0

5. Set initial temperature T = k.f(G)

6. while c < tmax

7. while i < imax

8. Choose G'eN(Q) Q S where MO= {(0,/(0'))}> do neighborhood search 

algorithm

if there is at least one unscheduled aircraft, use Aircraft exchange l  

else use Aircraft exchange_2

9. Calculate / (0 ')
&e

10. i f / ( 0 ' )  — / ( 0 )  < 0 or rand  [0,1] < e r , where A0 =  / ( # ')  — / ( 0 )  then

11. M O = { ( 0 , / ( 0 ' ) ) }

12. end if

13. i = i+J

14. c =c+J

15. end while

16. Update temperature T -  a.T

17. end while

18. Output 6* and /(0* )
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3.3.5 Metaheuristic for Randomized Priority Search (Meta-RaPS) Algorithm

Meta-RaPS is based on the work by DePuy and Whitehouse (2001) as the result of 

research conducted on the application of a modified version of Computer Method of 

Sequencing Operations for Assembly Lines (COMSOAL) approach that was developed 

by Arcus (1966). Meta-RaPS was then formally introduced by Moraga (2002) who 

defined it as a generic, high-level strategy used to modify greedy algorithms based on the 

insertion of a random element, which integrates priority rules, randomness and sampling.

Meta-RaPS is composed of two phases: a constructive phase and an improvement phase. 

In the constructive phase, feasible solutions are generated through randomized priority 

rules until a stopping criterion is met. In the improvement phase, the solutions obtained at 

constructive phase might be improved if they pass a specific criterion. In this dissertation, 

ERT, AATCSR, FPI greedy algorithms are independently used as the priority rules in 

initial stage. Therefore, the Meta-RaPS algorithm that integrates the ERT rule as a basis 

for selecting the next aircraft to schedule is called Meta-RaPSERT. Similarly, the 

implementation with the AATCSR is called M e ta -R a P S A A T C S R  and when combined with 

the FPI is called Meta-RaPSppj. To prevent getting trapped in local optima, Meta-RaPS 

modifies the constructive algorithm such that the next aircraft to schedule does not 

always have to be the one with the best priority value. As an alternative, an aircraft is 

sometimes selected randomly from a candidate list (CL) of feasible aircraft.

Meta-RaPS involves the use of four parameters where the performance of the algorithm 

depends on: the number of iterations (i), the priority percentage (p%), the restriction 

percentage (r%) and the improvement percentage (ip%). The number of constructed 

feasible solutions is determined by the number of iterations. The percentage of time the 

aircraft with the best priority value is added to the solution is called the priority 

percentage. Implicitly, 100%-/?% determines percentage of time the aircraft is randomly 

selected from a CL, which is a set of aircraft whose priority values are within the 

restriction percentage of the best priority value. The improvement percentage is used to 

decide if the solution created at the constructive stage is worthy of being improved in the 

improvement phase. Therefore, only solutions with promising values are improved by
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using neighborhood search algorithms, which are similar to those used in the SA 

algorithm. The rationale of selectively improving solutions is not to waste computational 

time on very inferior solutions, but rather improve solutions that have the potential to 

reach a global optimum. The pseudo code for Meta-RaPSAATcsR is given below.

9: solution from constructive phase

f(6): objective function value o f the constructive phase

I: number o f iterations

p%: the priority percentage

r%: the restriction percentage

ip%: the improvement percentage

1. Set t=0,tj = 0 , J  = {1,2,..., n}, M =  {1,2,..., m} ,Cmaxf t )  — 0, Vy G / , Vi G M

2. Calculate nj(t, k)  vy G J by using Equation (14)

3. while 0

4. while tj < dj ,Vj  E j

5. Find j  = {je J: Jij (t, k)  =  maxk t e j {nt (t, fc)}}

6. Find i = {ieM: PSTf t )=  minTneM{P5T7n(t)}} where PST is calculated according

to Equations (1)-(4)

7. P = RND (0,1)

8. ifP</?% then

9. Set aircraft to schedule index, s = j

10. else

11. Randomly choose aircraft / from Candidate List = {I: I e J  \ m (t,k) > tzj (t,k).r%}

12. Set aircraft to schedule index, s = I and Candidate List = 0

13. end if

14. Update tj =  PST f t )

15. Update Cmax f t )  =  tj

16. Update t = m m meM{Crnaxm( t)}} and remove aircraft j  from J

17. end while

18. end while
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19. Calculate f ( 0 )

20. if f(0) < fbest (fworst -fb est)- ip% then

20. Find 6 e N(0) do neighborhood search algorithm

if there is at least one unscheduled aircraft, use Aircraft exchange_1 

else use Aircraft exchange J2

21. Calculate /  (0)

21. end if

22. Update Memory, Report/ best

In this chapter, several solution methodologies and heuristic procedures are proposed for 

the Aircraft Sequencing Problem. Three greedy algorithms, namely the Adapted 

Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest 

Ready Time (ERT) and the Fast Priority Index (FPI) were developed to construct initial 

solutions. In addition to greedy algorithms, metaheuristics including Simulated 

Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) were 

introduced to improve solutions initially constructed by the proposed greedy algorithms. 

The performance (solution quality and computational time) of the various algorithms is 

compared to the optimal solutions and to each other in Chapter 4.
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CHAPTER 4 

COMPUTATIONAL STUDY FOR SOLUTION METHODOLOGIES

Computational study for the ASP heuristic algorithms aims to determine the performance 

of the proposed algorithms for a wide range of problem sizes. The effectiveness and 

efficiency of the ERT, AATCSR, FPI, SA, Meta-RaPS algorithms are evaluated for 

problems with a number of aircraft n  =  15,20,25 and number of runways m  = 2,3,4,5; 

15-aircraft instances with 2,3,4 runways, 20 and 25 aircraft instances with 2,3,4,5 

runways. For each combination of n  and m, 5 instances were generated totaling 55 

problem instances that are publicly available at

http://ahmed.ghoniem.info/download/MASP-SET.txt. The proposed algorithms were 

implemented in C and run on an Intel Core 2 Duo 2.10 GHz CPU with 4.00 GB of RAM 

laptop. According to Ghoniem and Farhadi (2012), the optimal solutions were obtained 

by mixed-integer formulations which were coded with AMPL and solved using CPLEX

12.4 on Intel Core i7-2600 CPU with 3.40 GHz and 12 GB RAM laptop. For the optimal 

solutions, they imposed a time limit of 1 CPU hour on the solver.

4.1 Data Generation

In the data used, each aircraft is characterized by its operational type (i.e, arrival or 

departure), weight-class (i.e, heavy, large, or small), priority (aircraft tardiness penalty), 

ready time, target time, deadline, and separation times. Data were generated as in 

Ghoniem and Farhadi (2012) as follows:

1. Aircraft operation types were randomly generated as 0 or 1 to represent an arrival and 

departure respectively.

2. Aircraft weight classes were randomly generated as 1,2, 3 to represent heavy, medium 

or light aircraft respectively.

3. The aircraft tardiness penalty (priority) Wj varies between 1 and 6 and was introduced 

as a function of the aircraft weight class and its operation type, where the least weight of

http://ahmed.ghoniem.info/download/MASP-SET.txt
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1 was assigned to small departures and the greatest weight of 6 was given to heavy 

arrivals.

4. The ready-times ry were randomly generated using a discrete uniform distribution over 

the interval (0, y ̂ ), where y is a parameter that was randomly selected between 30 and 

90.

5. Every aircraft was prescribed a time-window of 600 seconds. Therefore, deadlines d j  

were calculated by r ; + 600.

6. Target times Sj were calculated by r ; + 20.

7. As presented in Sherali et al. (2010) and shown in Table 1, the minimum separation 

times skj are given and range between 30 and 200 seconds depending on aircraft type 

(light, medium or heavy), and the type of operation (landing vs. departure) that the actual 

values are enforced by aviation authorities.

4.2 SA Param eter Setting

The solution quality and the speed of the metaheuristics depend on the values of their 

parameters. One of the Design of Experiments (DoE) methods, Taguchi design, was used 

in order to tune the parameters of the SA algorithm. A subset of problems from the entire 

problem set of instances up to 25 aircraft were selected randomly. For each of the four 

design factors (i.e., parameters of the SA algorithm) two possible levels were defined, 

and the experiments were conducted to obtain appropriate parameter values while 

considering the qualities of the average relative error and average CPU times. For the SA 

algorithm, two levels were determined as follows: maximum number of iterations (tmax= 

1000,2000), maximum number of inner loop iterations ( i m a x = 10, 20), initial temperature 

coefficient (£= 1 ,10) and temperature cooling coefficient (a = 0.8, 0.95). Considering 

not only the main effects (e.g. , t m a x , i m a x ) but also the interaction effects (e.g. , t m a x  x 

im a X ) ,  we solved five random problem instances 20 times using SA starting from initial 

solutions constructed by the AATCSR, ERT and FPI.
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After completing regression analysis of the average relative error values and average 

CPU, the R2 values were 0.92 and 0.88 respectively for the AATCSR case; R2= 0.92 and 

0.88 respectively for the FPI case; and R2= 0.91 and 0.88 respectively for the ERT case. 

Accordingly, the following parameter levels were selected for best performance: 

maximum number of iterations t m a x =  1000, maximum number of inner loop iterations 

i m a x ~  10> initial temperature coefficient k =  1 with the initial temperature being the 

corresponding weighted tardiness of the initial solution, and temperature cooling 

coefficient a = 0.8 for S A e r t ,  S A a a t c s r  and SAppi.

4.3 Meta-RaPS Parameter Setting

A similar DoE approach was used to set the appropriate parameter values for Meta-RaPS 

for its four parameters. Two-level factorial design was used and the levels are identified 

in Table 6. For each experiment, we selected 5 problem instances randomly from the 

entire problem set, and we solved them 20 times by Meta-RaPS using the AATCSR, ERT 

and FPI as priority rules in its construction stage.

Level Coded Parameter
/ r %  d % iD %

Low -1 2000 0.25 0.75 0.75
High +1 5000 0.5 0.9 0.5

Table 6. Coded values of factor levels

Regression analysis of the average relative error values and average CPU time values 

revealed R2= 0.97 and 0.98 respectively for the AATCSR case; R2= 0.97 and 0.97 

respectively for the FPI case; and R2= 0.96 and 0.97 respectively for the ERT case. 

Accordingly, the following parameter levels were selected for best solution quality: 

number of iterations 7=5000, the priority percentage p%=0.15, the restriction percentage 

r%=0.25 and the improvement percentage i p % = 0.9. The same parameters were used for 

Meta-RaPSERT, Meta-RaPSAATcsR and Meta-RaPSppi.
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4.4 Effectiveness of the Greedy Algorithms (AATCSR, ERT, FPI)

The performance of the ERT, AATCSR and FPI algorithms are evaluated in terms of 

average relative error, number of times each heuristic solution reaches optimal solutions 

and CPU times. The relative error (i.e., deviation from optimal) is calculated via Equation 

(16) for each test problem.

Relative Error = (16)
TWT optimal

where TWTALG is the objective function value (i.e., total weighted tardiness) of the 

proposed greedy algorithm and TWT0ptimai is the objective function value of the optimal 

solution for a test problem.

Optimal solutions were obtained using the MILP formulation presented in Section 4. 

Average relative errors for the greedy algorithms and average CPU times are obtained by 

averaging the values for the five instances for each aircraft-runway combination. The 

results in Table 7 show that the performances of the three greedy algorithms are similar 

in terms of average CPU time. The ERT performs slightly better than the AATCSR and 

the FPI in terms of the frequency of reaching optimal solutions. However, the average 

relative error metric indicates that it does not perform as well as the AATCSR and the 

FPI. Finally, it is worth noting that CPU times of the proposed solution methods are 

considerably shorter than the optimal solutions.

The relative error data and CPU time performance for each combination are not normally 

distributed according to Anderson-Darling normality test as stated in Figure 6. Therefore, 

the performances of the algorithms are analyzed statistically by nonparametric test, 

Kruskal-Wallis.
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n m Average Relative Error from Optimal # of optimal solutions Average CPU (s)

AATCSR ERT FPI AATCSR ERT FPI Optimal AATCSR ERT FPI

15 2 0.728 0.888 0.844 0 1 0 25.37 0.000 0.000 0.000
3 0.873 1.172 1.171 0 0 0 74.222 0.000 0.000 0.000
4 0.446 0.563 0.563 0 3 0 1684.228 0.000 0.000 0.000

20 2 0.726 0.834 0.834 0 0 0 4.456 0.001 0.000 0.000
3 1.304 1.507 1.505 0 0 0 583.98 0.000 0.000 0.000
4 1.708 1.708 1.708 0 0 0 2458.94 0.000 0.000 0.000
5 0.819 0.825 0.819 0 0 0 2596.48 0.000 0.000 0.000

25 2 1.183 1.205 1.205 1 1 1 1.28 0.000 0.000 0.000
3 0.577 0.947 0.940 0 0 0 723.514 0.000 0.000 0.000
4 1.297 1.370 1.297 0 0 0 495.628 0.000 0.000 0.000
5 0.540 0.540 0.540 0 0 0 1308.014 0.000 0.000 0.000

Table 7. Results of the Greedy Algorithms

The statistical software program, Minitab 15.1 is used for analysis.

Probability Plot of Relaltive Error
N orm al

99.9

99

95
90

80
70
60
50
40
3020
10
5'

1
0.1

-2 -1
Error

AD
P-Vatue

1.006
0.7593

165
4.702

<0.005

Probability Plot of CPU
N orm al

0.0000- 0.0010 >0.0005 0.0005 0.0010

Mean 0.00007879
StDev 0.0002702
N 165
AD 56.570
P-Vatue <0.005

Figure 6. Normality Test for the Greedy Algorithms
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Table 8 shows that AATCSR has performed better since the median of AATCSR relative 

errors is less than the median values of the ERT and FPI. On the other hand, AATCSR, 

ERT and FPI have similar CPU time performance.

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR 55 0.7031 76.9 -1.15
ERT 55 0.7659 86.4 0.64
FPI 55 0.7613 85.7 0.51
Overall 165 83.0

H= 1.33 DF = 2 P = 0.514 
H = 1.33 DF = 2 P = 0.514 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR 55 0.000000000 93.0 1.90
ERT 55 0.000000000 78.0 -0.95
FPI 55 0.000000000 78.0 -0.95
Overall 165 83.0

H = 3.61 DF = 2 P = 0.164
H = 16.60 DF = 2 P = 0.000 (adjusted for ties)

Table 8. Comparison of effectiveness of the Greedy Algorithms

4.5 Effectiveness of the SA and Meta-RaPS Algorithms

Three versions of the SA and the Meta-RaPS were applied to the problem with the main 

difference being the way that the initial solutions are generated using ERT, AATCSR, or 

FPI algorithms. The performances of the SA and the Meta-RaPS are compared in terms 

of the relative error, the number of times each heuristic solution reached optimal 

solutions and the CPU times. Equation (16) is used to calculate the relative error for each 

test problem with TWTALG being the objective function value of the proposed 

metaheuristic.

Hancerliogullari et al. (2013) introduced SA and the Metaheuristic for Randomized 

Priority Search (Meta-RaPS) to the ASP to improve the initially constructed solutions by 

greedy algorithms. The algorithms’ solutions are compared to optimal solutions and their
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performances are evaluated in terms of solution quality and CPU time. According to 

Table 9, the average relative error and the number of optimal solutions reached by the 

metaheuristics indicate that S A a a t c s r  performs better than SAFP[ and S A e r t - Also, the 

average CPU times of the algorithms are less than one second on average. The 

performance measures reflect that solving the problem with the SA is advantageous since 

in the majority of time the SA could find optimal solutions.

n M
Average Relative Error tom Optimal # of optimal solutions Average CPU (s)

SAaatcsr SAert SAfpi SARandom SAaatcsr SAert SAfpi SARandom SAaatcsr SAert SAppi SARandom
15 2 0 0.002 0 0.004 5 3 4 1 0.417 0.412 0.406 0.422

3 0.024 0.055 0.05 0.063 3 2 3 0 0.438 0.371 0.445 0.441
4 0 0.004 0 0.005 5 3 3 1 0.502 0.371 0.381 0.384

20 2 0.018 0.037 0.02 0.045 2 1 2 0 0.583 0.549 0.619 0.556
3 0.006 0.045 0.02 0.053 4 0 1 0 0.62 0.486 0.523 0.595
4 0.004 0.044 0.01 0.050 4 0 3 0 0.58 0.561 0.431 0,571
5 0.002 0.013 0.01 0.009 4 2 3 1 0.43 0.484 0.438 0.49

25 2 0 0.009 0.01 0.009 4 2 3 1 0.756 0.678 0.828 0.692

3 0.005 0.151 0.03 0.082 2 0 1 0 0.762 0.699 0.725 0.701
4 0.018 0.092 0.05 0.095 3 0 2 0 0.538 0.577 0.585 0.581

5 0.021 0.089 0.08 0.102 2 0 2 0 0.513 0.53 0.513 0.542

Table 9. Results of the SA Algorithm

Moreover, the performance of the SA algorithm starting with a randomly generated initial 

solution (SARandom) is evaluated. The corresponding average relative error, the number of 

optimal solutions reached by the S ARandom, and average CPU times are also summarized 

in Table 9. The results show that S A a a t c s r  still performs the best among the S A e r t ,  

SAppi, SARandom in terms of solution quality. On the other hand, the CPU time 

performance of the algorithms are close to each other and considerably low. It is 

concluded that generating new starting solutions for local search improvement heuristic, 

SA, using greedy algorithms (AATCSR, ERT, FPI) is more intelligent way than just 

generating random initial solutions. There is an advantage in starting from a better initial 

solution than random solution in problems where good solutions cannot be easily 

obtained through a small number of elementary transformations of a random solution 

(Pirlot, 1996).



72

Since the relative error data for each combination does not follow a normal distribution 

according to Anderson-Darling normality test in Figure 7, the statistical significance of 

performance between algorithms is analyzed using non-parametric Kruskal-Wallis test.
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Figure 7. Normality Test for the SA Algorithm: Relative Error

Table 10 shows that there is a statistical difference between the population mean values 

of S A a a t c s r , S A e r t  and S A f p i  in terms of relative error (p=0.000<a=0.05). It can be 

inferred that S A a a t c s r  has the best performance because median of relative errors is less 

than median value of S A e r t  and SAppi; moreover, S A f p i  performs better than S A e r t  . On 

the other hand, the CPU time performances of the algorithms are almost indifferent.

Another important measure is Levene’s test when the data is continuous but not 

necessarily normally distributed. In order to measure the robustness of the proposed 

algorithms, test of equal variance is used. Table 11 shows that there exists significant 

difference between variances for the relative errors (p=0.002<a=0.05). S A a a t c s r  

algorithm has lower confidence intervals for relative error which indicates that it is more 

robust for the problem compared to S A e r t  and SAppi.
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Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-SA 55 0.000000000 60.4 -4.30
ERT-SA 55 0.024637681 106.5 4.47
FPI-SA 55 0.004854369 82.1 -0.17
Overall 165 83.0

H = 25.63 DF = 2 P = 0.000 
H = 28.53 DF = 2 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR 55 0.000000000 93.0 1.90
ERT 55 0.000000000 78.0 -0.95
FPI 55 0.000000000 78.0 -0.95
Overall 165 83.0

FI = 3.61 DF = 2 P = 0.164 
H = 16.60 DF = 2 P = 0.000 (adjusted for ties)

Table 10. Comparison of effectiveness of the SA Algorithm with different initial 

solutions

Figure 8  also confirms that S A a a t c s r  has the best performance in terms of relative error.

Test for Equal Variances: Relative E rror
95% Bonferroni confidence intervals for standard deviations

Method N Lower StDev Upper 
AATCSR-SA 55 0.0169324 0.0208642 0.026979
ERT-SA 55 0.0632537 0.0779418 0.100786
FPI-SA 55 0.0402559 0.0496037 0.064142

Levene's Test (Any Continuous Distribution)
Test statistic = 6.29, p-value = 0.002____________________

Table 11. Test for Equal Variances: Relative Error versus Method
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Test for Equal Variances for Relative Error

BametrsTest
Test Statistic 
P-Vatue

75.69

0.000MA A T C S R -S A  -
Lev ene*s Test 

Test Statistic 
P-Vaiue

E R T - S A -

F P I- S A  -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
95% Bonferroni Confidence Intervals for StDevs

Figure 8. Test for Equal Variances: Relative Error versus Method

According to Table 12, the solution quality of Meta-RaPSAATCSR outperforms that of 

Meta-RaPSERT and Meta-RaPSppi in terms of the relative error and the number of optimal 

solutions reached by the Meta-RaPS. However, the drawback of Meta-RaPSAATCSR is that 

it requires longer CPU time.

n M Average Relative Error from optimal # o f optimal solutions Average CPU (s)

Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta-
RaPSAATCSR RaPSERT RaPSppi R uP S aaTCSR RaPSERT RaPSppi RaPSAATCSR RaPSERT RaPSFPi

15 2 0.001 0.261 0.160 4 0 2 7.394 1.327 0.171
3 0.047 0.225 0.187 3 0 3 8.400 1.399 0.191
4 0.112 0.216 0.184 0 0 0 8.873 1.399 1.702

20 2 0.021 0.464 0.264 1 0 1 12.841 2.149 0.271
3 0.029 0.644 0.535 0 0 0 16.261 2.559 0.230
4 0.853 1.041 0.969 0 0 0 17.202 2.749 2.816
5 0.456 0.482 0.456 1 0 0 13.760 3.413 2.954

25 2 0.008 0.418 0.276 3 2 3 23.068 3.151 0.374
3 0.009 0.411 0.262 1 0 1 23.265 3.522 0.280
4 0.431 0.848 0.565 1 0 0 20.690 4.133 4.116
5 0.234 0.311 0.274 0 0 0 21.065 3.891 4.223

Table 12. Results of the Meta-RaPS Algorithm
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Similar to SA, since the relative error data for each combination in Meta-RaPS does not 

follow a normal distribution according to Anderson-Darling normality test in Figure 9, 

the statistical significance of performance between algorithms are analyzed using non- 

parametric Kruskal-Wallis test Table 13 shows that there is a statistical difference 

between the population mean values of Meta-RaPS a a t c s r , Meta-RaPS e r t  and Meta- 

RaPS f p i  in terms of relative error (p= 0.000<a=0.05). Meta-RaPS a a t c s r  has the best 

performance because median of relative errors is less than median value of Meta-RaPS 

e r t  and Meta-RaPS f p i ;  moreover, Meta-RaPS f p i  performs better than Meta-RaPS e r t -

Probability Plot of Relative Error- Meta-RaPS
Normal

Mean 0.3532
StDev 0.3785
N 165
AD 7.204
P-value <0.005

'“ -1.0 -0.5 o!o 0.5 1.0 l!s 2!o 2^
Error

Figure 9. Normality Test for the Meta-RaPS Algorithm: Relative Error

Furthermore, it can be determined that there is a statistical difference between the CPU 

time values of Meta-RaPS algorithms that use different dispatching algorithms as priority 

rules in the initial stage. Meta-RaPS a a t c s r  has worse CPU time performance compared 

to Meta-RaPS e r t  and Meta-RaPS f p i .
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Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-METARAPS 55 0.03884 54.1 -5.49
ERT-METARAPS 55 0.36946 104.0 3.99
FPI-METARAPS 55 0.26413 90.9 1.50
Overall 165 83.0

H = 32.16 DF = 2 P = 0.000 
H = 32.21 DF = 2 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
AATCSR-METARAPS 55 15.0010 138.0 10.46
ERT-METARAPS 55 2.7300 67.1 3.02
FPI-METARAPS 55 0.3910 43.9 -7.44
Overall 165 83.0

H =  115.85 DF = 2 P = 0.000
H = 117.22 DF = 2 P = 0.000 (adjusted for ties)__________________________________

Table 13. Comparison of effectiveness of the Meta-RaPS Algorithm with different initial 

solutions

The performances of both SA and Meta-RaPS are compared when they use the same 

greedy algorithm in their initial stages. As expected, the general trend of the results 

indicates that SA and Meta-RaPS that use greedy algorithms as initial solutions perform 

better than the greedy algorithms alone (i.e., S A a a t c s r  is superior to AATCSR, and 

Meta-RaPSERT is superior to ERT). When Tables 14 and 15 are compared, it is observed 

that the solution quality o f SA is usually better than that of the Meta-RaPS when the same 

greedy algorithms are considered for initial solutions (i.e., S A a a t c s r  is superior to Meta- 

RaPSa a t c s r ,  S A f p i  is superior to Meta-RaPSFpi).

The statistical significance of performance between algorithms is analyzed using non- 

parametric Kruskal-Wallis Tables 14, 15 and 16 show that there is a statistical difference 

between the population mean values of Meta-RaPS a a t c s r , S A a a t c s r  and AATCSR; 

Meta-RaPS e r t , S A e r t  and ERT; and Meta-RaPS f p i ,  SAppi and FPI in terms of relative
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error (p= 0.000<a=0.05). S A a a t c s r  has the best performance because median of relative 

errors is less than median value of Meta-RaPS a a t c s r  and AATCSR. Similarly, S A e r t  

performs best among Meta-RaPSERT and ERT because median of relative errors is less 

than median value of Meta-RaPS e r t  and ERT; and S A f p i  has the best performance 

because median of relative errors is less than median value of Meta-RaPS f p i  and FPI 

(0.004<0.761).

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
AATCSR-METARAPS 55 0.038844622 79.1 -0.74
AATCSR-SA 55 0.000000000 42.3 -7.73
AATCSR 55 0.703125000 127.6 8.47
Overall 165 83.0

H = 88.07 DF = 2 P = 0.000
H = 92.07 DF = 2 P = 0.000 (adjusted for ties)

Table 14. Comparison of effectiveness of the AATCSR and metaheuristic algorithms

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
ERT 55 0.76587 123.2 7.65
ERT-METARAPS 55 0.36946 92.6 1.83
ERT-SA 55 0.02464 33.1 -9.48
Overall 165 83.0

H = 101.20 DF = 2 P = 0.000 
H = 101.26 DF = 2 P = 0.000 (adjusted for ties)

Table 15. Comparison of effectiveness of the ERT and metaheuristic algorithms

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
FPI 55 0.761347 126.8 8.33
FPI-METARAPS 55 0.264126 89.1 1.15
FPI-SA 55 0.004854 33.1 -9.48
Overall 165 83.0

H = 106.99 DF = 2 P = 0.000 
H = 107.57 DF = 2 P = 0.000 (adjusted for ties)

Table 16. Comparison of effectiveness of the FPI and metaheuristic algorithms
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According to the Levene’s test, Figures 10,11, and 12 show that there exists significant 

difference between variances for the relative errors (p=0.002<a=0.05).

Test for Equal Variances for Relative Error

A A T C SR -M E TA R A PS -

A A T C S R -S A -

A A T C S R -

1.00.0 0.2 0.4 0.6 0.8

Bartlett's T ea 
Test Statistic 326.35
P-Vatue_________0.000

Lefene'sTest 
Test Statistic 28.20
P-Vatue 0.000

95% Bonferroni Confidence intervals for StOevs

Figure 10. Test for Equal Variances: Relative Error versus Method-AATCSR

Test for Equal Variances for Relative Error

E R T -

1 E R T -M E T A R A P S -
I

E R T -S A -

0.0 0.2 0.4 0.6 1.00.8

Bartlett's Test 
Test Statistic 178.94
P-Vatue 0000

P-Vatue

95% Bonferroni Confidence Intervals for StOevs

Figure 11. Test for Equal Variances: Relative Error versus Method-ERT
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Test for Equal Variances for Relative Error

Bartlett's Test 

Test Statistic 
P-Vatue

229.32
0.000FPI-

Levene's Test 

Test Statistic 
P-Vatue i

31.52
0.000

£  FPI-METARAPS •

FPI-SA -

0.0 0.2 0.4 0.6
95% Bonferroni Confidence Intervals for StDevs

0.8 1.0

Figure 12. Test for Equal Variances: Relative Error versus Method-FPI

To sum up, Figures 13 and 14 illustrate that the mean plots of all problem instances at 

95% confidence level. Figure 13 clearly shows that there are statistically significant 

differences between the relative error values of the greedy algorithms and the 

metaheuristic algorithms since there is no overlap between them (e.g., AATCSR does not 

overlap with S A a a t c s r  and M e ta -R a P S A A T C S R )-

Figure 14Figure 14 illustrates that the CPU times of the proposed algorithms are quite 

similar, and they are considerably low compared to the optimal solution.

1.4-I

1.2 -

1.0 -

0.8 -

0 .6 -

0.4-

0 .2 -

0 .0 -

Figure 13. Mean plots intervals at the 95% confidence level of Relative Errors
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Figure 14. Mean plots intervals at the 95% confidence level of CPU Times

4.6 Further Analysis of the Algorithms’ Effectiveness with respect to Feasibility

In this section, we focus on analyzing the algorithms’ effectiveness in terms of producing 

initial feasible solutions especially for congested schedules. Table 17 summarizes the 

objective function values obtained by MILP (i.e. optimal), each greedy algorithm (i.e., 

AATCSR, ERT, FPI) and each corresponding integrated metaheuristic (i.e., S A a a t c s r ,  

Meta-RaPSAATCSR, S A Er t ,  Meta-RaPSERT, SAppi, Meta-RaPSppi) for 55 instances 
generated in Ghoniem and Farhadi (2012); except that each aircraft was prescribed a 

time-window of 300 seconds. By reducing the time-window by half (from rj+600 to 

ij+300), we obtain more congested instances for which it is more difficult to obtain 

feasible solutions. The greedy heuristics generated more infeasible solutions than before 

(denoted as “-”). The table shows that out of 55 instances, AATCSR, FPI and ERT could 

not find any feasible solution for three, six and eleven instances respectively. SA and 

Meta-RaPS are applied to the problem with specific neighborhood schemes to efficiently 

generate feasible solutions (e.g., instance #9), improve initially constructed solutions by 

the proposed greedy algorithms (e.g., instance #1), and reach the optimal solutions 

(denoted as *) (e.g., instance #3). Therefore, it can be concluded through Table 17 that 

even though some of the initial solutions obtained by the greedy heuristics are infeasible,
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with the help of problem specific neighborhood search structures, the metaheuristics can 

find feasible, and sometimes optimal, solutions.
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Objective Function Value

n m Instance Optimal AATCSR S A aatcsr
Meta-

RaPSAATCSR
ERT S A ert

Meta-
RaPSERT

FPI S A m
Meta-

RaPSppi

15 2 1 2139 3137 2139* 2139* 3415 2139* 2346 3415 2139* 2311
2 2173 4384 2173* 2173* 5232 2173* 2647 5232 2173* 2374
3 6606 - 6606* 6631 - 6631 7782 - 6631 7774
4 3352 4816 3352* 3352* 4886 3372 3765 4886 3352* 3352*
5 1240 3322 1240* 1240* 3050 1240* 1999 3050 1240* 1240*

3 6 581 1222 581* 581* - 581* 627 1222 581* 581*
7 1366 2406 1366* 1366* - 1381 1699 2406 1366* 1366*
8 761 1620 761* 962 1895 761* 1026 1895 761* 761*
9 2349 3618 2519 2798 3831 2837 2888 3831 2855 2855
10 753 1393 788 853 1803 787 918 1803 787 787

4 11 2910 3447 2910* 2952 3463 2931 3225 3463 2931 3225
12 3061 3107 3061* 3253 3746 3107 3513 3586 3107 3513
13 2310 2768 2310* 2434 3019 2310* 2480 3019 2310* 2498
14 452 936 452* 607 935 452* 648 935 452* 655
15 468 732 468* 508 948 508 606 948 468* 542

20 2 16 5383 8208 5425 8040 - 5495 8757 - 5495 5495
17 2186 4268 2186* 2187 - 2197 3360 5045 2186* 2947
18 669 774 669* 669* 774 669* 774 774 669* 669*
19 1004 1743 1058 1332 1743 1043 1080 1743 1043 1043
20 1024 1744 1067 1278 1744 1068 1524 1744 1068 1068

3 21 471 1326 471* 475 - 497 878 1326 475 475
22 1575 4616 1575* 2391 5007 1616 2676 5007 1616 2654
23 1783 3248 1839 1844 - 1862 2635 - 1839 1839
24 1044 2287 1044* 1949 2287 1079 1994 2287 1115 1115
25 2080 3673 2080 2670 3667 2148 2670 3667 2098 2098

4 26 354 1157 361 849 1157 361 821 1157 361 859
27 632 2046 657 1478 2046 681 1290 . 2046 657 1633
28 666 1120 666* 1008 1120 972 972 1120 689 972
29 521 1608 563 796 1608 600 1034 1608 586 1080
30 587 1464 587* 1034 1464 587* 1022 1464 591 1012

5 31 1645 2271 1685 1685 2271 1685 1819 1685 1645* 1819
32 340 697 340* 340* 697 340* 604 697 340* 604
33 690 1118 690* 1115 1118 707 1047 1118 707 1047
34 352 869 357 648 869 356 648 869 356 648
35 571 934 571* 587 917 571* 609 917 571* 609

25 2 36 51 51* 51* 51* 51* 51* 51* 51* 51* 51*
37 1801 2705 1803 1803 - 1850 2711 - 1803 1850
38 203 808 203* 203* 808 203* 203* 808 203* 203*
39 1232 1952 1232* 1232* 2032 1238 1535 2032 1232* 1232*
40 2798 5792 2798* 5401 5921 2829 4558 5921 2829 2829

3 41 888 952 894 944 - 944 1352 1042 924 944
42 235 354 302 317 360 259 354 360 259 345
43 75 237 75* 75* 267 105 120 237 75* 75*
44 4442 6613 4487 5295 7330 4460 6083 7330 4519 4519
45 1602 - 1602* 1855 - 1679 1855 - 1644 1644

4 46 356 365 356* 365 365 365 365 365 365 365
47 345 938 375 624 938 412 751 938 407 702
48 412 2087 412* 790 1935 451 1290 1935 412* 790
49 2084 2923 2090 2681 2923 2114 2627 2923 2139 2681
50 125 205 125* 146 205 140 199 205 125* 155

5 51 1094 1690 1094* 1161 1690 1117 1219 1690 1094* 1219
52 123 186 125 162 186 143 168 186 143 168
53 2978 - 1689 1772 - 1745 1772 - 1689 1772
54 1379 2144 1387 1857 2144 1420 1857 2144 1420 2114
55 857 1458 930 1196 1458 1027 1279 1458 1027 1279

Table 17. Computational Results for the Algorithms with Congested Instances
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CHAPTER 5 

AIRCRAFT REACTIVE SCHEDULING PROBLEM METHODOLOGY

5.1 Introduction

We generally tend to assume the operational environment for decision making problems 

is stationary. Nevertheless, as the time passes by, a latest update on the situation requires 

reviewing the existing decisions that have been previously made. Such conditions are 

dynamic in a sense that as the operational settings change, the projected plans have to 

constantly be revised.

Diverse disruptions may occur during the execution of already planned service process 

due to the dynamic and uncertain operational environment, which could possibly cause 

failure in process quality, or continuity. In order to limit the negative consequences of 

disruptions, one should take a proper course of action. However it is quite clear that, it is 

not preferable to alter the existing decision significantly. For this reason, when we adopt 

a course of action, the existing decision has to be taken into account since we prefer to 

maintain conformity to the initial decision, and not perturb it much.

In industrial setting, the preplanned production schedules rarely remain fixed due to 

unexpected events. It frequently happens in manufacturing environment that an initial 

schedule is usually exposed to disruptions, and this makes rescheduling inevitable. 

Rescheduling is a dynamic approach where an original production schedule is updated in 

response to disruptions (Vieira et al., 2003). Examples of common disruptions are the 

arrival of new orders, order cancellations, due date changes, rush orders, machine 

breakdowns, resource unavailability, etc. Kanet and Sridharan (1990) stated that a 

production planning method which supports an effective rescheduling is necessary if one 

is looking for a quick and efficient response after disruptions or other changes.

In order to cope with dynamic structure in a scheduling environment, two scheduling 

approaches are considered: reactive scheduling and proactive scheduling.
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Reactive Scheduling

Reactive Scheduling is an improvement of pre-computed predictive schedules which 

revises the schedule after the disruptions occur. In general, the reactive scheduling action 

is based on two strategies: rescheduling and schedule repair. A possible intuitive 

approach while reacting to the disruptions is generating a new schedule from scratch, 

which is called rescheduling. It is expected that this form of reactive scheduling generates 

a solution whose solution quality in terms of efficiency measure is superior to any 

repaired schedule. On the other hand, in practice, it is encouraged to ensure conformity to 

the initial schedule; therefore, generating a new schedule that is very dissimilar to the old 

one is not preferable. Schedule repair; on the other hand, modifies the existing initial 

schedule and provides relatively similar schedule to the old one. Heuristic based schedule 

repair algorithms may involve simple rules such as right-shift rule. When the disruptions 

are minor, the initial schedule can be adapted to the new conditions by schedule repair 

strategy. However, if the disruptions are frequent and large, rescheduling is may be better 

to apply.

Proactive Scheduling

Proactive Scheduling considers the uncertainty in generating schedules; where it is 

developed prior the start of the operations. Since proactive scheduling takes into account 

potential future disruptions, it tries to minimize their effect on performance measures 

while constructing an initial solution. The constructed schedule does not have to be 

optimal; however, it has to perform well in uncertain environment. Contrary to reactive 

scheduling, one of the main concerns while executing a proactive scheduling is 

optimizing the robustness (Wu et al.1993).

Due to the random events that change the system’s state frequently, the schedules have to 

be reviewed at some points in time. Therefore, the timing, and the way that the review 

have to be done are the important parameters of reactive scheduling decision, which are 

going to be discussed in detail. There are different approaches to make a decision on 

timing of reactive scheduling. The system is periodically considered for scheduling in 

the periodic scheduling', the length of period can be either variable or constant. The
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reactive scheduling policies are considered at the beginning of each fixed-time in the 

constant-time interval. On the other hand, in the variable case, decisions are made after a 

certain amount of schedule is realized; however, in practice, constant-time interval 

method is more preferable. The schedule is updated after following a certain number of 

disruptions in the continuous scheduling. For instance, it takes a reactive scheduling 

action each time a random event occurs (Raman, Rachamadugu and Talbot, 1989). 

Another approach is adaptive scheduling where the schedule is reviewed after a 

predetermined amount of deviation from the initial schedule is observed (Sabuncuoglu, 

Karabuk, 1999). Event-driven scheduling, which is a hybrid method, revises the 

schedules both periodically and continuously as applied in periodic scheduling and 

continuous scheduling respectively.

The way that the schedules are revised consists of several components, and it is as crucial 

as timing for the reactive scheduling decision. The scheduling scheme, which can be off

line, on-line or quasi-online (i.e., hybrid, combination of off-line and on-line), is one of 

the components. Off-line scheduling method schedules all activities for the whole 

scheduling period providing a global perspective; alternatively, on-line scheduling 

scheme makes a decision one by one (e.g., dispatching rules), and it accommodates 

flexibility. Quasi-online scheduling method schedules a subset of the activities, and 

leaves the rest of the activities for future (Wu, Byeon and Storer, 1999).

The second component is amount of data used while generating a schedule. Forecast 

window, the time span of job release data; and simulation window, length of the 

simulation runs that scheduling decisions is made were defined in Kutanoglu and 

Sabuncuoglu (2001). The value of the simulation window may be equal to or smaller than 

the forecast window. If the simulation window is equal to the forecast window, it 

indicates that all available information is used. When the simulation window is smaller 

than the forecast window, only a part of the available information is used, and it is called 

partial scheduling.

Another component of the way that the schedules should be revised is the response types, 

which are used to manage unexpected events. The responses are categorized as do
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nothing, reschedule all operations from scratch and repair the schedule by making 

alteration to the initial schedule. However, the weakness and strengths of each response 

type are not analytically studied.

The last component is the performance metric. Generally, scheduling research has been 

concentrated around the schedule quality which includes objective functions such as the 

total weighted tardiness, makespan, earliness, and tardiness among others. However, 

when the operational environment is dynamic, stability and robustness performance 

measures must also be considered. These measures are related to the difference between 

the initial schedule and revised one. Uncertainty and unforeseen disruptions degrade 

schedule performances and cause variability. Robustness is concerned with the 

performance of the realized schedule. The revised schedule is robust if the objective 

function value of the new schedule does not deteriorate much (Wu, Storer and Chang, 

1993). Stability, on the other hand, is concerned with the difference between the intial 

and realized schedules themselves, not just their performance metric. The revised 

schedule is called stable if it does not deviate much from the initial schedule when there 

is a disruption. Moreover, there is a trade-off between stability and robustness 

performance measures, and observing the conditions under which a measure is more 

important than another may lead to better understanding, comparison and selection of 

reactive scheduling methodologies (Wu et al., 1993).

As was mentioned, reactive scheduling problems consider both primary measure of 

schedule performance and stability measure of disruption caused by the rescheduling. 

Therefore, the objective in the aircraft reactive scheduling problem (ARSP) is not only 

minimizing the schedule’s quality metric (the total weighted start times in this research) 

but also minimizing the schedule instability. The reason for using the total weighted start 

times as an objective function is that we would like to schedule the aircraft as early as 

possible to the runways. By this way, we can also minimize the start time of the latest 

positioned flight. The stability can be measured based on number of disrupted operations, 

differences between operation start times, or number of schedule changes made. In this 

research, the measure of stability can be defined as the difference in operations’ start
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times, and deviation of runway assignment. Consideration of these objectives leads us to 

formulate the ARSP as a multi objective reactive scheduling problem.

5.2 Disruptions in Air Traffic Operations

Passenger satisfaction is one of the key considerations for airline companies that can be 

maximized by minimizing flight delays. Throughout the course of daily operations, an 

airline is faced with the potential of deviations in the planned flight schedule as a result of 

various unexpected events such as severe weather conditions and unexpected aircraft or 

personnel failures. However, very little research has been conducted on the problem 

disruptive events are considered. The main goal of this chapter is to propose and validate 

solution methodologies and heuristic procedures to reschedule the planned flights in the 

event of irregular operations. A mathematical formulation introduced by Ghoniem and 

Kharbeche (2013) of the aircraft rescheduling problem is utilized to obtain optimal 

solutions.

One of the most important aspects of tactical planning is to develop an airline’s published 

flight schedule which requires a major effort. Generally, the schedule’s planning process 

starts several months ahead of the actual operation of a given flight; and it is dependent 

on a broad array of information. Airlines are constantly faced with disruptions which may 

cause great variations from its planned flight schedules. The first priority for the airline is 

to restore the initial flight schedule as much as possible by minimizing the effects of 

numerous cancellations and delays. Therefore, real-time decisions should be made to 

treat the overall operations over some period of time.

In this dissertation, aircraft related disruptive events are studied because they occur much 

more frequent than other type of disruptions in air traffic operations. Aircraft reactive 

sequencing is studied and schedule repair algorithms are developed to deal specifically 

with the arrival of new aircraft, flight cancellations and aircraft delays due to unexpected 

events such as severe weather conditions, unexpected aircraft or personnel failures.

According to U.S. Department of Transportation, bad weather conditions are cited as the 

major cause of disruptions in the airline system accounting for 10% of the disruptions on
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the average. Due to Hurricane Sandy in 2012 for example, airlines cancelled over 20,000 

flights in North America, which cost the U.S. carriers around $300 million.

At the majority of airline operation centers throughout the world, flight disruptions are 

mainly dealt with manually. With a reliance on the air traffic controller or responsible 

decision makers, and their past experience, the assessments are done, and decision about 

the schedules is made. Although it might be sufficient to deal with the irregularity for 

now, given the complexity of the problem, the airline operations control center needs 

effective real-time decision making tools and strategic schedules that minimizes the 

overall impact of disruptions on profitability, and operations.

5.3 Multi-Objective Optimization

Multi-objective optimization (MOO) is the process of optimizing a collection of objective 

functions systematically and simultaneously (Marler and Arora, 2004). A general multi

objective optimization problem is stated as follows:

Minimize F(x)=[F/(x), F2(x), ..., F*(x)]T

subject to gj (x ) < 0, j  =  1,2,..., i

ht (x) = 0,j  =  1,2, ...,e (17)

where k is the number of objective functions, i is the number of inequality constraints, 

and e is the number of equality constraints.

In contrast to single-objective optimization problem, there is no single global solution in 

the multi-objective problem that minimizes all objectives simultaneously because the 

objective functions usually conflict with each other. When the solution quality improves, 

the other objective function, stability in our case, typically deteriorates. Pareto optimality 

is defined to describe the solutions for multi-objective optimization problem (Pareto, 

1906).
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Pareto Optimality

A point x* £ X is Pareto optimal if and only if no other feasible xG X exists such that 

(x) <  F(x*) , and Ff x )  < Ffx*)  for at least one objective function.

Sometimes, algorithms provide solutions that satisfy some criteria but may not be Pareto 

optimal but weakly Pareto optimal.

Weakly Pareto Optimal

A point x* G X is weakly Pareto optimal if and only if no other feasible xG X  exists such 

that F(x) < F(x*). It can be inferred that weakly Pareto optimal points are not Pareto 

optimal but Pareto optimal points are weakly Pareto optimal (Marler and Arora, 2005).

5.3.1 Multi-Objective Optimization Methods

There are four basic multi-objective optimization methods that are categorized according 

to the preferences of the decision maker in the solution process: no-preference methods, 

priori methods, posteriori methods, interactive methods.

No-preference Methods

If there is not any decision maker and his/her preference information available, it can be 

considered as no-preference method. It can obtain some unbiased compromised solution 

without any additional preference information.

Priori Methods

In order to obtain a single Pareto optimal point, the decision makers express the relative 

importance of the objective functions and then the method looks for a Pareto optimal 

solution satisfying the preferences as much as possible (Miettinen and Hakanen, 2009). 

Hierarchical approaches and simultaneous approaches are two primary approaches used 

with this method. When the decision maker arranges the objectives according to their 

importance for subsequent solution by a single objective optimization method (Azizoglu 

and Alagoz, 2005), it is called a lexicographic optimization. The lexicographic
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optimization would be an example for hierarchical approach. A simultaneous approach 

contains value function methods that include the original objectives and preferences of 

the decision makers for optimization, and then a single objective optimization problem is 

solved. The weighted sum method, which will be discussed in this dissertation, is an 

example for simultaneous approach. Since a scalarized objective function is used in the 

rescheduling problem, the weighted sum method can be used as a posteriori method so 

that different weights are set to generate different Pareto optimal solutions, and then the 

decision maker can select the most satisfactory one.

Posteriori Methods

Population based methods such as multi-objective simulated annealing, differential 

evolution and nondominated sorting genetic algorithm belong to the posteriori methods 

(Rangaiagh, 2008). A representation of the entire Pareto optimal set is generated and a 

single solution is selected from a set of mathematically equivalent solutions which satisfy 

the preferences. This can be obtained by solving a series of MOO problems by changing 

the coefficients of the objective functions (Marler and Arora, 2005). Posteriori methods 

may provide many Pareto optimal solutions, which may be computationally expensive, to 

the decision makers who review and select one for implementation (Miettinen and 

Hakanen, 2009). In this way, the decision makers get an overview of the solutions; 

however, it might be difficult for them to analyze a large amount of information.

Interactive Methods

In these methods, a solution pattern is formed and repeated, and the decision maker can 

specify the preference information progressively during the solution process. During the 

solution of the multi-objective optimization problem, these methods require interaction 

with the decision makers. Several interactive methods exist in the literature, and none of 

them is superior to all the others; however, some of them may fit different decision 

makers and problems better than the others. Examples of these methods are reference 

point approaches, satisficing trade-off method, the NIMBUS method (Miettinen and 

Hakanen, 2009).
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5.3.2 Weighted Sum Method

The most common approach to multi-objective optimization is the weighted sum method 

in which, a convex combination of functions is reformulated. The general multi-objective 

optimization problem is stated below:

minJJi=1AiFi(x)

s.t. gj (x)  < J

h f x )  <  0; 1=1, 2,..., L

2f=iAi = l  (18)

where A* is the weighting factor for the ith objective function, the weights are non

negative Aj > 0 for all i=l,2, J. Changing the weighting factor’s relative values 

changes the orientation of the contours for the weighted sum. Minimizing the weighted 

sum can yield Pareto optimality (Miettinen and Hakanen, 2009). Mathematically, the 

weights are related to the decision maker’s preference function in Steur (1999).

5.3.3. Normalization in the weighted sum method

For the sake of consistent evaluation of objective function values, it is advantageous to 

transform the original objective functions; this is especially true with scalarization 

methods, which involve a priori expression of preferences. When the objective functions 

for a problem have significantly different orders of magnitude, determining suitable 

weighting factor is difficult. Therefore, the objective functions should be transformed by 

the normalization techniques such that functions are dimensionless. Some common 

normalization methods are summarized by Marler and Arora (2005) as follows:

Normalization by the minimum o f the objective functions

This approach yields non-dimensional objective function value with a lower limit of one. 

It is referred to as the lower-bound approach, and a common approach to function 

transformation is given as:
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r  n o rm a l =  f i W  HQ'*
s i  |y?min|

where f imtnis the minimum value for objective i, and can be defined as an ideal point 

such as / £min = f i ( x*) where f f x * )  is the optimum value of objective i when it is 

optimized individually disregarding the other objectives .The upper limit of the f jnormal is 

unbounded; on the other hand, the lower limit of f inormalis restricted to non-negative 

when /™ n > 0.

Alternatively, the numerator may also be modified which also provides a non- 

dimensional objective function in which case, the lower limit of fP-ormalis restricted to 

zero. It is referred to as the alternate lower-bound approach, and transformation is given 

as follows.

rn o r m a l  DfOJi v ^ /

Normalization by the maximum o f the objective functions

Known as the upper-bound approach, is a variation on lower-bound approach that uses 

the maximum value of the function in the denominator rather than f f 1171 as follows:

f  n o rm a l _  /i(* ) ^
J i j m a x  * /

where f N ^ i s  the maximum value for objective /. This approach yields non-dimensional 

objective function value such that f.normal <1 with no restriction on the lower value.

The most robust approach to normalize the objective functions, regardless of their 

original range is called the upper-lower bound approach, and is given as follows:

fn o r m a l  _  f  j(.x ) ~ f jnin
J i  ^ m a x _ ^ m i n  ( Z Z )

The denominator of the formulation is the length of the intervals over which the objective 

functions vary within the Pareto optimal set. In this case, f.normal gets values between
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zero and one, and unlike previous approaches, the denominator is guaranteed to be 

positive since/}7710* > /}mm.

According to Grodzevich and Romanko (2006), since the objective functions are 

normalized by the true values of their variation over the Pareto optimal set, upper-lower 

bound approach provides relatively robust normalization. The following scalarized 

objective function is used for the multi-objective optimization problem (Rangaiah, 2008).

i AO)-ACO , ^  ^  AO)-AO*)
M m  x  /,”■“ - / , ( « • ) +  ( 1 "  A) (23)

where 0 <  2 < 1 is a weighting factor. /i(x*) and / 2(x*) are the optimal values of the 

individual objectives when they are optimized individually, and /}ma*and f™171 are the 

respective maximum and minimum values of the individual objectives. The provided 

upper-lower boung approach will be used for the normalization since it is one of the most 

robust approaches to normalize the objective functions.

5.4 The Mixed Integer Linear Programming Model for Aircraft Rescheduling 

Problem

5.4.1 The Initial MILP Model

The initial MILP model for ARSP is provided in Ghoniem and Kharbeche (2013) where 

runway re-assignment and constrained position shifting (CPS) are allowed but penalized. 

In addition to existing scheduling constraints discussed in section 3.1 the objective 

function, new parameters, decision variables and constraints are modified. Initial runway 

assignments and start times are used as input in the revised model. In order to consider 

both the solution quality and stability in the objective function, a multi-objective model is 

constructed.

Index Sets and Notation

M ={1,2,..., m}: A  set of m identical runways; runways are indexed using i=l,2,..., m.
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J={1,2,..., n}: A set of n aircraft (i.e., landing or departing) from the initial schedule 

which can be rescheduled.

D Q J: A set of delayed aircraft.

E <= J={1,2,..., n}: Set of cancelled aircraft.

A: a set of new aircraft arrivals

J = (J — E')UA = A set that includes all aircraft that are considered for rescheduling.

r7 ; ready time for aircraft j  to take-off or land (taxi time is not included), V; e  J

S j : target time for aircraft j  to take-off or land, V/' e  J

dj: deadline for aircraft j  to take-off or land, V/ e  J

Oj. operation type of aircraft j, being a landing or a departure, V; E J.

Cy. weight class of aircraft j, e.g., heavy, medium, or light, V/ E J.

wj: weight assigned to aircraft j  based on its operation type and its weight class, V) G / . In 

particular, higher priority has been assigned to landings over departures and to heavy 

aircraft over medium and light ones. Moreover, in the test-bed wji=Wj2  if Oji=Oj2  and 

Cji=Cj2.

dj: Penalty cost of deviation from the initial start time of aircraft j, V) E ] — (D U E) 

Penalty cost of deviation from the initial assignment o f the aircraft j ,  Vj E J  — (D U

E)

Skj: sequence-dependent minimum separation time required between aircraft k and j  if 

they are respectively the leading and the following aircraft, V k ,j E J ,k  =£ j.

n x\ Preemptive coefficient for the deviation from the initial start times and the initial 

runway assignment for all aircraft that are being rescheduled but not experiencing any 

disruption.
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7t2: Preemptive coefficient for the sum of the total weighted start times of all aircraft that 

are being rescheduled.

The solution associated with the initial schedule are now input for the ARSP

tf. the start time of the operation for aircraft j  in the initial schedule, V/ G /

- _  fl, if aircraft j  has been assigned to runway i in the initial schedule, V i e M, V/ 6 /. 
l] I 0, otherwise

Decision Variables

tj: the start time of aircraft j  (i.e. the time for departure or landing), V j  £ J.

_ fl, if aircraft j  is assigned to runway i, V i £ M ,j £ J. 
iJ I 0, otherwise

_  (1, i f  both a irc ra ft k and j  are assigned to the same runw ay  
~  (0, otherwise where tk > tj, V k ,j  £ j , k  =£ j

Min 7r1( £ j 6;-(du£) a j(g j +  qt ) + 2 ;£ /- (due) Pj(uj + O/)) + n2 Z je j Wjtj (24)

s.t. I ieMZij = l ,V j  £ J  (25)

r) < tj < dj, V; £ J (26)

tj > t k + skj - (  1 -  y kj){ d k -  rj + skj), V k ,j  £ j , k * j  (27)

y kj + yjk ^  z ik +  Zij 1, V i G M, V k ,j  £ J ,k  =£ j  (28)

tj + g j  -  qj  -  tj, v j  £ J — (D U £■) (29)

SieM "i- — Oj =  Si6M »V _/ G /  — (D U E) (30)

y, z binary, g, q, u, o > 0. (31)

The objective function (24) minimizes respectively the components, the sum of the total 

weighted deviation from the initial start times, the total weighted deviation from the
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initial runway assignments for all aircraft are rescheduled but not experiencing any 

disruption, and the total weighted start times of all aircraft. The aircraft that are 

experiencing any disruption (i.e., cancelled), are not included in the calculation of total 

weighted start time deviation and total weighted runway deviation since for instance, the 

start time deviation of a cancelled flight is impractical to measure. Constraint (25) 

satisfies that every aircraft is assigned to exactly one of the m runways. Constraint (26) 

specifies allowable ready time-deadline time-window restrictions. Constraint (27) 

satisfies minimal separation times between aircraft that are assigned to the same runway. 

Constraint (28) specifies that if two aircraft are assigned to the same runway, then one 

must operate before the other. Constraint (29) reflects the deviation from initial start 

times. Constraint (30) reflects the deviation from initial runway assignments. Constraint 

(31) defines the binary and sequencing decision variables.

5.4.2 The Revised MILP Model

In order to have a fair analysis, and study the contribution of each objective function 

component on the total objective function, a set of three new coefficients is introduced 

for the three different components as follows:

n x: coefficient/weighting factor for the total weighted start time deviation (TWSD) from 

the initial start times for all aircraft that are being rescheduled but not experiencing any 

disruption.

7t2: coefficient/weighting factor for the total weighted runway deviation (TWRD) from 

the initial runway assignment for all aircraft that are being rescheduled but not 

experiencing any disruption.

7r3: coefficient/weighting factor for the sum of the total weighted start times (TWS) of all 

aircraft that are being rescheduled.

Referring to Section 5.3.3, we have revised the MILP model to incorporate the 

normalized objective function. At first, the MILP model is updated as follows:

M innx 'Ljej-{DvE)aj (gj + qj) + n 2 £ye; - (DuE)/?; (u; + Oj) + n3 'Zj e wj tj (32)
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where + n 2 +  n 3 = 1. Then, the objective function is rewritten in a normalized 

format to minimize a linear convex combination of normalized instability and total 

weighted start time objectives where each objective function component has an allocated 

weighting factor indicating its relative importance. The objective function of the ARSP is 

as follows:

A/TJ ( f T W S D ( x ) ~ f TW S D ( x * ) \  , „  ( f T W R D W - f T W R D ( x * ) \  , _  ( / t W ' s ( x ) - / t W ' s ( * * ) \

1 I  )  2 V « « D - / V W * - >  )  +  I  m - t t s i x - )  )  <33)

Or

M in ( ?‘j£ J - < .D u e ) a j ( . 9 j +tl j ) - f T W S D ( . X * ' ) \  f ' Z j £ J - ( D u E ) P j ( u j + 0 j ) ~ f T W R D ( x ' ) \

1 V )  2 \  f r W D - f T W R D ( x ’ ) )  +

3 V ^ }

where f TwsD(x*), f TWRD{x*), f Tws(x*), frwsb* frwRD’ frw s are the estimates of the 

optimal and the maximum values of the individual objective components. Each represent 

a theoretical optimistic or a pessimistic objective value for an individual objective. In 

order to find these values, it is required to implement the MILP model three times by 

using different combinations of 7r1# n2,n 3. For instance, frwsD (**) is the estimate value 

of the minimum total weighted start time deviation for a given instance, and can be 

estimated after the first run by setting

7Tj = 1 — ti2 — n 3, if n2 =  n3 = e, where £ is a very small positive real number.

Similarly, f Twso(x*) is the estimate value of the minimum total weighted start time 

deviation for a given instance, and can be estimated after the first run by setting

7T2 = 1 — n-L — n 3, if 7T! =  7t3 =  E, where e is a very small positive real number.

Finally, f TWS (**)> which is the estimate value of the minimum total weighted start time 

for a given instance, and can be estimated after the second run by setting n 3 =  1 — n 1 — 

n 2, where n1 = n 2 — s.
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frwsDix *) = 0, optimistic TWSD value of the case that start times of the aircraft are not 

affected by the disruption.

fr w R D  (**) =  optimistic TWRD value of the case that the runway assignments of the 

aircraft are not affected by the disruption.

fr w s ix *) — optimistic TWS value of the case that start times of the aircraft are 

minimum.

frwsD = pessimistic TWSD value of the case that start times of aircraft get worst after 

the disruption.

frw R D  = pessimistic TWRD value of the case that the runway assignments of aircraft get 

worst after the disruption.

f™ s = pessimistic TWS value of the case that start times of all aircraft get worst after 

the disruption.

In order to clarify the methodology of estimating the minimum and maximum values of 

objective functions, a sample data for the problem with 15 aircraft and 2 runways is given 

as follows:

Aircraft = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Ready Times = [35, 51, 76, 218, 237, 264, 203, 57, 109, 165, 122, 252, 354, 441, 276]

Target Times = [95, 111, 136, 278, 297, 324, 263, 117, 169, 225, 182,312,414, 501,

336]

Deadlines = [635, 651,676, 818, 837, 864, 803, 657, 709, 765, 722, 852, 954, 1041, 876] 

Weights = [6, 2, 6,4, 1, 5, 3 ,2 ,2 , 2, 3, 6,1, 5, 5]

For the given problem instance, the best total weighted start time value is 177 obtained by 

exact solution. The initial schedule is shown in Figure 15 with the following operation 

start times and runway assignments.
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Start times = [35, 75, 107, 231, 299, 264, 261, 57, 147, 207, 135, 311,406, 478, 371]

Runway Assignment = [[1 0], [1 0], [0 1], [1 0], [0 1],[0 1], [1 0], [0 1],[0 1], [0 1], [1

0] j [1 0], [0 1], [0 1],[0 1]] where [1 0] means that an aircraft is assigned to runway 1 and 

[0 1] is that it is assigned to runway 2.

Runway #1 1 2 11 4 7 12
Runway #2 8 3 9 10 6 5 15 13 14

Figure 15. Initial Schedule Before Disruption

Suppose that there is an aircraft cancellation, which is aircraft # 3, and only the aircraft 

that might be affected by the disruption are going to be repaired. Since the aircraft on the 

1st runway are not affected by the cancelation, and aircraft 8 is assigned prior to 3, they 

are then removed from the aircraft set that need repair leaving the set of aircraft to repair 

as aircraft # 5,6,9,10,13,14,15. In order to estimate f r ^ D(x*),/n r a D ^ ’)-Aws(^*)» 

frwsD’ frwRD and frws > initially, the data set is updated based on the disruption 

information (i.e., the parameter values for aircraft #3 are omitted since it is cancelled).

Then, by setting

i) nx =  1 -  7t2 — 7r3 when n 2 =  tc3 =  s  = 8.854 x 10-12 regarding the total 

weighted start time deviation.

f r w s D  (**) = 0= where there is no start time deviation

ii) 7t2 = 1 — n x — n3 when nx — n 3 — e regarding the total weighted runway 

deviation.

frwRD(x*) = where there is no runway assignment deviation

f tr ia x  = i 0 7 <r^
JTWSD

iii) n 3 = l  — n x —n2 when n x — n 2 — e
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frw s(.x *) = 10752, where the total weighted start times is minimized

/m a x  _ -5 9 /m a x  9 1 3 1 4  JTWRD JTWS

As a summary, it is estimated that the [/twsd(**) » / twrd (**) >frws(.x *)] =

[0,0,10752] and U W o f ^ D ^ s ]  = ] = [10752,32,21314],

Accordingly, the objective function for this problem is updated as follows:

Min 7rx ( frwsoM-0\  (/ twrdM - o\  f l W * ) -  107S2N
1 V. 1 0 7 5 2 -0  J * \  3 2 - 0  /  s  \  2 1 3 1 4 -1 0 7 5 2  /  v '

The optimal schedule obtained for the ARSP by using the objective function with 

n i ~  n 2  = 0.5, 7T3 = 0 is shown in Figure 16.This solution has the objective value of 0 

with TWSD=0, TWRD=0, and TWS=11430.

Runway #1 1 2 11 4 7 12
Runway #2 8 9 10 6 5 15 13 14

Figure 16. Optimal Solution After Disruption

In the computation study chapter, the experiments will be conducted with various 

weighting factor for analysis.

5.5 Reactive Scheduling Algorithms

Suppose that the initial schedule (i.e., initial assignment of each aircraft to a runway, and 

operation start times) is given and that we periodically receive disruption information of 

flight cancellations, flight delays, and new flight arrivals. If there is a flight cancellation, 

the number and indices of the cancelled flights are provided. If there is a flight delay, 

number of delayed flight and amount of delay are provided. Finally, if there is a new 

unexpected flight arrival, the number of the new aircraft, index of the new aircraft, the 

parameter information (e.g., ready time, target time, deadline, etc.) of the new flight are 

provided. The data is updated based on the disruption information. Once the status is
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updated, the response strategies to each corresponding disruption are executed; and the 

revised schedules are obtained. The general control framework of the rescheduling 

strategy problem is provided in Figure 17.

In this dissertation, unlike the studies in the literature which focus on one type of 

disruption at a time, different types of disruptions with multiple disruptive events are 

considered simultaneously. Therefore, the sequential evaluation methodology is 

developed to treat the disruptions and revise the schedules periodically. When there is at 

least one disruption, firstly, we check whether a flight cancellation is observed or not. If 

that is the case, a response algorithm is executed for cancellation, and a revised schedule 

is generated as the current schedule. Then, the next step is to check whether a flight delay 

is observed in which case a response algorithm is executed for delay, the schedule is 

repaired based on a response, and the obtained new schedule is updated as a current 

schedule. Finally, we check whether a new unexpected flight arrival is observed or not, 

and respond accordingly. The detailed framework of the control phase employed in this 

research is depicted in Figure 18.

Church and Uzsoy (1992) state that the disrupted schedules can be repaired by three 

reactive scheduling methods: right shift rescheduling, partial rescheduling and complete 

regeneration. In the right shift rescheduling, each remaining operation is postponed by the 

amount needed to obtain a feasible schedule. Partial rescheduling algorithm reschedules 

only the operations that are affected. Complete regeneration algorithm reschedules the 

entire set of operations from scratch.

The problem addressed here is a multi-objective optimization problem where both 

solution quality (i.e., total weighted start time) and stability (i.e., total weighted start time 

deviation, total weighted runway deviation) of the solution are considered by a decision 

maker.
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C h e c k  D isruption  
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I f  D isruption  
O c c u rs?

T y p e  o f D isruption: 
F light C an ce lla tio n  
F light D elay  
U n e x p e c te d  Flight

If flight If flight d e la y If u n e x p e c te d  flightc an ce lla tio n

Data: 
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cance lla tion  
T h e  in d ex  of 
c a n ce lled  flight

D ata: 
N um ber of de lay  
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Figure 17. General Control Framework for the Rescheduling Strategy



103

disruption?

Flight U nexpected
Flight?Flight Delay?

Run Algorithm for 
Unexpected 

Flight

Flight Delay?

Unexpected
Flight? for ju st Flight 

Cancellation

for just 
Unexpected 

Flight

revised schedule, 
U pdate a s  new

revised schedule. 
Update a s  new

Run Algorithm for 
Unexpected 

Flight

revised schedule. 
U pdate a s  new

evised schedule. 
U pdate a s  new

Provide Solution 
for ju st Flight 

Delay

Flight Delay

for Flight

Run Algorithm for 
U nexpected 

Flight

C heck Disruption

Run Algorithm for 
Flight Delay

Run Algorithm for 
Flight Delay

revised schedule. 
U pdate a s  new

Run Algorithm for 
Unexpected Flight

schedule, Update

Unexpected 
v  Flight?

Flight Cancellation, 
Flight D elay and  

U nexpected Flight

Provide Solution for 
Flight Delay and  

U nexpected Flight

Flight Cancellation 
a n d  U nexpected 

Flight

U pdate a s  new
Run Algorithm for 

Flight CanceWation

Figure 18. Detailed Control Framework for the Rescheduling Strategy
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Therefore, we developed alternative reactive scheduling strategies that consist of 

repairing and rescheduling algorithms for each type of disruptive event to incorporate the 

multi-objectivity and to update the schedule. A complete regeneration method, TWST 

Algorithm, is a greedy mle which treats flight cancellation, delay and unexpected arrivals 

simultaneously. Another complete regeneration method is a hybrid-metaheuristic called 

SA-Re Algorithm, which gets the initial solution from the TWST Algorithm and then 

applies simulated annealing algorithm. In addition to complete regeneration methods, 

partial repair methods are also proposed. The proposed responses for each disruption are 

considered at every decision point, and then, the best (i.e., the one with the minimum 

objective function value) reactive sequencing policy is identified from several candidates. 

Do-Nothing and Left-Shift are the repair strategies which are considered specifically for 

the flight cancellation disruption. Partial repair strategies, RepairBySlack (Reschedule the 

affected flights by minimum slack time), RepairByEDD( Reschedule the affected flights 

by earliest deadline) and InsertDelayed Algorithms (Insert the delayed flights to the best 

position), are proposed to repair the schedule after the delays in particular. 

RepairByTWST and InsertNew Algorithms are the repair strategies for the unexpected 

flight arrival disruption. Figure 19 illustrates the reactive scheduling strategies for 

corresponding disruptive event.

These response strategies require an initialization stage to determine the rescheduling 

point and the set of aircraft that are affected by the disruption. It is assumed that the 

initial schedule is given, and at the beginning of every time period, the disruption 

information is updated in advance. To illustrate the problem and the solution methods, an 

example is provided for the instance with the number of aircraft=20 and number of 

runways=2. Suppose also that the initial aircraft schedule on each runway before any 

disruption is available.
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Figure 19. Reactive Scheduling Strategies for Each Disruption Type

The disruption information are as such that there are 2 cancellations (flights #4 and #20), 

there is one delay (flight #19), and there are 3 unexpected new flights (# 21,# 22, #23). 

The cancelled, the delayed and the new unexpected flights are shaded in Figure 20. The 

initial start times of the aircraft on each runway before any disruption are shown in 

Figure 21.

Runway #1 13 12 1 m , - 5 18 17 16
Runway #2 11 3 2 6 14 ■ l l 15 ?£> 10 | 9 8 7

Figure 20. A Sample Initial Schedule

Runway #1 121 156 216 294 329 588 668 703
Runway #2 71 169 199 282 328 388 453 483 536 573 643 678

Figure 21. Initial Start Times of Each Aircraft Before Any Disruptions
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The set of affected aircraft; in other words, the potential set of aircraft to be rescheduled 

(shaded aircraft) is provided in Figure 22.

21 22 23

/
Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 19 15 20 10 9 8 7

Figure 22. Affected Aircraft to Reschedule

5.5.1 TWST Algorithm

TWST is a complete regeneration algorithm that reschedules all flights from scratch. The 

Total Weighted Start Time (TWST) Algorithm is developed to minimize TWST in a 

multi-objective optimization problem. The reason for proposing this algorithm is that one 

of the components of the total objective function is total weighted start time; therefore, it 

would be a considerable approach to propose an algorithm to handle TWST 

minimization. The procedure for TWST Algorithm is given below.

TWST Algorithm

Let J be a set of unscheduled aircraft.

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Check the disruptions information (cancellation, delay, unexpected flight).

Step 3. Update the input data (i.e., ready time, target time, etc.) according to the 

following disruption types:

For cancellation: remove the cancelled flight and its parameter from the input data

For delay: update the ready time, target time and deadline with respect to the 

delay time
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For new unexpected: insert new flight and its parameters to the input data

Step 4. For  V/ G {/ U A},  Calculate the ratio using W j/ ( j j  +  s kj )  where Wj,r j , skj  are 

the weight of flight j ,  ready time of flight j ,  and sequence-dependent separation time 

between preceding flight k  and flight j  respectively.

Step 5. According to the ratio that is calculated in Step 4, assign the aircraft with the 

largest ratio to a runway on which its operation can start earlier.

Step 6. Remove flight j  from set J.

Step 7. Update the makespan of the runway where the aircraft is assigned on.

Step 8. Go to Step 4 and continue until all aircrafts are scheduled.

Step 9. Calculate the normalized total weighted start time deviation, total weighted 

runway deviation and total weighted start time as an objective function.

After determining the set of aircraft to reschedule, the TWST Algorithm assigns the flight 

by the largest ratio of weight to ready time plus separation time. The w,/(r; + skj) ratio is 

computed for each unscheduled aircraft, and the aircraft with the largest value is assigned 

to a runway on which its operation can start earliest. The rationale of using this ratio is 

that the weighted shortest processing time first (WSPT) is a greedy rule that is applied for 

minimizing the total weighted completion time when there is a single machine scheduling 

problem in the literature (Pinedo, 2008). Considering the unequal ready time, sequence 

dependent separation time and multiple resource aspect of our problem, TWST greedy 

algorithm is proposed. Since the contribution of the total weighted start time to the total 

objective function value is comparably high, stating an algorithm which takes care of the 

solution quality is a reasonable methodology.

5.5.2 SA-Re Algorithm

SA-Re is a rescheduling algorithm that reschedules all flights from scratch. The main 

algorithm is similar to the SA metaheuristic which was successfully implemented earlier 

in Section 3.3. SA-Re is introduced for the problem to improve initially constructed
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solutions by the proposed TWST algorithm. Therefore, this method primarily aims to 

obtain solutions to minimize the total weighted start time as well. The procedure for SA- 

Re is given below.

SA-Re Algorithm

Stepl: Get the initial solution from TWST Algorithm, and update the objective function 

value.

Step 2: Set the initial temperature as a function of the current objective function value T 

= k.f(6) as in Section 3.3.

Step 3: Generate a new solution in the neighborhood of the initial solution by applying 

neighborhood search algorithms explained in Section 3.3.

Step 4: Compare objective function value of new candidate solution to the current value.

If the new value is better, accept it. If it is worse, then accept the new solution with a
&e

probability of acceptance (rand  [0,1] < e t , where Ad = / ( 0 ')  — / (# ) ) .

Step 5: Cool down/update the temperature (T = a.T).

Step 6: Go to Step 3 and continue until stopping criteria.

(c < tmax where iteration counter hits maximum number of iterations) is satisfied 

Step 7: Update the solution, and objective function value.

5.5.3 Do-Nothing Algorithm

Do-Nothing strategy is a type of response that is applied when flight cancellation 

disruption occurs. After taking out a flight from its position on a runway, no corrective 

action is taken for the remaining flights assigned on that runway. Therefore, Do-Nothing 

keeps the initial runway assignments, flights sequence on each runway and start times as 

they are. The rationale behind this response is to generate a stable schedule that does not 

deviate much from the initial schedule after a flight is canceled. The procedure for the 

Do-Nothing strategy is given as follows:
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Do-Nothing Algorithm

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Get the canceled flight j, V / 6 E.

Step 3. Take out the flight j  from the initial schedule (Remove j  from /).

Step 4. Recalculate the normalized total weighted start time and update total objective 

function value

Note that the removed flight is excluded from the calculation of the objective function 

value. To give an example of how Do-Nothing works, assume that an initial schedule is 

given in Figure 20, and flights #4 and #20 are cancelled. After the first three steps, the set 

of flights potential to apply Do-Nothing strategy is determined as {5,7,8,9,10,16,17,18}. 

Consequently, after the cancellation disruption, the final schedule and the final start times 

are given in Figure 23 and Figure 24 respectively.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 23. Updated Schedule After Do-Nothing Algorithm

Runway #1 121 156 216 329 588 668 703
Runway #2 71 169 199 282 328 388 453 536 573 643 678

Figure 24. Start Times After Do-Nothing Algorithm

5.5.4 Left-Shift Algorithm

Similar to Do-Nothing, Left-Shift strategy is applied when flight cancellation disruption 

occurs. It is a partial repair algorithm in which minor modifications are made to the 

particular runway after the disruptions. Left-Shift algorithm keeps the initial runway 

assignments, and the flights sequence on each runway. After taking out a flight from its
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position on a runway, the sequence of flight remains unchanged, all remaining flights 

assigned to that runway are shifted earlier (i.e., preponed), and the start times are 

updated. In general, it is expected that the value of the updated start times be smaller than 

the initial start times. However, due to the existence of sequence-dependent separation 

time constraint, this may not be the case all the time. The rationale behind this algorithm 

is to satisfy conformity to the initial schedule while minimizing the weighted start times 

after flights are canceled. The procedure for the Left-Shift strategy is given as follows:

Left-Shift Algorithm

Step 1. Get initial schedule (schedule before any disruption).

Step 2. Get the canceled flight j  (V; e E).

Step 3. Determine the position c and the runway i of the canceled flight j.

Step 3. Take out the flight j  from the initial schedule (Remove j  from /).

Step 4. For the flights that are scheduled on runway / after the canceled flight j.

Step 5. Update the position as the initial position -1.

Step 6. Update the start time according to the Equations (1) - (4).

Step 7. Repeat until E={).

Step 8. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

The earlier example can be used to illustrate the Left-Shift Algorithm. Suppose that the 

initial schedule is given in Figure 20, and flights #4 and #20 are cancelled. After the first 

three steps, the set of flights to apply Left-Shift algorithm is determined as 

{5,7,8,9,10,16,17,18}. The final schedule and the final start times are given in Figure 25 

and Figure 26 respectively. Due to the nature of sequence-dependent separation time, the 

start times of the flights #5, #10, #9,# 8,#7 decrease because of the left-shift; however, 

the values of the flights #18, #17, #16 are not affected.
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Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 25. Updated Schedule After Left-Shift Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 388 453 533 568 621 656

Figure 26. Start Times After Left-Shift Algorithm

5.5.5 RepairBySlack Algorithm

RepairBySlack is a partial repair algorithm that is applied to a runway in which a flight is 

delayed. If there is one delayed flight, the repair algorithm is considered only for the 

particular runway. If there are more than one delayed flights and they are scheduled on 

different runways in the initial schedule, the runway assignments will be same for the 

initial and final schedule after the disruption. The set of flights that are considered for 

repair consists of the delayed flights and the flights which are scheduled after the delayed 

flight (i.e., whose start times are greater than the delayed flight(s)) on the same mnway as 

the delayed flights. Regarding stability, the algorithm attempts to preserve the original 

sequences and the initial start times on each runway. At time t, the algorithm assigns the 

flight with the minimum start time slack value (t;- — t) first. In other words, the 

prioritization among the flights is set by getting closer to the flights’ initial start times. 

The procedure for RepairBySlack algorithm is given below.

RepairBySlack Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j  (Vy E D).

Step 3. Determine the position p  and the runway i of the delayed flight j .

Step 4 For the delayed flight j  and flights that are scheduled on runway i after the delayed 

flighty.
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Step 5. Set current time t as the start time of the delayed flight in the current schedule. 

Step 6. While the deadline constraint satisfies t<Dj .

Step 7. Calculate the (tj — t).

Step 8. Find j  =  {je J: min;- {(t; — t)} and assign aircraft j  to the runway i.

Step 9. Update the start time according to the Equations (1) - (4).

Step 10. Repeat until £>={}.

Step 11. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

In addition to the cancellation of flights # 4 and #20, flight # 19 is delayed in this 

example. Since the disruptions are treated sequentially, the current schedule that we 

should consider is not the initial schedule before any disruption; instead the schedule that 

provides the minimum objective function value among the candidate responses after the 

cancellation. Suppose that, at the first stage, Do-Nothing algorithm gives better 

normalized total objective function value than Left-Shift; therefore, the schedule after the 

execution of Do-Nothing is accepted as the current schedule which is shown in Figure 27 

and Figure 28. Once the set of aircraft to be scheduled are determined (shaded below), 

the current time is updated and the slack values are calculated. The schedule and 

corresponding start times obtained after the RepairBySlack Algorithm are provided in 

Figure 29 and Figure 30. It is clearly observed in this example that the algorithm 

generates considerably stable schedules for a given instance.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 27. Updated Schedule After Do-Nothing Algorithm (Current schedule)
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Runway #1 121 156 216 329 588 668 703
Runway #2 71 169 199 282 328 388 453 536 573 643 678

Figure 28. Updated Start Times After Do-Nothing Algorithm (Current schedule)

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 29. Updated Schedule After RepairBySlack Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 473 538 599 616 643 678

Figure 30. Start times After RepairBySlack Algorithm

5.5.6 RepairByEDD Algorithm

RepairByEDD is a partial repair algorithm, which works similar to RepairBySlack, 

except that the algorithm sorts the flights by deadline, and assigns the flight with the 

earliest deadline (dj) first. In other words, the prioritization among the flights is set by 

getting closer to the flights’ deadlines. Runway re-assignment is not permitted. Obtaining 

a feasible schedule after the disruptions is one of the targets of the rescheduling 

problems. Since the deadline constraint affects a schedule being feasible or not, the 

rationale behind this algorithm is obtaining a feasible schedule after disruptions. 

Regarding stability, the algorithm attempts to preserve the initial schedule and start times 

by repairing only the flights that can potentially be affected by the disruptions. The 

procedure for RepairByEDD Algorithm is given below.

RepairByEDD Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j  (V/ e  D).
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Step 3. Determine the position p  and the runway i of the delayed flight j .

Step 4 For the delayed flight j  and flights that are scheduled on runway i after the delayed 

flighty.

Step 5. While the deadline constraint satisfies t<Dj.

Step 6. Find j  = {je J: min; (d; ) and assign j  to the runway i .

Step 7. Update the start time according to the Equations (1) - (4).

Step 8. Repeat Step until D={}.

Step 9. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

Similar to the previous case, again suppose that, the schedule after Do-Nothing is 

accepted as the current schedule as shown in Figure 23 and Figure 24. Once the set of 

aircraft to be scheduled are determined (shaded below), they are rescheduled according to 

their earliest deadlines. The schedule and corresponding start times obtained after running 

RepairByEDD Algorithm are provided in Figure 31 and Figure 32.

Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 31. Updated Schedule After RepairByEDD Algorithm

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 440 473 566 603 643 678

Figure 32. Start Times After RepairByEDD Algorithm
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5.5.7 InsertDelayed Algorithm

InsertDelayed is a partial and right shift repair algorithm that is considered only for the 

particular runway to which the delayed flight is initially assigned. The algorithm tries all 

flight insertion alternatives for the delayed flight(s) on the same runway to find the best 

insertion with the minimum value of the normalized objective function. Therefore, the 

InsertDelayed emphasizes both efficiency and stability. After inserting the flight into a 

position on a runway, start times of all the remaining flights assigned to that runway are 

shifted if necessary. InsertDelayed attempts to keep the sequence of the aircraft on the 

corresponding runway unchanged as much as possible. If there are more than one delayed 

flights on the same runway, the insertion starts with the flight that is positioned earlier. 

The procedure for InsertDelayed algorithm is given below.

InsertDelayed Algorithm

Step 1. Get initial schedule (schedule after cancelation).

Step 2. Get the delayed flight j  (Vj E D).

Step 3. Determine the position p  and the runway i of the delayed flight j.

Step 4. Determine the position piast of the last flight scheduled on runway i.

Step 5. Increase the ready time, target time and deadline of the delayed flight j  by the 

amount of delay.

Step 6. For the delayed flight j  and flights that are scheduled on runway i after the 

delayed flight j.

Step 7. Construct an insertion set /  which consists ofp, p+1, p+2,..., piast- 

Step 8. Insert the delayed flight into place ae I.

Step 9. Update the start time according to the Equations (1) - (4).
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Step 10. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

Step 11. If the combined objective function value after the insertion into place a is better 

than the best objective function value so far.

Step 12. Update the best objective function value and the corresponding schedule.

Step 13. Repeat until insertion set /={}.

Step 14. Display the best combined objective function value and the schedule.

The earlier example can be used again to illustrate the InsertDelayed Algorithm. For a 

delayed flight #19, there exist 7 insertion alternatives; the existing position of the flight # 

19, between flight #15 and # 20, 20 and 10,10 and 9,9 and 8, 8 and 7, and after flight 7. 

1= {14-15,15-20,20-10,10-9,9-8,8-7,7-}

Compare the combined objective function value for i=0,l,..., 6 and select the best one in 

terms of the objective function value. Insertion examples are given in Figures 33, 34 and 

35.

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 m 15 20 10 9 8 7

Figure 33. Existing Position of Flight #19 (i=0)

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 20 ■ 10 9 8 7

Figure 34. Insert flight #19 between 20 and 10 (i=2)
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Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 20 10 9 8

Figure 35 Insert flight #19 after flight 7 (i=6)

5.5.8 RepairByTWST Algorithm

RepairByTWST is a partial repair algorithm, which works similar to the proposed 

complete regeneration approach, TWST algorithm, and the partial repair algorithms 

presented earlier to treat new unexpected flights. The RepairByTWST resembles 

RepairBySlack and RepairByEDD algorithms in a sense that it repairs schedules of the 

affected flights so it does not reschedule from scratch; and it resembles TWST algorithm 

in a sense that the set of flights to repair are assigned to the runways by the largest 

wj/(rj + skj) ratio. The set of flights that are affected and considered for repair consists of 

the new unexpected flights and the flights whose start times are greater than the minimum 

ready times values of the new flights. The approach aims at preserving the initial 

schedule as much as possible while the total weighted start times are at minimum. Hence, 

the algorithm focuses on both stability and efficiency simultaneously. The procedure for 

RepairByTWST Algorithm is given below.

RepairByTWST Algorithm

Step 1. Get initial schedule (schedule after delay).

Step 2. Get the new unexpected flight j  (V/ E  A).

Step 3. For the new flight j  and the flights whose start times are greater than the minimum 

ready times values of the new flights.

W  i

Step 4. Calculate the ratio using

Step 5. According to the ratio that is calculated in Step 4, assign the aircraft with the 

largest ratio to a runway on which its operation can start earlier.

Step 6. Remove flight j  from set J.
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Step 7. Update the makespan of the runway where the aircraft is assigned on.

Step 8. Repeat until all aircrafts are scheduled.

Step 9. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

In the previous example, suppose that there are three new unexpected flights, flights #21, 

#22 and #23. As the disruptions are treated sequentially, the current schedule that we 

should consider is not the initial schedule before any disruption; instead the schedule that 

provides the minimum objective function value among the candidate responses after the 

delay. Assume that, RepairBySlack strategy gives the best normalized total objective 

function value; therefore, the schedule after running RepairBySlack is accepted as the 

current schedule as shown in Figures 36 and 37.

Once the set of aircraft to be rescheduled are determined (shaded below), they are 

rescheduled according to the largest ■ ratio. The schedule and corresponding start

times obtained after the RepairByTWST Algorithm is executed are provided in Figures 

38 and 39.

21 22 23

/
Runway #1 13 12 1 5 18 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 36. Updated Schedule After RepairBySlack Algorithm (Current schedule)

Runway #1 121 156 216 276 588 668 703
Runway #2 71 169 199 282 328 473 538 599 616 643 678

Figure 37. Start Times After RepairBySlack Algorithm (Current schedule)
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Runway #1 13 12 1 5 18 21 17 22 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7 23

Figure 38. Updated Schedule After RepairByTWST Algorithm

Runway #1 121 156 216 329 588 623 668 703 763
Runway #2 71 169 199 282 328 473 538 599 616 643 678 748

Figure 39. Start Times After RepairByTWST Algorithm

5.5.9 InsertNew Algorithm

InsertNew is a partial and right shift repair algorithm similar to the InsertDelayed 

algorithm. The algorithm tries flight insertion alternatives of the unexpected flights to 

find the best insertion with the minimum value of the normalized objective function. The 

set of flights that are affected and considered for repair consists of the new unexpected 

flights and the flights whose start times are greater than the minimum ready times values 

of the unexpected flights. The InsertNew emphasizes both efficiency and stability 

objectives. After inserting a flight into a position on a runway, start times of all remaining 

flights assigned to that runway are updated. If there are more than one new unexpected 

flight, the insertion starts with the flight whose deadline is the earliest. The procedure for 

InsertNew algorithm is given below.

InsertNew Algorithm

Step 1. Get initial schedule (schedule after delay).

Step 2. Get the new unexpected flight j (V/ 6 A).

Step 3. For the new flight j and the flights whose start times are greater than the minimum 

ready times values of the new flights.

Step 4. Denote the earliest position of the flight whose start times are greater than the 

minimum ready times values of the new flights on runway i as x, (Vi € M).
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Step 5. Denote the last position of an aircraft on runway i as /,.

Step 6. Construct an insertion set/w hich consists of x it X i+ 1 ,  X t+2 ,

Step 7. Insert the delayed flight into place ae I.

Step 8. Update the start time according to the Equations (1) - (4).

Step 9. Calculate the combined objective function value (total weighted start time 

deviation, total weighted runway deviation and total weighted start time).

Step 10. If the combined objective function value after the insertion into place a is better 

than the best objective function value so far.

Step 11. Update the best objective function value and the corresponding schedule.

Step 12. Repeat until insertion set /-{}.

Step 13. Display the best combined objective function value and the schedule.

Suppose that in addition to cancelled and delayed flights, there are 3 new unexpected 

flights, flights #21, #22 and #23. Once again, suppose that the schedule after the 

RepairBySlack is accepted as the current schedule which is shown in Figures 36 and 37. 

The earlier example can be used again to illustrate the InsertNew Algorithm. For the new 

flight #21 for instance, there exist 6 insertion alternatives; between flight #18 and #17, 

17 and 16, 9 and 8, 8 and 7, after flight 16, and after flight 7.

I={18-17, 17-16,16-, 9-8, 8-7, 7-}

Compare the combined objective function value for i=0,l,..., 7 and select the one with 

the best objective function value. Insertion examples are given in Figure 40- Figure 45.

Runway #1 13 12 1 4 5 18 21 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 40. Insert Flight #21 between Flights 18 and 17
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Runway #1 13 12 1 4 5 18 17 21 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 41. Insert Flight #21 between Flights 17 and 16

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 10 9 8 7 21 19

Figure 42. Insert Flight #21 between Flights 7 and 19

Runway #1 13 12 1 4 5 18 21 22 17 16
Runway #2 11 3 2 6 14 19 15 10 9 8 7

Figure 43. Insert Flight #22 between Flights 21 and 17

Runway #1 13 12 1 4 5 18 17 21 22 16
Runway #2 11 3 2 6 14 15 19 10 9 8 7

Figure 44. Insert Flight #22 between Flights 21 and 16

Runway #1 13 12 1 4 5 18 17 16
Runway #2 11 3 2 6 14 15 10 9 22 8 7 21 19

Figure 45. Insert Flight #22 between Flights 9 and 8

In this chapter, the Aircraft Reactive Scheduling Problem (ARSP) is addressed. An 

airline is faced with the potential deviations in the planned flight schedule because of the 

unexpected events. In this chapter, several solution methodologies and heuristic 

procedures are proposed in order to update the existing aircraft schedule dynamically. 

Repair and complete regeneration algorithms are developed for each type of disruptive 

events, specifically, flight cancellations, aircraft delays and the arrival of new aircraft.
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Do-Nothing and Left-Shift are the repair strategies for the flight cancellations, 

RepairBySlack, RepairByEDD, InsertDelayed algorithms are proposed to repair the 

schedule for flight delays, and RepairByTWST and InsertNew are the repair algorithms 

for the arrival of new aircraft. Two complete regeneration algorithms, TWST Algorithm 

and SA-Re Algorithm are proposed to generate schedules from scratch to treat flight 

cancellations, delays and unexpected arrivals simultaneously. The performance (solution 

quality, schedule stability and computational time) of the various algorithms is compared 

to the optimal solutions and to each other in Chapter 6.
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CHAPTER 6

COMPUTATIONAL STUDY FOR AIRCRAFT REACTIVE SCHEDULING

ALGORITHMS

The computational study for the aircraft reactive scheduling algorithms presented here 

aims to determine the performance of the proposed solution approaches for a wide range 

of problem sizes. Solutions are compared to the optimal solutions obtained by mixed- 

integer linear programming model discussed earlier. The solution quality and stability of 

the reactive scheduling algorithms are evaluated for problems with a number of aircraft 

n = 15,20,25 and number of runways m  = 2,3,4,5. For each combination of n  and m,

5 instances were generated totaling 55 problem instances.

6.1 Data Generation

Similar to Section 4.1, each aircraft is characterized by its operation type (i.e, arrival or 

departure), weight-class (i.e, heavy, medium or light), priority (aircraft tardiness penalty), 

ready time, target time, deadline, and separation times. In addition to these, a feasible 

initial aircraft schedule before any disruption, set of delayed, unexpected new flights and 

cancelled flights, and their corresponding parameter values are generated as follows:

1. Aircraft operation types were randomly generated as 0 or 1 to represent an arrival and 

departure respectively.

2. Aircraft weight classes were randomly generated as 1, 2, 3 to represent heavy, medium 

or light aircraft respectively.

3. The aircraft tardiness penalty (priority) Wj varies between 1 and 6 and was introduced 

as a function of the aircraft weight class and its operation type, where the least weight of 

1 was assigned to small departures and the greatest weight o f 6 was given to heavy 

arrivals.
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4. The ready-times 7} were randomly generated using a discrete uniform distribution over 

the interval (0 ,7  ~)j where y  is a parameter that was randomly selected between 30 and 

90.

5. Every aircraft was prescribed a time-window of 600 seconds. Therefore, deadlines dj 

were calculated by 7} + 600.

6. Target times <5) were calculated by 7}- + 60.

7. As presented in Sherali et al. (2010) and shown in Table 1, the minimum separation 

times skj are given and range between 30 and 200 seconds depending on aircraft type 

(small, large or heavy), and the type of operation (landing vs. departure) that the actual 

values are enforced by aviation authorities.

8. The aircraft penalty cost of deviation from the initial start time a;-, Vj 6 / -  (D U £ ) 

were randomly generated between 1 and 5.

9. The aircraft penalty cost of deviation from the initial runway assignment fy, V/ e  J — 

(D U E) were randomly generated between 5 and 10.

10. The number of cancelled flights is randomly generated between 5% and 10 % of the 

number of aircraft, and the specific cancelled flights is/are randomly generated.

11. The number of delayed flights is randomly generated between 11% and 40% of the 

number of aircraft, and the specific delayed aircraft is/are randomly generated.

12. The amount of delay is randomly generated as the 50% of the difference between 

maximum and minimum ready time values o f the delayed flight(s).

13. The number of new unexpected flights is randomly generated between 5% and 15% 

of the number of aircraft, and the specific new unexpected aircraft is/are randomly 

generated.
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6.2 Effectiveness of the Algorithms

The proposed algorithms were implemented in C and run on an Intel Core 2 Duo 2.10 

GHz CPU with 4.00 GB of RAM laptop. The optimal solutions are obtained by MILP 

formulations which were coded in AMPL and solved using CPLEX 12.4 on Intel Core i7- 

2600 CPU with 3.40 GHz and 8 GB RAM desktop.

The performances of the reactive scheduling algorithms are measured by computing the 

error between the normalized combined objective function value of the algorithm and the 

normalized optimal solution value. The error is calculated via Equation (36) for each test 

problem.

Error = fALG -  f optim al (36)

where fALG is the normalized combined objective function value of the proposed repair 

and rescheduling algorithms and / optim al  *s the normalized combined objective function 

value of the optimal solution for a test problem. Optimal solutions were obtained using 

the MILP formulation presented in Section 5.4.

Unlike most of literature that concentrates on one type of disruption at a time, in this 

dissertation, various types of disruptions with multiple disruptive events are considered 

concurrently. Therefore, as stated in Section 5.5, the sequential evaluation methodology 

is developed to consider the disruptions, and revise the schedules periodically. In a 

period, first, the response strategies executed for flight cancellation are evaluated in terms 

of normalized combined objective function value. Once the best strategy for each 

objective weight coefficient level is determined, the current schedule is updated 

accordingly. Then, response strategies for flight delay are compared, and the algorithm 

that provides the best objective function value for each objective weight coefficient 

combination is decided. Finally, the response strategies proposed to repair or reschedule 

the aircraft sequence after a disruption called new unexpected flight are evaluated.
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6.2.1 Effectiveness of the Repair Algorithms for Flight Cancellation

Fifty five different unique problem instances with the initial schedule before any 

disruptions of cancellation, delay or new flights were generated. These instances are 

solved with 13 different scenarios of objective weight coefficient levels. Reactive 

scheduling strategies to repair flight cancelations are evaluated under different objective 

weight coefficient levels (7T1( n 2, n 3). Recall that n1 is the coefficient weight factor for 

the total weighted start time deviation (TW.SD), n2 is the coefficient weight factor for the 

total weighted runway deviation (TWRD), and n3 is the coefficient weight factor for the 

total weighted start time (TWS). n x and n 2 reflect the importance of schedule stability, 

while 7T3relects its quality. Average errors for the reactive scheduling strategies and 

average CPU times are obtained by averaging the values for the instances of each 

aircraft-runway combination. The performance values of the Do-Nothing and Left-Shift 

repair strategies are compared. A sample experiment result is provided for the Do- 

Nothing algorithm for flight cancelation with n x = 0.75, n 2 = 0 ,n3 =  0.25 in Table 18 

in order to simplify the comparison results in Table 19.

Instance
Optimal D o-Nothing

TW SD TW RD TWS ^optimal TW SD TW RD TWS ^Do-Nothing

1 0 13 11430 0.016 0 0 11430 0.016 0.000

2 375 107 23799 0.158 0 0 25046 0.165 0.007

3 794 121 47564 0.237 0 0 54169 0.314 0.076

4 192 104 94083 0.251 0 0 94604 0.250 0.000

5 178 81 11037 0.022 0 0 11430 0.032 0.010

Average 0.0187

Table 18. A sample experiment result for Do-Nothing algorithm

Table 18 illustrates how the average error is calculated for a given instance. For the given 

five instances, the total weighted start time deviation, total weighted runway deviation, 

total weighted start time values and the normalized combined objective function value of 

the Do-Nothing strategy is compared to the values o f the normalize objective function 

value of the optimal solution.
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Average error of the normalized objective function of each response strategy for 55 

unique problem instances are evaluated for 13 different combinations of (n x,n 2, nr3) in 

Table 19.

0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

*3 1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

Do-Nothing 0.745 0.512 0.334 0.167 0.000 0.400 0.000 0.068 0.124 0.000 0.020 0.000 0.000

Left-Shift 0.630 0.426 0.277 0.139 0.000 0.335 0.021 0.058 0.109 0.042 0.055 0.063 0.085

Table 19. Average error of the algorithms for flight cancellations

According to Table 19, for a specific weight coefficient value, the cases where an 

algorithm provides the smallest average error are highlighted. For instance, when 

(n1 = 0, n 2 = 0 ,7T3 =  1), Left-Shift algorithm has better mean performance than Do- 

Nothing algorithm. On the other hand, when the solution quality of the schedule is more 

important than the conformity to the original schedule, Do-Nothing algorithm provides 

higher average error than Left-Shift algorithm. When the weight coefficient value of all 

objective function components are equally important for a decision maker, {n1 =

0.33,7T2 = 0.33,7t3 = 0.33), applying the Left-Shift algorithm provides lower average 

error. Left-Shift algorithm is still preferable for the cases where both weight coefficient 

value of total weighted start time and weight coefficient value of either total weighted 

start time deviation or total weighted runway deviation are equal ( ( tc1 = 0.5, n 2 =

0, 7t3 = 0.5), (n1 = 0, n 2 — 0.5, tc3 — 0.5)). Even though it is observed that the number 

of cases that the Left-Shift algorithm provides better objective function value for different 

weight coefficient value, Do-Nothing algorithm could find solutions that reach the 

optimal solutions.

According to the Figure 46, of Anderson-Darling normality test, the average error data is 

normally distributed.
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Figure 46. Normality test for average error

The performances of the response strategies are analyzed statistically by t-test using the 

statistical software program, Minitab 15.1. The statistical analysis is conducted under two 

circumstances; schedule stability and solution quality. Therefore, the analysis are focused 

on the weight coefficient values nx,n 2, n 3 where schedule stability is represented by 

n x, n 2 and solution quality by n 3. The runway deviation is not considered in the response 

strategies for flight cancellations; so n 2 is not the leading element in this analysis.

i) Note the different combinations of weight coefficients which satisfy tcx>  n 3 . 

There are 5 combinations where n x>  n 3 which are ( n x =  0 .25 ,7r2 =

0.75, n 3 =  0), (nx = O.S,n2 =  0.5, n3 =  0), (n x =  0.75,7r2 =  0, n 3 =

0.25), ( n x = 0.75, tt2 =  0.25, n 3 =  0), ( n x =  1 , t c 2 = 0, n 3 =  0 ). For each of 

the 55 problem instances, these 5 combinations are considered totaling 275 

observations.

To test whether there is a significant test between the both strategies, the following 

hypothesis is tested using t-test:

HQ.iix - l x 2 <  0
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Where fa  is the mean error of Do-Nothing algorithm, fa  is the mean error of Left-Shift 

algorithm when the stability is more important.

Table 20 shows that the average error of Do-Nothing strategy is statistically significantly 

less (p-value=0.000<a = 0.05) from the average error of the Left-Shift algorithm when 

stability is of more concerned. Since 7'a n_1 «  1.65 and Tstatistics = —36.51, do not 

reject the Null hypothesis, H0and conclude that the Do-Nothing is better to apply when 

schedule minimizing start time deviation from the initial schedule is more important than 

the minimizing start time.

Paired T-Test and Cl: Do-Nothing -stability, Left-Shift -stability

P a i r e d  T f o r  D o - N o t h i n g - s t a b i l i t y  -  L e f t - S h i f t - s t a b i l i t y

N Mean S t D e v  SE Mean
D o - N o t h i n g - s t a b i l i t y  2 7 5  0 . 0 0 4 1 0  0 . 0 0 8 2 1  0 . 0 0 0 4 9
L e f t - S h i f t - s t a b i l i t y  2 7 5  0 . 0 5 3 4 1  0 . 0 2 1 2 3  0 . 0 0 1 2 8
D i f f e r e n c e  2 7 5  - 0 . 0 4 9 3 1  0 . 0 2 2 4 0  0 . 0 0 1 3 5

95% C l  f o r  me an d i f f e r e n c e :  ( - 0 . 0 5 1 9 7 ,  - 0 . 0 4 6 6 5 )
T - T e s t  o f  me an d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 3 6 . 5 1  P - V a l u e  = 0 . 0 0 0

Table 20. Paired T-Test and Cl: Do-Nothing-stability Left-Shift -stability

ii) There are 8 combinations where n x < n 3 which are (n1 =  0, n 2 =  0, n 3 =

~ 0 ,7r2 = 0.25, 7t3 = 0.75), {fa =  0,7r2 =  0.5, n 3 = 0.5), (n1 =

0, n2 — 0.75,7T3 = 0.25), (n1 — 0 ,n2 — l , n 3 =  0), (n1 = 0.25,7r2 =

0, n3 =  0.75), (%  = 0.33, 7t2 = 0.33, n 3 = 0.33), (% =  0.5,7r2 = 0, n 3 = 

0.5) and for each of the 55 problem instances these 8 combinations are 

considered totaling 440 observations.

To test whether there is a significant test between the both strategies, the following 

hypothesis is tested using t-test:

i  <  0

Hx: f a ~ f a  > 0
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Where ^ xis the mean error of Do-Nothing algorithm, n2 is the mean error of Left-Shift 

algorithm when the stability is more important.

Table 21 shows that the average error of Left-Shift strategy is statistically significantly 

less (p-value=0.000<a = 0.05) from the average error of the Do-Nothing algorithm when 

solution quality is of more concerned. Since «  1.65 and Tstatistics 26.02, reject the

Null hypothesis, H0 and conclude that the Left-Shift is better to apply when schedule 

minimizing start time is more important than the minimizing start time deviation.

Paired T-Testand Cl: Do-Nothing-quality, Left-Shift-quality

P a i r e d  T f o r  D o - N o t h i n g - q u a l i t y  -  L e f t - S h i f t - q u a l i t y

N Mean S t D e v  SE Mean  
D o - N o t h i n g - q u a l i t y  4 4 0  0 . 2 9 3 8  0 . 2 3 6 3  0 . 0 1 1 3
L e f t - S h i f t - q u a l i t y  4 4 0  0 . 2 4 6 8  0 . 1 9 8 7  0 . 0 0 9 5
D i f f e r e n c e  4 4 0  0 . 0 4 6 9 2  0 . 0 3 7 8 2  0 . 0 0 1 8 0

95% C l  f o r  me an  d i f f e r e n c e :  ( 0 . 0 4 3 3 7 ,  0 . 0 5 0 4 6 )
T - T e s t  o f  me an d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 2 6 . 0 2  P - V a l u e  = 0 . 0 0 0

Table 21. Paired T-Test and Cl: Do-Nothing-quality Left-Shift -quality

According to the deviation from the optimal normalized objective function information, 

the statistical analysis for the performance of the repair algorithms for flight cancellation 

is summarized in Figure 47.

Fligh t C an ce lla tio n

Schedule S tability  is m ore im portan t Solution Q uality is m ore  im p ortan t

HSJti

W hich Has B e tte r  M ean Error Perform ance ? W hich Has B e tte r  M ean Error P erfo rm ance ?

Do-Nothing le ft-S h ift D o-N othing Left-Shift
Do-Nothing vs Left-Shift ✓ D o-Nothing vs Left-Shift /

Figure 47. Summary of the statistical tests for flight cancellation
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Table 22 provides the average CPU times of the Do-Nothing and Left Shift algorithms 

for 55 different unique problem instances for flight cancellations. The CPU times of the 

Do-Nothing and Left-Shift are indifferent and less than 0.001 second. The average CPU 

time does not change significantly with the change in n l tn 2, and 7T3 .

JT i 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

”3 1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

Do-Nothing 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Left-Shift 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 22. Average CPU time of the algorithms for flight cancelations

6.2.2 Effectiveness of the Repair Algorithms for Flight Delay

Due to the sequential evaluation methodology developed to treat disruptions, once the 

performance analysis of the repair algorithms for flight cancellations are conducted and 

the revised schedule is updated as the current schedule, the performance of the repair 

algorithms for flight delays are evaluated next. The proposed algorithms are tested under 

various flight delays and objective weight coefficient levels. Average errors for the 

reactive scheduling strategies and average CPU times are obtained by averaging the 

values for 55 instances for each aircraft-runway combination. The performance values of 

the RepairBySlack, RepairByEDD, InsertDelayed repair strategies are compared.

6.2.2.1 Effectiveness of the Repair Algorithms for Flight Delays after Left-Shift is 

Applied for Flight Cancellation

Table 23 provides the average error values of the response strategies for different unique 

problem instances for flight delays given that Left-Shift algorithm is applied to update the 

schedule after being disrupted by flight cancellation.

According to Table 23, for a specific weight coefficient value, the cases where an 

algorithm provides the smallest average error are highlighted. For instance, when 

(n1 = 0, 7t2 =  0 ,7T3 = 1), RepairByEDD algorithm has better average error performance 

than RepairBySlack and InsertDelayed algorithms.



132

7Ti 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

^ 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

TTs 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByEDD 0.654 0.441 0.277 0.144 0.000 0.537 0.056 0.173 0.299 0.112 0.192 0.168 0.224

RepairBySlack 0.878 0.608 0.389 0.199 0.000 0.688 0.040 0.226 0.379 0.080 0.200 0.121 0.161

InsertDelayed 0.745 0.509 0.322 0.166 0.000 0.591 0.042 0.184 0.317 0.084 0.172 0.126 0.168

Table 23. Average error of the algorithms for flight delays if the Left-Shift algorithm is 

applied for flight cancellations

When optimizing the solution quality is the primary objective of interest rather than 

minimizing the instability (n1 = 0, n 2 = 0, n 3 = 1), it is more reasonable to apply 

RepairByEDD algorithm that generates smaller average error. On the other hand, when 

the stability of the schedule is more important, RepairBySlack algorithm provides 

smallest average error. Out of thirteen weight coefficient scenarios, InsertDelayed 

algorithm outperformed RepairByEDD and RepairBySlack algorithms once in terms of 

average error, when the coefficient value of the total weighted start time is three times 

more important than the coefficient value of the total weighted start time (7̂  =

0.75,7T2 =  0 ,7T3 = 0.25). The average error performance of RepairByEDD, 

RepairBySlack, InsertDelayed algorithms are same when (7̂  =  0,7r2 = 1, n 3 =  0). 

When all the objective function components are equally important for a decision maker, 

applying RepairByEDD algorithm provides the best average error value.

To further analyze the performances of the repair algorithms, they are analyzed 

statistically by t-test, again under two circumstances; schedule stability and solution 

quality. Similar to the repair algorithms for the flight cancellations, the runway deviation 

is not allowed in the design of response strategies for flight delays; therefore, 7̂  and n 3 

are the foremost factors in this analysis.

When the Schedule Stability is More Important

i) The different combinations of weight coefficients which satisfy n x> n 3 are 

considered.
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Table 24 shows that there is a statistical difference (p-value=0.000<a =  0.05) between 

the population mean values of performance in terms of average error for the algorithms. 

RepairBySlack has better mean performance than RepairByEDD when the stability is the 

more important, and when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairEDD-sta, left shift-RepairBySI-st

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r E D D - s t a b i l i t y  -  l e f t  s h i f t - R e p a i r B y S l -
s t a b i l i t y

N Mean StD ev SE Mean
l e f t  s h i f t - R e p a i r E D D - s t a  2 75  0 . 1 5 0 6 3 0 . 0 5 9 9 1 0 . 0 0 3 6 1
l e f t  s h i f t - R e p a i r B y S l - s t  2 75  0 . 1 2 0 3 3 0 . 0 5 6 6 5 0 . 0 0 3 4 2
D i f f e r e n c e  2 75  0 . 0 3 0 3 0 0 . 0 2 4 9 7 0 . 0 0 1 5 1

95% Cl f o r  mean d i f f e r e n c e :  ( 0 . 0 2 7 3 3 ,  0. 03326 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 2 0 . 1 2  P - V a l u e  =
0 . 0 0 0

Table 24. Paired T-Test on average error of the RepairByEDD and RepairBySlack if the 

Left-Shift is applied for cancellation-Schedule Stability

Table 25 shows that there is also a statistical difference (p-value=0.000<a =  0.05) 

between the population mean values of performance in terms of average error for the 

algorithms, and RepairByEDD has worse performance than InsertDelayed when the 

stability is more important, when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairEDD-sta, left shift-lnsertDel-sta

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r E D D - s t a b i l i t y  -  l e f t s h i f t - I n s e r t D e l -
s t a b i l i t y

N Mean S t D ev SE Mean
l e f t  s h i f t - R e p a i r E D D - s t a  275  0 . 1 5 0 6 3 0 . 0 5 9 9 1 0 . 0 0 3 6 1
l e f t  s h i f t - I n s e r t D e l - s t a  275  0 . 1 1 8 6 0 0 . 0 5 0 0 2 0 . 0 0 3 0 2
D i f f e r e n c e  275  0 . 0 3 2 0 2 7 0 . 0 1 5 4 1 7 0. 0 0 0 9 3 0

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 0 3 0 1 9 7 ,  0 . 0 3 3 8 5 8 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e = 3 4 . 4 5  P - V a l u e  =
0 . 0 0 0

Table 25. Paired T-Test on average error of the RepairByEDD and InsertDelay if the 

Left-Shift is applied for cancellation-Schedule Stability
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Table 26 shows that there is a statistical difference (p-value=0.029<a = 0.05) between 

the population mean values of performance in terms of average error for the algorithms, 

and InsertDelayed has better performance than RepairBySlack when the stability is the 

more important, when the Left-Shift is applied for cancellation.

Paired T-Test and Cl: left shift-RepairBySI-st, left shift-lnsertDel-sta

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r B y S l - s t a b i l i t y  -  l e f t s h i f t - I n s e r t D e l -
s t a b i l i t y

N Mean S t D e v SE Mean
l e f t  s h i f t - R e p a i r B y S l - s t  275 0 . 1 2 0 3 3 0 . 0 5 6 6 5 0 . 0 0 3 4 2
l e f t  s h i f t - I n s e r t D e l - s t a  275 0 . 1 1 8 6 0 0 . 0 5 0 0 2 0 . 0 0 3 0 2
D i f f e r e n c e  275 0 . 0 0 1 7 3 2 0 . 0 1 3 0 5 8 0 . 0 0 0 7 8 7

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 0 0 0 1 8 2 ,  0 . 0 0 3 2 8 2 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e = 2 . 2 0  P - V a l u e  =
0 . 0 2 9

Table 26. Paired T-Test on average error of the RepairBySlack and InsertDelay if the 

Left-Shift is applied for cancellation-Schedule Stability

When the Solution Quality is more important

ii) Considering the different combinations of weight coefficients which satisfy 

Tti <  n 3.

Table 27 shows that there is a statistical difference (p-value=0.000<a =  0.05) between 

the population mean values of performance in terms of average error for the algorithms. 

RepairByEDD has better mean performance than RepairBySlack, unlike the Table 24, 

when the quality is more important, when the Left-Shift is applied for cancellation.

Table 28 shows that it is statistically significant that (p-value=0.000<a = 0.05), 

RepairByEDD has better average error performance than InsertDelayed when the 

stability is the more important, when the Left-Shift is applied for cancellation.
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Paired T-Test and Cl: left shift-RepairEDD-qua, left shift-RepairBySI-qu

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r E D D - q u a l i t y  -  l e f t  s h i f t - R e p a i r B y S l -  
q u a l i t y

N Mean S t D e v  SE Mean
l e f t  s h i f t - R e p a i r E D D - q u a  440 0 . 3 1 6 1  0 . 2 0 5 2  0 . 0 0 9 8
l e f t  s h i f t - R e p a i r B y S 1 -q u  440 0 . 4 2 2 0  0 . 2 7 2 3  0 . 0 1 3 0
D i f f e r e n c e  440 - 0 . 1 0 5 9 1  0 . 0 6 8 4 9  0 . 0 0 3 2 6

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 1 1 2 3 3 ,  - 0 . 0 9 9 4 9 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 3 2 . 4 4  P - V a l u e  = 
0 . 0 0 0

Table 27. Paired T-Test on average error of the RepairByEDD and RepairBySlack if  the 

Left-Shift is applied for cancellation-Solution Quality

Paired T-Test and Cl: left shift-RepairEDD-qua, left shift-lnsertDel-qua

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r E D D - q u a l i t y  -  l e f t  s h i f t - I n s e r t D e l -  
q u a l i t y

N Mean S t D e v  SE Mean
l e f t  s h i f t - R e p a i r E D D - q u a  440 0 . 3 1 6 1  0 . 2 0 5 2  0 . 0 0 9 8
l e f t  s h i f t - I n s e r t D e l - q u a  440 0 . 3 5 5 2  0 . 2 3 2 5  0 . 0 1 1 1
D i f f e r e n c e  440 - 0 . 0 3 9 0 6  0 . 0 2 9 2 8  0 . 0 0 1 4 0

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 0 4 1 8 0 ,  - 0 . 0 3 6 3 1 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 2 7 . 9 8  P - V a l u e  = 
0 . 0 0 0

Table 28. Paired T-Test on average error of the RepairByEDD and InsertDelay if the 

Left-Shift is applied for cancellation-Solution Quality

Finally, Table 29 shows that, when the Left-Shift is applied for cancellation, there is a 

statistical difference (p-value=0.029<a =  0.05) between the population mean values of 

performance in terms of average error for the algorithms, and InsertDelayed has better 

performance than RepairBySlack similar to the analysis in Table 26.

According to the deviation from the optimal information, the statistical analysis for the 

performance of the repair algorithms for flight delays given that Left-Shift Algorithm is 

applied for flight cancellation is summarized through Figure 48.
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Paired T-Test and Cl: left shift-RepairBySI-qu, left shift-lnsertDel-qua

P a i r e d  T f o r  l e f t  s h i f t - R e p a i r B y S l - q u a l i t y  -  l e f t s h i f t - I n s e r t D e l -
q u a l i t y

N Mean S tD ev SE Mean
l e f t  s h i f t - R e p a i r B y S l - q u  440 0 . 4 2 2 0 0 . 2 7 2 3 0 . 0 1 3 0
l e f t  s h i f t - I n s e r t D e l - q u a  440 0 . 3 5 5 2 0 . 2 3 2 5 0 . 0 1 1 1
D i f f e r e n c e  440 0 . 0 6 6 8 5 0 . 0 4 0 0 9 0 . 0 0 1 9 1

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 0 6 3 1 0 ,  0 . 0 7 0 6 1 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 3 4 . 9 8  P - V a l u e  =
0 . 0 0 0

Table 29. Paired T-Test on average error of the RepairBySlack and InsertDelay if the 

Left-Shift is applied for cancellation-Solution Quality

F lig h t D e la y
G iv e n  t h a t  L e ft-S h if t i s  a p p l ie d  in  F l ig h t C a n c e l la t io n

S c h e d u le  S ta b ili ty  is  m o re  im p o r ta n t S o lu tio n  Q u a lity  i s  m o re  im p o r ta n t

K \ > n  j

fc; 
:

V
I

W hich  H as B e t te r  M ean  E rro r P e rfo rm a n c e  ? W h ic h  Has B e t te r  M e a n  E rro r P e r fo rm a n c e  ?
RepairByEDD R epairB ySlack In se r tD e la y e d R epairByED D R epairB yS lack In s e r tD e la y e d

RepairByED D  v s  R epairB yS lack / RepairB yED D  v s R epairB yS lack /
RepairByED D  v s  In se r tD e la y e d ✓ R ep a ir8 y E D D v s I n s e r tD e la y e d /
R epairB yS lack  v s  In se r tD e la y e d / R epairB yS lack  v s  I n s e r tD e la y e d /

Figure 48. Summary of the statistical tests for flight delay -  Part 1

Depending on the initially selected strategy in the flight cancellation and the decision 

maker’s interest on solution quality and stability, the performance of the repair 

algorithms was evaluated. Given that Left-Shift algorithm is preferred to repair flight 

cancellation disruptions, when the solution quality is more important, RepairByEDD 

algorithm outperforms the RepairBySlack and InsertDelayed. Conversely, InsertDelayed 

can be preferred when the schedule stability has a higher importance.
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6.22.2 Effectiveness of the Repair Algorithms for Flight Delays Given that Do-Nothing 

is Applied for Flight Cancellation

Table 30 provides the average error of the response strategies for 55 different unique 

problem instances for flight delays; given that Do-Nothing algorithm is applied to update 

the schedule after being disrupted by flight cancellation.

nx 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

™3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByEDD 0.693 0.520 0.347 0.173 0.000 0.577 0.057 0.307 0.460 0.114 0.344 0.170 0.227

RepairBySlack 0.917 0.687 0.458 0.229 0.000 0.703 0.015 0.326 0.489 0.031 0.275 0.046 0.061

InsertDelayed 0.784 0.588 0.392 0.196 0.000 0.609 0.021 0.290 0.435 0.043 0.260 0.064 0.086

Table 30. Average error of the algorithms for flight delays if the Do-Nothing algorithm is 

applied for flight cancellations

According to Table 30, for a specific weight coefficient value, the cases where an 

algorithm provides smaller average error are highlighted. When the solution quality is 

more important than the stability (% = 0, n 2 =  0, n 3 = 1), RepairByEDD algorithm is 

the best strategy to apply. Conversely, when the stability of the schedule is more 

important than the solution quality, RepairBySlack algorithm provides the lowest average 

error. When the weight coefficient values of all three objective function components are 

equal (nt =  0.33, tc2 — 0.33, tt3 = 0.33); InsertDelayed algorithm performs better than 

RepairByEDD and RepairBySlack in terms of the average error unlike the performance 

when the Left-Shift algorithm is applied for flight cancellations. When Table 30 and 

Table 23 are compared, the average error values indicate that the best strategy in each 

coefficient weight combination is consistent except for two scenarios ((tix = 0.33,7r2 = 

0.33, n3 =  0.33), (n1 = 0.5, 7t2 = 0 ,n 3 — 0.5)). For instance, when the weight 

coefficient value of the total weighted start time is equal to or greater than the total 

weighted start time deviation, the RepairByEDD is the best strategy for flight delays 

when both Left-Shift algorithm and Do-Nothing algorithm are applied for flight 

cancellations. Another inference is that, for these cases, the average error values of the 

RepairByEDD are smaller if the Left-Shift algorithm is applied for flight cancellations.
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Similarly, when the weight coefficient value of the total weighted start time is smaller 

than the total weighted start time deviation, RepairBySlack is the best strategy among the 

provided repair algorithms for flight delays in both Left-Shift algorithm and Do-Nothing 

algorithm are applied for flight cancellations. Moreover, these cases, the average error 

values of the RepairBySlack are smaller if the Do-Nothing algorithm is applied for flight 

cancellations.

Similar to Section 6.2.2.1, the detailed statistical analysis are conducted for the proposed 

repair algorithms developed for flight delays when Do-Nothing algorithm is applied for 

the flight cancellations. Appendix A includes the detailed results of the paired t-tests on 

average error of the RepairByEDD, RepairBySlack and InsertDelay if the Do-Nothing is 

applied for cancellation. The analyses are categorized into two categories: schedule 

stability and solution quality. According to the deviation from the optimal information, 

the statistical analysis for the performance of the repair algorithms for flight delays given 

that Left-Shift Algorithm is applied for flight cancellation is summarized through Figure 

49.

F lig h t D e la y
G iv e n  t h a t  D o -N o th in g  is  a p p l ie d  in  F l ig h t  C a n c e l la t io n

S c h e d u le  S ta b ili ty  is m o re  im p o r ta n t S o lu tio n  Q u a lity  is  m o re  im p o r ta n t

n?n 3

W hich  Has B e t te r  M e a n  E rror P e r fo rm a n c e  ? W h ic h  Has B e tte r  M e a n  E rro r P e r fo rm a n c e  ?
RepairByEDD R epairB yS lack In s e r tD e la y e d R epairByED D R epairB yS lack In s e r tD e la y e d

RepairByEDD v s  R epairB yS lack / RepairByED D  v s  R epairB yS lack /

RepairByEDD v s  I n se r tD e la y e d ✓ R epairByED D  v s  In s e r tD e la y e d /

R epairB ySlack  v s  I n se r tD e la y e d / R epa irB yS lack  v s  I n s e r tD e la y e d /

Figure 49. Summary of the statistical tests for flight delay -  Part 2

Depending on the initially selected strategy in the flight cancellation (i.e. Do-Nothing vs. 

Left-Shift) and the decision maker’s interest on solution quality and stability, the 

performance of the repair algorithms was evaluated. Given that Do-Nothing algorithm is 

preferred to repair flight cancellation disruptions, when the solution quality is more
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important, RepairByEDD algorithm still outperforms the RepairBySlack and 

InsertDelayed. On the other hand, RepairBySlack can be preferred when the schedule 

stability has a higher importance.

6.2.3 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight

After the performance analysis of the repair algorithms for flight delays are conducted 

and the revised schedule is updated as the current schedule, and the performance of the 

repair algorithms for new unexpected flight arrivals are evaluated next. Owing to the 

sequential evaluation methodology developed to treat disruptions, the current schedule is 

not the very initial schedule but rather the schedule after treatment for cancelation and 

delay. The proposed algorithms are tested under various new unexpected arrivals and 

objective weight coefficient levels. Average errors for the reactive scheduling strategies 

and average CPU times are obtained by averaging the values for 55 instances for each 

aircraft-runway combination. The performance values of the RepairByTWST and 

InsertNew repair strategies are compared.

From Section 6.2.1, we concluded that when the weight coefficient value of the total 

weighted start time is equal to or greater than the total weighted start time deviation, the 

Left-Shift algorithm is the best strategy. On the other hand, Do-Nothing is the best 

strategy for a decision maker who gives more importance to the total weighted start time 

deviation than total weighted start time.

From Section 6.2.2, we concluded that when the weight coefficient value of the total 

weighted start time is equal to or greater than the total weighted start time deviation, and 

if the Left-Shift algorithm is applied for flight cancellations, then the RepairByEDD is 

the best strategy among the provided repair algorithms for flight delays.

We also concluded that when the weight coefficient value of the total weighted start time 

deviation is greater than the total weighted start time, and if the Do-Nothing algorithm is 

applied for flight cancellations, then the RepairBySlack is the best strategy among the 

provided repair algorithms for flight delays.
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Our next step is dependent on our previous decision pattern. From the information that 

we gathered from Sections 6.2.1 and 6.2.2, the average error of the response strategies for 

different unique problem instances for unexpected flights arrivals are observed in two 

states. The first state presents the average error of the repair algorithms RepairByTWST 

and InsertNew for 55 problem instances for unexpected flight arrivals given that Left- 

Shift algorithm is applied to update the schedule after being disrupted by flight 

cancellation and repaired by RepairByEDD for flight delays. The second one provides 

the average error of the repair algorithms RepairByTWST and InsertNew for 55 problem 

instances for unexpected flight arrivals given that Do-Nothing algorithm is applied to 

update the schedule after being disrupted by flight cancellation and repaired by 

RepairBySlack for flight delays. The overall results of the first state and the second state 

are summarized in Table 31 and Table 36 respectively.

6.2.3.1 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight 

Given that Left-Shift is Applied for Flight Cancellation and repaired by RepairByEDD

JT i 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 I

n 2 0 0.25 0.5 0.75 I 0 0.75 0.33 0 0.5 0 0.25 0

1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByTWST 0.023 0.139 0.254 0.369 0.485 0.075 0.421 0.246 0.162 0.357 0.226 0.293 0.229

InsertNew 0.034 0.208 0.382 0.556 0.730 0.098 0.620 0.351 0.126 0.510 0.177 0.400 0.290

Table 31. Average error of the algorithms for arrival of new flights with Left-Shift for 

cancellations and RepairByEDD for delays

According to Table 31, for the scenarios where total weighted start time is more 

important than the total weighted start time deviation, RepairByTWST algorithm is the 

best strategy to apply. Although in few scenarios, the performance of the InsertNew 

algorithm is superior, the overall results imply that RepairByTWST would be a better 

strategy to treat the unexpected flight arrivals. Different from the previous analysis for 

flight cancellations and flight delays, it is worth noting that the average error values of 

the proposed algorithms are nonzero when n x = 0, n 2 = 1, n 3 = 0. Unlike the repair 

algorithms for flight cancellations and flight delays, the repair algorithms for new 

unexpected flight arrivals allow runway deviation; therefore, we observe such difference.
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To further test the performance of the repair algorithms, they are analyzed statistically by 

t-test, again under two circumstances: schedule stability and solution quality. Unlike 

repair algorithms for the flight cancellations and delays, the runway deviation is allowed 

in the response strategies to new unexpected flight; therefore, nx, n 2 and n 3 are all 

considered in hypothesis testing in this analysis.

When the Schedule Stability is More Important

i) Consider the different combinations of weight coefficients which satisfy

7r1>7T 3 .

Table 32 shows that there is a significant statistical difference (p-value=0.000<a = 0.05) 

between the population mean values of performance in terms of average error for the 

algorithms where RepairByTWST has better mean performance than InsertNew when the 

stability is the more important, when the Left-Shift is applied for cancellation and 

RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST- LS-RepairEDD-INSERTNEW-S

P a i r e d  T f o r  LS-RepairEDD-RepairTWST-STABILI -  LS--RepairEDD-INSERTNEW-
STABILIT

N Mean S t D ev SE Mean
LS-RepairEDD-RepairTWST- 275 0 . 3 0 5 0 1 0 . 0 7 5 3 8 0 . 0 0 4 5 5
LS-RepairEDD-INSERTNEW-S 275 0 . 3 9 9 6 2 0 . 1 5 6 7 0 0 . 0 0 9 4 5
D i f f e r e n c e  275 - 0 . 0 9 4 6 1 0 . 0 8 5 3 5 0 . 0 0 5 1 5

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 1 0 4 7 4 ,  - 0 . 0 8 4 4 8 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 1 8 . 3 8  P - V a l u e  =
0 . 0 0 0

Table 32. Paired T-Test on average error of the RepairByTWST and InsertNew with 

Left-Shift for cancellation and RepairByEDD for delays-Schedule Stability 1

ii) Observe the different combinations of weight coefficients which satisfy 

n 2> n3.

Table 33 shows that the overall result is same as the scenario (i), and when n 2> n 3, 

RepairByTWST has better mean performance than InsertNew algorithm.
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Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-S

P a i r e d  T f o r  LS-RepairEDD-RepairTWST-STABI_l  -  LS-RepairEDD-INSERTNEW-  
STABIL_1

N Mean S t D e v  SE Mean
LS-RepairEDD-RepairTWST- 275 0 . 3 8 4 9 3  0 . 0 6 4 6 2  0 . 0 0 3 9 0
LS-RepairEDD-INSERTNEW-S 275 0 . 5 6 3 3 3  0 . 1 1 0 1 5  0 . 0 0 6 6 4
D i f f e r e n c e  275 - 0 . 1 7 8 4 1  0 . 0 4 6 1 2  0 . 0 0 2 7 8

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 1 8 3 8 8 ,  - 0 . 1 7 2 9 3 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 6 4 . 1 5  P - V a l u e  = 
0 . 0 0 0

Table 33. Paired T-Test on average error of the RepairByTWST and InsertNew with 

Left-Shift for cancellation and RepairByEDD for flight delays-Schedule Stability 2

When the Solution Quality is more important

i) Consider the different combinations of weight coefficients which satisfy 

%  < tt3.

Table 34 shows that there is a significant statistical difference (p-value=0.000<a =

0.05) between the population mean values of performance in terms of average error for

the algorithms where RepairByTWST has better mean performance than InsertNew if the

solution quality is the more important, when the Left-Shift is applied for cancellation and
«

RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-Q

P a i r e d  T f o r  LS- RepairEDD- RepairTWST- QUALITY -  LS-RepairEDD-INSERTNEW-  
QUALITY

N Mean S t D e v  SE Mean
LS-RepairEDD-RepairTWST- 440 0 . 2 1 9 9  0 . 1 4 4 5  0 . 0 0 6 9
LS-RepairEDD-INSERTNEW-Q 440 0 . 3 1 3 6  0 . 2 2 7 2  0 . 0 1 0 8
D i f f e r e n c e  440 - 0 . 0 9 3 6 7  0 . 0 8 7 4 7  0 . 0 0 4 1 7

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 1 0 1 8 6 ,  - 0 . 0 8 5 4 7 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 2 2 . 4 6  P - V a l u e  = 
0 . 0 0 0

Table 34. Paired T-Test on average error of the RepairByTWST and InsertNew with 

Left-Shift for cancellation and RepairByEDD for flight delays -Solution Quality 1
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ii) Observe the different combinations of weight coefficients which satisfy

Table 35 shows that there is a significant statistical difference (p-value=0.000<a =  0.05) 

between the population mean values of performance in terms of average error for the 

algorithms. For n 2 < n3, RepairByTWST has better mean performance than InsertNew 

when the solution quality is the more important, when the Left-Shift is applied for 

cancellation and RepairByEDD is applied for flight delays.

Paired T-Test and Cl: LS-RepairEDD-RepairTWST-, LS-RepairEDD-INSERTNEW-Q

P a i r e d  T f o r  LS-RepairEDD-RepairTWST-QUALI_l  -  LS-RepairEDD-INSERTNEW-  
QUALIT_1

95% Cl  f o r  mean d i f f e r e n c e :  ( - 0 . 0 4 4 7 4 ,  - 0 . 0 3 3 5 4 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = - 1 3 . 7 3  P - V a l u e  = 
0 . 0 0 0 __________________________________________________________________________________

Table 35. Paired T-Test on average error of the RepairByTWST and InsertNew with 

Left-Shift for cancellation and RepairByEDD for flight delays -Solution Quality 2

According to the deviation from the optimal information, the statistical analysis for the 

performance of the repair algorithms for flight delays given that Left-Shift Algorithm is 

applied for flight cancellation and RepairByEDD is applied for flight delays is 

summarized in Figure 50.

In conclusion, depending on the initially selected strategy in the flight cancellation (Left- 

Shift) and in the flight delay (RepairByEDD), RepairByTWST outperforms the 

InsertNew regardless whether the emphasis was on solution quality or schedule stability.

LS- Repa i  rEDD- R epa i  rTWST-  
LS-RepairEDD-INSERTNEW-Q 
D i f f e r e n c e

N Mean S t D e v  SE Mean
44 0  0 . 1 6 8 0 3  0 . 0 8 0 2 8  0 . 0 0 3 8 3
44 0  0 . 2 0 7 1 7  0 . 1 1 6 7 3  0 . 0 0 5 5 6
44 0  - 0 . 0 3 9 1 4  0 . 0 5 9 8 0  0 . 0 0 2 8 5
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N ew  U nexpected  Flight Arrival

G iven th a t  Left-Shift is a p p lie d  in F light C an c e lla tio n , RepairByED D  in  F light D elay

Schedule S tability is m ore  im portan t S o lu tion  Q uaity is  m ore  im p o rtan t

W hich Has B e tte r  M ean Error P erfo rm ance ? W hich Has B e tte r  Mean Error P erfo rm ance ?

RepairByTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew / RepairByTWST vs In sertN ew ✓

K i > 71, T h ^ n - i

W hich Has B etter M ean Error P erfo rm ance ? W hich Has B e tte r  Mean Error P erfo rm ance ?
RepairByTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew / RepairByTWST vs In sertN ew ✓

Figure 50. Summary of the statistical tests for new flight arrival -  Part 1

6.2.3.2 Effectiveness of the Repair Algorithms for Arrival of New Unexpected Flight 

Given that Do-Nothing is Applied for Flight Cancellation then RepairBySlack is applied 

for flight delays

*1 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1
* 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0
* 3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

RepairByTWST 0.141 0.258 0367 0.426 0.485 0.157 0.506 0.283 0.172 0.405 0.177 0.304 0.203

InsertNew 0.248 0.308 0.374 0.491 0.607 0.215 0.393 0.317 0.182 0.300 0.149 0.208 0.116

Table 36. Average error of the algorithms for arrival of new unexpected flights with the 

Do-Nothing algorithm for flight cancellations then the RepairBySlack for flight delays

According to Table 36, when the weight coefficient value of the total weighted start time 

is equal to or greater than the total weighted start time deviation, the RepairByTWST 

outperforms the InsertNew algorithm. Whereas when the stability is more important, 

InsertNew algorithm performs better than RepairByTWST when {nx = 0.75, n 2 =

0, tt3 =  0.25), ( n x — 0.5, n 2 = 0.5, n 3 = 0), (7̂  =  0.25,7r2 = 0.75, n 3 = 0), ( n x — 

0.75, 7t2 = 0.25, 7t3 =  0), ( n x =  l,7r2 = 0, n 3 = 0).

When n x < n 3 , the average error values of the RepairByTWST are smaller in Table 36 

compared to Table 31. Whereas, when n x > n 3 , the average error values of the 

InsertNew are smaller in Table 36 compared to Table 31.
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Similar to Section 6.2.3.1, the detailed the statistical analysis are conducted for the 

proposed repair algorithms for new flight arrivals when Do-Nothing algorithm is applied 

for the flight cancellations and the RepairBySlack is applied for flight delays. The 

detailed results of the paired t-tests on average error of the RepairByTWST and 

InsertNew are provided in Appendix B. The analyses are categorized into two categories: 

schedule stability and solution quality and are summarized in Figure 51.

N ew  U nexpected  Flight Arrival
Given th a t  D o-N othing is ap p lied  in F ligh t C an c e lla tio n , R epairS lack  in Flight D elay

S chedule S tability is m ore im portan t S olu tion  Q uaity is m ore  im p o rtan t

7V\ > 7 t  3 tt, s /r3
W hich Has B e tte r  M ean Error Perform ance ? W hich Has B e tte r  M ean Error P erfo rm ance ?

RepairByTWST InsertN ew RepairByTWST InsertN ew
RepairByTWST vs InsertN ew ✓ RepairByTWST vs InsertN ew ✓

7T2 > 7Ci

W hich Has B e tte r  M ean Error Perform ance ? W hich Has B e tte r  M ean Error P erfo rm ance ?
Repair8yTWST InsertN ew RepairByTWST InsertN ew

RepairByTWST vs InsertN ew S RepairByTWST vs InsertN ew ✓

Figure 51. Summary of the statistical tests for new flight arrival -  Part 2

Depending on the initially selected strategy in the flight cancellation (Do-Nothing) and in 

the flight delay (RepairBySlack), and the decision maker’s interest in solution quality and 

stability, the performance of the repair algorithms was evaluated. When the solution 

quality has higher importance than schedule stability, RepairByTWST outperforms the 

InsertNew; otherwise, InsertNew provides lower average error.

6.2.4 Effectiveness of the Complete Regeneration Algorithms

Complete regeneration algorithms reschedule all flights from scratch that treat flight 

cancellations, delays and unexpected arrivals simultaneously. The reason for proposing 

rescheduling algorithm is that one of the components of the total objective function is 

total weighted start time, and the percentage contribution of this metric to the overall 

objective function value is the most. Therefore, it would be a considerable approach to 

propose an algorithm to handle TWST minimization. The proposed algorithms are tested 

under various flight cancellations, delays and unexpected flight arrivals, with objective



146

weight coefficient levels. Average errors for the TWST and SA-Re algorithms and 

average CPU times are obtained by averaging the values for 55 instances for each 

aircraft-runway combination. Table 37 provides the average error of the rescheduling 

strategies for different unique problem instances.

TTi 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

n 2 0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

*3 1 0.75 0.5 0.25 0 0.75 0.00 0.33 0.5 0 0.25 0 0

TWST 0.166 0.142 0.126 0.226 0.141 0.156 0.474 0.446 0.475 0.452 0.181 0.211 0.126

SA-Re 0.051 0.072 0.084 0.095 0.071 0.073 0.089 0.072 0.089 0.086 0.081 0.089 0.083

Table 37. Average error of the complete regeneration algorithms

The results show that regardless of the n x, n 2, 7T3 combination, SA-Re performs better 

than the TWST algorithm in terms of average error. The reason for such result is that 

total weighted start time component is dominant in the objective function even though 

it’s normalized.

To further test the performances of the complete regeneration algorithms, they are 

analyzed statistically by t-test, again under two circumstances: schedule stability and 

solution quality. Unlike repair algorithms for the flight cancellations and delays, the 

runway deviation is allowed in the response strategies for new unexpected flight; 

therefore, n 1, n 2 and n3 are all important in the hypothesis testing.

Table 38 and Table 39 show that there is a significant statistical difference (p- 

value=0.000<a = 0.05) between the population mean values in terms of average error 

for the algorithms with SA-Re performing better than TWST when the stability is more 

important.

When the Schedule Stability is More Important

i) Consider the different combinations of weight coefficients which satisfy 

7Ti> rr3.
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Paired T-Test and Cl: twst-stability, sa-re-stability

P a i r e d  T f o r  t w s t - s t a b i l i t y  -  s a - r e - s t a b i l i t y

N Mean S t D e v  SE Mean 
t w s t - s t a b i l i t y  275 0 . 2 8 8 8 0  0 . 1 4 5 2 5  0 . 0 0 8 7 6  
s a - r e - s t a b i l i t y  275 0 . 0 8 5 6 0  0 . 0 0 3 2 1  0 . 0 0 0 1 9  
D i f f e r e n c e  275 0 . 2 0 3 2 0  0 . 1 4 3 4 1  0 . 0 0 8 6 5

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 1 8 6 1 7 ,  0 . 2 2 0 2 3 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 
0 . 0 0 0

23 . 5 0 P - V a l u e  =

Table 38. Paired T-Test on average error of the TWST and SA-Re complete regeneration 

algorithms - Schedule Stability 1

ii) Consider the different combinations of weight coefficients which satisfy 

7r2>  tt3.

Paired T-Test and Cl: twst-stability_1, sa-re-stability_1

P a i r e d  T f o r  t w s t - s t a b i l i t y _ l  -  s a - r e - s t a b i l i t y _ l

N Mean S t D e v  SE Mean 
t w s t - s t a b i l i t y _ l  275 0 . 3 0 0 8 0  0 . 1 3 5 9 3  0 . 0 0 8 2 0  
s a - r e - s t a b i l i t y _ l  275 0 . 0 8 6 0 0  0 . 0 0 8 0 6  0 . 0 0 0 4 9  
D i f f e r e n c e  275 0 . 2 1 4 8 0  0 . 1 3 3 2 3  0 . 0 0 8 0 3

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 1 9 8 9 8 ,  0 . 2 3 0 6 2 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 
0 . 0 0 0

2 6 . 7 4 P - V a l u e  =

Table 39. Paired T-Test on average error of the TWST and SA-Re complete regeneration 

algorithms-Schedule Stability 2

When the Solution Quality is more important

i) Consider the different combinations of weight coefficients which satisfy 

7Ti <  n3.



148

Paired T-Test and Cl: twst-quality, sa-re-quality

P a i r e d  T f o r  t w s t - q u a l i t y  - s a - r e - q u a l i t y

N Mean S tD ev SE Mean
t w s t - q u a l i t y 440 0 . 2 3 0 4 5 0 . 1 3 0 9 4 0 . 0 0 6 2 4
s a - r e - q u a l i t y 440 0 . 0 7 5 6 7 0 . 0 1 2 6 9 0 . 0 0 0 6 1
D i f f e r e n c e 440 0 . 1 5 4 7 7 0 . 1 2 7 9 7 0 . 0 0 6 1 0

95% Cl  f o r  mean d i f f e r e n c e : ( 0 . 1 4 2 7 8 , 0 . 1 6 6 7 6 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t = 0 ) :  T - V a l u e  = 2 5 . 3 7  P - V a l u e  =
0 . 0 0 0

Table 40. Paired T-Test on average error of the TWST and SA-Re complete regeneration 

algorithms-Solution Quality 1

ii) Consider the different combinations of weight coefficients which satisfy 1r2 <  n 3.

Paired T-Test and Cl: twst-quality_1, sa-re-quality_1

P a i r e d  T f o r  t w s t - q u a l i t y _ l  -  s a - r e - q u a l i t y _ l

N Mean S t D e v  SE Mean 
t w s t - q u a l i t y _ l  440 0 . 2 2 8 1 7  0 . 1 3 6 3 4  0 . 0 0 6 5 0
s a - r e - q u a l i t y _ l  440 0 . 0 7 5 4 8  0 . 0 1 1 0 8  0 . 0 0 0 5 3
D i f f e r e n c e  440 0 . 1 5 2 6 9  0 . 1 3 4 2 4  0 . 0 0 6 4 0

95% Cl  f o r  mean d i f f e r e n c e :  ( 0 . 1 4 0 1 1 ,  0 . 1 6 5 2 7 )
T - T e s t  o f  mean d i f f e r e n c e  = 0 ( v s  n o t  = 0 ) :  T - V a l u e  = 2 3 . 8 6  P - V a l u e  =
0 . 0 0 0 ___________________________________________________________________________________

Table 41. Paired T-Test on average error of the TWST and SA-Re complete regeneration 

algorithms -Solution Quality 2

Table 40 and Table 41 show that there is a significant statistical difference (p- 

value=0.000<a = 0.05) between the population mean values in terms of average error 

for the algorithms where SA-Re has better mean performance than TWST when the 

solution quality is the more important.

According to the deviation from the optimal information, the statistical analysis for the 

performance of the complete regeneration algorithms is summarized through Figure 52. It 

is can be concluded that either for solution quality or schedule stability, SA-Re performs 

better than TWST algorithm in terms of average error.
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C o m p le te  R e g e n e r a t io n  A p p ro a c h e s

S c h e d u le  S tab ility  is m o re  im p o rta n t S o lu tio n  Q uaity  is m o re  im p o r ta n t

£V
I£

W hich H as B e tte r  M ean  Error P e rfo rm an c e  ? W hich  H as B e tte r  M ean  Error P e rfo rm a n c e  ?
TWST SA-Re TWST SA-Re

TWST vs SA-Re ✓ TWST vs SA-Re ✓

7 t i >  71 , £V
I£

W hich Has B e tte r  M ean  Error P e rfo rm an c e  ? W hich  Has B e tte r  M ean  Error P e r fo rm a n c e  ?
TWST SA-Re TWST SA-Re

TWST vs SA-Re ✓ TWST vs SA-Re ✓

Figure 52. Summary of the statistical tests for complete regeneration algorithms

Table 42 provides the average CPU times of the TWST and SA-Re algorithms for 55 

different unique problem instances for flight cancellations. SA-Re requires longer CPU 

time than TWST. The average CPU time does not seem to change significantly with the 

change in n ll n2, and n 3.

7T1 0 0 0 0 0 0.25 0.25 0.33 0.5 0.5 0.75 0.75 1

0 0.25 0.5 0.75 1 0 0.75 0.33 0 0.5 0 0.25 0

1 0.75 0.5 0.25 0 0.75 0 0.33 0.5 0 0.25 0 0

TWST 0.048 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.048 0.047 0.048 0.047 0.047

SA-Re 21.3 22.82 21.93 21.44 21.67 21.76 21.88 21.56 22.12 22.87 22.35 21.98 21.89

Table 42. Average CPU time of the algorithms for flight cancelations
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The dissertation addressed the Aircraft Sequencing Problem (ASP) and Aircraft Reactive 

Scheduling Problem (ARSP) in a realistic operational environment requiring competent 

solutions in a tolerable timeframe. The ASP was modeled as a parallel machine 

scheduling problem with unequal ready times, target times and deadlines to minimize the 

total weighted tardiness of aircraft landings and departures simultaneously. The problem 

concurrently determines the assignment of each aircraft (job) to a runway (machine), the 

appropriate sequence of aircraft on each runway, and their departing or landing times.

The dissertation examines the ASP over multiple runways, under mixed mode operations 

with the sequence-dependent separation times to prevent the dangers associated with 

wake-vortex effects. Since ASP is NP-hard, it is necessary to develop qualified solution 

approaches to obtain solutions in reasonable computational times.

Three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation 

and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index 

(FPI) were developed to construct good initial solutions to the ASP. The AATCSR is an 

extension of the ATC rule but with considering unequal ready times, target times, 

deadlines and sequence-dependent separation times. The ERT is a version of the FCFS, 

and the FPI rule is a modification of AATCSR. Different from the AATCSR, in FPI the 

urgency of scheduling aircraft in FPI is treated in a linear manner rather than exponential, 

which makes it much faster in terms of computational time. Moreover, metaheuristics 

including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority 

Search (Meta-RaPS) were introduced to improve solutions initially constructed by the 

proposed greedy algorithms.

The algorithms’ solutions are compared to optimal solutions and their performances are 

evaluated in terms of solution quality and CPU time. The results show the performance of 

the proposed greedy algorithms is similar in terms of average CPU time. However,
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AATCSR outperforms both FPI and ERT with low relative deviation (error) the from 

optimal solutions. The performance analysis of the metaheuristics indicates that the SA 

algorithm is more efficient and more effective than Meta-RaPS algorithm when the same 

greedy algorithms are considered for their initial solution (i.e., S A a a t c s r  is superior to 

Meta-RaPSAATCSR, S A p p i  is superior to Meta-RaPSppi, S A e r t  is superior to Meta- 

RaPSERi)- It is determined that the solution quality of SA and Meta-RaPS algorithms that 

use greedy algorithms as initial solutions are better than the greedy algorithms alone (i.e., 

S A a a t c s r  is superior to AATCSR, SAFpi is superior to FPI and Meta-RaPSfiRT is superior 

to ERT). Statistically, it was shown that the CPU times of the proposed algorithms are 

quite similar, and they are considerably low compared to the optimal solution.

Throughout the course of daily operations, air traffic systems frequently encounter 

various disruptions because of the dynamic environment and unexpected events such as 

severe weather, aircraft failures or personnel shortages. Therefore, the initial plan may 

not be executed as designed. This dissertation addressed the Aircraft Reactive Scheduling 

Problem (ARSP) to update the existing aircraft schedule dynamically. The research 

considers disruptions including the arrival of new aircraft, flight cancellations and aircraft 

delays. ARSP is formulated as a multi-objective optimization problem in which both the 

schedule’s quality and stability are of interest. The objectives consist of minimizing the 

total weighted start times (solution quality), total weighted start time deviation, and total 

weighted runway deviation (instability measures). Repair and complete regeneration 

approximate algorithms are developed for each type of disruptive events. Do-Nothing and 

Left-Shift are the repair strategies for the flight cancellations, RepairBySlack, 

RepairByEDD, InsertDelayed algorithms are proposed to repair the schedule for flight 

delays, and RepairByTWST and InsertNew are the repair algorithms for the arrival of 

new aircraft. Two complete regeneration algorithms, TWST Algorithm and SA-Re 

Algorithm are proposed to regenerate schedules from scratch to treat flight cancellations, 

delays and unexpected arrivals simultaneously.

All algorithms were tested against difficult benchmark problems and the solutions were 

compared to optimal solutions and to each other in terms of solution quality, schedule 

stability and computational time. A computational study was conducted for the three
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disruptive event types of ARSP with various values of objective weight coefficients

n 2, 7T3. Initially, response strategies to repair flight cancellation disruptions were 

evaluated. It was statistically illustrated that when the stability objective has a higher 

importance {nx > 7T3), Do-Nothing algorithm is preferred. On the other hand, Left-Shift 

algorithm has significantly performed better when < 7T3. Secondly, the repair 

algorithms for flight delays were tested. Depending on the initially selected strategy in 

the flight cancellation (i.e. Do-Nothing vs. Left-Shift) and the decision maker’s interest in 

solution quality and stability, the performance of the repair algorithms was evaluated. 

When the solution quality is more important, RepairByEDD algorithm outperforms 

RepairBySlack and InsertDelayed. Conversely, InsertDelayed or RepairBySlack can be 

preferred depending on the repair algorithm used for cancellations when the schedule 

stability has a higher importance. Then, RepairByTWST and InsertNew repair 

algorithms were compared when Left-Shift strategy is used for flight cancellation, and 

RepairByEDD is used for delays. Depending on the importance of solution quality vs. 

stability, the performance of the repair algorithms was evaluated; when either the solution 

quality or schedule stability has higher importance, RepairByTWST outperforms the 

InsertNew. On the other hand, when the initially selected strategy in the flight 

cancellation is Do-Nothing, and in the flight delay is RepairBySlack, it was statistically 

shown that InsertNew is a better choice than RepairBySlack when the schedule stability 

is more important. Finally, the performances of the complete regeneration algorithms 

were tested. Although SA-Re requires longer CPU time than TWST, it is illustrated that 

either when the solution quality or schedule stability has higher importance, SA-Re 

performs better than TWST algorithm in terms of average error. Moreover, the average 

CPU time does not seem to change significantly with the change in n 1, n 2, and n 3.

7.2 Contributions

This dissertation research has the following contributions:

1. The ASP is modeled under a mixed mode of operations where both landing and 

departure flows are considered simultaneously, contrary to most existing studies 

that treat departures as separate from landings (i.e., segregated mode). Note that
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the wake-vortex separation requirements for departures-only or arrivals-only 

operations usually satisfy the triangular inequality. However, the triangle 

inequality does not necessarily hold when both arrivals and departures are 

scheduled simultaneously increasing the complexity of the problem.

2. The problem of scheduling aircraft arrivals and departures over multiple runways 

is examined which much more dififcult than single runway problem. When a 

single runway is considered, although still NP-hard, one has merely to determine 

the sequence of the aircraft allocated to a runway. On the other hand, scheduling 

over multiple runways is a two-step process; first, one has to determine the 

assignment of aircraft to runways, then the sequence of the aircraft on each 

runway.

3. The features of the problem; unequal ready time, target time, deadline, sequence- 

dependent separation time, multi-resourced, single and multi-objective structure 

of the problem is unique which makes the dissertation remarkable as a new 

application of scheduling theory.

4. To our knowledge, more aspects to the problem are considered than any other 

previous work where we propose greedy algorithms (AATCSR, ERT and FPI) for 

the combined arrival-departure ASP with unequal ready-time, target-time, 

deadline, and sequence-dependent separation time. Finally, two metaheuristics

(S A and Meta-RaPS) are introduced for the problem for the first time to improve 

initially constructed solutions by the proposed greedy algorithms.

5. The research that address multi-objective optimization problem in aircraft reactive 

scheduling problem that are liable to flight related disruptions is very limited. To 

fill this research gap, this dissertation updated mixed integer linear programming 

with normalized objective function to find optimal solutions, and proposed 

approximate algorithms to obtain near optimal schedules efficiently. The trade

off between the objectives are evaluated; the components of the multi-objective 

function are the total weighted start time which represents solution quality, and
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the total weighted start time deviation and total weighted runway deviation which 

represent solution stability.

6. Unlike most studies in the literature which focus on one disruption type at a time, 

in this dissertation, different types of disruptions with multiple disruptive events 

are considered simultaneously. Therefore, the sequential evaluation methodology 

is developed to treat the disruptions and revise the schedules periodically. 

Alternative reactive scheduling approaches (Do-Nothing, Left-Shift, 

RepairByEDD, RepairBySlack, InsertDelayed, RepairByTWST, InsertNew, 

TWST and SA-Re) for different disruptions are proposed in which the model 

itself dynamically select the most appropriate from several candidate solution 

methods with respect to (conflicting) objectives of quality and stability.

7.3 Future Research

The problem can be extended in the future to address the following aspects:

1. The disruption of the schedules affects the capacity of the airport, causes 

passenger dissatisfaction and imposes substantial costs. In addition to maintaining 

conformity to the initial schedule, the convenience of the passengers who have 

connecting flights can be taken into account.

2. Case studies and real data analyses based on airport data from around the world 

would be interesting.

3. The work can be generalized for more complex aviation regulations such as 

stochastic time-windows (i.e. uncertain ready time, target time, deadline, etc.).

4. Reactive scheduling problem can be extended by considering more disruptive 

events such as runway closure.

5. The problem can be revised in such a way that the impacts of the operational 

settings (i.e., using the proposed algorithms) on the fuel cost savings and 

greenhouse gas emission be examined empirically.
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APPENDICES

APPENDIX A. T-TEST RESULTS OF THE FLIGHT DELAY ALGORITHMS

Paired T-Test and Cl: do nothing-RepairEDD-sta, do nothing-RepairBySI-st

Paired T for do nothing-RepairEDD-stabilit - do nothing- 
Repai rByS1-s tabi1i

N Mean StDev SE Mean
do nothing-RepairEDD-sta 275 0.18240 0.09886 0.00596
do nothing-RepairBySl-st 275 0.08554 0.09611 0.00580
Difference 275 0.09685 0.04393 0.00265

95% Cl for mean difference: (0.09164, 0.10207)
T-Test of mean difference = 0 (vs not = 0): T-Value = 36.56 
P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairEDD-sta, do nothing-lnsertDel-sta

Paired T for do nothing-RepairEDD-stabilit - do nothing- 
InsertDel-stabilit

N Mean StDev SE Mean
do nothing-RepairEDD-sta 275 0.18240 0.09886 0.00596
do nothing-lnsertDel-sta 275 0.09483 0.08554 0.00516
Difference 275 0.08757 0.03555 0.00214

95% Cl for mean difference: ( 0 . 0 8 3 3 5 ,  0 . 09 179 )
T-Test of mean difference = 0 (vs not = 0 ) :  T-Value = 4 0 . 8 6
P-Value = 0 . 00 0
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Paired T-Test and Cl: do nothing-RepairBySI-st, do nothing-lnsertDel-sta

Paired T for do nothing-RepairBySl-stabili - do nothing- 
InsertDel-stabilit

N Mean StDev
Mean
do nothing-RepairBySI-st 275 0.08554 0.09611
0.00580
do nothing-lnsertDel-sta 275 0.09483 0.08554
0.00516
Difference 275 -0.009282 0.013540
0.000817

SE

95% Cl for mean difference: (-0.010889, -0.007674)
T-Test of mean difference = 0 (vs not = 0): T-Value =~ -
11.37 P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairEDD-qua, do nothing-RepairBySI- 
qu

Paired T for do nothing-RepairEDD-quality - do nothing- 
Repa i rByS1-qua1i ty

N Mean StDev SE Mean
do nothing-RepairEDD-qua 440 0.3835 0.2129 0.0101
do nothing-RepairBySl-qu 440 0.4762 0.27 67 0.0132
Difference 440 -0.09268 0.07408 0.00353

95% Cl for mean difference: (-0.09963, -0.08574)
T-Test of mean difference = 0 (vs not = 0): T-Value =
26.24 P-Value = 0.000
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Paired T-Test and Cl: do nothing-RepairEDD-qua, do nothing-lnsertDel-qua

Paired T for do nothing-RepairEDD-quality - do nothing- 
InsertDel-quality

N Mean StDev SE Mean
do nothing-RepairEDD-qua 440 0.3835 0.2129 0.0101
do nothing-lnsertDel-qua 440 0.4116 0.2369 0.0113
Difference 440 -0.02802 0.03772 0.00180

95% Cl for mean difference: (-0.03155, -0.02448)
T-Test of mean difference = 0 (vs not = 0): T-Value = 
15.58 P-Value = 0.000

Paired T-Test and Cl: do nothing-RepairBySI-qu, do nothing-lnsertDel-qua

Paired T for do nothing-RepairBySi-quality - do nothing- 
InsertDel-quality

do nothing-RepairBySl-qu 
do nothing-lnsertDel-qua 
Difference

N
440
440
440

Mean 
0.4762 
0.4116 

0.06466

StDev
0.2767
0.2369

0.04034

SE Mean 
0.0132 
0.0113 

0.00192

95% Cl for mean difference: (0.06089, 0.06844)
T-Test of mean difference = 0 (vs not = 0): T-Value = 33.63 
P-Value = 0.000
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APPENDIX B. T-TEST RESULTS OF THE NEW FLIGHT ALGORITHMS

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK- 
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-STABI - DN- 
RepairSLACK-INSERTNEW-STABIL

N Mean StDev SE Mean
DN-RepairSLACK-INSERTNEW 275 0.23888 0.09743 0.00588
DN-RepairSLACK-RepairTWS 275 0.31365 0.13057 0.00787
Difference 275 -0.07477 0.05223 0.00315

95% Cl for mean difference: (-0.08097, -0.06857)
T-Test of mean difference = 0 (vs not = 0): T-Value = - 
23.74 P-Value = 0.000

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK- 
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-QUALI - DN- 
RepairSLACK-INSERTNEW-QUALIT

N Mean StDev SE Mean
DN-RepairSLACK-RepairTWS 440 0.28900 0.12026 0.00573
DN-RepairSLACK-INSERTNEW 440 0.34440 0.13626 0.00650
Difference 440 -0.05540 0.04190 0.00200

95% Cl for mean difference: (-0.05932, -0.05147)
T-Test of mean difference = 0 (vs not = 0): T-Value =
27.73 P-Value = 0.000
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Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK- 
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-STA_l - DN- 
RepairSLACK- INSERTNEW-STAB_1

N Mean StDev SE Mean
DN-RepairSLACK-INSERTNEW 275 0.36239 0.09766 0.00589
DN-RepairSLACK-RepairTWS 275 0.46286 0.10220 0.00616
Difference 275 -0.10047 0.01979 0.00119

95% Cl for mean difference: (-0.10282, -0.09812)
T-Test of mean difference = 0 (vs not = 0): T-Value = - 
84.17 P-Value = 0.000

Paired T-Test and Cl: DN-RepairSLACK-RepairTWS, DN-RepairSLACK- 
INSERTNEW

Paired T for DN-RepairSLACK-RepairTWST-QUA_l - DN- 
RepairSLACK- INSERTNEW-QUAL_1

N Mean StDev SE Mean
DN-RepairSLACK-RepairTWS 440 0.21170 0.07929 0.00378
DN-RepairSLACK-INSERTNEW 440 0.24933 0.07368 0.00351
Difference 440 -0.03763 0.04365 0.00208

95% Cl for mean difference: (-0.04172, -0.03354)
T-Test of mean difference = 0 (vs not = 0): T-Value = 
18.09 P-Value = 0.000
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