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ABSTRACT 

OPTIMIZATION MODELS AND APPROXIMATE ALGORITHMS FOR THE 
AERIAL REFUELING SCHEDULING AND RESCHEDULING PROBLEM 

Sezgin Kaplan 
Old Dominion University, 2011 

Director: Ghaith Rabadi 

The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the 

refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to 

minimize the total weighted tardiness. ARSP can be modeled as a parallel machine 

scheduling with release times and due date-to-deadline window. ARSP assumes that the 

jobs have different release times, due dates, and due date-to-deadline windows between 

the refueling due date and a deadline to return without refueling. The Aerial Refueling 

Rescheduling Problem (ARRP), on the other hand, can be defined as updating the 

existing AR schedule after being disrupted by job related events including the arrival of 

new aircrafts, departure of an existing aircrafts, and changes in aircraft priorities. ARRP 

is formulated as a multiobjective optimization problem by minimizing the total weighted 

tardiness (schedule quality) and schedule instability. Both ARSP and ARRP are 

formulated as mixed integer programming models. The objective function in ARSP is a 

piecewise tardiness cost that takes into account due date-to-deadline windows and job 

priorities. Since ARSP is NP-hard, four approximate algorithms are proposed to obtain 

solutions in reasonable computational times, namely (1) apparent piecewise tardiness cost 

with release time rule (APTCR), (2) simulated annealing starting from random solution 

(SArandom), (3) SA improving the initial solution constructed by APTCR (SAAPTCR), and 

(4) Metaheuristic for Randomized Priority Search (MetaRaPS). Additionally, five 

regeneration and partial repair algorithms (MetaRE, BestlNSERT, SEPRE, LSHIFT, and 

SHUFFLE) were developed for ARRP to update instantly the current schedule at the 

disruption time. The proposed heuristic algorithms are tested in terms of solution quality 

and CPU time through computational experiments with randomly generated data to 

represent AR operations and disruptions. Effectiveness of the scheduling and 

rescheduling algorithms are compared to optimal solutions for problems with up to 12 



jobs and to each other for larger problems with up to 60 jobs. The results show that, 

APTCR is more likely to outperform SArandom especially when the problem size 

increases, although it has significantly worse performance than SA in terms of deviation 

from optimal solution for small size problems. Moreover CPU time performance of 

APTCR is significantly better than SA in both cases. MetaRaPS is more likely to 

outperform SAAPTCR in terms of average error from optimal solutions for both small and 

large size problems. Results for small size problems show that MetaRaPS algorithm is 

more robust compared to SAAPTCR- However, CPU time performance of SA is 

significantly better than MetaRaPS in both cases. ARRP experiments were conducted 

with various values of objective weighting factor for extended analysis. In the job arrival 

case, MetaRE and BestlNSERT have significantly performed better than SEPRE in terms 

of average relative error for small size problems. In the case of job priority disruption, 

there is no significant difference between MetaRE, BestlNSERT, and SHUFFLE 

algorithms. MetaRE has significantly performed better than LSHIFT to repair job 

departure disruptions and significantly superior to the BestlNSERT algorithm in terms of 

both relative error and computational time for large size problems. 
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CHAPTER 1 

INTRODUCTION 

Aerial refueling (AR), also called air refueling, in-flight refueling, air-to-air refueling, 

is the process of transferring fuel from one aircraft (a tanker) to another (a receiver) 

during flight. AR is extensively used in large-scale military operations because of its 

advantages for an air force in terms of responsiveness, endurance, flexibility, 

efficiency, and safety. Aerial refueling is generally employed in two cases of military 

operations: inter-theater and in-theater. Inter-theater operations contain the 

deployment of forces (e.g., overseas deployments) and its accompanied air refueling 

requirement. The second role of aerial refueling is to support in-theater operations. 

This support includes deployments and employments during a conventional conflict 

(e.g., Operation Desert Storm of the U.S. Air Force) when many strike aircrafts are 

conducting attacks around the clock and spread across a local area. 

Scheduling as a decision making process that deals with allocation of resources to 

tasks over given time periods is needed for effective aerial refueling while 

maintaining safety and efficiency. The Aerial Refueling Scheduling Problem (ARSP) 

can be defined as determining the assignment of each fighter aircraft (job) to tanker 

(machine) and the refueling completion times for the aircrafts. Best of our knowledge, 

there is very little existing research on aerial refueling scheduling problems, although 

it has significant effects and advantages for air operations. 

This dissertation research examines the in-theater ARSP which has further research 

paucity than inter-theater ARSP. The in-theater ARSP holds some different 

characteristics from the inter-theater ARSP. It is far more complex and difficult to 

support because of shorter planning periods, rapidly changing priorities, crowded 

airspace, less predictable fuel requirements, lack of standardized refueling equipment, 

and continuous operations by a lot of aircrafts. Therefore, dealing with in-theater 

environment of aerial refueling not only has crucial effects to air force dominance, but 

also valuable intellectual contributions to scheduling theory applications. 

In-theater AR is supported entirely through AR tracks which are similar to gas 

stations floating in the sky. Fighter wings are even-numbered groups of fighters that 

get refueled by tankers in the air. Tankers orbit in a track location with a constant 
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speed and altitude waiting for receivers to arrive for refueling. Receivers may be in 

different types of bombers, airborne warning and control aircrafts, cargo aircrafts, 

fighters, helicopters, and also other tanker aircrafts. Tankers may also have different 

types in size, weight, take off fuel load capacity, offload (deliverable fuel) capacity, 

maneuver capability, fuel transfer rate, and refueling systems. 

ARSP has some certain problem assumptions to scope this dissertation research. First, 

fighter aircrafts are considered AR receivers and tankers are identical aircrafts with 

only one type of refueling system that is compatible with typical fighters used by 

many air forces. Multiple tankers are required to shorten the refueling time and keep 

fighters on schedule in crucial time periods. It is assumed that track stations for the 

tankers are known, the nnumber of tankers does not change during an operation. For 

the purposes of this research, tankers are assumed to be continuously available. In 

order to maintain fuel continuity, just before a tanker completes its mission (i.e. just 

before running out of fuel), another tanker will replace it. Second, a job of the ARSP 

can be defined as AR process of a wing. Fighters execute their missions staying 

together as a group of an even number, generally four identical fighters. Third, 

refueling requirements call for wings to refuel at different times. Moreover, it is 

assumed that fighter wings which move dynamically in the sky, can reach to available 

tankers in equal times. Communication between a tanker and receivers in the air occur 

perfectly; in other words, data can be sent accurately between the tanker and the 

receivers without delays. Fourth, there is no setup requirement between refueling 

wings (Jorjs) due to compatible and unique refueling systems. Approaching and 

anchoring of the wing can be considered a setup time but this setup time is not 

sequence-dependent; therefore, it can be considered as a part of the processing time. 

Beyond these assumptions, ARSP has some characteristics that help mapping in 

scheduling theory. First, higher availability and less tardiness of the wings are desired 

in order to hold air force dominance during air operations. Besides, AR priorities 

affect the scheduling. Therefore, a tardiness penalty, which takes into account wing 

priorities, was defined as a scheduling performance measure. Second, a time 

constraint associated with fuel consumption must be defined because there is a 

maximum waiting time for each wing to refuel before it reaches its minimum fuel 

level; otherwise a wing has to return back to base. Returning back without refueling 

causes a large penalty due to operational availability issues. 
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On the other hand, resources commonly occur in parallel and many real life problems 

can be modeled as parallel machine scheduling problems. In the classical parallel 

machine scheduling problem, there are n jobs and m machines. Each job needs to be 

executed on one of the machines during a fixed processing time. A parallel machine 

scheduling problem involves both resource allocation and sequencing. It allocates 

jobs to machines and determines the sequence of jobs on allocated machine. Machines 

may be identical where the processing time of each job is independent of the assigned 

machine, uniform where each machine may have a different speed, or unrelated where 

the processing time of each job is dependent on the assigned machine without a 

particular relationship. The aim is to find the schedule optimizing a certain 

performance measure such as makespan, maximum lateness or weighted tardiness. 

In this dissertation, the research was extended to address the rescheduling problem to 

have a more realistic and robust scheduling system. Despite the extensive literature on 

scheduling problems, little research exists on rescheduling parallel machines. One of 

the difficulties is sourced from the dynamic environment of the AR process where 

disruptions caused by dynamic and unexpected events are common. AR rescheduling 

problem (ARRP) is defined as updating the existing AR schedule after being 

disrupted by a job related event. Although more disruptions may be considered for 

ARRP, job related disruptive events are studied in this dissertation since they occur 

much more frequent than other type of disruptions in air operations. Events that have 

potential to cause significant disruptions in the AR schedules are interpreted by the 

arrival of new jobs, departure of an existing job, and changes in job priorities 

characterized by a combined change of weight and due date. In the ARRP, continuous 

rescheduling approach in which updating the existing schedule takes place when an 

event occurs is performed. The objective in the ARRP will not only be maximizing 

the schedule performance, but also minimizing schedule instability to decrease 

contact requirements under tight communication constraints and to avoid excessive 

rescheduling computation time. 
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1.1 Aerial Refueling 

By the end of the Vietnam War, refueling on the tanker without landing became a 

routine part of combat air operations for fighters and bombers as a result of its 

importance for an air force. It is extensively used in air operations, because it has 

some advantages for an air force seeking dominance against enemy forces. 

1. Responsiveness: Air refueling provides rapid response by remaining airborne 

more and reducing time to get ready. It allows fighter to deploy and strike 

targets deep in enemy territory. 

2. Endurance: It greatly extends the operational range of air forces and the time 

that fighter aircraft can protect friendly forces from attack by enemy aircraft. 

3. Flexibility: By reducing the logistical trail needed for an air operation, it 

enables taking off with a larger payload which could be weapons, cargo or 

personnel, opening up new operational capabilities. 

4. Efficiency: Non-stop flying capabilities give each aircraft the ability to reach 

its destination before its required arrival time. 

5. Safety: Combat aircrafts can avoid reliance on other countries for land-based 

refueling stations so that they can be based in safe areas. 

The inter-theater AR, one type of aerial refueling, emphasizes planned missions in 

which each tanker provides a large and predictable amount of fuel over great 

distances. This type of AR utilizes tankers to deploy receivers along a pre-prepared 

route. A considerable portion of the route is flown often with the receiver and 

escorting tanker in company over large bodies of water (ATP-3.3.4.2 (ATP-56(B) 

Change 1), 2008). The important point for the inter-theater AR is that tankers need to 

be assigned to receiver groups and travel for them. 

On the other hand, the in-theater AR is far more complex and difficult to support 

because of shorter planning periods, rapidly changing priorities, crowded airspace, 

less predictable fuel requirements, lack of standardized refueling equipment, and 

continuous operations by a lot of aircrafts (GAO/NSIAD-94-68, 1993). In-theater AR 

procedures have following characteristics unlike inter-theater AR although they have 

similar AR processes. 
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Refueling Tracks: In-theater AR is supported entirely through AR tracks (e.g., tracks 

1 and 2 in Figure 1), which are similar to gas stations floating in the sky. Tankers, 

which are considered high valued assets for an air force, orbit in a track location with 

a constant speed and altitude waiting for receivers to arrive for refueling. Track 

stations are decided on the ground among the alternative stations according to some 

criteria such as operational effectiveness, flight safety under weather conditions and 

enemy attacks, communication efficiency between tanker and receivers, and 

international agreements. Moreover, the anchor rendezvous tracking that is shown in 

the Figure 2 with its track parameters is the simplest one among different types of 

refueling rendezvous tracking. 

Wing 8 

Air Base 

Figure 1 In-Theater Aerial Refueling 
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Leg Length 
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Inbound Course 1
—A-

Anchor Point 

Figure 2 Anchor Rendezvous Tracking 

Receivers and Tankers: Receivers may be different, such as large and heavy bombers, 

Airborne Warning and Control Systems (AWACS), cargo aircrafts, also other tanker 

aircrafts or fighters and helicopters. However, AR receivers are often fighter aircrafts. 

Tankers may also have different types in terms of size, weight, take-off fuel capacity, 

offload capacity, maneuver capability, fuel transfer rate (ATP-3.3.4.2 (ATP-56(B) 

Change 1), 2008). For example, the current tanker fleets of NATO countries mostly 

consist of KC-135 and KC-10 jets. The KC-135 typically carries 180,000 lbs. of fuel 

while the larger KC-10 holds 327,000 lbs. according to the standard planning factors. 

The track parameters in Figure 2 are also important for tanker planning because if 

tankers fly a mission with radius of 500 nm (nautical miles) then the KC-10 would 

have 233,500 lbs. of fuel to offload (deliverable fuel after subtracting tanker's fuel 

consumption) while the KC-135 has 122,200 lbs (AFPAM 10-1403, 2003). 

Refueling Systems: There are two different AR systems in use: Probe/Drogue and 

Boom. As shown in Figure 3, a tanker trails two or more hoses in the probe and 

drogue system while the tanker is fitted with one flyable, telescopic boom in the boom 

system. Although these two systems are not compatible, some booms can be adapted 

(on the ground) using a boom drogue adapter (BDA) kit. This makes the boom 

compatible with probe equipped receivers. Some tankers (e.g., the KC-10A) are 

equipped with both boom and hose/drogue systems and either may be used on the 

same flight (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008). A single flying boom can 
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transfer fuel at approximately 6,000 lbs. per minute. A single hose-and-drogue can 

transfer 1,500-2,000 lbs of fuel per minute. 

AR with Probe and Drogue AR with Boom 

Figure 3 Aerial Refueling System Types 

However, fighters cannot accept fuel at the boom's maximum rate. Typical fighters 

can accept fuel at 1,000 to 3,000 lbs. per minute either from the boom or the hose-

and-drogue (Bolkcom, 2006). 

1.2 Mapping the ARSP to Abstract Scheduling 

Air force responsiveness and endurance require joining back to operation mission as 

soon as possible after breaking the active mission for refueling. Thus, scheduling as a 

decision making process is needed for effective AR while maintaining safety and 

efficiency in the air operations. The AR Scheduling Problem (ARSP) can be defined 

as determining the assignment of each fighter aircraft (job) to tanker (machine) and 

the refueling completion times for the aircrafts. To map ARSP to an abstract and 

classical scheduling problem, we consider the following general and frequently used 

scheduling assumptions: 

1. Any job can be processed on at most one machine at any time. 

2. No preemption is allowed where once an operation is started it is continued 

until complete. 
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3. Ready times of all jobs are zero, i.e. all jobs are available at the 

commencement of processing. 

4. Machines are always available and reliable (i.e., rarely breakdown). 

5. Each machine can process at most one job at any time. 

6. Setup times are sequence-independent and are included in processing times. 

7. Processing times, technological constraints, weights, and due dates are 

deterministic and known in advance where appropriate (Blazewicz et al., 

2007). 

For the ARSP, the following scheduling assumptions are considered: 

Machine Related Assumptions: Equipment, performance, and procedural 

compatibilities between tankers and fighters are important for a successful AR. So, it 

is assumed in this dissertation research that AR receivers are fighter aircrafts and 

tankers in the refueling missions are identical KC-135 type aircrafts with only the 

boom type which is compatible with typical fighters used by many air forces. Thus, 

tankers tracking on different locations can be considered identical parallel machines 

from the scheduling theory point of view. Multiple tankers are needed to shorten the 

refueling time and keep fighters on schedule because many fighters can be over target 

areas at the same time. Multiple tanker tracks are placed to maintain high volume in 

crucial time periods. It is assumed that no new tanker stations are added and the 

number of the multiple tanker tracks is fixed. Moreover, continuous fuel supply and 

tanker availability is assumed in this research. Fuel stock considerations and crew 

constraints require specifying mission duration for tankers. The flight schedule is 

limited by the 12-hour operational day and must allow for transit time to and from 

theater, one-hour pre-flight preparation, two-hour post-flight maintenance service, and 

at least a three hour turnaround time between refueling missions. However, for 

continuous fuel supply, just enough time before finishing one tanker's mission, 

another tanker will replace it with no interruption. After taking over, the preceding 

tanker returns back to the main base. Also, it is assumed that tankers do not refuel 

each other. 
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Job Related Assumptions: A job represents a wing in ARSP. Fighters execute their 

missions in the form of a wing which is composed of an even number of identical 

fighters, as shown in Figure 1, because of flight safety and compatibility issues. 

Therefore, fighters in a wing approach the tanker together and the refueling process is 

carried out one fighter at a time while the rest of the wing waits in the observation 

area or reform area as shown in Figure 4. Upon completion, the wing leaves the 

tanker as a group. Furthermore, a job refueling process cannot be interrupted so as not 

to decompose the unity of the wing. Wings are assumed independent in the sense that 

there is no precedence dependence between them which fits the flexibility necessary 

for an air operation. 

Ready-Time Related Assumptions: Ready time can be defined as the earliest contact 

time of a wing with a tanker to request refueling when its fuel level is reduced to a 

safe fuel level. In other words, it is the earliest time that a wing is available and can 

leave from its mission area to refuel. Fuel burning rate depends on the mission type 

with different maneuver requirements, mission locations at different altitudes, 

weather conditions, deployment distances and fighter characteristics such as fuel 

capacity, speed, weight, and pilot skills. 

Consequently, refueling calls of the wings to tanker will be at different times. This 

means that all wings are not available to refuel at the same time and they have 

different ready times. Moreover, it is assumed that variability in distances between 

individual wings and each tanker are negligible. Consequently wings can arrive at 

different tankers with equal times. Data are sent between the tanker and the receivers 

without delays and errors and communication between the tanker and receivers in the 

air is assumed perfect. However, a contact between the tanker commander and the 

wing leader must be established at least 15 minutes prior to the refueling rendezvous 

time for approaching to waiting position. 
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Figure 4 Wing Refueling (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008) 
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Setup Related Assumptions: There are no setup requirements between the wing AR 

jobs as a result of the boom system. The processes in Figure 4, such as approaching 

and anchoring, can be considered as setup time. But setup time is not sequence 

dependent and it can be included in processing time. Thus, aggregate processing times 

of the jobs include time required to approach the tanker, connecting (anchoring) and 

disconnecting times of each receiver, and refueling times of each receiver. 

Beyond its assumptions, ARSP has some characteristics that can also be mapped to 

classical scheduling. First, weighted tardiness can be used as a tardiness penalty to 

evaluate the due date delivery performance of schedules. It is extremely important to 

maintain higher availability and less tardiness of wings in order to hold air force 

dominance during air operations. Thus, there is a latest time for a wing to join the 

mission and the tardiness penalty is essential for the scheduling problem. 

Furthermore, operation conditions, capabilities of different types of fighters, 

experience, and skill levels of the wings and assessments of mission planners affect 

the importance of a wing and also its AR priority affects the scheduling. So the 

tardiness penalty has to take into account the priorities. Second, a time (d-to-D) 

window constraint associated with fuel consumption is required. Bingo level 

represents the required minimum fuel level at which the wing must return back to 

base where the fuel amount would barely be enough to return. Therefore, there is a 

maximum waiting time to start refueling for a wing otherwise it has to return back to 

base. Returning back to base without refueling (i.e., not assigning a job to a machine) 

causes a large penalty due to operational dominance issues. 

Finally, for both ground and air optimal scheduling decisions, the basic questions 

ARSP are the following: 

• Which wings (j°t>s) should be assigned to which tanker (machine)? 

• Which wings could not assigned and must return to base? 

• What time does each wing start to refuel? 

• What is the optimal total cost for a given schedule given the objective function 

defined? 
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1.3 Problem Statement 

ARSP can be defined as scheduling n jobs (wings of aircrafts) on m identical parallel 

machines (tankers) where job j arrives (becomes available) at ready time rs and should 

be complete by the due date d, and before deadline Dr The problem elements are 

shown in Figure 5. The following notation will be used throughout this dissertation: 

Processing time (p}): Processing time of the receiver or wing (job) j is the sum of 

approaching time to refueling area, anchoring times to tanker and the fuel pumping 

times of all fighters in wing/ 

Ready time {r}): The earliest time a receiver j can start processing (i.e., first contact 

with a tanker to request refueling when its fuel level reduced to safe fuel level). It is 

the earliest time that a receiver is able to leave from mission area to refuel. Thus, a 

receiver y cannot be scheduled before r,. 

Weight (wj): The importance of wingy for the air operation. It is determined according 

to operation conditions, capabilities of fighters, experience, and skill levels of the 

wings as well as the assessments of mission planners. 

Bingo level time (bj): The latest time before which wing j has to be scheduled; 

otherwise it will go back to base due to low levels of fuel. 

Due date (dj): Planned latest date of receiver j to complete refueling. Completion of 

the refueling job after the due date is allowed, but then a weighted tardiness penalty is 

incurred. 

Deadline (D}): The latest date of a receiver to finish refueling after which it must 

return to base to avoid running too low on fuel level. It is the upper bound of the d-to-

D window. It can be calculated simply by adding the processing time to bingo level 

time. 

Start time (Sj): Starting time of receiver y to refuel. 

Completion time (Cj): Refueling process completion time (ss + Pj) of receiver/ 

Waiting time (sj - r}): The time between refueling request and the refueling start time. 

During this time, wings continue their missions. 
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Due date-to-Deadline window (Dj -dj): The time window in which a weighted 

tardiness cost is incurred. Missing the due date is not preferred but allowed and a 

weighted tardiness cost will be incurred for jobs that miss their due date but not their 

deadline. If a job misses Dj, it must return to base incurring a high penalty and will 

not be assigned to a machine. Note that there is also a scheduling window between 

ready times and deadlines in which all jobs have to be started and completed. 

IIP 
„ mmSm 

111111 

^Processing Time 

P̂ -̂1 

sj 

Due date-to-Deadline 

Window 

z^~=—. 

dj Cj 

IIP 
•if, 
Wm?%"* 

P 
< Scheduling Time Window • 

Figure 5 Scheduling Time Horizon 

A piecewise tardiness cost function may be defined for the problem where if D} > C} 

> dj then the tardiness cost 7) = max (Cj-d,, 0); while if C, > Dj job j is not scheduled 

and a high unavailability cost, F will be incurred, as shown in Figure 6. One can think 

of F as the cost of wing's failure to refuel and returning to base without completing its 

mission. The job is labeled unavailable and not scheduled, if its completion time 

misses the deadline. 
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Figure 6 Piecewise Tardiness 

A scheduling problem is described by a triplet a \ fi \ y. The a field describes the 

machine environment; the /? field provides details of processing characteristics and 

constraints. Finally, the y field describes the objective to be minimized and often 

contains a single entry (Pinedo, 2008). Resources such as production lines for 

products, docks for ships, teachers for student groups, hospital assistance for patients, 

etc. commonly occur in parallel and many real life problems can be modeled as 

parallel machine scheduling. In the classical parallel machine scheduling problem, 

there are n jobs and m machines. Each job needs to be executed on one of the 

machines during a fixed processing time (Mokotoff, 2001). Parallel machine 

scheduling problems involve both resource allocation and sequencing. It determines 

which jobs have to be allocated to which machines and determines the sequence of the 

jobs allocated to each machine. Machines can be identical that the processing time of 

each job is independent of the assigned machine, uniform that each machine has a 

different speed, or unrelated where the processing time of each job is dependent on 

the assigned machine without a particular relationship. The aim is to find the schedule 

that optimizes a certain performance measure such as makespan, maximum lateness, 

or weighted tardiness. The minimization of the total weighted tardiness is important in 

scheduling since maintaining quality of service usually has an objective with weights 

(Pinedo, 2008). 
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In the ARSP, it is assumed that ready times of all wings to identical parallel tankers 

are different with d-to-D window constraint to minimize total weighted tardiness. 

ARSP can be defined as scheduling n jobs (wings of aircrafts) on m identical parallel 

machines (tankers) where joby arrives (becomes available) at ready time r, and should 

be complete by the due date d, and before deadline Dr Therefore, the ARSP is denoted 

by PmVp d-to-D window\£wjTj. 

In order to illustrate the problem, sample data (not real life data) are given in Table 1. 

j 
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60 
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80 
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130 

Dj 
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150 
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160 

Table 1 Sample Data for Pm|rj, d-to-D window|SwjTj 

In the sample problem, there are two identical parallel machines (1 and 2), ten jobs (1-

10), three types of jobs (20, 30 and 40 units of processing time), three priority levels 

(1,3 and 5), and fixed 200 unit unavailability cost (/) if a job j is to miss D, A feasible 

schedule (shown in Figure 7) is provided by Weighted Longest Processing Time first 

(WLPT) rule; one of the most widely used dispatching rule (greedy heuristic). 
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Figure 7 A Feasible Schedule 
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Job 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Ready 
Time 

(r,) 

0 

10 

20 

20 

30 

40 

50 

50 

60 

70 

Processing 
Time 

(P,) 

30 

20 

40 

20 

30 

40 

30 

20 

40 

20 

Priority 

(w,) 

1 

3 

5 

1 

3 

5 

1 

3 

5 

1 

Due 

Date 

(d,) 

60 

70 

80 

80 

90 

100 

110 

110 
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130 

Deadline 
(D,) 

100 
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130 

110 
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150 
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140 

170 

160 

Machine 
(M,) 

1 

2 

1 

1 

2 

2 

2 

1 

1 

2 

Schedule 

Time 

(s.) 

0 

10 

30 

130 

30 

60 

100 

110 

70 

130 

Waiting 
time 
(s,-r,) 

0 

0 

10 

110 

0 

20 

50 

60 

10 

60 

Completion 
Time 
(Q) 

30 

30 

70 

150 

60 

100 

130 

130 

110 

150 

Cjdj 

-30 

-40 

-10 

200 

-30 

0 

20 

20 

-10 

20 

Weighted 
Tardiness 

0 

0 

0 

200 

0 

0 

20 

60 

0 

20 

Return 
Back 

(0/1) 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

Table 2 Scheduling Results for Sample Data 

The results are given in Table 2. Binary unavailability variable (return back column) 

takes 1 value if the job missed the deadline; otherwise it takes 0. For this case, the 

schedule has a total weighted tardiness of 300 with 1 unprocessed (return to base) job. 

1.4 Difficulties in the ARSP 

In the planning stage before tankers and wings take off, planners try to calculate the 

refueling request times and tanker schedules. All risks and contingencies are to be 

analyzed and the provided arguments are to be exploited to create proactive schedules 

on the ground. On the other hand, the tanker crews gather information from all wings, 

plan the new refueling schedule, and send the results back to the wings in the air. 

Therefore, there are some difficulties that make ARSP different from an ordinary 

parallel machine scheduling problem. These difficulties have emerged as a result of 

dynamic, uncertain, multi objective nature of the problem, unexpected emergent 

events, variability of its elements, and constraints. 

1. Dynamic Environment: Set of wings in the air, wing priorities and ready times 

change in real life. 

2. Set of jobs in the theater may change during the operation. New rush job 

arrivals or leavings occur according to operational decisions. 
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3. It is known that fighters are configured according to some special fighting 

functions and capabilities. Meanwhile, the course of the air operation and the 

new target priorities require different fighting functions. Therefore, needs for 

each differently configured wing and given job priorities may change 

according to air operation conditions. 

4. Planned ready times may be shifted backward or forward by more than a little 

deviation according to revised mission plans due to unexpected attacks and 

future operation missions. 

Uncertain Environment: Processing time, ready time, due date, deadline, and priority 

are uncertain. 

1. Calculation of the processing times is hard work because it comprises the 

approaching time, the boom engagement/disengagement times and fuel 

pumping time of all fighters in the wing. Eventually, the elements of 

processing time may deviate due to weather conditions, pilot skills, and 

inefficiency of refueling system or night conditions. 

2. Planned ready times may deviate according to changes in fuel level burning 

rate. 

3. Similarly, due dates and deadlines cannot be taken as exact times. 

4. Factors determining job priorities such as current situation assessments of 

decision makers, scaling urgency, and the relationship between operation 

conditions and fighter functions have a subjectivity and fuzziness nature. 

Multi Objectives: Besides minimization of total weighted tardiness, other objectives 

related to dumped offload fuel of tanker and waiting time of wings may be accounted 

for in the problem. The ability of air refueling operations to support combat missions 

is limited not only by the tardiness of tankers but also by the efficiency of fuel 

transfer. Utilization of the tanker in terms of unused fuel is an indication of the 

inefficiency of tanker operations (GAO/NSIAD-94-68, 1993). For example, tankers 

often returned to base with a large amount of unused fuel (on average, 40 percent of 

the fuel carried by tankers), some of which has to be dumped in order for the tanker to 

land. The cost of the inefficiency, in other words, total idle times of each tankers 
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should be minimized in scheduling. Moreover, in order to reduce the amount of fuel 

burned by wings, total waiting time of the jobs should be minimized. 

Emergency Cases (Tanker Availability): An emergency in either the tanker or receiver 

may cause an urgent stop during AR, if the following are the case: 

1. There is a sudden attack to the tanker. The tanker has to move to another 

location. 

2. There is an unexpected fuel shortage of the tanker. It has to return back to 

base. Due to continuous tanker availability, if an unplanned condition is 

recognized, the next ordered tanker can be called earlier as a prevention 

mechanism. 

3. The receiver is judged to be flying erratically by the tanker. A faulty receiver 

may be warned or not be allowed to refuel. This situation does not affect the 

tankers' availability. 

4. The tanker has a malfunction. In actuality, boom failures typically occur when 

receivers accidentally dislodge the drogue during the refueling process. 

However, many boom failures do not last the duration of the tanker on-station. 

5. Bad weather conditions do not allow refueling. Refueling may have to be 

cancelled anyway or moved to another location. 

Most emergency cases are associated with tanker availability. However, it is fact that 

these cases very rarely occur in real life. Besides unexpected tanker availability 

related events, some conditions about breakdown, maintenance, weather, etc. for each 

tanker may be known or forecast on the ground. If the continuous tanker supply 

assumption is violated, these tanker availability constraints should be accounted for in 

scheduling. Moreover, flexible set of tankers is possible when the number of 

unscheduled wings reaches an unallowable level as a result of high volume air 

operation. 

Processing time may be defined as dependent on the scheduled refueling starting time 

which is a decision variable. Processing times inherently depend on the quantity of 

fuel delivered. If the waiting time lengthens, the fighter will engage to refuel at lower 

fuel levels and consequently more processing time will be required. 
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Different types of tankers, such as KC-10 tanker aircrafts and tankers with PDA Kits 

may be included in the model as a resource. In this case, some compatibility 

constraints come out and a particular wing may be refueled by a subset of machines. 

On the other hand, speed differences will not matter because refueling speed is 

determined by the receiver capability. 

The previous wing form can be divided into subgroups of fighters before refueling to 

increase the utilization of tankers. Subgroups can also bring flexibility to cope with 

fuel burning rate deviations caused by different maneuvers and pilot skills unless 

deviations cannot be compensated by sequencing rearrangements within the wing. 

However, because of unity desire, a unity penalty or simultaneous refueling constraint 

may be used for dividing the wing into subgroups. 

It is essential that an efficient coordination and communication interface exists 

between tanker and receiver to ensure the correct positioning and timing of the tanker 

to meet receiver demands (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008). Nevertheless, 

all tankers and receivers may have to stand out against communication restrictions 

during operations. 

1.5 Research Scope and Objectives 

This dissertation research examines the aerial refueling scheduling problem (ARSP) 

and the aerial refueling rescheduling problem (ARRP) for in-theater operation 

environment. The research scope is framed around two areas: parallel machine 

scheduling and rescheduling. The scheduling/rescheduling environment has a finite 

set of jobs and a finite set of machines. ARSP assumes that the jobs have different 

release times and a due date-to-deadline (d-to-D) window between the refueling due 

date and deadline before which an aircraft wing (job) will to return to base without 

refueling. Minimizing the total weighted tardiness is a good objective function to 

meet the aircrafts' refueling due dates and ultimately the mission's due date. 

Consequently, a piecewise tardiness cost was defined by taking into account d-to-D 

windows and job priorities to evaluate the schedule's quality. Thus, ARSP can be 

modeled as a parallel machine scheduling with release times and d-to-D window to 

minimize total weighted tardiness. 
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In the ARRP, continuous rescheduling approach is used where updating the existing 

schedule takes place only when an event occurs. That is, it is assumed that schedules 

will be updated only as a result of job related disruptions such as the arrival of new 

jobs, the departure of an existing job, and changes in job priorities characterized by a 

combined change of weight and due date. ARRP considers both minimizing total 

weighted tardiness as a primary measure of schedule performance, as well as 

minimizing schedule instability as a measure of disruption caused by the 

rescheduling. Instability of the AR schedules is defined here as any changes in job 

starting times on the assigned machine. Then the measure of schedule instability can 

be defined as the proportion of rescheduled jobs that change machine assignment 

and/or starting time. In the context of air operations, a communication event with the 

pilots to either change their start time or their tanker assignment is considered as an 

event that will change the original schedule and therefore there is no distinction 

between them from rescheduling pespective. Consideration of the two objectives of 

schedule quality and stability leads to the formulation of ARRP as a multi objective 

scheduling problem. 

The objectives of the research can be summarized as follows: 

1. To formulate a scheduling problem from the military environment as an 

abstract parallel machine scheduling problem that is widely used in production 

environments. The details of the formulation for some aspects of the problem 

are unique to the problem addressed in this research. 

2. To find optimal solutions for the problem using mixed integer programming 

3. To develop an effective and efficient solution methods to obtain best initial 

schedules that satisfy the constraints of the scheduling problem in a reasonable 

time. This is accomplished by introducing a dispatching rule for the problem. 

4. To find near-optimal solutions using metaheuristics including Simulated 

Annealing and Meta-RaPS. 

5. To address the rescheduling problem by formulating the problem as a a multi 

objective optimization problem of minizing both the weighted tardiness and 

instability of the schedule. This is accomplished using optimization models 

and approximate algorithms to update the disrupted schedules satisfactorily 
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with respect to both objectives, and to effectively evaluate the trade-off 

between the objectives. 

The rest of this dissertation is organized as follows. In Chapter 2, related research is 

summarized. Optimization models and approximate algorithms developed for the 

ARSP problem are introduced in Chapter 3including a mixed integer linear 

programming model (MILP) for optimal solutions and metaheuristic algorithms to 

find near optimal solutions. Computational studies for ARSP are presented and their 

results are analyzed in Chapter 4.Rescheduling mechanisms and solution methods for 

ARRP are developed in Chapter 5 followed by a computational study for small and 

large problem sizes in Chapter 6. Finally, conclusions and future research are 

presented in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

In light of above issues, related literature including ARSP applications, parallel 

machine scheduling with unequal release times, and d-to-D window constraints to 

minimize total weighted tardiness and rescheduling, were reviewed to display 

practical and intellectual contributions of the dissertation research. 

2.1 Aerial Refueling Scheduling Problem (ARSP) 

The only existing research on scheduling in-theater AR is Jin et al. (2006). They 

introduced the static autonomous refueling scheduling of multiple unmanned aerial 

vehicles (UAVs) as a combinatorial optimization problem. In the problem, a single 

tanker needs to provide refueling service for multiple UAVs. The number of UAVs is 

known and does not change during the refueling process. Each UAV has different 

parameters such as current fuel level, refueling time, and return-to-field priority that 

are effective for scheduling. A dynamic programming method was used to develop an 

efficient recursive algorithm to find the optimal initial sequence for the AAR 

scheduling problem. Furthermore, they considered the optimal sequence recalculation 

necessity due to conditions change, such as joining or leaving the queue of UAVs 

unexpectedly. They developed a systematic shuffle scheme to reconfigure the UAV 

sequence using the least amount of shuffle steps. They proposed a rearrange scheme 

in which only one UAV will be shuffled at each time and the cost for each movement 

is identical. Since the movements consume fuel/time and introduce disturbances, they 

considered them as a reconfiguration effort and integrated into the dynamic 

programming algorithm, when searching for the new optimal sequence. 

On the other hand, the only major work on inter-theater AR, Barnes et al. (2004), 

studied the aerial fleet refueling problem (AFRP) and used a Group Theoretic Tabu 

Search (GTTS) approach for solution. 

2.2 Scheduling Identical Parallel Machines with Ready Times to Minimize Total 

Weighted Tardiness Problem 

There is very little existing research, as shown in Table 3, addressing the Pm\r/ \£WJTJ 

problem. However, the related research does not consider time windows or other 
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difficulties defined for ARSP. The most closely related works are Monch et al. 

(2005), Reichelt et al. (2006), Pfund et al. (2008), Gharehgozli et al. (2009), and 

Driessel and Monch (2009). They differentiate sequence dependent setup, batch 

machines, and precedence constraints. Recent researches are concentrated on 

sequence dependent setup constraints. Only Reichelt et al. (2006) and Gharehgozli et 

al. (2009) introduced multi objectives. Generally, dispatching rules, exact algorithms, 

heuristics based on dispatching rules, local searches, different types of metaheuristies 

such as genetic algorithms, variable neighborhood searches, and hybrid metaheuristic 

combined by NSGA-II are used for this type of problem. 

Monch et al. (2005) attempted to minimize total weighted tardiness on parallel batch 

machines with incompatible job families and unequal ready times of the jobs 

(Pm|rj,batch,incomp.|SWjTj). Given that the problem is NP-hard, they proposed two 

different decomposition approaches. The first approach forms fixed batches then 

assigns the batches to the machines using a genetic algorithm (GA) and finally 

sequences the batches on individual machines. The second approach first assigns jobs 

to machines using a GA then forms batches on each machine for the jobs assigned to 

it and finally sequences the batches. Dispatching and scheduling rules were used for 

the batching phase and the sequencing phase of the two approaches. In addition, as 

part of the second decomposition approach, they developed variations of a time 

window heuristic based on a decision theory approach for forming and sequencing the 

batches on a single machine. 

Reichelt et al. (2006) were interested in minimizing total weighted tardiness and 

makespan at the same time(Pm|r,,batch, incomp.|XWjTj, Cmax). In order to determine a 

Pareto efficient solution for the scheduling of jobs with incompatible families on 

parallel batch machines problem, they suggested a hybrid multi-objective genetic 

algorithm. They introduced a three-phase scheduling approach which contains a batch 

formation, a batch assignment, and a batch sequencing phase, respectively. They then 

characterized the NSGA-II metaheuristic that is used for the second phase. NSGA-II 

is generally used for multi-objective combinatorial optimization problems based on 

the principles of genetic algorithms. Furthermore, they also described the usage of a 

more advanced version of a hybrid multi-objective metaheuristic combining the 

NSGA-II algorithm and a local search technique in the assignment phase. 
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0 

0 

1 

0 

Solution Approach 

Lagrangian relaxation technique 
and the list-scheduling 

Two and three Stage 
decomposition approaches, 
genetic algorithm, dispatching 
rules 

Three-Phase scheduling approach 
hybrid multi-objective 
metaheunstic combining NSGA-II 
algorithm and a local search 

Apparent Tardiness Cost (ATC) 
dispatching rule 

Memetic algorithm, BATC-II 

Extension of the apparent 
tardiness cost with setups(ATCS) 
approach 

Fuzzy mixed-integer goal 
programming(FMIGP) 

Variable neighborhood search 

* TW Time Window, MO Multi objective 1 Considered, 0 Not considered 

Table 3 Literature on the Pm|rj |EwjTj Problem 
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Gharehgozli et al. (2009) presented a new mixed-integer goal programming (MIGP) 

model for a parallel-machine scheduling problem with sequence-dependent setup 

times and release dates. Two objectives are considered in the model to minimize the 

total weighted flow time and the total weighted tardiness simultaneously(Pm|rj,Skj| 

ZwjTj, SWJCJ). Due to the complexity of the model and uncertainty involved in real-

world scheduling problems, they considered the problem under the hypothesis of 

fuzzy processing time's knowledge and two fuzzy objectives as the MIGP model. 

Pfund et al. (2008) were interested in scheduling jobs with ready times on identical 

parallel machines with sequence dependent setups by minimizing the total weighted 

tardiness(Pm|rJ,S|Cj|SWjTJ). Their approach is an extension of the Apparent Tardiness 

Cost with Setups (ATCS) approach by Lee and Pinedo (1997) to allow non-ready jobs 

to be scheduled. It allows a machine to idle for a high priority job arriving at a later 

time. To determine the scaling parameters for their composite dispatching rule (called 

ATCSR), they first developed a 'grid approach' that considers multiple values for the 

scaling parameters, generates multiple schedules, and chooses the best schedule for 

the solution. The experimentation was then used to develop regression equations to 

predict the values of the scaling parameters that would yield the highest quality 

solution. 

Driessel and Monch (2009) discussed a scheduling problem for jobs on identical 

parallel machines. Ready times of the jobs, precedence constraints, and sequence-

dependent setup times are considered (Pm|rj,Skj,prec|SWjTj). They are interested in 

minimizing the performance measure total weighted tardiness. They suggested a 

Variable Neighborhood Search (VNS) scheme for the problem. Based on 

computational experiments with stochastically generated test instances, they showed 

that the VNS approach clearly outperforms heuristics based on the Apparent 

Tardiness Cost with Setups and Ready Times (ATCSR) dispatching rule in many 

situations. 

2.3 Rescheduling Literature Review 

There is relatively little research on rescheduling, despite the extensive literature on 

scheduling problems. Vieira et al. (2003) and Aytug et al. (2005) provide extensive 

reviews of the rescheduling literature. Vieira et al. (2003) introduced definitions and a 
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classification for the rescheduling environments (the set of jobs that need to be 

scheduled), strategies (whether or not schedules are generated), policies (when 

rescheduling should occur), and methods (how schedules are generated and updated) 

presented in the rescheduling literature. Aytug et al. (2005) classified different 

approaches to scheduling in the presence of uncertainty into three groups: reactive 

scheduling, robust scheduling and predictive-reactive scheduling. There are three 

primary types of studies in rescheduling literature: studies on methods for repairing a 

schedule that has been disrupted, studies on methods for creating a schedule that is 

robust with respect to disruptions, and studies on how rescheduling policies affect the 

performance of the manufacturing systems (Viera et al., 2003). 

Because of its practical importance, rescheduling has attracted a number of 

researchers in recent years. Bean and Birge (1991) considered a rescheduling problem 

with release dates and machine disruptions, and investigated "match-up" scheduling 

heuristics, which compute a transient schedule after a machine disruption. The 

objective is for the realized schedule to return to the predictive schedule within a 

certain time of the disruption occurring. Given this deterministic problem, they 

assumed that an optimal or near optimal pre-schedule had been constructed. 

Disruptions such as machine breakdown, resource unavailability, deviation in release 

dates, or unexpected new jobs introduced to the system. The match-up approach seeks 

to compensate for the disruption to minimize total tardiness. Their approach first fixes 

an initial match-up point and resequences the jobs on the disrupted machines to 

minimize the total tardiness cost. If the cost for meeting the selected match-up point 

exceeds a predetermined threshold, the match-up point is then incremented by some 

value, until the match-up point reaches a predetermined maximum value. A match-up 

is therefore possible only if there is enough idle time existing in the original schedule. 

Church and Uzsoy (1992) considered the problem of minimizing maximum lateness 

on single-stage production systems involving single and identical parallel machines, 

where the only source of uncertainty is random job arrivals. They provided a rough 

taxonomy of existing approaches beginning with two extremes. Continuous 

rescheduling approaches take rescheduling action each time an event that is 

recognized by the system occurs. Periodic rescheduling, on the other hand, defines a 

basic time interval between rescheduling actions during which rescheduling actions 

are not permitted. Rescheduling actions are taken at periodic time points. These points 
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in time where rescheduling may be performed are referred to as rescheduling points. 

Any events occurring between rescheduling points are ignored until the following 

rescheduling point. Finally, they define event-driven rescheduling, in which a 

rescheduling action can be initiated upon the recognition of an event with potential to 

cause significant disruption to the system. Both continuous and periodic rescheduling 

can be viewed as special cases of event-driven rescheduling. They developed worst-

case error bounds for the periodic approach assuming that an optimal algorithm is 

used to schedule the jobs available at each scheduling point. They then explored the 

performance of a combined periodic and event-driven approach, where additional 

rescheduling beyond what takes place at the rescheduling points can be caused by the 

arrival of a job with a tight due date. 

Wu et al. (1993) proposed a composite objective to revise the schedules by continuous 

rescheduling approach for a single machine problem. They used a bicriterion 

approach, where the two conflicting objectives were minimizing the makespan and 

minimizing the deviation from the original schedule. Two sets of local search 

heuristics were developed; the first set used pairwise swapping methods with 

weighted combination of the two objectives. The second is a local search heuristic 

based on a genetic algorithm approach, considering two dimensional space of 

makespan and deviation; the quality of any given solution point in the space can be 

measured based on its Euclidian distance to the origin. 

Unal et al. (1997) considered a single machine with newly arrived jobs that have setup 

times that depend on their part types. They proposed inserting new jobs into the 

original schedule to minimize the total weighted completion time or makespan of the 

new jobs without causing existing jobs to miss their deadlines. The due date 

performance of existing jobs is considered a priority, and is imposed as a constraint 

on the secondary criterion of the total completion time of the new jobs. Their 

approach does not incorporate a measure of schedule disruption. 

Jain and Elmaraghy (1997) developed reactive scheduling mechanisms to reschedule 

a flexible manufacturing system. The triggers for rescheduling are the arrival of new 

jobs, order cancellations, changes in order priority, and machine failures. 

Akturk and Gorgulu (1999) developed rescheduling procedures for machine failures 

that are designed to match-up with a long-term original schedule. They considered to 
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minimize the tardiness of the jobs as well as the match-up point in order to ensure 

schedule's stability. The authors defined the match-up point as the point in time at 

which the revised schedule merges again with the original schedule such that the pre-

schedule can be followed again. After a machine breakdown, a match-up point for 

each machine is determined and part of the initial schedule that covers the time 

interval between the disruption and the Match-up point is rescheduled. 

Vieira et al. (2000) presented analytical models for unrelated parallel machine 

scheduling to predict the performance measures for rescheduling strategies and 

quantify the trade-offs between performance measures. They considered dynamically 

arriving jobs and setups occur when production changes from one job type to another. 

In addition to periodic and event-driven rescheduling strategies, hybrid strategy based 

on queue size were studied. Under a hybrid strategy, rescheduling occurs not only 

periodically, but also whenever a pre-specified event occurs. The main performance 

measures of interest are the average flow time, machine utilization and setup 

frequency. 

Alagoz and Azizoglu (2003) developed procedures for rescheduling identical parallel 

machines with minimizing the flow time as an objective where the random event that 

promoted rescheduling is a change in the machine eligibility constraints. Azizoglu and 

Alagoz (2005) considered a rescheduling problem in an identical parallel-machine 

environment with the disruption that one of the parallel machines down and the 

original schedule has to be updated to recover the effects of the disruption. In both 

works, they presented an optimizing algorithm for minimizing the stability measure 

subject to the constraint that the efficiency measure is at its minimum level. As an 

efficiency measure, they considered the total flow time and as a stability measure they 

considered number of disrupted jobs where a disrupted job is the one that is processed 

on different machines in the initial and revised schedules. They presented a branch 

and bound algorithm for the hierarchical problem of minimizing number of disrupted 

jobs subject to the constraint that total flow time is kept at its minimum. They 

proposed three heuristic procedures: a polynomial time algorithm and two branch and 

bound based heuristic procedures, to generate a set of approximate efficient schedules 

with respect to the total flow time and number of disrupted jobs criteria. 
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Hall and Potts (2004) considered a single machine rescheduling problem with 

disruption in the original schedule caused by multiple newly arriving jobs. A set of 

original jobs has been scheduled on one machine to minimize a given cost objective, 

and then several sets of new jobs arrive unexpectedly. The trade-off between the 

scheduling cost and the disruption cost were considered where the processing times 

only become known upon the arrival. Disruption cost examined as a constraint and as 

a part of the objective function. Firstly, they minimized the schedule cost subject to a 

limit on the deviation from the original schedule. Secondly, they minimized a total 

cost objective, which includes both the original cost measure and the cost of 

deviation. They presented a polynomial algorithm if it exists for each problem. 

Mason et al. (2004) examined three different strategies for rescheduling complex job 

shops, while investigating the efficacy of each strategy to minimize the total weighted 

tardiness. 

Curry and Peters (2005), considered the identical parallel machine scheduling 

problem with stepwise increasing tardiness cost objectives, non-zero machine ready 

times, machine reassignment costs, and constraints that limit machine reassignments. 

They focused on the arrival of new jobs which is described as a simple and common 

form of schedule disruption. Schedule nervousness was defined as occurring when a 

scheduling procedure reassigns many planned operations to different machines or 

different start times. They examined the tradeoff between schedule nervousness and 

tardiness in both single period and multiple period dynamic problems. 

Yang et al. (2006) developed a parallel insertion algorithm implemented with 

rescheduling criteria to minimize the makespan of identical parallel-machine problem 

with uncertain job arrival and sequence-dependent setup time. Furthermore, they 

provided the probabilistic model to estimate the makespan for the problem that the 

inter-arrival time of jobs is exponentially distributed. Makespan was estimated with 

the summation of the arriving time of the last arriving jobs, the average waiting time 

for jobs in queue, and the average service time for jobs. Since the probabilistic model 

was under FIFO rule which is a common and simple dispatching rule, the expected 

makespan generated by the probability model was regarded as a lower standard in 

performance comparison and was used to evaluate the superiority of the scheduling 

algorithm. 
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Lee et al. (2006) studied two machine scheduling problem with transportation 

considerations in a machine related disruption environment. Their main assumption is 

that jobs that are assigned to the disrupted machines and have not yet been processed 

can either be moved to other available machines for processing with additional 

transportation time and cost, or can be processed by the same machine after the 

disruption. Objective function contains the original cost function (total weighted 

completion time and weighted deviation cost) and possibly transportation costs and 

disruption cost (deviation from completion times). They provided either a polynomial 

algorithm to solve the problem optimally, or show its NP-hardness and presented a 

pseudo-polynomial algorithm to solve the problem optimally. 

Yang (2007) considered rescheduling problems with newly arriving jobs. In order to 

reduce the negative impacts of disruptions to the original schedule, the processing 

times of the newly arriving jobs can be reduced at a cost, called time compression 

cost. They considered the added feature of available compression time, which allows 

reducing the new jobs' processing times to decrease the impact of disruptions on the 

schedule. The objective of the problem is to minimize total cost after rescheduling, 

which includes schedule disruption costs, time compression related costs, and a cost 

that depends on a traditional measure of schedule efficiency. For the weighted 

tardiness cost efficiency measure, they provided a heuristic based on very large scale 

neighborhood (VLSN) search. 

Duenas and Petrovic (2008) presented a new predictive-reactive approach to identical 

parallel machine scheduling problem with material shortage and job arrival as an 

uncertain disruption. The approach developed is based on generating a predictive 

schedule using dispatching rules to minimize the makespan. The predictive schedule 

absorbs the effects of possible uncertain disruptions through adding idle times to the 

job processing times. The added idle time is equal to the approximated repair time 

needed to recover from a disruption during the processing of a certain job. A material 

shortage is described by the number of disruption occurrences and disruption repair 

period. These parameters are specified imprecisely and modeled using fuzzy sets. If 

the impact of a disruption is too high to be absorbed by the predictive schedule, a 

rescheduling action that results new instability objective besides the makespan, is 

carried out. Two rescheduling methods namely left-shifting and building new 

schedules have been applied. The instability is measured as the starting time 
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deviations between the predictive schedule and the reactive schedule. The results of 

the study showed that the developed model is flexible and can also be used when new 

jobs arrive. 

Arnaout and Rabadi (2008) developed repair and rescheduling algorithms for the 

unrelated parallel machine environment. They introduced right shift repair, fit job 

repair, partial rescheduling, and complete rescheduling rules to handle different rates 

of breakdowns and delays. They evaluated these based on several performance 

measures to ensure the optimization of both the schedule efficiency and stability. The 

efficiency measure was schedule makespan and the stability measure was the number 

of shifted jobs from one machine to another and the time to match-up with the 

original schedule after the occurrence of a breakdown. 

Cheng et al. (2009) examined identical multiprocessor scheduling problems with 

resource and timing constraints in dynamic real-time scheduling with new job 

arrivals. They introduced a GA-based approach with a feasible energy function to 

illustrate the timing and resource constraints. The deadline constraint for each job is 

imposed on the proposed system. 

Itayef (2009) considered the bicriteria flow shop scheduling problem with new job 

arrivals and two objectives: the initial one and a disruption objective. The aim is to 

generate or approximate the set of efficient schedules. The procedure involves two 

stages. In a first step, given a fixed order of jobs a conventional heuristic is proposed 

to successively assign the jobs to the machines. In the second step, the simulated 

annealing is applied to optimise the order of the jobs. They implemented a 

multiobjective metaheuristic method, MOSA that applies a SA procedure at each 

phase to optimize a linear aggregation function of the two objectives. 

In these researches, rescheduling is needed as a result of different disruptions and 

events such as new job arrivals some of which can be rush, order cancellations, 

machine failure, changes in order priority, change in ready times, processing time 

delays, rework due to quality problems, material shortage, operator absenteeism, tool 

unavailability, due date changes, job order amount changes. Although Subramaniam 

et al. (2005) mentioned 17 types of disruption, most of the rescheduling literature has 

focused on two main types of disruption: machine breakdowns and the arrival of new 

jobs. However, some studies have also considered other types of disruption such as 
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process time variation (Subramaniam and Raheja, 2003), order cancellations (Jain and 

ElMaraghy, 1997; Shi-jin et al., 2007), and due-date changes (or urgent jobs) (Jain 

and ElMaraghy, 1997; Subramaniam and Raheja, 2003). Li et al. (2000) identified and 

investigated four sources of production disruptions: incorrect work, machine 

breakdowns, rework due to a quality problem and rush orders. 

Updating a schedule upon the occurrence of a disruption affects both the efficiency 

and the stability of the process. The effect on the efficiency is usually measured in 

terms of the percentage change in the scheduling objective criterion between the 

original and the revised schedules. Stability has often been measured in terms of 

deviations in the starting times of operations between the two schedules (Abumaizar 

and Svestka, 1997; Subramaniam and Raheja, 2003; Subramaniam et al., 2005). 

Abumaizar and Svestka (1997) developed more schedule stability measures and a 

rescheduling algorithm for job shops. 

There are three rescheduling repair methods: regeneration, right shift rescheduling, 

and partial rescheduling (Vieira et al., 2003). The regeneration approach solves the 

problem from scratch for the remaining operations in the schedule, with the objective 

of optimising the original scheduling objective criterion, with no regards to the 

resulting disturbance (Raheja and Subramaniam 2002). Regeneration approach 

reschedules the entire set of operations not processed before the rescheduling point, 

including those not affected by the disruption. The main disadvantage is the excessive 

computational effort and unsatisfactory response time. Rescheduling at the arrival of a 

rush job is useful but more frequent rescheduling does not improve system 

performance significantly (Church and Uzsoy, 1992). On the other hand, right shift 

rescheduling postpones each remaining operation by the amount of time needed to 

make the schedule feasible without changing the defined sequences of jobs on the 

machines to minimize the deviation caused in the schedule. 

Many schedule repair approaches that lie between these two extremes have been 

proposed in the literature. Partial rescheduling updates only the operations affected 

directly or indirectly by disruption. Match-up scheduling (Bean et al., 1991) is a type 

of partial rescheduling to return to the predictive schedule within a certain time of the 

disruption occurring. Abumaizar and Svestka (1997) proposed the affected operations 

algorithm (AOR) for the job shop rescheduling problem. 
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Researches on parallel machine rescheduling are summarized in Table 4. Church and 

Uzsoy (1992), Curry and Peters (2005), Yang et al.(2006), Duenas and Petrovic 

(2008), and Cheng et al. (2009) are the most related to AR rescheduling problem 

when machine type, disruption type, rescheduling environment, rescheduling strategy 

and rescheduling method issues are evaluated. These parallel machine rescheduling 

problems generally have multiple objectives: the objective of the original problem 

(e.g. minimization total weighted tardiness) and the minimization of the difference 

between the new schedule (after rescheduling) and the original schedule (before 

rescheduling). Disruption cost were examined as a constraint by maximizing the 

schedule performance subject to a limit on the disruption cost or as a part of a 

combined objective function. Polynomial time algorithms and approximate algorithms 

including dispatching rules and metaheuristic methods are developed by regarding 

both objectives to obtain qualified solutions in a reasonable time. 

In conclusion, there is very little existing research on the ARSP for both inter-theater 

and in-theater operations, and there is a gap in the in the corresponding area of 

parallel machine scheduling and rescheduling with release time and due date-to-

deadline windows to minimize the total weighted tardiness. In this research, time 

window between due date and deadline were firstly considered in parallel machine 

scheduling problem by defining a piecewise tardiness cost. The scheduling and 

rescheduling problem framed in this dissertation has never been tackled in the 

Operations Research literature. To fill this research gap, this dissertation will 

introduce new Mixed Integer Programming models to find optimal solutions as well 

as heuristic and metaheuristic algorithms to obtain near-optimal schedules efficiently 

for both the scheduling and rescheduling problems. All of the exact and approximate 

methods introduced will be applied for the first time to the problem at hand. 

Additionally, there is very little research addressing multi-objective optimization 

(MOO) in the parallel machine scheduling environments that are susceptible to job 

related disruptions. The components of the multi-objective formulated in this research 

are the total weighted tardiness which represents schedule's quality, and the 

proportion of rescheduled jobs that change machine assignment and/or starting time, 

which represents the schedule's stability. The component that measure schedule 

instability is typically the number (or proportion) of jobs that change machine 

assignment or the change in jobs' start times. In this dissertation, however, both 
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measures are combined into one measure that is introduced to the literature and 

combines the proportion of the rescheduled jobs due to change in machine assignment 

and/or change in starting time. 



S/N 

1 

2 

3 

4 

5 

6 

7 

8 

Title 

Match-up Scheduling with Multiple 
Resources, Release Dates and Disruptions 

Analysis of Periodic and Event Driven 
Rescheduling Policies in Dynamic Shops 

Predicting the Performance of Rescheduling 
Strategies for Parallel Machine Systems 

Rescheduling Parallel Machines with 
Stepwise Increasing Tardiness and Machine 
Assignment Stability Obiectives 

A Comparative Study to Minimize the 
Makespan of Parallel-Machine Problem with 
Job Arrival in Uncertainty 

An Approach to Predictive-reactive 
Scheduling of Parallel Machines Subject to 
Disruptions 

Rescheduling of Unrelated Parallel Machines 
under Machine Breakdowns 

Dynamic Hard-real-time Scheduling using 
Genetic Algorithm for Multiprocessor Task 
with Resource and Timing Constraints 

Problem 

Pm|rj, incomp |IWJ(TJ+EJ) 

1 and Pm|rj |L„,ax 

Pm|rj,skj| many performance measures(avg 
flow time , machine utilization, setup 
frequency) 

Pm|rj, reassignment |SLwj iU,i (stepwise 
increasing tardiness cost, machine 
reassignment cost 

Pm|rj,skj| Cmax 

Pm|rj, compatiblel Cmax, completion time 
deviation 

Pm|rj| ACmax, Number of shifted jobs, time 
to Match-up 

Pm| multiprocessing, preemptive, no 
migration, energy function | 

Source 

Bean et al 

Church and Uzsoy 

Vieira et al 

Curry and Peters 

Yang et al 

Duenas and Petrovic 

Arnaut and Rabadi 

Cheng et al 

Year 

1991 

1992 

2000 

2005 

2006 

2008 

2008 

2009 

M 

I 

U 

I 

I 

I 

R 

I 

Disruption 

8 disruption 
types 

Job arrival 

Job arrival 

Job arrival 

Job arrival 

Material 
shortage, Job 
arrival 

Machine 
breakdown 

Job arrival 

M 

O 

0 

0 

1 

1 

0 

1 

1 

0 

Solution Approach 

Match-up approach, integer 
programming, Priority Rule 
Approach 

Hybrid event-driven 
approach with dispatching 
rules, worst case error 
bounds for simulation 

Complete regeneration, 
simulation 

Branch and price algorithm, 
Simulation 

Probabilistic parallel 
insertion algorithm, FIFO 
dispatching rule 

Fuzzy based predictive and 
reactive left-shifting and 
building new schedules 
methods 

Right shift repair, fit job 
repair, partial rescheduling, 
and complete rescheduling, 
MIP 

Reactive scheduling, GA-
based approach, dynamic 
real-time scheduling 

M machine type (I Identical, U Uniform, R Unrelated) MO Multi Objective 1 Considered, 0 Not Considered 

Table 4 Parallel Machine Rescheduling Literature 

35 



36 

CHAPTER 3 

AERIAL REFUELING SCHEDULING PROBLEM METHODOLOGY 

The ARSP is denoted by Pn\rp d-to-D window\£wjTj. It represents a system with m 

identical machines in parallel, job j arrives at ready time r7 and should leave by the due 

date dj and strictly before the deadline D}. ARSP has also the following assumptions: Any 

job can be processed on at most one machine at any time. No preemption is allowed; i.e., 

once an operation is started, it is continued until complete. Machines are always available 

(no breakdowns). Each machine can process at most one job at any time. Setup times are 

sequence-independent and are included in processing times. Processing times and 

technological constraints are deterministic and known. Since higher wing availability is 

desired and the relative importance levels of the wings affect the scheduling in ARSP, the 

total weighted tardiness is used as a scheduling performance measure in the mathematical 

model and approximate algorithms. 

In this chapter, a mixed integer linear programming model (MILP) is firstly developed to 

find optimal solutions for ARSP. However, since the identical parallel machine 

scheduling is NP-hard even with only two machines (Karp 1972; Garey and Johnson 

1979; Blazewicz et al., 2007), ARSP is also NP-hard. Consequently, it is required to 

develop qualified, easily, and quickly implemented solution approaches with reasonable 

computation times. 

3.1 Mathematical Model 

There is more than one type of integer programming formulation to model the problem 

addressed here based on variables such as time-indexed, linear ordering, and positional 

assignment for parallel machine scheduling. 

Time-Indexed Formulation: The model is formulated with variables indexed by pairs (j, 

t) where j denotes a job and t a time period. In order to obtain a finite number of 

variables, a fixed time horizon Tis introduced and time is divided into periods 1, 2...., T 

where period t starts at time t-1 and ends at time t. A decision variable is equal to one, if 
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job j is started in period t; otherwise it is equal to zero. Related work includes Liaw et al. 

(2003), Tanaka and Araki (2008) and Paula et al. (2010). 

Linear Ordering Formulation: The set of feasible solutions is considered as (a subset of) 

the set of permutations or linear orderings of the job set. Variables that characterize linear 

orderings are used to describe the feasible solutions. A decision variable is equal to one if 

job 7 precedes / in machine k, otherwise it is equal to zero. Related work includes 

Logendran and Subur (2004), Tang et al. (2007), Biskup et al. (2008) and Gharehgozli et 

al. (2009). 

Positional Assignment Formulation: This formulation works with decision variables that 

refer not to the original jobs, but to their positions in the schedule. A decision variable is 

equal to one if job j is assigned to position k of machine /, otherwise it is equal to zero. 

An example of a related work is by Tavakkoli-Moghaddam et al. (2009). 

A mixed integer linear programming model (MILP) is developed to find optimal 

solutions for ARSP using both linear ordering and assignment decision variables. The 

goal in the ARSP is to find optimal schedules of wings to identical parallel tankers to 

minimize the total weighted tardiness. 

3.1.1 Notations 

Jobs have a piecewise tardiness cost function as follows (see Figure 6): 

if ^ < C , < D 7 ; 

lfDJ<CJ 

In order to represent the starting point for each machine, a dummy index 0 is defined for 

predecessor of the first job. 

r o> 

Tardiness, 7) = 

< 

C -d , 

F, 

v 
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Indices 

i = 0,1,2,3, . . . , n predecessor jobs; 

j = 1,2,3, . . . , n successor jobs; 

k = 1,2,3, ..., m machines; 

Parameters 

Pj = processing time of job j ; 

r} = release (ready) time of job j ; 

Wj = weight of job j ; 

dj = due date of job j ; 

Dj = deadline of job j ; 

M = a large positive integer. 

F= fixed cost of returning back to base. It must be much larger than D-d values. 

J J 

Decision Variables 

Cj = completion time of job j ; 

Tj = piecewise tardiness of job j ; 

1, if job / precedes job j on machine k; Xijk - J 

yjk= v 

0 , otherwise. 

1, if job j is assigned to machine k; 

0 , otherwise. 
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3.1.2 A Mixed Integer Programming Formulation 

Objective : Minimize Total Weighted Tardiness 

7=1 

mm, 
' ' i j 

Constraints 

1. Some jobs cannot be assigned to a machine (returning back to base) and no job can be 

assigned to more than one machine. 

m 

£ v <1 j = l,...,n 

2. You cannot have more than one job in the first position at a certain machine and it is 

possible for a machine not to any jobs assigned to it at all. 

?x <1 k = \,...,m 

3. If job i precedes job j on machine k, then job j must be scheduled after it becomes 

ready and after the completion of its predecessor job / (hence the term max(rp C})). 

C +M(\-x )>max(r ,C) + p i=0,\,....,n j = \,...,n k=\,...,m 
J 'jk I i J 

This nonlinear constraint can be formulated alternatively by two linear constraints: 

3.a. If job 7 is assigned to a machine, then job 7 must be scheduled after its release time. 

in 

C +M(\-Yy )>r +p j = \,...,n 1 t! Jk J ' 

3.b. If job i precedes job j on machine k, then job j must be scheduled after the 

completion time of its predecessor job i. 

C +M(l-x )>C+p i = \,....,n j = \,...,n k = \,...,m 
J 'jk 1 j 
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4. If job j is assigned to one of the machines, then its completion time cannot exceed the 

deadline. If job j is not assigned to machine k, then completion time of job j will be zero. 

m 

C <D £ y j = l,...,n 

5. If job j is assigned to machine k, then job j must be preceded by a job / (includes 

starting dummy job 0). Job j can be first assigned job to a machine or be preceded. 

X x , = y j = l...,n k=l,..., m iik ik 

6. If job i is assigned to machine k, then job i can be succeeded by at most one job j or be 

the last job. 

n 

Z x <y i = \,...,n k = l,...,m 

7. If job i precedes job j on machine k, then job j cannot proceed job /. 

x +x <1 i = \,...,n 7 = 1,..., n k = \,...,m 
ijk jik 

8. Piecewise tardiness definition can be formulated linearly by constraints (8.a, 8.b, 8.c): 

8a. Tardiness is equal to or larger than the lateness. 

T >C -d 7 = 1 n 
J J J 

8b. Tardiness is equal to the return back penalty if job j is not assigned to any 

machine. 

T > F ( l - £ y ) j = \,...,n 
1 tt Jk 

8c. Nonnegative completion time and tardiness values. 

C J >0 7 = l,...,n 
j J 



9. Binary variables. 

x ,y = binary i = 0,\,...,n j = \,...,n k = \,...,m 
ijk jk 

The complete Mixed Integer Linear Programming (MILP) model 

follows: 

N 

minT unZ = y\w T 
7=1 '

 J 

s.t. 

J > <1 7 = 1,..," 
k=\ Jk 

/x <1 k = l,...,m 

in 

C +MQ-^y )>r +p j = \,...,n 
J t~x ]k J ' 

C +M(l-x )>C +p i = \,....,n j = \,...,n k = \,...,m 
J 'jk i J 

C
*

D
. 2 X •/'=

1
--' 1 Jt~lJk 

n 

/ x =y j = l,...,n k = l,...,m 
1=0,1*7 

n 

/x <y i = l,...,n & = l,...,ra 
• ^ 17* i* 

/=1 

x +x <1 / = 1,...,« j = \,...,n k = l,...,m 
ijk jik 

T >C -d j = \,...,n 
i J J 
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r > F ( l - £ y ) j = \,...,n (8b) 

C J >0 7 = 1 w (8c) 

x , v -binary z' = 0,l,...,n j = \,...,n k = \,...,m (9) 
y* 7* 

Optimization Programming Language (OPL) Studio 6.3 was used to implement this 

model and CPLEX 12.1 was used to solve it. Input to the OPL model are indices 

(predecessor jobs, successor jobs, and machines), parameters (release times, processing 

times, weights, due dates, and deadlines) and fixed unavailability cost F. Optimal 

solutions are discussed in Chapter 4. 

3.2 Review for Solution Methods 

In scheduling problems, generally, exact algorithms and approximate algorithms can be 

used to find the optimal or the best solutions. First, exact algorithms are guaranteed to 

find an optimal solution for every finite size instance of a combinatorial optimization 

problem in bounded time. Second, in order to yield a fast and reasonable solution to a 

problem, approximate algorithms which are methods based on the experience or 

judgement, can be used. They can be more quickly developed and used than optimization 

routines. But they cannot be guaranteed to produce the mathematically optimal solution. 

3.2.1 Exact Algorithms 

The most common exact/complete methods for scheduling problems are branch and 

bound algorithms, mixed integer programming, and decomposition methods. However, 

since ARSP is NP-hard, obtaining optimal solutions for large instances will be 

computationally difficult. Therefore, it becomes necessary to develop qualified 

approximate solutions in reasonable computational times. 
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3.2.2 Approximate Algorithms 

Generally, approximate algorithms can be classified as constructive, local search, and 

metaheuristic algorithms. 

3.2.2.1 Constructive Algorithms 

Constructive algorithms generate solutions by gradually adding parts of the solution to 

the initially empty partial solution. Their major advantage is in computational time 

requirements as largely being the fastest approximate algorithms. However, they have 

generally inferior quality solutions when compared to local search techniques and some 

special implementations need high computational load. The most widely used 

constructive heuristics for scheduling problems are the various dispatching rules. 

Dispatching (or Priority) Rules are the most common heuristics for scheduling problems 

due to their easy implementation and low requirements in computational power. They are 

designed so that the priority index for each job can be computed easily using the 

information available at any time. They are useful to find a reasonably good schedule 

with regard to a single objective (Pinedo, 2008). Moreover, some priority rules generate 

the optimum solution in certain simple problems (e.g. the minimization of flowtime in 

single-machine scheduling where the SPT Priority rule generates the global optimum 

solution). Although they perform very well in certain cases, no rule exists that can be 

applied to all problems and perform satisfactorily and there is no way to estimate the 

performance of a dispatching rule for a specific instance a priori (Zobolas et al., 2008). 

A number of simple dispatching rules such as the Earliest Due Date (EDD), Shortest 

Processing Time (SPT), Minimum SLACK (MSLACK), and Slack per Remaining 

Processing Time (S/RPT) have been applied to solve total tardiness, weighted tardiness, 

and maximum tardiness related problems (Lee and Pinedo, 1997). 

A number of composite dispatching rules, made up of attributes and some scaling 

parameters, have also been developed for different types of machine scheduling 

environments (Logendran and Subur, 2004). Vepsalainen and Morton (1987) applied the 

principles of the Cost Over Time (COVERT) and the Modified Operation Due date 
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(MOD) rule to develop the apparent tardiness cost heuristic (ATC) for the parallel 

machine total weighted tardiness problem. Rachamadugu and Morton (1982) proposed 

the RM heuristic for parallel machine scheduling. Morton and Pentico (1993) modified 

the RM heuristic to allow consideration of jobs arriving at a later time and develop their 

X-RM heuristic (Pfund et al., 2008). 

3.2.2.2 Local Search Algorithms 

Local search algorithms start from an initial solution (most of the times generated by a 

constructive heuristic or randomly) and iteratively try to replace part or the whole 

solution with a better one in an appropriately defined set of neighboring solutions. For 

every defined neighborhood of solutions, the solution or solutions of highest quality (i.e. 

the best objective function value) are called locally optimum solutions within the defined 

neighborhood. In order to replace parts of an initial solution, local search methods 

perform a series of moves leading to the formation of new solutions in the same 

neighborhood. The main drawback of basic local search methods is that they get easily 

trapped in local optima as they are myopic in nature. More specifically, local search with 

appropriate moves can be very effective in exploring a neighborhood of an initial solution 

but no mechanism exists that can lead to other distant neighborhoods of the solution 

space where the global optimum may exist. To remedy this weakness, new modern local 

search methods (explorative local search) have been developed with embedded meta-

strategies to guide the search process (Zobolas et al., 2008). 

3.2.2.3 Metaheuristic Algorithms 

A metaheuristic is a higher level heuristic procedure designed to guide other methods or 

processes towards achieving reasonable solutions to difficult combinatorial mathematical 

optimization problems (Silver, 2002). The aim of the new methodology is to efficiently 

and effectively explore the search space driven by logical moves and knowledge of the 

effect of a move facilitating the escape from locally optimum solutions. This is achieved 

by either allowing worsening moves or generating new starting solutions for the local 

search in a more intelligent way than just providing random initial solutions They guide 
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the search through the solution space, basically combining some form of heuristic 

methods and usually local search in higher level frameworks. 

Starting from an initial solution built by some heuristic, metaheuristics improve the 

solution iteratively until a termination criterion is met. They exactly or approximately 

evaluate candidate solutions, maintain a record of the best solution obtained so far, and 

have a mechanism for termination (a certain total number of iterations or a prescribed 

number of consecutive iterations without any improvement). The termination criterion 

can be elapsed time, number of iterations, number of evaluations of the objective 

function, and so on (Blum and Roli, 2003). 

Metaheuristic methods have an advantage over simpler heuristics in terms of solution 

robustness; however they are usually more difficult to implement and tune as they need 

special information about the problem to be solved to obtain good results (Zobolas et al., 

2008). They need settings of parameters that affect the search process significantly (the 

so-called cooling parameter in simulated annealing and the length of the tabu list in tabu 

search) (Lee et al., 1997). 

Generally, the most widely applied metaheuristics are simulated annealing, tabu search, 

genetic algorithms, and ant colony optimization are reviewed in the following. 

Simulated Annealing (SA) 

Simulated Annealing (SA) is one of the most frequently used metaheuristics to find near 

optimal solutions to combinatorial optimization problems through the process of 

probabilistic state transition (Silver, 2002). It is based on the work of Metropolis et al. 

(1956) who simulated the energy levels in cooling solids by producing a sequence of 

states. SA is a local search improvement heuristic that generates neighbor solutions by 

simple moves from the current solution starting with a randomly generated initial 

solution. The SA algorithm generates a new solution in the neighborhood of a current (or 

initial) solution. The objective function value of the new candidate solution is then 

compared to the objective function value of the current solution. If the new objective 

function value is better than the value of the current solution, the new solution is 
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automatically accepted. If the objective function value is worse than the value of the 

current solution, then the candidate solution may still be accepted with some probability 

known as the probability of acceptance Pa = exp (-A/T) where A is the difference 

between objective values of the candidate and current solution and T isa temperature 

control parameter of the SA algorithm. This temperature is periodically reduced after 

allowing the SA to run for a certain number of iterations and explore candidate solutions 

in the neighborhood of the current solution. When the temprature is low enough, the SA 

converges (freezes) to a final solution. What makes SA more effective than greedy and 

local search methods is that it has a mechanism that prevents getting trapped at local 

optima by allowing the acceptance of worse solutions with a certain probability (Hazir et 

al., 2008). The SA method was chosen in this research as a robust meta-heuristic to 

provide immediate results to the problem. SA can deal with arbitrary systems and cost 

functions and is relatively easy to implement even for complex problems. It generally 

gives a good solution and statistically guarantees finding an optimal solution, but cannot 

tell whether it has found an optimal solution (Tan et al., 2001). 

Tabu Search (TS) 

Tabu search (TS) is a local-search, improvement heuristic similar to SA with a 

punishment mechanism to escape from a local optimum by forbidding or penalizing 

moves that cause cycling among solution points previously visited (Hazir et al., 2008). 

The main strength of tabu search is the use of memory that speeds up the solution space 

search process (Zobolas et al., 2008). The search process keeps track of a so-called tabu 

tenure with a fixed number of entries, called the size (or length) of the list. This size is a 

key controllable parameter of the metaheuristic. 

Every time the search performs a mutation in order to go from one schedule to a 

neighboring schedule, the reverse mutation is placed at the top of the tabu list. All other 

entries on the list are pushed down one position and the entry at the bottom is deleted. 

The reason for keeping such a tabu list is based on the fact that it is not desirable to allow 

a search in a subsequent move to return to a schedule already considered. Since the most 

basic form of tabu search is a deterministic process, there is always the danger of cycling. 
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The cycling phenomenon depends very much on the length of the tabu list. If the length 

of the tabu list is too small, the process may have a high likelihood of cycling. If the 

length of the list is chosen too large, then the freedom of the search process is curtailed 

and the process may be less likely to find good solutions (Lee et al., 1997). 

Genetic Algorithm (GA) 

A Genetic Algorithm (GA) is a population-based improvement heuristic based on natural 

selection and evolutional theory. The GA approach, first developed by John Holland 

(1975), is based on the principles of evolution and genetics to guide the search according 

to ability of the individuals to survive in the competitive environment. A solution is 

represented by knowledge structures (also called chromosomes) that are composed of 

genes in the form of a binary or nonbinary string. The value of the feature associated with 

a particular gene is called its allele. A collection of chromosomes is called a population. 

Genetic algorithms work with a population of solutions that at each iteration each 

solution in the current population is evaluated. 

The evaluations serve to select a subset of the solutions to be either used directly in the 

next population or indirectly through some form of transformation or variation. The next 

population is formed in two steps. First, recombination or a cross-over operator considers 

two individuals in the population and create a new individual by combining one part of 

one chromosome with another part of the other chromosome (Lee et al., 1997). The role 

of the crossover operator is to form new fit individuals from fit parents to inherit the 

genetic material of the parent chromosomes (natural selection). Second, a mutation 

operator alters one or more components of a selected individual to provide new 

information into the knowledge base. The mutation operator (typically with a very small 

probability) serves as a secondary search that ensures that all points in the search domain 

are reachable by introducing new genetic material into the population (Silver, 2002). The 

incumbent solution is expected to improve as populations are generated until a stopping 

criterion is reached (Hazir et al., 2008). 
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Ant Colony Optimization (ACO) 

The ant colony optimization (ACO) algorithm is a constructive and population-based 

metaheuristic inspired by the collective behavior of real ants for the survival of their 

colonies (Hazir et al., 2008). Ants deposit pheromone on their path to the food sources 

and the ability of other ants to smell this chemical enables them to find the shortest path 

between their nest and the food. When more ants collectively follow a trail, the trail 

becomes more attractive for being followed in the future. The capability of a single ant to 

locate food is limited, but the collected/shared knowledge helps the colony to find 

efficient paths to a food source; the information about the good paths is passed on to the 

members of the colony via the amount of pheromone deposited on the paths. 

Dorigo and Gambardella (1997) used this feature in solving combinatorial optimization 

problems. Each ant constructs a solution by moving from one state to another adjacent 

state by applying a stochastic local search policy (Hazir et al., 2008). Each (artificial) ant 

probabilistically selects the solution components of the problem based on the pheromone 

trail and heuristic information in each iteration. The heuristic information is the 

desirability between the solution components which is defined by the structural properties 

of the concerned problem (Raghavan and Venkataramana, 2009). A tour ends when all 

the ants of the colony generate solutions of different quality. The information gathered at 

the end of each tour is updated through a global pheromone updating rule. The ants are 

expected to generate better solutions by using this information in the next tour. The 

algorithm terminates when a stopping criterion is satisfied (Hazir et al., 2008). The use of 

a colony of ants can give the algorithm increased robustness and in many Ant Colony 

Optimization (ACO) applications the collective interaction of a population of agents is 

needed to efficiently solve a problem. ACO can be applied to any discrete optimization 

problem for which some solution construction mechanism can be conceived (Dorigo and 

Stiitzle, 2005). 

Comparison of the Metaheuristics 

The choice of which metaheuristic approach to use depends on some factors including the 

decision area, the frequency of the decision made, available time to develop, the 
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analytical qualifications of the decision maker, the problem size, presence of significant 

stochastic elements. However, it is desirable to have very good average performance on 

average and robustness in terms of low chance of achieving a poor solution and 

insensitive performance to the actual or estimated values of the parameters of the 

problem. For sensitive results, conditions under which the heuristic should be used has to 

be specified (Silver, 2002). 

A review for comparative studies on the applications in the scheduling problems may be 

useful to have a rational approach to perform the metaheuristics for effective ARSP 

solutions. Metaheuristic algorithms can be divided in population based and single point 

search. Population-based metaheuristic methods (GA, ACO) combine a number of 

solutions in an effort to generate new solutions that inherit merits of the old ones. On the 

other hand, single point search methods (SA, TS) improve upon a specific solution by 

exploring its neighborhood with a set of moves. Another important and widely used 

classification scheme is based on the memory used during the search process. Memory 

usage (in TS, GA and ACO) constitutes a main characteristic of effective metaheuristic 

methods and is the indication of the intelligence employed during the search process. 

Memory-less algorithms (SA) are rarely employed for complex combinatorial 

optimization problems (Zobolas et al., 2008). 

For the both single point search methods, SA and TS, the neighborhood design as well as 

the search pattern within a neighborhood can be the same. Both start with an initial 

complete feasible solution and iteratively generate additional solutions (Silver, 2002). 

The time needed to implement SA or a simple TS is attractively short. Both SA and TS 

implementations for a given problem can usually be adapted to take into account 

constraints which were not in the initial formulation of the problem (Pirlot, 1996). In 

most comparisons of simple TS with SA, TS has generally been found superior, mainly 

by being able to provide solutions of comparable quality in much shorter time. It is often 

possible to obtain solutions of similar quality with both but TS generally runs much 

faster. On the contrary, even a simple TS involves more tactical choices and hence needs 

slightly more time to be implemented and tuned (Pirlot, 1996). Another difference 

between simulated annealing and tabu search is about the acceptance rejection technique. 
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First, a tabu search permits moving away from a local optimum (i.e. diversifying) by an 

essentially deterministic mechanism, whereas, a probabilistic device is used in simulated 

annealing. Second, a tabu search tends to temporarily permit moving to poorer solutions 

only when in the vicinity of a local optimum, whereas this can happen at any time in 

simulated annealing (Silver, 2002). Third, the basic form of a tabu search does not 

include any random elements in contrast with simulated annealing (Silver, 2002). 

Tabu search and SA may be considered as special forms of genetic algorithms with the 

number of individuals in each generation equal to one. The fact that genetic algorithms 

keep track of multiple solutions at each iteration may make them more powerful (but at 

the same time slower) than simulated annealing and tabu search. GAs can deal with wide 

variety of problems and can work with other heuristics (hybrid GA). GAs work with a 

coding of the parameter set, and not necessarily the parameters themselves. They do not 

guarantee optimal solutions, but they can generally find good solutions relatively quickly. 

The design of the neighborhood in GA is different from those in simulated annealing and 

tabu search In the diversification scheme of genetic algorithms, the result of each iterative 

step is a number of different solutions and all are carried over to the next step (in 

simulated annealing and tabu search, only a single solution is transferred from one 

iteration to the next). In genetic algorithms, the neighborhood concept is therefore not 

based on a single solution, but rather on a set of solutions. A new solution can be 

constructed by combining different parts from different schedules within the set (Lee et 

al., 1997). Genetic algorithms fail to intensify the search to the most promising regions of 

a neighborhood. Thus, the successful implementations of genetic algorithms usually 

incorporate a local search procedure for search intensification (Zobolas et al., 2008). 

Besides these theoric comparison, there are also some experimental studies comparing 

the most common metaheuristics. Delia Croce et al. (1992) made a comparison of various 

techniques, including the shifting bottleneck technique, tabu search and genetic 

algorithms. In their comparison, genetic algorithms appeared to be the least effective 

technique among the three neighborhood search techniques. 

Kim et al. (1996) proposed several algorithms, including tabu search and simulated 

annealing methods with the objective of minimizing mean tardiness. After an 



51 

experimental study to set the best values for the parameters, four tabu search methods and 

four simulated annealing methods, all starting from a given initial solution, were 

presented. The simulated annealing algorithms (considering insertion neighborhood) gave 

the best results outperforming the remaining heuristics and metaheuristies. However, the 

results obtained with the simulated annealing algorithms (considering the interchange 

neighborhood) were the worst among all metaheuristics. 

Jozefowska et al. (1998) presented three metaheuristics (SA) (TS) and (GA) to find 

solutions for some discrete/continuous scheduling problems. All the described algorithms 

were designed, adjusted, and applied to the considered class of scheduling problems. 

Comparing the performance of metaheuristics tested in the experiment, the TS performed 

best, finding the largest number of optimal solutions and showing smallest deviation from 

optimum for all the problem sizes. 

Two simulated annealing algorithms which had a difference in the perturbation scheme 

were proposed in Parthasarathy and Rajendran (1998). The initial solution for both 

methods was given by a specific rule. Results were compared against the other heuristics 

including tabu search and two simulated annealing methods produced the best results. 

Hasija and Rajendran (2004) presented a simulated annealing method to minimize total 

tardiness. The initial solution was given by a specific rule proposed in Parthasarathy and 

Rajendran (1998) which was improved through a perturbation scheme. Then, the 

simulated annealing was applied to improve this initial solution. The performance of the 

proposed algorithm was evaluated against the tabu search and the simulated annealing. 

The results showed that the simulated annealing algorithm obtained better results than the 

other two methods. 

Vallada et al. (2008) gave an extensive and comprehensive review of heuristic and 

metaheuristic methods for the permutation flowshop scheduling problem with the 

objective of minimising the total tardiness. Two simulated annealing algorithms 

outperformed all the other methods evaluated. They showed that the tabu search methods 

are good metaheuristics for the interested problem. 
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Hazir et al. (2008) compared the performances of SA, TS, GA, and ACO metaheuristics 

on the Customer Order Scheduling Problem. According to their results, the output quality 

of a metaheuristics were depending on the problem size, as the complexity of the problem 

reduced, all four methods performed better, but among them, the best algorithm was SA, 

even though it is the least intelligent one. However, for dense problem instances, TS and 

ACO outperformed SA and GA. TS had slightly better results than ACO. TS and ACO 

converged to their best results faster than SA and GA. Therefore in case of time 

limitations, the authors concluded that TS and ACO were more preferable and with 

respect to the number of parameters that have to be fine tuned, implementation of TS or 

SA was easier than implementation of the others. 

Jungwattanakit et al. (2009) investigated both constructive and iterative (SA, TS and GA-

based algorithms) approaches for minimizing a convex combination of makespan and the 

number of tardy jobs for the flexible flow shop problem with unrelated parallel machines 

and setup times. For the recommended SA, TS, and GA parameters, they investigated the 

performance of the algorithms with random initial solutions. They found that the SA-

based algorithm outperformed the other algorithms. Then, they studied the influence of 

the initial solution on these algorithms. The results showed that the SA-based algorithms 

were still recommendable (Jungwattanakit et al., 2009). However, simulated annealing 

was unable to quickly achieve good solutions to job shop scheduling problems, perhaps 

because it is a generic and memory-less technique (Jain and Meeran, 1998). 

As a result, the initial solution, the setting of parameters, the language, and manner in 

which the procedure is coded, the platform on which the study is conducted affect the 

outcome of each comparative study. But it is clear that simulated annealing is easy to 

implement while obtaining qualified solutions. 

3.2.2.4 Metaheuristic for Randomized Priority Search (MetaRaPS) 

MetaRaPS was initially introduced by DePuy et al. (2001) based on the idea of 

COMSOAL (Computer Method of Sequencing Operations for Assembly Lines), which is 

a computer heuristic designed by Arcus (1966) to solve the assembly line balancing 

problem. 
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Moraga et al. (2006) defines MetaRaPS as "generic, high level search procedures that 

introduce randomness to a construction heuristic as a device to avoid getting trapped at a 

local optimal solution". MetaRaPS combines the mechanisms of priority rules, 

randomness, and sampling. The main properties of MetaRaPS are the use of randomness 

over a construction heuristic as a mechanism to avoid local optima, and the expectation 

that good unimproved solutions lead to better neighboring solutions (Lan et al. 2007). 

DePuy et al. (2001) expresses that run times for MetaRaPS is not significantly affected 

by the size of the problem, it is easy to understand and to implement, and can generate a 

feasible solution at every iteration. 

MetaRaPS is a general form of other greedy algorithms, COMSOAL and GRASP 

(Greedy randomized Adaptive Search Procedure; Feo and Resende, 1995) and it is more 

flexible and more efficient (Lan et al. 2007). MetaRaPS is a two-phase iterative search 

procedure with a constructive phase to create feasible solutions through randomized 

construction heuristic priority rules, followed by an improvement phase to improve them 

at each iteration. 

In the constructive phase, a solution is built by repeatedly adding basic feasible elements 

or activities to the current solution based on priority rules until a stopping criterion is 

satisfied. Each feasible basic element is characterized by a greedy score according to 

some priority rule. The best feasible element might assume either the lowest score or the 

highest score depending on the definition of the priority rule (Lan et al. 2007). Generally, 

solutions obtained by implementing only constructive algorithms can reach mostly local 

optima. To avoid local optima, MetaRaPS does not select the component or activity with 

the best priority value every time; instead, the algorithm may accept one with a good 

priority value, not necessarily the best, based on a randomized approach (DePuy et al. 

2005). This randomness of MetaRaPS introduces diversification to the process while 

keeping the same quality produced by the priority rule (Rabadi et al., 2006). 

A MetaRaPS algorithm uses four parameters: the number of iterations (/), the priority 

percentage (p%), the restriction percentage (r%), and the improvement percentage (/%). 

First, the number of iterations (/) determines the number of feasible solutions constructed. 

Second, the parameter p% is employed to decide the percentage of time, the component, 
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or activity with the best priority value will be added to the current partial solution, and 

100%-/?% of time the component or activity with the good priority value is randomly 

selected from a candidate list (CL) containing "good" components or activities. Third, the 

CL of components or activities with good priority values is created by including ones 

whose priority values are within r% of the best priority value. The smaller %p and the 

larger %r for a given priority rule, the more randomness will be introduced. Elements are 

added to the solution until a feasible solution is generated. The construction stage ends 

after a feasible solution is generated. 

The improvement phase is performed if the feasible solutions generated in the 

construction phase are within i% of the range between the best and worst unimproved 

solution value obtained in the construction phase (Moraga et al., 2006). In MetaRaPS, 

only the constructed solutions with promising, or good enough, values are improved by 

using a local search algorithm. 

3.2.2.5 Integrating Metaheuristics and Dispatching Rules 

An effective heuristic may be combined with a metaheuristic in order to quickly arrive to 

a solution close to the optimal. There is an advantage in starting from a better initial 

solution than a random solution in problems where good solutions cannot be easily 

obtained through a small number of elementary transformations of a random solution 

(Pirlot, 1996). Moreover, a good seed solution can decrease the computational time 

considerably. 

There are some researches as an example of this form of improving an initial solution. In 

Lee and Pinedo (1997), a three phase heuristic was presented for scheduling jobs on 

parallel machines with sequence-dependent setup times to minimize the total weighted 

tardiness. In the first phase, factors or statistics which characterize an instance were 

computed. The second phase consists of constructing a sequence by a dispatching rule 

which was controlled through parameters determined by the factors. In the third phase, a 

simulated annealing method was applied starting from a seed solution that resulted from 

their second phase. 
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Eom et al. (2002), proposed a three-phase heuristic to minimize the total weighted 

tardiness of a set of tasks with known processing times, due dates, weights and family 

types for parallel machines. In the first phase, jobs were listed by the earliest due date and 

then divided into small job-sets according to a decision parameter. In the second phase, 

jobs were grouped by the due date within applicable families using apparent tardiness 

cost with setup (ATCS), and the sequence of jobs within families is improved through the 

use of the tabu search (TS) method. In the third phase, jobs were allocated to machines 

using a threshold value and a look-ahead parameter. 

Logendran and Subur (2004), reported a methodology for scheduling unrelated parallel 

machines with dynamic job releases and dynamic machine availability to minimize the 

total weighted tardiness. Four different methods based on simple and composite 

dispatching rules were used to identify an initial solution, which is then used by TS-based 

heuristic solution algorithm to ultimately find the best solution. The results showed that 

the newly developed composite dispatching heuristic, referred to as the apparent 

piecewise tardiness cost, is capable of obtaining initial solutions that significantly 

accelerate the TS-based heuristics to attain the best solution. 

Monch et al. (2005), proposed two different decomposition approaches to minimize total 

weighted tardiness on parallel batch machines with incompatible job families and 

unequal ready times of the jobs. The first approach forms fixed batches, then assigned 

these batches to the machines using a genetic algorithm (GA), and finally sequenced the 

batches on individual machines. The second approach assigned the jobs to machines first 

using a GA, then formed batches on each machine for the jobs assigned to it, and finally 

sequenced the batches. Dispatching rules were used for the batching phase and the 

sequencing phase of the two approaches. 

Monch (2008) presented an ant colony optimization (ACO) approach to solve unrelated 

parallel machine total weighted tardiness (TWT) scheduling problems. They used the 

Apparent Tardiness Cost (ATC) dispatching rule for the computation of the heuristic 

information. 

There is an advantage in starting from a better initial solution than random solution in 

problems where good solutions cannot be easily obtained through a small number of 
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elementary transformations of a random solution (Pirlot, 1996). A good seed solution can 

decrease the computation time considerably (Lee and Pinedo, 1997). 

3.3 Approximate Algorithms for the ARSP 

In this dissertation, four algorithms APTCR, SARandom, SAAPTCR and MetaRaPS were 

developed for ARSP to find near optimal solutions by taking into account the d-to-D 

window and jobs' release times. Firstly, a new composite dispatching rule, APTCR 

(Apparent piecewise tardiness cost with release time rule) is introduced which extends 

the ATC rule by modifying the priority index. 

Secondly, simulated annealing (SA) has been successfully applied to different scheduling 

problems, and is therefore applied for the first time to the problem addressed in this 

research to obtain near-optimal solutions. SA that is a local search improvement heuristic, 

generates neighbor solutions by simple moves from the current solution starting with a 

randomly generated initial solution. The SA method was chosen as a robust meta-

heuristic to provide immediate results to the problem. SA can deal with arbitrary systems 

and cost functions and is relatively easy to implement even for complex problems. It 

generally gives a good solution and statistically guarantees finding an optimal solution, 

but SA cannot tell whether it has found an optimal solution (Tan et al., 2001). Two 

general SA metaheuristic algorithms will be implemented to improve the random initial 

solution (SARandom) and the initial solution constructed by APTCR (SAAPTCR)- SARand0m is 

used as a way to evaluate the performance of the APTCR rule, whilst SAAPTCR results are 

compared to MetaRaPS especially for large problems. 

Thirdly, MetaRaPS which is a new and promising randomized search metaheuristic, is 

applied to the problem by introducing randomness to the APTCR construction heuristic. 

3.3.1 Apparent piecewise tardiness cost with release time (APTCR) Rule 

In order to find a good initial solution, the Apparent Tardiness Cost (ATC), which is a 

good rule for the classical total tardiness scheduling problem, was modified while 

keeping its main rationale of calculating priority index for the jobs waiting to be 

scheduled. An ATC heuristic is a composite dispatching rule that combines the WSPT 
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(Weighted Shortest Processing Time) rule and the so-called Minimum Slack First (the job 

with the minimum slack is scheduled) rule (Pinedo, 2008). Several modifications of the 

ATC rule have been introduced in order to take release dates and sequence dependent 

setup times into account (e.g., Pfund et al., 2008). For the ARSP, a modified composite 

dispatching rule of Apparent Tardiness Cost rule has been developed taking d-to-D 

window into account to find scheduling priorities for the heuristic algorithm. 

Generally ATC rules are based on the rationale that the highest priority job would be the 

one with the highest net savings for a unit of resource cost. Priorities may be estimated by 

the following formulation 

m = —UJ (io) 
pj 

Uj is the marginal cost of delay; in other words activity time urgency function. The 

difficulty of this formula is the estimation of U} (Morton and Pentico, 1993). 

In the R&M heuristic (Rachamadugu and Morton, 1982), which is another version of 

ATC rule for weighted tardiness problems, priorities are calculated by rating the marginal 

benefit B} (t) of expediting the job (formulation (11)) to the marginal cost C/t) of using 

the machine for that job (formulation (12)) (McKay et al., 2000). 

Bj(t) = wjexp 
Sj + 

ixp[-/f] (11) 
kp 

Cj(t)=IRffCxi-It] (12) 

t: Decision time point that the resource is considering which job to choose next. 

R : The current implicit price of the machine, 

/ : The firm's (marginal) cost of capital. 

P: The average processing time of the unscheduled jobs at time t, 

k : 'Look-ahead' or planning parameter and is set empirically. 
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S/ (t): a slack factor = max [dj - pj -1, 0]. 

R and I can be assumed constant for all jobs. Then, the priority for a job (formulation 

(13)) is the ratio of benefit and cost. 

max[j, - pj -1,0] 

k\p 

Thus, the rule gives higher priorities to jobs approaching the due date. The due date for 

job7 has no impact on the priority index when C} > d}. 

The proposed APTCR heuristic is dynamic in a sense that after the completion of each 

job, the remaining jobs are prioritized according to priority index, and the job with the 

highest priority is selected for assigning to the earliest available machine. The priority 

index for job j at time t is calculated by (14) 

max[D/ -£ / - / + e,0] 
x F =i (14-) 

[ D / - p / - r + f ] 

where 

r is the average ready time of the remaining jobs, 

max[Dj -pj -1, 0] is deadline slack factor, 

max[rj -1, 0] is ready time slack factor, 

kj, &2, and fc? are scaling parameters, called look-ahead parameter 

max[D/ - pj — t + £,0]/[Dj — pj — t + e] is scheduling control factor 

The main rationale of this index is that getting closer to the due dates, deadlines, and 

ready times influence the priorities. The urgency of a job is measured by all these slack 

factors. 

When the d-to-D window is considered, a new slack factor has to be included in the 

formulation. Because a much higher tardiness cost will be incurred if jobs miss the 

m(X) = — exp 
PJ 

*i(t) -exp 
max [dj- pj-t,0] 

exp 
max [Dj - / j / - f , 0 ] 

k p 
2 

x exp 
max [ r / - r , 0 ] 
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deadline, a second slack factor may be defined as max[Dj - pj -1, 0]. Similar to due date, 

the deadline has an impact only before it has been reached. Completion time after the 

deadline results in a highest priority. The deadline factor is calculated by 

exp 
max[Dy - pi — t,0] 

kip 
(15) 

Moreover, when the a job misses the deadline, its priority has to be assigned to zero after 

applying a high penalty because it will no longer belong to the pool of jobs to be 

scheduled. Then, in order to illustrate this situation, the scheduling-decision factor (16) 

has to be included as a multiplier. 

max [Dj - pj-t + £,0] 

[Dj - pj-t + e] 

Before reaching the deadline for job j , the scheduling control factor helps identify a job 

that has missed its deadline but has no effect on the priority. A small number e is added to 

allow assigning the job if the completion time happens to be exactly equal to the 

deadline. 

Finally, the release time influences the priority index when it is larger than the current 

time, t. Thus, for dynamic release times, the factor (17) is included as a multiplier. 

exp 
max \rj [rj-t,0] 

Ic3r 
(17) 

The rationale here is that as the current time gets closer to the release date of job j , its 

priority increases, but after j is released (i.e. r} < t), the urgency will vanish in this term 

and be reflected in the due date and deadline terms. The pseudo code for APTCR is 

given below in APTCR_ALGORITHM. 

APTCR_ALGORITHM 

t: decision time for assignment 

C/. completion time of job j 
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Cmax, (t): makespan of the machine i at time t 

7r/t): priority of the job j at decision time t 

U: set of undecided(to schedule or to unschedule) jobs 

M: set of machines 

n : number of jobs 

r,: release time of job j 

Pj: processing time of job j 

Wj.- weight of job j 

Tj: tardiness of job7 

L: a large integer 

1. Setf =0, U={l,2,...n}, M={l,2,...m}, 
Cj = 0 V; 6 U, Cmax,(t) = 0 V i e M 

2. Calculate n}(t) V j e U by using equation (14) 
3. if 7c/t) = 0 Vy 6 U then remove j from U and set C, = L 
4. while U ± 0 
5. Findy' = { j 6 U • nj(t) = max {nk} } 

6. Find i= {i €M : Cmaxt (t)= minf Cmaxm (t)} } 
mEM 

7. Update Cy = Cmax, (t)+max(rp t)+ p3 and removey from U 
8. Update Cmax, (t) = Cj 
9. Update t= min{ Cmaxm (t)} 
10. Calculate x/t) Vj e U by using equation (14) 
11. if K/t) = 0 V; e U then remove j from U and set Cs-L 
\2. end while 

13. Calculate and report the total weighted tardiness 

A sample for the problem with 12 jobs and 3 machines is given to clarify the 

methodology of obtaining the APTCR solution. Table 5 summarizes the priority index 

values calculated by using equation (14) for iterative time values. Every time the priority 

index is calculated, it takes into account the previous decisions as they affect the earliest 

starting time for the remaining jobs. The job with the highest priority value is assigned to 

the earliest available machine. According to Table 5, jobs 11, 2 and 3 which have the 

highest priority index values for t=0, are assigned to the three machines. After these 

assignments, the minimum of the latest completion times (or Cmax) is 25.5 at Machine 1. 

Job 7 is then assigned to follow Job 11 on Machine 1 as it has the maximum priority 

index value at t=25.5. 
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Jobs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

M=l 

t=0 

0 000009 

0 001625 

0 000693 

0 000078 

0 000000 

0 000074 

0 000000 

0 000004 

0 000295 

0 000074 

0 019195 

0 000006 

M=2 

t=0 

0 000009 

0 001625 

0 000693 

0 000078 

0 000000 

0 000074 

0 000000 

0 000004 

0 000295 

0 000074 

M=3 

t=0 

0 000009 

M=l 

t=25 5 

0 02201 

M=2 

t=42 5 

0 04526 

M=3 

t=44 

0 04824 

M=l 

t=44 5 

0 04927 

M=2 

t=61 5 

0 08686 

M=l 

t=74 5 

012067 

M=3 

t=76 

M=2 

t=98 5 

0000693 

0 000078 

0 000000 

0 000074 

0 000000 

0 000004 

0 000295 

0 000074 

0 01035 

0 04748 

0 00979 

0 05279 

0 04664 

0 03915 

0 03177 

0 02128 

0 09765 

001817 

0 02268 0 02316 0 03946 0 05482 0 05694 0 

001887 001911 0 02937 0 

0 09594 

0 07267 

0 06535 

010224 

0 07548 

0 06964 

007644 

007113 011123 

0 00001 0 00001 0 01025 0 02109 0 02247 0 02295 0 04082 0 05671 0 05890 

Table 5 APTCR Priority Index Values Calculated for Iterative Time Values 

The scheduling using APTCR continues in a similar fashion until a complete solution is 

obtained as given in Table 6. Jobs whose completion times missed their deadline are 

denoted by very large completion times and are assigned to a dummy machine m+1 

(machine 4 in this case). In Table 6, the first row is the job indices, the second row is the 

machine indices, and the third row is the completion times. For example, job 7 is 

scheduled on the machine 1 to complete at time 44.5. Job 4 and job 6 are not scheduled 

on any machines (zero priority index values in Table 5) and this situation is represented 

by scheduling them on the dummy machine 4 with very long completion time. 

Job index 

Machine index 

Completion time 

11 

1 

25.5 

7 

1 

44 5 

9 

1 

74.5 

1 

1 

115.5 

2 

2 

42.5 

5 

2 

61.5 

10 

2 

98 5 

3 

3 

44 

8 

3 

76 

12 

3 

118 

4 

4 

99999 

6 

4 

99999 

Table 6 Sample APTCR Solution 
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3.3.2 Simulated Annealing (SA) 

Two general SA metaheuristic algorithms (SARandom and SAAPTCR) will be implemented to 

improve the random initial solution and the initial solution constructed by APTCR. SA 

typically keeps one solution in memory and tries to move to improved solutions. The 

speed of a SA procedure depends on several parameters including the temperature 

cooling rate, the size of the neighborhood, and the nature of the objective function. The 

speed as well as the quality of the SA is also dependent on how fast the algorithm can 

find a good neighbor, which may lead to an optimal or near-optimal solution. Selecting 

the most promising candidates in the search for a good neighbor accelerates the 

convergence towards a high quality solution. Pseudo code for SA is given below. 

SA_ALGORITHM 

S: search space 

6: current solution 

f(8): objective function value of the current solution 

Memory: memory set of current best solution and its objective function value 

/ : inner loop iteration counter 

imax •' max number of inner loop iterations 

t: iteration counter 

tmax : max number of iterations 

T: temperature 

k : initial temperature coefficient 

a : temperature cooling coefficient 

N(6): neighborhood of 9 

6': neighbor solution of the current solution 

9*: best solution 

1. Get random or APTCR solution as 6 from S using APTCR_ALGORITHM 

2. Calculate/(#) 
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3. Initialize memory, Memory ={( 6 ,f(0))} 

4. Set iteration counters i = 0, t = 0 

5. Set initial temperature T = k.f(9) 

6. while t < tmx do 

7. while i < IMAX do 

8. Choose tf'e N(0) c 5 w/iereM = {(0, f(0))} 

9. Calculate f(6>') 

10. if f(9')<f(8) or rand [0,1 ] < « T
 then 

11. M={(&,0))} 

12. end if 

13 i = i+1 

14. end while 

15. Update temperature T = a.T 

16. i = 0, t = t+1 

17. end while 

18. Output best solution 6 stored in M 

SA has four parameters: maximum number of outer loop iterations(tmax), maximum 

number of inner loop iterations(imax), initial temperature coefficientk) and temperature 

cooling coefficient(a) and these parameter will be tuned in Section 4.3.2 for better 

solutions. 

The mixture of two types of operations (job exchange and job insertion) is used for the 

SA to perturb the current solution locally. In order to avoid high unavailability costs 

when there are unscheduled jobs, job insertion is executed by inserting one of the 

unscheduled jobs to replace a scheduled job and shifting the jobs to the right on the 

corresponding machine. In the job insertion case, the size of the neighborhood is n-l+m 

where n is the number jobs and m is number of machines. If there are no unscheduled 

jobs, then job exchange is used for perturbation in which case the size of the 
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neighborhood would be n.(n-l) possibilities. After each perturbation, completion times 

on the corresponding machines are revised according to the new sequence. 

The SA perturbation operations are explained in Table 7 for the sample APTCR solution 

given in Table 6. There are two alternatives for perturbation. First, if there does not exist 

an unscheduled job, an exchange between randomly selected job 10 (the third job on 

Machine 2) and job 11 (the first job on Machine 1) is performed for perturbing. As can be 

seen in Table 7, job 1 and job 11 eventually miss their deadlines when completion times 

on the Machine 1 and Machine 2 are revised. Second, if there exists an unscheduled job 

(e.g. job 6), job insertion is performed by inserting job 6 into the left of a randomly 

selected job (e.g. job 1). In this case, only job 1 on the right of the newly inserted job 6 is 

shifted causing it to miss its deadline as can be seen in Table 8. 

Job 

Exchange 

Jobs 10 

and 11 

10 

1 

45.5 

7 

1 

64.5 

9 

1 

94.5 

1 

4 

99999 

2 

2 

42.5 

5 

2 

61.5 

11 

4 

99999 

3 

3 

44 

8 

3 

76 

12 

3 

118 

4 

4 

99999 

6 

4 

99999 

Table 7 Job Exchange Operation for SA Perturbation 

Job 

Insertion 

Job 6 

before Job 

1 

11 

1 

25.5 

7 

1 

44.5 

9 

1 

74.5 

6 

1 

118.5 

1 

4 

99999 

2 

2 

42.5 

5 

2 

61.5 

10 

2 

98.5 

3 

3 

44 

8 

3 

76 

12 

3 

118 

4 

4 

99999 

Table 8 Job Insertion Operation for SA Perturbation 
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3.3.3 Metaheuristic for Randomized Priority Search (MetaRaPS) 

The construction phase in MetaRaPS algorithm builds a solution by systematically 

adding feasible jobs to the current schedule on identical parallel machines. This study 

will consider the use of randomized version of APTCR composite dispatching rule to 

construct initial solutions which will be improved by a local search operation. The pseudo 

code for an iteration of MetaRaPS algorithm is given below. 

MetaRaPS_ALGORITHM 

0 : constructed feasible solution 

f(9): objective function value of the constructed solution 

1. Set t=0, U = {1,2, ...n},M = {1,2, ...m], Memory = {( /best , /worst)} 

2. Cj = 0 V; £ U, Cmaxi(t) = 0 V i E M, CL = 0 

3. Calculate 7tj(t) V j £ U by using equation (11) 

4. if 7ij(t) = 0 V; £ U then remove j from U and set Cj =a large integer 

5. whi leU*0 

6. Find i = {i £ M : Cmaxj (t)= min{ Cmaxm (t)} } 
ItlEM 

7. Findj = { j E U •• nj(t) = max {n^} } 

8. P = RND(0,1) 

9. if P < %p then 

Set job-to-schedule index, s = j 

10. else 

Form CL = {k : k e U \nk(i) > 7Cj(t). %r } 

Randomly choose job k from CL 

Set job-to-schedule index, s = k and CL = 0 

11. end if 

12. Update Cs = Cmaxj (t)+max(rs, t)+ ps and remove job s from U 

13. Update Cmaxj (t) = Cs 

14. Update t = min { Cmaxm (t)} 
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15. Calculate 7t,(t) V j 6 U by using equation (11) 

16. if 7tj(t) = 0 V j E U then remove j from U and set C, =a large integer 

17. end while 

18. Calculate f(8) 

19. if f(0) < ftest + (fworsr fbcst).%i t h e n 

20. Findtf'e N(0): 

if at least one unscheduled job exists, use job insertion, 

else use job exchange 

21. Calculate / (£ ' ) 

22. end if 

23. Update Memory 

The APTCR index for each job is calculated as discussed in Section 3.3.1, and the 

selection is made based on MetaRaPS principles. If the random number is smaller or 

equal to the priority percentage, the job with the highest APTCR priority index (7Uj(t)) is 

selected. The remaining time, jobs whose priority indices are higher than the lower limit 

(jc/t). %r) are added to the candidate list (CL) and the next job is selected from this CL 

randomly. After all jobs are assigned to machines, the construction phase of MetaRaPS is 

completed. A sample data given in Table 9 for problem with m = 3 machines and n = 12 

jobs, was randomly generated to explain MetaRaPS algorithm for ARSP. 

The construction phase of MetaRaPS algorithm iteration is shown in Table 10. In every 

step of this phase, jobs are assigned to the machines with the earliest availability. In the 

first step, job 10 has the maximum priority index value. Jobs 2, 4 and 5 are in the CL 

because their priority values are higher than 0.0240 (=0.0959 x 0.25). Since the generated 

random number (RN) is less than %p(0.21 < 0.75), job 10 is selected to be assigned to 

Machine 1 without using the CL. 
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Job r 5 .
e a S e

 rocessing Weight Due Date Deadline 
Time Time 

1 19 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

24 

1 

3 

10 

2 

5 

11 

0 

13 

15 

30 

28 

23 

28 

19 

45 

45 

43 

28 

23 

29 

32 

4 

7 

8 

8 

6 

5 

4 

3 

1 

8 

1 

2 

79 

55 

70 

55 

41 

100 

92 

91 

67 

46 

71 

79 

109 

83 

103 

83 

60 

145 

137 

134 

95 

69 

100 

111 

Table 9 Sample Data for ARSP 

Machine 

Step 1 2 

Max. 
„ . .. Job with ¥ . 
Priority Job 

i T„J„ Max. Lower „T „ . . RN> „ . ,. Scheduled .„ . . 
3 Index _ . ¥ . CL RN Selection .„K Machine 

Value
 P r l o r l t

y
 L , n u t

 P= Criteria 
v a u e

 r=0.25 0.75 ^ n t e n a 

0 0959 10 00240 2,4,5 

2.4 23 

23 

23 

42 

0 

28 

28 

28 

0 

0 

28 

28 

0 0800 

0 0800 

0 2167 

0 0895 

5 

5 

5 

3 

0 0200 

0 0200 

0 0542 

0 0224 

021 

0 85 

0 77 

0 56 

0 37 

no 

yes 

yes 

yes 

yes 

Max 

Priority 

From CL 

FromCL 

Max 

Priority 

Max 

Priority 

42 51 28 0 0340 1 0 0085 6.7.8.9,11,12 0 81 yes FromCL 

7 

8 

9 

10 

42 

72 

72 

117 

51 

51 

96 

96 

71 

71 

71 

103 

0 0557 

0 0377 

0 0573 

0.0585 

1 

7 

7 

7 

0 0139 

0 0094 

0 0143 

-

6,7,9,11,12 

6,9 11,12 

12 

-

021 

0 79 

0 93 

-

no 

yes 

yes 

-

Max 

Priority 

From CL 

From CL 

1 

6 

12 

7 

1 

2 

3 

1 

Step 9 9 11 None 

Table 10 Construction Phase of MetaRaPS Algorithm 
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The latest completion time of machine 1 is updated as the completion time of job 10. The 

minimum latest completion time (t = 0) does not change. Job 5 is the highest priority job 

and jobs 2 and 4 are in the CL in the second step. Differently from the first step, RN> %p 

(0.85 > 0.75) and therefore job 2 is randomly selected from CL to be assigned to Machine 

2. Finally, jobs 9 and 11 are not assigned to any machine as their completion times will 

exceed their deadlines. 

Since the best feasible job is the job with the highest priority index, the improvement 

phase is performed when the constructed feasible solution value is less than the limit 

value. After a number of iterations, MetaRaPS tracks the best and worst solutions found 

during the construction phase. A constructed solution goes through the improvement 

phase by the same perturbation used with SA (see Section 3.3.2 for the details of job 

exchange and insertion operations) if its objective function value satisfies the following 

requirement; 

f(0) ^fbest + (fworst -fbest)-%i 

where f(6) is the objective function value of the constructed solution, ft,est is the best and 

fworst is the worst objective function value found before applying the improvement 

procedure. 

3.4 Complexity Analysis 

Complexity of an algorithm and complexity of a problem which are related but different 

concepts are analyzed for ARSP and its algorithms. Firstly, the complexity of an 

algorithm for a certain problem is measured by the maximum (worst-case) number of 

computational steps needed to obtain an optimal solution as a function of the size of the 

instance (i.e., the number of jobs) (Pinedo, 2008). The number of computational steps 

may often be the approximated maximum number of iterations of the algorithm. In order 

to be independent of a particular type of a computer the deterministic Turing machine 

(DTM) is used as an abstract model of computation (Blazewicz et al., 2007). Worst case 

running time is the behavior of the algorithm with respect to the worst possible case of 

the input instance. It is an upper bound on the running time for any input. An algorithm 

whose order-of-magnitude time performance is bounded by a polynomial function of n, 
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where n is the size of its inputs, is called a polynomial-time algorithm. It is one whose 

time complexity function is 0(p(k)), where p is some polynomial and k is the input length 

of an instance. Each algorithm whose time complexity function cannot be bounded in that 

way will be called an exponential time algorithm. In practice, the size of an instance is 

often simply characterized by the number of jobs (n). For example, if the maximum 

number of iterations needed to obtain an optimal solution is 1200 + 50n2 + 4n3, then only 

the term which, as a function of n, increases the fastest is of importance. This algorithm is 

then referred to as an 0(n) algorithm. An 0{n~) algorithm is usually referred to as a 

polynomial time algorithm; the number of iterations is polynomial in the size (n) of the 

problem. As another example, a simple merge sort can be done in 0(n log(n)) time. 

As for problem complexity, a problem that admits a reasonable or polynomial-time 

solution is said to be tractable, whereas a problem that admits only unreasonable or 

exponential-time solutions is termed intractable. In general, intractable problems require 

impractically large amounts of time even on relatively small inputs, whereas tractable 

problems admit algorithms that are practical for reasonably-sized inputs (Harel and 

Feldman, 2004). A significant amount of research in deterministic scheduling has been 

devoted to finding polynomial time algorithms for scheduling problems. However, many 

scheduling problems do not have a polynomial time algorithm; these problems are the so-

called NP-hard problems. NP stands for the class of problems that admit 

nondeterministic polynomial- time algorithms, P stands for what we have been calling 

tractable problems; namely, those that admit polynomial-time algorithms. This would 

mean that P is a proper subclass of NP and the classes P and NP-complete problems are 

disjoint. The NP-complete problems, are the "hardest" problems in NP, in the sense that 

there are polynomial-time reductions from every problem in NP to each of them. 

A fundamental concept in complexity theory is the concept of problem reduction. Very 

often it occurs that one combinatorial problem is a special case of another problem, or 

equivalent to another problem, or more general than another problem. Often, an 

algorithm for one scheduling problem can be applied to another scheduling problem as 

well. For example, the problem 1| |Sw;r; is an important generalization of the 1| |S7) 

problem. In complexity terminology it is then said that 1| |L T} reduces to 1| \£wjTp which 
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is an NP-hard problem (Pinedo, 2008). This means that no efficient algorithm can be 

obtained for 1| \ZWJTJ with arbitrary weights. Moreover, the identical parallel machine 

scheduling is NP-hard even with only two machines (Karp, 1972; Garey and Johnson, 

1979). Thus, ARSP with release time and d-to-D window must also be NP-hard, which 

means that obtaining optimal solutions for large instances will be computationally 

difficult. There are n+l different cases of the assignment and permutation of n jobs to m 

machines including the possibilities of jobs being unscheduled. In Case 1 below for 

example, all n jobs are scheduled for which the number of possible combinations is as 

shown. Case 2, however, captures the case of scheduling n-1 jobs with 1 job left 

unscheduled. It is important to note that the number of possibilities includes permutations 

only for jobs that have been scheduled as the sequence (or permutation) of the 

unscheduled jobs is not important. 

Case Number of Scheduled Jobs Possibilities 

n-1 

n-2 

\mn 

.n\.m 

n-1 

n-2 

.(« - \)\.m n-1 

.{n — 2)\.m 
n-2 

n V..m 

n+l 0 

n 
^0 

Jobs can be selected for scheduling according to k combination of n which is defined as 

n 
k) k\{n-k)\ 

file:///ZwjTj
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For instance n - 1 case captures the number of possibilities in which n-1 can be scheduled 

to machines assuming only one job is left unscheduled. There are nlm possibilities to 

schedule n jobs on m machines because there is a total of m possibilities for machine 

assignment, and n\ permutations on each machine. Total schedule possibilities including 

unscheduled jobs is sum of all possibilities for all n cases: 

.nlm" + 
n-1 

(n-\)\.m"-' +...+ 
1 

A\.m + 
'rO 

0 vuy 

For example, when it is assumed that n=4 and m=2, the total number of possible 

combination is as follows: 

4 |.4!.24 + f 4 l 3!.23 + 
4 '.2!.22 

1I.2 + 1 = 637 

According to worst case running time analysis in Table 11, all three algorithms have 

0{n2) order of complexity. 

Algorithm 

APTCR 

SA 

MetaRaPS 

Worst case Running Time 
For each n assignment: 

Calculate the index values O(n), 
Find the job with max index O(n), 
Find the machine with min completion time O(m), 

Check deadline and Calculate TWT O(n), n>m 
For each iteration (tmax): 

Generate the initial solution O (n), 
Improvement 0(n2) 

(swapping n.(n-l) or insertion (n+m-1)) 
Check deadline and Calculate TWT O(n). 
Comparison O(l) 

For each iteration (tmax): 
Construction of n jobs: 

Calculate the index values O(n), 
Find max and min index O(n), 
Select one of best r jobs O(n), 
Find the machine with min completion time O(m) 
Check deadline and Calculate TWT O(n), 

Improvement 0(n2) 

Algorithm Order 

0(n2) 

0(n2) 

0(n2) 

Table 11 Complexity Analysis of Scheduling Algorithms 
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CHAPTER 4 

COMPUTATIONAL STUDY FOR ARSP'S SCHEDULING ALGORITHMS 

Computational study for the ARSP algorithms contains estimating the look-ahead 

parameters values for APTCR, parameter setting for SA (same parameters were used for 

both SA versions) and MetaRaPS, and determining the performance of the proposed 

algorithms for small (n=12) and large (n=60) size problems. In order to perform a fair 

comparison, APTCR - SArandom pair and SAAPTCR - MetaRaPS pair which are used to 

improve an initial solution constructed by APTCR rule, were compared separately. For 

all of these study, some extensive experiments were designed and conducted. 

Design of Experiments (DOE) is a useful systematic approach for resolving 

multidimensional problems such as determining the relationship between input factors 

and process outputs. A primary goal of many DOEs is to identify which of the factors are 

really important for which responses, and which are not and can thus be dropped from 

further consideration, greatly reducing the experimental effort and simplifying the task of 

interpreting the results (Sanchez, 2008). An experimental design formally represents a 

sequence of experiments to be performed, expressed in terms of factors (design variables) 

set at specified levels (predefined values). An experimental design is represented 

mathematically by a matrix where the rows denote experimental runs and the columns 

denote the particular factor setting for each factor for each run (Simpson et al., 1997). 

The collected response data is often applied to fit mathematical equations that serve as 

models to predict the outcome with any given combination of values. One of the steps in 

a typical parameter design study is designing the matrix experiment after identifying the 

quality characteristic to be observed and the objective function to be optimized, 

identifying the design parameters and alternative levels, and defining possible 

interactions between these parameters (Phadke, 1989). Many designs are available in the 

literature such as full factorial design, central composite design, orthogonal array design, 

D-optimal design, and signal-to-noise (S/N) ratio method. 
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Multi factorial design with experiment factors and factor levels was employed and their 

high level interactions were analyzed to gain insight into the algorithms' performance 

under different conditions (See Montgomery (2001) for discussion on DOE). The most 

basic experimental design for multi levels is a full factorial design. Factorial designs are 

straightforward to construct and readily explainable—even to those without statistical 

backgrounds. They examine all possible combinations of the factor levels for each of the 

variables (Sanchez, 2008). The number of design points dictated by a full factorial 

design is the product of the number of levels for each factor. The most common designs 

are the 2" (for evaluating main effects and interactions) and 3n designs (for evaluating 

main and quadratic effects and interactions) for n factors at 2 and 3 levels, respectively. 

2n factorials are most efficient if the simulation response is assumed that it is well-fit by a 

model with only linear main effects and interactions, while 3n factorials provide greater 

detail about the response and greater flexibility for constructing metamodels of the 

responses. Multilevel full factorial design can reveal complexities in the landscape. 

When each factor has three levels, the convention is to use -1,0, and 1 for the coded 

levels. Despite the greater detail provided, and the ease of interpreting the results, fine 

grids are not suitable for more than a handful of factors because of their massive data 

requirements (Sanchez, 2008). 

The proposed approximate algorithms were implemented in C++. Optimal solutions were 

obtained by implementing the MILP model (Section 3.1) in OPL Studio 6.3 with CPLEX 

12.1 solver. Intel Core 2 Duo 2.10 GHz CPU with 2.00 GB of RAM was used to perform 

the computations. Note that the MILP model could be used only for instances with 12 

jobs in order to limit the CPU time to less than 10 minutes. 

4.1 Experiment Factors 

The design of experiments approach to estimate the look ahead parameters is described 

below. Four different factors are included in the design: Job machine factor (ju), Due date 

tightness (a), d-to-D window tightness (y) and Release time range factor (p) which 

characterize a problem instance as follows : 

1. Job machine factor : /u = n/m, the average number of jobs processed per machine. 
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2. Due date tightness factor a : It characterizes how tight the due dates are and is defined 

as a coefficient in d} = r} + a.p} by taking into account fuel level and refueling time. The 

due date tightness a is assessed by the decision maker, and should rationally take values 

greater than 1 to provide enough time to complete the process. A small value of a 

indicates tight due dates and a large a indicates loose due dates. 

3. Due date-to-Deadline (d-to-D) window tightness factor y : It characterizes how tight 

the d-to-D windows are. The deadline can be defined as Ds = d} + y.pj. Consequently, the 

d-to-D window is calculated by D} - dj = y.pj. The d-to-D window factor y is assumed 

always higher than zero. A small value of y indicates tight d-to-D windows and a large y 

loose d-to-D windows. 

4. Release time range factor p is a measure of how spread out the release times are as 

compared to the estimated makespan (Cmax). The makespan (Cmax) is the maximum 

completion time of all released jobs. Since Cmax is dependent on the schedule and is not 

known apriori, an estimated makespan (Cmax) will be developed in the following 

subsection. 

4.2 Data Generation 

1. The number of jobs is set to a low value (n = 12) and a high value (n = 60) and then the 

number of machines is determined by using m= n//u where// is the job machine factor. 

2. The processing times p} are uniformly distributed integers in the interval [15, 45]. 

3. The weights for the jobs Wj are uniformly distributed integers in the interval [1,9]. 

4. Given the average of jobs' processing times (/?), the average of the jobs' release times 

(7), job machine factor (p), and coefficient (<p), which takes into account the effect of the 

release times on the makespan (assumed here <f> = 0.1), then Cmax = (07 + p).ju estimates 

Cmax of the problem. A similar approach was used by Lee and Pinedo (1997). 

5. Release times r} are uniformly distributed in the interval [0, 27 ] where 7 is the jobs' 

release time average. The maximum release time is derived as 27 = 2ppp/(2 - (ppp) where 
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the release time range factor (p) is p = 2r/Cmax and the estimated makespan is 

Cmax- (0F + p).ju as defined earlier. 

6. Due dates are calculated by dj = rj + a.pj formula and deadlines are calculated by Dj = 

dj + y.pj formula. 

4.3 Parameter Setting 

A parameter setting procedure can be dynamic (online) or static (offline). Dynamic 

parameter setting procedures merge the parameter setting and solution building phases 

for a heuristic. Dynamic parameter setting methods sample different parameter setting 

levels and then converge on the "best found" parameter setting level and ultimately report 

the best solution found by the heuristic. 

In this study, parameters of the algorithms were tuned by extensive experiments to obtain 

better results. Multi factorial design with four factors and three levels was employed in 

parameter tuning because all high level interactions are desired to analyze by using any 

possible combination of the instance factors and cost of each experiment is not too high 

(Montgomery, 2001). 

4.3.1 APTCR Parameter Setting 

The values of the parameters which make the proposed APTCR algorithm work 

effectively were determined through extensive experiments. The look-ahead parameters 

are dependent on the particular problem instance in terms of job machine factor (pi), due 

date tightness (a), d-to-D window tightness (y) and release time range factor (p) factors. 

Thus, an experimental study was conducted to determine the values of kj = fi( p, a, y, p ), 

k2 = /2C p, a, y, p ) and &? =/?( p., a, y, p ) in (17). Look-ahead parameters (ki, ki and ki) 

are additional factors of the experiment besides other experiment factors. The parameter 

values resulting in the minimum total weighted tardiness values for each problem 

instance are the response values of the experiment. Regression equations mapping the 

factors of an instance into values of the three look-ahead parameters were determined to 

estimate the parameters. 
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Extensive experiments were conducted over three levels of the job (n = 60) machine 

factor (p=4, ju=5, ju=6), three levels of the due date tightness factor (a =1.5, a =2.5, a 

=3.5), three levels of the d-to-D window tightness factor (y = 0, y = 1, y = 2) and three 

levels of the release time range factor (p = 0.1, p = 0.2, p = 0.3). 

81 (34) unique problem instances were generated according to specific distributions for 

each input data and replications. Within each problem type, five problem instances were 

generated by using distribution functions, totaling 405 problem instances. 32 levels were 

used for each look ahead parameters as below. 

32 levels of kf. {0.2, 0.4, , 6.4} 

32 levels of k2: {0.2, 0.4, , 6.4} 

32 levels of k3: {0.2, 0.4, , 6.4} 

For each of the 405 instances, the total weighted tardiness values of 32,768 (32x32x32) 

combinations of k\ , k2 and k3 were evaluated. In order to compare the main factor and 

interaction effects with each other, coded factors values, given in Table 12, were used to 

find the mathematical model of the response value. 

Level 

Low 

Medium 

High 

Coded 

-1 

0 

1 

Actual 

" 

4 

5 

6 

a 

1.5 

2.5 

3.5 

Y 

0 

1 

2 

P 

0.1 

0.2 

0.3 

Table 12 Coded Values of Factor Levels 

All total weighted tardiness that were obtained applying the algorithm repeatedly for 

32,768 combinations of &i , k2 and k3 were evaluated. All k\ , k2 and £3 values that yielded 

in the range between the minimum total weighted tardiness (MTWT) and MTWT(1 + /?) 

for each instance, were identified. The averages of these k\ , k2 and &3 values are denoted 
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as k\ 'ki and A:3. The parameter /? is a tolerance value for MTWT that is a decreasing 

function of due date tightness factor and ranges from 0 to 0.065 (Lee and Pinedo, 1997). 

In this study, the highest value, 0.065 of this tolerance parameter was used without 

calculation to evaluate a large range of competing k values. The averages of the selected 

range of k\, kj, and ki> are used as the recommended values for k\, kz, and £3. Thus, each 

problem instance has a triple of recommended values for k\ , ki, and £3. A C++ program 

was used to generate instances and to find schedules, TWT values, and recommended k 

values. Then averages of the instance recommended values, as given in Appendix B, 

were calculated to use in the regression analysis. 

In order to find the best fit model, different kinds of transformations for response values 

such as logarithmic, square root, square, reciprocal, and exponential were attempted. 

Then as a result of the regression analysis using realized values of the problem instance 

characteristics as regressor and the scaling parameters as a response, regression equations 

of the look-ahead parameters were obtained. 

kj2 = 4.514 + 0.693^ - I-626a - 0.921y - 1.499p + 1.064M2 - l-659y2 - 0.668py - 0.670Mp 

+ 1.069ap 

k2 = 0.980 + 0.275y + 0.438/u2 + 1.02 y2 + 0.304yp 

k3 = (0.437 - 0.152p. - 0.090a - 0.144y + 0.598a2 + 0.226y2 - 0.359/ua + 0.083ay + 

O.lOOapf 

The best models for the kj, k2, and &? have R values of 0.59, 0.50, and 0.78 respectively. 

4.3.2 SA Parameter Setting 

Same parameters were used for both SArand0m and SAAPTCR- Experiments using the 

standard setting of 3 machines and 12 jobs has been conducted to obtain appropriate 

parameter values for the SA algorithm over three levels of maximum number of iterations 

(tmax= 1000, 2000, 4000), three levels of maximum number of inner loop iterations (inmx = 

5, 10, 15), three levels of initial temperature coefficient (k = 0.1, 1, 10) and three levels of 

temperature cooling coefficient (a=0.7, 0.8, 0.9). For each 81 (34) combinations of 
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parameters, 5 problem instances were solved 30 times by SA starting from random initial 

solutions. 

After performing regression analysis of the total weighted tardiness values, the following 

parameter levels were determined: initial temperature coefficient = 0.1, temperature 

cooling coefficient = 0.7, maximum number of inner loop iterations = 5, and maximum 

number of iterations = 4000. 

4.3.3 MetaRaPS Parameter Setting 

The solution quality of the MetaRaPS depends on /, %p, %r and %I parameters. 

Experiments using the standard setting of 3 machines and 12 jobs has been conducted to 

determine the values of parameters for the MetaRaPS algorithm over nine levels of %p 

(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), nine levels of %r (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9), five levels of %i (0.4, 0.5, 0.6, 0.7, 0.8) with increment sizes of 10%. High 

values of / and %i parameters are always preferred and the value of these parameters 

depends on the availability of computation time (Hepdogan et al., 2009). The number of 

iterations, /, was fixed to 2000 which results in compatetive CPU times with SAAPTCR 

algorithm. 

For each 405 (9x9x5) combination of parameters, 5 problem instances generated 

randomly for each medium level of four problem factors, were solved 10 times by 

MetaRaPS. Average relative error of replicative solutions from optimal solution was 

calculated for each parameter combination by using the equation (18). After performing 

regression analysis of the average relative error values, the following parameter levels 

shown in Table 13 were determined. 

4.4 Performance of the Scheduling Algorithms 

The efficacy of the proposed approximate algorithm was tested by the quality of schedule 

generated by algorithm. Two performance measures were considered for the proposed 

algorithm: quality of the best solution obtained and the computation time it takes. To 

measure the effectiveness of the algorithms, they were compared for low and high (n=60) 

levels of number of jobs. 
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Parameter Value 

Number of iterations (I) 2000 

Priority percentage (p%) 75% 

Restriction percentage (r%) 25% 

Improvement percentage (i%) 75% 

Table 13 MetaRaPS Parameter Setting 

4.4.1 Effectiveness of APTCR-SArandom for Small Size Problems 

The MILP model was used for solving small size problems only with up to 12 jobs in 

acceptable time. Thus, the performance of the algorithms are measured for these 

problems by computing the difference between the objective function values (total 

weighted tardiness) of the algorithm and the optimal schedules as follows: 

Relative Error = TWF ^orithm ™ Optimal. ( l g ) 

TWT Optimal 

The performance of the APTCR and SArandom algorithms were compared in terms of 

relative error and computation time over low and high levels of the problem factors. 10 

different unique problem instances were generated for each 16 (2 ) factor combinations. 

SArandom solutions were replicated 10 times for each of the 160 instances and the average, 

minimum and maximum relative errors were recorded. Average relative errors (APTCR, 

SArandom, Min. SArandom and Max. SArandom) and average CPU times are found by 

averaging values of the 10 instances for each combination. Table 14 summarizes the 

results. 
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jx a 

1.5 

3 

2 

1.5 

6 

7 
Z, 

Y 

0 

2 

0 

9 
Z, 

0 

2 

n 
vy 

9 
Z< 

P 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

Total Average 

Avg. Relative 
Error 

Ar 1CK o Aranc)om 

0.14 

0.24 

0.30 

0.23 

1.33 

1.40 

0.52 

1.91 

0.06 

0.16 

0.11 

0.47 

0.12 

0.28 

0.21 

0.62 

0.51 

0.04 

0.09 

0.46 

1.01 

0.28 

0.30 

5.67 

7.21 

0.00 

0.05 

0.04 

0.15 

0.02 

0.17 

0.15 

0.34 

1.00 

Min. 
Relative 

Error 

^ A r a n c j o m 

0.01 

0.00 

0.14 

0.40 

0.00 

0.27 

3.09 

3.55 

0.00 

0.00 

0.01 

0.01 

0.00 

0.02 

0.03 

0.02 

0.47 

Max. 

Relative 
Error 

^" random 

0.10 

0.19 

0.77 

1.64 

0.58 

0.38 

8.20 

11.11 

0.01 

0.09 

0.08 

0.23 

0.03 

0.28 

0.27 

0.62 

1.54 

Avg. CPU (sec.) 

A r 1CK S Arandom 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.07 

0.08 

0.11 

0.11 

0.09 

0.09 

0.10 

0.09 

0.07 

0.07 

0.10 

0.09 

0.07 

0.08 

0.10 

0.09 

0.09 

Table 14 Results of the APTCR and SArandom for problems with n= 12 

The results show that SArand0m has performed better than APTCR in terms of average 

relative error for most instances; however, the proposed heuristic algorithm APTCR was 

superior to SArM(|om for loose d-to-D windows with small job-machine factor. The 

average CPU times of SArand0m were less than 1 second for each problem instance, but it 

is obvious that they are much longer (-60 times on the average) than APTCR. 

Since the relative error data for each combination does not follow a normal distribution 

according to Anderson-Darling normality test, the statistical significance of performance 

between algorithms are analyzed via using nonparametric Kruskal-Wallis test (using 

Minitab 15.1 statistical software program). Table 15 shows that there is a statistical 

difference between the population mean values of APTCR and SArandom performance in 
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terms of relative error (p = 0.007 < a=0.05). SArandom has performed better because the 

median of SArandom relative errors is less than the median value of APTCR (0.097 < 

0.203). On the other hand, APTCR has better CPU time performance than SArandom by 

having significantly smaller median value. 

Kruskal-Wallis Test on Relative Error 

Method N Median Ave Rank Z 
APTCR 160 0.20266 174.4 2.68 
SArandom 160 0.09735 146.6 -2.68 
Overall 320 160.5 

H = 7.18 DF= 1 P = 0.007 
H = 7.21 DF=1 P = 0.007 (adjusted for ties) 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank Z 
APTCR 160 0.001000 80.5 -15.47 
SArandom 160 0.091750 240.5 15.47 
Overall 320 160.5 

H = 239.25 DF = 1 P = 0.000 
H = 241.19 DF = 1 P = 0.000 (adjusted for 
ties) 

Table 15 Comparison of Effectiveness of the Algorithms for n= 12 Problems 

If the results are analyzed separately for APTCR and SArandom by Kruskal-Wallis test, the 

average relative error effectiveness of both algorithms decreases significantly as the 

number of jobs per machine decreases (from 6 to 3), the due date tightness decreases (a 

increases from 1.5 to 2), and the release time tightness increases (p increases from 0.1 to 

0.3). When the d-to-D window tightness decreases (y increases from 0 to 2) only SArandom 

effectiveness decreases significantly. The due date tightness factor has the highest effect 

on the APTCR performance, while the d-to-D window tightness factor and job-machine 

factor have the highest effect on the SArandom performance. The average CPU time 

effectiveness of both algorithms does not change significantly between the problem 

factor levels. 

Levene's test which is suitable when the data come from continuous, but not necessarily 

normal distributions was used to test the equality of variance which is another important 

measure of robustness of the algorithm solutions. The test shows that there exists 

significant difference between variances for both the relative error (p = 0.045 < a= 0.05) 
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and CPU time (p = 0.000 < a= 0.05) (Table 16) indicating that it is more robust for this 

problem compared to SArandom-

Test for Equal Variances: Relative Error 

95% Bonferroni confidence intervals for standard 
deviations 

Method N Lower St Dev Upper 
APTCR 160 0.75518 0.85040 0.97188 
SArandom 160 2.93976 3.31041 3.78328 

Levene's Test (Any Continuous Distribution) 
Test statistic = 4.04; p-value = 0.045 

Test for Equal Variances: CPU 

95% Bonferroni confidence intervals for standard 
deviations 

Method N Lower St Dev Upper 
APTCR 160 0.0026969 0.0030370 0.0034708 
SArandom 160 0.0181035 0.0203861 0.0232981 

Levene's Test (Any Continuous Distribution) 
Test statistic = 231.23; p-value = 0.000 

Table 16 Test for Equal Variances: Relative Error and CPU versus Method 

4.4.2 Effectiveness of APTCR- SArandom for Large Size Problems 

The same APTCR parameter estimations and parameter values are used to test the 

effectiveness for large size problems with 60 jobs. Since no optimal solutions exist for 

these problem sizes, the quality of the solution was measured by relative difference from 

the best of both algorithms to avoid nonnegative performance values. 

Relative Difference = 
TWT Algorithm - minjTWT MATC ,TWT SA mndom ) 

min(TWT MATC ,TWT SA random ) 
(19) 

The relative difference was calculated for each of the 160 problem instances then the 

averages were used for each problem instance combination. In (19), TWTsA-mndom is the 

average of SArandom solutions for 10 replications. The comparison results for large size 

problems in terms of average relative difference and average CPU time are given in Table 

17. 
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0.56 
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0.55 

0.53 

1.01 

0.56 

1.05 

Avg. CPU (sec.) 

APTCR 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

^^Vandom 

0.48 

0.50 

0.98 

0.98 

0.59 

0.61 

0.99 

0.99 

0.42 

0.44 

0.61 

0.64 

0.45 

0.47 

0.69 

0.73 

Total Average 0.00 1.48 0.01 1.48 

Table 17 Results of the APTCR and SArandom for n= 60 problems 

Kruskal-Wallis Test on Relative Difference 

Method N Median Ave Rank Z 

APTCR 160 0,000000000 80,5 -15,47 

SArandom 160 0,896564841 240,5 15,47 

Overall 320 160,5 

H = 239,25 DF = 1 P = 0,000 

H =273,43 DF = 1 P = 0,000 (adjusted for ties) 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank Z 

APTCR 160 0,005000 80,5 -15,47 

SArandom 160 0,608000 240,5 15,47 

Overall 320 160,5 

H = 239,25 DF = 1 P = 0,000 
H =240,77 DF = 1 P = 0,000 (adjusted for ties) 

Table 18 Comparison of Effectiveness of the Algorithms for n= 60 Problems 
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The results suggest that APTCR clearly provided better solutions in shorter CPU times in 

all cases (positive values) when compared to SArand0m for problems with 12 jobs. 

Especially for loose d-to-D windows with low job-machine factor (|i =3) and loose due 

dates, the solution quality performance of SArandom is very low similar to the results in the 

earlier subsection for small size problems. Although SArand0m found the solutions in less 

than 1 second, CPU time performance is worse by more than 100 times than APTCR. 

Table 18 shows that APTCR has outperformed the SArandom algorithm in terms of relative 

difference and CPU times as it is obvious in Table 17. 

The average relative difference effectiveness of APTCR algorithm over SArandom 

increases significantly as the number of jobs per machine decreases (from 6 to 3), the due 

date tightness decreases (a increases from 1.5 to 2), the d-to-D window tightness 

decreases (y increases from 0 to 2), and the release time tightness increases (p increases 

from 0.1 to 0.3). The job-machine and due date tightness factors have the highest effects 

on the average relative difference. The average CPU time effectiveness of both 

algorithms does not change significantly among the problem factor levels. 

4.4.3 Effectiveness of SAApTCR-MetaRaPS Algorithms for Small Size Problems 

The performance of the SAAPTCR and MetaRaPS algorithms were compared in terms of 

relative error and computation time over low and high levels of the problem factors. The 

same 160 unique problem instances that were generated in Section 4.4.1 are solved. 

Algorithm solutions were replicated 10 times for each instances and the average, 

minimum, maximum relative errors and CPU times were Table 19 summarizes the 

results. 

The results show that MetaRaPS with 6% average of average relative errors has 

performed better than SAAPTCR 21% average of average relative errors, and it had always 

less average relative error except for only one instance (ju = 3, a = 2, y =0, p = 0.3). 

Moreover, MetaRaPS had lower ranges between maximum and minimum relative errors. 

Although the parameter, number of iteration (/) was set as 2000, the average CPU time of 

SAAPTCR was less than MetaRaPS. Both algorithm have CPU times less than 2.12 sec. for 

all problem instances and almost equal ranges. 
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1.99 

1.96 

0.99 

1.15 

1.45 

1.51 

1.10 

1.25 

1.55 

1.46 

1.32 

1.40 

1.95 

1.97 

1.55 

1.60 

2.00 

1.97 

0.99 

1.15 

1.46 

1.52 

1.10 

1.25 

1.56 

1.46 

1.31 

1.39 

1.94 

1.96 

1.54 

1.59 

1.98 

1.96 

0.99 

1.14 

1.45 

1.51 

1.10 

1.25 

1.55 

1,54 

1,41 

1,49 

2,06 

2,06 

1,67 

1,69 

2,12 

2,03 

1,06 

1,22 

1,56 

1,59 

1,17 

1,34 

1,66 

1,55 

1,42 

1,50 

2,06 

2,07 

1,67 

1,69 

2,12 

2,03 

1,06 

1,22 

1,57 

1,60 

1,17 

1,35 

1,66 

1,54 

1,40 

1,49 

2,05 

2,06 

1,67 

1,68 

2,11 

2,03 

1,05 

1,22 

1,56 

1,59 

1,17 

1,34 

1,66 

Total Average 0.21 0.30 0.10 0.06 0.11 0.03 1.51 1.51 1.51 1.60 1.61 1.60 

Table 19 Results of the SAAPTCR and MetaRaPS for problems with n= 12 

Since the relative error data for each combination does not follow a normal distribution 

according to Anderson-Darling normality test, the statistical significance of performance 

between algorithms are analyzed via using nonparametric Kruskal-Wallis test in Minitab 

15.1 statistical software program. Table 20 shows that there is a statistical difference 

between the population mean values of SAAPTCR and MetaRaPS performance in terms of 

relative error (p = 0.007 < a=0.05). MetaRaPS has better performance because median 

of relative errors is less than median value of SAAPTCR (0.008 < 0.061). On the other 
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hand, SAAPTCR has significantly better CPU time performance than MetaRaPS by having 

a less median value. 

The Levene's test (Table 21) shows that there exists significant difference between 

variances and MetaRaPS algorithm has lower confidence intervals for relative error (p = 

0.003 < a= 0.05) indicating that it is more robust for this problem compared to SAAPTCR-

On the other hand, there is no significant difference between variances for CPU time. 

Kruskal-Wallis Test on Relative Error 

Method N Median Ave Rank Z 
MetaRaPS 160 0,008370 129,0 -6,10 
SAAPTCR 160 0,061534 192,0 6,10 

Overall 320 160,5 

H = 37,17 DF= 1 P = 0,000 
H =38,37 DF = 1 P = 0,000 (adjusted for ties) 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank Z 
MetaRaPS 160 1,617 176,5 3,09 
SAAPTcR 160 1,505 144,5 -3,09 
Overall 320 160,5 

H = 9,55 DF = 1 P = 0,002 
H = 9,55 DF = 1 P = 0,002 (adjusted for ties) 

Table 20 Comparison of Effectiveness of the Algorithms for n= 12 Problems 

Test for Equal Variances: Relative Error 

95% Bonferroni confidence intervals for standard 
deviations 

Method N Lower StDev Upper 
MetaRaPS 160 0,179393 0,202011 0,230867 
SAAPTCR 160 0,450057 0,506801 0,579195 

Levene's Test (Any Continuous Distribution) 
Test statistic = 9,20; p-value = 0,003 

Test for Equal Variances: CPU 

95% Bonferroni confidence intervals for standard 
deviations 

Method N Lower StDev Upper 
MetaRaPS 160 0,307591 0,346373 0,395850 
SAApTcR 160 0,298316 0,335928 0,383914 

Levene's Test (Any Continuous Distribution) 
Test statistic = 0,14; p-value = 0,713 

Table 21 Test for Equal Variances: Relative Error and CPU versus Method 
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4.4.4 Effectiveness of SAAPTCR -MetaRaPS Algorithms for Large Size Problems 

The same parameter sets are used while testing the effectiveness for large size problems 

with 60 jobs. Since no optimal solutions exist for these problem sizes, the quality of the 

solution was measured by relative difference from the best of both algorithms to avoid 

nonnegative performance values. 

Relative Difference =
TWF ^ ^ ' min(TWT SA _ ,TWT MetaRaPS ) ^ 

min(TWT SA ,TWT MetaRaPS ) 

The relative difference was calculated for each of the 160 problem instances then the 

averages were used for each problem instance combination. In (20), TWTSA-APTCR and 

TWTMetaRaPS are the average of algorithm solutions for 10 replications. The comparison 

results for large size problems in terms of average relative difference and average CPU 

time are given in Table 22. 

The results suggest that MetaRaPS clearly provided better solutions in all cases (positive 

values) when compared to SAAPTCR for problems with 60 jobs. CPU times are not so 

different from times of algorithms for small size problems. Table 23 shows that 

MetaRaPS has outperformed the SAAPTCR algorithm in terms of relative difference in 

significantly longer average CPU time. 
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Avg. Relative Difference Avg. CPU (sec.) 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

0.1 

0.3 

SAAPTCR 

0.02 

0.02 

0.01 

0.03 

0.14 

0.31 

0.02 

0.38 

0.01 

0.01 

0.04 

0.12 

0.00 

0.00 

0.04 

0.10 

MetaRaPS 

0.03 

0.02 

0.04 

0.01 

0.03 

0.01 

0.05 

0.00 

0.05 

0.05 

0.00 

0.00 

0.09 

0.07 

0.00 

0.00 

SAAPTCR 

0.97 

1.02 

1.73 

1.69 

1.20 

1.37 

1.76 

1.66 

0.86 

0.90 

1.23 

1.27 

0.92 

0.96 

1.38 

1.43 

MetaRaPS 

1.32 

1.49 

1.98 

2.05 

1.75 

1.83 

2.07 

2.11 

0.82 

1.09 

1.57 

1.73 

1.10 

1.39 

1.72 

1.96 

1.5 

1.5 

Total Average 0.08 0.03 1.27 1.62 

Table 22 Results of the SAAPTCR and MetaRaPS for problems with n= 60 

Kruskal-Wallis Test on Relative Difference 

Method N Median Ave Rank Z 

MetaRaPS 160 0,000000000 143,0 -3,38 

SAApTcR 160 0,016623239 178,0 3,38 

Overall 320 160,5 

H = 11,41 D F = 1 P = 0,001 

H = 13,04 DF = 1 P = 0,000 (adjusted for ties) 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank Z 

MetaRaPS 160 1,732 202,5 8,12 

SAAPTCR 160 1,232 118,5 -8,12 

Overall 320 160,5 

H = 65,89 DF = 1 P = 0,000 

H = 65,89 DF = 1 P = 0,000 (adjusted for ties) 

Table 23 Comparison of Effectiveness of the Algorithms for n= 60 Problems 
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CHAPTER 5 

AERIAL REFEULING RESCHEDULING PROBLEM METHODOLOGY 

There are some difficulties that make ARSP different from an ordinary parallel machine 

scheduling problem. One of these difficulties is sourced from the dynamic environment 

of the AR process where disruptions caused by dynamic and unexpected events are 

common and require updating the existing AR schedule. Although more disruptions may 

be considered for ARSP, job related disruptive events are studied in this dissertation since 

they occur much more frequent than other type of disruptions in air operations. Events 

that have a potential to cause significant disruptions in the AR schedules are interpreted 

by the arrival of new jobs, departure of an existing job, and changes in job priorities 

characterized by a combined change of weight and due date. Processing times, due date 

tightness and d-to-D window tightness are assumed fixed during the scheduling horizon. 

Aerial Refueling Rescheduling Problem (ARRP) was addressed in this research. Reactive 

scheduling is the process of modifying an existing schedule to adapt to changes in a 

production or operational environment (Sun and Xue, 2001). There are generally three 

rescheduling approaches : continuous, periodic and event-driven (Church and Uzsoy, 

1992). Continuous rescheduling takes a rescheduling action each time an event occurs. 

Periodic rescheduling defines rescheduling points between which any events that occur 

are ignored until the following rescheduling point. Finally, in the event-driven 

rescheduling, a rescheduling action is initiated upon an event with potential to cause 

significant disruption. Both continuous and periodic rescheduling can be viewed as 

special cases of event-driven rescheduling. In the ARRP, we use continuous 

rescheduling approach where updating the existing schedule always takes place when an 

event occurs because all job related events defined in this study are assumed to have a 

potantial to cause significant disruption. 

As was mentioned in the Literature Review Chapter, rescheduling problems mostly 

consider both a primary measure of schedule performance, as well as some measure of 

disruption caused by the rescheduling. Similarly, our objective in the ARRP will not only 

be minimizing total weighted tardiness, but also minimizing schedule instability. 
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Instability of the AR schedules is defined here as any changes in job starting times on the 

assigned machine. Then the measure of schedule instability can be defined as the 

proportion of rescheduled jobs that change machine assignment and/or starting time. 

Consideration of these two objectives leads to the formulation of ARRP as a multi 

objective scheduling problem. The main issues of our multi objective approach are to 

develop schedules that are satisfactory with respect to both objectives, and to effectively 

evaluate the trade-off between the objectives. 

5.1 Multi Objective Optimization (MOO) 

Multi objective optimization (MOO), refers to finding values of decision variables which 

correspond to and provide the optimum of more than one objective (Rangaiah, 2008). A 

general MOO problem is stated as follows: 

mmf(x) = [f](x)f2(x)...fk(x)f 

s.t 

g.(x)<0; j=l,2,...,J 
j 

h(x) = 0; l = l,2,...,L 
1 (21) 

where k is the number of objective functions, J is the number of inequality constraints, L 

is the number of equality constraints, and x e En is a vector of design variables. 

A typical MOO problem have many optimal solutions except for problems with non-

conflicting objectives in which case only one unique solution is expected (Rangaiah, 

2008). Since objective functions generally conflict with each other, a single point that 

minimizes all objectives simultaneously does not exist. All optimal solutions obtained for 

MOO problem are equally good in the sense that each one of them is better than the rest 

in at least one objective. This implies that one objective improves while at least another 

objective becomes worse when one moves from one optimal solution to another. 

Consequently, the notion of Pareto Optimality is used to describe solutions for MOO 

problems. 
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Pareto-Optimality : A point x e X is said to be a pareto-optimal solution for the 

multi-objective problem, if and only if, no other feasible x e X exists such that 

/ , (x) < / , (x*) Vi = l,2,...,k , and f} (x) < f) (x ) with strict inequality valid for at 

least one objective j . 

Alternatively, a point is weakly Pareto optimal if it is not possible to move from that 

point and improve all objective functions simultaneously (Marler and Arora, 2005). 

In MOO, ideal and nadir objective vectors are occasionally used (Rangaiah, 2008). The 

ideal point provides the lower bounds of the Pareto optimal set. On the other hand, 

components of the nadir objective vector are the upper bounds (i.e., most pessimistic 

values) of objectives in the Pareto-optimal set. One way of determining ideal and nadir 

objective vectors is using individually optimum values. If we assume that there are two 

objectives, the ideal bi-objective vector, \fi*f2*] may contain the optimum values of two 

objectives, when each of them is optimized individually disregarding the other objectives. 

The ideal point, is not normally feasible because of the conflicting nature of the 

individual objectives. The nadir objective vector, [/} ff] may contain the values of two 

objectives when the other objective is optimized individually. For example, nadir point 

for the first objective, which is denoted by fjN is the value of/}(x) when/2(x) is optimized 

individually, and/2W is the value of/2(x) when/}(x) is optimized individually. 

5.1.1 MOO Methods 

Three basic approaches which are classified according to the stage of imposing the 

decision maker's preferences, can be used for considering more than one objective and 

analyzing the results obtained for MOO. 

5.1.1.1 A Priori Methods 

These methods imply that the decision makers (DM) indicate the relative importance of 

the objective functions or desired goals before solving the modified problem to obtain a 

single Pareto optimal point. 



92 

Two main approaches exist in the a priori methods: simultaneous approaches and 

hierarchical approaches. A simultaneous approach contains value function methods 

which formulate a value function that includes the original objectives and preferences of 

the DM for optimization and then solving the resulting single objective optimization 

(SOO) problem. The weighted sum method, which will be discussed in the following 

subsection is one particular case of value function methods. However, most scalarization 

methods do not transfer preferences from the DM to the final solution with complete 

accuracy. Thus, if the solution is not acceptable, the preferences are altered, and the 

problem is resolved to obtain another Pareto optimal point (Marler and Arora, 2005). 

As for the hierarchical approaches, one example would be lexicographic optimization 

where the DM must arrange the objectives according to their importance for subsequent 

solution by a SOO method. The secondary, i.e., the less important, criterion is minimized 

subject to the constraint that the value of the primary, i.e., the more important, criterion is 

kept at its optimum value (Azizoglu and Alagoz, 2005). 

5.1.1.2 A Posteriori Methods 

These methods require generating a representation of the entire Pareto optimal set and 

selecting a single solution from a set of mathematically equivalent solutions that satisfy 

preferences. This can be achieved by solving a series of MOO problems and consistently 

varying parameters (such as weights) in order to yield a series of Pareto optimal points 

(Marler and Arora, 2005). In effect, all a posteriori methods provide many Pareto-

optimal solutions to the DM, who will subsequently review and select one for 

implementation. They include population-based methods such as nondominated sorting 

genetic algorithm and multi-objective differential evolution as well as multi-objective 

simulated annealing (Rangaiah, 2008). 

5.1.1.3 Interactive methods 

These methods require interaction with the DM during the solution of the MOO problem. 

After an iteration of these methods, the DM review the Pareto-optimal solution(s) 

obtained and determine further changes desired in each of the objectives. These 
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preferences of the DM are then incorporated into formulating and solving the 

optimization problem in the next iteration. At the end of the iterations, the interactive 

methods provide one or several Pareto-optimal solutions. Examples of these methods are 

interactive surrogate worth trade-off method and the NIMBUS method (Rangaiah, 2008). 

Since we use a scalarized objective function for our bi-objective ARRP, the weighted 

sum method, which is a posteriori method that can be considered a special case of value 

function methods in the a priori methods will be explained in detail. 

5.1.2 Weighted Sum Method 

In the weighted sum method, a convex combination of functions is reformulated and the 

general MOO problem is stated as follows: 

k 

xeX ^~" 

S.t 

8j(x)<0; j = l,2,...,J 

hl(x) = 0; l=l,2,...,L 

where X, is the weighting factor for the ith objective function. Thus, changing the 

weights' relative values changes the orientation of the contours for the weighted sum. 

Minimizing the weighted sum can yield all of the Pareto optimal points if 

w >0,\/i = l,...,k with systematic variations under the convexity assumptions 

(Miettinen 1999). The solution is also unique if the problem is strictly convex 

(Grodzevich and Romanko, 2006). 

The solution of the resulting SOO problem will depend on w that generates an accurate 

representation of the Pareto optimal set to a greater extent. In some sense, the weights w, 

serve as scale factors for the objective functions. Despite the many methods for 

determining weights, a satisfactory, a priori selection of weights does not necessarily 
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guarantee that the final solution will be acceptable (Marler and Arora, 2004). In this case, 

the optimization problem will have to be solved several times, each time with a different 

w, in order to find several Pareto-optimal solutions. 

Normalization in the weighted sum method 

Choosing suitable w to find many Pareto optimal solutions is difficult especially when the 

objective functions for a problem have significantly different orders of magnitude, 

although the weighting method is conceptually straightforward. Different function 

normalization methods can help generate an approximation of the Pareto optimal set that 

is consistent with the weights assigned by the DM. Some possible normalization types are 

given by (Marler and Arora, 2005). 

Normalization by the minimum or the maximum of the objective functions: A common 

approach to function transformation is given as : 

r norm J{ \%) 
J i 

Si 
min 

(23) 

where /,min represents the minimum value for objective /. This is referred to as the lower-

bound approach, and it provides a non-dimensional objective function. The lower limit of 

jnorm j g r e s t r ic t e c i t o pOSitive values when /,m,n > 0, whereas the upper value is 

unbounded. /,mincan be defined as an ideal point such as/,m'n = fl(x*)where f,(x*)is the 

optimum value of objective i, when it is optimized individually disregarding the other 

objectives. Equation (23) may be modified as follows : 

f ( \ — f min 

r norm _ J[ (.%) ~ J / 

/ , 
min 

(24) 

Equation (24) is the alternate lower-bound approach and it yields non-dimensional 

objective function values with a lower limit of zero. 
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Computational difficulties can arise here if the denominator is close to zero. Use of the 

optimal solutions to individual problems can also lead to very distorted scaling since 

optimal values by themselves are in no way related to the geometry of the Pareto set 

(Grodzevich and Romanko, 2006). 

As an alternative to the methods discussed earlier, one may use the maximum value of 

the function in the denominator rather than/,"1"1. The consequent upper-bound approach 

is shown as follows : 

fix) 
r norm _ i 
i _f max 

i f: 
(25) 

where fnax represents the maximum value for objective /. fmx may be determined as the 

absolute maximum (if it exists) of f,(x) or as an approximation of the maximum. 

Alternatively, an approach more conducive to MOO is to define j m a x as a nadir point 

which was mentioned earlier (Rangaiah, 2008). Equation (25) provides a nondimensional 

function value such thatf,norm < 1 with no restriction on the lower value. 

Normalization by the differences of maximum and minimum optimal function values: 

The most robust approach called the upper-lower-bound approach to transforming 

objective functions, regardless of their original range (Yang et al. 1994). 

f ( \ f m 'n 

r norm _ J[ \X) ~ Ji 
• max /• mm 

/
• max r i 

( J i 

(26) 

The denominator of the formulation interprets the length of the intervals where the 

optimal objective functions vary within the Pareto optimal set. The normalization schema 

uses the differences in the optimal function values of nadir and ideal points mentioned 

earlier. In this case, f"orm is bounded by zero and one for both objective functions and is 

dependent on the accuracy and the method with which /m i n and/""* are determined. 
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Unlike previous approaches, the denominator is guaranteed to be positive. In addition, 

this is the only approach that constrains the upper and lower limits of fl
norm_ Although the 

former normalizations have proved to be ineffective and are not practical, this 

normalization provides a relatively robust approach as the objective functions are 

normalized by the true intervals of their variation over the Pareto optimal set (Grodzevich 

and Romanko, 2006). 

The following scalarized objective function mentioned in (Rangaiah, 2008) is used for 

our bi-objective ARRP : 

/(*)-/(*•) fAx)-f(x) 
Min >M ]—— + (1 - X) -1 ^—— 

r max r / * \ r max r , *\ 

f. - / , (*) / , - / , ( * ) 

where, 0 < X < 1 is the objective weighting factor. We use \fi(x*), f2(x*)] as the optimal 

values of individual objectives when they are optimized individually disregarding the 

other objective and [fi*™*, fimwc] as the values of the individual objective when the other 

objective is optimized individually. 

5.2 The Revised MILP Model for ARRP 

The MILP model for ARSP should be revised to take into account also the instability 

objective for ARRP. This revision is made by modifying the objective function and 

adding new a decision variable, new parameters and constraints in addition to the existing 

scheduling constraints mentioned in the scheduling section (Section 3.1). The MILP 

model can be used to find optimal schedules only for jobs which have not been affected 

by the disruption time provided that input data was adequately set according to the event 

type and event time. Starting times and machine assignment decision variable values for 

the initial schedule are used as an input in the revised model. 

Indices 

i = 0,1,2,3, ..., n predecessor jobs; 

j = 1, 2, 3, . . . , n successor jobs; 
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k = 1, 2, 3, . . ., m machines; 

Parameters 

Sj - starting time of job j in the original schedule. 

yjk' = value of assignment variable in the original schedule. 

Pj = processing time of job j ; 

r} = release (ready) time of job j ; 

Wj - weight of job j ; 

dj = due date of job j ; 

Dj - deadline of joby'; 

M — a large positive integer. 

F= fixed cost of returning back to base. It must be much larger than D-d values. 
J J 

Decision Variables 

Sj - starting time of job 7 in the new schedule; 

Tj = piecewise tardiness of job j ; 

1, if job i precedes job 7 on machine k; 

0, otherwise. 

yjk= < 

1, if job 7 is assigned to machine k; 

0, otherwise. 

SJ= -< 

1, if instability occurs for job 7; 

0, otherwise. 
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Instability cost occurs when a deviation exists between the starting times in the original 

and new schedules or when machine assignment decision variable values in the original 

and new schedules become different. 

Constraints 

Using starting time decision variable requires modifying the constraints 4a-b, 5 and 9a-c 

in the MILP model for ARSP to 28a-b, 29, 30a-c for ARRP as follows: 

S y +M( l - ]Ty , J> r 7 j = l,...,n (28a) 

5 ; + M ( l - ^ ) > 5 , +p, i = \,....,n j = \,...,n k = \,...,m (28b) 

m 

S^p^D^y* j = l...,n (29) 

T^S.+Pj-d, j = l,...,n (30a) 

m 

r > F ( l - £ y ) j = \,...,n (30b) 

SltTj>0 j = \,...,n (30c) 

Secondly, some constraints are needed to handle the instability objective. Suppose that a 

deviation vector, S is formed by the deviation between the original and new starting times 

(Sj - S/) and the deviation between the assignment decision variables (y^ -yjk' )• All 

possible cases for each job j and machine k are given below. Although some of these 

cases can be redundant, they are still listed to explain how the constraints would work in 

all cases, and not only for cases that involve instability: 

Case 1: Job j which was assigned to machine k in the original schedule (yjk-1) is not 

assigned to another machine (y,k = 0) with the same starting times. Then 8 = ((5y = S,'), 

(yJk-yJk
1)) = (0'-D-
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Case 2: Job j which was assigned to machine k in the original schedule(yjk'=l) is then 

assigned to another machine (y,k= 0) but with earlier starting time, (5, < S,'). Then S = (-, 

-1) meaning that subtraction of the starting times takes a negative value. 

Case 3: Job j which was assigned to machine k in the original schedule (yjk'=l) is then 

assigned to another machine (y,k = 0) but with later starting time, (S, > 5/). Then 3 = (+, -

1). 

Case 4: Job j which was assigned to machine k in the original schedule (yjk'=l) is still 

assigned to machine k (y,k = 1) but with an earlier starting time, (5, <£/)• Then S = (-, 0). 

Case 5: Job j which was assigned to machine k in the original schedule ( y ^ l ) is still 

assigned to machine k (yjk =1) but with a later starting time, (S, >£/)• Then S = (+, 0). 

Case 6: Job j which was assigned to machine k in the original schedule (y,k1=l) is still 

assigned to machine k (y,k = 1) with the same starting time, (S, = S/). Then S = (0, 0). 

Case 7: Jobj which was not assigned to machine k in the original schedule (yjk -0) is then 

assigned to machine k (y^ = 1) with the same starting time, (5, = S/). Then d = (0, 1). 

Case 8: Job j was not assigned to machine k in the original schedule (yjk1=0) is then 

assigned to machine k (y,k= 1) with an earlier starting time, (5, <S/). Then S = (-, 1). 

Case 9: Job j was not assigned to machine k in the original schedule (yjk1=0) is then 

assigned to machine k (y^ = 1) with a later starting time, (5, >S}
1). Then S = (+, 1). 

Case 10: Job j was not assigned to machine k in the original schedule (yjk-0) and is not 

assigned to machine k (y,k = 0) and the starting times are the same, (Sj = Sj). Then S = (0, 

0). 

Case 11: Job j was not assigned to machine k in the original schedule (y^-O) and is not 

assigned to machine k (y^ = 0) but the starting time is earlier, (5, <5/). Then d = (-, 0). 

Case 12: Job j was not assigned to machine k in the original schedule (yjk-0) and is not 

assigned to machine k (y,k = 0) but the starting time is later (5, >S/). Then 5 = (+, 0). 

It is clear that (5, - 5/J takes (+, 0, -) values and (y,k -yjk) takes (+/, 0, -1) values. 

According to our definition, s} = 0 only when there is no change to the starting times (5, 

- Sj1 = 0) and no change to machine assignment (y^ -y,k' = 0). That is: 
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< 

1, i f S ; - S } * 0 o r yjlc-y'jk±0 

0, otherwise, Sj -S'j =0 and y j^ - y'jk =0 

Consequently, new constraints (31) handle the above twelve cases, can be added to the 

model. 

M.Sj > (SJ-S'J) + (y^-y'j^ j = l,...,n k = l,...,m 

(31) 

where M is a large integer number to define the binary instability decision variable. 

However these constraints cause a non-linearity in the model, since they contain absolute 

values. Thus, two groups of alternative linear constraints (32a,b) can be used instead of 

the above constraint. 

M.sJZO(SJ-S'J)Hyjk-yjk) j = l-,n k = l,...,m 

M.s^-diSj-S^-iy^-y],) j = l,...,n k=l,...,m 

(32a,b) 

where 6 is a positive integer coefficient that is large enough (e.g. 6 = 10) to avoid a zero 

right hand side values when the deviation values of the starting times and assignment 

decision variable have opposite signs (e.g. when (Sr S}) = 1 and (y^ -yjk)= -1, constraints 

(32a-b) assign Sj= 1). 

The objective is to minimize a linear convex combination of normalized TWT and 

Instability objectives, where each objective has an allocated weight indicating its 

importance. 

The objective function of ARRP is as follows: 
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ft ill 

ZL WJTJ ~ I™? (* ^ Z~ISJ~ fInstability (X ) 

minZ = Ji^ + (1-A)—J— 
/

max /• • * x v ' r max /• / * \ 

7W7 ~JTWT\X ) J Instability ~ J Instability \ X ) 

(33) 

where 0 < X < 1. Jobs that have been completed before the event time have to be excluded 

from the problem while implementing the MILP model for ARRP. On the other hand, the 

jobs which are in process when a disruptive event occurs are included without any 

tardiness or instability cost. They are automatically assigned to the first places of the 

corresponding machines such that their completion times indicate the earliest available 

times for each machine. Since available times are not zero anymore, unscheduled jobs 

can start processing after the completion of processing the jobs in the original schedule. 

In order to ensure that they do not have any impact on the objective function value, data 

for the initial scheduling problem should be adjusted for the rescheduling problem as 

follows. For every job j that is in-process when a disruption occurs, we set r} =0; Wj = a 

large integer; ps =dj =Dj = completion time of job j . Consequently, the model will be 

forced to assign these jobs to the same machine by starting at the same time as the 

original schedule. Note that maximum index values for TWT and Total Instability, n and 

m need not to be equal. For example, if the event is the arrival of a new job, this job is not 

included in calculating the instability. Otherwise, there will be bias not to schedule the 

new job whose initial machine assignment decision variable value is zero. Only weighted 

tardiness of the new job has an effect on the composite objective function. 

The ideal and nadir objective vectors (\fiwr /instability"] and ^ " / t a A i f y H ) can be 

used to normalize the objective values. In order to find these values, it is required to 

implement the MILP model twice by using adequate X values (0 < X < 1) and theoritical 

pessimistic and optimistic objective values for an individual objective that give the 

possible largest objective value ranges. For example, /TWT and /instability™"* can be found 

after the first run by setting as follows: 

X= 1- £, where £ is a very small positive real number, 

file:///fiwr
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frwr"'" = 0, optimistic TWT value of the case that all jobs are completed before 

their due dates. 

/TWT"1* = pessimistic TWT value of the case that all jobs missed their deadlines. 

/instability"1"1 = 0, optimistic Total Instability value of the case that all jobs start on 

the same machine at the same time according to the original 

schedule. 

/instability""* = pessimistic Total Instability value of the case that all jobs' starting 

time and machine assignment are changed. 

Similarly, /instability and/TWT""1* can be found after the second run by setting X =e 

In order to clarify the methodology of obtaining the rescheduling optimal solution, a 

sample data for the problem with 12 jobs and 3 machines is given as follows: 

Jobs ={1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Release Times = [4.7, 4.2, 18.7,6.0, 18.8,3.8, 10.5, 11.3,3.5, 16.3, 19.0,5.3], 

Processing Times = [40, 15, 16, 24, 15, 16, 22, 39, 20, 41, 22, 36], 

Weights = [ 9, 7, 1, 9, 2, 5, 1, 2, 5, 4, 5, 8], 

Due Dates = [84.7, 34.7, 50.7, 54.00, 48.8, 35.8, 54.5, 89.3, 43.50, 98.3, 63.0, 77.3], 

Deadlines = [124.7,49.7, 66.7, 78.00, 63.8, 51.8, 76.5, 128.3, 63.5, 139.3, 85.0, 113.3], 

Fixed Unavailability Cost = 120 

For the above scheduling problem instance, the best total weighted tardiness value as 

obtained by solving the MILP is 161.50 for the original schedule shown in Figure 8 with 

the following starting times and machine assignment decision variable values for the 12 

jobs: 

Starting times = [47.5, 4.2, 34.2, 23.5, 19.2, 3.8, 50.2, 77.8, 3.5, 72.2, 19.8, 41.8], 

Machine Assignment = [[1 0 0], [0 0 1], [0 0 1], [1 0 0], [0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], 

[0 0 1], [0 10], [0 10]]. 
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Figure 8 Sample Original Solution 

Suppose that a new job with pjj = 30, W13 = 5, dj3 = 86, and Dj3 =116 arrives at time, r^ 

= 26. The starting time and machine assignment decision variable values are set 0 for the 

new job. Since jobs 2, 6 and 9 had already completed, they are removed from the job set 

that needs rescheduling. Jobs 4, 5 and 11 were in-process at machines 1, 3 and 2 

respectively at the arrival time of job 13. These jobs are used to determine the first 

available times of each machine to reschedule. So, for these processing jobs, we set r, =0; 

Wj= a large integer (eg. 999); p} -d3 =Dj = completion time of the job j in the original 

schedule. As a result, the new data set including the newly arrived job (first element of 

the vector) is given as follows : 

Jobs ={13, 1,3,4,5,7,8,10,11, 12} 

Release Times = [26, 4.7, 18.7, 0, 0, 10.5, 11.3, 16.3, 0, 5.3], 

Processing Times = [ 30, 40, 16, 47.5, 34.2, 22, 39, 41, 41.8, 36], 

Weights = [5, 9, 1, 999, 999, 1, 2, 4, 999, 8], 

Due Dates = [86, 84.7, 50.7, 47.5, 34.2, 54.5, 89.3, 98.3, 41.8, 77.3], 

Deadlines = [116, 124.7, 66.7, 47.5, 34.2, 76.5, 128.3, 139.3, 41.8, 113.3], 

Old Starting Times = [0, 47.5, 34.2, 23.5, 19.2, 50.2, 77.8, 72.2, 19.8, 41.8], 

Old Machine Assignment = [[0 0 0], [1 0 0], [0 0 1], [1 0 0], [0 0 1], [0 0 1], [0 1 0], [0 0 1], 

[0 1 0], [0 1 0]]. 

For this case, in order to find the vectors (\frwT finmbihty*] and \fTwrmx finstability"™}), we 

firstly set the initial values as follows: 

X = 0.9999 where £ = 0.0001 regarding the total weighted tardiness objective. 

frwr"1"1 = 0, where there is no tardiness cost, 

JTwrmx = 10x5x120 = 6000, where all 10 jobs with average weight miss their deadlines, 

file:///frwT


104 

finstability"1"1 = 0, where there is no instability, 

/instability™* = 9 (the new job is excluded), where starting times or machine assignments 

are changed for all old jobs. 

In order to simplify the pessimistic TWT calculation, an estimate is used by assuming 

that all jobs with average weight miss their deadlines. The reason behind using an 

average weight is that since some weight values have been already reset after the job 

arrival, it is confusing to use actual weights. Moreover, the pessimism level does not 

change the best solution of the TWT objective where Total Instability objective has 

almost zero effect on the objective value. We found TWT = 284.3 and Instability = 2 for 

the best value of the combined objective with above optimistic and pessimistic values. 

Secondly, we set X = 0.0001 keeping above values and found TWT = 761.5 and 

Instability = 0. Therefore, [ /h»r7/««W] = [284.3 0] and UTWT*/m^bm™*] = [761.5 

2]. Consequently, the objective function for this problem is as follows: 

n in 

2>/,-284.3 £ 5 , - 0 
minZ = Z y=i 

761.5-284.3 
(1-/1) y=i 

2-0 

2>/y-284.3 
= A j=i 

477.2 

(34) 

7=1 

The optimal solution obtained for the above ARRP by using the objective function (34) 

with X - 0.5 is shown in Figure 9. This solution has the optimal objective value of 0.32 

with TWT = 466.92 and Instability = 1. 
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Figure 8 Optimal Rescheduling Solution by using X = 0.5 
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In the Computational Study chapter, experiments will be conducted with the various 

values of objective weighting factor (X) for extended analysis. 

5.2 Rescheduling Algorithms for ARRP 

Generally three rescheduling methods exist to repair the disrupted schedule: right shift 

rescheduling, partial rescheduling and regeneration. Right shift rescheduling postpones 

each remaining operation by the amount of time needed to make the schedule feasible. 

Partial rescheduling algorithm reschedules only the operations affected directly or 

indirectly by the disruption. Regeneration reschedules the entire set of operations not 

processed before the rescheduling point, including those not affected by the disruption 

(Church and Uzsoy, 1992). 

In this dissertation, we developed reactive scheduling mechanisms to update instantly the 

current schedule at the disruption time. Recall that following three job related events are 

the main reasons of schedule disruptions in this research: arrival of new jobs, departure 

of an existing job, and changes in priority (regarding weight, due date and deadline 

parameters) for an existing job. All three repair methods mentioned above are employed 

to develop our five repair algorithms: 

• Complete regeneration algorithm, MetaRE (MetaRaPS Regeneration) by using 

MetaRaPS with APTCR rule and the objective function that was defined earlier as 

the combination of TWT and Instability objective, 

• Complete regeneration algorithm, SEPRE (Sequence Preserving Regeneration) by 

using APTCR rule and preserving the initial sequence of jobs on each machine, 

• Best (TWT+Instability) insertion algorithm, BestlNSERT with right shift, 

• Left shift algorithm, LSHIFT, 

• Partial rescheduling algorithm (SHUFFLE) by shuffling jobs according to 

APTCR rule. 

All these heuristic algorithms consider the tardiness objective by taking into account 

piecewise tardiness cost with due date to deadline (d-to-D) windows, job release times 

and also the schedule stability objective. Algorithm usage matrix is shown in Table 24. 
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Arrival of a new job 

Departure of 

an existing job 

Changes in priority 

MetaRE 

V 

V 

V 

SEPRE 

V 

BestlNSERT 

V 

V 

LSHIFT 

V 

SHUFFLE 

V 

Table 24 Disruption-Rescheduling Algorithm Usage Matrix 

All algorithms require an initialization phase to determine the rescheduling point and the 

set of rescheduling jobs that are affected by the disruption. The procedure below can be 

used to obtain this initial data for the proposed algorithms. The second repair phase may 

differ according to the disruption type. 

Determine-JobSet-to-Reschedule 

S: set of jobs in the initial schedule 

U: set of jobs to be rescheduled 

Data : release time (r,), processing time (pj), weight (w7), due date (dj), deadline (Dj) 

input. 

0°w : Initial solution 

tevent '• disruptive event occurrence time 

t: decision time for the following assignment 

M = set of machines = {1,2,... ,m} 

Machine/, index of the machine to which job7 was assigned, 

CompTimey. completion time of job j 

Cmax,: makespan of machine i 

1. Initialize Data for V; 6 5 and for the new job (in the case of new job arrival). 

2. Set CompTimej0ld, Machine?"and #>'d = / 6,old, d2
old, ..., 6?d} 

where 0 / w = ( CompTime}
old, Machine/") V; 6 5 

(Set CompTimenew = large integer, Machinenew =m+l in case of new job arrival) 

3. Determine Cmax, = first completion time after tevent V i 6 M 

4. Set t = min { Cmax, } 
ieM 
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5. Set U = {U ^ (5 U new job*) : CompTime} -p}>t V; e U } 

The event occurance time, tevent is defined as the decision time of the job's departure or 

priority change events. For example, job j is decided to cancel at time tdecmon even it was 

scheduled to start processing at time tmrt, tdecmon < Utart- In this case, tevent is defined as 

tdecmon instead of tstart. Similarly, priority changes are assumed to be decided before the 

start time of the corresponding job. This assumption enlarges the number of affected jobs. 

An example is given in Figure 10 to explain this assumption for the instance with number 

of jobs = 12, number of machines = 3. Assume that a decision to change the priority 

parameters for randomly selected job 10 was made at time tdecmon = 35. The set of 

affected jobs (unshaded jobs) is given in Figure 11. Note that earliest available times for 

each machine are different from zero and each other (Cmax/=50, Cmax2=40, Cmaxi=60 ) 

after implementing the procedure as seen in Figure 11. 
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Figure 10 An Initial Schedule to Change Job Priority 
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Figure 11 Affected Jobs to be Rescheduled 
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5.2.1 MetaRE Algorithm 

MetaRE is a complete regeneration repair algorithm that reschedules all jobs which have 

not started by disruption time. It has two phases: initialization phase to determine the 

rescheduling set and a rescheduling phase using MetaRaPS algorithm. The main 

algorithm of the second phase is not different from the MetaRaPS metaheuristic which 

was successfully implemented earlier by using the proposed APTCR rule for ARSP. 

Moreover, MetaRE considers multi objectives (TWT and Instability) to compare the best 

solution with neighbor solutions generated by the same combined objective function 

defined as (33). MetaRE algorithm is given below where W* is the number of iterations 

until termination and &est is the best solution found until the last iteration. 

MetaRE_Algorithm 

1. Execute Determine-JobSet-to-Reschedule 

2. Set CompTimej = 0, Machine^ m+1, &est = {CompTime^1', Machine^5') V; e U 

a. fbest = 1, fworst= 0, Memory = (fbest, fworst, &
est), iteration= 0. 

3. While iteration < tma* 

4. Execute MetaRaPS_Algorithm by using (8), (10) and 6Pld 

5. Update Memory 

6. iteration = iteration +1 

7. end While 

8. Display the/6„, and &est 

This algorithm reschedules the affected jobs by the MetaRaPS algorithm (recall Section 

3.3.3) with APTCR rule (recall Section 3.3.1). After determining the set of affected jobs 

(Step 1), it constructs a feasible solution by repeatedly adding randomly selected jobs 

from a candidate list (Steps 3-7). This list is formed according to the APTCR rule priority 

index values and MetaRaPS parameters (the priority percentage (p%) and the restriction 

percentage (r%)). Finally, an improvement phase is applied in MetaRE by using a local 

search algorithm only to the constructed solutions with promising values of the multi 
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objective function (TWT and Instability objective) compared to the best and worst 

objective values (See Section 3.3.3 for a detailed example on MetaRaPS). Initial values 

for the best and worst objective can be defined as 1 and 0 respectively, which are the 

extreme values of the combined objective function. The best and worst objective values 

and the best schedule found until the last iteration are updated after each iteration, until 

the stopping criterion is satisfied. 

5.2.2 SEPRE Algorithm 

SEPRE is also a complete regeneration repair algorithm based on APTCR rule with two 

phases like MetaRE. After determining rescheduling set, jobs are assigned repeatedly 

using APTCR priority index. Additionally, SEPRE takes into account the original 

sequences on each machine as in the Affected Operation Rescheduling (Abumaizar and 

Svetska, 1997). Regarding stability, the initial schedule which is assumed to hold the best 

TWT performance among other feasible solutions, should be preserved. The basic 

principle behind the concept of Affected Operation Rescheduling is to accommodate any 

disruption by pushing some operation starting times forward (delaying them) by the 

minimum amount required to: (1) keep the technological constraints satisfied and (2) 

preserve the initial sequence of operations on each machine. This guarantees that the 

robustness of the initial schedule is preserved as much as possible by minimizing the 

delay (starting time deviation) and reducing the sequence deviation to zero. SEPRE 

algorithm is given below. 

SEPREJdgorithm 

1. Execute Determine-JobSet-to-Reschedule 

2. Set CompTimej = 0, Machine^ m+1, Vy E U 

3. while U * 0 

4. Calculate the index Kj(t) V; e U by using APTCR 

5. Sort jobs by nj(t) Vj e {j e U \ nj(t) > 0} 

6. Set r = 1 

7. Find rth ranked job and Machine°ld j e sorted U 
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8. if CompTimej <CompTimek
old Vk 6 {k *je U | Machinek

old= Machine"111} 

then 

9. Find / = (i EM: Cmax, (t)= min/ Cmaxm } I 
meM 

10. Update CompTimej = Cmax, +max(rp t) + pj and remove j from U 

11. Update Cmax, = CompTimej 

12. Update t = min/ Cmax, } 

13. end if 

14. else r = r +1 and Go to Step 7 

15. end while 

16. Calculate the combined objective value for U. 

This algorithm reschedules the affected jobs one by one using APTCR priority index by 

taking into account the original sequences on each machine. For example, assume that the 

initial schedule and the set of affected jobs are given like in Figure 11. Additionally, a 

new job 13(p/.? = 20) arrives at time t=35. 

Step 3. The set of unscheduled jobs, U={8, 9, 10, 11, 12, 13} 

Step 4-5. Assume that priority index values are calculated as in Section 3.3.1 and are 

ranked for t= 40 as follows: 

K,0(t)= 0.609 > ?t9(t)= 0.262 > n]3(t)=0.166 > nH(t)= 0.152 > 7c,,(t)= 0.151 > nn(t)= 0.051 

Step 6-7. r = 1; meaning find the highest ranked job, which is job 10. 

Step 8. CompTimejo°ld is not less than CompTimegld where k= 9. So set r = 2 and go to 

Step 7. 

Step 7. r = 2 meaning find the second highest ranked job which is job 9. 

Step 8. CompTimegold < CompTimeio°ld where k= 10. 

Step 9. Cmaxj = 50, Cmax2 = 40, Cmax^ = 60; i = 2 (randomly selected) 

Step 10-12. Assign job 9 to machine 2. CompTimeg = 40 + 10 = 50. 

U = {10,11,12,13}, Cmax2 =50,t = min {50, 50, 60} = 50. Go to Step 3. 

The final schedule found by SEPRE is given in Figure 12. 
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Figure 12 Rescheduled jobs by SEPRE 

5.2.3 BestlNSERT Algorithm 

BestlNSERT is a partial and right shift repair algorithm which assumes that only one 

machine is affected by a disruption. BestlNSERT tries all job insertion alternatives for 

the arriving job or the changed job priority to find the best insertion with minimum value 

of combined objective function discussed earlier (TWT and stability). Thus, BestlNSERT 

can emphasize both efficiency and stability objectives. After inserting the job into a place 

on one of the machine, all remaining jobs assigned to that machine are shifted by the 

amount of processing time of inserted job. BestlNSERT keeps the sequence on the 

corresponding machine and keeps the completion times and job assignments on the 

remaining machines. BestlNSERT algorithm is given below. 

BestlNSERT _Algorithm 

I: Insertion set after the earliest available time. 

f,: Combined objective function value after the insertion into place / and performing a 

right shift. 

/ * " ' : Best TWT value found so far. 

&est: Schedule w i t h / " ' 

1. Execute Determine-JobSet-to-Reschedule 

2. Set/*"' = 1 and &e%t = 8Pld Vj eU,i = l 

3. while / gt 0 

4. Insert the new job into place i 6 / 

5. Update CompTimej = CompTime°ld + pnew Vj on the right 
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6. Calculate/; 

7. Iff, <fbest
 then Update/*"' and &est 

8. Remove i from / and i = i+1 

9. End While 

10. Display the combined objective value for &e<it. 

The earlier example can be used again to illustrate the BestlNSERT algorithm. For a new 

job 13 arriving at time t=35, there exist 8 insertion alternatives between jobs 6 and 9, 9 

and 10, 4 and 8, 8 and 12, 7 and 11 and after jobs 10, 11, 12. 

Step 3. / = {6-9, 9-10, 4-8, 8-12, 7-11, 10-, 11-, 12-} 

Step 4-9. Compare the combined objective function value for i = 1, 2,..., 8 and select the 

best one. Some insertion examples are given in Figure 13, Figure 14, and Figure 15. 
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Figure 13 Insert job 13 between jobs 6 and 9 (i = 1) 
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Figure 14 Insert job 13 between jobs 8 and 12 (i = 4) 
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Figure 15 Insert job 13 after job 1 l(i = 7) 

BestlNSERT can also be used for priority change events. In this case, firstly the job with 

priority change can be taken out of the old schedule and left shifting the jobs on its right 

and secondly all insertion alternatives are attempted for that job like the case of the 

arrival of a new job. 

5.2.4 LSHIFT Algorithm 

LSHIFT is also a partial and left shift repair algorithm that is applied only to a particular 

machine in a similar way like BestlNSERT. After taking out a job from its place on a 

machine, all remaining jobs assigned on that machine are preponed (scheduled earlier) by 

the amount of processing time ipdepan) of the departing job. LSHIFT keeps completion 

times and job assignments on the other machines as they are, and keeps the job sequence 

on the machine with the departing job as is. LSHIFT algorithm is given below. 

LSHIFT_Algorithm 

1. Execute Determine-JobSet-to-Reschedule 

2. Select a random job j E U and Machine"ld 

3. Remove j from U 

4. Update CompTimej = CompTimef -pdepart Vy on the right at Machine/ 

5. Find Cmax, the latest completion time at Machine °ld 

6. While Cmax < D} - ppj E {k e S\ Machinek
old = m+1}, Do 

CompTimej= Cmax + p} 

1. Calculate the combined objective value for U. 
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Note that in Step 6, LSHIFT checks the possibility of scheduling jobs that were in the 

unscheduled list of jobs in the original schedule. One of the unscheduled jobs (job j ) in 

the old schedule can possibly be scheduled if (Dj - pj) is grater than the completion time 

of the last job on the rescheduled machine after left shifting. Note also that the departing 

job is excluded from the calculation of the instability objective. To give an example of 

how LSHIFT works, assume that the initial schedule and the set of affected jobs are given 

in Figure 16 as given in Figure 10. But this time, the departure of job 8 which was 

randomly selected among the existing jobs, is decided at time tdecision - 35. Moreover, 

there exists an unscheduled job 16 (with processing time p 14 = 20 and deadline D14 = 70) 

according to the original schedule decision. 
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Figure 16 An Initial Schedule for job departure 

After the first three steps, the set of jobs to reschedule is determined as U = {9, 10, 11, 

12, 14}. Consequently, the final schedule after left shifting and accepting the jobs 

(because CompTime/2 = 80 - 30 = 50 and CompTimeu = CompTimen + pu ^ D14 = 70) 

after left shifting ) is given in Figure 17. 
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Figure 17 Rescheduled jobs by LSHIFT 
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5.2.5 SHUFFLE Algorithm 

SHUFFLE is a partial repair algorithm that is applied to one of the machines assuming 

that a changing priority disruption affects only that particular machine. It is based on 

APTCR priority index where the pairwise swapping decisions on a particular machine are 

made repeatedly to achieve the APTCR priority index ranking calculated by using the 

new priority parameters(due date, deadline and weight) of the disrupted job. SHUFFLE 

algorithm is given below. 

SHUFFLE'^Algorithm 

R : set of successor jobs 

L : set of predecessor of job 

1. Execute Determine-JobSet-to-Reschedule 

2. Select a random job j E U and Machine"10', 

3. Update wh dj and Dj, t = StartTimej 

4. While R*0 

5. Calculate n/t) and Kk(t) job by using APTCR, ke R of job j on Machine°ld 

6. If 7rj(t) < 7tk(t) then Swap and update t and R 

7. Else Terminate 

8. end While 

9. Whi leL*0 

10. Calculate n/t) and Kk{t) job by using APTCR, i G L of job j on Machine}
old 

11. If nj(t) > 7c,(t) then Swap and update t and R 

12. Else Terminate 

13. end While 

14. Check possibility of scheduling the unscheduled jobs in the old schedule 

15. Calculate the combined objective value for U. 
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In order to consider the stability objective in addition to TWT objective, SHUFFLE 

changes the original schedule in small steps by swapping two neighbor jobs according to 

their priority index values. However the small steps to the right are firstly attempted to 

reduce the number of affected jobs. If it is not possible to shuffle to the right then 

swapping trials to the left are applied. The priority disruption is assumed to occur only at 

jobs which are scheduled in the old schedule so that SHUFFLE can be implemented. 

Otherwise, only insertion and complete regeneration would be enough to repair the 

schedule. 

In order to describe the SHUFFLE procedure, the previous example data for LSHBFT can 

be used for priority change disruption (Figure 18). Assume that due date and deadline of 

job 12 are decided at time tdecision = 35 to be made tighter (with fixed d-to-D window) and 

set its weight as the highest value of 9 over 9. Moreover, there exists an unscheduled job 

14 (with processing time pi4 = 20 and deadline Du = 70) according to the original 

schedule decision. 
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Figure 18 An initial schedule for job priority disruption 

The set of jobs to reschedule is determined as U = {8, 9, 10, 11, 12, 14}. First, since R = 

0, go to Step 9. L - {8}and for t = 40, priority index values are compared for jobs 8 and 

12. Since 7rs(t) < nnit), jobs 8 and 12 are swapped. Consequently, t = StartTimen = 40, 

R = {12} and L = 0. Assume that deadlines of both jobs 8 and 14 are Dg - D14 = 70. 

Thus, job 8 cannot be scheduled anymore. Finally, job 14 can be scheduled instead of job 
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8 because CompTimeu = CompTimen + P14 = 50 + 20 < D14. Eventually, the updated 

schedule is given in Figure 19. 
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Figure 19 Updated schedule by SHUFFLE 
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CHAPTER 6 

COMPUTATIONAL STUDY FOR ARRP'S RESCHEDULING ALGORITHMS 

In order to measure the effectiveness of the rescheduling algorithms, they are compared 

to optimal solutions for small size problems (n=12) obtained using the MILP model 

discussed earlier. For large size problems (n=60), the algorithms are compared to each 

other. The same look-ahead parameter estimates and MetaRaPS parameter values that 

were set in the Section 4.3 are used for problem instances. 

6.1 Data Generation 

1. For small size problems, the number of jobs is set to value n = 12 and the number of 

machines m— 3. For large size problems, the number of jobs is set to value n = 60 and the 

number of machines m- 10. 

2. The processing times p} are uniformly distributed integers in the interval [15, 45]. The 

processing time of the new job pnew is set to the middle value of 30. 

3. The weights for the jobs Wj are uniformly distributed integers in the interval [1,9]. The 

weight of the new job wnew is set to the middle value of 5. 

4. Given the average of jobs' processing times (p), the average of the jobs' release times 

(7), job machine factor (pi), and coefficient (0), which takes into account the effect of the 

release times on the makespan (assumed here 0 = 0.1), then Cmax = ($7 + /?).// estimates 

Cmax of the problem. A similar approach was used by Lee and Pinedo (1997). 

5. Release times r; are uniformly distributed in the interval [0, 27 ] where 7 is the jobs' 

release time average. The maximum release time is derived as 27 = 2p~pp/(2 - 0pp) 

where release time range factor (p) is p = 271 Cmax and estimated makespan is 

Cmax= (07 + p).p as defined earlier. 
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6. Due dates are calculated by d3 = r} + a.p} formula and deadlines are calculated by Dj = 

dj + y.pj formula where a and y are the due date and d-to-D window tightness factors 

respectively as defined in Section 4.1. 

7. New job arrival time (rnew) is assumed to be uniformly distributed in the early job 

arrival time range of [O.IXCMU, 0.3xCmarJ and late job arrival time range of 

( * 1 

8. For low priority deviation level, the new weight (w7) of randomly selected job is 

determined by uniformly distributed integers in the interval [w}, 9]. The new due date (d}) 

is calculated by d} = r} + a.p} where a is uniformly distributed in the interval [1.5, 2). 

The new deadline (Dy) is calculated by Dj = r} + (a+ y).p} where y is uniformly 

distributed in the interval [0, 1). High priority deviation level for urgent job is illustrated 

by setting w} = 9 which is the highest weight value, dj = /) + pj where a = 1 which is the 

lowest possible value to complete processing, and D} - dj where y = 0, the lowest value 

without cost tolerance. 

9. Disrupted job is selected randomly among the jobs that have not been started by the 

time the disruption occurs for both priority and departure disruption. The same disruption 

times that were generated earlier by the early time range for job arrival disruption, are 

used for the latter disruptions to work on relatively large sets to reschedule. In the 

following sections, we address the different disruption events. 

6.2 Effectiveness of the Algorithms for Small Size Problems 

In order to apply different types of disruption events, five different instances are 

generated by using middle factor levels (ju=4, a=2, y=l, p=0.2). The proposed algorithms 

were implemented in C++ and optimal solutions were obtained by implementing the 

MILP model (Section 5.2) in OPL Studio 6.3 with CPLEX 12.1 solver. Intel Core 2 Duo 

2.10 GHz CPU with 2.00 GB of RAM was used to perform the computations. 
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The MILP model could be used for solving small size problems with up to 12 jobs in 

acceptable time. Thus, the performance of the algorithms are measured by computing the 

difference between the combined objective function value of the algorithm and the 

optimal solution value as follows: 

_ , . „ J Algorithm ~ J Optimal ,„_. 
Relative Error = (35) 

J Optimal 

The same ideal and nadir objective vectors (\frwr finmbdity*] and [/W""finstability^^ ) are 

used while calculating the objective function values for each algorithm. 

6.2.1 Effectiveness of the Algorithms for Job Arrival 

Rescheduling algorithms to repair job arrival disruptions are tested under various job 

arrival time ranges and objective weight coefficient, X values. Job arrival time range 

which determines the set of jobs to reschedule can be an indicator of the rescheduling 

problem size. We assume that a new job arrive at a random time within this job arrival 

time range. All jobs that have not been started by the time this job arrive are considered 

in the rescheduling set. To have reasonable job arrivals, two time range levels (early, late) 

are defined. Thus, early job arrivals indicate large set of jobs to reschedule and vice versa 

for late job arrivals. The upper bound of job arrival time is compared to the estimated 

makespan (Cmax)- Recall that the makespan (Cmax) is the maximum completion time of all 

released jobs and is estimated depending on the schedule as discussed in the Subsection 

6.2. The objective weight coefficient in the combined objective function (33) 

characterizes the impact of the relative importance weights on the problem objectives. In 

order to study its impact of the weight coefficient, three objective weight coefficient 

values (/I = 0.2, 0.5, 0.8) are used to obtain different pareto-optimal points. Moreover, 

since a little change in the instability component may result in high effect to the 

normalized objective function, the experiment is repeated by additional high objective 

weight coefficient values (2 = 0.92, 0.95, 0.98) to reduce this effect. 

The performance values of the MetaRE, BestlnSERT and SEPRE algorithms are 

compared in terms of relative error and computation time over levels of factors. Five 

different unique problem instances with the original schedule and job arrival time were 

file:///frwr
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generated and these instances are used for different objective weight coefficient levels. 

To understand the results in Table 26, a sample batch of MetaRE solutions is given for 

early job arrival with X= 0.5 in Table 25. 

A=0.5 

JQJ, Optimal MetaRE 
Relative Error CPU(sec) 

Arrival J W T inability f0plimal TWT Instability fMelaRE 

289.99 1 0.2559 290.14 1 0.2561 0.00 0.399 

413.63 1 0.1385 413.63 1 0.1385 0.00 0.366 

Early 458.51 1 0.1579 484.80 2 0.2670 0.69 0.464 

485.25 1 0.0997 485.25 1 0.0997 0.00 0.446 

634.50 2 0.2526 989.00 1 0.5012 0.98 0.500 

Average 0.34 0.435 

Table 25 A sample experiment result for the MetaRE algorithm for early job arrival 

with 1= 0.5 

0.2 0.5 0.8 

Job 

Arrival 

Early 

Late 

MetaRE 

0.49 

25.02 

BestlNSERT 

0.00 

0.04 

SEPRE 

5.17 

54.19 

MetaRE 

0.34 

6.92 

BestlNSERT 

0.26 

0.04 

SEPRE 

3.52 

13.79 

MetaRE 

0.31 

3.49 

BestlNSERT 

1.07 

1.25 

SEPRE 

4.04 

4.98 

0.92 0.95 0.98 

Job 

Arrival 

Early 

Late 

MetaRE 

0.41 

4.88 

BestlNSERT 

2.82 

4.25 

SEPRE 

6.23 

5.00 

MetaRE 

0.54 

7.07 

BestlNSERT 

4.43 

7.36 

SEPRE 

8.52 

6.79 

MetaRE 

1.05 

17.29 

BestlNSERT 

9.70 

19.87 

SEPRE 

16.42 

15.49 

Table 26 Average relative error of the algorithms for job arrival disruption 
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Prior to statistical analysis for the algorithm comparisons, a normality test should be 

performed to determine whether the data satisfies the normality assumption for 

parametric analysis methods. Probability plot and Kolmogorov-Smirnov normality test 

result obtained by Minitab 15.1 statistical software program for the relative error data are 

given in Figure 20 which shows that the relative error data for each combination does not 

follow a normal distribution (p < 0.05). Thus, the statistical significance of performance 

between algorithms can be analyzed by nonparametric Kruskal-Wallis test. 
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Figure 20 Normality Test for Relative Error Data 

Nonparametric test is a hypothesis test that does not require the population's distribution 

to be characterized by certain parameters. They are useful when the data is strongly 

nonnormal and resistant to transformation. Kruskal-Wallis test is a nonparametric test 

that can be used whether two or more independent samples come from identical 

populations or not, and does not require the data to be normal. It instead uses the rank of 

the data values rather than the actual data values for the analysis. The Kruskal-Wallis test 

result (using Minitab 15.1 statistical software program) is given Table 27. 
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Algorithm N Median Ave Rank 
BestlNSERT 
MetaRE 
SEPRE 
Overall 

60 0.1605 
60 0.7175 
60 3.4473 

180 

70.7 
80.3 

120.5 
90.5 

-3.60 
-1.87 
5.47 

H = 30.90 DF = 2 P = 0.000 
H = 31.20 DF = 2 P = 0.000 (adjusted for ties) 

Table 27 Kruskal-Wallis Test on Relative Error of the algorithms for job arrival 
disruption 

Table 27 shows that there is a statistical difference between the population mean values 

of performance in terms of relative error for the three algorithms (p < a=0.05). However, 

the test does not reveal which means differ significantly. Thus, pair tests need to be 

performed and their results in Tables 28, Table 29 and Table 30 show that both 

BestlNSERT and MetaRE algorithms have better mean performance than SEPRE 

algorithm (p < 0.05). However, it cannot be concluded that there exists significant 

difference between the BestlNSERT and MetaRE algorithms (p > 0.05 in Table 28). 

Algorithm N Median Ave Rank 
BestlNSERT 
MetaRE 
Overall 

60 0.1605 
60 0.7175 

120 

57.2 
63.8 

60.5 

-1.04 
1.04 

H=1.09 DF=1 P = 0.296 
H=1.13 DF=1 P = 0.288 (adjusted for ties) 

Table 28 Kruskal-Wallis Test on Relative Error of the BestlNSERT and MetaRE 
algorithms 
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Algorithm N Median Ave Rank Z 
BestlNSERT 60 0.1605 44.0 -5.19 
SEPRE 60 3.4473 77.0 5.19 
Overall 120 60.5 

H = 26.89 DF = 1 P = 0.000 
H = 27.06 DF = 1 P = 0.000 (adjusted for ties 

Table 29 Kruskal-Wallis Test on Relative Error of the BestlNSERT and SEPRE 
algorithms 

Algorithm N Median Ave Rank Z 
MetaRE 60 0.7175 46.9 -4.27 
SEPRE 60 3.4473 74.1 4.27 
Overall 120 60.5 

H= 18.25 DF=1 P = 0.000 
H= 18.30 DF=1 P = 0.000 (adjusted for ties) 

Table 30 Kruskal-Wallis Test on Relative Error of the MetaRE and SEPRE algorithms 

A detailed analysis by using Kruskal-Wallis test for three algorithms is given in 

Appendix F. The results show that MetaRE and SEPRE perform better in terms of 

average relative error for early job arrivals, although BestlNSERT has better performance 

for late job arrivals. Moreover, performance of BestlNSERT declines as TWT objective 

weight increases. BestlNSERT is significantly superior to the other algorithms when the 

instability objective is more important (for low X values < 0.5) than the TWT objective. 

Table 31 shows that the average CPU times of the BestlNSERT and SEPRE were less 

than 0.001 second which is much shorter than MetaRE's average CPU times for all cases. 

The average CPU time effectiveness of all algorithms does not change significantly with 

the change in X values. The average CPU times of the MetaRE and BestlNSERT clearly 

get shorter for late job arrival time range as it results in a smaller set of jobs to 

reschedule. Note that since the CPUs are in second, it does not take too long even for 
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X 0.2 0.5 0.8 

Job 
MetaRE BestlNSERT SEPRE MetaRE BestBMSERT SEPRE MetaRE BestlNSERT SEPRE 

Arrival 

Early 0.4266 0.0002 0.0000 0.4350 0.0004 0.0000 0.4360 0.0004 0.0002 

Late 0.2158 0.0000 0.0002 0.2266 0.0002 0.0002 0.2240 0.0002 0.0002 

X 0.92 0.95 0.98 

Job 
MetaRE BestlNSERT SEPRE MetaRE BestlNSERT SEPRE MetaRE BestlNSERT SEPRE 

Arrival 

Early 0.4324 0.0002 0.0004 0.4496 0.0002 0.0000 0.4314 0.0006 0.0000 

Late 0.2284 0.0000 0.0002 0.2224 0.0004 0.0008 0.2222 0.0002 0.0000 

Table 31 CPU times in sec. of the repair algorithms for job arrival disruption 

MetaRE although it is obvious that MetaRE's average CPU times for all cases is longer 

than other algorithms. As a result, MetaRE and BestlNSERT have significantly 

performed better than SEPRE in terms of average relative error. Especially, when the 

instability objective have a higher importance (for low k values < 0.5), BestlNSERT is 

preferred. 

6.2.2 Effectiveness of the Algorithms for Job Priority Deviation 

Rescheduling algorithms to repair job priority disruptions are tested under various 

priority deviation levels and objective weight coefficient, 1 values. Priority deviation 

level measures the amount of change in the urgency of a selected job. We defined only 

positive deviations for jobs by assuming that analysis for slight positive and negative 

deviations have similar results. Moreover, job cancellation disruption that will be tested 

separately, can be considered as a negative extreme change in the priority. Note that 

urgent job disruption is also a positive extreme change in the priority. Positive priority 

deviation is represented by increasing the weight (\Vj) and tightening both due date (d}) 

and d-to-D window for an arbitrary job. Two priority deviation levels (low, high) are 

defined by setting ranges for due date tightness (a) and d-to-D window tightness (y) 

parameters. Note that a "High" level here means an urgent job disruption. 
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The performance values of the algorithms are compared in terms of relative error and 

computation time over different objective weight coefficient levels. The same five 

different unique problem instances which were generated earlier, are assumed to be 

affected by priority disruptions. Comparison results for job priority deviation algorithms 

are given in Table 32. 

X 0.2 0.5 0.8 

Priority 
Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE 

Deviation 

Low 1.04 0.44 1.19 1.10 0.29 0.65 3.91 2.42 0.62 

High 1.10 0.82 1.43 0.46 0.15 0.63 1.88 1.45 0.61 

Table 32 Average relative error of the algorithms for job priority disruption 

Algorithm N Median Ave Rank Z 
BestlNSERT 30 0.5540 40.7 -1.24 
MetaRE 30 0.3829 42.2 -0.85 
SHUFFLE 30 0.8596 53.6 2.09 
Overall 90 45.5 

H = 4.41 DF = 2 P = 0.110 
H = 4.42 DF = 2 P = 0.110 (adjusted for ties) 

Table 33 Kruskal-Wallis Test on Relative Error of the algorithms for priority disruption 

Since the relative error data for the priority disruption repair algorithms does not follow a 

normal distribution according to Kolmogorov-Smirnov normality test, the statistical 

significance of performance between algorithms are analyzed via using Kruskal-Wallis 

test. It can not be concluded that there exists significant difference between the 

algorithms (p > 0.05 in Table 33). Moreover, the detailed test results given in Appendix F 

shows that relative error performance of the SHUFFLE algorithm significantly declines 

as the TWT objective weight increases. 
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X 0.2 0.5 0.8 

Priority 

Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE 

Deviation 

Low 0.00 0.00 0.30 0.00 0.00 0.31 0.00 0.00 0.31 

High 0.00 0.00 0.28 0.00 0.00 0.28 0.00 0.00 0.29 

Table 34 CPU times of the repair algorithms for job priority disruption 

Table 34 shows that MetaRE's average CPU time for all cases is reasonable, although it 

is clearly longer than the other algorithms. The average CPU time effectiveness of all 

algorithms does not change significantly between X values and priority deviation levels. 

6.2.3 Effectiveness of the Algorithms for Job Departure 

Rescheduling algorithms to repair job departure disruptions are tested under various 

objective weight coefficient (X) values. The same five instances and disruption times in 

the effectiveness test for job priority deviation are used to compare the algorithms for job 

departure disruption in terms of relative error and computational time over different 

objective weight coefficient levels. Comparison results for job departure repair 

algorithms are given in Table 35. 

X 0.2 0.4 0.5 0.6 0.8 

LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE 

Avg. 2.74 0.63 1.35 0.25 1.23 0.14 1.54 0.12 3.63 0.23 

Relative 

CPU(sec) 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 

Table 35 Performance of the algorithms for job departure disruption 
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Algorithm N Median Ave Rank Z 
LeftSHIFT25 1.468820 35.9 5.05 
MetaRE 25 0.005682 15.1 -5.05 
Overall 50 25.5 

H = 25.55 DF = 1 P = 0.000 
H = 25.58 DF = 1 P = 0.000 (adjusted for ties) 

Table 36 Kruskal-Wallis Test on Relative Error of the algorithms for job departure 

disruption 

Table 35 and Table 36 show that MetaRE has significantly performed better than 

LSHEFT in terms of average relative error with a reasonable average CPU time. 

6.3 Effectiveness of the Algorithms for Large Size Problems 

It was clear that it is not possible to obtain optimal solutions in a reasonable time for 

large size problems (with 60 jobs and 10 machines) by running the MILP model. In this 

section, effectiveness of the two general MetaRE and BestlNSERT algorithms (Table 24) 

that are distinguished with their good performances in most job disruption cases, were 

compared to each other only for priority disruption type. Job arrival and job departure 

disruptions can be defined as a priority disruption. As was mentioned earlier in Section 

6.2.2, job departure disruption can be considered as a negative extreme change in the 

priority of an existing job, while job arrival disruption can be considered as a positive 

extreme change in the priority of the additional job. In order to implement the algorithms, 

five different instances are generated by using factor levels (ju=6, a=2, y=\, p=0.2). The 

proposed algorithms were implemented in C++ and Intel Core 2 Duo 2.10 GHz CPU with 

2.00 GB of RAM was used to perform the computations. 

The performance of the algorithms are measured by computing the difference between 

the combined objective function value of a particular algorithm and the minimum value 

of the algorithms as follows: 
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_ , . ^ . . . f Algorithm ~ min(f MetaRE >f BestlNSERT ) , „ , . 

Relative Difference = - : (36) 
min(f MetaRE >f BestlNSERT ) 

The pessimistic and optimistic objective values are used as explained in Section 5.2 for 

the ideal and nadir objective vectors (Ifrwr /instability*] and Ifrwr""* /instability™'*] ) while 

calculating objective function values for each of the algorithms. 

Two time range levels (early and late disruption) are defined like job arrival case to test 

the performance of the algorithms for different problem sizes. In order to study the 

impact of the weight coefficient, five objective weight coefficient values (X = 0.1, 0.3, 

0.5, 0.7, 0.9) are used to obtain different pareto-optimal points. 

The performance values of the MetaRE and BestlnSERT algorithms are compared in 

terms of relative error and computation time over levels of factors. Five different unique 

problem instances with the original schedule and disruption time were generated and 

these instances were used with different objective weight coefficient levels. The original 

schedules are obtained by selecting the best solution of 10 replicate (runs) of MetaRaPS 

algorithm that had the best performance for the scheduling problem. The results obtained 

by implementing the two algorithms are summarized in Table 37 The randomized 

MetaRE algorithm was replicated 10 times and the average was used to compare. 

Disruption 

Early 

Jht 

0.1 

0.3 

0.5 

0.7 

0.9 

0.1 

0.3 

0.5 

0.7 

BestlNSERT 
Rel.Diff. 

0.55 

0.48 

0.21 

0.01 

0.00 

0.40 

0.42 

0.45 

0.19 

CPU(sec) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

MetaRE 
Rel.Diff. 

0.00 

0.00 

0.00 

0.09 

0.61 

0.00 

0.00 

0.00 

0.00 

CPU(sec) 

4.66 
4.64 

4.60 

4.57 

4.67 

2.47 

2.49 

2.42 

2.40 

Late 

0.9 0.00 0.00 0.35 2.47 
Overall 0.27 0.00 0.10 3.54 

Table 37 Performance of the algorithms for priority disruption 
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Algorithm N Median Ave Rank Z 
BestlNSERT 50 0.279798125 61.7 3.86 
MetaRE 50 0.000000000 39.3 -3.86 
Overall 100 50.5 

H = 14.90 DF = 1 P = 0.000 
H= 17.03 DF=1 P = 0.000 (adjusted for ties) 

Table 38 Kruskal-Wallis Test on Relative Difference for priority disruption (n=60) 

Table 37 and Table 38 show that the MetaRE algorithm is significantly superior to the 

BestlNSERT algorithm in terms of both relative error and computational time. The 

detailed test results are given in Appendix F. The relative performance of the 

BestlNSERT algorithm gets better as the TWT objective weight increases. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

This study addressed the parallel machine scheduling (ARSP) and rescheduling problem 

(ARRP) in a practical operational context requiring high quality solutions in an 

acceptable timeframe. ARSP was modeled as parallel machine scheduling problem with 

due date-to-deadline (d-to-D) windows and dynamic ready times to minimize total 

weighted tardiness. A piecewise tardiness cost was defined by taking into account d-to-D 

windows and job priorities to evaluate the performance of the schedule. First, a mixed 

integer linear programming model (MILP) was developed to find optimal solutions for 

ARSP. As the dimensions of the problem get larger, the solution process of mathematical 

modeling loses its effectiveness. Since ARSP is NP-hard, it is required to develop 

qualified, easily, and quickly implemented solution approaches with reasonable 

computation times. 

A new composite dispatching rule called APTCR was developed to obtain good solutions 

quickly and its effectiveness was studied by comparing it with SArandom which is a 

Simulated Annealing algorithm that starts with a random solution. APTCR rule is an 

extension of the ATC rule but with considering d-to-D window and dynamic ready times. 

In addition to APTCR and SArandom5 SAAPTCR and MetaRaPS were developed and 

implemented by integrating APTCR to construct initial solutions. The ARRP was also 

considered with three cases of job related disruptions (arrival of new job, departure of 

existing job, and changes in job priorities). The MILP model for ARSP was revised to 

take into account schedule instability by incorporating a new instability component into 

the objective function and adding new decision variables, parameters and constraints. 

Five regeneration and partial repair algorithms (MetaRE, BestlNSERT, SEPRE, LSHIFT 

and SHUFFLE) were developed to update instantly the current schedule at the disruption 

time. 
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Extensive experiments were designed and conducted to study the effectiveness of the 

scheduling and rescheduling algorithms, which both were compared to optimal solutions 

for small size problems (n=12) and to each other for large size problems (n=60). 

Computational experiments for ARSP demonstrate that although APTCR has 

significantly worse deviation performance from optimal solution than SArandom for small 

size problems, it is more likely to outperform SArandom when the problem size increases. 

Moreover CPU time of APTCR is significantly shorter than SArandom in both 

cases.MetaRaPS outperformed SAAPTCR in terms of average error from optimal solution 

for both small and large size problems; however, in terms of CPU time performance, 

SAAPTCR was significantly better than MetaRaPS in both cases. Results for small size 

problems shows that MetaRaPS algorithm is more robust compared to SAAPTCR-

It is observed that metaheuristics that are combined with the proposed APTCR algorithm, 

clearly resulted in better solutions than the APTCR algorithm and SA individually. Using 

only composite dispatching rules, such as the APTCR rule, does not produce the best 

solutions for most applications. On the other hand, starting initially from a better than 

random solution was advantageous in ARSP for which good solutions cannot be easily 

obtained. SA and MetaRaPS are promising metaheuristics with their simplicity and 

effectiveness to find high quality solutions for ARSP. and potentially for other similar 

scheduling problems. 

Experiments were conducted separately for three disruption cases of ARRP with various 

values of objective weighting factor (X) in extended analysis. First, rescheduling 

algorithms to repair job arrival disruptions were tested under various job arrival time 

ranges. MetaRE and BestlNSERT have significantly performed better than SEPRE in 

terms of average relative errorwith no significant difference between the BestlNSERT 

and MetaRE algorithms for small size problems. However, when the instability objective 

have a higher importance weight (X < 0.5), BestlNSERT can be preferred because the 

performance of BestlNSERT declines as TWT objective weight increases. The average 

CPU time effectiveness of all algorithms does not change significantly with the change in 

X values. Second, rescheduling algorithms to repair job priority disruptions were tested 

under various priority deviation levels. Job cancellation disruption can be considered as a 



133 

negative extreme change in the priority as well as urgent job disruption is a positive 

extreme change in the priority. There does not exist significant difference between the 

performance of the algorithms. Relative error performance of the SHUFFLE algorithm 

significantly declines as the TWT objective weight increases. MetaRE's average CPU 

time for all cases is reasonable, although it is clearly longer than the other algorithms. 

The average CPU time effectiveness of all algorithms does not change significantly for 

different X values and priority deviation levels. Third, MetaRE has significantly 

performed better than LSHIFT to repair job departure disruptions in terms of average 

relative error with a reasonable average CPU time. 

Finally, the effectiveness of the best performing algorithms MetaRE and BestlNSERT in 

most job disruption cases were compared to each other for priority disruption type. 

MetaRE is significantly superior to the BestlNSERT algorithm in terms of both relative 

error and computational time. The relative performance of the BestlNSERT algorithm 

enhanced as the TWT objective weight increases. 

7.2 Contributions 

This dissertation research has the following intellectual and practical contributions: 

1. ARSP under in-theater air force military environment was defined and an 

optimization model was formulated to solve the problem for the first time. The 

problem was formulated as an identical parallel machine scheduling problem 

which is commonly researched in production environments. This research 

provides highly valuable practical contributions for military operations as there is 

very little existing research on the ARSP for both inter-theater and in-theater 

operations. Effective AR scheduling affects the performance of air force in terms 

of responsiveness, endurance, flexibility, efficiency, and safety. Moreover, the 

study of fighter aircraft AR, provides basic knowledge for programming 

autonomous AR of unmanned aerial vehicles (UAV). 

2. The problem characteristics make the research remarkable in the scheduling 

theory applications also. Multi-resourced, time window, dynamic, and multi 

objective perspectives of the problem qualify the study as a state-of-art research in 
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the scheduling discipline. Time window between due date and deadline were 

firstly considered in parallel machine scheduling problem by defining a piecewise 

tardiness cost. There is very little existing research addressing parallel machine 

scheduling and rescheduling with release time and due date-to-deadline windows 

to minimize the total weighted tardiness. The scheduling and rescheduling 

problem framed in this dissertation has never been tackled in the Operations 

Research literature. New Mixed Integer Programming models were introduced to 

find optimal solutions for the problem. 

3. Approximate heuristic and metaheuristic algorithms were developed to obtain 

best schedules for the problem in a reasonable time. The newly proposed APTCR 

algorithm was used to find good initial solutions to be improved by other 

metaheuristics (SA and MetaRaPS) and also to repair the disrupted schedules in 

the rescheduling algorithms. 

4. A multi objective optimization (MOO) approach was developed to update the 

disrupted schedules satisfactorily with respect to both objectives, and the trade-off 

between the objectives was effectively evaluated. New rescheduling algorithms 

(MetaRE, BestlNSERT, SEPRE, LSHIFT, and SHUFFLE) were developed where 

MetaRaPS was firstly applied to solve the MOO problems. 

5. The piecewise cost function used in this research has nonmilitary important 

applications such as capturing the tolerance of costumers to order delays and 

stockout costs. Similarly, time constraints, new rush orders, unexpected 

cancellations, multi objectives of marketing-production departments or changing 

market strategies cause scheduling complexities in the manufacturing system 

design. This study provides a system view of manufacturing including order ready 

times, order priority changes, production control systems with time windows, and 

machine utilization. This research stimulates further development and 

implementation of rescheduling models to mitigate the effects of disruptions that 

occur frequently in manufacturing environments. 
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7.3 Future Research 

The problem can be extended in the future to address the following aspects: 

1. Stochastic or fuzzy variables as a result of uncertain processing times, ready 

times, due dates, deadlines, and priorities. 

2. Multi objective scheduling problems as a result of objectives related to efficiency 

of fuel transfer and total waiting time of the jobs. 

3. Rescheduling extension as a result of machine availability problems caused by 

emergent events, machine availability constraints due to breakdowns, 

maintenance, or having a variable number of tankers. 

4. More constraints such as machine compatibility, sequence dependent setup times 

and unexpected disruptions may be included in the models and algorithms. 

Modeling with (i) new processing time definition which is dependent on 

scheduled refueling start times, (ii) compatibility constraints due to having 

different types of tankers, (iii) treating fighters, instead of wings, as jobs and (iv) 

incorporating communication delay constraints. 

5. This military application can be extended to manufacturing and other 

environments such as project scheduling, designing markets by considering 

customer expectations, satellite maintenance planning, programming autonomous 

AR of UAVs and military or civilian air traffic control. 
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APPENDICES 

APPENDIX A: SAMPLE DATA FOR ARSP AND ARRP 

Problem Factors 

[i a y p kl k2 k3 
4.0 2.0 1.0 0.2 2.168 0.980 0.190 

Scheduling Problem 

Pjobs= {0,1,2,3,4,5,6,7,8,9,10,11,12}; 
Sjobs= {1,2,3,4,5,6,7,8,9,10,11,12}; 
Machines = {1,2,3}; 
Release = [4.67,4.17,18.67,6.00,18.83,3.83,10.50,11.33,3.50,16.33,19.00,5.33]; 
Processing Time = [ 40, 15, 16, 24, 15, 16, 22, 39, 20,41, 22, 36]; 
Weight = [ 9, 7, 1, 9, 2, 5, 1, 2, 5, 4, 5, 8]; 
DueDate= [84.67,34.17,50.67,54.00,48.83,35.83,54.50,89.33,43.50,98.33,63.00,77.33]; 
Deadline = [124.67,49.17,66.67,78.00,63.83,51.83,76.50,128.33,63.50,139.33,85.00,113.33]; 
FixedCost = 120; 

Job Arrival Disruption Rescheduling Problem 

rnew = 26.00, 
Pnew= 30, wnew= 5, dnew= 86, Dnew= 116 

Pjobs= {0,1,2,3,4,5,6,7,8,9,10}; 
Sjobs={ 1,2,3,4,5,6,7,8,9,10}; 
Machines = {1,2,3}; 
Release = [26,4.67,18.67,0,0,10.50,11.33,16.33,0,5.33]; 
ProcessingTime = [ 30, 40, 16, 47.5, 34.17, 22, 39, 41, 41.83, 36]; 
Weight =[5, 9, 1, 999, 999, 1, 2, 4, 999, 8]; 
DueDate = [86, 84.67,50.67,47.5,34.17,54.50,89.33,98.33,41.83,77.33]; 
Deadline = [116, 124.67,66.67,47.5,34.17,76.50,128.33,139.33,41.83,113.33]; 
FixedCost = 120; 

fmin = [284.33 0]; 
fmax = [761.5 2]; 
r= 0.92; 
01dCompTime = [0 87.5 50.17 47.5 34.17 72.17 116.83 113.17 41.83 77.83]; 
OldAssign = [[0 0 0] [1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 1 0]]; 



Job Departure Disruption Rescheduling Problem 

Disruption decision time = 26.00 
Job index = 7, machine index = 1; 

Pjobs= {0,1,2,3,4,5,6,7,8}; 
Sjobs={ 1,2,3,4,5,6,7,8}; 
Machines = {1,2,3}; 
Release = [ 4.67,18.67,0,0,10.50, 16.33,0,5.33]; 
ProcessingTime = [ 40, 16, 47.5, 34.17, 22, 41, 41.83, 36]; 
Weight = [9, 1, 999, 999, 1, 4, 999, 8]; 
DueDate= [84.67,50.67,47.5,34.17,54.50, 98.33,41.83,77.33]; 
Deadline = [124.67,66.67,47.5,34.17,76.50, 139.33,41.83,113.33]; 
FixedCost= 120; 

fmin = [0 0]; 
fmax = [200 1]; 
r= 0.2; 
OldCompTime = [87.5 50.17 47.5 34.17 72.17 113.17 41.83 77.83]; 
OldAssign = [[1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0]]; 

Priority Disruption Rescheduling Problem 

Disruption decision time = 26.00 
job index = 7, machine index = 1 
w0,d = 2, dold = 89.3, Dold = 128.3 
W n e w = J , U n e w— / J . J , L-'new" oH'.y 

Pjobs= {0,1,2,3,4,5,6,7,8,9}; 
Sjobs={ 1,2,3,4,5,6,7,8,9}; 
Machines = {1,2,3}; 
Release = [4.67,18.67,0,0,10.50,11.33,16.33,0,5.33]; 
ProcessingTime = [ 40, 16, 47.5, 34.17, 22, 39, 41, 41.83, 36]; 
Weight =[9, 1, 999, 999, 1, 5, 4, 999, 8]; 
DueDate= [84.67,50.67,47.5,34.17,54.50,75.4684,98.33,41.83,77.33]; 
Deadline = [124.67,66.67,47.5,34.17,76.50,84.8867,139.33,41.83,113.33]; 
FixedCost=120; 

fmin = [332.83 1]; 
fmax = [706.5 4]; 
r= 0.2; 
OldCompTime = [87.5 50.17 47.5 34.17 72.17 116.83 113.17 41.83 77.83]; 
OldAssign = [[1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 1 0]]; 



APPENDIX B RESULTS FOR PARAMETER SETTING FOR ARSP'S 

ALGORITHMS 

Table 1 Experiment Results for Parameter Setting of the APTCR Rule 
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0 484 

07138 

0 301 

04148 

0 2968 

1 914 

1 8804 

1 9024 

2 1326 

2 2344 

2 043 

2 1446 

22512 

2 0866 

2 7508 

2 3946 

2 0174 

3 0406 

2 7644 

1 4216 

2 9926 

2 1928 

0 5776 

2 5098 

1 7186 

2 1068 

2 68 

2 6418 

2 7184 

0 9134 

0 6368 

0 3682 

1 1658 

04618 

0 7398 

0 82 

0 28 

0 8774 

0 24 

0 7644 

0 8588 

3 1308 

2519 

2 0958 

2 9888 

2 2232 

2 4144 

2 9048 

1 8972 

0 5404 

3 4296 

2 429 

2 4018 

3 4824 

2 964 

2914 

2 8552 

2 2648 

0 4956 

k2 

2 2426 

1 9532 

2 0572 

0 9058 

0 5734 

0 476 

1 8274 

2 3332 

3 3806 

1 8754 

2 0538 

1 1142 

1 4654 

1 327 

1 8414 

3 6754 

3 5646 

3311 

1 914 

1 8804 

1 9024 

1 8496 

2 0026 

1 967 

1 706 

2 0006 

1 9156 

2 7508 

2 3946 

2 0174 

1 0612 

127 

0 9338 

1 685 

2 2308 

2 8234 

2 5098 

1 7186 

2 1068 

0 758 

0 797 

0 533 

2 1766 

3 1654 

3 47 

1 1658 

0 4616 

0 7398 

0 6866 

1 7106 

1 1824 

1 228 

1 7008 

1 5402 

3 1308 

2519 

2 0958 

2 9572 

1 934 

1 0632 

2 463 

2 2908 

2 1684 

3 4296 

2 429 

2 4018 

1 1052 

0 8522 

0 746 

2 1066 

2 9762 

3 3344 

k3 

3 7952 

3 5456 

1 6796 

2 1224 

0 3772 

0 2506 

1 2996 

0 9884 

0 9122 

0 9332 

0 2864 

02 

0 2078 

0 2282 

0 22 

0 276 

02 

0 2 

3 2314 

3 1368 

3 1626 

3 2648 

3 1654 

3 1016 

3 2122 

3 1616 

3 1134 

3 6546 

1 9196 

1 9342 

0 5092 

0 6386 

1 92 

1 65 

0 6822 

1 5372 

0 8464 

0 7998 

0 2194 

0 2994 

0 2194 

0 23 

0 4888 

0 2648 

02 

0 5362 

1 4096 

2 0484 

0 2334 

0 36 

1 5094 

0 8748 

0 8134 

1 0536 

3 4174 

2 8906 

2 2884 

1 664 

1 3342 

1 202 

1 6598 

1 3996 

2 628 

0 5704 

0 8828 

0 633 

0 2596 

0 4166 

02 

0 3596 

0 2298 

0 227 



Table 1 Experiment Results for Parameter Setting of the APTCR Rule (Continued) 

Instance y a i g kl k2 k3^ 

73 1 

74 1 

7") 1 

76 1 

77 1 

78 1 

79 1 

80 1 

81 1 

1 1 

1 1 

1 1 

1 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

2 4696 

1 7862 

1 1184 

1 8682 

2 2778 

0 « 

0 1184 

0 4892 

0 3444 

2 4696 

1 7862 

1 1384 

0 7224 

1 9988 

1 62 

3 7618 

2 573 

3 8996 

0 4692 

0 2802 

1 0708 

02318 

02 

02 

0 2464 

02134 

02 

Table 2 Experiment Results for Parameter Setting of the SA 

TMax 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

Avg Lrror from Optimal 

0 3039 

0 2270 

0 176S 

0 3099 

0 2299 

0 1721 

0 2992 

0 2387 

0 1596 

0 3132 

0 2330 

0 1690 

0 3114 

0 2320 

0 1662 

0 3141 

(1 2462 

0 1736 

0 3237 

0 2345 

0 1643 

0 2907 

0 2407 

0 1570 

0 3309 

0 2364 

0 1770 

0 3067 

0 2420 

0 1657 

0 3066 

0 2281 

0 1480 

0 3306 

0 2388 

0 1769 

03151 

0 2453 

0 1632 

0 1162 

0 2419 

0 1732 

0 3267 

0 2386 

0 1684 

0 3179 

0 2350 

0 1612 

0 3221 

0 2246 

0 1726 

0 3304 

0 2256 

0 1728 

0 3044 

0 2339 

0 1740 

0 1380 

0 2337 

2 

1 

4 

5 

6 

7 

8 

9 

10 

11 

12 

11 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

31 

34 

15 

16 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Table 2 Experiment Results for Parameter Setting of the SA (Continued) 

ITcmp Alpha SicpMax Avg hrror from Optimal 

60 

61 

62 

61 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

7? 

76 

77 

78 

79 

80 

81 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 ( 

1 ( 

1 ( 

1 

1 

1 

) 1 

1 

0 

1 

1 1 

1 0 

1 1 

) 1 

) 0 

) 1 

1 

0 

1 

1 1 

1 0 

1 1 

) 1 

) 0 

) 1 

1 

0 

1 

0 1704 

0 1225 

0 2276 

0 1771 

0 3213 

0 2159 

0 1620 

0 1199 

0 2501 

0 1790 

0 1282 

0 2388 

0 1617 

0 3382 

0 2182 

0 1625 

0 3160 

0 2230 

0 1805 

0 3056 

0 2138 

0 1775 

Table 3 Experiment Results for Parameter Setting of the MetaRaPS (p%=0.1) 

No pnontY restrict 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

10 

31 

32 

11 

34 

15 

36 

17 

38 

39 

40 

41 

42 

43 

44 

45 

1 

1 

1 

1 

1 

0 75 

0 75 

0 75 

0 75 

0 75 

05 

05 

05 

05 

0 5 

0 25 

0 25 

0 25 

0 25 

0 25 

0 

0 

0 

0 

0 

0 25 

0 25 

0 25 

0 25 

0 25 

05 

05 

05 

0 5 

05 

0 75 

0 75 

0 75 

0 75 

0 75 

improve 

1 

05 

0 

05 

1 

1 

0 5 

0 

05 

1 

1 

05 

0 

05 

1 

1 

0 5 

0 

05 

1 

1 

05 

0 

05 

1 

1 

05 

0 

05 

1 

1 

05 

0 

05 

1 

1 

05 

0 

05 

1 

1 

05 

0 

05 

1 

pnonty*restnct 

0 75 

0 75 

0 75 

0 75 

0 75 

05 

05 

05 

0 5 

05 

0 25 

0 25 

0 25 

0 25 

0 25 

0 

0 

0 

0 

0 

0 25 

0 25 

0 25 

0 25 

0 25 

05 

0 5 

0 5 

05 

0 5 

0 75 

0 75 

0 75 

0 75 

0 75 

pnonty*improve 

1 

05 

0 

0 5 

1 

1 

05 

0 

05 

1 

1 

05 

0 

05 

1 

1 

05 

0 

0 5 

1 

1 

05 

0 

05 

1 

1 

0 5 

0 

0 5 

1 

1 

0 5 

0 

0 5 

1 

1 

05 

0 

05 

1 

1 

05 

0 

0 5 

1 

restnct*improve 

1 

0 5 

0 

0 5 

1 

0 75 

0 175 

0 

0 175 

0 75 

0 5 

0 25 

0 

0 25 

05 

0 25 

0 125 

0 

0 125 

0 25 

0 

0 

0 

0 

0 

0 25 

0 125 

0 

0 125 

0 25 

05 

0 25 

0 

0 25 

05 

0 75 

0 175 

0 

0 375 

0 75 

1 

0 5 

0 

05 

1 

Avg Performance 

0 07 

0 05 

0 05 

0 05 

0 05 

0 02 

0 02 

0 02 

0 02 

0 02 

0 03 

0 04 

0 03 

0 04 

0 04 

0 03 

0 03 

0 03 

0 03 

0 01 

0 01 

0 03 

0 01 

0 03 

0 03 

0 08 

0 08 

0 08 

0 08 

0 08 

0 09 

0 09 

0 09 

0 09 

0 09 

0 33 

0 11 

012 

0 11 

0 13 

0 19 

0 39 

0 39 

0 40 

0 39 
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APPENDIX C : RESULTS FOR SMALL SIZE PROBLEMS FOR ARSP 

Table 1 Comparison Results for APTCR and SA (One replication) 

1 

2 

3 

4 
5 

6 

7 

8 
9 

10 

11 

12 

n 
14 

15 

16 

Mu 
3 
3 

3 

3 
3 

3 

3 

3 
6 

6 

6 
6 

6 
6 

6 

6 

Alta 

1 5 
1 5 

1 5 

1 5 

2 

2 
2 

2 

1 5 

1 5 
1 5 

1 5 
2 

2 

2 

2 

Gama 
0 

0 

2 

2 
0 

0 

2 

2 

0 

0 

2 

2 
0 

0 
2 

2 

Ro 
0 1 

0 3 

0 1 

0 3 

0 1 
0 3 

0 1 

03 

0 1 
03 

0 1 

0 3 
0 1 
0 3 

0 1 

0 3 

kl 

2 68 

2 30 

2 93 

2 59 
2 12 

1 91 

2 43 

2 25 
2 86 

2 36 

2 98 
2 52 

2 34 

1 99 

2 49 
2 17 

k2 

2 47 

2 16 

1 42 

1 42 
2 47 

2 16 

1 42 

1 42 
2 03 

1 73 

0 98 

0 98 
2 03 

1 73 

0 98 

0 98 

k3 

2 16 

1 88 
1 04 

0 84 

0 92 

0 92 

0 35 

0 35 
2 82 

2 49 

1 50 

1 27 
0 65 
0 65 

0 19 

0 19 

hrrorfl,TcR 
0 18 

0 55 

0 23 
0 04 
0 14 

1 33 

021 

2 29 
0 00 

0 00 

0 22 

0 27 
0 03 

091 

0 13 

0 39 

Time (see) 
0 001 

0 

0 001 

0 006 
0 005 

0 004 

0 006 

0 006 
0 002 
0 003 

0 004 

0 004 
0 002 

0 004 
0 005 

0 006 

1 riorSA Max Mi 
0 00 

0 06 

021 

0 18 
0 00 

0 67 

0 22 

3 46 

0 00 
0 07 

0 03 

0 14 

0 00 
0 23 

0 46 

0 25 

0 00 

0 09 
0 33 

0 32 
0 00 

0 67 
0 35 

4 99 
0 00 

0 12 

0 06 

0 19 
0 00 

0 27 

1 02 
0 44 

n 

0 00 

0 00 

0 12 

0 07 
0 00 

0 67 

0 15 

0 37 
0 00 

0 00 

0 00 
0 03 

0 00 

0 00 
015 

0 14 

Time (set) 
0 060 

0 062 

0 090 

0 091 

0 068 

0081 

0 092 
0 092 

0 055 

0 057 

0 063 
0 063 

0 056 

0 057 

0 071 

0 077 

Table 2 Comparison Results for SA and MetaRaPS(One replication) 

Instance 

1 
2 

3 

4 
5 

6 
7 

8 

9 

10 
11 

12 

13 
14 

15 

16 

Mu 
3 

3 
3 

3 

3 

3 
3 

3 

6 

6 
6 

6 

6 

6 
6 

6 

Alfa 
1 5 

1 5 
1 5 

1 5 
2 

2 
2 

2 

1 5 
1 5 

1 5 
1 5 

2 

2 
2 

2 

Gama 

0 

0 
2 

2 

0 

0 
2 

2 

0 

0 
2 

2 

0 

0 
2 

2 

Ro 

0 1 

0 3 
01 

03 

01 

03 
01 
0 3 

01 

0 3 
0 1 
03 

0 1 

0 3 
0 1 
03 

SA 

001 

0 17 
0 17 

0 06 
0 00 

0 02 

1 52 

0 37 

0 00 

0 03 
0 06 

0 08 

0 00 

0 09 
0 03 
0 04 

Max 

0 03 
0 27 

021 

0 06 
0 00 

0 17 
1 64 

0 37 

0 00 

0 06 
0 07 

0 15 

0 00 
0 13 

0 07 
0 04 

Min 

0 00 

0 00 
0 14 

0 03 
0 00 

0 00 

0 56 

0 37 

0 00 
0 00 

0 01 
0 00 

0 00 

0 00 
0 00 
0 04 

Time(sec) MR 

0 118 
1 296 

1 489 
1962 

1927 

1585 
1 641 

1 998 
1 952 

0 972 
1 174 

1 514 

1 536 

1 159 
1 271 

1 435 

0 03 
0 00 

0 03 
001 

0 06 

0 00 

0 05 

0 29 
0 00 

0 00 

001 
0 02 

0 00 
0 00 
0 02 

0 00 

Max 

0 03 
0 00 

0 09 

0 03 
0 20 

0 00 

0 16 
0 35 

0 00 

0 00 

0 02 
0 04 

0 00 
0 00 
0 04 

0 01 

Min 

0 03 
0 00 
0 00 

0 00 

0 00 

0 00 
0 00 

0 27 
0 00 

0 00 

0 00 
0 00 

0 00 

0 00 
0 01 

0 00 

Time(sec) 
0 097 

1 378 

1 576 
2 100 

2 024 

1 711 

1 737 

2 101 

2 065 
1 044 
1 244 

1 597 
1 635 

1 232 
1 369 

1 517 
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APPENDIX D : RESULTS FOR LARGE SIZE PROBLEMS FOR ARSP 

Table 1 Comparison Results for APTCR and SA (One replication) 

Instance M u 

1 

2 

3 

4 

•5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

IS 

16 

3 

3 

3 

3 

3 

3 

3 

3 

6 

6 

6 

6 

6 

6 

6 

6 

Alia 

1 5 

1 5 

1 5 

1 5 

2 

2 

2 

2 

1 5 

1 5 

1 5 

1 5 

2 

2 

2 

2 

Gama 

0 

0 

2 

2 

0 

0 

2 

2 

0 

0 

2 

2 

0 

0 

2 

2 

Ro 

0 1 

0 3 

0 1 

03 

0 1 

03 

0 1 

03 

0 1 

03 

0 1 

0 3 

0 1 

03 

0 I 

03 

kl 

2 68 

2 30 

2 93 

2 59 

2 12 

1 91 

2 43 

2 25 

2 86 

2 36 

2 98 

2 52 

2 34 

1 99 

2 49 

2 17 

k2 

2 47 

2 16 

1 42 

1 42 

2 47 

2 16 

1 42 

1 42 

2 03 

1 73 

0 98 

0 98 

2 03 

173 

0 98 

0 98 

k3 

2 16 

1 88 

1 04 

0 84 

0 92 

0 92 

0 35 

0 35 

2 82 

2 49 

1 50 

1 27 

0 65 

0 65 

0 19 

0 19 

TWTAPTC 

K 

10560 

9360 

2290 

1686 

4680 

3000 

507 

342 

17400 

13680 

8519 

10299 

12240 

6840 

6437 

3547 

Time 

(sec) 

0 006 

0 038 

0 006 

0 006 

0 005 

0 004 

0 005 

0 005 

0 002 

0 002 

0 004 

0 004 

0 003 

0 003 

0 004 

0 004 

T W T , A 

18312 

15732 

4036 

3980 

9744 

7872 

2129 

1845 

23460 

22488 

13144 

13986 

18816 

15276 

10842 

7667 

Max 

19080 

16320 

4234 

4194 

10440 

8280 

2381 

1954 

23880 

23160 

13684 

14452 

19560 

15720 

11206 

8021 

M m 

17640 

14520 

3725 

3749 

8520 

7320 

1872 

1614 

23160 

21600 

12718 

13690 

18120 

14520 

10296 

7073 

Time 

(sec) 

0 499 

0 505 

0 984 

0 985 

0 582 

0615 

0 987 

0 985 

0416 

0441 

0 621 

0 635 

0 446 

0 473 

0 681 

0 722 

Avg (SA 

APTCR)/ APTC 

R 

0 73 

0 68 

0 76 

1 36 

1 08 

1 62 

3 20 

4 39 

0 35 

0 64 

0 54 

0 36 

0 54 

1 23 

0 68 

1 16 

Table 2 Comparison Results for SA and MetaRaPS (One replication) 

Instance 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Avg 

Relative 

SA 

APTCR 

0 03 

0 01 

0 00 

0 00 

0 00 

0 28 

0 00 

0 40 

0 00 

0 00 

0 04 

0 06 

0 00 

0 00 

0 05 

0 13 

Max 

0 18 

0 00 

0 00 

0 11 

0 00 

0 23 

0 00 

0 30 

0 00 

0 00 

0 28 

0 14 

0 00 

0 52 

0 47 

021 

Min 

0 10 

0 15 

0 00 

0 04 

0 00 

0 33 

0 00 

061 

0 00 

0 01 

0 00 

0 07 

0 00 

0 00 

0 03 

0 14 

Time(scc) 

0 96 

1 05 

1 72 

1 69 

1 20 

1 24 

1 78 

1 69 

0 86 

0 89 

1 22 

1 24 

0 92 

0 96 

1 34 

1 43 

Max M m 

0 98 

1 07 

1 75 

1 71 

1 22 

1 25 

1 80 

1 72 

0 88 

0 92 

1 24 

1 25 

0 94 

1 02 

1 38 

1 45 

0 95 

1 03 

1 70 

1 67 

1 18 

1 23 

1 75 

1 67 

0 84 

0 88 

1 21 

1 23 

0 90 

0 94 

1 32 

1 41 

Avg 

Relative 

MclaRaPS 

0 00 

0 00 

0 04 

0 02 

0 15 

0 00 

0 12 

0 00 

0 11 

001 

0 00 

0 00 

0 15 

0 02 

0 00 

0 00 

Max 

0 00 

0 06 

0 07 

0 00 

0 25 

0 00 

0 18 

0 00 

0 09 

0 06 

0 00 

0 00 

0 19 

0 00 

0 00 

0 00 

Mm 

0 00 

0 00 

0 01 

0 00 

0 05 

0 00 

0 03 

0 00 

0 09 

0 00 

0 00 

0 00 

0 12 

0 00 

0 00 

0 00 

Tmit(sec) 

1 32 

1 56 

1 99 

2 04 

1 75 

1 87 

2 07 

2 12 

0 82 

1 11 

1 57 

1 74 

1 12 

1 35 

1 65 

1 98 

Max IV 

1 34 

1 61 

201 

2 08 

1 78 

1 88 

2 09 

2 14 

0 84 

1 13 

1 60 

1 76 

1 15 

1 38 

1 68 

2 02 

[in 

1 31 

1 54 

1 97 

2 02 

1 73 

1 85 

2 04 

2 10 

0 80 

1 09 

1 55 

1 71 

1 10 

1 33 

1 63 

1 96 
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APPENDIX E STATISTICAL TEST RESULTS FOR SCHEDULING 

ALGORITHMS 

Figure 1 Normality Tests for APTCR -SA Comparison 
Small Size Problems(n=12) 

o,i-H— 
-10 

Probability Plot of % Error 

Normal 

Mean 

StDev 

N 

AD 

p-value 

0,7525 

2,426 

320 

71,726 

<0,005 

— I — 

20 30 

°/o Error 

4-e 
C 
41 
<J 
01 
Q. 

95 

90 

80 

70 
60 

SO 
40 
30 

20 

10 

5 

Probability Plot of CPU 

Normal 

-0,10 

Mean 

StDev 

N 

AD 

p-value 

0,04640 

0,04655 

320 

26,771 

<0,005 

0,20 



Tests for APTCR -SA Comparison in Small Size Problems(n=12) 

Kruskal-Wallis Test: % Error versus Method 

Kruskal-Wallis Test on % Error 

Method N Median Ave Rank 

DDW-R 160 0.20266 174.4 

SA 160 0.09735 146.6 

Overall 320 160.5 

H = 7.18 DF = 1 P = 0.007 

H = 7.21 DF = 1 P = 0.007 (adjusted for ties) 

Kruskal-Wallis Test: CPU versus Method 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank 

DDW-R 160 0.001000 80.5 

SA 160 0.091750 240.5 

Overall 320 160.5 

H = 239.25 DF = 1 P = 0.000 

H = 241.19 DF = 1 P = 0.000 (adjusted for ties) 

Test for Equal Variances: % Error versus Method 

95% Bonferroni confidence intervals for standard deviations 

Method N Lower StDev Upper 

DDW-R 160 0.75518 0.85040 0.97188 

SA 160 2.93976 3.31041 3.78328 

F-Test (Normal Distribution) 

Test statistic = 0.07; p-value = 0 000 

Levene's Test (Any Continuous Distribution) 

Test statistic = 4.04; p-value = 0.045 

Test for Equal Variances: CPU versus Method 

95% Bonferroni confidence intervals for standard deviations 

Method N Lower StDev Upper 

DDW-R 160 0.0026969 0 0030370 0.0034708 

SA 160 0.0181035 0.0203861 0.0232981 

F-Test (Normal Distribution) 

Test statistic = 0.02; p-value = 0.000 

Z 

2 68 

-2.68 

Z 

-15 47 

15.47 

Levene's Test (Any Continuous Distribution) 



Test statistic = 231.23; p-value = 0.000 

Figure 2 Equal Variance Tests for APTCR-SA Comparison in Small Size Problems 
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APTCR Test Results 

Kruskal-Wallis Test: % Error versus M 

Kruskal-Wallis Test on % Error 

M N Median Ave Rank Z 

3 80 0.3881 93.7 3.60 

6 80 0.1250 67.3 -3.60 

Overall 160 80.5 

H = 12.95 DF = 1 P = 0.000 

H = 12.96 DF = 1 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus A 

Kruskal-Wallis Test on % Error 

A N Median Ave Rank Z 

1.5 80 0.1270 61.6 -5.15 

2.0 80 0.4416 99.4 5.15 

Overall 160 80.5 

H = 26 .54 DF = 1 P = 0.000 

H = 26.55 DF = 1 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus G 

Kruskal-Wallis Test on % Error 

G N Median Ave Rank Z 

0 80 0.1484 74.7 -1.59 

2 80 0.2219 86.3 1.59 

Overall 160 80.5 

H = 2 . 5 4 DF = 1 P = 0.111 

H = 2 . 5 4 DF = 1 P = 0.111 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus R 

Kruskal-Wallis Test on % Error 

R N Median Ave Rank Z 

0.1 80 0.1228 68.0 -3.41 

0.3 80 0.3542 93.0 3.41 

Overall 160 80.5 

H = 11.60 DF = 1 P = 0.001 

H = 11.61 DF = 1 P = 0.001 (adjusted for ties) 



SA Test Results 

Kruskal-Wallis Test: % Error versus M 

Kruskal-Wallis Test on % Error 

M N Median Ave Rank Z 

3 80 0.37500 97.4 4.60 

6 80 0.05323 63.6 -4.60 

Overall 160 80.5 

H = 21.18 DF = 1 P = 0.000 

H = 21.40 DF = 1 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus A 

Kruskal-Wallis Test on % Error 

A N Median Ave Rank Z 

1.5 80 0.05484 69.8 -2.92 

2.0 80 0.19050 91.2 2.92 

Overall 160 80.5 

H = 8.55 DF = 1 P = 0.003 

H = 8 . 6 4 DF = 1 P = 0.003 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus G 

Kruskal-Wallis Test on % Error 

G N Median Ave Rank Z 

0 80 0.03077 53.9 -7.26 

2 80 0.38678 107.1 7.26 

Overall 160 80.5 

H = 52.64 DF = 1 P = 0.000 

H = 53.20 DF = 1 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: % Error versus R 

Kruskal-Wallis Test on % Error 

R 

0.1 

0.3 

Overall 

N 

80 

80 

160 

Median 

0.05183 

0.16417 

Ave Rank 
70.3 

90.7 

80.5 

Z 

-2.79 

2.79 

H = 7 . 7 8 DF = 1 P = 0.005 

H = 7 . 8 7 DF = 1 P = 0.005 (adjusted for ties) 



Tests for APTCR -SA Comparison in Large Size Problems(n=60) 

Kruskal-Wallis Test: Relative TWT versus Method 

Kruskal-Wallis Test on Relative TWT 

Method N Median Ave Rank Z 

DDW-R 160 0.5273 80.5 -15.47 

SA 160 1.0000 240.5 15.47 

Overall 320 160.5 

H = 239.25 DF = 1 P = 0.000 

H = 273.43 DF = 1 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: Relative TWT versus M 

Kruskal-Wallis Test on Relative TWT 

M N Median Ave Rank Z 

3 80 1.4715 112.3 8.69 

6 80 0.5478 48.7 -8.69 

Overall 160 80.5 

H = 75.43 DF = 1 P = 0.000 

Kruskal-Wallis Test: Relative TWT versus A 

Kruskal-Wallis Test on Relative TWT 

A N Median Ave Rank Z 

1.5 80 0.6213 58.3 -6.06 

2.0 80 1 2920 102 7 6.06 

Overall 160 80.5 

H = 36.69 DF = 1 P = 0.000 

Kruskal-Wallis Test: Relative TWT versus G 

Kruskal-Wallis Test on Relative TWT 

G N Median Ave Rank Z 

0 80 0.7851 72.3 -2.25 

2 80 1.0045 88.7 2.25 

Overall 160 80.5 

H = 5 . 0 6 DF = 1 P = 0.025 



Kruskal-Wallis Test: Relative TWT versus R 

Kruskal-Wallis Test on Relative TWT 

R N Median Ave Rank Z 

0.1 80 0.6009 66.0 -3.97 

0.3 80 1.0861 95.0 3.97 

Overall 160 80.5 

H = 15.72 DF = 1 P = 0.000 

Kruskal-Wallis Test: CPU versus Method 

Kruskal-Wallis Test on CPU 

Method N Median Ave Rank 

APTCR 160 0.005000 80.5 

SA 160 0.608000 240.5 

Overall 320 160.5 

H = 239.25 DF = 1 P = 0.000 

H = 240.77 DF = 1 P = 0.000 (adjusted for ties) 

Tests for SA-MetaRaPS Comparison in Small Size Problems (n= 12) 

Kruskal-Wallis Test: Relative Error versus Method 

Kruskal-Wallis Test on Relative Error 

Method N Median Ave Rank Z 

MetaRaPS 160 0.008370 129.0 -6.10 

SA-APTCR 160 0.061534 192.0 6.10 

Overall 320 160.5 

H = 37.17 DF = 1 P = 0.000 

H = 38.37 DF = 1 P = 0.000 (adjusted for ties) 

Test for Equal Variances: Relative Error versus Method 

95% Bonferroni confidence intervals for standard deviations 

Method N Lower StDev Upper 

MetaRaPS 160 0.179393 0.202011 0.230867 

SA-APTCR 160 0.450057 0.506801 0.579195 

F-Test (Normal Distribution) 

Test statistic = 0.16; p-value = 0.000 

Z 

-15.47 

15.47 

Levene's Test (Any Continuous Distribution) 



Test statistic = 9.20; p-value = 0.003 

Figure 3 Equal Variance Tests for SA-MetaRaPS Comparison in Small Size Problems 
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Tests for SA-MetaRaPS Comparison in Large Size Problems(n= 60) 

Kruskal-Wallis Test: Relative Difference versus Method 

Kruskal-Wallis Test on Relative Difference 

Method N Median Ave Rank Z 

MetaRaPS 160 0.000000000 143.0 -3.38 

SA-APTCR 160 0.016623239 178.0 3.38 

Overall 320 160.5 

H = 11.41 DF 

H = 13.04 DF 

1 P = 0.001 

1 P = 0.000 (adjusted for ties) 



APPENDIX F: TEST RESULTS FOR RESCHEDULING ALGORITHMS 

Test Results for Job Arrival Disruption Repair Algorithms 

Kruskal-Wallis Test: Error versus Arrival for MetaRE 

Kruskal-Wallis Test on Error 

Arrival N Median Ave Rank 

Early 30 0.01803 23.7 

Late 30 2.95075 37.3 

Overall 60 30.5 

H = 9.19 DF = 1 P = 0.002 

H = 9.36 DF = 1 P = 0.002 (adjusted for ties) 

Kruskal-Wallis Test: Error versus Weight for MetaRE 

Kruskal-
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H = 1.35 DF = 5 P = 0.929 (adjusted for ties) 

Kruskal-Wallis Test: Error versus Arrival for BestlNSERT 

Kruskal-Wallis Test on Error_l 

Arrival N Median Ave Rank 

Early 30 0.3324 30.4 

Late 30 0.1605 30.6 

Overall 60 30.5 

H = 0 . 0 0 D F = 1 P = 0.947 

H = 0 . 0 0 D F = 1 P = 0.946 (adjusted for ties) 

Z 
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Z 
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Kruskal-Wallis Test: Error versus Weight for BestlNSERT 

Kruskal-Wall is Test on Error 1 
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Kruskal-Wallis Test: Error versus Arrival for SEPRE 
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Kruskal-Wallis Test: Error versus Weight for SEPRE 
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Kruskal-Wallis Test: Error of MetaRE and BestlNSERT for low weights 
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Test Results for Priority Disruption Repair Algorithms 

Kruskal-Wallis Test: Relative Error versus Weight for SHUFFLE 

Kruskal-Wallis Test on Relative Error 

Weight N Median Ave Rank Z 

0.2 10 0.6922 12.8 -1.21 

0.5 10 0.8314 12.2 -1.47 

0.8 10 2.5304 21.6 2.68 

Overall 3 0 15.5 

H = 7.23 DF = 2 P = 0.027 

H = 7.24 DF = 2 P = 0.027 (adjusted for ties) 

Kruskal-Wallis Test: Relative Error versus Urgency for SHUFFLE 

Kruskal-Wallis Test on Relative Error 

Urgency N Median Ave Rank Z 

High 15 0.6126 12.7 -1.76 

Low 15 1.5218 18.3 1.76 

Overall 30 15.5 

H = 3.11 DF = 1 P = 0.078 

H = 3.11 DF = 1 P = 0.078 (adjusted for ties) 

Kruskal-Wallis Test: Relative Error_l versus Weight for BestlNSERT 

Kruskal-Wallis Test on Relative Error_l 

Weight N Median Ave Rank Z 

0 2 10 0.5540 14 .8 -0.31 

0.5 10 0.1432 11.6 -1.72 

0.8 10 1.9329 20.1 2.02 

Overall 30 15.5 

H = 4 . 7 6 D F = 2 P = 0.093 

H = 4 . 8 0 D F = 2 P = 0.091 (adjusted for ties) 

Kruskal-Wallis Test: Relative Error_l versus Urgency for BestlNSERT 

Kruskal-Wallis Test on Relative Error_l 

Urgency N Median Ave Rank Z 

High 15 0.5540 15 0 -0.33 

Low 15 0.5540 16.0 0.33 

Overall 3 0 15.5 

H = 0.11 DF = 1 P = 0.740 

H = 0.11 DF = 1 P = 0.739 (adjusted for ties) 



Kruskal-Wallis Test: Relative Error_2 versus Weight for MetaRE 

Kruskal-Wallis Test on Relative Error_2 

Weight N Median Ave Rank Z 

0.2 10 1.4101 17.8 1.01 

0.5 10 0.2063 14.9 -0.26 

0.8 10 0.1311 13.8 -0.75 

Overall 30 15.5 

H = 1.10 D F = 2 P = 0.576 

H = 1.10 DF = 2 P = 0.576 (adjusted for ties) 

Kruskal-Wallis Test: Relative Error_2 versus Urgency for MetaRE 

Kruskal-Wallis Test on Relative Error_2 

Urgency N Median Ave Rank Z 

High 15 0.5562 15.2 -0.19 

Low 15 0.2096 15.8 0.19 

Overall 30 15.5 

H = 0 . 0 3 DF = 1 P = 0.852 

H = 0 . 0 3 DF = 1 P = 0.852 (adjusted for ties) 
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Figure 4 Normality Tests for Priority Disruption Repair Algorithms (n=60) 
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Test Results for Priority Disruption Repair Algorithms (n=60) 

Kruskal-Wallis Test: BestlNSERT versus Weight 
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Kruskal-Wallis Test: BestlNSERT versus Disruption Time 

Disruption 

Time N Median Ave Rank Z 

Early 25 0.1990 24.3 -0.60 

Late 25 0.2944 26.7 0.60 

Overall 50 25.5 

H = 0 . 3 6 DF = 1 P = 0.548 

H = 0.37 DF = 1 P = 0.543 (adjusted for ties) 

Kruskal-Wallis Test: MetaRE versus Weight 
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H = 25.61 DF = 4 P = 0.000 

H = 40.85 DF = 4 P = 0.000 (adjusted for ties) 

Kruskal-Wallis Test: MetaRE versus Disruption Time 

Disruption 

Time N Median Ave Rank Z 

Early 25 0.000000000 27.6 1.00 

Late 25 0.000000000 23.4 -1.00 

Overall 50 25.5 

H = 1.00 DF = 1 P = 0.318 

H = 1.59 DF = 1 P = 0.207 (adjusted for ties 
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