
Old Dominion University

ODU Digital Commons

Engineering Management & Systems Engineering
Theses & Dissertations

Engineering Management & Systems Engineering

Spring 2011

Optimization Models and Approximate
Algorithms for the Aerial Refueling Scheduling and
Rescheduling Problems
Sezgin Kaplan
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

Part of the Industrial Engineering Commons, Military and Veterans Studies Commons, and the
Operational Research Commons

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has

been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU

Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Kaplan, Sezgin. "Optimization Models and Approximate Algorithms for the Aerial Refueling Scheduling and Rescheduling Problems"
(2011). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/krd5-fv91
https://digitalcommons.odu.edu/emse_etds/97

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/396?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/97?utm_source=digitalcommons.odu.edu%2Femse_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

OPTIMIZATION MODELS AND APPROXIMATE ALGORITHMS FOR THE

AERIAL REFUELING SCHEDULING AND RESCHEDULING PROBLEMS

by

Sezgin Kaplan

B.S. May 2000, Bilkent University, Turkey
M.A. May 2004, Hacettepe University, Turkey
M.S. November 2007, Gazi University, Turkey

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY

May 2011

Approved by:

Ghaith Rabadi ^Director)

Resit Unal (Member)

Shannon Bowling (Member)

Murat Ermis (Member)

ABSTRACT

OPTIMIZATION MODELS AND APPROXIMATE ALGORITHMS FOR THE
AERIAL REFUELING SCHEDULING AND RESCHEDULING PROBLEM

Sezgin Kaplan
Old Dominion University, 2011

Director: Ghaith Rabadi

The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the

refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to

minimize the total weighted tardiness. ARSP can be modeled as a parallel machine

scheduling with release times and due date-to-deadline window. ARSP assumes that the

jobs have different release times, due dates, and due date-to-deadline windows between

the refueling due date and a deadline to return without refueling. The Aerial Refueling

Rescheduling Problem (ARRP), on the other hand, can be defined as updating the

existing AR schedule after being disrupted by job related events including the arrival of

new aircrafts, departure of an existing aircrafts, and changes in aircraft priorities. ARRP

is formulated as a multiobjective optimization problem by minimizing the total weighted

tardiness (schedule quality) and schedule instability. Both ARSP and ARRP are

formulated as mixed integer programming models. The objective function in ARSP is a

piecewise tardiness cost that takes into account due date-to-deadline windows and job

priorities. Since ARSP is NP-hard, four approximate algorithms are proposed to obtain

solutions in reasonable computational times, namely (1) apparent piecewise tardiness cost

with release time rule (APTCR), (2) simulated annealing starting from random solution

(SArandom), (3) SA improving the initial solution constructed by APTCR (SAAPTCR), and

(4) Metaheuristic for Randomized Priority Search (MetaRaPS). Additionally, five

regeneration and partial repair algorithms (MetaRE, BestlNSERT, SEPRE, LSHIFT, and

SHUFFLE) were developed for ARRP to update instantly the current schedule at the

disruption time. The proposed heuristic algorithms are tested in terms of solution quality

and CPU time through computational experiments with randomly generated data to

represent AR operations and disruptions. Effectiveness of the scheduling and

rescheduling algorithms are compared to optimal solutions for problems with up to 12

jobs and to each other for larger problems with up to 60 jobs. The results show that,

APTCR is more likely to outperform SArandom especially when the problem size

increases, although it has significantly worse performance than SA in terms of deviation

from optimal solution for small size problems. Moreover CPU time performance of

APTCR is significantly better than SA in both cases. MetaRaPS is more likely to

outperform SAAPTCR in terms of average error from optimal solutions for both small and

large size problems. Results for small size problems show that MetaRaPS algorithm is

more robust compared to SAAPTCR- However, CPU time performance of SA is

significantly better than MetaRaPS in both cases. ARRP experiments were conducted

with various values of objective weighting factor for extended analysis. In the job arrival

case, MetaRE and BestlNSERT have significantly performed better than SEPRE in terms

of average relative error for small size problems. In the case of job priority disruption,

there is no significant difference between MetaRE, BestlNSERT, and SHUFFLE

algorithms. MetaRE has significantly performed better than LSHIFT to repair job

departure disruptions and significantly superior to the BestlNSERT algorithm in terms of

both relative error and computational time for large size problems.

V

This dissertation is dedicated to my beloved wife and my little Tigers.

vi

ACKNOWLEDGMENTS

It is a pleasure to convey my gratitude to people whose contribution in assorted ways to

the research all in my humble acknowledgment.

In the first place, I heartily acknowledge Dr. Ghaith Rabadi, my advisor and dissertation

chair, for his supervision, advice, guidance from the preliminary to the concluding level

of this research. I would like to thank him for the long number of months writing and

rewriting these chapters as well as giving me extraordinary experiences throughout the

work. I am proud to record that I had several opportunities to work with an exceptionally

experienced scientist like him. His guidance and professional style will remain with me

as I continue my career.

I also thank my committee members, Dr. Resit Unal, Dr. Murat Ermis, and Dr. Shannon

Bowling for their valuable recommendations pertaining to this study and assistance in my

professional development. I gratefully thank them for their patience and guidance by

constructive comments on my research in the midst of all their activity.

I gratefully acknowledge Dr. Ermis for his advice, and crucial contribution, which made

him a backbone of this research and so to this dissertation. I am much indebted to him for

his valuable advice in constructing the structure of the research, using his precious times

to read this thesis from early stages and gave his critical comments about it.

I also would like to make a special reference to Dr. Resit Unal who taught how to use the

valuable tools to complete this dissertation. His involvement with his originality has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come. I would like to thank to Dr. Oktay Baysal and Dr. A. Osman Akan for their

guidance in any respect during all stages of my Ph.D. education.

I am heartily thankful to my great country, Turkiye and its visionary commanders at the

Turkish Air Force for giving this scientific research opportunity.

Vll

Words fail me to express my appreciation to my wife Seyma whose dedication, love, and

persistent confidence in me, has taken the load off my shoulder. I owe her for being

unselfishly let her intelligence, passions, and ambitions collide with mine.

I would like to thank my little tigers, Hakan and Neda, who gave me immeasurable moral

support and encouragement. Your love is the greatest gift of all.

This thesis would not have been possible without my family. My wife's and my family

deserve special mention for their all kind of help and support. It is a pleasure to express

my gratitude to all of them.

Finally, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the dissertation.

NOMENCLATURE

ACO

AFPAM

AFRP

APTCR

AR

ARRP

ARSP

ATC

ATCS

ATCSR

ATP

AWACS

BDA

CL

COMSOAL

COVERT

d-to-D

DM

DOE

EDD

FIFO

GA

GAO

GRASP

GTTS

LP

LPT

LSHIFT

MetaRaPS

METARE

Ant Colony Optimization

Air Force Pamphlet

Aerial Fleet Refueling Problem

Apparent Piecewise Tardiness Cost with Release Time

Aerial Refueling

Aerial Refueling Rescheduling Problem

Aerial Refueling Scheduling Problem

Apparent Tardiness Cost

Apparent Tardiness Cost with Setups

Apparent Tardiness Cost with Setups and Ready Times

Allied Tactical Publication

Airborne Warning and Control Systems

Boom Drogue Adapter

Candidate List

Computer Method of Sequencing Operations for Assembly Lines

Cost Over Time

Due date-to-Deadline

Decision Makers

Design of Experiment

Earliest Due Date

First-In-First-Out

Genetic Algorithms

General Accounting Office

Greedy randomized Adaptive Search Procedure

Group Theoretic Tabu Search

Linear Programming

Longest Processing Time

Left Shift

Metaheuristic for Randomized Priority Search

Rescheduling with MetaRaPS algorithm

MIGP

MILP

MOD

MOO

MSLACK

MTWT

NATO

NP

NSGA

NSIAD

OPL

RM

SA

SEPRE

S/N

soo
SPT

S/RPT

TS

TWT

UAV

US

VNS

WLPT

WSPT

X-RM

Mixed-Integer Goal Programming

Mixed Integer Linear Programming

Modified Operation Due date

Multi Objective Optimization

Minimum SLACK

Minimum Total Weighted Tardiness

North Atlantic Treaty Organization

Non-Polynomial

Neighborhood Search in Genetic Algorithm

National Security and International Affairs Division

Optimization Programming Language

Rachamadugu and Morton

Simulated Annealing

Sequence Preserving Rescheduling

Signal-to-Noise

Single Objective Optimization

Shortest Processing Time

Slack per Remaining Processing Time

Tabu Search

Total Weighted Tardiness

Unmanned Aerial Vehicle

United States

Variable Neighborhood Search

Weighted Longest Processing Time

Weighted Shortest Processing Time

Modified Rachamadugu and Morton

TABLE OF CONTENTS

x

Page

LIST OF TABLES xii

LIST OF FIGURES xiv

1. INTRODUCTION 1

1.1 Aerial Refueling 4

1.2 Mapping the ARSP to Abstract Scheduling 7

1.3 Problem Statement 12

1.4 Difficulties in the ARSP 16

1.5 Research Scope and Objectives 19

2. LITERATURE REVIEW 22

2.1 Aerial Refueling Scheduling Problem (ARSP) 22

2.2 Scheduling Identical Parallel Machines with Ready Times to Minimize Total

Weighted Tardiness Problem 22

2.3 Rescheduling Literature Review 25

3. AERIAL REFUELING SCHEDULING PROBLEM METHODOLOGY 36

3.1 Mathematical Model 36

3.2 Review for Solution Methods 42

3.3 Approximate Algorithms for the ARSP 56

3.4 Complexity Analysis 68

4. COMPUTATIONAL STUDY FOR ARSP'S SCHEDULING ALGORITHMS 72

4.1 Experiment Factors 73

4.2 Data Generation 74

4.3 Parameter Setting 75

4.4 Performance of the Scheduling Algorithms 78

5. AERIAL REFEULING RESCHEDULING PROBLEM METHODOLOGY 89

5.1 Multi Objective Optimization (MOO) 90

5.2 The Revised MILP Model for ARRP 96

5.2 Rescheduling Algorithms for ARRP 105

6. COMPUTATIONAL STUDY FOR ARRP'S RESCHEDULING ALGORITHMS .118

xi

6.1 Data Generation 118

6.2 Effectiveness of the Algorithms for Small Size Problems 119

6.3 Effectiveness of the Algorithms for Large Size Problems 128

7. CONCLUSIONS AND FUTURE RESEARCH 131

7.1 Conclusions 131

7.2 Contributions 133

7.3 Future Research 135

REFERENCES 136

APPENDICES 147

APPENDIX A : SAMPLE DATA FOR ARSP AND ARRP 147

APPENDIX B : RESULTS FOR PARAMETER SETTING FOR ARSP'S

ALGORITHMS 149

APPENDIX C : RESULTS FOR SMALL SIZE PROBLEMS FOR ARSP 152

APPENDIX D : RESULTS FOR LARGE SIZE PROBLEMS FOR ARSP 153

APPENDIX E : STATISTICAL TEST RESULTS FOR SCHEDULING ALGORITHMS

154

APPENDIX F: TEST RESULTS FOR RESCHEDULING ALGORITHMS 162

VITA 168

Xll

LIST OF TABLES

Table Page

1. Sample Data for Pm|rj, d-to-D window|EwjTj 15

2. Scheduling Results for Sample Data 16

3. Literature on the Pm|rj |2wjTj Problem 24

4. Parallel Machine Rescheduling Literature 35

5. APTCR Priority Index Values Calculated for Iterative Time Values 61

6. Sample APTCR Solution 61

7. Job Exchange Operation for SA Perturbation 64

8. Job Insertion Operation for SA Perturbation 64

9. Sample Data for ARSP 67

10. Construction Phase of MetaRaPS Algorithm 67

11. Complexity Analysis of Scheduling Algorithms 71

12. Coded Values of Factor Levels 76

13. MetaRaPS Parameter Setting 79

14. Results of the APTCR and SArand0m for problems with n= 12 80

15. Comparison of Effectiveness of the Algorithms for n= 12 Problems 81

16. Test for Equal Variances: Relative Error and CPU versus Method 82

17. Results of the APTCR and SArandom for n= 60 problems 83

18. Comparison of Effectiveness of the Algorithms for n= 60 Problems 83

19. Results of the SAAPTCR and MetaRaPS for problems with n= 12 85

20. Comparison of Effectiveness of the Algorithms for n= 12 Problems 86

21. Test for Equal Variances: Relative Error and CPU versus Method 86

22. Results of the SAAPTCR and MetaRaPS for problems with n= 60 88

23. Comparison of Effectiveness of the Algorithms for n= 60 Problems 88

24. Disruption-Rescheduling Algorithm Usage Matrix 106

25. A sample experiment result for the MetaRE algorithm for early job arrival 121

26. Average relative error of the algorithms for job arrival disruption 121

27. Kruskal-Wallis Test on Relative Error of the algorithms for job arrival disruption. 123

28. Kruskal-Wallis Test on Relative Error of BestlNSERT and MetaRE 123

Xll l

29. Kruskal-Wallis Test on Relative Error of the BestlNSERT and SEPRE algorithms 124

30. Kruskal-Wallis Test on Relative Error of the MetaRE and SEPRE algorithms 124

31. CPU times in sec. of the repair algorithms for job arrival disruption 125

32. Average relative error of the algorithms for job priority disruption 126

33. Kruskal-Wallis Test on Relative Error of the algorithms for priority disruption 126

34. CPU times of the repair algorithms for job priority disruption 127

35. Performance of the algorithms for job departure disruption 127

36. Kruskal-Wallis Test on Relative Error for job departure disruption algorithms 128

37. Performance of the algorithms for priority disruption 129

38. Kruskal-Wallis Test on Relative Difference for priority disruption (n=60) 130

LIST OF FIGURES

xiv

Figure Page

1. In-Theater Aerial Refueling 5

2. Anchor Rendezvous Tracking 6

3. Aerial Refueling System Types 7

4. Wing Refueling (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008) 10

5. Scheduling Time Horizon 13

6. Piecewise Tardiness 14

7. A Feasible Schedule 15

8. Sample Original Solution 103

9. Optimal Rescheduling Solution by using A, = 0.5 104

10. An Initial Schedule to Change Job Priority 107

11. Affected Jobs to be Rescheduled 107

12. Rescheduled jobs by SEPRE 111

13. Insert job 13 between jobs 6 and 9 (i = 1) 112

14. Insert job 13 between jobs 8 and 12 (i = 4) 112

15. Insert job 13 after job ll(i = 7) 113

16. An Initial Schedule for job departure 114

17. Rescheduled jobs by LSHIFT 114

18. An initial schedule for job priority disruption 116

19. Updated schedule by SHUFFLE 117

20. Normality Test for Relative Error Data 122

1

CHAPTER 1

INTRODUCTION

Aerial refueling (AR), also called air refueling, in-flight refueling, air-to-air refueling,

is the process of transferring fuel from one aircraft (a tanker) to another (a receiver)

during flight. AR is extensively used in large-scale military operations because of its

advantages for an air force in terms of responsiveness, endurance, flexibility,

efficiency, and safety. Aerial refueling is generally employed in two cases of military

operations: inter-theater and in-theater. Inter-theater operations contain the

deployment of forces (e.g., overseas deployments) and its accompanied air refueling

requirement. The second role of aerial refueling is to support in-theater operations.

This support includes deployments and employments during a conventional conflict

(e.g., Operation Desert Storm of the U.S. Air Force) when many strike aircrafts are

conducting attacks around the clock and spread across a local area.

Scheduling as a decision making process that deals with allocation of resources to

tasks over given time periods is needed for effective aerial refueling while

maintaining safety and efficiency. The Aerial Refueling Scheduling Problem (ARSP)

can be defined as determining the assignment of each fighter aircraft (job) to tanker

(machine) and the refueling completion times for the aircrafts. Best of our knowledge,

there is very little existing research on aerial refueling scheduling problems, although

it has significant effects and advantages for air operations.

This dissertation research examines the in-theater ARSP which has further research

paucity than inter-theater ARSP. The in-theater ARSP holds some different

characteristics from the inter-theater ARSP. It is far more complex and difficult to

support because of shorter planning periods, rapidly changing priorities, crowded

airspace, less predictable fuel requirements, lack of standardized refueling equipment,

and continuous operations by a lot of aircrafts. Therefore, dealing with in-theater

environment of aerial refueling not only has crucial effects to air force dominance, but

also valuable intellectual contributions to scheduling theory applications.

In-theater AR is supported entirely through AR tracks which are similar to gas

stations floating in the sky. Fighter wings are even-numbered groups of fighters that

get refueled by tankers in the air. Tankers orbit in a track location with a constant

2

speed and altitude waiting for receivers to arrive for refueling. Receivers may be in

different types of bombers, airborne warning and control aircrafts, cargo aircrafts,

fighters, helicopters, and also other tanker aircrafts. Tankers may also have different

types in size, weight, take off fuel load capacity, offload (deliverable fuel) capacity,

maneuver capability, fuel transfer rate, and refueling systems.

ARSP has some certain problem assumptions to scope this dissertation research. First,

fighter aircrafts are considered AR receivers and tankers are identical aircrafts with

only one type of refueling system that is compatible with typical fighters used by

many air forces. Multiple tankers are required to shorten the refueling time and keep

fighters on schedule in crucial time periods. It is assumed that track stations for the

tankers are known, the nnumber of tankers does not change during an operation. For

the purposes of this research, tankers are assumed to be continuously available. In

order to maintain fuel continuity, just before a tanker completes its mission (i.e. just

before running out of fuel), another tanker will replace it. Second, a job of the ARSP

can be defined as AR process of a wing. Fighters execute their missions staying

together as a group of an even number, generally four identical fighters. Third,

refueling requirements call for wings to refuel at different times. Moreover, it is

assumed that fighter wings which move dynamically in the sky, can reach to available

tankers in equal times. Communication between a tanker and receivers in the air occur

perfectly; in other words, data can be sent accurately between the tanker and the

receivers without delays. Fourth, there is no setup requirement between refueling

wings (Jorjs) due to compatible and unique refueling systems. Approaching and

anchoring of the wing can be considered a setup time but this setup time is not

sequence-dependent; therefore, it can be considered as a part of the processing time.

Beyond these assumptions, ARSP has some characteristics that help mapping in

scheduling theory. First, higher availability and less tardiness of the wings are desired

in order to hold air force dominance during air operations. Besides, AR priorities

affect the scheduling. Therefore, a tardiness penalty, which takes into account wing

priorities, was defined as a scheduling performance measure. Second, a time

constraint associated with fuel consumption must be defined because there is a

maximum waiting time for each wing to refuel before it reaches its minimum fuel

level; otherwise a wing has to return back to base. Returning back without refueling

causes a large penalty due to operational availability issues.

3

On the other hand, resources commonly occur in parallel and many real life problems

can be modeled as parallel machine scheduling problems. In the classical parallel

machine scheduling problem, there are n jobs and m machines. Each job needs to be

executed on one of the machines during a fixed processing time. A parallel machine

scheduling problem involves both resource allocation and sequencing. It allocates

jobs to machines and determines the sequence of jobs on allocated machine. Machines

may be identical where the processing time of each job is independent of the assigned

machine, uniform where each machine may have a different speed, or unrelated where

the processing time of each job is dependent on the assigned machine without a

particular relationship. The aim is to find the schedule optimizing a certain

performance measure such as makespan, maximum lateness or weighted tardiness.

In this dissertation, the research was extended to address the rescheduling problem to

have a more realistic and robust scheduling system. Despite the extensive literature on

scheduling problems, little research exists on rescheduling parallel machines. One of

the difficulties is sourced from the dynamic environment of the AR process where

disruptions caused by dynamic and unexpected events are common. AR rescheduling

problem (ARRP) is defined as updating the existing AR schedule after being

disrupted by a job related event. Although more disruptions may be considered for

ARRP, job related disruptive events are studied in this dissertation since they occur

much more frequent than other type of disruptions in air operations. Events that have

potential to cause significant disruptions in the AR schedules are interpreted by the

arrival of new jobs, departure of an existing job, and changes in job priorities

characterized by a combined change of weight and due date. In the ARRP, continuous

rescheduling approach in which updating the existing schedule takes place when an

event occurs is performed. The objective in the ARRP will not only be maximizing

the schedule performance, but also minimizing schedule instability to decrease

contact requirements under tight communication constraints and to avoid excessive

rescheduling computation time.

4

1.1 Aerial Refueling

By the end of the Vietnam War, refueling on the tanker without landing became a

routine part of combat air operations for fighters and bombers as a result of its

importance for an air force. It is extensively used in air operations, because it has

some advantages for an air force seeking dominance against enemy forces.

1. Responsiveness: Air refueling provides rapid response by remaining airborne

more and reducing time to get ready. It allows fighter to deploy and strike

targets deep in enemy territory.

2. Endurance: It greatly extends the operational range of air forces and the time

that fighter aircraft can protect friendly forces from attack by enemy aircraft.

3. Flexibility: By reducing the logistical trail needed for an air operation, it

enables taking off with a larger payload which could be weapons, cargo or

personnel, opening up new operational capabilities.

4. Efficiency: Non-stop flying capabilities give each aircraft the ability to reach

its destination before its required arrival time.

5. Safety: Combat aircrafts can avoid reliance on other countries for land-based

refueling stations so that they can be based in safe areas.

The inter-theater AR, one type of aerial refueling, emphasizes planned missions in

which each tanker provides a large and predictable amount of fuel over great

distances. This type of AR utilizes tankers to deploy receivers along a pre-prepared

route. A considerable portion of the route is flown often with the receiver and

escorting tanker in company over large bodies of water (ATP-3.3.4.2 (ATP-56(B)

Change 1), 2008). The important point for the inter-theater AR is that tankers need to

be assigned to receiver groups and travel for them.

On the other hand, the in-theater AR is far more complex and difficult to support

because of shorter planning periods, rapidly changing priorities, crowded airspace,

less predictable fuel requirements, lack of standardized refueling equipment, and

continuous operations by a lot of aircrafts (GAO/NSIAD-94-68, 1993). In-theater AR

procedures have following characteristics unlike inter-theater AR although they have

similar AR processes.

5

Refueling Tracks: In-theater AR is supported entirely through AR tracks (e.g., tracks

1 and 2 in Figure 1), which are similar to gas stations floating in the sky. Tankers,

which are considered high valued assets for an air force, orbit in a track location with

a constant speed and altitude waiting for receivers to arrive for refueling. Track

stations are decided on the ground among the alternative stations according to some

criteria such as operational effectiveness, flight safety under weather conditions and

enemy attacks, communication efficiency between tanker and receivers, and

international agreements. Moreover, the anchor rendezvous tracking that is shown in

the Figure 2 with its track parameters is the simplest one among different types of

refueling rendezvous tracking.

Wing 8

Air Base

Figure 1 In-Theater Aerial Refueling

6

Leg Length

T
Left-Hand

Inbound Course 1
—A-

Anchor Point

Figure 2 Anchor Rendezvous Tracking

Receivers and Tankers: Receivers may be different, such as large and heavy bombers,

Airborne Warning and Control Systems (AWACS), cargo aircrafts, also other tanker

aircrafts or fighters and helicopters. However, AR receivers are often fighter aircrafts.

Tankers may also have different types in terms of size, weight, take-off fuel capacity,

offload capacity, maneuver capability, fuel transfer rate (ATP-3.3.4.2 (ATP-56(B)

Change 1), 2008). For example, the current tanker fleets of NATO countries mostly

consist of KC-135 and KC-10 jets. The KC-135 typically carries 180,000 lbs. of fuel

while the larger KC-10 holds 327,000 lbs. according to the standard planning factors.

The track parameters in Figure 2 are also important for tanker planning because if

tankers fly a mission with radius of 500 nm (nautical miles) then the KC-10 would

have 233,500 lbs. of fuel to offload (deliverable fuel after subtracting tanker's fuel

consumption) while the KC-135 has 122,200 lbs (AFPAM 10-1403, 2003).

Refueling Systems: There are two different AR systems in use: Probe/Drogue and

Boom. As shown in Figure 3, a tanker trails two or more hoses in the probe and

drogue system while the tanker is fitted with one flyable, telescopic boom in the boom

system. Although these two systems are not compatible, some booms can be adapted

(on the ground) using a boom drogue adapter (BDA) kit. This makes the boom

compatible with probe equipped receivers. Some tankers (e.g., the KC-10A) are

equipped with both boom and hose/drogue systems and either may be used on the

same flight (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008). A single flying boom can

7

transfer fuel at approximately 6,000 lbs. per minute. A single hose-and-drogue can

transfer 1,500-2,000 lbs of fuel per minute.

AR with Probe and Drogue AR with Boom

Figure 3 Aerial Refueling System Types

However, fighters cannot accept fuel at the boom's maximum rate. Typical fighters

can accept fuel at 1,000 to 3,000 lbs. per minute either from the boom or the hose-

and-drogue (Bolkcom, 2006).

1.2 Mapping the ARSP to Abstract Scheduling

Air force responsiveness and endurance require joining back to operation mission as

soon as possible after breaking the active mission for refueling. Thus, scheduling as a

decision making process is needed for effective AR while maintaining safety and

efficiency in the air operations. The AR Scheduling Problem (ARSP) can be defined

as determining the assignment of each fighter aircraft (job) to tanker (machine) and

the refueling completion times for the aircrafts. To map ARSP to an abstract and

classical scheduling problem, we consider the following general and frequently used

scheduling assumptions:

1. Any job can be processed on at most one machine at any time.

2. No preemption is allowed where once an operation is started it is continued

until complete.

8

3. Ready times of all jobs are zero, i.e. all jobs are available at the

commencement of processing.

4. Machines are always available and reliable (i.e., rarely breakdown).

5. Each machine can process at most one job at any time.

6. Setup times are sequence-independent and are included in processing times.

7. Processing times, technological constraints, weights, and due dates are

deterministic and known in advance where appropriate (Blazewicz et al.,

2007).

For the ARSP, the following scheduling assumptions are considered:

Machine Related Assumptions: Equipment, performance, and procedural

compatibilities between tankers and fighters are important for a successful AR. So, it

is assumed in this dissertation research that AR receivers are fighter aircrafts and

tankers in the refueling missions are identical KC-135 type aircrafts with only the

boom type which is compatible with typical fighters used by many air forces. Thus,

tankers tracking on different locations can be considered identical parallel machines

from the scheduling theory point of view. Multiple tankers are needed to shorten the

refueling time and keep fighters on schedule because many fighters can be over target

areas at the same time. Multiple tanker tracks are placed to maintain high volume in

crucial time periods. It is assumed that no new tanker stations are added and the

number of the multiple tanker tracks is fixed. Moreover, continuous fuel supply and

tanker availability is assumed in this research. Fuel stock considerations and crew

constraints require specifying mission duration for tankers. The flight schedule is

limited by the 12-hour operational day and must allow for transit time to and from

theater, one-hour pre-flight preparation, two-hour post-flight maintenance service, and

at least a three hour turnaround time between refueling missions. However, for

continuous fuel supply, just enough time before finishing one tanker's mission,

another tanker will replace it with no interruption. After taking over, the preceding

tanker returns back to the main base. Also, it is assumed that tankers do not refuel

each other.

9

Job Related Assumptions: A job represents a wing in ARSP. Fighters execute their

missions in the form of a wing which is composed of an even number of identical

fighters, as shown in Figure 1, because of flight safety and compatibility issues.

Therefore, fighters in a wing approach the tanker together and the refueling process is

carried out one fighter at a time while the rest of the wing waits in the observation

area or reform area as shown in Figure 4. Upon completion, the wing leaves the

tanker as a group. Furthermore, a job refueling process cannot be interrupted so as not

to decompose the unity of the wing. Wings are assumed independent in the sense that

there is no precedence dependence between them which fits the flexibility necessary

for an air operation.

Ready-Time Related Assumptions: Ready time can be defined as the earliest contact

time of a wing with a tanker to request refueling when its fuel level is reduced to a

safe fuel level. In other words, it is the earliest time that a wing is available and can

leave from its mission area to refuel. Fuel burning rate depends on the mission type

with different maneuver requirements, mission locations at different altitudes,

weather conditions, deployment distances and fighter characteristics such as fuel

capacity, speed, weight, and pilot skills.

Consequently, refueling calls of the wings to tanker will be at different times. This

means that all wings are not available to refuel at the same time and they have

different ready times. Moreover, it is assumed that variability in distances between

individual wings and each tanker are negligible. Consequently wings can arrive at

different tankers with equal times. Data are sent between the tanker and the receivers

without delays and errors and communication between the tanker and receivers in the

air is assumed perfect. However, a contact between the tanker commander and the

wing leader must be established at least 15 minutes prior to the refueling rendezvous

time for approaching to waiting position.

10

Approaching

No 1 to Boom, Remainder to Left Wing

^ > Anchoring

Observation

<ii.-J:3 i

I^Receiverto
Reform Position

Receivers Joins

I 2"'1 Receiver
Refuels

Fomiation Departs

Figure 4 Wing Refueling (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008)

11

Setup Related Assumptions: There are no setup requirements between the wing AR

jobs as a result of the boom system. The processes in Figure 4, such as approaching

and anchoring, can be considered as setup time. But setup time is not sequence

dependent and it can be included in processing time. Thus, aggregate processing times

of the jobs include time required to approach the tanker, connecting (anchoring) and

disconnecting times of each receiver, and refueling times of each receiver.

Beyond its assumptions, ARSP has some characteristics that can also be mapped to

classical scheduling. First, weighted tardiness can be used as a tardiness penalty to

evaluate the due date delivery performance of schedules. It is extremely important to

maintain higher availability and less tardiness of wings in order to hold air force

dominance during air operations. Thus, there is a latest time for a wing to join the

mission and the tardiness penalty is essential for the scheduling problem.

Furthermore, operation conditions, capabilities of different types of fighters,

experience, and skill levels of the wings and assessments of mission planners affect

the importance of a wing and also its AR priority affects the scheduling. So the

tardiness penalty has to take into account the priorities. Second, a time (d-to-D)

window constraint associated with fuel consumption is required. Bingo level

represents the required minimum fuel level at which the wing must return back to

base where the fuel amount would barely be enough to return. Therefore, there is a

maximum waiting time to start refueling for a wing otherwise it has to return back to

base. Returning back to base without refueling (i.e., not assigning a job to a machine)

causes a large penalty due to operational dominance issues.

Finally, for both ground and air optimal scheduling decisions, the basic questions

ARSP are the following:

• Which wings (j°t>s) should be assigned to which tanker (machine)?

• Which wings could not assigned and must return to base?

• What time does each wing start to refuel?

• What is the optimal total cost for a given schedule given the objective function

defined?

12

1.3 Problem Statement

ARSP can be defined as scheduling n jobs (wings of aircrafts) on m identical parallel

machines (tankers) where job j arrives (becomes available) at ready time rs and should

be complete by the due date d, and before deadline Dr The problem elements are

shown in Figure 5. The following notation will be used throughout this dissertation:

Processing time (p}): Processing time of the receiver or wing (job) j is the sum of

approaching time to refueling area, anchoring times to tanker and the fuel pumping

times of all fighters in wing/

Ready time {r}): The earliest time a receiver j can start processing (i.e., first contact

with a tanker to request refueling when its fuel level reduced to safe fuel level). It is

the earliest time that a receiver is able to leave from mission area to refuel. Thus, a

receiver y cannot be scheduled before r,.

Weight (wj): The importance of wingy for the air operation. It is determined according

to operation conditions, capabilities of fighters, experience, and skill levels of the

wings as well as the assessments of mission planners.

Bingo level time (bj): The latest time before which wing j has to be scheduled;

otherwise it will go back to base due to low levels of fuel.

Due date (dj): Planned latest date of receiver j to complete refueling. Completion of

the refueling job after the due date is allowed, but then a weighted tardiness penalty is

incurred.

Deadline (D}): The latest date of a receiver to finish refueling after which it must

return to base to avoid running too low on fuel level. It is the upper bound of the d-to-

D window. It can be calculated simply by adding the processing time to bingo level

time.

Start time (Sj): Starting time of receiver y to refuel.

Completion time (Cj): Refueling process completion time (ss + Pj) of receiver/

Waiting time (sj - r}): The time between refueling request and the refueling start time.

During this time, wings continue their missions.

13

Due date-to-Deadline window (Dj -dj): The time window in which a weighted

tardiness cost is incurred. Missing the due date is not preferred but allowed and a

weighted tardiness cost will be incurred for jobs that miss their due date but not their

deadline. If a job misses Dj, it must return to base incurring a high penalty and will

not be assigned to a machine. Note that there is also a scheduling window between

ready times and deadlines in which all jobs have to be started and completed.

IIP
„ mmSm

111111

^Processing Time

P̂ -̂1

sj

Due date-to-Deadline

Window

z^~=—.

dj Cj

IIP
•if,
Wm?%"*

P
< Scheduling Time Window •

Figure 5 Scheduling Time Horizon

A piecewise tardiness cost function may be defined for the problem where if D} > C}

> dj then the tardiness cost 7) = max (Cj-d,, 0); while if C, > Dj job j is not scheduled

and a high unavailability cost, F will be incurred, as shown in Figure 6. One can think

of F as the cost of wing's failure to refuel and returning to base without completing its

mission. The job is labeled unavailable and not scheduled, if its completion time

misses the deadline.

14

Completion Time

Figure 6 Piecewise Tardiness

A scheduling problem is described by a triplet a \ fi \ y. The a field describes the

machine environment; the /? field provides details of processing characteristics and

constraints. Finally, the y field describes the objective to be minimized and often

contains a single entry (Pinedo, 2008). Resources such as production lines for

products, docks for ships, teachers for student groups, hospital assistance for patients,

etc. commonly occur in parallel and many real life problems can be modeled as

parallel machine scheduling. In the classical parallel machine scheduling problem,

there are n jobs and m machines. Each job needs to be executed on one of the

machines during a fixed processing time (Mokotoff, 2001). Parallel machine

scheduling problems involve both resource allocation and sequencing. It determines

which jobs have to be allocated to which machines and determines the sequence of the

jobs allocated to each machine. Machines can be identical that the processing time of

each job is independent of the assigned machine, uniform that each machine has a

different speed, or unrelated where the processing time of each job is dependent on

the assigned machine without a particular relationship. The aim is to find the schedule

that optimizes a certain performance measure such as makespan, maximum lateness,

or weighted tardiness. The minimization of the total weighted tardiness is important in

scheduling since maintaining quality of service usually has an objective with weights

(Pinedo, 2008).

Tardiness

F --

d, Dj

15

In the ARSP, it is assumed that ready times of all wings to identical parallel tankers

are different with d-to-D window constraint to minimize total weighted tardiness.

ARSP can be defined as scheduling n jobs (wings of aircrafts) on m identical parallel

machines (tankers) where joby arrives (becomes available) at ready time r, and should

be complete by the due date d, and before deadline Dr Therefore, the ARSP is denoted

by PmVp d-to-D window\£wjTj.

In order to illustrate the problem, sample data (not real life data) are given in Table 1.

j
1

2

3

4

5

6

7

8

9

10

ri

0

10

20

20

30

40

50

50

60

70

Pi
30

20

40

20

30

40

30

20

40

20

Wj

1

3

5

1

3

5

1

3

5

1

dj

60

70

80

80

90

100

110

110

120

130

Dj

100

100

130

110

130

150

150

140

170

160

Table 1 Sample Data for Pm|rj, d-to-D window|SwjTj

In the sample problem, there are two identical parallel machines (1 and 2), ten jobs (1-

10), three types of jobs (20, 30 and 40 units of processing time), three priority levels

(1,3 and 5), and fixed 200 unit unavailability cost (/) if a job j is to miss D, A feasible

schedule (shown in Figure 7) is provided by Weighted Longest Processing Time first

(WLPT) rule; one of the most widely used dispatching rule (greedy heuristic).

0

1

1
2
I
 3

1

4
I
 5

I
 6

7

3

8 | 9 | 10 11

9

12 | 13

8

141 15

2 M i 2 5 6 7 10

4

Figure 7 A Feasible Schedule

16

Job

1

2

3

4

5

6

7

8

9

10

Ready
Time

(r,)

0

10

20

20

30

40

50

50

60

70

Processing
Time

(P,)

30

20

40

20

30

40

30

20

40

20

Priority

(w,)

1

3

5

1

3

5

1

3

5

1

Due

Date

(d,)

60

70

80

80

90

100

110

110

120

130

Deadline
(D,)

100

100

130

110

130

150

150

140

170

160

Machine
(M,)

1

2

1

1

2

2

2

1

1

2

Schedule

Time

(s.)

0

10

30

130

30

60

100

110

70

130

Waiting
time
(s,-r,)

0

0

10

110

0

20

50

60

10

60

Completion
Time
(Q)

30

30

70

150

60

100

130

130

110

150

Cjdj

-30

-40

-10

200

-30

0

20

20

-10

20

Weighted
Tardiness

0

0

0

200

0

0

20

60

0

20

Return
Back

(0/1)

0

0

0

1

0

0

0

0

0

0

Table 2 Scheduling Results for Sample Data

The results are given in Table 2. Binary unavailability variable (return back column)

takes 1 value if the job missed the deadline; otherwise it takes 0. For this case, the

schedule has a total weighted tardiness of 300 with 1 unprocessed (return to base) job.

1.4 Difficulties in the ARSP

In the planning stage before tankers and wings take off, planners try to calculate the

refueling request times and tanker schedules. All risks and contingencies are to be

analyzed and the provided arguments are to be exploited to create proactive schedules

on the ground. On the other hand, the tanker crews gather information from all wings,

plan the new refueling schedule, and send the results back to the wings in the air.

Therefore, there are some difficulties that make ARSP different from an ordinary

parallel machine scheduling problem. These difficulties have emerged as a result of

dynamic, uncertain, multi objective nature of the problem, unexpected emergent

events, variability of its elements, and constraints.

1. Dynamic Environment: Set of wings in the air, wing priorities and ready times

change in real life.

2. Set of jobs in the theater may change during the operation. New rush job

arrivals or leavings occur according to operational decisions.

17

3. It is known that fighters are configured according to some special fighting

functions and capabilities. Meanwhile, the course of the air operation and the

new target priorities require different fighting functions. Therefore, needs for

each differently configured wing and given job priorities may change

according to air operation conditions.

4. Planned ready times may be shifted backward or forward by more than a little

deviation according to revised mission plans due to unexpected attacks and

future operation missions.

Uncertain Environment: Processing time, ready time, due date, deadline, and priority

are uncertain.

1. Calculation of the processing times is hard work because it comprises the

approaching time, the boom engagement/disengagement times and fuel

pumping time of all fighters in the wing. Eventually, the elements of

processing time may deviate due to weather conditions, pilot skills, and

inefficiency of refueling system or night conditions.

2. Planned ready times may deviate according to changes in fuel level burning

rate.

3. Similarly, due dates and deadlines cannot be taken as exact times.

4. Factors determining job priorities such as current situation assessments of

decision makers, scaling urgency, and the relationship between operation

conditions and fighter functions have a subjectivity and fuzziness nature.

Multi Objectives: Besides minimization of total weighted tardiness, other objectives

related to dumped offload fuel of tanker and waiting time of wings may be accounted

for in the problem. The ability of air refueling operations to support combat missions

is limited not only by the tardiness of tankers but also by the efficiency of fuel

transfer. Utilization of the tanker in terms of unused fuel is an indication of the

inefficiency of tanker operations (GAO/NSIAD-94-68, 1993). For example, tankers

often returned to base with a large amount of unused fuel (on average, 40 percent of

the fuel carried by tankers), some of which has to be dumped in order for the tanker to

land. The cost of the inefficiency, in other words, total idle times of each tankers

18

should be minimized in scheduling. Moreover, in order to reduce the amount of fuel

burned by wings, total waiting time of the jobs should be minimized.

Emergency Cases (Tanker Availability): An emergency in either the tanker or receiver

may cause an urgent stop during AR, if the following are the case:

1. There is a sudden attack to the tanker. The tanker has to move to another

location.

2. There is an unexpected fuel shortage of the tanker. It has to return back to

base. Due to continuous tanker availability, if an unplanned condition is

recognized, the next ordered tanker can be called earlier as a prevention

mechanism.

3. The receiver is judged to be flying erratically by the tanker. A faulty receiver

may be warned or not be allowed to refuel. This situation does not affect the

tankers' availability.

4. The tanker has a malfunction. In actuality, boom failures typically occur when

receivers accidentally dislodge the drogue during the refueling process.

However, many boom failures do not last the duration of the tanker on-station.

5. Bad weather conditions do not allow refueling. Refueling may have to be

cancelled anyway or moved to another location.

Most emergency cases are associated with tanker availability. However, it is fact that

these cases very rarely occur in real life. Besides unexpected tanker availability

related events, some conditions about breakdown, maintenance, weather, etc. for each

tanker may be known or forecast on the ground. If the continuous tanker supply

assumption is violated, these tanker availability constraints should be accounted for in

scheduling. Moreover, flexible set of tankers is possible when the number of

unscheduled wings reaches an unallowable level as a result of high volume air

operation.

Processing time may be defined as dependent on the scheduled refueling starting time

which is a decision variable. Processing times inherently depend on the quantity of

fuel delivered. If the waiting time lengthens, the fighter will engage to refuel at lower

fuel levels and consequently more processing time will be required.

19

Different types of tankers, such as KC-10 tanker aircrafts and tankers with PDA Kits

may be included in the model as a resource. In this case, some compatibility

constraints come out and a particular wing may be refueled by a subset of machines.

On the other hand, speed differences will not matter because refueling speed is

determined by the receiver capability.

The previous wing form can be divided into subgroups of fighters before refueling to

increase the utilization of tankers. Subgroups can also bring flexibility to cope with

fuel burning rate deviations caused by different maneuvers and pilot skills unless

deviations cannot be compensated by sequencing rearrangements within the wing.

However, because of unity desire, a unity penalty or simultaneous refueling constraint

may be used for dividing the wing into subgroups.

It is essential that an efficient coordination and communication interface exists

between tanker and receiver to ensure the correct positioning and timing of the tanker

to meet receiver demands (ATP-3.3.4.2 (ATP-56(B) Change 1), 2008). Nevertheless,

all tankers and receivers may have to stand out against communication restrictions

during operations.

1.5 Research Scope and Objectives

This dissertation research examines the aerial refueling scheduling problem (ARSP)

and the aerial refueling rescheduling problem (ARRP) for in-theater operation

environment. The research scope is framed around two areas: parallel machine

scheduling and rescheduling. The scheduling/rescheduling environment has a finite

set of jobs and a finite set of machines. ARSP assumes that the jobs have different

release times and a due date-to-deadline (d-to-D) window between the refueling due

date and deadline before which an aircraft wing (job) will to return to base without

refueling. Minimizing the total weighted tardiness is a good objective function to

meet the aircrafts' refueling due dates and ultimately the mission's due date.

Consequently, a piecewise tardiness cost was defined by taking into account d-to-D

windows and job priorities to evaluate the schedule's quality. Thus, ARSP can be

modeled as a parallel machine scheduling with release times and d-to-D window to

minimize total weighted tardiness.

20

In the ARRP, continuous rescheduling approach is used where updating the existing

schedule takes place only when an event occurs. That is, it is assumed that schedules

will be updated only as a result of job related disruptions such as the arrival of new

jobs, the departure of an existing job, and changes in job priorities characterized by a

combined change of weight and due date. ARRP considers both minimizing total

weighted tardiness as a primary measure of schedule performance, as well as

minimizing schedule instability as a measure of disruption caused by the

rescheduling. Instability of the AR schedules is defined here as any changes in job

starting times on the assigned machine. Then the measure of schedule instability can

be defined as the proportion of rescheduled jobs that change machine assignment

and/or starting time. In the context of air operations, a communication event with the

pilots to either change their start time or their tanker assignment is considered as an

event that will change the original schedule and therefore there is no distinction

between them from rescheduling pespective. Consideration of the two objectives of

schedule quality and stability leads to the formulation of ARRP as a multi objective

scheduling problem.

The objectives of the research can be summarized as follows:

1. To formulate a scheduling problem from the military environment as an

abstract parallel machine scheduling problem that is widely used in production

environments. The details of the formulation for some aspects of the problem

are unique to the problem addressed in this research.

2. To find optimal solutions for the problem using mixed integer programming

3. To develop an effective and efficient solution methods to obtain best initial

schedules that satisfy the constraints of the scheduling problem in a reasonable

time. This is accomplished by introducing a dispatching rule for the problem.

4. To find near-optimal solutions using metaheuristics including Simulated

Annealing and Meta-RaPS.

5. To address the rescheduling problem by formulating the problem as a a multi

objective optimization problem of minizing both the weighted tardiness and

instability of the schedule. This is accomplished using optimization models

and approximate algorithms to update the disrupted schedules satisfactorily

21

with respect to both objectives, and to effectively evaluate the trade-off

between the objectives.

The rest of this dissertation is organized as follows. In Chapter 2, related research is

summarized. Optimization models and approximate algorithms developed for the

ARSP problem are introduced in Chapter 3including a mixed integer linear

programming model (MILP) for optimal solutions and metaheuristic algorithms to

find near optimal solutions. Computational studies for ARSP are presented and their

results are analyzed in Chapter 4.Rescheduling mechanisms and solution methods for

ARRP are developed in Chapter 5 followed by a computational study for small and

large problem sizes in Chapter 6. Finally, conclusions and future research are

presented in Chapter 7.

22

CHAPTER 2

LITERATURE REVIEW

In light of above issues, related literature including ARSP applications, parallel

machine scheduling with unequal release times, and d-to-D window constraints to

minimize total weighted tardiness and rescheduling, were reviewed to display

practical and intellectual contributions of the dissertation research.

2.1 Aerial Refueling Scheduling Problem (ARSP)

The only existing research on scheduling in-theater AR is Jin et al. (2006). They

introduced the static autonomous refueling scheduling of multiple unmanned aerial

vehicles (UAVs) as a combinatorial optimization problem. In the problem, a single

tanker needs to provide refueling service for multiple UAVs. The number of UAVs is

known and does not change during the refueling process. Each UAV has different

parameters such as current fuel level, refueling time, and return-to-field priority that

are effective for scheduling. A dynamic programming method was used to develop an

efficient recursive algorithm to find the optimal initial sequence for the AAR

scheduling problem. Furthermore, they considered the optimal sequence recalculation

necessity due to conditions change, such as joining or leaving the queue of UAVs

unexpectedly. They developed a systematic shuffle scheme to reconfigure the UAV

sequence using the least amount of shuffle steps. They proposed a rearrange scheme

in which only one UAV will be shuffled at each time and the cost for each movement

is identical. Since the movements consume fuel/time and introduce disturbances, they

considered them as a reconfiguration effort and integrated into the dynamic

programming algorithm, when searching for the new optimal sequence.

On the other hand, the only major work on inter-theater AR, Barnes et al. (2004),

studied the aerial fleet refueling problem (AFRP) and used a Group Theoretic Tabu

Search (GTTS) approach for solution.

2.2 Scheduling Identical Parallel Machines with Ready Times to Minimize Total

Weighted Tardiness Problem

There is very little existing research, as shown in Table 3, addressing the Pm\r/ \£WJTJ

problem. However, the related research does not consider time windows or other

23

difficulties defined for ARSP. The most closely related works are Monch et al.

(2005), Reichelt et al. (2006), Pfund et al. (2008), Gharehgozli et al. (2009), and

Driessel and Monch (2009). They differentiate sequence dependent setup, batch

machines, and precedence constraints. Recent researches are concentrated on

sequence dependent setup constraints. Only Reichelt et al. (2006) and Gharehgozli et

al. (2009) introduced multi objectives. Generally, dispatching rules, exact algorithms,

heuristics based on dispatching rules, local searches, different types of metaheuristies

such as genetic algorithms, variable neighborhood searches, and hybrid metaheuristic

combined by NSGA-II are used for this type of problem.

Monch et al. (2005) attempted to minimize total weighted tardiness on parallel batch

machines with incompatible job families and unequal ready times of the jobs

(Pm|rj,batch,incomp.|SWjTj). Given that the problem is NP-hard, they proposed two

different decomposition approaches. The first approach forms fixed batches then

assigns the batches to the machines using a genetic algorithm (GA) and finally

sequences the batches on individual machines. The second approach first assigns jobs

to machines using a GA then forms batches on each machine for the jobs assigned to

it and finally sequences the batches. Dispatching and scheduling rules were used for

the batching phase and the sequencing phase of the two approaches. In addition, as

part of the second decomposition approach, they developed variations of a time

window heuristic based on a decision theory approach for forming and sequencing the

batches on a single machine.

Reichelt et al. (2006) were interested in minimizing total weighted tardiness and

makespan at the same time(Pm|r,,batch, incomp.|XWjTj, Cmax). In order to determine a

Pareto efficient solution for the scheduling of jobs with incompatible families on

parallel batch machines problem, they suggested a hybrid multi-objective genetic

algorithm. They introduced a three-phase scheduling approach which contains a batch

formation, a batch assignment, and a batch sequencing phase, respectively. They then

characterized the NSGA-II metaheuristic that is used for the second phase. NSGA-II

is generally used for multi-objective combinatorial optimization problems based on

the principles of genetic algorithms. Furthermore, they also described the usage of a

more advanced version of a hybrid multi-objective metaheuristic combining the

NSGA-II algorithm and a local search technique in the assignment phase.

S/N

1

2

3

4

5

6

7

8

Title

Scheduling Jobs with Simple Precedence Constraints on
Parallel Machines

Heuristic scheduling of jobs on parallel batch machines

with incompatible job families and unequal ready times

Multiobjective Scheduling of Jobs with Incompatible
Families on Parallel Batch Machines

Machine Learning Techniques for Scheduling Jobs with
Incompatible Families and Unequal Ready Times on
Parallel Batch Machines

A Memetic Algorithm for Parallel Batch Machine
Scheduling with Incompatible Job Families and
Dynamic Job Arrivals

Scheduling Jobs on Parallel Machines with Setup Times

and Ready Times

A Fuzzy-Mixed-Integer Goal Programming Model for a
Parallel-machine Scheduling Problem with Sequence-
Dependent Setup Times and Release Dates

Scheduling Jobs on Parallel Machines with Sequence-
Dependent Setup Times, Precedence Constraints, and
Ready Times Using Variable Neighborhood Search

Problem

Pm|rj,prec|ZwjTj2

Pm|rj,batch, mcomp

IZwjTj

Pm|rj,batch, incomp
|SWJTJ, Cmax

Pm|rj .batch,incomp
|SWJTJ

Pm|rj,batch,incomp

|XwjTj

Pm|rj,skj|SwjTj

Pm|rj,skj|
ZwjTj, SwjCj

Pm|rj,skj,prec|XwjTj

Source

Hoitomt et al

Monch et al

Reichelt et al

Monch et al

Cheng et al

Pfund et al

Gharehgozh et al

Dnessel and Monch

Year

1990

2005

2006

2006

2008

2008

2009

2009

Setup

0

0

0

0

0

1

1

1

Batch

0

1

1

1

1

0

0

0

Prec

1

0

0

0

0

0

0

1

TW*

0

0

0

0

0

0

0

0

MO*

0

0

1

0

0

0

1

0

Solution Approach

Lagrangian relaxation technique
and the list-scheduling

Two and three Stage
decomposition approaches,
genetic algorithm, dispatching
rules

Three-Phase scheduling approach
hybrid multi-objective
metaheunstic combining NSGA-II
algorithm and a local search

Apparent Tardiness Cost (ATC)
dispatching rule

Memetic algorithm, BATC-II

Extension of the apparent
tardiness cost with setups(ATCS)
approach

Fuzzy mixed-integer goal
programming(FMIGP)

Variable neighborhood search

* TW Time Window, MO Multi objective 1 Considered, 0 Not considered

Table 3 Literature on the Pm|rj |EwjTj Problem

24

25

Gharehgozli et al. (2009) presented a new mixed-integer goal programming (MIGP)

model for a parallel-machine scheduling problem with sequence-dependent setup

times and release dates. Two objectives are considered in the model to minimize the

total weighted flow time and the total weighted tardiness simultaneously(Pm|rj,Skj|

ZwjTj, SWJCJ). Due to the complexity of the model and uncertainty involved in real-

world scheduling problems, they considered the problem under the hypothesis of

fuzzy processing time's knowledge and two fuzzy objectives as the MIGP model.

Pfund et al. (2008) were interested in scheduling jobs with ready times on identical

parallel machines with sequence dependent setups by minimizing the total weighted

tardiness(Pm|rJ,S|Cj|SWjTJ). Their approach is an extension of the Apparent Tardiness

Cost with Setups (ATCS) approach by Lee and Pinedo (1997) to allow non-ready jobs

to be scheduled. It allows a machine to idle for a high priority job arriving at a later

time. To determine the scaling parameters for their composite dispatching rule (called

ATCSR), they first developed a 'grid approach' that considers multiple values for the

scaling parameters, generates multiple schedules, and chooses the best schedule for

the solution. The experimentation was then used to develop regression equations to

predict the values of the scaling parameters that would yield the highest quality

solution.

Driessel and Monch (2009) discussed a scheduling problem for jobs on identical

parallel machines. Ready times of the jobs, precedence constraints, and sequence-

dependent setup times are considered (Pm|rj,Skj,prec|SWjTj). They are interested in

minimizing the performance measure total weighted tardiness. They suggested a

Variable Neighborhood Search (VNS) scheme for the problem. Based on

computational experiments with stochastically generated test instances, they showed

that the VNS approach clearly outperforms heuristics based on the Apparent

Tardiness Cost with Setups and Ready Times (ATCSR) dispatching rule in many

situations.

2.3 Rescheduling Literature Review

There is relatively little research on rescheduling, despite the extensive literature on

scheduling problems. Vieira et al. (2003) and Aytug et al. (2005) provide extensive

reviews of the rescheduling literature. Vieira et al. (2003) introduced definitions and a

26

classification for the rescheduling environments (the set of jobs that need to be

scheduled), strategies (whether or not schedules are generated), policies (when

rescheduling should occur), and methods (how schedules are generated and updated)

presented in the rescheduling literature. Aytug et al. (2005) classified different

approaches to scheduling in the presence of uncertainty into three groups: reactive

scheduling, robust scheduling and predictive-reactive scheduling. There are three

primary types of studies in rescheduling literature: studies on methods for repairing a

schedule that has been disrupted, studies on methods for creating a schedule that is

robust with respect to disruptions, and studies on how rescheduling policies affect the

performance of the manufacturing systems (Viera et al., 2003).

Because of its practical importance, rescheduling has attracted a number of

researchers in recent years. Bean and Birge (1991) considered a rescheduling problem

with release dates and machine disruptions, and investigated "match-up" scheduling

heuristics, which compute a transient schedule after a machine disruption. The

objective is for the realized schedule to return to the predictive schedule within a

certain time of the disruption occurring. Given this deterministic problem, they

assumed that an optimal or near optimal pre-schedule had been constructed.

Disruptions such as machine breakdown, resource unavailability, deviation in release

dates, or unexpected new jobs introduced to the system. The match-up approach seeks

to compensate for the disruption to minimize total tardiness. Their approach first fixes

an initial match-up point and resequences the jobs on the disrupted machines to

minimize the total tardiness cost. If the cost for meeting the selected match-up point

exceeds a predetermined threshold, the match-up point is then incremented by some

value, until the match-up point reaches a predetermined maximum value. A match-up

is therefore possible only if there is enough idle time existing in the original schedule.

Church and Uzsoy (1992) considered the problem of minimizing maximum lateness

on single-stage production systems involving single and identical parallel machines,

where the only source of uncertainty is random job arrivals. They provided a rough

taxonomy of existing approaches beginning with two extremes. Continuous

rescheduling approaches take rescheduling action each time an event that is

recognized by the system occurs. Periodic rescheduling, on the other hand, defines a

basic time interval between rescheduling actions during which rescheduling actions

are not permitted. Rescheduling actions are taken at periodic time points. These points

27

in time where rescheduling may be performed are referred to as rescheduling points.

Any events occurring between rescheduling points are ignored until the following

rescheduling point. Finally, they define event-driven rescheduling, in which a

rescheduling action can be initiated upon the recognition of an event with potential to

cause significant disruption to the system. Both continuous and periodic rescheduling

can be viewed as special cases of event-driven rescheduling. They developed worst-

case error bounds for the periodic approach assuming that an optimal algorithm is

used to schedule the jobs available at each scheduling point. They then explored the

performance of a combined periodic and event-driven approach, where additional

rescheduling beyond what takes place at the rescheduling points can be caused by the

arrival of a job with a tight due date.

Wu et al. (1993) proposed a composite objective to revise the schedules by continuous

rescheduling approach for a single machine problem. They used a bicriterion

approach, where the two conflicting objectives were minimizing the makespan and

minimizing the deviation from the original schedule. Two sets of local search

heuristics were developed; the first set used pairwise swapping methods with

weighted combination of the two objectives. The second is a local search heuristic

based on a genetic algorithm approach, considering two dimensional space of

makespan and deviation; the quality of any given solution point in the space can be

measured based on its Euclidian distance to the origin.

Unal et al. (1997) considered a single machine with newly arrived jobs that have setup

times that depend on their part types. They proposed inserting new jobs into the

original schedule to minimize the total weighted completion time or makespan of the

new jobs without causing existing jobs to miss their deadlines. The due date

performance of existing jobs is considered a priority, and is imposed as a constraint

on the secondary criterion of the total completion time of the new jobs. Their

approach does not incorporate a measure of schedule disruption.

Jain and Elmaraghy (1997) developed reactive scheduling mechanisms to reschedule

a flexible manufacturing system. The triggers for rescheduling are the arrival of new

jobs, order cancellations, changes in order priority, and machine failures.

Akturk and Gorgulu (1999) developed rescheduling procedures for machine failures

that are designed to match-up with a long-term original schedule. They considered to

28

minimize the tardiness of the jobs as well as the match-up point in order to ensure

schedule's stability. The authors defined the match-up point as the point in time at

which the revised schedule merges again with the original schedule such that the pre-

schedule can be followed again. After a machine breakdown, a match-up point for

each machine is determined and part of the initial schedule that covers the time

interval between the disruption and the Match-up point is rescheduled.

Vieira et al. (2000) presented analytical models for unrelated parallel machine

scheduling to predict the performance measures for rescheduling strategies and

quantify the trade-offs between performance measures. They considered dynamically

arriving jobs and setups occur when production changes from one job type to another.

In addition to periodic and event-driven rescheduling strategies, hybrid strategy based

on queue size were studied. Under a hybrid strategy, rescheduling occurs not only

periodically, but also whenever a pre-specified event occurs. The main performance

measures of interest are the average flow time, machine utilization and setup

frequency.

Alagoz and Azizoglu (2003) developed procedures for rescheduling identical parallel

machines with minimizing the flow time as an objective where the random event that

promoted rescheduling is a change in the machine eligibility constraints. Azizoglu and

Alagoz (2005) considered a rescheduling problem in an identical parallel-machine

environment with the disruption that one of the parallel machines down and the

original schedule has to be updated to recover the effects of the disruption. In both

works, they presented an optimizing algorithm for minimizing the stability measure

subject to the constraint that the efficiency measure is at its minimum level. As an

efficiency measure, they considered the total flow time and as a stability measure they

considered number of disrupted jobs where a disrupted job is the one that is processed

on different machines in the initial and revised schedules. They presented a branch

and bound algorithm for the hierarchical problem of minimizing number of disrupted

jobs subject to the constraint that total flow time is kept at its minimum. They

proposed three heuristic procedures: a polynomial time algorithm and two branch and

bound based heuristic procedures, to generate a set of approximate efficient schedules

with respect to the total flow time and number of disrupted jobs criteria.

29

Hall and Potts (2004) considered a single machine rescheduling problem with

disruption in the original schedule caused by multiple newly arriving jobs. A set of

original jobs has been scheduled on one machine to minimize a given cost objective,

and then several sets of new jobs arrive unexpectedly. The trade-off between the

scheduling cost and the disruption cost were considered where the processing times

only become known upon the arrival. Disruption cost examined as a constraint and as

a part of the objective function. Firstly, they minimized the schedule cost subject to a

limit on the deviation from the original schedule. Secondly, they minimized a total

cost objective, which includes both the original cost measure and the cost of

deviation. They presented a polynomial algorithm if it exists for each problem.

Mason et al. (2004) examined three different strategies for rescheduling complex job

shops, while investigating the efficacy of each strategy to minimize the total weighted

tardiness.

Curry and Peters (2005), considered the identical parallel machine scheduling

problem with stepwise increasing tardiness cost objectives, non-zero machine ready

times, machine reassignment costs, and constraints that limit machine reassignments.

They focused on the arrival of new jobs which is described as a simple and common

form of schedule disruption. Schedule nervousness was defined as occurring when a

scheduling procedure reassigns many planned operations to different machines or

different start times. They examined the tradeoff between schedule nervousness and

tardiness in both single period and multiple period dynamic problems.

Yang et al. (2006) developed a parallel insertion algorithm implemented with

rescheduling criteria to minimize the makespan of identical parallel-machine problem

with uncertain job arrival and sequence-dependent setup time. Furthermore, they

provided the probabilistic model to estimate the makespan for the problem that the

inter-arrival time of jobs is exponentially distributed. Makespan was estimated with

the summation of the arriving time of the last arriving jobs, the average waiting time

for jobs in queue, and the average service time for jobs. Since the probabilistic model

was under FIFO rule which is a common and simple dispatching rule, the expected

makespan generated by the probability model was regarded as a lower standard in

performance comparison and was used to evaluate the superiority of the scheduling

algorithm.

30

Lee et al. (2006) studied two machine scheduling problem with transportation

considerations in a machine related disruption environment. Their main assumption is

that jobs that are assigned to the disrupted machines and have not yet been processed

can either be moved to other available machines for processing with additional

transportation time and cost, or can be processed by the same machine after the

disruption. Objective function contains the original cost function (total weighted

completion time and weighted deviation cost) and possibly transportation costs and

disruption cost (deviation from completion times). They provided either a polynomial

algorithm to solve the problem optimally, or show its NP-hardness and presented a

pseudo-polynomial algorithm to solve the problem optimally.

Yang (2007) considered rescheduling problems with newly arriving jobs. In order to

reduce the negative impacts of disruptions to the original schedule, the processing

times of the newly arriving jobs can be reduced at a cost, called time compression

cost. They considered the added feature of available compression time, which allows

reducing the new jobs' processing times to decrease the impact of disruptions on the

schedule. The objective of the problem is to minimize total cost after rescheduling,

which includes schedule disruption costs, time compression related costs, and a cost

that depends on a traditional measure of schedule efficiency. For the weighted

tardiness cost efficiency measure, they provided a heuristic based on very large scale

neighborhood (VLSN) search.

Duenas and Petrovic (2008) presented a new predictive-reactive approach to identical

parallel machine scheduling problem with material shortage and job arrival as an

uncertain disruption. The approach developed is based on generating a predictive

schedule using dispatching rules to minimize the makespan. The predictive schedule

absorbs the effects of possible uncertain disruptions through adding idle times to the

job processing times. The added idle time is equal to the approximated repair time

needed to recover from a disruption during the processing of a certain job. A material

shortage is described by the number of disruption occurrences and disruption repair

period. These parameters are specified imprecisely and modeled using fuzzy sets. If

the impact of a disruption is too high to be absorbed by the predictive schedule, a

rescheduling action that results new instability objective besides the makespan, is

carried out. Two rescheduling methods namely left-shifting and building new

schedules have been applied. The instability is measured as the starting time

31

deviations between the predictive schedule and the reactive schedule. The results of

the study showed that the developed model is flexible and can also be used when new

jobs arrive.

Arnaout and Rabadi (2008) developed repair and rescheduling algorithms for the

unrelated parallel machine environment. They introduced right shift repair, fit job

repair, partial rescheduling, and complete rescheduling rules to handle different rates

of breakdowns and delays. They evaluated these based on several performance

measures to ensure the optimization of both the schedule efficiency and stability. The

efficiency measure was schedule makespan and the stability measure was the number

of shifted jobs from one machine to another and the time to match-up with the

original schedule after the occurrence of a breakdown.

Cheng et al. (2009) examined identical multiprocessor scheduling problems with

resource and timing constraints in dynamic real-time scheduling with new job

arrivals. They introduced a GA-based approach with a feasible energy function to

illustrate the timing and resource constraints. The deadline constraint for each job is

imposed on the proposed system.

Itayef (2009) considered the bicriteria flow shop scheduling problem with new job

arrivals and two objectives: the initial one and a disruption objective. The aim is to

generate or approximate the set of efficient schedules. The procedure involves two

stages. In a first step, given a fixed order of jobs a conventional heuristic is proposed

to successively assign the jobs to the machines. In the second step, the simulated

annealing is applied to optimise the order of the jobs. They implemented a

multiobjective metaheuristic method, MOSA that applies a SA procedure at each

phase to optimize a linear aggregation function of the two objectives.

In these researches, rescheduling is needed as a result of different disruptions and

events such as new job arrivals some of which can be rush, order cancellations,

machine failure, changes in order priority, change in ready times, processing time

delays, rework due to quality problems, material shortage, operator absenteeism, tool

unavailability, due date changes, job order amount changes. Although Subramaniam

et al. (2005) mentioned 17 types of disruption, most of the rescheduling literature has

focused on two main types of disruption: machine breakdowns and the arrival of new

jobs. However, some studies have also considered other types of disruption such as

32

process time variation (Subramaniam and Raheja, 2003), order cancellations (Jain and

ElMaraghy, 1997; Shi-jin et al., 2007), and due-date changes (or urgent jobs) (Jain

and ElMaraghy, 1997; Subramaniam and Raheja, 2003). Li et al. (2000) identified and

investigated four sources of production disruptions: incorrect work, machine

breakdowns, rework due to a quality problem and rush orders.

Updating a schedule upon the occurrence of a disruption affects both the efficiency

and the stability of the process. The effect on the efficiency is usually measured in

terms of the percentage change in the scheduling objective criterion between the

original and the revised schedules. Stability has often been measured in terms of

deviations in the starting times of operations between the two schedules (Abumaizar

and Svestka, 1997; Subramaniam and Raheja, 2003; Subramaniam et al., 2005).

Abumaizar and Svestka (1997) developed more schedule stability measures and a

rescheduling algorithm for job shops.

There are three rescheduling repair methods: regeneration, right shift rescheduling,

and partial rescheduling (Vieira et al., 2003). The regeneration approach solves the

problem from scratch for the remaining operations in the schedule, with the objective

of optimising the original scheduling objective criterion, with no regards to the

resulting disturbance (Raheja and Subramaniam 2002). Regeneration approach

reschedules the entire set of operations not processed before the rescheduling point,

including those not affected by the disruption. The main disadvantage is the excessive

computational effort and unsatisfactory response time. Rescheduling at the arrival of a

rush job is useful but more frequent rescheduling does not improve system

performance significantly (Church and Uzsoy, 1992). On the other hand, right shift

rescheduling postpones each remaining operation by the amount of time needed to

make the schedule feasible without changing the defined sequences of jobs on the

machines to minimize the deviation caused in the schedule.

Many schedule repair approaches that lie between these two extremes have been

proposed in the literature. Partial rescheduling updates only the operations affected

directly or indirectly by disruption. Match-up scheduling (Bean et al., 1991) is a type

of partial rescheduling to return to the predictive schedule within a certain time of the

disruption occurring. Abumaizar and Svestka (1997) proposed the affected operations

algorithm (AOR) for the job shop rescheduling problem.

33

Researches on parallel machine rescheduling are summarized in Table 4. Church and

Uzsoy (1992), Curry and Peters (2005), Yang et al.(2006), Duenas and Petrovic

(2008), and Cheng et al. (2009) are the most related to AR rescheduling problem

when machine type, disruption type, rescheduling environment, rescheduling strategy

and rescheduling method issues are evaluated. These parallel machine rescheduling

problems generally have multiple objectives: the objective of the original problem

(e.g. minimization total weighted tardiness) and the minimization of the difference

between the new schedule (after rescheduling) and the original schedule (before

rescheduling). Disruption cost were examined as a constraint by maximizing the

schedule performance subject to a limit on the disruption cost or as a part of a

combined objective function. Polynomial time algorithms and approximate algorithms

including dispatching rules and metaheuristic methods are developed by regarding

both objectives to obtain qualified solutions in a reasonable time.

In conclusion, there is very little existing research on the ARSP for both inter-theater

and in-theater operations, and there is a gap in the in the corresponding area of

parallel machine scheduling and rescheduling with release time and due date-to-

deadline windows to minimize the total weighted tardiness. In this research, time

window between due date and deadline were firstly considered in parallel machine

scheduling problem by defining a piecewise tardiness cost. The scheduling and

rescheduling problem framed in this dissertation has never been tackled in the

Operations Research literature. To fill this research gap, this dissertation will

introduce new Mixed Integer Programming models to find optimal solutions as well

as heuristic and metaheuristic algorithms to obtain near-optimal schedules efficiently

for both the scheduling and rescheduling problems. All of the exact and approximate

methods introduced will be applied for the first time to the problem at hand.

Additionally, there is very little research addressing multi-objective optimization

(MOO) in the parallel machine scheduling environments that are susceptible to job

related disruptions. The components of the multi-objective formulated in this research

are the total weighted tardiness which represents schedule's quality, and the

proportion of rescheduled jobs that change machine assignment and/or starting time,

which represents the schedule's stability. The component that measure schedule

instability is typically the number (or proportion) of jobs that change machine

assignment or the change in jobs' start times. In this dissertation, however, both

34

measures are combined into one measure that is introduced to the literature and

combines the proportion of the rescheduled jobs due to change in machine assignment

and/or change in starting time.

S/N

1

2

3

4

5

6

7

8

Title

Match-up Scheduling with Multiple
Resources, Release Dates and Disruptions

Analysis of Periodic and Event Driven
Rescheduling Policies in Dynamic Shops

Predicting the Performance of Rescheduling
Strategies for Parallel Machine Systems

Rescheduling Parallel Machines with
Stepwise Increasing Tardiness and Machine
Assignment Stability Obiectives

A Comparative Study to Minimize the
Makespan of Parallel-Machine Problem with
Job Arrival in Uncertainty

An Approach to Predictive-reactive
Scheduling of Parallel Machines Subject to
Disruptions

Rescheduling of Unrelated Parallel Machines
under Machine Breakdowns

Dynamic Hard-real-time Scheduling using
Genetic Algorithm for Multiprocessor Task
with Resource and Timing Constraints

Problem

Pm|rj, incomp |IWJ(TJ+EJ)

1 and Pm|rj |L„,ax

Pm|rj,skj| many performance measures(avg
flow time , machine utilization, setup
frequency)

Pm|rj, reassignment |SLwj iU,i (stepwise
increasing tardiness cost, machine
reassignment cost

Pm|rj,skj| Cmax

Pm|rj, compatiblel Cmax, completion time
deviation

Pm|rj| ACmax, Number of shifted jobs, time
to Match-up

Pm| multiprocessing, preemptive, no
migration, energy function |

Source

Bean et al

Church and Uzsoy

Vieira et al

Curry and Peters

Yang et al

Duenas and Petrovic

Arnaut and Rabadi

Cheng et al

Year

1991

1992

2000

2005

2006

2008

2008

2009

M

I

U

I

I

I

R

I

Disruption

8 disruption
types

Job arrival

Job arrival

Job arrival

Job arrival

Material
shortage, Job
arrival

Machine
breakdown

Job arrival

M

O

0

0

1

1

0

1

1

0

Solution Approach

Match-up approach, integer
programming, Priority Rule
Approach

Hybrid event-driven
approach with dispatching
rules, worst case error
bounds for simulation

Complete regeneration,
simulation

Branch and price algorithm,
Simulation

Probabilistic parallel
insertion algorithm, FIFO
dispatching rule

Fuzzy based predictive and
reactive left-shifting and
building new schedules
methods

Right shift repair, fit job
repair, partial rescheduling,
and complete rescheduling,
MIP

Reactive scheduling, GA-
based approach, dynamic
real-time scheduling

M machine type (I Identical, U Uniform, R Unrelated) MO Multi Objective 1 Considered, 0 Not Considered

Table 4 Parallel Machine Rescheduling Literature

35

36

CHAPTER 3

AERIAL REFUELING SCHEDULING PROBLEM METHODOLOGY

The ARSP is denoted by Pn\rp d-to-D window\£wjTj. It represents a system with m

identical machines in parallel, job j arrives at ready time r7 and should leave by the due

date dj and strictly before the deadline D}. ARSP has also the following assumptions: Any

job can be processed on at most one machine at any time. No preemption is allowed; i.e.,

once an operation is started, it is continued until complete. Machines are always available

(no breakdowns). Each machine can process at most one job at any time. Setup times are

sequence-independent and are included in processing times. Processing times and

technological constraints are deterministic and known. Since higher wing availability is

desired and the relative importance levels of the wings affect the scheduling in ARSP, the

total weighted tardiness is used as a scheduling performance measure in the mathematical

model and approximate algorithms.

In this chapter, a mixed integer linear programming model (MILP) is firstly developed to

find optimal solutions for ARSP. However, since the identical parallel machine

scheduling is NP-hard even with only two machines (Karp 1972; Garey and Johnson

1979; Blazewicz et al., 2007), ARSP is also NP-hard. Consequently, it is required to

develop qualified, easily, and quickly implemented solution approaches with reasonable

computation times.

3.1 Mathematical Model

There is more than one type of integer programming formulation to model the problem

addressed here based on variables such as time-indexed, linear ordering, and positional

assignment for parallel machine scheduling.

Time-Indexed Formulation: The model is formulated with variables indexed by pairs (j,

t) where j denotes a job and t a time period. In order to obtain a finite number of

variables, a fixed time horizon Tis introduced and time is divided into periods 1, 2...., T

where period t starts at time t-1 and ends at time t. A decision variable is equal to one, if

37

job j is started in period t; otherwise it is equal to zero. Related work includes Liaw et al.

(2003), Tanaka and Araki (2008) and Paula et al. (2010).

Linear Ordering Formulation: The set of feasible solutions is considered as (a subset of)

the set of permutations or linear orderings of the job set. Variables that characterize linear

orderings are used to describe the feasible solutions. A decision variable is equal to one if

job 7 precedes / in machine k, otherwise it is equal to zero. Related work includes

Logendran and Subur (2004), Tang et al. (2007), Biskup et al. (2008) and Gharehgozli et

al. (2009).

Positional Assignment Formulation: This formulation works with decision variables that

refer not to the original jobs, but to their positions in the schedule. A decision variable is

equal to one if job j is assigned to position k of machine /, otherwise it is equal to zero.

An example of a related work is by Tavakkoli-Moghaddam et al. (2009).

A mixed integer linear programming model (MILP) is developed to find optimal

solutions for ARSP using both linear ordering and assignment decision variables. The

goal in the ARSP is to find optimal schedules of wings to identical parallel tankers to

minimize the total weighted tardiness.

3.1.1 Notations

Jobs have a piecewise tardiness cost function as follows (see Figure 6):

if ^ < C , < D 7 ;

lfDJ<CJ

In order to represent the starting point for each machine, a dummy index 0 is defined for

predecessor of the first job.

r o>

Tardiness, 7) =

<

C -d ,

F,

v

38

Indices

i = 0,1,2,3, . . . , n predecessor jobs;

j = 1,2,3, . . . , n successor jobs;

k = 1,2,3, ..., m machines;

Parameters

Pj = processing time of job j ;

r} = release (ready) time of job j ;

Wj = weight of job j ;

dj = due date of job j ;

Dj = deadline of job j ;

M = a large positive integer.

F= fixed cost of returning back to base. It must be much larger than D-d values.

J J

Decision Variables

Cj = completion time of job j ;

Tj = piecewise tardiness of job j ;

1, if job / precedes job j on machine k; Xijk - J

yjk= v

0 , otherwise.

1, if job j is assigned to machine k;

0 , otherwise.

39

3.1.2 A Mixed Integer Programming Formulation

Objective : Minimize Total Weighted Tardiness

7=1

mm,
' ' i j

Constraints

1. Some jobs cannot be assigned to a machine (returning back to base) and no job can be

assigned to more than one machine.

m

£ v <1 j = l,...,n

2. You cannot have more than one job in the first position at a certain machine and it is

possible for a machine not to any jobs assigned to it at all.

?x <1 k = \,...,m

3. If job i precedes job j on machine k, then job j must be scheduled after it becomes

ready and after the completion of its predecessor job / (hence the term max(rp C})).

C +M(\-x)>max(r ,C) + p i=0,\,....,n j = \,...,n k=\,...,m
J 'jk I i J

This nonlinear constraint can be formulated alternatively by two linear constraints:

3.a. If job 7 is assigned to a machine, then job 7 must be scheduled after its release time.

in

C +M(\-Yy)>r +p j = \,...,n 1 t! Jk J '

3.b. If job i precedes job j on machine k, then job j must be scheduled after the

completion time of its predecessor job i.

C +M(l-x)>C+p i = \,....,n j = \,...,n k = \,...,m
J 'jk 1 j

40

4. If job j is assigned to one of the machines, then its completion time cannot exceed the

deadline. If job j is not assigned to machine k, then completion time of job j will be zero.

m

C <D £ y j = l,...,n

5. If job j is assigned to machine k, then job j must be preceded by a job / (includes

starting dummy job 0). Job j can be first assigned job to a machine or be preceded.

X x , = y j = l...,n k=l,..., m iik ik

6. If job i is assigned to machine k, then job i can be succeeded by at most one job j or be

the last job.

n

Z x <y i = \,...,n k = l,...,m

7. If job i precedes job j on machine k, then job j cannot proceed job /.

x +x <1 i = \,...,n 7 = 1,..., n k = \,...,m
ijk jik

8. Piecewise tardiness definition can be formulated linearly by constraints (8.a, 8.b, 8.c):

8a. Tardiness is equal to or larger than the lateness.

T >C -d 7 = 1 n
J J J

8b. Tardiness is equal to the return back penalty if job j is not assigned to any

machine.

T > F (l - £ y) j = \,...,n
1 tt Jk

8c. Nonnegative completion time and tardiness values.

C J >0 7 = l,...,n
j J

9. Binary variables.

x ,y = binary i = 0,\,...,n j = \,...,n k = \,...,m
ijk jk

The complete Mixed Integer Linear Programming (MILP) model

follows:

N

minT unZ = y\w T
7=1 '

 J

s.t.

J > <1 7 = 1,..,"
k=\ Jk

/x <1 k = l,...,m

in

C +MQ-^y)>r +p j = \,...,n
J t~x]k J '

C +M(l-x)>C +p i = \,....,n j = \,...,n k = \,...,m
J 'jk i J

C
*

D
. 2 X •/'=

1
--' 1 Jt~lJk

n

/ x =y j = l,...,n k = l,...,m
1=0,1*7

n

/x <y i = l,...,n & = l,...,ra
• ^ 17* i*

/=1

x +x <1 / = 1,...,« j = \,...,n k = l,...,m
ijk jik

T >C -d j = \,...,n
i J J

42

r > F (l - £ y) j = \,...,n (8b)

C J >0 7 = 1 w (8c)

x , v -binary z' = 0,l,...,n j = \,...,n k = \,...,m (9)
y* 7*

Optimization Programming Language (OPL) Studio 6.3 was used to implement this

model and CPLEX 12.1 was used to solve it. Input to the OPL model are indices

(predecessor jobs, successor jobs, and machines), parameters (release times, processing

times, weights, due dates, and deadlines) and fixed unavailability cost F. Optimal

solutions are discussed in Chapter 4.

3.2 Review for Solution Methods

In scheduling problems, generally, exact algorithms and approximate algorithms can be

used to find the optimal or the best solutions. First, exact algorithms are guaranteed to

find an optimal solution for every finite size instance of a combinatorial optimization

problem in bounded time. Second, in order to yield a fast and reasonable solution to a

problem, approximate algorithms which are methods based on the experience or

judgement, can be used. They can be more quickly developed and used than optimization

routines. But they cannot be guaranteed to produce the mathematically optimal solution.

3.2.1 Exact Algorithms

The most common exact/complete methods for scheduling problems are branch and

bound algorithms, mixed integer programming, and decomposition methods. However,

since ARSP is NP-hard, obtaining optimal solutions for large instances will be

computationally difficult. Therefore, it becomes necessary to develop qualified

approximate solutions in reasonable computational times.

43

3.2.2 Approximate Algorithms

Generally, approximate algorithms can be classified as constructive, local search, and

metaheuristic algorithms.

3.2.2.1 Constructive Algorithms

Constructive algorithms generate solutions by gradually adding parts of the solution to

the initially empty partial solution. Their major advantage is in computational time

requirements as largely being the fastest approximate algorithms. However, they have

generally inferior quality solutions when compared to local search techniques and some

special implementations need high computational load. The most widely used

constructive heuristics for scheduling problems are the various dispatching rules.

Dispatching (or Priority) Rules are the most common heuristics for scheduling problems

due to their easy implementation and low requirements in computational power. They are

designed so that the priority index for each job can be computed easily using the

information available at any time. They are useful to find a reasonably good schedule

with regard to a single objective (Pinedo, 2008). Moreover, some priority rules generate

the optimum solution in certain simple problems (e.g. the minimization of flowtime in

single-machine scheduling where the SPT Priority rule generates the global optimum

solution). Although they perform very well in certain cases, no rule exists that can be

applied to all problems and perform satisfactorily and there is no way to estimate the

performance of a dispatching rule for a specific instance a priori (Zobolas et al., 2008).

A number of simple dispatching rules such as the Earliest Due Date (EDD), Shortest

Processing Time (SPT), Minimum SLACK (MSLACK), and Slack per Remaining

Processing Time (S/RPT) have been applied to solve total tardiness, weighted tardiness,

and maximum tardiness related problems (Lee and Pinedo, 1997).

A number of composite dispatching rules, made up of attributes and some scaling

parameters, have also been developed for different types of machine scheduling

environments (Logendran and Subur, 2004). Vepsalainen and Morton (1987) applied the

principles of the Cost Over Time (COVERT) and the Modified Operation Due date

44

(MOD) rule to develop the apparent tardiness cost heuristic (ATC) for the parallel

machine total weighted tardiness problem. Rachamadugu and Morton (1982) proposed

the RM heuristic for parallel machine scheduling. Morton and Pentico (1993) modified

the RM heuristic to allow consideration of jobs arriving at a later time and develop their

X-RM heuristic (Pfund et al., 2008).

3.2.2.2 Local Search Algorithms

Local search algorithms start from an initial solution (most of the times generated by a

constructive heuristic or randomly) and iteratively try to replace part or the whole

solution with a better one in an appropriately defined set of neighboring solutions. For

every defined neighborhood of solutions, the solution or solutions of highest quality (i.e.

the best objective function value) are called locally optimum solutions within the defined

neighborhood. In order to replace parts of an initial solution, local search methods

perform a series of moves leading to the formation of new solutions in the same

neighborhood. The main drawback of basic local search methods is that they get easily

trapped in local optima as they are myopic in nature. More specifically, local search with

appropriate moves can be very effective in exploring a neighborhood of an initial solution

but no mechanism exists that can lead to other distant neighborhoods of the solution

space where the global optimum may exist. To remedy this weakness, new modern local

search methods (explorative local search) have been developed with embedded meta-

strategies to guide the search process (Zobolas et al., 2008).

3.2.2.3 Metaheuristic Algorithms

A metaheuristic is a higher level heuristic procedure designed to guide other methods or

processes towards achieving reasonable solutions to difficult combinatorial mathematical

optimization problems (Silver, 2002). The aim of the new methodology is to efficiently

and effectively explore the search space driven by logical moves and knowledge of the

effect of a move facilitating the escape from locally optimum solutions. This is achieved

by either allowing worsening moves or generating new starting solutions for the local

search in a more intelligent way than just providing random initial solutions They guide

45

the search through the solution space, basically combining some form of heuristic

methods and usually local search in higher level frameworks.

Starting from an initial solution built by some heuristic, metaheuristics improve the

solution iteratively until a termination criterion is met. They exactly or approximately

evaluate candidate solutions, maintain a record of the best solution obtained so far, and

have a mechanism for termination (a certain total number of iterations or a prescribed

number of consecutive iterations without any improvement). The termination criterion

can be elapsed time, number of iterations, number of evaluations of the objective

function, and so on (Blum and Roli, 2003).

Metaheuristic methods have an advantage over simpler heuristics in terms of solution

robustness; however they are usually more difficult to implement and tune as they need

special information about the problem to be solved to obtain good results (Zobolas et al.,

2008). They need settings of parameters that affect the search process significantly (the

so-called cooling parameter in simulated annealing and the length of the tabu list in tabu

search) (Lee et al., 1997).

Generally, the most widely applied metaheuristics are simulated annealing, tabu search,

genetic algorithms, and ant colony optimization are reviewed in the following.

Simulated Annealing (SA)

Simulated Annealing (SA) is one of the most frequently used metaheuristics to find near

optimal solutions to combinatorial optimization problems through the process of

probabilistic state transition (Silver, 2002). It is based on the work of Metropolis et al.

(1956) who simulated the energy levels in cooling solids by producing a sequence of

states. SA is a local search improvement heuristic that generates neighbor solutions by

simple moves from the current solution starting with a randomly generated initial

solution. The SA algorithm generates a new solution in the neighborhood of a current (or

initial) solution. The objective function value of the new candidate solution is then

compared to the objective function value of the current solution. If the new objective

function value is better than the value of the current solution, the new solution is

46

automatically accepted. If the objective function value is worse than the value of the

current solution, then the candidate solution may still be accepted with some probability

known as the probability of acceptance Pa = exp (-A/T) where A is the difference

between objective values of the candidate and current solution and T isa temperature

control parameter of the SA algorithm. This temperature is periodically reduced after

allowing the SA to run for a certain number of iterations and explore candidate solutions

in the neighborhood of the current solution. When the temprature is low enough, the SA

converges (freezes) to a final solution. What makes SA more effective than greedy and

local search methods is that it has a mechanism that prevents getting trapped at local

optima by allowing the acceptance of worse solutions with a certain probability (Hazir et

al., 2008). The SA method was chosen in this research as a robust meta-heuristic to

provide immediate results to the problem. SA can deal with arbitrary systems and cost

functions and is relatively easy to implement even for complex problems. It generally

gives a good solution and statistically guarantees finding an optimal solution, but cannot

tell whether it has found an optimal solution (Tan et al., 2001).

Tabu Search (TS)

Tabu search (TS) is a local-search, improvement heuristic similar to SA with a

punishment mechanism to escape from a local optimum by forbidding or penalizing

moves that cause cycling among solution points previously visited (Hazir et al., 2008).

The main strength of tabu search is the use of memory that speeds up the solution space

search process (Zobolas et al., 2008). The search process keeps track of a so-called tabu

tenure with a fixed number of entries, called the size (or length) of the list. This size is a

key controllable parameter of the metaheuristic.

Every time the search performs a mutation in order to go from one schedule to a

neighboring schedule, the reverse mutation is placed at the top of the tabu list. All other

entries on the list are pushed down one position and the entry at the bottom is deleted.

The reason for keeping such a tabu list is based on the fact that it is not desirable to allow

a search in a subsequent move to return to a schedule already considered. Since the most

basic form of tabu search is a deterministic process, there is always the danger of cycling.

47

The cycling phenomenon depends very much on the length of the tabu list. If the length

of the tabu list is too small, the process may have a high likelihood of cycling. If the

length of the list is chosen too large, then the freedom of the search process is curtailed

and the process may be less likely to find good solutions (Lee et al., 1997).

Genetic Algorithm (GA)

A Genetic Algorithm (GA) is a population-based improvement heuristic based on natural

selection and evolutional theory. The GA approach, first developed by John Holland

(1975), is based on the principles of evolution and genetics to guide the search according

to ability of the individuals to survive in the competitive environment. A solution is

represented by knowledge structures (also called chromosomes) that are composed of

genes in the form of a binary or nonbinary string. The value of the feature associated with

a particular gene is called its allele. A collection of chromosomes is called a population.

Genetic algorithms work with a population of solutions that at each iteration each

solution in the current population is evaluated.

The evaluations serve to select a subset of the solutions to be either used directly in the

next population or indirectly through some form of transformation or variation. The next

population is formed in two steps. First, recombination or a cross-over operator considers

two individuals in the population and create a new individual by combining one part of

one chromosome with another part of the other chromosome (Lee et al., 1997). The role

of the crossover operator is to form new fit individuals from fit parents to inherit the

genetic material of the parent chromosomes (natural selection). Second, a mutation

operator alters one or more components of a selected individual to provide new

information into the knowledge base. The mutation operator (typically with a very small

probability) serves as a secondary search that ensures that all points in the search domain

are reachable by introducing new genetic material into the population (Silver, 2002). The

incumbent solution is expected to improve as populations are generated until a stopping

criterion is reached (Hazir et al., 2008).

48

Ant Colony Optimization (ACO)

The ant colony optimization (ACO) algorithm is a constructive and population-based

metaheuristic inspired by the collective behavior of real ants for the survival of their

colonies (Hazir et al., 2008). Ants deposit pheromone on their path to the food sources

and the ability of other ants to smell this chemical enables them to find the shortest path

between their nest and the food. When more ants collectively follow a trail, the trail

becomes more attractive for being followed in the future. The capability of a single ant to

locate food is limited, but the collected/shared knowledge helps the colony to find

efficient paths to a food source; the information about the good paths is passed on to the

members of the colony via the amount of pheromone deposited on the paths.

Dorigo and Gambardella (1997) used this feature in solving combinatorial optimization

problems. Each ant constructs a solution by moving from one state to another adjacent

state by applying a stochastic local search policy (Hazir et al., 2008). Each (artificial) ant

probabilistically selects the solution components of the problem based on the pheromone

trail and heuristic information in each iteration. The heuristic information is the

desirability between the solution components which is defined by the structural properties

of the concerned problem (Raghavan and Venkataramana, 2009). A tour ends when all

the ants of the colony generate solutions of different quality. The information gathered at

the end of each tour is updated through a global pheromone updating rule. The ants are

expected to generate better solutions by using this information in the next tour. The

algorithm terminates when a stopping criterion is satisfied (Hazir et al., 2008). The use of

a colony of ants can give the algorithm increased robustness and in many Ant Colony

Optimization (ACO) applications the collective interaction of a population of agents is

needed to efficiently solve a problem. ACO can be applied to any discrete optimization

problem for which some solution construction mechanism can be conceived (Dorigo and

Stiitzle, 2005).

Comparison of the Metaheuristics

The choice of which metaheuristic approach to use depends on some factors including the

decision area, the frequency of the decision made, available time to develop, the

49

analytical qualifications of the decision maker, the problem size, presence of significant

stochastic elements. However, it is desirable to have very good average performance on

average and robustness in terms of low chance of achieving a poor solution and

insensitive performance to the actual or estimated values of the parameters of the

problem. For sensitive results, conditions under which the heuristic should be used has to

be specified (Silver, 2002).

A review for comparative studies on the applications in the scheduling problems may be

useful to have a rational approach to perform the metaheuristics for effective ARSP

solutions. Metaheuristic algorithms can be divided in population based and single point

search. Population-based metaheuristic methods (GA, ACO) combine a number of

solutions in an effort to generate new solutions that inherit merits of the old ones. On the

other hand, single point search methods (SA, TS) improve upon a specific solution by

exploring its neighborhood with a set of moves. Another important and widely used

classification scheme is based on the memory used during the search process. Memory

usage (in TS, GA and ACO) constitutes a main characteristic of effective metaheuristic

methods and is the indication of the intelligence employed during the search process.

Memory-less algorithms (SA) are rarely employed for complex combinatorial

optimization problems (Zobolas et al., 2008).

For the both single point search methods, SA and TS, the neighborhood design as well as

the search pattern within a neighborhood can be the same. Both start with an initial

complete feasible solution and iteratively generate additional solutions (Silver, 2002).

The time needed to implement SA or a simple TS is attractively short. Both SA and TS

implementations for a given problem can usually be adapted to take into account

constraints which were not in the initial formulation of the problem (Pirlot, 1996). In

most comparisons of simple TS with SA, TS has generally been found superior, mainly

by being able to provide solutions of comparable quality in much shorter time. It is often

possible to obtain solutions of similar quality with both but TS generally runs much

faster. On the contrary, even a simple TS involves more tactical choices and hence needs

slightly more time to be implemented and tuned (Pirlot, 1996). Another difference

between simulated annealing and tabu search is about the acceptance rejection technique.

50

First, a tabu search permits moving away from a local optimum (i.e. diversifying) by an

essentially deterministic mechanism, whereas, a probabilistic device is used in simulated

annealing. Second, a tabu search tends to temporarily permit moving to poorer solutions

only when in the vicinity of a local optimum, whereas this can happen at any time in

simulated annealing (Silver, 2002). Third, the basic form of a tabu search does not

include any random elements in contrast with simulated annealing (Silver, 2002).

Tabu search and SA may be considered as special forms of genetic algorithms with the

number of individuals in each generation equal to one. The fact that genetic algorithms

keep track of multiple solutions at each iteration may make them more powerful (but at

the same time slower) than simulated annealing and tabu search. GAs can deal with wide

variety of problems and can work with other heuristics (hybrid GA). GAs work with a

coding of the parameter set, and not necessarily the parameters themselves. They do not

guarantee optimal solutions, but they can generally find good solutions relatively quickly.

The design of the neighborhood in GA is different from those in simulated annealing and

tabu search In the diversification scheme of genetic algorithms, the result of each iterative

step is a number of different solutions and all are carried over to the next step (in

simulated annealing and tabu search, only a single solution is transferred from one

iteration to the next). In genetic algorithms, the neighborhood concept is therefore not

based on a single solution, but rather on a set of solutions. A new solution can be

constructed by combining different parts from different schedules within the set (Lee et

al., 1997). Genetic algorithms fail to intensify the search to the most promising regions of

a neighborhood. Thus, the successful implementations of genetic algorithms usually

incorporate a local search procedure for search intensification (Zobolas et al., 2008).

Besides these theoric comparison, there are also some experimental studies comparing

the most common metaheuristics. Delia Croce et al. (1992) made a comparison of various

techniques, including the shifting bottleneck technique, tabu search and genetic

algorithms. In their comparison, genetic algorithms appeared to be the least effective

technique among the three neighborhood search techniques.

Kim et al. (1996) proposed several algorithms, including tabu search and simulated

annealing methods with the objective of minimizing mean tardiness. After an

51

experimental study to set the best values for the parameters, four tabu search methods and

four simulated annealing methods, all starting from a given initial solution, were

presented. The simulated annealing algorithms (considering insertion neighborhood) gave

the best results outperforming the remaining heuristics and metaheuristies. However, the

results obtained with the simulated annealing algorithms (considering the interchange

neighborhood) were the worst among all metaheuristics.

Jozefowska et al. (1998) presented three metaheuristics (SA) (TS) and (GA) to find

solutions for some discrete/continuous scheduling problems. All the described algorithms

were designed, adjusted, and applied to the considered class of scheduling problems.

Comparing the performance of metaheuristics tested in the experiment, the TS performed

best, finding the largest number of optimal solutions and showing smallest deviation from

optimum for all the problem sizes.

Two simulated annealing algorithms which had a difference in the perturbation scheme

were proposed in Parthasarathy and Rajendran (1998). The initial solution for both

methods was given by a specific rule. Results were compared against the other heuristics

including tabu search and two simulated annealing methods produced the best results.

Hasija and Rajendran (2004) presented a simulated annealing method to minimize total

tardiness. The initial solution was given by a specific rule proposed in Parthasarathy and

Rajendran (1998) which was improved through a perturbation scheme. Then, the

simulated annealing was applied to improve this initial solution. The performance of the

proposed algorithm was evaluated against the tabu search and the simulated annealing.

The results showed that the simulated annealing algorithm obtained better results than the

other two methods.

Vallada et al. (2008) gave an extensive and comprehensive review of heuristic and

metaheuristic methods for the permutation flowshop scheduling problem with the

objective of minimising the total tardiness. Two simulated annealing algorithms

outperformed all the other methods evaluated. They showed that the tabu search methods

are good metaheuristics for the interested problem.

52

Hazir et al. (2008) compared the performances of SA, TS, GA, and ACO metaheuristics

on the Customer Order Scheduling Problem. According to their results, the output quality

of a metaheuristics were depending on the problem size, as the complexity of the problem

reduced, all four methods performed better, but among them, the best algorithm was SA,

even though it is the least intelligent one. However, for dense problem instances, TS and

ACO outperformed SA and GA. TS had slightly better results than ACO. TS and ACO

converged to their best results faster than SA and GA. Therefore in case of time

limitations, the authors concluded that TS and ACO were more preferable and with

respect to the number of parameters that have to be fine tuned, implementation of TS or

SA was easier than implementation of the others.

Jungwattanakit et al. (2009) investigated both constructive and iterative (SA, TS and GA-

based algorithms) approaches for minimizing a convex combination of makespan and the

number of tardy jobs for the flexible flow shop problem with unrelated parallel machines

and setup times. For the recommended SA, TS, and GA parameters, they investigated the

performance of the algorithms with random initial solutions. They found that the SA-

based algorithm outperformed the other algorithms. Then, they studied the influence of

the initial solution on these algorithms. The results showed that the SA-based algorithms

were still recommendable (Jungwattanakit et al., 2009). However, simulated annealing

was unable to quickly achieve good solutions to job shop scheduling problems, perhaps

because it is a generic and memory-less technique (Jain and Meeran, 1998).

As a result, the initial solution, the setting of parameters, the language, and manner in

which the procedure is coded, the platform on which the study is conducted affect the

outcome of each comparative study. But it is clear that simulated annealing is easy to

implement while obtaining qualified solutions.

3.2.2.4 Metaheuristic for Randomized Priority Search (MetaRaPS)

MetaRaPS was initially introduced by DePuy et al. (2001) based on the idea of

COMSOAL (Computer Method of Sequencing Operations for Assembly Lines), which is

a computer heuristic designed by Arcus (1966) to solve the assembly line balancing

problem.

53

Moraga et al. (2006) defines MetaRaPS as "generic, high level search procedures that

introduce randomness to a construction heuristic as a device to avoid getting trapped at a

local optimal solution". MetaRaPS combines the mechanisms of priority rules,

randomness, and sampling. The main properties of MetaRaPS are the use of randomness

over a construction heuristic as a mechanism to avoid local optima, and the expectation

that good unimproved solutions lead to better neighboring solutions (Lan et al. 2007).

DePuy et al. (2001) expresses that run times for MetaRaPS is not significantly affected

by the size of the problem, it is easy to understand and to implement, and can generate a

feasible solution at every iteration.

MetaRaPS is a general form of other greedy algorithms, COMSOAL and GRASP

(Greedy randomized Adaptive Search Procedure; Feo and Resende, 1995) and it is more

flexible and more efficient (Lan et al. 2007). MetaRaPS is a two-phase iterative search

procedure with a constructive phase to create feasible solutions through randomized

construction heuristic priority rules, followed by an improvement phase to improve them

at each iteration.

In the constructive phase, a solution is built by repeatedly adding basic feasible elements

or activities to the current solution based on priority rules until a stopping criterion is

satisfied. Each feasible basic element is characterized by a greedy score according to

some priority rule. The best feasible element might assume either the lowest score or the

highest score depending on the definition of the priority rule (Lan et al. 2007). Generally,

solutions obtained by implementing only constructive algorithms can reach mostly local

optima. To avoid local optima, MetaRaPS does not select the component or activity with

the best priority value every time; instead, the algorithm may accept one with a good

priority value, not necessarily the best, based on a randomized approach (DePuy et al.

2005). This randomness of MetaRaPS introduces diversification to the process while

keeping the same quality produced by the priority rule (Rabadi et al., 2006).

A MetaRaPS algorithm uses four parameters: the number of iterations (/), the priority

percentage (p%), the restriction percentage (r%), and the improvement percentage (/%).

First, the number of iterations (/) determines the number of feasible solutions constructed.

Second, the parameter p% is employed to decide the percentage of time, the component,

54

or activity with the best priority value will be added to the current partial solution, and

100%-/?% of time the component or activity with the good priority value is randomly

selected from a candidate list (CL) containing "good" components or activities. Third, the

CL of components or activities with good priority values is created by including ones

whose priority values are within r% of the best priority value. The smaller %p and the

larger %r for a given priority rule, the more randomness will be introduced. Elements are

added to the solution until a feasible solution is generated. The construction stage ends

after a feasible solution is generated.

The improvement phase is performed if the feasible solutions generated in the

construction phase are within i% of the range between the best and worst unimproved

solution value obtained in the construction phase (Moraga et al., 2006). In MetaRaPS,

only the constructed solutions with promising, or good enough, values are improved by

using a local search algorithm.

3.2.2.5 Integrating Metaheuristics and Dispatching Rules

An effective heuristic may be combined with a metaheuristic in order to quickly arrive to

a solution close to the optimal. There is an advantage in starting from a better initial

solution than a random solution in problems where good solutions cannot be easily

obtained through a small number of elementary transformations of a random solution

(Pirlot, 1996). Moreover, a good seed solution can decrease the computational time

considerably.

There are some researches as an example of this form of improving an initial solution. In

Lee and Pinedo (1997), a three phase heuristic was presented for scheduling jobs on

parallel machines with sequence-dependent setup times to minimize the total weighted

tardiness. In the first phase, factors or statistics which characterize an instance were

computed. The second phase consists of constructing a sequence by a dispatching rule

which was controlled through parameters determined by the factors. In the third phase, a

simulated annealing method was applied starting from a seed solution that resulted from

their second phase.

55

Eom et al. (2002), proposed a three-phase heuristic to minimize the total weighted

tardiness of a set of tasks with known processing times, due dates, weights and family

types for parallel machines. In the first phase, jobs were listed by the earliest due date and

then divided into small job-sets according to a decision parameter. In the second phase,

jobs were grouped by the due date within applicable families using apparent tardiness

cost with setup (ATCS), and the sequence of jobs within families is improved through the

use of the tabu search (TS) method. In the third phase, jobs were allocated to machines

using a threshold value and a look-ahead parameter.

Logendran and Subur (2004), reported a methodology for scheduling unrelated parallel

machines with dynamic job releases and dynamic machine availability to minimize the

total weighted tardiness. Four different methods based on simple and composite

dispatching rules were used to identify an initial solution, which is then used by TS-based

heuristic solution algorithm to ultimately find the best solution. The results showed that

the newly developed composite dispatching heuristic, referred to as the apparent

piecewise tardiness cost, is capable of obtaining initial solutions that significantly

accelerate the TS-based heuristics to attain the best solution.

Monch et al. (2005), proposed two different decomposition approaches to minimize total

weighted tardiness on parallel batch machines with incompatible job families and

unequal ready times of the jobs. The first approach forms fixed batches, then assigned

these batches to the machines using a genetic algorithm (GA), and finally sequenced the

batches on individual machines. The second approach assigned the jobs to machines first

using a GA, then formed batches on each machine for the jobs assigned to it, and finally

sequenced the batches. Dispatching rules were used for the batching phase and the

sequencing phase of the two approaches.

Monch (2008) presented an ant colony optimization (ACO) approach to solve unrelated

parallel machine total weighted tardiness (TWT) scheduling problems. They used the

Apparent Tardiness Cost (ATC) dispatching rule for the computation of the heuristic

information.

There is an advantage in starting from a better initial solution than random solution in

problems where good solutions cannot be easily obtained through a small number of

56

elementary transformations of a random solution (Pirlot, 1996). A good seed solution can

decrease the computation time considerably (Lee and Pinedo, 1997).

3.3 Approximate Algorithms for the ARSP

In this dissertation, four algorithms APTCR, SARandom, SAAPTCR and MetaRaPS were

developed for ARSP to find near optimal solutions by taking into account the d-to-D

window and jobs' release times. Firstly, a new composite dispatching rule, APTCR

(Apparent piecewise tardiness cost with release time rule) is introduced which extends

the ATC rule by modifying the priority index.

Secondly, simulated annealing (SA) has been successfully applied to different scheduling

problems, and is therefore applied for the first time to the problem addressed in this

research to obtain near-optimal solutions. SA that is a local search improvement heuristic,

generates neighbor solutions by simple moves from the current solution starting with a

randomly generated initial solution. The SA method was chosen as a robust meta-

heuristic to provide immediate results to the problem. SA can deal with arbitrary systems

and cost functions and is relatively easy to implement even for complex problems. It

generally gives a good solution and statistically guarantees finding an optimal solution,

but SA cannot tell whether it has found an optimal solution (Tan et al., 2001). Two

general SA metaheuristic algorithms will be implemented to improve the random initial

solution (SARandom) and the initial solution constructed by APTCR (SAAPTCR)- SARand0m is

used as a way to evaluate the performance of the APTCR rule, whilst SAAPTCR results are

compared to MetaRaPS especially for large problems.

Thirdly, MetaRaPS which is a new and promising randomized search metaheuristic, is

applied to the problem by introducing randomness to the APTCR construction heuristic.

3.3.1 Apparent piecewise tardiness cost with release time (APTCR) Rule

In order to find a good initial solution, the Apparent Tardiness Cost (ATC), which is a

good rule for the classical total tardiness scheduling problem, was modified while

keeping its main rationale of calculating priority index for the jobs waiting to be

scheduled. An ATC heuristic is a composite dispatching rule that combines the WSPT

57

(Weighted Shortest Processing Time) rule and the so-called Minimum Slack First (the job

with the minimum slack is scheduled) rule (Pinedo, 2008). Several modifications of the

ATC rule have been introduced in order to take release dates and sequence dependent

setup times into account (e.g., Pfund et al., 2008). For the ARSP, a modified composite

dispatching rule of Apparent Tardiness Cost rule has been developed taking d-to-D

window into account to find scheduling priorities for the heuristic algorithm.

Generally ATC rules are based on the rationale that the highest priority job would be the

one with the highest net savings for a unit of resource cost. Priorities may be estimated by

the following formulation

m = —UJ (io)
pj

Uj is the marginal cost of delay; in other words activity time urgency function. The

difficulty of this formula is the estimation of U} (Morton and Pentico, 1993).

In the R&M heuristic (Rachamadugu and Morton, 1982), which is another version of

ATC rule for weighted tardiness problems, priorities are calculated by rating the marginal

benefit B} (t) of expediting the job (formulation (11)) to the marginal cost C/t) of using

the machine for that job (formulation (12)) (McKay et al., 2000).

Bj(t) = wjexp
Sj +

ixp[-/f] (11)
kp

Cj(t)=IRffCxi-It] (12)

t: Decision time point that the resource is considering which job to choose next.

R : The current implicit price of the machine,

/ : The firm's (marginal) cost of capital.

P: The average processing time of the unscheduled jobs at time t,

k : 'Look-ahead' or planning parameter and is set empirically.

58

S/ (t): a slack factor = max [dj - pj -1, 0].

R and I can be assumed constant for all jobs. Then, the priority for a job (formulation

(13)) is the ratio of benefit and cost.

max[j, - pj -1,0]

k\p

Thus, the rule gives higher priorities to jobs approaching the due date. The due date for

job7 has no impact on the priority index when C} > d}.

The proposed APTCR heuristic is dynamic in a sense that after the completion of each

job, the remaining jobs are prioritized according to priority index, and the job with the

highest priority is selected for assigning to the earliest available machine. The priority

index for job j at time t is calculated by (14)

max[D/ -£ / - / + e,0]
x F =i (14-)

[D / - p / - r + f]

where

r is the average ready time of the remaining jobs,

max[Dj -pj -1, 0] is deadline slack factor,

max[rj -1, 0] is ready time slack factor,

kj, &2, and fc? are scaling parameters, called look-ahead parameter

max[D/ - pj — t + £,0]/[Dj — pj — t + e] is scheduling control factor

The main rationale of this index is that getting closer to the due dates, deadlines, and

ready times influence the priorities. The urgency of a job is measured by all these slack

factors.

When the d-to-D window is considered, a new slack factor has to be included in the

formulation. Because a much higher tardiness cost will be incurred if jobs miss the

m(X) = — exp
PJ

*i(t) -exp
max [dj- pj-t,0]

exp
max [Dj - / j / - f , 0]

k p
2

x exp
max [r / - r , 0]

59

deadline, a second slack factor may be defined as max[Dj - pj -1, 0]. Similar to due date,

the deadline has an impact only before it has been reached. Completion time after the

deadline results in a highest priority. The deadline factor is calculated by

exp
max[Dy - pi — t,0]

kip
(15)

Moreover, when the a job misses the deadline, its priority has to be assigned to zero after

applying a high penalty because it will no longer belong to the pool of jobs to be

scheduled. Then, in order to illustrate this situation, the scheduling-decision factor (16)

has to be included as a multiplier.

max [Dj - pj-t + £,0]

[Dj - pj-t + e]

Before reaching the deadline for job j , the scheduling control factor helps identify a job

that has missed its deadline but has no effect on the priority. A small number e is added to

allow assigning the job if the completion time happens to be exactly equal to the

deadline.

Finally, the release time influences the priority index when it is larger than the current

time, t. Thus, for dynamic release times, the factor (17) is included as a multiplier.

exp
max \rj [rj-t,0]

Ic3r
(17)

The rationale here is that as the current time gets closer to the release date of job j , its

priority increases, but after j is released (i.e. r} < t), the urgency will vanish in this term

and be reflected in the due date and deadline terms. The pseudo code for APTCR is

given below in APTCR_ALGORITHM.

APTCR_ALGORITHM

t: decision time for assignment

C/. completion time of job j

60

Cmax, (t): makespan of the machine i at time t

7r/t): priority of the job j at decision time t

U: set of undecided(to schedule or to unschedule) jobs

M: set of machines

n : number of jobs

r,: release time of job j

Pj: processing time of job j

Wj.- weight of job j

Tj: tardiness of job7

L: a large integer

1. Setf =0, U={l,2,...n}, M={l,2,...m},
Cj = 0 V; 6 U, Cmax,(t) = 0 V i e M

2. Calculate n}(t) V j e U by using equation (14)
3. if 7c/t) = 0 Vy 6 U then remove j from U and set C, = L
4. while U ± 0
5. Findy' = { j 6 U • nj(t) = max {nk} }

6. Find i= {i €M : Cmaxt (t)= minf Cmaxm (t)} }
mEM

7. Update Cy = Cmax, (t)+max(rp t)+ p3 and removey from U
8. Update Cmax, (t) = Cj
9. Update t= min{ Cmaxm (t)}
10. Calculate x/t) Vj e U by using equation (14)
11. if K/t) = 0 V; e U then remove j from U and set Cs-L
\2. end while

13. Calculate and report the total weighted tardiness

A sample for the problem with 12 jobs and 3 machines is given to clarify the

methodology of obtaining the APTCR solution. Table 5 summarizes the priority index

values calculated by using equation (14) for iterative time values. Every time the priority

index is calculated, it takes into account the previous decisions as they affect the earliest

starting time for the remaining jobs. The job with the highest priority value is assigned to

the earliest available machine. According to Table 5, jobs 11, 2 and 3 which have the

highest priority index values for t=0, are assigned to the three machines. After these

assignments, the minimum of the latest completion times (or Cmax) is 25.5 at Machine 1.

Job 7 is then assigned to follow Job 11 on Machine 1 as it has the maximum priority

index value at t=25.5.

61

Jobs

1

2

3

4

5

6

7

8

9

10

11

12

M=l

t=0

0 000009

0 001625

0 000693

0 000078

0 000000

0 000074

0 000000

0 000004

0 000295

0 000074

0 019195

0 000006

M=2

t=0

0 000009

0 001625

0 000693

0 000078

0 000000

0 000074

0 000000

0 000004

0 000295

0 000074

M=3

t=0

0 000009

M=l

t=25 5

0 02201

M=2

t=42 5

0 04526

M=3

t=44

0 04824

M=l

t=44 5

0 04927

M=2

t=61 5

0 08686

M=l

t=74 5

012067

M=3

t=76

M=2

t=98 5

0000693

0 000078

0 000000

0 000074

0 000000

0 000004

0 000295

0 000074

0 01035

0 04748

0 00979

0 05279

0 04664

0 03915

0 03177

0 02128

0 09765

001817

0 02268 0 02316 0 03946 0 05482 0 05694 0

001887 001911 0 02937 0

0 09594

0 07267

0 06535

010224

0 07548

0 06964

007644

007113 011123

0 00001 0 00001 0 01025 0 02109 0 02247 0 02295 0 04082 0 05671 0 05890

Table 5 APTCR Priority Index Values Calculated for Iterative Time Values

The scheduling using APTCR continues in a similar fashion until a complete solution is

obtained as given in Table 6. Jobs whose completion times missed their deadline are

denoted by very large completion times and are assigned to a dummy machine m+1

(machine 4 in this case). In Table 6, the first row is the job indices, the second row is the

machine indices, and the third row is the completion times. For example, job 7 is

scheduled on the machine 1 to complete at time 44.5. Job 4 and job 6 are not scheduled

on any machines (zero priority index values in Table 5) and this situation is represented

by scheduling them on the dummy machine 4 with very long completion time.

Job index

Machine index

Completion time

11

1

25.5

7

1

44 5

9

1

74.5

1

1

115.5

2

2

42.5

5

2

61.5

10

2

98 5

3

3

44

8

3

76

12

3

118

4

4

99999

6

4

99999

Table 6 Sample APTCR Solution

62

3.3.2 Simulated Annealing (SA)

Two general SA metaheuristic algorithms (SARandom and SAAPTCR) will be implemented to

improve the random initial solution and the initial solution constructed by APTCR. SA

typically keeps one solution in memory and tries to move to improved solutions. The

speed of a SA procedure depends on several parameters including the temperature

cooling rate, the size of the neighborhood, and the nature of the objective function. The

speed as well as the quality of the SA is also dependent on how fast the algorithm can

find a good neighbor, which may lead to an optimal or near-optimal solution. Selecting

the most promising candidates in the search for a good neighbor accelerates the

convergence towards a high quality solution. Pseudo code for SA is given below.

SA_ALGORITHM

S: search space

6: current solution

f(8): objective function value of the current solution

Memory: memory set of current best solution and its objective function value

/ : inner loop iteration counter

imax •' max number of inner loop iterations

t: iteration counter

tmax : max number of iterations

T: temperature

k : initial temperature coefficient

a : temperature cooling coefficient

N(6): neighborhood of 9

6': neighbor solution of the current solution

9*: best solution

1. Get random or APTCR solution as 6 from S using APTCR_ALGORITHM

2. Calculate/(#)

63

3. Initialize memory, Memory ={(6 ,f(0))}

4. Set iteration counters i = 0, t = 0

5. Set initial temperature T = k.f(9)

6. while t < tmx do

7. while i < IMAX do

8. Choose tf'e N(0) c 5 w/iereM = {(0, f(0))}

9. Calculate f(6>')

10. if f(9')<f(8) or rand [0,1] < « T
 then

11. M={(&,0))}

12. end if

13 i = i+1

14. end while

15. Update temperature T = a.T

16. i = 0, t = t+1

17. end while

18. Output best solution 6 stored in M

SA has four parameters: maximum number of outer loop iterations(tmax), maximum

number of inner loop iterations(imax), initial temperature coefficientk) and temperature

cooling coefficient(a) and these parameter will be tuned in Section 4.3.2 for better

solutions.

The mixture of two types of operations (job exchange and job insertion) is used for the

SA to perturb the current solution locally. In order to avoid high unavailability costs

when there are unscheduled jobs, job insertion is executed by inserting one of the

unscheduled jobs to replace a scheduled job and shifting the jobs to the right on the

corresponding machine. In the job insertion case, the size of the neighborhood is n-l+m

where n is the number jobs and m is number of machines. If there are no unscheduled

jobs, then job exchange is used for perturbation in which case the size of the

64

neighborhood would be n.(n-l) possibilities. After each perturbation, completion times

on the corresponding machines are revised according to the new sequence.

The SA perturbation operations are explained in Table 7 for the sample APTCR solution

given in Table 6. There are two alternatives for perturbation. First, if there does not exist

an unscheduled job, an exchange between randomly selected job 10 (the third job on

Machine 2) and job 11 (the first job on Machine 1) is performed for perturbing. As can be

seen in Table 7, job 1 and job 11 eventually miss their deadlines when completion times

on the Machine 1 and Machine 2 are revised. Second, if there exists an unscheduled job

(e.g. job 6), job insertion is performed by inserting job 6 into the left of a randomly

selected job (e.g. job 1). In this case, only job 1 on the right of the newly inserted job 6 is

shifted causing it to miss its deadline as can be seen in Table 8.

Job

Exchange

Jobs 10

and 11

10

1

45.5

7

1

64.5

9

1

94.5

1

4

99999

2

2

42.5

5

2

61.5

11

4

99999

3

3

44

8

3

76

12

3

118

4

4

99999

6

4

99999

Table 7 Job Exchange Operation for SA Perturbation

Job

Insertion

Job 6

before Job

1

11

1

25.5

7

1

44.5

9

1

74.5

6

1

118.5

1

4

99999

2

2

42.5

5

2

61.5

10

2

98.5

3

3

44

8

3

76

12

3

118

4

4

99999

Table 8 Job Insertion Operation for SA Perturbation

65

3.3.3 Metaheuristic for Randomized Priority Search (MetaRaPS)

The construction phase in MetaRaPS algorithm builds a solution by systematically

adding feasible jobs to the current schedule on identical parallel machines. This study

will consider the use of randomized version of APTCR composite dispatching rule to

construct initial solutions which will be improved by a local search operation. The pseudo

code for an iteration of MetaRaPS algorithm is given below.

MetaRaPS_ALGORITHM

0 : constructed feasible solution

f(9): objective function value of the constructed solution

1. Set t=0, U = {1,2, ...n},M = {1,2, ...m], Memory = {(/best , /worst)}

2. Cj = 0 V; £ U, Cmaxi(t) = 0 V i E M, CL = 0

3. Calculate 7tj(t) V j £ U by using equation (11)

4. if 7ij(t) = 0 V; £ U then remove j from U and set Cj =a large integer

5. whi leU*0

6. Find i = {i £ M : Cmaxj (t)= min{ Cmaxm (t)} }
ItlEM

7. Findj = { j E U •• nj(t) = max {n^} }

8. P = RND(0,1)

9. if P < %p then

Set job-to-schedule index, s = j

10. else

Form CL = {k : k e U \nk(i) > 7Cj(t). %r }

Randomly choose job k from CL

Set job-to-schedule index, s = k and CL = 0

11. end if

12. Update Cs = Cmaxj (t)+max(rs, t)+ ps and remove job s from U

13. Update Cmaxj (t) = Cs

14. Update t = min { Cmaxm (t)}

66

15. Calculate 7t,(t) V j 6 U by using equation (11)

16. if 7tj(t) = 0 V j E U then remove j from U and set C, =a large integer

17. end while

18. Calculate f(8)

19. if f(0) < ftest + (fworsr fbcst).%i t h e n

20. Findtf'e N(0):

if at least one unscheduled job exists, use job insertion,

else use job exchange

21. Calculate / (£ ')

22. end if

23. Update Memory

The APTCR index for each job is calculated as discussed in Section 3.3.1, and the

selection is made based on MetaRaPS principles. If the random number is smaller or

equal to the priority percentage, the job with the highest APTCR priority index (7Uj(t)) is

selected. The remaining time, jobs whose priority indices are higher than the lower limit

(jc/t). %r) are added to the candidate list (CL) and the next job is selected from this CL

randomly. After all jobs are assigned to machines, the construction phase of MetaRaPS is

completed. A sample data given in Table 9 for problem with m = 3 machines and n = 12

jobs, was randomly generated to explain MetaRaPS algorithm for ARSP.

The construction phase of MetaRaPS algorithm iteration is shown in Table 10. In every

step of this phase, jobs are assigned to the machines with the earliest availability. In the

first step, job 10 has the maximum priority index value. Jobs 2, 4 and 5 are in the CL

because their priority values are higher than 0.0240 (=0.0959 x 0.25). Since the generated

random number (RN) is less than %p(0.21 < 0.75), job 10 is selected to be assigned to

Machine 1 without using the CL.

67

Job r 5 .
e a S e

 rocessing Weight Due Date Deadline
Time Time

1 19

2

3

4

5

6

7

8

9

10

11

12

1

24

1

3

10

2

5

11

0

13

15

30

28

23

28

19

45

45

43

28

23

29

32

4

7

8

8

6

5

4

3

1

8

1

2

79

55

70

55

41

100

92

91

67

46

71

79

109

83

103

83

60

145

137

134

95

69

100

111

Table 9 Sample Data for ARSP

Machine

Step 1 2

Max.
„ . .. Job with ¥ .
Priority Job

i T„J„ Max. Lower „T „ . . RN> „ . ,. Scheduled .„ . .
3 Index _ . ¥ . CL RN Selection .„K Machine

Value
 P r l o r l t

y
 L , n u t

 P= Criteria
v a u e

 r=0.25 0.75 ^ n t e n a

0 0959 10 00240 2,4,5

2.4 23

23

23

42

0

28

28

28

0

0

28

28

0 0800

0 0800

0 2167

0 0895

5

5

5

3

0 0200

0 0200

0 0542

0 0224

021

0 85

0 77

0 56

0 37

no

yes

yes

yes

yes

Max

Priority

From CL

FromCL

Max

Priority

Max

Priority

42 51 28 0 0340 1 0 0085 6.7.8.9,11,12 0 81 yes FromCL

7

8

9

10

42

72

72

117

51

51

96

96

71

71

71

103

0 0557

0 0377

0 0573

0.0585

1

7

7

7

0 0139

0 0094

0 0143

-

6,7,9,11,12

6,9 11,12

12

-

021

0 79

0 93

-

no

yes

yes

-

Max

Priority

From CL

From CL

1

6

12

7

1

2

3

1

Step 9 9 11 None

Table 10 Construction Phase of MetaRaPS Algorithm

68

The latest completion time of machine 1 is updated as the completion time of job 10. The

minimum latest completion time (t = 0) does not change. Job 5 is the highest priority job

and jobs 2 and 4 are in the CL in the second step. Differently from the first step, RN> %p

(0.85 > 0.75) and therefore job 2 is randomly selected from CL to be assigned to Machine

2. Finally, jobs 9 and 11 are not assigned to any machine as their completion times will

exceed their deadlines.

Since the best feasible job is the job with the highest priority index, the improvement

phase is performed when the constructed feasible solution value is less than the limit

value. After a number of iterations, MetaRaPS tracks the best and worst solutions found

during the construction phase. A constructed solution goes through the improvement

phase by the same perturbation used with SA (see Section 3.3.2 for the details of job

exchange and insertion operations) if its objective function value satisfies the following

requirement;

f(0) ^fbest + (fworst -fbest)-%i

where f(6) is the objective function value of the constructed solution, ft,est is the best and

fworst is the worst objective function value found before applying the improvement

procedure.

3.4 Complexity Analysis

Complexity of an algorithm and complexity of a problem which are related but different

concepts are analyzed for ARSP and its algorithms. Firstly, the complexity of an

algorithm for a certain problem is measured by the maximum (worst-case) number of

computational steps needed to obtain an optimal solution as a function of the size of the

instance (i.e., the number of jobs) (Pinedo, 2008). The number of computational steps

may often be the approximated maximum number of iterations of the algorithm. In order

to be independent of a particular type of a computer the deterministic Turing machine

(DTM) is used as an abstract model of computation (Blazewicz et al., 2007). Worst case

running time is the behavior of the algorithm with respect to the worst possible case of

the input instance. It is an upper bound on the running time for any input. An algorithm

whose order-of-magnitude time performance is bounded by a polynomial function of n,

69

where n is the size of its inputs, is called a polynomial-time algorithm. It is one whose

time complexity function is 0(p(k)), where p is some polynomial and k is the input length

of an instance. Each algorithm whose time complexity function cannot be bounded in that

way will be called an exponential time algorithm. In practice, the size of an instance is

often simply characterized by the number of jobs (n). For example, if the maximum

number of iterations needed to obtain an optimal solution is 1200 + 50n2 + 4n3, then only

the term which, as a function of n, increases the fastest is of importance. This algorithm is

then referred to as an 0(n) algorithm. An 0{n~) algorithm is usually referred to as a

polynomial time algorithm; the number of iterations is polynomial in the size (n) of the

problem. As another example, a simple merge sort can be done in 0(n log(n)) time.

As for problem complexity, a problem that admits a reasonable or polynomial-time

solution is said to be tractable, whereas a problem that admits only unreasonable or

exponential-time solutions is termed intractable. In general, intractable problems require

impractically large amounts of time even on relatively small inputs, whereas tractable

problems admit algorithms that are practical for reasonably-sized inputs (Harel and

Feldman, 2004). A significant amount of research in deterministic scheduling has been

devoted to finding polynomial time algorithms for scheduling problems. However, many

scheduling problems do not have a polynomial time algorithm; these problems are the so-

called NP-hard problems. NP stands for the class of problems that admit

nondeterministic polynomial- time algorithms, P stands for what we have been calling

tractable problems; namely, those that admit polynomial-time algorithms. This would

mean that P is a proper subclass of NP and the classes P and NP-complete problems are

disjoint. The NP-complete problems, are the "hardest" problems in NP, in the sense that

there are polynomial-time reductions from every problem in NP to each of them.

A fundamental concept in complexity theory is the concept of problem reduction. Very

often it occurs that one combinatorial problem is a special case of another problem, or

equivalent to another problem, or more general than another problem. Often, an

algorithm for one scheduling problem can be applied to another scheduling problem as

well. For example, the problem 1| |Sw;r; is an important generalization of the 1| |S7)

problem. In complexity terminology it is then said that 1| |L T} reduces to 1| \£wjTp which

70

is an NP-hard problem (Pinedo, 2008). This means that no efficient algorithm can be

obtained for 1| \ZWJTJ with arbitrary weights. Moreover, the identical parallel machine

scheduling is NP-hard even with only two machines (Karp, 1972; Garey and Johnson,

1979). Thus, ARSP with release time and d-to-D window must also be NP-hard, which

means that obtaining optimal solutions for large instances will be computationally

difficult. There are n+l different cases of the assignment and permutation of n jobs to m

machines including the possibilities of jobs being unscheduled. In Case 1 below for

example, all n jobs are scheduled for which the number of possible combinations is as

shown. Case 2, however, captures the case of scheduling n-1 jobs with 1 job left

unscheduled. It is important to note that the number of possibilities includes permutations

only for jobs that have been scheduled as the sequence (or permutation) of the

unscheduled jobs is not important.

Case Number of Scheduled Jobs Possibilities

n-1

n-2

\mn

.n\.m

n-1

n-2

.(« - \)\.m n-1

.{n — 2)\.m
n-2

n V..m

n+l 0

n
^0

Jobs can be selected for scheduling according to k combination of n which is defined as

n
k) k\{n-k)\

file:///ZwjTj

71

For instance n - 1 case captures the number of possibilities in which n-1 can be scheduled

to machines assuming only one job is left unscheduled. There are nlm possibilities to

schedule n jobs on m machines because there is a total of m possibilities for machine

assignment, and n\ permutations on each machine. Total schedule possibilities including

unscheduled jobs is sum of all possibilities for all n cases:

.nlm" +
n-1

(n-\)\.m"-' +...+
1

A\.m +
'rO

0 vuy

For example, when it is assumed that n=4 and m=2, the total number of possible

combination is as follows:

4 |.4!.24 + f 4 l 3!.23 +
4 '.2!.22

1I.2 + 1 = 637

According to worst case running time analysis in Table 11, all three algorithms have

0{n2) order of complexity.

Algorithm

APTCR

SA

MetaRaPS

Worst case Running Time
For each n assignment:

Calculate the index values O(n),
Find the job with max index O(n),
Find the machine with min completion time O(m),

Check deadline and Calculate TWT O(n), n>m
For each iteration (tmax):

Generate the initial solution O (n),
Improvement 0(n2)

(swapping n.(n-l) or insertion (n+m-1))
Check deadline and Calculate TWT O(n).
Comparison O(l)

For each iteration (tmax):
Construction of n jobs:

Calculate the index values O(n),
Find max and min index O(n),
Select one of best r jobs O(n),
Find the machine with min completion time O(m)
Check deadline and Calculate TWT O(n),

Improvement 0(n2)

Algorithm Order

0(n2)

0(n2)

0(n2)

Table 11 Complexity Analysis of Scheduling Algorithms

72

CHAPTER 4

COMPUTATIONAL STUDY FOR ARSP'S SCHEDULING ALGORITHMS

Computational study for the ARSP algorithms contains estimating the look-ahead

parameters values for APTCR, parameter setting for SA (same parameters were used for

both SA versions) and MetaRaPS, and determining the performance of the proposed

algorithms for small (n=12) and large (n=60) size problems. In order to perform a fair

comparison, APTCR - SArandom pair and SAAPTCR - MetaRaPS pair which are used to

improve an initial solution constructed by APTCR rule, were compared separately. For

all of these study, some extensive experiments were designed and conducted.

Design of Experiments (DOE) is a useful systematic approach for resolving

multidimensional problems such as determining the relationship between input factors

and process outputs. A primary goal of many DOEs is to identify which of the factors are

really important for which responses, and which are not and can thus be dropped from

further consideration, greatly reducing the experimental effort and simplifying the task of

interpreting the results (Sanchez, 2008). An experimental design formally represents a

sequence of experiments to be performed, expressed in terms of factors (design variables)

set at specified levels (predefined values). An experimental design is represented

mathematically by a matrix where the rows denote experimental runs and the columns

denote the particular factor setting for each factor for each run (Simpson et al., 1997).

The collected response data is often applied to fit mathematical equations that serve as

models to predict the outcome with any given combination of values. One of the steps in

a typical parameter design study is designing the matrix experiment after identifying the

quality characteristic to be observed and the objective function to be optimized,

identifying the design parameters and alternative levels, and defining possible

interactions between these parameters (Phadke, 1989). Many designs are available in the

literature such as full factorial design, central composite design, orthogonal array design,

D-optimal design, and signal-to-noise (S/N) ratio method.

73

Multi factorial design with experiment factors and factor levels was employed and their

high level interactions were analyzed to gain insight into the algorithms' performance

under different conditions (See Montgomery (2001) for discussion on DOE). The most

basic experimental design for multi levels is a full factorial design. Factorial designs are

straightforward to construct and readily explainable—even to those without statistical

backgrounds. They examine all possible combinations of the factor levels for each of the

variables (Sanchez, 2008). The number of design points dictated by a full factorial

design is the product of the number of levels for each factor. The most common designs

are the 2" (for evaluating main effects and interactions) and 3n designs (for evaluating

main and quadratic effects and interactions) for n factors at 2 and 3 levels, respectively.

2n factorials are most efficient if the simulation response is assumed that it is well-fit by a

model with only linear main effects and interactions, while 3n factorials provide greater

detail about the response and greater flexibility for constructing metamodels of the

responses. Multilevel full factorial design can reveal complexities in the landscape.

When each factor has three levels, the convention is to use -1,0, and 1 for the coded

levels. Despite the greater detail provided, and the ease of interpreting the results, fine

grids are not suitable for more than a handful of factors because of their massive data

requirements (Sanchez, 2008).

The proposed approximate algorithms were implemented in C++. Optimal solutions were

obtained by implementing the MILP model (Section 3.1) in OPL Studio 6.3 with CPLEX

12.1 solver. Intel Core 2 Duo 2.10 GHz CPU with 2.00 GB of RAM was used to perform

the computations. Note that the MILP model could be used only for instances with 12

jobs in order to limit the CPU time to less than 10 minutes.

4.1 Experiment Factors

The design of experiments approach to estimate the look ahead parameters is described

below. Four different factors are included in the design: Job machine factor (ju), Due date

tightness (a), d-to-D window tightness (y) and Release time range factor (p) which

characterize a problem instance as follows :

1. Job machine factor : /u = n/m, the average number of jobs processed per machine.

74

2. Due date tightness factor a : It characterizes how tight the due dates are and is defined

as a coefficient in d} = r} + a.p} by taking into account fuel level and refueling time. The

due date tightness a is assessed by the decision maker, and should rationally take values

greater than 1 to provide enough time to complete the process. A small value of a

indicates tight due dates and a large a indicates loose due dates.

3. Due date-to-Deadline (d-to-D) window tightness factor y : It characterizes how tight

the d-to-D windows are. The deadline can be defined as Ds = d} + y.pj. Consequently, the

d-to-D window is calculated by D} - dj = y.pj. The d-to-D window factor y is assumed

always higher than zero. A small value of y indicates tight d-to-D windows and a large y

loose d-to-D windows.

4. Release time range factor p is a measure of how spread out the release times are as

compared to the estimated makespan (Cmax). The makespan (Cmax) is the maximum

completion time of all released jobs. Since Cmax is dependent on the schedule and is not

known apriori, an estimated makespan (Cmax) will be developed in the following

subsection.

4.2 Data Generation

1. The number of jobs is set to a low value (n = 12) and a high value (n = 60) and then the

number of machines is determined by using m= n//u where// is the job machine factor.

2. The processing times p} are uniformly distributed integers in the interval [15, 45].

3. The weights for the jobs Wj are uniformly distributed integers in the interval [1,9].

4. Given the average of jobs' processing times (/?), the average of the jobs' release times

(7), job machine factor (p), and coefficient (<p), which takes into account the effect of the

release times on the makespan (assumed here <f> = 0.1), then Cmax = (07 + p).ju estimates

Cmax of the problem. A similar approach was used by Lee and Pinedo (1997).

5. Release times r} are uniformly distributed in the interval [0, 27] where 7 is the jobs'

release time average. The maximum release time is derived as 27 = 2ppp/(2 - (ppp) where

75

the release time range factor (p) is p = 2r/Cmax and the estimated makespan is

Cmax- (0F + p).ju as defined earlier.

6. Due dates are calculated by dj = rj + a.pj formula and deadlines are calculated by Dj =

dj + y.pj formula.

4.3 Parameter Setting

A parameter setting procedure can be dynamic (online) or static (offline). Dynamic

parameter setting procedures merge the parameter setting and solution building phases

for a heuristic. Dynamic parameter setting methods sample different parameter setting

levels and then converge on the "best found" parameter setting level and ultimately report

the best solution found by the heuristic.

In this study, parameters of the algorithms were tuned by extensive experiments to obtain

better results. Multi factorial design with four factors and three levels was employed in

parameter tuning because all high level interactions are desired to analyze by using any

possible combination of the instance factors and cost of each experiment is not too high

(Montgomery, 2001).

4.3.1 APTCR Parameter Setting

The values of the parameters which make the proposed APTCR algorithm work

effectively were determined through extensive experiments. The look-ahead parameters

are dependent on the particular problem instance in terms of job machine factor (pi), due

date tightness (a), d-to-D window tightness (y) and release time range factor (p) factors.

Thus, an experimental study was conducted to determine the values of kj = fi(p, a, y, p),

k2 = /2C p, a, y, p) and &? =/?(p., a, y, p) in (17). Look-ahead parameters (ki, ki and ki)

are additional factors of the experiment besides other experiment factors. The parameter

values resulting in the minimum total weighted tardiness values for each problem

instance are the response values of the experiment. Regression equations mapping the

factors of an instance into values of the three look-ahead parameters were determined to

estimate the parameters.

76

Extensive experiments were conducted over three levels of the job (n = 60) machine

factor (p=4, ju=5, ju=6), three levels of the due date tightness factor (a =1.5, a =2.5, a

=3.5), three levels of the d-to-D window tightness factor (y = 0, y = 1, y = 2) and three

levels of the release time range factor (p = 0.1, p = 0.2, p = 0.3).

81 (34) unique problem instances were generated according to specific distributions for

each input data and replications. Within each problem type, five problem instances were

generated by using distribution functions, totaling 405 problem instances. 32 levels were

used for each look ahead parameters as below.

32 levels of kf. {0.2, 0.4, , 6.4}

32 levels of k2: {0.2, 0.4, , 6.4}

32 levels of k3: {0.2, 0.4, , 6.4}

For each of the 405 instances, the total weighted tardiness values of 32,768 (32x32x32)

combinations of k\ , k2 and k3 were evaluated. In order to compare the main factor and

interaction effects with each other, coded factors values, given in Table 12, were used to

find the mathematical model of the response value.

Level

Low

Medium

High

Coded

-1

0

1

Actual

"

4

5

6

a

1.5

2.5

3.5

Y

0

1

2

P

0.1

0.2

0.3

Table 12 Coded Values of Factor Levels

All total weighted tardiness that were obtained applying the algorithm repeatedly for

32,768 combinations of &i , k2 and k3 were evaluated. All k\ , k2 and £3 values that yielded

in the range between the minimum total weighted tardiness (MTWT) and MTWT(1 + /?)

for each instance, were identified. The averages of these k\ , k2 and &3 values are denoted

77

as k\ 'ki and A:3. The parameter /? is a tolerance value for MTWT that is a decreasing

function of due date tightness factor and ranges from 0 to 0.065 (Lee and Pinedo, 1997).

In this study, the highest value, 0.065 of this tolerance parameter was used without

calculation to evaluate a large range of competing k values. The averages of the selected

range of k\, kj, and ki> are used as the recommended values for k\, kz, and £3. Thus, each

problem instance has a triple of recommended values for k\ , ki, and £3. A C++ program

was used to generate instances and to find schedules, TWT values, and recommended k

values. Then averages of the instance recommended values, as given in Appendix B,

were calculated to use in the regression analysis.

In order to find the best fit model, different kinds of transformations for response values

such as logarithmic, square root, square, reciprocal, and exponential were attempted.

Then as a result of the regression analysis using realized values of the problem instance

characteristics as regressor and the scaling parameters as a response, regression equations

of the look-ahead parameters were obtained.

kj2 = 4.514 + 0.693^ - I-626a - 0.921y - 1.499p + 1.064M2 - l-659y2 - 0.668py - 0.670Mp

+ 1.069ap

k2 = 0.980 + 0.275y + 0.438/u2 + 1.02 y2 + 0.304yp

k3 = (0.437 - 0.152p. - 0.090a - 0.144y + 0.598a2 + 0.226y2 - 0.359/ua + 0.083ay +

O.lOOapf

The best models for the kj, k2, and &? have R values of 0.59, 0.50, and 0.78 respectively.

4.3.2 SA Parameter Setting

Same parameters were used for both SArand0m and SAAPTCR- Experiments using the

standard setting of 3 machines and 12 jobs has been conducted to obtain appropriate

parameter values for the SA algorithm over three levels of maximum number of iterations

(tmax= 1000, 2000, 4000), three levels of maximum number of inner loop iterations (inmx =

5, 10, 15), three levels of initial temperature coefficient (k = 0.1, 1, 10) and three levels of

temperature cooling coefficient (a=0.7, 0.8, 0.9). For each 81 (34) combinations of

78

parameters, 5 problem instances were solved 30 times by SA starting from random initial

solutions.

After performing regression analysis of the total weighted tardiness values, the following

parameter levels were determined: initial temperature coefficient = 0.1, temperature

cooling coefficient = 0.7, maximum number of inner loop iterations = 5, and maximum

number of iterations = 4000.

4.3.3 MetaRaPS Parameter Setting

The solution quality of the MetaRaPS depends on /, %p, %r and %I parameters.

Experiments using the standard setting of 3 machines and 12 jobs has been conducted to

determine the values of parameters for the MetaRaPS algorithm over nine levels of %p

(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), nine levels of %r (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9), five levels of %i (0.4, 0.5, 0.6, 0.7, 0.8) with increment sizes of 10%. High

values of / and %i parameters are always preferred and the value of these parameters

depends on the availability of computation time (Hepdogan et al., 2009). The number of

iterations, /, was fixed to 2000 which results in compatetive CPU times with SAAPTCR

algorithm.

For each 405 (9x9x5) combination of parameters, 5 problem instances generated

randomly for each medium level of four problem factors, were solved 10 times by

MetaRaPS. Average relative error of replicative solutions from optimal solution was

calculated for each parameter combination by using the equation (18). After performing

regression analysis of the average relative error values, the following parameter levels

shown in Table 13 were determined.

4.4 Performance of the Scheduling Algorithms

The efficacy of the proposed approximate algorithm was tested by the quality of schedule

generated by algorithm. Two performance measures were considered for the proposed

algorithm: quality of the best solution obtained and the computation time it takes. To

measure the effectiveness of the algorithms, they were compared for low and high (n=60)

levels of number of jobs.

79

Parameter Value

Number of iterations (I) 2000

Priority percentage (p%) 75%

Restriction percentage (r%) 25%

Improvement percentage (i%) 75%

Table 13 MetaRaPS Parameter Setting

4.4.1 Effectiveness of APTCR-SArandom for Small Size Problems

The MILP model was used for solving small size problems only with up to 12 jobs in

acceptable time. Thus, the performance of the algorithms are measured for these

problems by computing the difference between the objective function values (total

weighted tardiness) of the algorithm and the optimal schedules as follows:

Relative Error = TWF ^orithm ™ Optimal. (l g)

TWT Optimal

The performance of the APTCR and SArandom algorithms were compared in terms of

relative error and computation time over low and high levels of the problem factors. 10

different unique problem instances were generated for each 16 (2) factor combinations.

SArandom solutions were replicated 10 times for each of the 160 instances and the average,

minimum and maximum relative errors were recorded. Average relative errors (APTCR,

SArandom, Min. SArandom and Max. SArandom) and average CPU times are found by

averaging values of the 10 instances for each combination. Table 14 summarizes the

results.

80

jx a

1.5

3

2

1.5

6

7
Z,

Y

0

2

0

9
Z,

0

2

n
vy

9
Z<

P

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

Total Average

Avg. Relative
Error

Ar 1CK o Aranc)om

0.14

0.24

0.30

0.23

1.33

1.40

0.52

1.91

0.06

0.16

0.11

0.47

0.12

0.28

0.21

0.62

0.51

0.04

0.09

0.46

1.01

0.28

0.30

5.67

7.21

0.00

0.05

0.04

0.15

0.02

0.17

0.15

0.34

1.00

Min.
Relative

Error

^ A r a n c j o m

0.01

0.00

0.14

0.40

0.00

0.27

3.09

3.55

0.00

0.00

0.01

0.01

0.00

0.02

0.03

0.02

0.47

Max.

Relative
Error

^" random

0.10

0.19

0.77

1.64

0.58

0.38

8.20

11.11

0.01

0.09

0.08

0.23

0.03

0.28

0.27

0.62

1.54

Avg. CPU (sec.)

A r 1CK S Arandom

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.07

0.08

0.11

0.11

0.09

0.09

0.10

0.09

0.07

0.07

0.10

0.09

0.07

0.08

0.10

0.09

0.09

Table 14 Results of the APTCR and SArandom for problems with n= 12

The results show that SArand0m has performed better than APTCR in terms of average

relative error for most instances; however, the proposed heuristic algorithm APTCR was

superior to SArM(|om for loose d-to-D windows with small job-machine factor. The

average CPU times of SArand0m were less than 1 second for each problem instance, but it

is obvious that they are much longer (-60 times on the average) than APTCR.

Since the relative error data for each combination does not follow a normal distribution

according to Anderson-Darling normality test, the statistical significance of performance

between algorithms are analyzed via using nonparametric Kruskal-Wallis test (using

Minitab 15.1 statistical software program). Table 15 shows that there is a statistical

difference between the population mean values of APTCR and SArandom performance in

81

terms of relative error (p = 0.007 < a=0.05). SArandom has performed better because the

median of SArandom relative errors is less than the median value of APTCR (0.097 <

0.203). On the other hand, APTCR has better CPU time performance than SArandom by

having significantly smaller median value.

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
APTCR 160 0.20266 174.4 2.68
SArandom 160 0.09735 146.6 -2.68
Overall 320 160.5

H = 7.18 DF= 1 P = 0.007
H = 7.21 DF=1 P = 0.007 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
APTCR 160 0.001000 80.5 -15.47
SArandom 160 0.091750 240.5 15.47
Overall 320 160.5

H = 239.25 DF = 1 P = 0.000
H = 241.19 DF = 1 P = 0.000 (adjusted for
ties)

Table 15 Comparison of Effectiveness of the Algorithms for n= 12 Problems

If the results are analyzed separately for APTCR and SArandom by Kruskal-Wallis test, the

average relative error effectiveness of both algorithms decreases significantly as the

number of jobs per machine decreases (from 6 to 3), the due date tightness decreases (a

increases from 1.5 to 2), and the release time tightness increases (p increases from 0.1 to

0.3). When the d-to-D window tightness decreases (y increases from 0 to 2) only SArandom

effectiveness decreases significantly. The due date tightness factor has the highest effect

on the APTCR performance, while the d-to-D window tightness factor and job-machine

factor have the highest effect on the SArandom performance. The average CPU time

effectiveness of both algorithms does not change significantly between the problem

factor levels.

Levene's test which is suitable when the data come from continuous, but not necessarily

normal distributions was used to test the equality of variance which is another important

measure of robustness of the algorithm solutions. The test shows that there exists

significant difference between variances for both the relative error (p = 0.045 < a= 0.05)

82

and CPU time (p = 0.000 < a= 0.05) (Table 16) indicating that it is more robust for this

problem compared to SArandom-

Test for Equal Variances: Relative Error

95% Bonferroni confidence intervals for standard
deviations

Method N Lower St Dev Upper
APTCR 160 0.75518 0.85040 0.97188
SArandom 160 2.93976 3.31041 3.78328

Levene's Test (Any Continuous Distribution)
Test statistic = 4.04; p-value = 0.045

Test for Equal Variances: CPU

95% Bonferroni confidence intervals for standard
deviations

Method N Lower St Dev Upper
APTCR 160 0.0026969 0.0030370 0.0034708
SArandom 160 0.0181035 0.0203861 0.0232981

Levene's Test (Any Continuous Distribution)
Test statistic = 231.23; p-value = 0.000

Table 16 Test for Equal Variances: Relative Error and CPU versus Method

4.4.2 Effectiveness of APTCR- SArandom for Large Size Problems

The same APTCR parameter estimations and parameter values are used to test the

effectiveness for large size problems with 60 jobs. Since no optimal solutions exist for

these problem sizes, the quality of the solution was measured by relative difference from

the best of both algorithms to avoid nonnegative performance values.

Relative Difference =
TWT Algorithm - minjTWT MATC ,TWT SA mndom)

min(TWT MATC ,TWT SA random)
(19)

The relative difference was calculated for each of the 160 problem instances then the

averages were used for each problem instance combination. In (19), TWTsA-mndom is the

average of SArandom solutions for 10 replications. The comparison results for large size

problems in terms of average relative difference and average CPU time are given in Table

17.

1.5

1.5

p

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

Avg. R

APTCR

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

elative

*^-^-random

0.63

1.00

0.98

1.50

1.75

1.72

3.20

7.83

0.33

0.56

0.43

0.55

0.53

1.01

0.56

1.05

Avg. CPU (sec.)

APTCR

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

^^Vandom

0.48

0.50

0.98

0.98

0.59

0.61

0.99

0.99

0.42

0.44

0.61

0.64

0.45

0.47

0.69

0.73

Total Average 0.00 1.48 0.01 1.48

Table 17 Results of the APTCR and SArandom for n= 60 problems

Kruskal-Wallis Test on Relative Difference

Method N Median Ave Rank Z

APTCR 160 0,000000000 80,5 -15,47

SArandom 160 0,896564841 240,5 15,47

Overall 320 160,5

H = 239,25 DF = 1 P = 0,000

H =273,43 DF = 1 P = 0,000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z

APTCR 160 0,005000 80,5 -15,47

SArandom 160 0,608000 240,5 15,47

Overall 320 160,5

H = 239,25 DF = 1 P = 0,000
H =240,77 DF = 1 P = 0,000 (adjusted for ties)

Table 18 Comparison of Effectiveness of the Algorithms for n= 60 Problems

84

The results suggest that APTCR clearly provided better solutions in shorter CPU times in

all cases (positive values) when compared to SArand0m for problems with 12 jobs.

Especially for loose d-to-D windows with low job-machine factor (|i =3) and loose due

dates, the solution quality performance of SArandom is very low similar to the results in the

earlier subsection for small size problems. Although SArand0m found the solutions in less

than 1 second, CPU time performance is worse by more than 100 times than APTCR.

Table 18 shows that APTCR has outperformed the SArandom algorithm in terms of relative

difference and CPU times as it is obvious in Table 17.

The average relative difference effectiveness of APTCR algorithm over SArandom

increases significantly as the number of jobs per machine decreases (from 6 to 3), the due

date tightness decreases (a increases from 1.5 to 2), the d-to-D window tightness

decreases (y increases from 0 to 2), and the release time tightness increases (p increases

from 0.1 to 0.3). The job-machine and due date tightness factors have the highest effects

on the average relative difference. The average CPU time effectiveness of both

algorithms does not change significantly among the problem factor levels.

4.4.3 Effectiveness of SAApTCR-MetaRaPS Algorithms for Small Size Problems

The performance of the SAAPTCR and MetaRaPS algorithms were compared in terms of

relative error and computation time over low and high levels of the problem factors. The

same 160 unique problem instances that were generated in Section 4.4.1 are solved.

Algorithm solutions were replicated 10 times for each instances and the average,

minimum, maximum relative errors and CPU times were Table 19 summarizes the

results.

The results show that MetaRaPS with 6% average of average relative errors has

performed better than SAAPTCR 21% average of average relative errors, and it had always

less average relative error except for only one instance (ju = 3, a = 2, y =0, p = 0.3).

Moreover, MetaRaPS had lower ranges between maximum and minimum relative errors.

Although the parameter, number of iteration (/) was set as 2000, the average CPU time of

SAAPTCR was less than MetaRaPS. Both algorithm have CPU times less than 2.12 sec. for

all problem instances and almost equal ranges.

85

Avg. Relative Error CPU (sec.)

H a 7 p SAAPTCR MetaRaPS SAA P TCR MetaRaPS

Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.05

0.09

0.06

0.17

0.21

0.18

0.64

1.37

0.00

0.03

0.05

0.08

0.01

0.14

0.07

0.16

0.07

0.17

0.09

0.23

0.44

0.29

0.76

1.96

0.01

0.05

0.07

0.13

0.03

0.25

0.10

0.22

0.01

0.00

0.04

0.11

0.00

0.00

0.37

0.92

0.00

0.00

0.03

0.03

0.00

0.01

0.02

0.08

0.02

0.00

0.02

0.04

0.17

0.25

0.07

0.29

0.00

0.00

0.01

0.03

0.02

0.03

0.02

0.05

0.04

0.00

0.04

0.07

0.22

0.30

0.18

0.51

0.00

0.01

0.03

0.05

0.03

0.07

0.04

0.09

0.01

0.00

0.00

0.01

0.15

0.20

0.02

0.09

0.00

0.00

0.00

0.00

0.02

0.02

0.00

0.00

1.46

1.32

1.39

1.94

1.97

1.54

1.59

1.99

1.96

0.99

1.15

1.45

1.51

1.10

1.25

1.55

1.46

1.32

1.40

1.95

1.97

1.55

1.60

2.00

1.97

0.99

1.15

1.46

1.52

1.10

1.25

1.56

1.46

1.31

1.39

1.94

1.96

1.54

1.59

1.98

1.96

0.99

1.14

1.45

1.51

1.10

1.25

1.55

1,54

1,41

1,49

2,06

2,06

1,67

1,69

2,12

2,03

1,06

1,22

1,56

1,59

1,17

1,34

1,66

1,55

1,42

1,50

2,06

2,07

1,67

1,69

2,12

2,03

1,06

1,22

1,57

1,60

1,17

1,35

1,66

1,54

1,40

1,49

2,05

2,06

1,67

1,68

2,11

2,03

1,05

1,22

1,56

1,59

1,17

1,34

1,66

Total Average 0.21 0.30 0.10 0.06 0.11 0.03 1.51 1.51 1.51 1.60 1.61 1.60

Table 19 Results of the SAAPTCR and MetaRaPS for problems with n= 12

Since the relative error data for each combination does not follow a normal distribution

according to Anderson-Darling normality test, the statistical significance of performance

between algorithms are analyzed via using nonparametric Kruskal-Wallis test in Minitab

15.1 statistical software program. Table 20 shows that there is a statistical difference

between the population mean values of SAAPTCR and MetaRaPS performance in terms of

relative error (p = 0.007 < a=0.05). MetaRaPS has better performance because median

of relative errors is less than median value of SAAPTCR (0.008 < 0.061). On the other

0

1.5

2

3

0

2

2

0

1.5

2

6

0

2

2

86

hand, SAAPTCR has significantly better CPU time performance than MetaRaPS by having

a less median value.

The Levene's test (Table 21) shows that there exists significant difference between

variances and MetaRaPS algorithm has lower confidence intervals for relative error (p =

0.003 < a= 0.05) indicating that it is more robust for this problem compared to SAAPTCR-

On the other hand, there is no significant difference between variances for CPU time.

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z
MetaRaPS 160 0,008370 129,0 -6,10
SAAPTCR 160 0,061534 192,0 6,10

Overall 320 160,5

H = 37,17 DF= 1 P = 0,000
H =38,37 DF = 1 P = 0,000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z
MetaRaPS 160 1,617 176,5 3,09
SAAPTcR 160 1,505 144,5 -3,09
Overall 320 160,5

H = 9,55 DF = 1 P = 0,002
H = 9,55 DF = 1 P = 0,002 (adjusted for ties)

Table 20 Comparison of Effectiveness of the Algorithms for n= 12 Problems

Test for Equal Variances: Relative Error

95% Bonferroni confidence intervals for standard
deviations

Method N Lower StDev Upper
MetaRaPS 160 0,179393 0,202011 0,230867
SAAPTCR 160 0,450057 0,506801 0,579195

Levene's Test (Any Continuous Distribution)
Test statistic = 9,20; p-value = 0,003

Test for Equal Variances: CPU

95% Bonferroni confidence intervals for standard
deviations

Method N Lower StDev Upper
MetaRaPS 160 0,307591 0,346373 0,395850
SAApTcR 160 0,298316 0,335928 0,383914

Levene's Test (Any Continuous Distribution)
Test statistic = 0,14; p-value = 0,713

Table 21 Test for Equal Variances: Relative Error and CPU versus Method

87

4.4.4 Effectiveness of SAAPTCR -MetaRaPS Algorithms for Large Size Problems

The same parameter sets are used while testing the effectiveness for large size problems

with 60 jobs. Since no optimal solutions exist for these problem sizes, the quality of the

solution was measured by relative difference from the best of both algorithms to avoid

nonnegative performance values.

Relative Difference =
TWF ^ ^ ' min(TWT SA _ ,TWT MetaRaPS) ^

min(TWT SA ,TWT MetaRaPS)

The relative difference was calculated for each of the 160 problem instances then the

averages were used for each problem instance combination. In (20), TWTSA-APTCR and

TWTMetaRaPS are the average of algorithm solutions for 10 replications. The comparison

results for large size problems in terms of average relative difference and average CPU

time are given in Table 22.

The results suggest that MetaRaPS clearly provided better solutions in all cases (positive

values) when compared to SAAPTCR for problems with 60 jobs. CPU times are not so

different from times of algorithms for small size problems. Table 23 shows that

MetaRaPS has outperformed the SAAPTCR algorithm in terms of relative difference in

significantly longer average CPU time.

88

Avg. Relative Difference Avg. CPU (sec.)

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

0.1

0.3

SAAPTCR

0.02

0.02

0.01

0.03

0.14

0.31

0.02

0.38

0.01

0.01

0.04

0.12

0.00

0.00

0.04

0.10

MetaRaPS

0.03

0.02

0.04

0.01

0.03

0.01

0.05

0.00

0.05

0.05

0.00

0.00

0.09

0.07

0.00

0.00

SAAPTCR

0.97

1.02

1.73

1.69

1.20

1.37

1.76

1.66

0.86

0.90

1.23

1.27

0.92

0.96

1.38

1.43

MetaRaPS

1.32

1.49

1.98

2.05

1.75

1.83

2.07

2.11

0.82

1.09

1.57

1.73

1.10

1.39

1.72

1.96

1.5

1.5

Total Average 0.08 0.03 1.27 1.62

Table 22 Results of the SAAPTCR and MetaRaPS for problems with n= 60

Kruskal-Wallis Test on Relative Difference

Method N Median Ave Rank Z

MetaRaPS 160 0,000000000 143,0 -3,38

SAApTcR 160 0,016623239 178,0 3,38

Overall 320 160,5

H = 11,41 D F = 1 P = 0,001

H = 13,04 DF = 1 P = 0,000 (adjusted for ties)

Kruskal-Wallis Test on CPU

Method N Median Ave Rank Z

MetaRaPS 160 1,732 202,5 8,12

SAAPTCR 160 1,232 118,5 -8,12

Overall 320 160,5

H = 65,89 DF = 1 P = 0,000

H = 65,89 DF = 1 P = 0,000 (adjusted for ties)

Table 23 Comparison of Effectiveness of the Algorithms for n= 60 Problems

89

CHAPTER 5

AERIAL REFEULING RESCHEDULING PROBLEM METHODOLOGY

There are some difficulties that make ARSP different from an ordinary parallel machine

scheduling problem. One of these difficulties is sourced from the dynamic environment

of the AR process where disruptions caused by dynamic and unexpected events are

common and require updating the existing AR schedule. Although more disruptions may

be considered for ARSP, job related disruptive events are studied in this dissertation since

they occur much more frequent than other type of disruptions in air operations. Events

that have a potential to cause significant disruptions in the AR schedules are interpreted

by the arrival of new jobs, departure of an existing job, and changes in job priorities

characterized by a combined change of weight and due date. Processing times, due date

tightness and d-to-D window tightness are assumed fixed during the scheduling horizon.

Aerial Refueling Rescheduling Problem (ARRP) was addressed in this research. Reactive

scheduling is the process of modifying an existing schedule to adapt to changes in a

production or operational environment (Sun and Xue, 2001). There are generally three

rescheduling approaches : continuous, periodic and event-driven (Church and Uzsoy,

1992). Continuous rescheduling takes a rescheduling action each time an event occurs.

Periodic rescheduling defines rescheduling points between which any events that occur

are ignored until the following rescheduling point. Finally, in the event-driven

rescheduling, a rescheduling action is initiated upon an event with potential to cause

significant disruption. Both continuous and periodic rescheduling can be viewed as

special cases of event-driven rescheduling. In the ARRP, we use continuous

rescheduling approach where updating the existing schedule always takes place when an

event occurs because all job related events defined in this study are assumed to have a

potantial to cause significant disruption.

As was mentioned in the Literature Review Chapter, rescheduling problems mostly

consider both a primary measure of schedule performance, as well as some measure of

disruption caused by the rescheduling. Similarly, our objective in the ARRP will not only

be minimizing total weighted tardiness, but also minimizing schedule instability.

90

Instability of the AR schedules is defined here as any changes in job starting times on the

assigned machine. Then the measure of schedule instability can be defined as the

proportion of rescheduled jobs that change machine assignment and/or starting time.

Consideration of these two objectives leads to the formulation of ARRP as a multi

objective scheduling problem. The main issues of our multi objective approach are to

develop schedules that are satisfactory with respect to both objectives, and to effectively

evaluate the trade-off between the objectives.

5.1 Multi Objective Optimization (MOO)

Multi objective optimization (MOO), refers to finding values of decision variables which

correspond to and provide the optimum of more than one objective (Rangaiah, 2008). A

general MOO problem is stated as follows:

mmf(x) = [f](x)f2(x)...fk(x)f

s.t

g.(x)<0; j=l,2,...,J
j

h(x) = 0; l = l,2,...,L
1 (21)

where k is the number of objective functions, J is the number of inequality constraints, L

is the number of equality constraints, and x e En is a vector of design variables.

A typical MOO problem have many optimal solutions except for problems with non-

conflicting objectives in which case only one unique solution is expected (Rangaiah,

2008). Since objective functions generally conflict with each other, a single point that

minimizes all objectives simultaneously does not exist. All optimal solutions obtained for

MOO problem are equally good in the sense that each one of them is better than the rest

in at least one objective. This implies that one objective improves while at least another

objective becomes worse when one moves from one optimal solution to another.

Consequently, the notion of Pareto Optimality is used to describe solutions for MOO

problems.

91

Pareto-Optimality : A point x e X is said to be a pareto-optimal solution for the

multi-objective problem, if and only if, no other feasible x e X exists such that

/ , (x) < / , (x*) Vi = l,2,...,k , and f} (x) < f) (x) with strict inequality valid for at

least one objective j .

Alternatively, a point is weakly Pareto optimal if it is not possible to move from that

point and improve all objective functions simultaneously (Marler and Arora, 2005).

In MOO, ideal and nadir objective vectors are occasionally used (Rangaiah, 2008). The

ideal point provides the lower bounds of the Pareto optimal set. On the other hand,

components of the nadir objective vector are the upper bounds (i.e., most pessimistic

values) of objectives in the Pareto-optimal set. One way of determining ideal and nadir

objective vectors is using individually optimum values. If we assume that there are two

objectives, the ideal bi-objective vector, \fi*f2*] may contain the optimum values of two

objectives, when each of them is optimized individually disregarding the other objectives.

The ideal point, is not normally feasible because of the conflicting nature of the

individual objectives. The nadir objective vector, [/} ff] may contain the values of two

objectives when the other objective is optimized individually. For example, nadir point

for the first objective, which is denoted by fjN is the value of/}(x) when/2(x) is optimized

individually, and/2W is the value of/2(x) when/}(x) is optimized individually.

5.1.1 MOO Methods

Three basic approaches which are classified according to the stage of imposing the

decision maker's preferences, can be used for considering more than one objective and

analyzing the results obtained for MOO.

5.1.1.1 A Priori Methods

These methods imply that the decision makers (DM) indicate the relative importance of

the objective functions or desired goals before solving the modified problem to obtain a

single Pareto optimal point.

92

Two main approaches exist in the a priori methods: simultaneous approaches and

hierarchical approaches. A simultaneous approach contains value function methods

which formulate a value function that includes the original objectives and preferences of

the DM for optimization and then solving the resulting single objective optimization

(SOO) problem. The weighted sum method, which will be discussed in the following

subsection is one particular case of value function methods. However, most scalarization

methods do not transfer preferences from the DM to the final solution with complete

accuracy. Thus, if the solution is not acceptable, the preferences are altered, and the

problem is resolved to obtain another Pareto optimal point (Marler and Arora, 2005).

As for the hierarchical approaches, one example would be lexicographic optimization

where the DM must arrange the objectives according to their importance for subsequent

solution by a SOO method. The secondary, i.e., the less important, criterion is minimized

subject to the constraint that the value of the primary, i.e., the more important, criterion is

kept at its optimum value (Azizoglu and Alagoz, 2005).

5.1.1.2 A Posteriori Methods

These methods require generating a representation of the entire Pareto optimal set and

selecting a single solution from a set of mathematically equivalent solutions that satisfy

preferences. This can be achieved by solving a series of MOO problems and consistently

varying parameters (such as weights) in order to yield a series of Pareto optimal points

(Marler and Arora, 2005). In effect, all a posteriori methods provide many Pareto-

optimal solutions to the DM, who will subsequently review and select one for

implementation. They include population-based methods such as nondominated sorting

genetic algorithm and multi-objective differential evolution as well as multi-objective

simulated annealing (Rangaiah, 2008).

5.1.1.3 Interactive methods

These methods require interaction with the DM during the solution of the MOO problem.

After an iteration of these methods, the DM review the Pareto-optimal solution(s)

obtained and determine further changes desired in each of the objectives. These

93

preferences of the DM are then incorporated into formulating and solving the

optimization problem in the next iteration. At the end of the iterations, the interactive

methods provide one or several Pareto-optimal solutions. Examples of these methods are

interactive surrogate worth trade-off method and the NIMBUS method (Rangaiah, 2008).

Since we use a scalarized objective function for our bi-objective ARRP, the weighted

sum method, which is a posteriori method that can be considered a special case of value

function methods in the a priori methods will be explained in detail.

5.1.2 Weighted Sum Method

In the weighted sum method, a convex combination of functions is reformulated and the

general MOO problem is stated as follows:

k

xeX ^~"

S.t

8j(x)<0; j = l,2,...,J

hl(x) = 0; l=l,2,...,L

where X, is the weighting factor for the ith objective function. Thus, changing the

weights' relative values changes the orientation of the contours for the weighted sum.

Minimizing the weighted sum can yield all of the Pareto optimal points if

w >0,\/i = l,...,k with systematic variations under the convexity assumptions

(Miettinen 1999). The solution is also unique if the problem is strictly convex

(Grodzevich and Romanko, 2006).

The solution of the resulting SOO problem will depend on w that generates an accurate

representation of the Pareto optimal set to a greater extent. In some sense, the weights w,

serve as scale factors for the objective functions. Despite the many methods for

determining weights, a satisfactory, a priori selection of weights does not necessarily

94

guarantee that the final solution will be acceptable (Marler and Arora, 2004). In this case,

the optimization problem will have to be solved several times, each time with a different

w, in order to find several Pareto-optimal solutions.

Normalization in the weighted sum method

Choosing suitable w to find many Pareto optimal solutions is difficult especially when the

objective functions for a problem have significantly different orders of magnitude,

although the weighting method is conceptually straightforward. Different function

normalization methods can help generate an approximation of the Pareto optimal set that

is consistent with the weights assigned by the DM. Some possible normalization types are

given by (Marler and Arora, 2005).

Normalization by the minimum or the maximum of the objective functions: A common

approach to function transformation is given as :

r norm J{ \%)
J i

Si
min

(23)

where /,min represents the minimum value for objective /. This is referred to as the lower-

bound approach, and it provides a non-dimensional objective function. The lower limit of

jnorm j g r e s t r ic t e c i t o pOSitive values when /,m,n > 0, whereas the upper value is

unbounded. /,mincan be defined as an ideal point such as/,m'n = fl(x*)where f,(x*)is the

optimum value of objective i, when it is optimized individually disregarding the other

objectives. Equation (23) may be modified as follows :

f (\ — f min

r norm _ J[(.%) ~ J /

/ ,
min

(24)

Equation (24) is the alternate lower-bound approach and it yields non-dimensional

objective function values with a lower limit of zero.

95

Computational difficulties can arise here if the denominator is close to zero. Use of the

optimal solutions to individual problems can also lead to very distorted scaling since

optimal values by themselves are in no way related to the geometry of the Pareto set

(Grodzevich and Romanko, 2006).

As an alternative to the methods discussed earlier, one may use the maximum value of

the function in the denominator rather than/,"1"1. The consequent upper-bound approach

is shown as follows :

fix)
r norm _ i
i _f max

i f:
(25)

where fnax represents the maximum value for objective /. fmx may be determined as the

absolute maximum (if it exists) of f,(x) or as an approximation of the maximum.

Alternatively, an approach more conducive to MOO is to define j m a x as a nadir point

which was mentioned earlier (Rangaiah, 2008). Equation (25) provides a nondimensional

function value such thatf,norm < 1 with no restriction on the lower value.

Normalization by the differences of maximum and minimum optimal function values:

The most robust approach called the upper-lower-bound approach to transforming

objective functions, regardless of their original range (Yang et al. 1994).

f (\ f m 'n

r norm _ J[\X) ~ Ji
• max /• mm

/
• max r i

(J i

(26)

The denominator of the formulation interprets the length of the intervals where the

optimal objective functions vary within the Pareto optimal set. The normalization schema

uses the differences in the optimal function values of nadir and ideal points mentioned

earlier. In this case, f"orm is bounded by zero and one for both objective functions and is

dependent on the accuracy and the method with which /m i n and/""* are determined.

96

Unlike previous approaches, the denominator is guaranteed to be positive. In addition,

this is the only approach that constrains the upper and lower limits of fl
norm_ Although the

former normalizations have proved to be ineffective and are not practical, this

normalization provides a relatively robust approach as the objective functions are

normalized by the true intervals of their variation over the Pareto optimal set (Grodzevich

and Romanko, 2006).

The following scalarized objective function mentioned in (Rangaiah, 2008) is used for

our bi-objective ARRP :

/(*)-/(*•) fAx)-f(x)
Min >M]—— + (1 - X) -1 ^——

r max r / * \ r max r , *\

f. - / , (*) / , - / , (*)

where, 0 < X < 1 is the objective weighting factor. We use \fi(x*), f2(x*)] as the optimal

values of individual objectives when they are optimized individually disregarding the

other objective and [fi*™*, fimwc] as the values of the individual objective when the other

objective is optimized individually.

5.2 The Revised MILP Model for ARRP

The MILP model for ARSP should be revised to take into account also the instability

objective for ARRP. This revision is made by modifying the objective function and

adding new a decision variable, new parameters and constraints in addition to the existing

scheduling constraints mentioned in the scheduling section (Section 3.1). The MILP

model can be used to find optimal schedules only for jobs which have not been affected

by the disruption time provided that input data was adequately set according to the event

type and event time. Starting times and machine assignment decision variable values for

the initial schedule are used as an input in the revised model.

Indices

i = 0,1,2,3, ..., n predecessor jobs;

j = 1, 2, 3, . . . , n successor jobs;

97

k = 1, 2, 3, . . ., m machines;

Parameters

Sj - starting time of job j in the original schedule.

yjk' = value of assignment variable in the original schedule.

Pj = processing time of job j ;

r} = release (ready) time of job j ;

Wj - weight of job j ;

dj = due date of job j ;

Dj - deadline of joby';

M — a large positive integer.

F= fixed cost of returning back to base. It must be much larger than D-d values.
J J

Decision Variables

Sj - starting time of job 7 in the new schedule;

Tj = piecewise tardiness of job j ;

1, if job i precedes job 7 on machine k;

0, otherwise.

yjk= <

1, if job 7 is assigned to machine k;

0, otherwise.

SJ= -<

1, if instability occurs for job 7;

0, otherwise.

98

Instability cost occurs when a deviation exists between the starting times in the original

and new schedules or when machine assignment decision variable values in the original

and new schedules become different.

Constraints

Using starting time decision variable requires modifying the constraints 4a-b, 5 and 9a-c

in the MILP model for ARSP to 28a-b, 29, 30a-c for ARRP as follows:

S y +M(l -]Ty , J> r 7 j = l,...,n (28a)

5 ; + M (l - ^) > 5 , +p, i = \,....,n j = \,...,n k = \,...,m (28b)

m

S^p^D^y* j = l...,n (29)

T^S.+Pj-d, j = l,...,n (30a)

m

r > F (l - £ y) j = \,...,n (30b)

SltTj>0 j = \,...,n (30c)

Secondly, some constraints are needed to handle the instability objective. Suppose that a

deviation vector, S is formed by the deviation between the original and new starting times

(Sj - S/) and the deviation between the assignment decision variables (y^ -yjk')• All

possible cases for each job j and machine k are given below. Although some of these

cases can be redundant, they are still listed to explain how the constraints would work in

all cases, and not only for cases that involve instability:

Case 1: Job j which was assigned to machine k in the original schedule (yjk-1) is not

assigned to another machine (y,k = 0) with the same starting times. Then 8 = ((5y = S,'),

(yJk-yJk
1)) = (0'-D-

99

Case 2: Job j which was assigned to machine k in the original schedule(yjk'=l) is then

assigned to another machine (y,k= 0) but with earlier starting time, (5, < S,'). Then S = (-,

-1) meaning that subtraction of the starting times takes a negative value.

Case 3: Job j which was assigned to machine k in the original schedule (yjk'=l) is then

assigned to another machine (y,k = 0) but with later starting time, (S, > 5/). Then 3 = (+, -

1).

Case 4: Job j which was assigned to machine k in the original schedule (yjk'=l) is still

assigned to machine k (y,k = 1) but with an earlier starting time, (5, <£/)• Then S = (-, 0).

Case 5: Job j which was assigned to machine k in the original schedule (y ^ l) is still

assigned to machine k (yjk =1) but with a later starting time, (S, >£/)• Then S = (+, 0).

Case 6: Job j which was assigned to machine k in the original schedule (y,k1=l) is still

assigned to machine k (y,k = 1) with the same starting time, (S, = S/). Then S = (0, 0).

Case 7: Jobj which was not assigned to machine k in the original schedule (yjk -0) is then

assigned to machine k (y^ = 1) with the same starting time, (5, = S/). Then d = (0, 1).

Case 8: Job j was not assigned to machine k in the original schedule (yjk1=0) is then

assigned to machine k (y,k= 1) with an earlier starting time, (5, <S/). Then S = (-, 1).

Case 9: Job j was not assigned to machine k in the original schedule (yjk1=0) is then

assigned to machine k (y^ = 1) with a later starting time, (5, >S}
1). Then S = (+, 1).

Case 10: Job j was not assigned to machine k in the original schedule (yjk-0) and is not

assigned to machine k (y,k = 0) and the starting times are the same, (Sj = Sj). Then S = (0,

0).

Case 11: Job j was not assigned to machine k in the original schedule (y^-O) and is not

assigned to machine k (y^ = 0) but the starting time is earlier, (5, <5/). Then d = (-, 0).

Case 12: Job j was not assigned to machine k in the original schedule (yjk-0) and is not

assigned to machine k (y,k = 0) but the starting time is later (5, >S/). Then 5 = (+, 0).

It is clear that (5, - 5/J takes (+, 0, -) values and (y,k -yjk) takes (+/, 0, -1) values.

According to our definition, s} = 0 only when there is no change to the starting times (5,

- Sj1 = 0) and no change to machine assignment (y^ -y,k' = 0). That is:

100

<

1, i f S ; - S } * 0 o r yjlc-y'jk±0

0, otherwise, Sj -S'j =0 and y j^ - y'jk =0

Consequently, new constraints (31) handle the above twelve cases, can be added to the

model.

M.Sj > (SJ-S'J) + (y^-y'j^ j = l,...,n k = l,...,m

(31)

where M is a large integer number to define the binary instability decision variable.

However these constraints cause a non-linearity in the model, since they contain absolute

values. Thus, two groups of alternative linear constraints (32a,b) can be used instead of

the above constraint.

M.sJZO(SJ-S'J)Hyjk-yjk) j = l-,n k = l,...,m

M.s^-diSj-S^-iy^-y],) j = l,...,n k=l,...,m

(32a,b)

where 6 is a positive integer coefficient that is large enough (e.g. 6 = 10) to avoid a zero

right hand side values when the deviation values of the starting times and assignment

decision variable have opposite signs (e.g. when (Sr S}) = 1 and (y^ -yjk)= -1, constraints

(32a-b) assign Sj= 1).

The objective is to minimize a linear convex combination of normalized TWT and

Instability objectives, where each objective has an allocated weight indicating its

importance.

The objective function of ARRP is as follows:

101

ft ill

ZL WJTJ ~ I™? (* ^ Z~ISJ~ fInstability (X)

minZ = Ji^ + (1-A)—J—
/

max /• • * x v ' r max /• / * \

7W7 ~JTWT\X) J Instability ~ J Instability \ X)

(33)

where 0 < X < 1. Jobs that have been completed before the event time have to be excluded

from the problem while implementing the MILP model for ARRP. On the other hand, the

jobs which are in process when a disruptive event occurs are included without any

tardiness or instability cost. They are automatically assigned to the first places of the

corresponding machines such that their completion times indicate the earliest available

times for each machine. Since available times are not zero anymore, unscheduled jobs

can start processing after the completion of processing the jobs in the original schedule.

In order to ensure that they do not have any impact on the objective function value, data

for the initial scheduling problem should be adjusted for the rescheduling problem as

follows. For every job j that is in-process when a disruption occurs, we set r} =0; Wj = a

large integer; ps =dj =Dj = completion time of job j . Consequently, the model will be

forced to assign these jobs to the same machine by starting at the same time as the

original schedule. Note that maximum index values for TWT and Total Instability, n and

m need not to be equal. For example, if the event is the arrival of a new job, this job is not

included in calculating the instability. Otherwise, there will be bias not to schedule the

new job whose initial machine assignment decision variable value is zero. Only weighted

tardiness of the new job has an effect on the composite objective function.

The ideal and nadir objective vectors (\fiwr /instability"] and ^ " / t a A i f y H) can be

used to normalize the objective values. In order to find these values, it is required to

implement the MILP model twice by using adequate X values (0 < X < 1) and theoritical

pessimistic and optimistic objective values for an individual objective that give the

possible largest objective value ranges. For example, /TWT and /instability™"* can be found

after the first run by setting as follows:

X= 1- £, where £ is a very small positive real number,

file:///fiwr

102

frwr"'" = 0, optimistic TWT value of the case that all jobs are completed before

their due dates.

/TWT"1* = pessimistic TWT value of the case that all jobs missed their deadlines.

/instability"1"1 = 0, optimistic Total Instability value of the case that all jobs start on

the same machine at the same time according to the original

schedule.

/instability""* = pessimistic Total Instability value of the case that all jobs' starting

time and machine assignment are changed.

Similarly, /instability and/TWT""1* can be found after the second run by setting X =e

In order to clarify the methodology of obtaining the rescheduling optimal solution, a

sample data for the problem with 12 jobs and 3 machines is given as follows:

Jobs ={1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Release Times = [4.7, 4.2, 18.7,6.0, 18.8,3.8, 10.5, 11.3,3.5, 16.3, 19.0,5.3],

Processing Times = [40, 15, 16, 24, 15, 16, 22, 39, 20, 41, 22, 36],

Weights = [9, 7, 1, 9, 2, 5, 1, 2, 5, 4, 5, 8],

Due Dates = [84.7, 34.7, 50.7, 54.00, 48.8, 35.8, 54.5, 89.3, 43.50, 98.3, 63.0, 77.3],

Deadlines = [124.7,49.7, 66.7, 78.00, 63.8, 51.8, 76.5, 128.3, 63.5, 139.3, 85.0, 113.3],

Fixed Unavailability Cost = 120

For the above scheduling problem instance, the best total weighted tardiness value as

obtained by solving the MILP is 161.50 for the original schedule shown in Figure 8 with

the following starting times and machine assignment decision variable values for the 12

jobs:

Starting times = [47.5, 4.2, 34.2, 23.5, 19.2, 3.8, 50.2, 77.8, 3.5, 72.2, 19.8, 41.8],

Machine Assignment = [[1 0 0], [0 0 1], [0 0 1], [1 0 0], [0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0],

[0 0 1], [0 10], [0 10]].

103

j [t13=26
M1

M2

M3

9

6

2

4

11

5

1

12

3 7

8

10

Figure 8 Sample Original Solution

Suppose that a new job with pjj = 30, W13 = 5, dj3 = 86, and Dj3 =116 arrives at time, r^

= 26. The starting time and machine assignment decision variable values are set 0 for the

new job. Since jobs 2, 6 and 9 had already completed, they are removed from the job set

that needs rescheduling. Jobs 4, 5 and 11 were in-process at machines 1, 3 and 2

respectively at the arrival time of job 13. These jobs are used to determine the first

available times of each machine to reschedule. So, for these processing jobs, we set r, =0;

Wj= a large integer (eg. 999); p} -d3 =Dj = completion time of the job j in the original

schedule. As a result, the new data set including the newly arrived job (first element of

the vector) is given as follows :

Jobs ={13, 1,3,4,5,7,8,10,11, 12}

Release Times = [26, 4.7, 18.7, 0, 0, 10.5, 11.3, 16.3, 0, 5.3],

Processing Times = [30, 40, 16, 47.5, 34.2, 22, 39, 41, 41.8, 36],

Weights = [5, 9, 1, 999, 999, 1, 2, 4, 999, 8],

Due Dates = [86, 84.7, 50.7, 47.5, 34.2, 54.5, 89.3, 98.3, 41.8, 77.3],

Deadlines = [116, 124.7, 66.7, 47.5, 34.2, 76.5, 128.3, 139.3, 41.8, 113.3],

Old Starting Times = [0, 47.5, 34.2, 23.5, 19.2, 50.2, 77.8, 72.2, 19.8, 41.8],

Old Machine Assignment = [[0 0 0], [1 0 0], [0 0 1], [1 0 0], [0 0 1], [0 0 1], [0 1 0], [0 0 1],

[0 1 0], [0 1 0]].

For this case, in order to find the vectors (\frwT finmbihty*] and \fTwrmx finstability"™}), we

firstly set the initial values as follows:

X = 0.9999 where £ = 0.0001 regarding the total weighted tardiness objective.

frwr"1"1 = 0, where there is no tardiness cost,

JTwrmx = 10x5x120 = 6000, where all 10 jobs with average weight miss their deadlines,

file:///frwT

104

finstability"1"1 = 0, where there is no instability,

/instability™* = 9 (the new job is excluded), where starting times or machine assignments

are changed for all old jobs.

In order to simplify the pessimistic TWT calculation, an estimate is used by assuming

that all jobs with average weight miss their deadlines. The reason behind using an

average weight is that since some weight values have been already reset after the job

arrival, it is confusing to use actual weights. Moreover, the pessimism level does not

change the best solution of the TWT objective where Total Instability objective has

almost zero effect on the objective value. We found TWT = 284.3 and Instability = 2 for

the best value of the combined objective with above optimistic and pessimistic values.

Secondly, we set X = 0.0001 keeping above values and found TWT = 761.5 and

Instability = 0. Therefore, [/h»r7/««W] = [284.3 0] and UTWT*/m^bm™*] = [761.5

2]. Consequently, the objective function for this problem is as follows:

n in

2>/,-284.3 £ 5 , - 0
minZ = Z y=i

761.5-284.3
(1-/1) y=i

2-0

2>/y-284.3
= A j=i

477.2

(34)

7=1

The optimal solution obtained for the above ARRP by using the objective function (34)

with X - 0.5 is shown in Figure 9. This solution has the optimal objective value of 0.32

with TWT = 466.92 and Instability = 1.

Ml

M2

M3

9

6

2

4

11

5

13

12

3 7

1

8

10

Figure 8 Optimal Rescheduling Solution by using X = 0.5

105

In the Computational Study chapter, experiments will be conducted with the various

values of objective weighting factor (X) for extended analysis.

5.2 Rescheduling Algorithms for ARRP

Generally three rescheduling methods exist to repair the disrupted schedule: right shift

rescheduling, partial rescheduling and regeneration. Right shift rescheduling postpones

each remaining operation by the amount of time needed to make the schedule feasible.

Partial rescheduling algorithm reschedules only the operations affected directly or

indirectly by the disruption. Regeneration reschedules the entire set of operations not

processed before the rescheduling point, including those not affected by the disruption

(Church and Uzsoy, 1992).

In this dissertation, we developed reactive scheduling mechanisms to update instantly the

current schedule at the disruption time. Recall that following three job related events are

the main reasons of schedule disruptions in this research: arrival of new jobs, departure

of an existing job, and changes in priority (regarding weight, due date and deadline

parameters) for an existing job. All three repair methods mentioned above are employed

to develop our five repair algorithms:

• Complete regeneration algorithm, MetaRE (MetaRaPS Regeneration) by using

MetaRaPS with APTCR rule and the objective function that was defined earlier as

the combination of TWT and Instability objective,

• Complete regeneration algorithm, SEPRE (Sequence Preserving Regeneration) by

using APTCR rule and preserving the initial sequence of jobs on each machine,

• Best (TWT+Instability) insertion algorithm, BestlNSERT with right shift,

• Left shift algorithm, LSHIFT,

• Partial rescheduling algorithm (SHUFFLE) by shuffling jobs according to

APTCR rule.

All these heuristic algorithms consider the tardiness objective by taking into account

piecewise tardiness cost with due date to deadline (d-to-D) windows, job release times

and also the schedule stability objective. Algorithm usage matrix is shown in Table 24.

106

Arrival of a new job

Departure of

an existing job

Changes in priority

MetaRE

V

V

V

SEPRE

V

BestlNSERT

V

V

LSHIFT

V

SHUFFLE

V

Table 24 Disruption-Rescheduling Algorithm Usage Matrix

All algorithms require an initialization phase to determine the rescheduling point and the

set of rescheduling jobs that are affected by the disruption. The procedure below can be

used to obtain this initial data for the proposed algorithms. The second repair phase may

differ according to the disruption type.

Determine-JobSet-to-Reschedule

S: set of jobs in the initial schedule

U: set of jobs to be rescheduled

Data : release time (r,), processing time (pj), weight (w7), due date (dj), deadline (Dj)

input.

0°w : Initial solution

tevent '• disruptive event occurrence time

t: decision time for the following assignment

M = set of machines = {1,2,... ,m}

Machine/, index of the machine to which job7 was assigned,

CompTimey. completion time of job j

Cmax,: makespan of machine i

1. Initialize Data for V; 6 5 and for the new job (in the case of new job arrival).

2. Set CompTimej0ld, Machine?"and #>'d = / 6,old, d2
old, ..., 6?d}

where 0 / w = (CompTime}
old, Machine/") V; 6 5

(Set CompTimenew = large integer, Machinenew =m+l in case of new job arrival)

3. Determine Cmax, = first completion time after tevent V i 6 M

4. Set t = min { Cmax, }
ieM

107

5. Set U = {U ^ (5 U new job*) : CompTime} -p}>t V; e U }

The event occurance time, tevent is defined as the decision time of the job's departure or

priority change events. For example, job j is decided to cancel at time tdecmon even it was

scheduled to start processing at time tmrt, tdecmon < Utart- In this case, tevent is defined as

tdecmon instead of tstart. Similarly, priority changes are assumed to be decided before the

start time of the corresponding job. This assumption enlarges the number of affected jobs.

An example is given in Figure 10 to explain this assumption for the instance with number

of jobs = 12, number of machines = 3. Assume that a decision to change the priority

parameters for randomly selected job 10 was made at time tdecmon = 35. The set of

affected jobs (unshaded jobs) is given in Figure 11. Note that earliest available times for

each machine are different from zero and each other (Cmax/=50, Cmax2=40, Cmaxi=60)

after implementing the procedure as seen in Figure 11.

'•event — J J

1
0 10 20 30 40 50 60 70 80

Figure 10 An Initial Schedule to Change Job Priority

0 10 20 30 40 50 60 70 80

Ml

M2

M3

1 3 6

4

2 5

9 10

8

7

12

11

Figure 11 Affected Jobs to be Rescheduled

108

5.2.1 MetaRE Algorithm

MetaRE is a complete regeneration repair algorithm that reschedules all jobs which have

not started by disruption time. It has two phases: initialization phase to determine the

rescheduling set and a rescheduling phase using MetaRaPS algorithm. The main

algorithm of the second phase is not different from the MetaRaPS metaheuristic which

was successfully implemented earlier by using the proposed APTCR rule for ARSP.

Moreover, MetaRE considers multi objectives (TWT and Instability) to compare the best

solution with neighbor solutions generated by the same combined objective function

defined as (33). MetaRE algorithm is given below where W* is the number of iterations

until termination and &est is the best solution found until the last iteration.

MetaRE_Algorithm

1. Execute Determine-JobSet-to-Reschedule

2. Set CompTimej = 0, Machine^ m+1, &est = {CompTime^1', Machine^5') V; e U

a. fbest = 1, fworst= 0, Memory = (fbest, fworst, &
est), iteration= 0.

3. While iteration < tma*

4. Execute MetaRaPS_Algorithm by using (8), (10) and 6Pld

5. Update Memory

6. iteration = iteration +1

7. end While

8. Display the/6„, and &est

This algorithm reschedules the affected jobs by the MetaRaPS algorithm (recall Section

3.3.3) with APTCR rule (recall Section 3.3.1). After determining the set of affected jobs

(Step 1), it constructs a feasible solution by repeatedly adding randomly selected jobs

from a candidate list (Steps 3-7). This list is formed according to the APTCR rule priority

index values and MetaRaPS parameters (the priority percentage (p%) and the restriction

percentage (r%)). Finally, an improvement phase is applied in MetaRE by using a local

search algorithm only to the constructed solutions with promising values of the multi

109

objective function (TWT and Instability objective) compared to the best and worst

objective values (See Section 3.3.3 for a detailed example on MetaRaPS). Initial values

for the best and worst objective can be defined as 1 and 0 respectively, which are the

extreme values of the combined objective function. The best and worst objective values

and the best schedule found until the last iteration are updated after each iteration, until

the stopping criterion is satisfied.

5.2.2 SEPRE Algorithm

SEPRE is also a complete regeneration repair algorithm based on APTCR rule with two

phases like MetaRE. After determining rescheduling set, jobs are assigned repeatedly

using APTCR priority index. Additionally, SEPRE takes into account the original

sequences on each machine as in the Affected Operation Rescheduling (Abumaizar and

Svetska, 1997). Regarding stability, the initial schedule which is assumed to hold the best

TWT performance among other feasible solutions, should be preserved. The basic

principle behind the concept of Affected Operation Rescheduling is to accommodate any

disruption by pushing some operation starting times forward (delaying them) by the

minimum amount required to: (1) keep the technological constraints satisfied and (2)

preserve the initial sequence of operations on each machine. This guarantees that the

robustness of the initial schedule is preserved as much as possible by minimizing the

delay (starting time deviation) and reducing the sequence deviation to zero. SEPRE

algorithm is given below.

SEPREJdgorithm

1. Execute Determine-JobSet-to-Reschedule

2. Set CompTimej = 0, Machine^ m+1, Vy E U

3. while U * 0

4. Calculate the index Kj(t) V; e U by using APTCR

5. Sort jobs by nj(t) Vj e {j e U \ nj(t) > 0}

6. Set r = 1

7. Find rth ranked job and Machine°ld j e sorted U

110

8. if CompTimej <CompTimek
old Vk 6 {k *je U | Machinek

old= Machine"111}

then

9. Find / = (i EM: Cmax, (t)= min/ Cmaxm } I
meM

10. Update CompTimej = Cmax, +max(rp t) + pj and remove j from U

11. Update Cmax, = CompTimej

12. Update t = min/ Cmax, }

13. end if

14. else r = r +1 and Go to Step 7

15. end while

16. Calculate the combined objective value for U.

This algorithm reschedules the affected jobs one by one using APTCR priority index by

taking into account the original sequences on each machine. For example, assume that the

initial schedule and the set of affected jobs are given like in Figure 11. Additionally, a

new job 13(p/.? = 20) arrives at time t=35.

Step 3. The set of unscheduled jobs, U={8, 9, 10, 11, 12, 13}

Step 4-5. Assume that priority index values are calculated as in Section 3.3.1 and are

ranked for t= 40 as follows:

K,0(t)= 0.609 > ?t9(t)= 0.262 > n]3(t)=0.166 > nH(t)= 0.152 > 7c,,(t)= 0.151 > nn(t)= 0.051

Step 6-7. r = 1; meaning find the highest ranked job, which is job 10.

Step 8. CompTimejo°ld is not less than CompTimegld where k= 9. So set r = 2 and go to

Step 7.

Step 7. r = 2 meaning find the second highest ranked job which is job 9.

Step 8. CompTimegold < CompTimeio°ld where k= 10.

Step 9. Cmaxj = 50, Cmax2 = 40, Cmax^ = 60; i = 2 (randomly selected)

Step 10-12. Assign job 9 to machine 2. CompTimeg = 40 + 10 = 50.

U = {10,11,12,13}, Cmax2 =50,t = min {50, 50, 60} = 50. Go to Step 3.

The final schedule found by SEPRE is given in Figure 12.

I l l

0 10 20 30 40 50 60 70 80 90

Ml

M2

M3

1 3 6

4

2 5

9

10

13

7

12

11

8

Figure 12 Rescheduled jobs by SEPRE

5.2.3 BestlNSERT Algorithm

BestlNSERT is a partial and right shift repair algorithm which assumes that only one

machine is affected by a disruption. BestlNSERT tries all job insertion alternatives for

the arriving job or the changed job priority to find the best insertion with minimum value

of combined objective function discussed earlier (TWT and stability). Thus, BestlNSERT

can emphasize both efficiency and stability objectives. After inserting the job into a place

on one of the machine, all remaining jobs assigned to that machine are shifted by the

amount of processing time of inserted job. BestlNSERT keeps the sequence on the

corresponding machine and keeps the completion times and job assignments on the

remaining machines. BestlNSERT algorithm is given below.

BestlNSERT _Algorithm

I: Insertion set after the earliest available time.

f,: Combined objective function value after the insertion into place / and performing a

right shift.

/ * " ' : Best TWT value found so far.

&est: Schedule w i t h / " '

1. Execute Determine-JobSet-to-Reschedule

2. Set/*"' = 1 and &e%t = 8Pld Vj eU,i = l

3. while / gt 0

4. Insert the new job into place i 6 /

5. Update CompTimej = CompTime°ld + pnew Vj on the right

112

6. Calculate/;

7. Iff, <fbest
 then Update/*"' and &est

8. Remove i from / and i = i+1

9. End While

10. Display the combined objective value for &e<it.

The earlier example can be used again to illustrate the BestlNSERT algorithm. For a new

job 13 arriving at time t=35, there exist 8 insertion alternatives between jobs 6 and 9, 9

and 10, 4 and 8, 8 and 12, 7 and 11 and after jobs 10, 11, 12.

Step 3. / = {6-9, 9-10, 4-8, 8-12, 7-11, 10-, 11-, 12-}

Step 4-9. Compare the combined objective function value for i = 1, 2,..., 8 and select the

best one. Some insertion examples are given in Figure 13, Figure 14, and Figure 15.

0 10 20 30 40 50 60 70 80 90 100

Ml

M2

M3

1 3 6

4

2 5

13

8

7

9

12

11

10

Figure 13 Insert job 13 between jobs 6 and 9 (i = 1)

0 10 20 30 40 50 60 70 80 90 100

Ml

M2

M3

1 3 6

4

2 5

9 10

8

7

13

11
12

Figure 14 Insert job 13 between jobs 8 and 12 (i = 4)

113

0 10 20 30 40 50 60 70 80 90 100

Ml

M2

M3

1 3 6

4

2 5

9 10

8

7

12

11 13

Figure 15 Insert job 13 after job 1 l(i = 7)

BestlNSERT can also be used for priority change events. In this case, firstly the job with

priority change can be taken out of the old schedule and left shifting the jobs on its right

and secondly all insertion alternatives are attempted for that job like the case of the

arrival of a new job.

5.2.4 LSHIFT Algorithm

LSHIFT is also a partial and left shift repair algorithm that is applied only to a particular

machine in a similar way like BestlNSERT. After taking out a job from its place on a

machine, all remaining jobs assigned on that machine are preponed (scheduled earlier) by

the amount of processing time ipdepan) of the departing job. LSHIFT keeps completion

times and job assignments on the other machines as they are, and keeps the job sequence

on the machine with the departing job as is. LSHIFT algorithm is given below.

LSHIFT_Algorithm

1. Execute Determine-JobSet-to-Reschedule

2. Select a random job j E U and Machine"ld

3. Remove j from U

4. Update CompTimej = CompTimef -pdepart Vy on the right at Machine/

5. Find Cmax, the latest completion time at Machine °ld

6. While Cmax < D} - ppj E {k e S\ Machinek
old = m+1}, Do

CompTimej= Cmax + p}

1. Calculate the combined objective value for U.

114

Note that in Step 6, LSHIFT checks the possibility of scheduling jobs that were in the

unscheduled list of jobs in the original schedule. One of the unscheduled jobs (job j) in

the old schedule can possibly be scheduled if (Dj - pj) is grater than the completion time

of the last job on the rescheduled machine after left shifting. Note also that the departing

job is excluded from the calculation of the instability objective. To give an example of

how LSHIFT works, assume that the initial schedule and the set of affected jobs are given

in Figure 16 as given in Figure 10. But this time, the departure of job 8 which was

randomly selected among the existing jobs, is decided at time tdecision - 35. Moreover,

there exists an unscheduled job 16 (with processing time p 14 = 20 and deadline D14 = 70)

according to the original schedule decision.

f event ~ - ^ X

0 10 20 30 40 50 60 70 80

Ml

M2

M3

1 3 6

4

2 5

9 10

8

7

12

11

Figure 16 An Initial Schedule for job departure

After the first three steps, the set of jobs to reschedule is determined as U = {9, 10, 11,

12, 14}. Consequently, the final schedule after left shifting and accepting the jobs

(because CompTime/2 = 80 - 30 = 50 and CompTimeu = CompTimen + pu ^ D14 = 70)

after left shifting) is given in Figure 17.

0 10 20 30 40 50 60 70 80

Ml

M2

M3

1 3 6

4

2 5

12

9 10

14

7 11

Figure 17 Rescheduled jobs by LSHIFT

115

5.2.5 SHUFFLE Algorithm

SHUFFLE is a partial repair algorithm that is applied to one of the machines assuming

that a changing priority disruption affects only that particular machine. It is based on

APTCR priority index where the pairwise swapping decisions on a particular machine are

made repeatedly to achieve the APTCR priority index ranking calculated by using the

new priority parameters(due date, deadline and weight) of the disrupted job. SHUFFLE

algorithm is given below.

SHUFFLE'^Algorithm

R : set of successor jobs

L : set of predecessor of job

1. Execute Determine-JobSet-to-Reschedule

2. Select a random job j E U and Machine"10',

3. Update wh dj and Dj, t = StartTimej

4. While R*0

5. Calculate n/t) and Kk(t) job by using APTCR, ke R of job j on Machine°ld

6. If 7rj(t) < 7tk(t) then Swap and update t and R

7. Else Terminate

8. end While

9. Whi leL*0

10. Calculate n/t) and Kk{t) job by using APTCR, i G L of job j on Machine}
old

11. If nj(t) > 7c,(t) then Swap and update t and R

12. Else Terminate

13. end While

14. Check possibility of scheduling the unscheduled jobs in the old schedule

15. Calculate the combined objective value for U.

116

In order to consider the stability objective in addition to TWT objective, SHUFFLE

changes the original schedule in small steps by swapping two neighbor jobs according to

their priority index values. However the small steps to the right are firstly attempted to

reduce the number of affected jobs. If it is not possible to shuffle to the right then

swapping trials to the left are applied. The priority disruption is assumed to occur only at

jobs which are scheduled in the old schedule so that SHUFFLE can be implemented.

Otherwise, only insertion and complete regeneration would be enough to repair the

schedule.

In order to describe the SHUFFLE procedure, the previous example data for LSHBFT can

be used for priority change disruption (Figure 18). Assume that due date and deadline of

job 12 are decided at time tdecision = 35 to be made tighter (with fixed d-to-D window) and

set its weight as the highest value of 9 over 9. Moreover, there exists an unscheduled job

14 (with processing time pi4 = 20 and deadline Du = 70) according to the original

schedule decision.

0 10 20 30 40 50 60 70 80

Ml

M2

M3

1 3 6

4

2 5

9 10

8

7

12

11

Figure 18 An initial schedule for job priority disruption

The set of jobs to reschedule is determined as U = {8, 9, 10, 11, 12, 14}. First, since R =

0, go to Step 9. L - {8}and for t = 40, priority index values are compared for jobs 8 and

12. Since 7rs(t) < nnit), jobs 8 and 12 are swapped. Consequently, t = StartTimen = 40,

R = {12} and L = 0. Assume that deadlines of both jobs 8 and 14 are Dg - D14 = 70.

Thus, job 8 cannot be scheduled anymore. Finally, job 14 can be scheduled instead of job

117

8 because CompTimeu = CompTimen + P14 = 50 + 20 < D14. Eventually, the updated

schedule is given in Figure 19.

0 10 20 30 40 50 60 70 80

Ml

M2

M3

1 3 6

4

2 5

12

9 10

14

7 11

Figure 19 Updated schedule by SHUFFLE

118

CHAPTER 6

COMPUTATIONAL STUDY FOR ARRP'S RESCHEDULING ALGORITHMS

In order to measure the effectiveness of the rescheduling algorithms, they are compared

to optimal solutions for small size problems (n=12) obtained using the MILP model

discussed earlier. For large size problems (n=60), the algorithms are compared to each

other. The same look-ahead parameter estimates and MetaRaPS parameter values that

were set in the Section 4.3 are used for problem instances.

6.1 Data Generation

1. For small size problems, the number of jobs is set to value n = 12 and the number of

machines m— 3. For large size problems, the number of jobs is set to value n = 60 and the

number of machines m- 10.

2. The processing times p} are uniformly distributed integers in the interval [15, 45]. The

processing time of the new job pnew is set to the middle value of 30.

3. The weights for the jobs Wj are uniformly distributed integers in the interval [1,9]. The

weight of the new job wnew is set to the middle value of 5.

4. Given the average of jobs' processing times (p), the average of the jobs' release times

(7), job machine factor (pi), and coefficient (0), which takes into account the effect of the

release times on the makespan (assumed here 0 = 0.1), then Cmax = ($7 + /?).// estimates

Cmax of the problem. A similar approach was used by Lee and Pinedo (1997).

5. Release times r; are uniformly distributed in the interval [0, 27] where 7 is the jobs'

release time average. The maximum release time is derived as 27 = 2p~pp/(2 - 0pp)

where release time range factor (p) is p = 271 Cmax and estimated makespan is

Cmax= (07 + p).p as defined earlier.

119

6. Due dates are calculated by d3 = r} + a.p} formula and deadlines are calculated by Dj =

dj + y.pj formula where a and y are the due date and d-to-D window tightness factors

respectively as defined in Section 4.1.

7. New job arrival time (rnew) is assumed to be uniformly distributed in the early job

arrival time range of [O.IXCMU, 0.3xCmarJ and late job arrival time range of

(* 1

8. For low priority deviation level, the new weight (w7) of randomly selected job is

determined by uniformly distributed integers in the interval [w}, 9]. The new due date (d})

is calculated by d} = r} + a.p} where a is uniformly distributed in the interval [1.5, 2).

The new deadline (Dy) is calculated by Dj = r} + (a+ y).p} where y is uniformly

distributed in the interval [0, 1). High priority deviation level for urgent job is illustrated

by setting w} = 9 which is the highest weight value, dj = /) + pj where a = 1 which is the

lowest possible value to complete processing, and D} - dj where y = 0, the lowest value

without cost tolerance.

9. Disrupted job is selected randomly among the jobs that have not been started by the

time the disruption occurs for both priority and departure disruption. The same disruption

times that were generated earlier by the early time range for job arrival disruption, are

used for the latter disruptions to work on relatively large sets to reschedule. In the

following sections, we address the different disruption events.

6.2 Effectiveness of the Algorithms for Small Size Problems

In order to apply different types of disruption events, five different instances are

generated by using middle factor levels (ju=4, a=2, y=l, p=0.2). The proposed algorithms

were implemented in C++ and optimal solutions were obtained by implementing the

MILP model (Section 5.2) in OPL Studio 6.3 with CPLEX 12.1 solver. Intel Core 2 Duo

2.10 GHz CPU with 2.00 GB of RAM was used to perform the computations.

120

The MILP model could be used for solving small size problems with up to 12 jobs in

acceptable time. Thus, the performance of the algorithms are measured by computing the

difference between the combined objective function value of the algorithm and the

optimal solution value as follows:

_ , . „ J Algorithm ~ J Optimal ,„_.
Relative Error = (35)

J Optimal

The same ideal and nadir objective vectors (\frwr finmbdity*] and [/W""finstability^^) are

used while calculating the objective function values for each algorithm.

6.2.1 Effectiveness of the Algorithms for Job Arrival

Rescheduling algorithms to repair job arrival disruptions are tested under various job

arrival time ranges and objective weight coefficient, X values. Job arrival time range

which determines the set of jobs to reschedule can be an indicator of the rescheduling

problem size. We assume that a new job arrive at a random time within this job arrival

time range. All jobs that have not been started by the time this job arrive are considered

in the rescheduling set. To have reasonable job arrivals, two time range levels (early, late)

are defined. Thus, early job arrivals indicate large set of jobs to reschedule and vice versa

for late job arrivals. The upper bound of job arrival time is compared to the estimated

makespan (Cmax)- Recall that the makespan (Cmax) is the maximum completion time of all

released jobs and is estimated depending on the schedule as discussed in the Subsection

6.2. The objective weight coefficient in the combined objective function (33)

characterizes the impact of the relative importance weights on the problem objectives. In

order to study its impact of the weight coefficient, three objective weight coefficient

values (/I = 0.2, 0.5, 0.8) are used to obtain different pareto-optimal points. Moreover,

since a little change in the instability component may result in high effect to the

normalized objective function, the experiment is repeated by additional high objective

weight coefficient values (2 = 0.92, 0.95, 0.98) to reduce this effect.

The performance values of the MetaRE, BestlnSERT and SEPRE algorithms are

compared in terms of relative error and computation time over levels of factors. Five

different unique problem instances with the original schedule and job arrival time were

file:///frwr

121

generated and these instances are used for different objective weight coefficient levels.

To understand the results in Table 26, a sample batch of MetaRE solutions is given for

early job arrival with X= 0.5 in Table 25.

A=0.5

JQJ, Optimal MetaRE
Relative Error CPU(sec)

Arrival J W T inability f0plimal TWT Instability fMelaRE

289.99 1 0.2559 290.14 1 0.2561 0.00 0.399

413.63 1 0.1385 413.63 1 0.1385 0.00 0.366

Early 458.51 1 0.1579 484.80 2 0.2670 0.69 0.464

485.25 1 0.0997 485.25 1 0.0997 0.00 0.446

634.50 2 0.2526 989.00 1 0.5012 0.98 0.500

Average 0.34 0.435

Table 25 A sample experiment result for the MetaRE algorithm for early job arrival

with 1= 0.5

0.2 0.5 0.8

Job

Arrival

Early

Late

MetaRE

0.49

25.02

BestlNSERT

0.00

0.04

SEPRE

5.17

54.19

MetaRE

0.34

6.92

BestlNSERT

0.26

0.04

SEPRE

3.52

13.79

MetaRE

0.31

3.49

BestlNSERT

1.07

1.25

SEPRE

4.04

4.98

0.92 0.95 0.98

Job

Arrival

Early

Late

MetaRE

0.41

4.88

BestlNSERT

2.82

4.25

SEPRE

6.23

5.00

MetaRE

0.54

7.07

BestlNSERT

4.43

7.36

SEPRE

8.52

6.79

MetaRE

1.05

17.29

BestlNSERT

9.70

19.87

SEPRE

16.42

15.49

Table 26 Average relative error of the algorithms for job arrival disruption

122

Prior to statistical analysis for the algorithm comparisons, a normality test should be

performed to determine whether the data satisfies the normality assumption for

parametric analysis methods. Probability plot and Kolmogorov-Smirnov normality test

result obtained by Minitab 15.1 statistical software program for the relative error data are

given in Figure 20 which shows that the relative error data for each combination does not

follow a normal distribution (p < 0.05). Thus, the statistical significance of performance

between algorithms can be analyzed by nonparametric Kruskal-Wallis test.

99,9

99

95

90

80
70
60
50-
40-
30-
20-

ID-

S'

0,1'

-50

Normal

75 100
Error

Mean

StDev

N

KS

P-Value

6,549

14,37

180

0,324

<0,010

125

Figure 20 Normality Test for Relative Error Data

Nonparametric test is a hypothesis test that does not require the population's distribution

to be characterized by certain parameters. They are useful when the data is strongly

nonnormal and resistant to transformation. Kruskal-Wallis test is a nonparametric test

that can be used whether two or more independent samples come from identical

populations or not, and does not require the data to be normal. It instead uses the rank of

the data values rather than the actual data values for the analysis. The Kruskal-Wallis test

result (using Minitab 15.1 statistical software program) is given Table 27.

123

Algorithm N Median Ave Rank
BestlNSERT
MetaRE
SEPRE
Overall

60 0.1605
60 0.7175
60 3.4473

180

70.7
80.3

120.5
90.5

-3.60
-1.87
5.47

H = 30.90 DF = 2 P = 0.000
H = 31.20 DF = 2 P = 0.000 (adjusted for ties)

Table 27 Kruskal-Wallis Test on Relative Error of the algorithms for job arrival
disruption

Table 27 shows that there is a statistical difference between the population mean values

of performance in terms of relative error for the three algorithms (p < a=0.05). However,

the test does not reveal which means differ significantly. Thus, pair tests need to be

performed and their results in Tables 28, Table 29 and Table 30 show that both

BestlNSERT and MetaRE algorithms have better mean performance than SEPRE

algorithm (p < 0.05). However, it cannot be concluded that there exists significant

difference between the BestlNSERT and MetaRE algorithms (p > 0.05 in Table 28).

Algorithm N Median Ave Rank
BestlNSERT
MetaRE
Overall

60 0.1605
60 0.7175

120

57.2
63.8

60.5

-1.04
1.04

H=1.09 DF=1 P = 0.296
H=1.13 DF=1 P = 0.288 (adjusted for ties)

Table 28 Kruskal-Wallis Test on Relative Error of the BestlNSERT and MetaRE
algorithms

124

Algorithm N Median Ave Rank Z
BestlNSERT 60 0.1605 44.0 -5.19
SEPRE 60 3.4473 77.0 5.19
Overall 120 60.5

H = 26.89 DF = 1 P = 0.000
H = 27.06 DF = 1 P = 0.000 (adjusted for ties

Table 29 Kruskal-Wallis Test on Relative Error of the BestlNSERT and SEPRE
algorithms

Algorithm N Median Ave Rank Z
MetaRE 60 0.7175 46.9 -4.27
SEPRE 60 3.4473 74.1 4.27
Overall 120 60.5

H= 18.25 DF=1 P = 0.000
H= 18.30 DF=1 P = 0.000 (adjusted for ties)

Table 30 Kruskal-Wallis Test on Relative Error of the MetaRE and SEPRE algorithms

A detailed analysis by using Kruskal-Wallis test for three algorithms is given in

Appendix F. The results show that MetaRE and SEPRE perform better in terms of

average relative error for early job arrivals, although BestlNSERT has better performance

for late job arrivals. Moreover, performance of BestlNSERT declines as TWT objective

weight increases. BestlNSERT is significantly superior to the other algorithms when the

instability objective is more important (for low X values < 0.5) than the TWT objective.

Table 31 shows that the average CPU times of the BestlNSERT and SEPRE were less

than 0.001 second which is much shorter than MetaRE's average CPU times for all cases.

The average CPU time effectiveness of all algorithms does not change significantly with

the change in X values. The average CPU times of the MetaRE and BestlNSERT clearly

get shorter for late job arrival time range as it results in a smaller set of jobs to

reschedule. Note that since the CPUs are in second, it does not take too long even for

125

X 0.2 0.5 0.8

Job
MetaRE BestlNSERT SEPRE MetaRE BestBMSERT SEPRE MetaRE BestlNSERT SEPRE

Arrival

Early 0.4266 0.0002 0.0000 0.4350 0.0004 0.0000 0.4360 0.0004 0.0002

Late 0.2158 0.0000 0.0002 0.2266 0.0002 0.0002 0.2240 0.0002 0.0002

X 0.92 0.95 0.98

Job
MetaRE BestlNSERT SEPRE MetaRE BestlNSERT SEPRE MetaRE BestlNSERT SEPRE

Arrival

Early 0.4324 0.0002 0.0004 0.4496 0.0002 0.0000 0.4314 0.0006 0.0000

Late 0.2284 0.0000 0.0002 0.2224 0.0004 0.0008 0.2222 0.0002 0.0000

Table 31 CPU times in sec. of the repair algorithms for job arrival disruption

MetaRE although it is obvious that MetaRE's average CPU times for all cases is longer

than other algorithms. As a result, MetaRE and BestlNSERT have significantly

performed better than SEPRE in terms of average relative error. Especially, when the

instability objective have a higher importance (for low k values < 0.5), BestlNSERT is

preferred.

6.2.2 Effectiveness of the Algorithms for Job Priority Deviation

Rescheduling algorithms to repair job priority disruptions are tested under various

priority deviation levels and objective weight coefficient, 1 values. Priority deviation

level measures the amount of change in the urgency of a selected job. We defined only

positive deviations for jobs by assuming that analysis for slight positive and negative

deviations have similar results. Moreover, job cancellation disruption that will be tested

separately, can be considered as a negative extreme change in the priority. Note that

urgent job disruption is also a positive extreme change in the priority. Positive priority

deviation is represented by increasing the weight (\Vj) and tightening both due date (d})

and d-to-D window for an arbitrary job. Two priority deviation levels (low, high) are

defined by setting ranges for due date tightness (a) and d-to-D window tightness (y)

parameters. Note that a "High" level here means an urgent job disruption.

126

The performance values of the algorithms are compared in terms of relative error and

computation time over different objective weight coefficient levels. The same five

different unique problem instances which were generated earlier, are assumed to be

affected by priority disruptions. Comparison results for job priority deviation algorithms

are given in Table 32.

X 0.2 0.5 0.8

Priority
Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE

Deviation

Low 1.04 0.44 1.19 1.10 0.29 0.65 3.91 2.42 0.62

High 1.10 0.82 1.43 0.46 0.15 0.63 1.88 1.45 0.61

Table 32 Average relative error of the algorithms for job priority disruption

Algorithm N Median Ave Rank Z
BestlNSERT 30 0.5540 40.7 -1.24
MetaRE 30 0.3829 42.2 -0.85
SHUFFLE 30 0.8596 53.6 2.09
Overall 90 45.5

H = 4.41 DF = 2 P = 0.110
H = 4.42 DF = 2 P = 0.110 (adjusted for ties)

Table 33 Kruskal-Wallis Test on Relative Error of the algorithms for priority disruption

Since the relative error data for the priority disruption repair algorithms does not follow a

normal distribution according to Kolmogorov-Smirnov normality test, the statistical

significance of performance between algorithms are analyzed via using Kruskal-Wallis

test. It can not be concluded that there exists significant difference between the

algorithms (p > 0.05 in Table 33). Moreover, the detailed test results given in Appendix F

shows that relative error performance of the SHUFFLE algorithm significantly declines

as the TWT objective weight increases.

127

X 0.2 0.5 0.8

Priority

Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE Shuffle BestlNSERT MetaRE

Deviation

Low 0.00 0.00 0.30 0.00 0.00 0.31 0.00 0.00 0.31

High 0.00 0.00 0.28 0.00 0.00 0.28 0.00 0.00 0.29

Table 34 CPU times of the repair algorithms for job priority disruption

Table 34 shows that MetaRE's average CPU time for all cases is reasonable, although it

is clearly longer than the other algorithms. The average CPU time effectiveness of all

algorithms does not change significantly between X values and priority deviation levels.

6.2.3 Effectiveness of the Algorithms for Job Departure

Rescheduling algorithms to repair job departure disruptions are tested under various

objective weight coefficient (X) values. The same five instances and disruption times in

the effectiveness test for job priority deviation are used to compare the algorithms for job

departure disruption in terms of relative error and computational time over different

objective weight coefficient levels. Comparison results for job departure repair

algorithms are given in Table 35.

X 0.2 0.4 0.5 0.6 0.8

LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE LSHIFT MetaRE

Avg. 2.74 0.63 1.35 0.25 1.23 0.14 1.54 0.12 3.63 0.23

Relative

CPU(sec) 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28

Table 35 Performance of the algorithms for job departure disruption

128

Algorithm N Median Ave Rank Z
LeftSHIFT25 1.468820 35.9 5.05
MetaRE 25 0.005682 15.1 -5.05
Overall 50 25.5

H = 25.55 DF = 1 P = 0.000
H = 25.58 DF = 1 P = 0.000 (adjusted for ties)

Table 36 Kruskal-Wallis Test on Relative Error of the algorithms for job departure

disruption

Table 35 and Table 36 show that MetaRE has significantly performed better than

LSHEFT in terms of average relative error with a reasonable average CPU time.

6.3 Effectiveness of the Algorithms for Large Size Problems

It was clear that it is not possible to obtain optimal solutions in a reasonable time for

large size problems (with 60 jobs and 10 machines) by running the MILP model. In this

section, effectiveness of the two general MetaRE and BestlNSERT algorithms (Table 24)

that are distinguished with their good performances in most job disruption cases, were

compared to each other only for priority disruption type. Job arrival and job departure

disruptions can be defined as a priority disruption. As was mentioned earlier in Section

6.2.2, job departure disruption can be considered as a negative extreme change in the

priority of an existing job, while job arrival disruption can be considered as a positive

extreme change in the priority of the additional job. In order to implement the algorithms,

five different instances are generated by using factor levels (ju=6, a=2, y=\, p=0.2). The

proposed algorithms were implemented in C++ and Intel Core 2 Duo 2.10 GHz CPU with

2.00 GB of RAM was used to perform the computations.

The performance of the algorithms are measured by computing the difference between

the combined objective function value of a particular algorithm and the minimum value

of the algorithms as follows:

129

_ , . ^ . . . f Algorithm ~ min(f MetaRE >f BestlNSERT) , „ , .

Relative Difference = - : (36)
min(f MetaRE >f BestlNSERT)

The pessimistic and optimistic objective values are used as explained in Section 5.2 for

the ideal and nadir objective vectors (Ifrwr /instability*] and Ifrwr""* /instability™'*]) while

calculating objective function values for each of the algorithms.

Two time range levels (early and late disruption) are defined like job arrival case to test

the performance of the algorithms for different problem sizes. In order to study the

impact of the weight coefficient, five objective weight coefficient values (X = 0.1, 0.3,

0.5, 0.7, 0.9) are used to obtain different pareto-optimal points.

The performance values of the MetaRE and BestlnSERT algorithms are compared in

terms of relative error and computation time over levels of factors. Five different unique

problem instances with the original schedule and disruption time were generated and

these instances were used with different objective weight coefficient levels. The original

schedules are obtained by selecting the best solution of 10 replicate (runs) of MetaRaPS

algorithm that had the best performance for the scheduling problem. The results obtained

by implementing the two algorithms are summarized in Table 37 The randomized

MetaRE algorithm was replicated 10 times and the average was used to compare.

Disruption

Early

Jht

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

BestlNSERT
Rel.Diff.

0.55

0.48

0.21

0.01

0.00

0.40

0.42

0.45

0.19

CPU(sec)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

MetaRE
Rel.Diff.

0.00

0.00

0.00

0.09

0.61

0.00

0.00

0.00

0.00

CPU(sec)

4.66
4.64

4.60

4.57

4.67

2.47

2.49

2.42

2.40

Late

0.9 0.00 0.00 0.35 2.47
Overall 0.27 0.00 0.10 3.54

Table 37 Performance of the algorithms for priority disruption

130

Algorithm N Median Ave Rank Z
BestlNSERT 50 0.279798125 61.7 3.86
MetaRE 50 0.000000000 39.3 -3.86
Overall 100 50.5

H = 14.90 DF = 1 P = 0.000
H= 17.03 DF=1 P = 0.000 (adjusted for ties)

Table 38 Kruskal-Wallis Test on Relative Difference for priority disruption (n=60)

Table 37 and Table 38 show that the MetaRE algorithm is significantly superior to the

BestlNSERT algorithm in terms of both relative error and computational time. The

detailed test results are given in Appendix F. The relative performance of the

BestlNSERT algorithm gets better as the TWT objective weight increases.

131

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

This study addressed the parallel machine scheduling (ARSP) and rescheduling problem

(ARRP) in a practical operational context requiring high quality solutions in an

acceptable timeframe. ARSP was modeled as parallel machine scheduling problem with

due date-to-deadline (d-to-D) windows and dynamic ready times to minimize total

weighted tardiness. A piecewise tardiness cost was defined by taking into account d-to-D

windows and job priorities to evaluate the performance of the schedule. First, a mixed

integer linear programming model (MILP) was developed to find optimal solutions for

ARSP. As the dimensions of the problem get larger, the solution process of mathematical

modeling loses its effectiveness. Since ARSP is NP-hard, it is required to develop

qualified, easily, and quickly implemented solution approaches with reasonable

computation times.

A new composite dispatching rule called APTCR was developed to obtain good solutions

quickly and its effectiveness was studied by comparing it with SArandom which is a

Simulated Annealing algorithm that starts with a random solution. APTCR rule is an

extension of the ATC rule but with considering d-to-D window and dynamic ready times.

In addition to APTCR and SArandom5 SAAPTCR and MetaRaPS were developed and

implemented by integrating APTCR to construct initial solutions. The ARRP was also

considered with three cases of job related disruptions (arrival of new job, departure of

existing job, and changes in job priorities). The MILP model for ARSP was revised to

take into account schedule instability by incorporating a new instability component into

the objective function and adding new decision variables, parameters and constraints.

Five regeneration and partial repair algorithms (MetaRE, BestlNSERT, SEPRE, LSHIFT

and SHUFFLE) were developed to update instantly the current schedule at the disruption

time.

132

Extensive experiments were designed and conducted to study the effectiveness of the

scheduling and rescheduling algorithms, which both were compared to optimal solutions

for small size problems (n=12) and to each other for large size problems (n=60).

Computational experiments for ARSP demonstrate that although APTCR has

significantly worse deviation performance from optimal solution than SArandom for small

size problems, it is more likely to outperform SArandom when the problem size increases.

Moreover CPU time of APTCR is significantly shorter than SArandom in both

cases.MetaRaPS outperformed SAAPTCR in terms of average error from optimal solution

for both small and large size problems; however, in terms of CPU time performance,

SAAPTCR was significantly better than MetaRaPS in both cases. Results for small size

problems shows that MetaRaPS algorithm is more robust compared to SAAPTCR-

It is observed that metaheuristics that are combined with the proposed APTCR algorithm,

clearly resulted in better solutions than the APTCR algorithm and SA individually. Using

only composite dispatching rules, such as the APTCR rule, does not produce the best

solutions for most applications. On the other hand, starting initially from a better than

random solution was advantageous in ARSP for which good solutions cannot be easily

obtained. SA and MetaRaPS are promising metaheuristics with their simplicity and

effectiveness to find high quality solutions for ARSP. and potentially for other similar

scheduling problems.

Experiments were conducted separately for three disruption cases of ARRP with various

values of objective weighting factor (X) in extended analysis. First, rescheduling

algorithms to repair job arrival disruptions were tested under various job arrival time

ranges. MetaRE and BestlNSERT have significantly performed better than SEPRE in

terms of average relative errorwith no significant difference between the BestlNSERT

and MetaRE algorithms for small size problems. However, when the instability objective

have a higher importance weight (X < 0.5), BestlNSERT can be preferred because the

performance of BestlNSERT declines as TWT objective weight increases. The average

CPU time effectiveness of all algorithms does not change significantly with the change in

X values. Second, rescheduling algorithms to repair job priority disruptions were tested

under various priority deviation levels. Job cancellation disruption can be considered as a

133

negative extreme change in the priority as well as urgent job disruption is a positive

extreme change in the priority. There does not exist significant difference between the

performance of the algorithms. Relative error performance of the SHUFFLE algorithm

significantly declines as the TWT objective weight increases. MetaRE's average CPU

time for all cases is reasonable, although it is clearly longer than the other algorithms.

The average CPU time effectiveness of all algorithms does not change significantly for

different X values and priority deviation levels. Third, MetaRE has significantly

performed better than LSHIFT to repair job departure disruptions in terms of average

relative error with a reasonable average CPU time.

Finally, the effectiveness of the best performing algorithms MetaRE and BestlNSERT in

most job disruption cases were compared to each other for priority disruption type.

MetaRE is significantly superior to the BestlNSERT algorithm in terms of both relative

error and computational time. The relative performance of the BestlNSERT algorithm

enhanced as the TWT objective weight increases.

7.2 Contributions

This dissertation research has the following intellectual and practical contributions:

1. ARSP under in-theater air force military environment was defined and an

optimization model was formulated to solve the problem for the first time. The

problem was formulated as an identical parallel machine scheduling problem

which is commonly researched in production environments. This research

provides highly valuable practical contributions for military operations as there is

very little existing research on the ARSP for both inter-theater and in-theater

operations. Effective AR scheduling affects the performance of air force in terms

of responsiveness, endurance, flexibility, efficiency, and safety. Moreover, the

study of fighter aircraft AR, provides basic knowledge for programming

autonomous AR of unmanned aerial vehicles (UAV).

2. The problem characteristics make the research remarkable in the scheduling

theory applications also. Multi-resourced, time window, dynamic, and multi

objective perspectives of the problem qualify the study as a state-of-art research in

134

the scheduling discipline. Time window between due date and deadline were

firstly considered in parallel machine scheduling problem by defining a piecewise

tardiness cost. There is very little existing research addressing parallel machine

scheduling and rescheduling with release time and due date-to-deadline windows

to minimize the total weighted tardiness. The scheduling and rescheduling

problem framed in this dissertation has never been tackled in the Operations

Research literature. New Mixed Integer Programming models were introduced to

find optimal solutions for the problem.

3. Approximate heuristic and metaheuristic algorithms were developed to obtain

best schedules for the problem in a reasonable time. The newly proposed APTCR

algorithm was used to find good initial solutions to be improved by other

metaheuristics (SA and MetaRaPS) and also to repair the disrupted schedules in

the rescheduling algorithms.

4. A multi objective optimization (MOO) approach was developed to update the

disrupted schedules satisfactorily with respect to both objectives, and the trade-off

between the objectives was effectively evaluated. New rescheduling algorithms

(MetaRE, BestlNSERT, SEPRE, LSHIFT, and SHUFFLE) were developed where

MetaRaPS was firstly applied to solve the MOO problems.

5. The piecewise cost function used in this research has nonmilitary important

applications such as capturing the tolerance of costumers to order delays and

stockout costs. Similarly, time constraints, new rush orders, unexpected

cancellations, multi objectives of marketing-production departments or changing

market strategies cause scheduling complexities in the manufacturing system

design. This study provides a system view of manufacturing including order ready

times, order priority changes, production control systems with time windows, and

machine utilization. This research stimulates further development and

implementation of rescheduling models to mitigate the effects of disruptions that

occur frequently in manufacturing environments.

135

7.3 Future Research

The problem can be extended in the future to address the following aspects:

1. Stochastic or fuzzy variables as a result of uncertain processing times, ready

times, due dates, deadlines, and priorities.

2. Multi objective scheduling problems as a result of objectives related to efficiency

of fuel transfer and total waiting time of the jobs.

3. Rescheduling extension as a result of machine availability problems caused by

emergent events, machine availability constraints due to breakdowns,

maintenance, or having a variable number of tankers.

4. More constraints such as machine compatibility, sequence dependent setup times

and unexpected disruptions may be included in the models and algorithms.

Modeling with (i) new processing time definition which is dependent on

scheduled refueling start times, (ii) compatibility constraints due to having

different types of tankers, (iii) treating fighters, instead of wings, as jobs and (iv)

incorporating communication delay constraints.

5. This military application can be extended to manufacturing and other

environments such as project scheduling, designing markets by considering

customer expectations, satellite maintenance planning, programming autonomous

AR of UAVs and military or civilian air traffic control.

136

REFERENCES

1. Abumaizar, R.J., & Svestka, J.A. (1997). Rescheduling job shops under random

disruptions. International Journal of Production Research, 35, 2065-2082.

2. AFP AM 10-1403, Secretary of the Air Force, Airlift Planning Factors. (2003).

http://www.e-publishing.af.mil/.

3. Alagoz, O., & Azizoglu, M. (2003). Rescheduling of identical parallel machines

under machine eligibility constraints. European Journal of Operational Research,

149, 523-532.

4. Akturk, M.S., & Gorgulu, E. (1999). Match-up scheduling under a machine

breakdown. Journal of Operational Research, 112, 81-97.

5. Arcus, A. L. (1966). COMSOAL: a computer method of sequencing operations

for assembly lines. International Journal of Production Research, 4, 259-277'.

6. Arnaout, J.P., & Rabadi G. (2008). Rescheduling of unrelated parallel machines

under machine breakdowns. International Journal of Applied Management

Science, 1(1).

1. ATP-3.3.4.2 (ATP-56(B) Change 1), NATO STANAG 3971, Air to Air Refueling.

(2008). http://www. raf mod. uk/downloads/airtoair56b. cfm

8. Aytug, H., Lawley, M.A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing

production schedules in the face of uncertainties: a review and some future

directions. European Journal of Operational Research, 161, 86-110.

9. Azizoglu, M., & Alagoz, O. (2005). Parallel-machine rescheduling with machine

disruptions. HE Transactions, 37, 1113-1118.

10. Barnes, J. W., Wiley, V. D., Moore J. T., & Ryer, D. M. (2004). Solving the

Aerial Fleet Refueling Problem using Group Theoretic Tabu Search. Mathematica

and Computer Modeling, 39, 617-640.

http://www.e-publishing.af.mil/
http://www

137

11. Bean, J. C , Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Match-up

scheduling with multiple resources, release dates and disruptions. Operations

Research, 39(3), 470-483.

12. Biskup D., Herrmann, J., & Gupta, J.N.D. (2008). Scheduling identical parallel

machines to minimize total tardiness. International Journal of Production

Economics, 115, 134-142.

13. Blazewicz, J., Ecker K. H., Pesch E., Schmidt G., & Weglarz J. (2007). Handbook

on Scheduling: From Theory to Applications. Springer, New York.

14. Blum, C , & Roli, A. (2003). Metaheuristics in combinatorial optimization:

overview and conceptual comparison. ACM Computer Surveys, 35, 268-308.

15. Bolkcom, C. (2006). Air Force Aerial Refueling Methods: Flying Boom versus

Hose-and-Drogue. CRS Report for Congress, RL32910.

http://www.fas.org/sgp/crs/weapons/RL32910.pdf

16. Cheng, H.-C, Chiang, T.-C, & Fu, L.-C. (2008). A Memetic algorithm for

parallel batch machine scheduling with incompatible job families and dynamic

job arrivals. IEEE International Conference on Systems, Man and Cybernetics.

17. Cheng, S-C, Shiau, D.-F., Huang, Y.-M., & Lin, Y.-T. (2009). Dynamic hard-

real-time scheduling using genetic algorithm for multiprocessor task with

resource and timing constraints. Expert Systems with Applications, 36, 852-860.

18. Church, L.K., & Uzsoy, R. (1992). Analysis of periodic and event driven

rescheduling policies in dynamic shops. International Journal of Computer

Integrated Manufacturing, 5, 153-163.

19. Curry, J., & Peters, B. (2005). Rescheduling parallel machines with stepwise

increasing tardiness and machine assignment stability objectives. International

Journal of Production Research, 43(15), 3231 - 3246.

20. Delia Croce, F., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job

shop problem. Computers and Operations Research, 22, 15 - 24.

http://www.fas.org/sgp/crs/weapons/RL32910.pdf

138

21. DePuy G. W., Whitehouse G. E., & Moraga R. J. (2001). MetaRaPS: A simple

and efficient approach for solving combinatorial problems. 29th International

Conference on Computers and Industrial Engineering, November 1-3, Montreal,

Canada, 644-649.

22. DePuy, G. W., Moraga, R. J., & Whitehouse, G. E. (2005). MetaRaPS: a simple

and effective approach for solving the traveling salesman problem.

Transportation Research Part E: Logistics and Transportation Review, 41(2),

115-130.

23. Dorigo M., & Gambardella, L.M. (1997). Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions in

Evolutionary Computation, 1, 53-66.

24. Dorigo M., & Stiitzle T. (2005). Ant Colony Optimization. Prentice-Hall of India

Pvt. Ltd.

25. Driessel, R., & Monch, L. (2009). Scheduling jobs on parallel machines with

sequence-dependent setup times, precedence constraints, and ready times using

variable neighborhood search. Proceedings of the 2009 IEEE International

Conference on Industrial Engineering and Engineering Management.

26. Duenas, A., & Petrovic, D. (2008). An approach to predictive-reactive scheduling

of parallel machines subject to disruptions. Annual Operations Research, 159,

65-82.

27. Eom, D.-H., Shin, H.-J., Kwun, I.-H., Shim, J.-K., & Kim, S.-S. (2002).

Scheduling jobs on parallel machines with sequence-dependent family set-up

times. International Journal of Advanced Manufacturing Technology, 19, 926-

932.

28. Feo, T., & Resende, M. (1995) Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6, 109-133.

139

29. GAO/NSIAD-94-68. (1993). An Assessment of Aerial Refueling Operational

Efficiency Operation Desert Storm.

http: //www. archive, gao. gov/t2pbat5/l 50241.pdf

30. Garey, M.R., & Johnson, D.S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company.

31. Gharehgozli, A.H., Tavakkoli, R., & Zaerpour, N. (2009). A fuzzy-mixed-integer

goal programming model for a parallel-machine scheduling problem with

sequence-dependent setup times and release dates. Robotics and Computer-

Integrated Manufacturing, 25, 853-859.

32. Grodzevich, O., & Romanko, O. (2006). Normalization and other topics in multi-

objective optimization. Proceedings of the Fields-MITACS Industrial Problems

Workshop.

33. Hall, N.G., & Potts, C.N. (2004). Rescheduling for new orders. Operations

Research, 52, 440-453.

34. Harel, D. and Feldman, Y. (2004). Algorithmics : The Spirit of Computing. 3rd

Ed., Addison-Wesley Publishers Ltd., Essex.

35. Hasija, S., & Rajendran, C. (2004). Scheduling in flowshops to minimize total

tardiness of jobs. International Journal of Production Research, 42, 2289-301.

36. Hazir, O., Giinalay, Y., & Erel, E. (2008). Customer order scheduling problem: a

comparative metaheuristics study. International Journal of Advanced

Manufacturing Technology, 37, 589-598.

37. Hepdogan S., Moraga R., DePuy G.W., & Whitehouse G.E. (2009). A MetaRaPS

for the early/tardy single machine scheduling problem. International Journal of

Production Research, 47(7), 1717-1732.

38. Hoitomt, D. J., Luh, P. B., Max, E., & Pattipati, K. R. (1990). Scheduling jobs

with simple precedence constraints on parallel machines. IEEE Control Systems

Magazine.

140

39. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor, MI.

40. Itayef, A. B., Loukil, T., & Teghem, J. (2009). Rescheduling a permutation

flowshop problems under the arrival a new set of jobs. IEEE Transactions.

41. Jain, A.K., & ElMaraghy, H. (1997). Production scheduling/rescheduling in

flexible manufacturing. International Journal of Production Research, 35, 281—

309.

42. Jain, A.S., & Meeran, S. (1998). Job-shop scheduling using neural networks.

International Journal of Production Research, 36, 1249-1272.

43. Jin, Z., Shima, T., & Schumacher, C. J. (2006). Optimal scheduling for refueling

multiple autonomous aerial vehicles. IEEE Transactions on Robotics, 22(4).

44. Jozefowska, J., Mika, M., Rozycki, R., Waligora, G., and Weiglarz, J., European

Journal of Operational Research, 107, 354-370, 1998.

45. Jungwattanakit, J., Reodechaa, M., Chaovalitwongsea, P., & Werner, F. (2009). A

comparison of scheduling algorithms for flexible flow shop problems with

unrelated parallel machines, setup times, and dual criteria, Computers &

Operations Research, 36,358-378.

46. Karp., R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller,

& J.W. Tatcher (Eds.), Complexity of Computer Computations, 85-103, New

York: Plenum Press, 1972.

47. Kim,Y.D., Lim, H.G., & Park, M.W. (1996). Search heuristics for a flowshop

scheduling problem in a printed circuit board assembly process. European

Journal of Operational Research, 91, 124-43.

48. Lan, G., DePuy, G. W., & Whitehouse, G. E. (2007). An effective and simple

metaheuristic heuristic for the set covering problem. European Journal of

Operational Research, 176, 1387-1403.

141

49. Lee, C-Y., Lei, L., & Pinedo, M. (1997). Current trends in deterministic

scheduling. Annals of Operations Research, 70, 1 -41 .

50. Lee, C.-Y., Leung, J. Y-T., & Yu, G. (2006). Two machine scheduling under

disruptions with transportation considerations. Journal of Scheduling, 9, 35^-8.

51. Lee, Y.H., & Pinedo, M. (1997). Theory and methodology: Scheduling jobs on

parallel machines with sequence-dependent setup times. European Journal of

Operational Research, 100, 464-474.

52. Li, H., Li, Z., Li, L. X., & Hu, B. (2000). A production rescheduling expert

simulation system. European Journal of Operational Research, VIA, 283-293.

53. Liaw C.-F., Lin, Y.-K., Cheng, C.Y., & Chen, M. (2003). Scheduling unrelated

parallel machines to minimize total weighted tardiness. Computers & Operations

Research, 30, 1777-1789.

54. Logendran, R., & Subur, F. (2004). Unrelated parallel machine scheduling with

job splitting. HE Transactions, 36, 359-372.

55. Marler, R.T., & Arora, J.S. (2004). Survey of multi-objective optimization

methods for engineering. Structural Multidisciplinary Optimization, 26, 369-395.

56. Marler, R.T., & Arora, J.S. (2005). Function-transformation methods for multi-

objective optimization. Engineering Optimization, 37(6), 551-570.

57. Mason, S.J., Jin, S., & Wessels, CM. (2004). Rescheduling strategies for

minimising total weighted tardiness in complex job shops. International Journal

of Production Research, 42, 613-628.

58. McKay K. N., Morton T.E., Ramnath P., & Wang J. (2000). 'Aversion dynamics'

scheduling when the system changes. Journal of Scheduling, 3(71), 88.

59. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1956).

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21, 1087-1092.

142

60. Miettinen, K. (1999). Nonlinear Multi-objective Optimization, Kluwer Academic

Publishers: Boston.

61. Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia -

Pacific Journal of Operational Research, 18(2), 193.

62. Montgomery, D.C. (2001). Design and Analysis of Experiments, Wiley, New

York, NY.

63. Moraga R. J., DePuy G. W., & Whitehouse G. E. (2006). Metaheuristics: A

Solution Methodology for Optimization Problems, Handbook of Industrial and

Systems Engineering. CRC Press, FL.

64. Morton, T., & Pentico, D. (1993). Heuristic scheduling systems: With

applications to production systems and project management. New York: John

Wiley and Sons.

65. Monch, L. (2008). Heuristics to minimize total weighted tardiness of jobs on

unrelated parallel machines, 4th IEEE Conference on Automation Science and

Engineering, Key Bridge Marriott, Washington DC, USA, August 23-26.

66. Monch, L., Balasubramanian, H., Fowler, J.W., & Pfund, M.E. (2005). Heuristic

scheduling of jobs on parallel batch machines with incompatible job families and

unequal ready times. Computers and Operations Research, 32, 2731-2750.

67. Monch, L., Zimmermann, J., & Otto, P. (2006). Machine learning techniques for

scheduling jobs with incompatible families and unequal ready times on parallel

batch machines. Engineering Applications of Artificial Intelligence, 19, 235-245.

68. Parthasarathy, S., & Rajendran, C. (1998). Scheduling to minimize mean tardiness

and weighted mean tardiness in flowshop and flowline-based manufacturing cell.

Computers and Industrial Engineering, 34, 531-546.

69. Paula M.R., Mateus, G.R., & Ravetti, M.G. (2010). A non-delayed relax-and-cut

algorithm for scheduling problems with parallel machines, due dates and

143

sequence-dependent setup times. Computers & Operations Research, 37, 938 -

949.

70. Pfund, M., Fowler, J. W., Gadkari, A., & Chen, Y. (2008). Scheduling jobs on

parallel machines with setup times and ready times. Computers and Industrial

Engineering, 54, 764-782.

71. Phadke, S. M. (1989). Quality Engineering Using Robust Design, Prentice Hall,

Englewood Cliffs.

72. Pinedo, M. (2008). Scheduling Theory, Algorithms, and Systems. 3rd Ed.,

Springer, New York.

73. Pirlot, M. (1996). General local search methods. European Journal of

Operational Research, 92, 493-511.

74. Rabadi G., Moraga R.J., & Al-Salem A. (2006). Heuristics for the unrelated

parallel machine scheduling problem with setup times. Journal of Intelligent

Manufacturing, 17, 85-97.

75. Rachamadugu, R. V., & Morton, T. E. (1982). Myopic heuristics for the single

machine weighted tardiness problem. Working Paper, 30, 82-83, GSIA.

Pittsburgh, PA: Carnegie Mellon University.

76. Raghavan, N. R. S., & Venkataramana, M. (2009). Parallel processor scheduling

for minimizing total weighted tardiness using ant colony optimization.

International Journal of Advanced Manufacturing Technology, 41, 986-996.

77. Raheja, S.A., & Subramaniam, V. (2002). Reactive recovery of job shop

schedules- A review. International Journal of Advanced Manufacturing

Technology, 19, 756-763.

78. Rangaiah, G. P. (2008). Multi-Objective Optimization: Techniques and

Applications in Chemical Engineering. World Scientific Publishing.

144

79. Reichelt, D., Monch, L., Gottlieb, J. & Raidl, G.R. (2006). Multiobjective

scheduling of jobs with incompatible families on parallel batch machines,

EvoCOP 2006, LNCS 3906, Berlin Springer-Verlag Heidelberg, 209-221.

80. Sanchez, S. M. (2008), Better than a petaflop: the power of efficient experimental

design, Proceedings of the 2008 Winter Simulation Conference, S. J. Mason, R.

R. Hill, L. Monch, O. Rose, T. Jefferson, J. W. Fowler eds.

81. Shi-jin, W., Li-feng, X. & Bing-hai, Z. (2007). Filtered-beam-search-based

algorithm for dynamic rescheduling in FMS. Robotics and Computer-Integrated

Manufacturing, 23, 457-468.

82. Silver, E. (2002). An Overview of Heuristic Solution Methods, Haskayne School

of Business University of Calgary, Working Paper - 2002-15, October.

83. Simpson, T. W., Peplinski, J. D., Koch, P. N., & Allen J. K. (1997). On the use of

statistics in design and the implications for deterministic computer experiments,

Proceedings of ASME Design Engineering Technical Conferences, Sacramento,

California.

84. Subramaniam, V. & Raheja, A.S. (2003). mAOR: a heuristic-based reactive repair

mechanism for job shop schedules. International Journal of Advanced

Manufacturing Technology, 22, 669-680.

85. Subramaniam, V., Raheja, A.S. & Reddy, K.R.B. (2005). Reactive repair tool for

job shop schedules. International Journal of Production Research, 43, 1-23.

86. Sun, J,, and Xue, D. (2001). A dynamic reactive scheduling mechanism for

responding to the changes of production orders and manufacturing resources.

Computers in Industry, 46, 189-207.

87. Tan, K. C , Lee, L. H., Zhu, Q. L., Ou, K. (2001). Heuristic methods for vehicle

routing problem with time windows. Artificial Intelligence in Engineering, 15,

281-295.

145

88. Tanaka, S., & Araki, M. (2008). A branch-and-bound algorithm with Lagrangian

relaxation to minimize total tardiness on identical parallel machines. International

Journal Production Economics, 113, 446-458.

89. Tang, L., Wang, G., & Liu, J. (2007). A branch-and-price algorithm to solve the

molten iron allocation problem in iron and steel industry. Computers &

Operations Research, 34, 3001 - 3015.

90. Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi M., Izadi M., & Sassani, F.

(2009). Design of a genetic algorithm for bi-objective unrelated parallel machines

scheduling with sequence-dependent setup times and precedence constraints.

Computers & Operations Research, 36, 3224 - 3230.

91. Unal, A.T., Uzsoy, R., & Kiran, A.S. (1997). Rescheduling on a single machine

with part-type dependant setup times and deadlines. Annals of Operations

Research, 70, 93-113.

92. Vallada, E. Ruiz, R, & Minella, G. (2008). Minimising total tardiness in the m-

machine flowshop problem: A review and evaluation of heuristics and

metaheuristics. Computers and Operations Research, 35, 1350- 1373.

93. Vepsalainen, A., & Morton, T. (1987). Priority rules for job shops with weighted

tardiness costs. Management Science, 33, 1035-1047.

94. Vieira, G.E., Herrmann, J. W., & Lin E. (2000). Predicting the performance of

rescheduling strategies for parallel machine systems. Journal of Manufacturing

Systems, 9(4), 256-266.

95. Vieira, G.E., Herrmann, J. W., & Lin E. (2003). Rescheduling manufacturing

systems: a framework of strategies, policies and methods. Journal of Scheduling,

6(39), 62.

96. Wu, S. D., R. H. Storer, P.-C. Chang. (1993). One-machine rescheduling

heuristics with efficiency and stability as criteria. Computers and Operations

Research, 20, 1-14.

146

97. Yang, B. (2007). Single machine rescheduling with new jobs arrivals and

processing time compression. International Journal of Advanced Manufacturing

Technology, 34, 378-384.

98. Yang, M.-H., Chung, S.-H., & Kao, C.-K. (2006). A comparative study to

minimize the makespan of parallel-machine problem with job arrival in

uncertainty. HE Conference Proceedings.

99. Yang, R.J., Tseng, L., & Cheng, J. (1994). Feasibility study of crash optimization.

Advances in Design Automation, Proceedings of the 1994ASME Design Technical

Conference, Minneapolis, 2, 549-556.

100. Zobolas, G.I., Tarantilis, CD., & Ioannou, G. (2008). Exact, heuristic and

metaheuristic algorithms for solving shop scheduling problems. Studies in

Computational Intelligence (SCI), 128, 1-40.

APPENDICES

APPENDIX A: SAMPLE DATA FOR ARSP AND ARRP

Problem Factors

[i a y p kl k2 k3
4.0 2.0 1.0 0.2 2.168 0.980 0.190

Scheduling Problem

Pjobs= {0,1,2,3,4,5,6,7,8,9,10,11,12};
Sjobs= {1,2,3,4,5,6,7,8,9,10,11,12};
Machines = {1,2,3};
Release = [4.67,4.17,18.67,6.00,18.83,3.83,10.50,11.33,3.50,16.33,19.00,5.33];
Processing Time = [40, 15, 16, 24, 15, 16, 22, 39, 20,41, 22, 36];
Weight = [9, 7, 1, 9, 2, 5, 1, 2, 5, 4, 5, 8];
DueDate= [84.67,34.17,50.67,54.00,48.83,35.83,54.50,89.33,43.50,98.33,63.00,77.33];
Deadline = [124.67,49.17,66.67,78.00,63.83,51.83,76.50,128.33,63.50,139.33,85.00,113.33];
FixedCost = 120;

Job Arrival Disruption Rescheduling Problem

rnew = 26.00,
Pnew= 30, wnew= 5, dnew= 86, Dnew= 116

Pjobs= {0,1,2,3,4,5,6,7,8,9,10};
Sjobs={ 1,2,3,4,5,6,7,8,9,10};
Machines = {1,2,3};
Release = [26,4.67,18.67,0,0,10.50,11.33,16.33,0,5.33];
ProcessingTime = [30, 40, 16, 47.5, 34.17, 22, 39, 41, 41.83, 36];
Weight =[5, 9, 1, 999, 999, 1, 2, 4, 999, 8];
DueDate = [86, 84.67,50.67,47.5,34.17,54.50,89.33,98.33,41.83,77.33];
Deadline = [116, 124.67,66.67,47.5,34.17,76.50,128.33,139.33,41.83,113.33];
FixedCost = 120;

fmin = [284.33 0];
fmax = [761.5 2];
r= 0.92;
01dCompTime = [0 87.5 50.17 47.5 34.17 72.17 116.83 113.17 41.83 77.83];
OldAssign = [[0 0 0] [1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 1 0]];

Job Departure Disruption Rescheduling Problem

Disruption decision time = 26.00
Job index = 7, machine index = 1;

Pjobs= {0,1,2,3,4,5,6,7,8};
Sjobs={ 1,2,3,4,5,6,7,8};
Machines = {1,2,3};
Release = [4.67,18.67,0,0,10.50, 16.33,0,5.33];
ProcessingTime = [40, 16, 47.5, 34.17, 22, 41, 41.83, 36];
Weight = [9, 1, 999, 999, 1, 4, 999, 8];
DueDate= [84.67,50.67,47.5,34.17,54.50, 98.33,41.83,77.33];
Deadline = [124.67,66.67,47.5,34.17,76.50, 139.33,41.83,113.33];
FixedCost= 120;

fmin = [0 0];
fmax = [200 1];
r= 0.2;
OldCompTime = [87.5 50.17 47.5 34.17 72.17 113.17 41.83 77.83];
OldAssign = [[1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0]];

Priority Disruption Rescheduling Problem

Disruption decision time = 26.00
job index = 7, machine index = 1
w0,d = 2, dold = 89.3, Dold = 128.3
W n e w = J , U n e w— / J . J , L-'new" oH'.y

Pjobs= {0,1,2,3,4,5,6,7,8,9};
Sjobs={ 1,2,3,4,5,6,7,8,9};
Machines = {1,2,3};
Release = [4.67,18.67,0,0,10.50,11.33,16.33,0,5.33];
ProcessingTime = [40, 16, 47.5, 34.17, 22, 39, 41, 41.83, 36];
Weight =[9, 1, 999, 999, 1, 5, 4, 999, 8];
DueDate= [84.67,50.67,47.5,34.17,54.50,75.4684,98.33,41.83,77.33];
Deadline = [124.67,66.67,47.5,34.17,76.50,84.8867,139.33,41.83,113.33];
FixedCost=120;

fmin = [332.83 1];
fmax = [706.5 4];
r= 0.2;
OldCompTime = [87.5 50.17 47.5 34.17 72.17 116.83 113.17 41.83 77.83];
OldAssign = [[1 0 0] [0 0 1] [1 0 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 1 0]];

APPENDIX B RESULTS FOR PARAMETER SETTING FOR ARSP'S

ALGORITHMS

Table 1 Experiment Results for Parameter Setting of the APTCR Rule

Instance

1

2

3

4

5

6

7

8

9

10

11

12

n
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

a

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Y

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

p

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

kl

2 2426

1 9532

2 0572

3 1682

2 7928

2 0518

2 6914

1 8384

1 7904

1 8754

2 0538

1 1142

2 1096

0 484

07138

0 301

04148

0 2968

1 914

1 8804

1 9024

2 1326

2 2344

2 043

2 1446

22512

2 0866

2 7508

2 3946

2 0174

3 0406

2 7644

1 4216

2 9926

2 1928

0 5776

2 5098

1 7186

2 1068

2 68

2 6418

2 7184

0 9134

0 6368

0 3682

1 1658

04618

0 7398

0 82

0 28

0 8774

0 24

0 7644

0 8588

3 1308

2519

2 0958

2 9888

2 2232

2 4144

2 9048

1 8972

0 5404

3 4296

2 429

2 4018

3 4824

2 964

2914

2 8552

2 2648

0 4956

k2

2 2426

1 9532

2 0572

0 9058

0 5734

0 476

1 8274

2 3332

3 3806

1 8754

2 0538

1 1142

1 4654

1 327

1 8414

3 6754

3 5646

3311

1 914

1 8804

1 9024

1 8496

2 0026

1 967

1 706

2 0006

1 9156

2 7508

2 3946

2 0174

1 0612

127

0 9338

1 685

2 2308

2 8234

2 5098

1 7186

2 1068

0 758

0 797

0 533

2 1766

3 1654

3 47

1 1658

0 4616

0 7398

0 6866

1 7106

1 1824

1 228

1 7008

1 5402

3 1308

2519

2 0958

2 9572

1 934

1 0632

2 463

2 2908

2 1684

3 4296

2 429

2 4018

1 1052

0 8522

0 746

2 1066

2 9762

3 3344

k3

3 7952

3 5456

1 6796

2 1224

0 3772

0 2506

1 2996

0 9884

0 9122

0 9332

0 2864

02

0 2078

0 2282

0 22

0 276

02

0 2

3 2314

3 1368

3 1626

3 2648

3 1654

3 1016

3 2122

3 1616

3 1134

3 6546

1 9196

1 9342

0 5092

0 6386

1 92

1 65

0 6822

1 5372

0 8464

0 7998

0 2194

0 2994

0 2194

0 23

0 4888

0 2648

02

0 5362

1 4096

2 0484

0 2334

0 36

1 5094

0 8748

0 8134

1 0536

3 4174

2 8906

2 2884

1 664

1 3342

1 202

1 6598

1 3996

2 628

0 5704

0 8828

0 633

0 2596

0 4166

02

0 3596

0 2298

0 227

Table 1 Experiment Results for Parameter Setting of the APTCR Rule (Continued)

Instance y a i g kl k2 k3^

73 1

74 1

7") 1

76 1

77 1

78 1

79 1

80 1

81 1

1 1

1 1

1 1

1 0

1 0

1 0

1 1

1 1

1 1

1

0

1

1

0

1

1

0

1

2 4696

1 7862

1 1184

1 8682

2 2778

0 «

0 1184

0 4892

0 3444

2 4696

1 7862

1 1384

0 7224

1 9988

1 62

3 7618

2 573

3 8996

0 4692

0 2802

1 0708

02318

02

02

0 2464

02134

02

Table 2 Experiment Results for Parameter Setting of the SA

TMax

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

Avg Lrror from Optimal

0 3039

0 2270

0 176S

0 3099

0 2299

0 1721

0 2992

0 2387

0 1596

0 3132

0 2330

0 1690

0 3114

0 2320

0 1662

0 3141

(1 2462

0 1736

0 3237

0 2345

0 1643

0 2907

0 2407

0 1570

0 3309

0 2364

0 1770

0 3067

0 2420

0 1657

0 3066

0 2281

0 1480

0 3306

0 2388

0 1769

03151

0 2453

0 1632

0 1162

0 2419

0 1732

0 3267

0 2386

0 1684

0 3179

0 2350

0 1612

0 3221

0 2246

0 1726

0 3304

0 2256

0 1728

0 3044

0 2339

0 1740

0 1380

0 2337

2

1

4

5

6

7

8

9

10

11

12

11

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

31

34

15

16

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

151

Table 2 Experiment Results for Parameter Setting of the SA (Continued)

ITcmp Alpha SicpMax Avg hrror from Optimal

60

61

62

61

64

65

66

67

68

69

70

71

72

73

74

7?

76

77

78

79

80

81

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1 (

1 (

1 (

1

1

1

) 1

1

0

1

1 1

1 0

1 1

) 1

) 0

) 1

1

0

1

1 1

1 0

1 1

) 1

) 0

) 1

1

0

1

0 1704

0 1225

0 2276

0 1771

0 3213

0 2159

0 1620

0 1199

0 2501

0 1790

0 1282

0 2388

0 1617

0 3382

0 2182

0 1625

0 3160

0 2230

0 1805

0 3056

0 2138

0 1775

Table 3 Experiment Results for Parameter Setting of the MetaRaPS (p%=0.1)

No pnontY restrict

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

10

31

32

11

34

15

36

17

38

39

40

41

42

43

44

45

1

1

1

1

1

0 75

0 75

0 75

0 75

0 75

05

05

05

05

0 5

0 25

0 25

0 25

0 25

0 25

0

0

0

0

0

0 25

0 25

0 25

0 25

0 25

05

05

05

0 5

05

0 75

0 75

0 75

0 75

0 75

improve

1

05

0

05

1

1

0 5

0

05

1

1

05

0

05

1

1

0 5

0

05

1

1

05

0

05

1

1

05

0

05

1

1

05

0

05

1

1

05

0

05

1

1

05

0

05

1

pnonty*restnct

0 75

0 75

0 75

0 75

0 75

05

05

05

0 5

05

0 25

0 25

0 25

0 25

0 25

0

0

0

0

0

0 25

0 25

0 25

0 25

0 25

05

0 5

0 5

05

0 5

0 75

0 75

0 75

0 75

0 75

pnonty*improve

1

05

0

0 5

1

1

05

0

05

1

1

05

0

05

1

1

05

0

0 5

1

1

05

0

05

1

1

0 5

0

0 5

1

1

0 5

0

0 5

1

1

05

0

05

1

1

05

0

0 5

1

restnct*improve

1

0 5

0

0 5

1

0 75

0 175

0

0 175

0 75

0 5

0 25

0

0 25

05

0 25

0 125

0

0 125

0 25

0

0

0

0

0

0 25

0 125

0

0 125

0 25

05

0 25

0

0 25

05

0 75

0 175

0

0 375

0 75

1

0 5

0

05

1

Avg Performance

0 07

0 05

0 05

0 05

0 05

0 02

0 02

0 02

0 02

0 02

0 03

0 04

0 03

0 04

0 04

0 03

0 03

0 03

0 03

0 01

0 01

0 03

0 01

0 03

0 03

0 08

0 08

0 08

0 08

0 08

0 09

0 09

0 09

0 09

0 09

0 33

0 11

012

0 11

0 13

0 19

0 39

0 39

0 40

0 39

152

APPENDIX C : RESULTS FOR SMALL SIZE PROBLEMS FOR ARSP

Table 1 Comparison Results for APTCR and SA (One replication)

1

2

3

4
5

6

7

8
9

10

11

12

n
14

15

16

Mu
3
3

3

3
3

3

3

3
6

6

6
6

6
6

6

6

Alta

1 5
1 5

1 5

1 5

2

2
2

2

1 5

1 5
1 5

1 5
2

2

2

2

Gama
0

0

2

2
0

0

2

2

0

0

2

2
0

0
2

2

Ro
0 1

0 3

0 1

0 3

0 1
0 3

0 1

03

0 1
03

0 1

0 3
0 1
0 3

0 1

0 3

kl

2 68

2 30

2 93

2 59
2 12

1 91

2 43

2 25
2 86

2 36

2 98
2 52

2 34

1 99

2 49
2 17

k2

2 47

2 16

1 42

1 42
2 47

2 16

1 42

1 42
2 03

1 73

0 98

0 98
2 03

1 73

0 98

0 98

k3

2 16

1 88
1 04

0 84

0 92

0 92

0 35

0 35
2 82

2 49

1 50

1 27
0 65
0 65

0 19

0 19

hrrorfl,TcR
0 18

0 55

0 23
0 04
0 14

1 33

021

2 29
0 00

0 00

0 22

0 27
0 03

091

0 13

0 39

Time (see)
0 001

0

0 001

0 006
0 005

0 004

0 006

0 006
0 002
0 003

0 004

0 004
0 002

0 004
0 005

0 006

1 riorSA Max Mi
0 00

0 06

021

0 18
0 00

0 67

0 22

3 46

0 00
0 07

0 03

0 14

0 00
0 23

0 46

0 25

0 00

0 09
0 33

0 32
0 00

0 67
0 35

4 99
0 00

0 12

0 06

0 19
0 00

0 27

1 02
0 44

n

0 00

0 00

0 12

0 07
0 00

0 67

0 15

0 37
0 00

0 00

0 00
0 03

0 00

0 00
015

0 14

Time (set)
0 060

0 062

0 090

0 091

0 068

0081

0 092
0 092

0 055

0 057

0 063
0 063

0 056

0 057

0 071

0 077

Table 2 Comparison Results for SA and MetaRaPS(One replication)

Instance

1
2

3

4
5

6
7

8

9

10
11

12

13
14

15

16

Mu
3

3
3

3

3

3
3

3

6

6
6

6

6

6
6

6

Alfa
1 5

1 5
1 5

1 5
2

2
2

2

1 5
1 5

1 5
1 5

2

2
2

2

Gama

0

0
2

2

0

0
2

2

0

0
2

2

0

0
2

2

Ro

0 1

0 3
01

03

01

03
01
0 3

01

0 3
0 1
03

0 1

0 3
0 1
03

SA

001

0 17
0 17

0 06
0 00

0 02

1 52

0 37

0 00

0 03
0 06

0 08

0 00

0 09
0 03
0 04

Max

0 03
0 27

021

0 06
0 00

0 17
1 64

0 37

0 00

0 06
0 07

0 15

0 00
0 13

0 07
0 04

Min

0 00

0 00
0 14

0 03
0 00

0 00

0 56

0 37

0 00
0 00

0 01
0 00

0 00

0 00
0 00
0 04

Time(sec) MR

0 118
1 296

1 489
1962

1927

1585
1 641

1 998
1 952

0 972
1 174

1 514

1 536

1 159
1 271

1 435

0 03
0 00

0 03
001

0 06

0 00

0 05

0 29
0 00

0 00

001
0 02

0 00
0 00
0 02

0 00

Max

0 03
0 00

0 09

0 03
0 20

0 00

0 16
0 35

0 00

0 00

0 02
0 04

0 00
0 00
0 04

0 01

Min

0 03
0 00
0 00

0 00

0 00

0 00
0 00

0 27
0 00

0 00

0 00
0 00

0 00

0 00
0 01

0 00

Time(sec)
0 097

1 378

1 576
2 100

2 024

1 711

1 737

2 101

2 065
1 044
1 244

1 597
1 635

1 232
1 369

1 517

153

APPENDIX D : RESULTS FOR LARGE SIZE PROBLEMS FOR ARSP

Table 1 Comparison Results for APTCR and SA (One replication)

Instance M u

1

2

3

4

•5

6

7

8

9

10

11

12

13

14

IS

16

3

3

3

3

3

3

3

3

6

6

6

6

6

6

6

6

Alia

1 5

1 5

1 5

1 5

2

2

2

2

1 5

1 5

1 5

1 5

2

2

2

2

Gama

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

Ro

0 1

0 3

0 1

03

0 1

03

0 1

03

0 1

03

0 1

0 3

0 1

03

0 I

03

kl

2 68

2 30

2 93

2 59

2 12

1 91

2 43

2 25

2 86

2 36

2 98

2 52

2 34

1 99

2 49

2 17

k2

2 47

2 16

1 42

1 42

2 47

2 16

1 42

1 42

2 03

1 73

0 98

0 98

2 03

173

0 98

0 98

k3

2 16

1 88

1 04

0 84

0 92

0 92

0 35

0 35

2 82

2 49

1 50

1 27

0 65

0 65

0 19

0 19

TWTAPTC

K

10560

9360

2290

1686

4680

3000

507

342

17400

13680

8519

10299

12240

6840

6437

3547

Time

(sec)

0 006

0 038

0 006

0 006

0 005

0 004

0 005

0 005

0 002

0 002

0 004

0 004

0 003

0 003

0 004

0 004

T W T , A

18312

15732

4036

3980

9744

7872

2129

1845

23460

22488

13144

13986

18816

15276

10842

7667

Max

19080

16320

4234

4194

10440

8280

2381

1954

23880

23160

13684

14452

19560

15720

11206

8021

M m

17640

14520

3725

3749

8520

7320

1872

1614

23160

21600

12718

13690

18120

14520

10296

7073

Time

(sec)

0 499

0 505

0 984

0 985

0 582

0615

0 987

0 985

0416

0441

0 621

0 635

0 446

0 473

0 681

0 722

Avg (SA

APTCR)/ APTC

R

0 73

0 68

0 76

1 36

1 08

1 62

3 20

4 39

0 35

0 64

0 54

0 36

0 54

1 23

0 68

1 16

Table 2 Comparison Results for SA and MetaRaPS (One replication)

Instance

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Avg

Relative

SA

APTCR

0 03

0 01

0 00

0 00

0 00

0 28

0 00

0 40

0 00

0 00

0 04

0 06

0 00

0 00

0 05

0 13

Max

0 18

0 00

0 00

0 11

0 00

0 23

0 00

0 30

0 00

0 00

0 28

0 14

0 00

0 52

0 47

021

Min

0 10

0 15

0 00

0 04

0 00

0 33

0 00

061

0 00

0 01

0 00

0 07

0 00

0 00

0 03

0 14

Time(scc)

0 96

1 05

1 72

1 69

1 20

1 24

1 78

1 69

0 86

0 89

1 22

1 24

0 92

0 96

1 34

1 43

Max M m

0 98

1 07

1 75

1 71

1 22

1 25

1 80

1 72

0 88

0 92

1 24

1 25

0 94

1 02

1 38

1 45

0 95

1 03

1 70

1 67

1 18

1 23

1 75

1 67

0 84

0 88

1 21

1 23

0 90

0 94

1 32

1 41

Avg

Relative

MclaRaPS

0 00

0 00

0 04

0 02

0 15

0 00

0 12

0 00

0 11

001

0 00

0 00

0 15

0 02

0 00

0 00

Max

0 00

0 06

0 07

0 00

0 25

0 00

0 18

0 00

0 09

0 06

0 00

0 00

0 19

0 00

0 00

0 00

Mm

0 00

0 00

0 01

0 00

0 05

0 00

0 03

0 00

0 09

0 00

0 00

0 00

0 12

0 00

0 00

0 00

Tmit(sec)

1 32

1 56

1 99

2 04

1 75

1 87

2 07

2 12

0 82

1 11

1 57

1 74

1 12

1 35

1 65

1 98

Max IV

1 34

1 61

201

2 08

1 78

1 88

2 09

2 14

0 84

1 13

1 60

1 76

1 15

1 38

1 68

2 02

[in

1 31

1 54

1 97

2 02

1 73

1 85

2 04

2 10

0 80

1 09

1 55

1 71

1 10

1 33

1 63

1 96

154

APPENDIX E STATISTICAL TEST RESULTS FOR SCHEDULING

ALGORITHMS

Figure 1 Normality Tests for APTCR -SA Comparison
Small Size Problems(n=12)

o,i-H—
-10

Probability Plot of % Error

Normal

Mean

StDev

N

AD

p-value

0,7525

2,426

320

71,726

<0,005

— I —

20 30

°/o Error

4-e
C
41
<J
01
Q.

95

90

80

70
60

SO
40
30

20

10

5

Probability Plot of CPU

Normal

-0,10

Mean

StDev

N

AD

p-value

0,04640

0,04655

320

26,771

<0,005

0,20

Tests for APTCR -SA Comparison in Small Size Problems(n=12)

Kruskal-Wallis Test: % Error versus Method

Kruskal-Wallis Test on % Error

Method N Median Ave Rank

DDW-R 160 0.20266 174.4

SA 160 0.09735 146.6

Overall 320 160.5

H = 7.18 DF = 1 P = 0.007

H = 7.21 DF = 1 P = 0.007 (adjusted for ties)

Kruskal-Wallis Test: CPU versus Method

Kruskal-Wallis Test on CPU

Method N Median Ave Rank

DDW-R 160 0.001000 80.5

SA 160 0.091750 240.5

Overall 320 160.5

H = 239.25 DF = 1 P = 0.000

H = 241.19 DF = 1 P = 0.000 (adjusted for ties)

Test for Equal Variances: % Error versus Method

95% Bonferroni confidence intervals for standard deviations

Method N Lower StDev Upper

DDW-R 160 0.75518 0.85040 0.97188

SA 160 2.93976 3.31041 3.78328

F-Test (Normal Distribution)

Test statistic = 0.07; p-value = 0 000

Levene's Test (Any Continuous Distribution)

Test statistic = 4.04; p-value = 0.045

Test for Equal Variances: CPU versus Method

95% Bonferroni confidence intervals for standard deviations

Method N Lower StDev Upper

DDW-R 160 0.0026969 0 0030370 0.0034708

SA 160 0.0181035 0.0203861 0.0232981

F-Test (Normal Distribution)

Test statistic = 0.02; p-value = 0.000

Z

2 68

-2.68

Z

-15 47

15.47

Levene's Test (Any Continuous Distribution)

Test statistic = 231.23; p-value = 0.000

Figure 2 Equal Variance Tests for APTCR-SA Comparison in Small Size Problems

SA

Test for Equal Variances for % Error

Lev en e's Test

Test Statistic 4,04

P-Value 0,045

1,0 1,5 2,0 2,5 3,0 3,5 4,0
9 5 % Bonferroni Confidence Intervals for StDevs

D-SA- | r » * * » * » * *

10 15
% Error

30

DDW-R-

f
Z

SA-

0

DOW-R-

AJ

S
SA-

Test for Equal Variances for CPU

w

000 0,005 0,010 0,015 0,020 0,02

9 5 % Bonferroni Confidence Intervals for StDevs

IH**

i i i
i i i

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14

CPU

Lev ene's Test

Test Statsbc 231,23

P-Value 0,000

5

APTCR Test Results

Kruskal-Wallis Test: % Error versus M

Kruskal-Wallis Test on % Error

M N Median Ave Rank Z

3 80 0.3881 93.7 3.60

6 80 0.1250 67.3 -3.60

Overall 160 80.5

H = 12.95 DF = 1 P = 0.000

H = 12.96 DF = 1 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: % Error versus A

Kruskal-Wallis Test on % Error

A N Median Ave Rank Z

1.5 80 0.1270 61.6 -5.15

2.0 80 0.4416 99.4 5.15

Overall 160 80.5

H = 26 .54 DF = 1 P = 0.000

H = 26.55 DF = 1 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: % Error versus G

Kruskal-Wallis Test on % Error

G N Median Ave Rank Z

0 80 0.1484 74.7 -1.59

2 80 0.2219 86.3 1.59

Overall 160 80.5

H = 2 . 5 4 DF = 1 P = 0.111

H = 2 . 5 4 DF = 1 P = 0.111 (adjusted for ties)

Kruskal-Wallis Test: % Error versus R

Kruskal-Wallis Test on % Error

R N Median Ave Rank Z

0.1 80 0.1228 68.0 -3.41

0.3 80 0.3542 93.0 3.41

Overall 160 80.5

H = 11.60 DF = 1 P = 0.001

H = 11.61 DF = 1 P = 0.001 (adjusted for ties)

SA Test Results

Kruskal-Wallis Test: % Error versus M

Kruskal-Wallis Test on % Error

M N Median Ave Rank Z

3 80 0.37500 97.4 4.60

6 80 0.05323 63.6 -4.60

Overall 160 80.5

H = 21.18 DF = 1 P = 0.000

H = 21.40 DF = 1 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: % Error versus A

Kruskal-Wallis Test on % Error

A N Median Ave Rank Z

1.5 80 0.05484 69.8 -2.92

2.0 80 0.19050 91.2 2.92

Overall 160 80.5

H = 8.55 DF = 1 P = 0.003

H = 8 . 6 4 DF = 1 P = 0.003 (adjusted for ties)

Kruskal-Wallis Test: % Error versus G

Kruskal-Wallis Test on % Error

G N Median Ave Rank Z

0 80 0.03077 53.9 -7.26

2 80 0.38678 107.1 7.26

Overall 160 80.5

H = 52.64 DF = 1 P = 0.000

H = 53.20 DF = 1 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: % Error versus R

Kruskal-Wallis Test on % Error

R

0.1

0.3

Overall

N

80

80

160

Median

0.05183

0.16417

Ave Rank
70.3

90.7

80.5

Z

-2.79

2.79

H = 7 . 7 8 DF = 1 P = 0.005

H = 7 . 8 7 DF = 1 P = 0.005 (adjusted for ties)

Tests for APTCR -SA Comparison in Large Size Problems(n=60)

Kruskal-Wallis Test: Relative TWT versus Method

Kruskal-Wallis Test on Relative TWT

Method N Median Ave Rank Z

DDW-R 160 0.5273 80.5 -15.47

SA 160 1.0000 240.5 15.47

Overall 320 160.5

H = 239.25 DF = 1 P = 0.000

H = 273.43 DF = 1 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: Relative TWT versus M

Kruskal-Wallis Test on Relative TWT

M N Median Ave Rank Z

3 80 1.4715 112.3 8.69

6 80 0.5478 48.7 -8.69

Overall 160 80.5

H = 75.43 DF = 1 P = 0.000

Kruskal-Wallis Test: Relative TWT versus A

Kruskal-Wallis Test on Relative TWT

A N Median Ave Rank Z

1.5 80 0.6213 58.3 -6.06

2.0 80 1 2920 102 7 6.06

Overall 160 80.5

H = 36.69 DF = 1 P = 0.000

Kruskal-Wallis Test: Relative TWT versus G

Kruskal-Wallis Test on Relative TWT

G N Median Ave Rank Z

0 80 0.7851 72.3 -2.25

2 80 1.0045 88.7 2.25

Overall 160 80.5

H = 5 . 0 6 DF = 1 P = 0.025

Kruskal-Wallis Test: Relative TWT versus R

Kruskal-Wallis Test on Relative TWT

R N Median Ave Rank Z

0.1 80 0.6009 66.0 -3.97

0.3 80 1.0861 95.0 3.97

Overall 160 80.5

H = 15.72 DF = 1 P = 0.000

Kruskal-Wallis Test: CPU versus Method

Kruskal-Wallis Test on CPU

Method N Median Ave Rank

APTCR 160 0.005000 80.5

SA 160 0.608000 240.5

Overall 320 160.5

H = 239.25 DF = 1 P = 0.000

H = 240.77 DF = 1 P = 0.000 (adjusted for ties)

Tests for SA-MetaRaPS Comparison in Small Size Problems (n= 12)

Kruskal-Wallis Test: Relative Error versus Method

Kruskal-Wallis Test on Relative Error

Method N Median Ave Rank Z

MetaRaPS 160 0.008370 129.0 -6.10

SA-APTCR 160 0.061534 192.0 6.10

Overall 320 160.5

H = 37.17 DF = 1 P = 0.000

H = 38.37 DF = 1 P = 0.000 (adjusted for ties)

Test for Equal Variances: Relative Error versus Method

95% Bonferroni confidence intervals for standard deviations

Method N Lower StDev Upper

MetaRaPS 160 0.179393 0.202011 0.230867

SA-APTCR 160 0.450057 0.506801 0.579195

F-Test (Normal Distribution)

Test statistic = 0.16; p-value = 0.000

Z

-15.47

15.47

Levene's Test (Any Continuous Distribution)

Test statistic = 9.20; p-value = 0.003

Figure 3 Equal Variance Tests for SA-MetaRaPS Comparison in Small Size Problems

MetaRaPS'

Test for Equal Variances for Relative Error

i — • — i

EH * » « • * * * * *

Relative Error

0,2 0,3 0,4 0,5 0,6

9 5 % Bonferroni Confidence Intervals for StDevs

F-Test

Test Statistic

P-Value

0,16

0,000

Levene's Test

Test Statistic

P-Value

9,20

0,003

Tests for SA-MetaRaPS Comparison in Large Size Problems(n= 60)

Kruskal-Wallis Test: Relative Difference versus Method

Kruskal-Wallis Test on Relative Difference

Method N Median Ave Rank Z

MetaRaPS 160 0.000000000 143.0 -3.38

SA-APTCR 160 0.016623239 178.0 3.38

Overall 320 160.5

H = 11.41 DF

H = 13.04 DF

1 P = 0.001

1 P = 0.000 (adjusted for ties)

APPENDIX F: TEST RESULTS FOR RESCHEDULING ALGORITHMS

Test Results for Job Arrival Disruption Repair Algorithms

Kruskal-Wallis Test: Error versus Arrival for MetaRE

Kruskal-Wallis Test on Error

Arrival N Median Ave Rank

Early 30 0.01803 23.7

Late 30 2.95075 37.3

Overall 60 30.5

H = 9.19 DF = 1 P = 0.002

H = 9.36 DF = 1 P = 0.002 (adjusted for ties)

Kruskal-Wallis Test: Error versus Weight for MetaRE

Kruskal-

Weight

0.2

0.5

0.8

0.92

0.95

0.98

Overall

-Wall

N

10

10

10

10

10

10

60

is Test

Median

0.7605

0.3487

0.5988

0.5498

0.7510

0.8760

on Error

Ave Rank

32.1

26.6

28.4

29.9

31.4

34 .6

30.5

0

-0

-0

-0.

0.

0.

Z

.32

.78

.41

.13

.19

.81

H = 1 . 3 3 D F = 5 P = 0.932

H = 1.35 DF = 5 P = 0.929 (adjusted for ties)

Kruskal-Wallis Test: Error versus Arrival for BestlNSERT

Kruskal-Wallis Test on Error_l

Arrival N Median Ave Rank

Early 30 0.3324 30.4

Late 30 0.1605 30.6

Overall 60 30.5

H = 0 . 0 0 D F = 1 P = 0.947

H = 0 . 0 0 D F = 1 P = 0.946 (adjusted for ties)

Z

-3.03

3 .03

Z

-0.07

0.07

Kruskal-Wallis Test: Error versus Weight for BestlNSERT

Kruskal-Wall is Test on Error 1

Weight

0.2

0.5

0.8

0.92

0.95

0.98

Overall

H = 21.

H = 22.

N

10

10

10

10

10

10

60

0.

0

0.

0.

0.

1

24 DF =

34 DF =

Median

.000000000

.000316656

.149241281

.534511580

.785661723

.737360140

= 5 P = 0.

= 5 P = 0.

Ave

001

000

Rank

15.0

21.4

29.6

32 .0

38.5

46.5

30.5

(adju

Z

-3.07

-1.81

-0.18

0.30

1.60

3 .17

isted f<

Kruskal-Wallis Test: Error versus Arrival for SEPRE

Kruskal-Wall is Test on Error 2

Arrival

Early

Late

Overall

H = 0.07

H = 0.07

N

30

30

60

DF

DF

Median

2 .633

5.891

= 1 P

= 1 P

Ave Rank

29.9

31.1

30.5

= 0.790

= 0.790 (a

Z

-0.27

0.27

idjusti

Kruskal-Wallis Test: Error versus Weight for SEPRE

Kruskal-Wall is Test on Error 2

Weight

0.2

0.5

0.8

0.92

0.95

0.98

Overall

H = 0

H = 0.

.26

.26

N

10

10

10

10

10

10

60

DF

DF

Median

4 .219

3 .806

3 .184

3 .184

3 .806

4 .219

= 5 P

= 5 P

Ave Rank

= 0.

= 0.

32.1

29.5

29.9

29.9

29.5

32.1

30.5

998

998 (;

Z

0.32

-0.20

-0.12

-0.12

-0.20

0.32

adjust*

Kruskal-Wallis Test: Error of MetaRE and BestlNSERT for low weights

Algorithm

BestlNSERT

MetaRE

Overall

N

20

20

40

Median

0.000000000

0.721721818

Ave Rank

14 .9

26.1

20.5

Z

-3.02

3.02

H = 9.10 DF = 1 P = 0.003

H = 10.01 DF = 1 P = 0.002 (adjusted for ties)

Test Results for Priority Disruption Repair Algorithms

Kruskal-Wallis Test: Relative Error versus Weight for SHUFFLE

Kruskal-Wallis Test on Relative Error

Weight N Median Ave Rank Z

0.2 10 0.6922 12.8 -1.21

0.5 10 0.8314 12.2 -1.47

0.8 10 2.5304 21.6 2.68

Overall 3 0 15.5

H = 7.23 DF = 2 P = 0.027

H = 7.24 DF = 2 P = 0.027 (adjusted for ties)

Kruskal-Wallis Test: Relative Error versus Urgency for SHUFFLE

Kruskal-Wallis Test on Relative Error

Urgency N Median Ave Rank Z

High 15 0.6126 12.7 -1.76

Low 15 1.5218 18.3 1.76

Overall 30 15.5

H = 3.11 DF = 1 P = 0.078

H = 3.11 DF = 1 P = 0.078 (adjusted for ties)

Kruskal-Wallis Test: Relative Error_l versus Weight for BestlNSERT

Kruskal-Wallis Test on Relative Error_l

Weight N Median Ave Rank Z

0 2 10 0.5540 14 .8 -0.31

0.5 10 0.1432 11.6 -1.72

0.8 10 1.9329 20.1 2.02

Overall 30 15.5

H = 4 . 7 6 D F = 2 P = 0.093

H = 4 . 8 0 D F = 2 P = 0.091 (adjusted for ties)

Kruskal-Wallis Test: Relative Error_l versus Urgency for BestlNSERT

Kruskal-Wallis Test on Relative Error_l

Urgency N Median Ave Rank Z

High 15 0.5540 15 0 -0.33

Low 15 0.5540 16.0 0.33

Overall 3 0 15.5

H = 0.11 DF = 1 P = 0.740

H = 0.11 DF = 1 P = 0.739 (adjusted for ties)

Kruskal-Wallis Test: Relative Error_2 versus Weight for MetaRE

Kruskal-Wallis Test on Relative Error_2

Weight N Median Ave Rank Z

0.2 10 1.4101 17.8 1.01

0.5 10 0.2063 14.9 -0.26

0.8 10 0.1311 13.8 -0.75

Overall 30 15.5

H = 1.10 D F = 2 P = 0.576

H = 1.10 DF = 2 P = 0.576 (adjusted for ties)

Kruskal-Wallis Test: Relative Error_2 versus Urgency for MetaRE

Kruskal-Wallis Test on Relative Error_2

Urgency N Median Ave Rank Z

High 15 0.5562 15.2 -0.19

Low 15 0.2096 15.8 0.19

Overall 30 15.5

H = 0 . 0 3 DF = 1 P = 0.852

H = 0 . 0 3 DF = 1 P = 0.852 (adjusted for ties)

166

Figure 4 Normality Tests for Priority Disruption Repair Algorithms (n=60)

95

90

80

70-
4-1

g 60
8 50-
9) 40-
1 1

 30-

20-

ID-

S'

Probability Plot of BestlNSERT
Normal

Mean

StDev

N

KS

P-Value

0,2692

0,2186

50

0,179

<0,010

0,2 0,4
BestlNSERT

0,8

Probability Plot of MetaRE
Normal

-0,50

Mean

StDev

N

KS

P-Value

0,1050

0,2110

50

0,411

<0,010

0,25

MetaRE
0,75 1,00

Test Results for Priority Disruption Repair Algorithms (n=60)

Kruskal-Wallis Test: BestlNSERT versus Weight

Weight

0.1

0.3

0.5

0.7

0.9

Overall

N

10

10

10

10

10

50

0

0

0

0

0

Median

.486524908

.463406959

.287605001

.032470626

.000000000

Ave Rank

38.5

36 .2

30.1

15.2

7.5

25.5

3

2

1

-2

-4

Z

.15

.60

.12

.50

.37

H = 34.58 DF = 4 P = 0.000

H = 35.35 DF = 4 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: BestlNSERT versus Disruption Time

Disruption

Time N Median Ave Rank Z

Early 25 0.1990 24.3 -0.60

Late 25 0.2944 26.7 0.60

Overall 50 25.5

H = 0 . 3 6 DF = 1 P = 0.548

H = 0.37 DF = 1 P = 0.543 (adjusted for ties)

Kruskal-Wallis Test: MetaRE versus Weight

Weight

0.1

0.3

0.5

0.7

0.9

Overall

N

10

10

10

10

10

50

0.

0,

0.

0.

0,

Median

.000000000

.000000000

.000000000

.000000000

.478103929

Ave Rank

18.5

18.5

18.5

26.6

45.4

25.5

-1

-1

-1.

0

4

Z

.70

.70

.70

.27

.83

H = 25.61 DF = 4 P = 0.000

H = 40.85 DF = 4 P = 0.000 (adjusted for ties)

Kruskal-Wallis Test: MetaRE versus Disruption Time

Disruption

Time N Median Ave Rank Z

Early 25 0.000000000 27.6 1.00

Late 25 0.000000000 23.4 -1.00

Overall 50 25.5

H = 1.00 DF = 1 P = 0.318

H = 1.59 DF = 1 P = 0.207 (adjusted for ties

168

VITA

Sezgin KAPLAN

Engineering Management and System Engineering
Old Dominion University, Norfolk /VA

e-Mail: skaplan@odu.edu, sezginkaplan64@yahoo.com

RESEARCH INTEREST

Planning and Scheduling, Applied Optimization, Multi Criteria Decision Making,
Logistics and Supply Chain Optimization.

EDUCATION :

M.S. : 2005 - 2007 Department of Industrial Engineering
Gazi University
Ankara, Turkey
M. A. : 2000 - 2004 Department of Economy
Hacettepe University
Ankara, Turkey
B.S. : 1996-2000 Department of Industrial Engineering
Bilkent University
Ankara, Turkey

THESIS

Kaplan S. (2007). Evaluation of the Equipment Investment Projects In Air Defense Sector
by Fuzzy AHP. Gazi University, Applied Science Institution, Industrial Engineering M.S.
Program, Ankara, TURKEY.
Kaplan S. (2004). Market Structure and Innovation. Hacettepe University, Social
Sciences Institution, Economy M.A. Program, Ankara, TURKEY.

WORK EXPERIENCE :

Oct 2002 - Jun 2005 Production Planning and Control Officer
TUAF 3rd Air Supply and Maintenance Center Command, Ankara, TURKEY
Jun 2005 - Jun 2008 Work Load Planner Officer
TUAF 3rd Air Supply and Maintenance Center Command, Ankara, TURKEY

mailto:skaplan@odu.edu
mailto:sezginkaplan64@yahoo.com

	Old Dominion University
	ODU Digital Commons
	Spring 2011

	Optimization Models and Approximate Algorithms for the Aerial Refueling Scheduling and Rescheduling Problems
	Sezgin Kaplan
	Recommended Citation

	tmp.1552662222.pdf.XQmFZ

