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ABSTRACT

OPTIMIZATION MODELS AND ALGORITHMS FOR SPATIAL
SCHEDULING

Christopher J. Garcia
Old Dominion University, 2010

Director: Dr. Ghaith Rabadi

Spatial scheduling problems involve scheduling a set of activities or jobs that each

require a certain amount of physical space in order to be carried out. In these problems

space is a limited resource, and the job locations, orientations, and start times must be

simultaneously determined. As a result, spatial scheduling problems are a particularly

difficult class of scheduling problems. These problems are commonly encountered in

diverse industries including shipbuilding, aircraft assembly, and supply chain

management. Despite its importance, there is a relatively scarce amount of research in the

area of spatial scheduling.

In this dissertation, spatial scheduling problems are studied from a mathematical

and algorithmic perspective. Optimization models based on integer programming are

developed for several classes of spatial scheduling problems. While the majority of these

models address problems having an objective of minimizing total tardiness, the models

are shown to contain a core set of constraints that are common to most spatial scheduling

problems. As a result, these constraints form the basis of the models given in this

dissertation and many other spatial scheduling problems with different objectives as well.

The complexity of these models is shown to be at least NP-complete, and spatial

scheduling problems in general are shown to be NP-hard. A lower bound for the total



tardiness objective is shown, and a polynomial-time algorithm for computing this lower

bound is given.

The computational complexity inherent to spatial scheduling generally prevents

the use of optimization models to find solutions to larger, realistic problems in a

reasonable time. Accordingly, two classes of approximation algorithms were developed:

greedy heuristics for finding fast, feasible solutions; and hybrid meta-heuristic algorithms

to search for near-optimal solutions. A flexible hybrid algorithm framework was

developed, and a number of hybrid algorithms were devised from this framework that

employ local search and several varieties of simulated annealing. Extensive

computational experiments showed these hybrid meta-heuristic algorithms to be effective

in finding high-quality solutions over a wide variety of problems. Hybrid algorithms

based on local search generally provided both the best-quality solutions and the greatest

consistency.
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CHAPTER 1: INTRODUCTION TO SPATIAL SCHEDULING

Scheduling is a common and often critical activity of many business areas and

industries, including manufacturing, assembly, services, and supply chain management to

name a few. Scheduling problems generally involve assigning tasks or activities to a set

of resources, most often in a manner that optimizes some specified objective or

performance measure. Beyond this, different types of scheduling problems present their

own unique sets of objectives and constraints, and require individualized formulation and

solution methods.

Scheduling problems can become very difficult to solve when limitations exist on

the resources available to enable the carrying out of tasks or activities [24]. At the heart

of many important assembly, manufacturing, and logistics problems is a relatively

unstudied type of optimization problem: a Spatial Scheduling problem. A spatial

scheduling problem, like other types of scheduling problems, involves a set ofjobs where

each job has a due date, processing time, and earliest start time. However, each job also

requires a certain amount of physical space for processing. Furthermore, there is a limited

amount of physical space available in which to process these jobs. The objective of such

a problem generally involves best meeting the job due dates within the given processing

space. Thus, solving a spatial scheduling problem involves the challenging task of

simultaneously determining the start times for each job as well as their spatial locations

and layouts inside the processing area.

There is very little existing research addressing this type of problem. Furthermore,

the existing research is very industry-specific and relies heavily on heuristics based on
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problem-specific domain knowledge, rather than a sound body of theory, algorithms, and

general approaches for spatial scheduling. In light of this gap in research, the aim of this

dissertation is to address the topic of spatial scheduling in a more systematic manner, and

to develop more general exact and approximate methods that can be applied to a broader

range of spatial scheduling problems. Progress in this research area will advance the

research in various areas of applications, especially in industries that deal with scheduling

large components over a limited space for manufacturing, assembly and maintenance of

products such as ships, aircraft, space vehicles, cranes, cargo handlers, excavators,

loaders, and mining trucks to name some. In fact, the research contribution can be

utilized to include warehousing and supply chain problems as well. Traditional

production scheduling algorithms, and layout/packing optimization methods separately

are not appropriate for the problem addressed in this research due to the need to solve the

spatial problem and temporal problem simultaneously (i.e., optimizing space dynamically

over time).

1 . 1 . AN EXAMPLE PROBLEM

To illustrate a basic spatial scheduling problem example, imagine a single

rectangular area is given having a width of 10 and height of 8. Suppose the jobs in Table

1 below must all be processed inside this area, and the objective is to minimize the total

amount of tardiness for all jobs. The Tardiness for job y is defined as 7) = max (0, Q-d/)

where C, is the job's completion time and d;is its due date. The objective will then be

S?=? Tj where ? is the total number ofjobs.
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Job Width Height Earliest Start Processing Time Due date d,

2

T 10

10

Table 1: A small problem instance

Like any other scheduling problem, solving this problem requires determining the

time each job must start and end. Unlike other types of scheduling problems, however, a

solution also requires determining the location inside the area that each job will occupy.

This involves assigning a coordinate to each job and, in some cases, may also involve

rotating jobs so they can fit inside the processing area or best optimize the objective

function. An optimal solution to this problem is given in Table 2 below, and is visualized

in Figure 1. In this solution, each job is assigned a start time and location. Job 5 was also

rotated by 90 degrees so it can fit inside the area. In Figure 1 , the bottom-left corner of

the processing area is the (0, 0) coordinate, and the coordinate of each job is the corner

nearest to the (0, 0) point.
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Job/ Start Completion

Time Cj

Due

Date d,

Tardiness Width Height

1

T 10

10

Table 2: An optimal solution to the small problem instance, in ascending start-time order

> ims - u

JcA
2

iQ.m
Width

Time - 5

¦¿OP *?

Job1

Job
2

Time - 2

Job i

Job 4

Time = 6

JobS

i-i

Job

2

Tifiie - 4

Job 5

Job 1

Time = .

Figure 1: A visualized solution to the small problem instance

This example illustrates that spatial scheduling problems have both temporal and

geometric aspects to them, and also that these two aspects are intertwined in a complex
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way. Thus, when the jobs are scheduled affects where they can be placed and how they

can be laid out, and vice versa. It is intuitively apparent that this makes spatial scheduling

problems more complex than other types of scheduling problems. As a consequence, the

unique combination of temporal and spatial aspects found in spatial scheduling problems

makes them very difficult to solve in general.
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CHAPTER 2: DISSERTATION SCOPE

In real-life situations it is possible, and perhaps even to be expected, that a spatial

scheduling problem encountered in one context will differ from another in one or more

aspects. Such differences may include certain constraints as well as the objective

function. However, many kinds of spatial scheduling problems can be articulated in terms

of one of two general problem models, referred to in this dissertation as the single-area

problem, and the multiple-area problem. This dissertation research will address spatial

scheduling problems having these forms. The general forms of these problems are stated

in Table 3 below.

The Single-Area Problem

Given: 1) a single processing area with a specified width and length, 2) ? jobs each

having a width, height, earliest start time, processing time, and due date, and 3) an

objective function/

Objective: Assign to each job 1) a start time, and 2) a location inside the processing area,

so as to optimize/

The Multiple-Area Problem

Given: Y) m processing areas each having a specified width and height, 2) ? jobs each

having a width, height, earliest start time, processing time, and due date, and 3) an

objective function/

Objective: Assign to each job 1) a single processing area in which to be processed, 2) a

start time, and 3) location inside the assigned processing area, so as to optimize/

Table 3: Problem statements for the single-area and multiple-area problems
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Because of the inherent limitation of physical space, certain constraints will apply to

virtually all spatial scheduling problems. It is thus expected that individual problem

instances will differ most from one another by their objective function/ Several types of

objectives are inherent to spatial scheduling. These include due date-related objectives

(e.g., minimizing total tardiness, maximum lateness, and total earliness and tardiness),

throughput-related objectives (e.g. minimizing makespan, total completion time), and

load-balancing objectives (e.g. minimizing the difference between number of jobs

assigned to different areas). There may be other types as well that are more specific to

certain problems. Thus, a spatial scheduling problem can involve any combination of

different types of objectives. In order to accommodate multiple objectives while

preserving the general problem structure, the objective function /can in many cases be

treated as a linear combination of one or more weighted terms, where each term

quantifies an individual objective.

The nature of the basic problem structures indicates that much can be learned

about spatial scheduling problems in general by studying problems with a particular

objective function. This is because certain constraints and other structural properties

apply to all spatial scheduling problems, such as the requirement that at any given time

no two jobs may collide and occupy the same space. As a result, this dissertation will

primarily focus on a single objective: minimizing the total tardy time. As will be shown,

however, by studying problems with this objective there is much that can be said about

spatial scheduling problems in general. Consequently, most of the models and solution

methods developed in this dissertation can be readily adapted for problems of different

objective functions. Other objective functions will occasionally be touched upon, and it
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will always be pointed out to the reader whenever a model, solution method, or

theoretical result may be applied more broadly to other spatial scheduling problems.

In the next chapter, the relevant literature will be reviewed and it will be shown

that spatial scheduling problems have been addressed primarily through methods relying

heavily on industry domain and problem-specific knowledge as opposed to a general

body of theory, models, and algorithms for such problems. In light of this gap in the

literature, this research will seek to address spatial scheduling in a more general and

systematic manner by addressing the single- and multiple-area problems described above,

primarily focusing on the minimal total tardiness objective. The scope of this dissertation

is based on the following research objectives: 1) development of exact and approximate

methods for solving problems with the total tardiness objective, that can also be extended

and applied to a broader and more general range of spatial scheduling problems, 2) an

analysis of the computational complexity associated with spatial scheduling, 3) the

derivation of a lower bound for problems having the total tardiness objective, and 4)

extensive computational experimentation and analysis of solutions obtained through the

developed methods.

In order to meet these objectives, this dissertation is organized as follows. In

Chapter 3, a thorough literature review is conducted to review the state of the art not just

of spatial scheduling literature, but also of other relevant types of scheduling and packing

problems. In particular it will be seen that there is little systematic treatment of spatial

scheduling, and of the scarce existing research in this area most is based on expert

systems and is highly domain knowledge-dependent. In Chapter 4, optimization models
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are developed for several classes of single- and multiple-area spatial scheduling

problems. These models will enable optimal solutions to be found for small problem

instances and also provide a significant amount of insight into the general nature of

spatial scheduling problems. The models will include core constraints that apply to

virtually all spatial scheduling problems, enabling them to be readily adapted to many

individual problems and extended by other researchers. Additionally, such models will

provide a basis for complexity analysis of solution by branch-and-bound, the most

commonly implemented method for solving integer programs [27]. In Chapter 5, the

computational complexity of spatial scheduling problems is addressed. The complexity of

the optimization models developed in Chapter 4 is also addressed. In Chapter 6, a lower

bound is derived for spatial scheduling problems involving the total tardiness objective.

Additionally, a polynomial-time algorithm is given that will enable the calculation of this

lower bound.

Chapters 7 and 8 deal with the development of approximation algorithms capable

of finding near-optimal solutions in a reasonable time for larger, realistic problems. In

Chapter 7 a number of greedy heuristic algorithms are developed for spatial scheduling.

These heuristics are designed primarily to give feasible solutions quickly and involve no

search. These heuristic algorithms also serve as important components of the hybrid

meta-heuristic algorithms developed in Chapter 8. Chapter 8 introduces a general spatial

scheduling algorithm framework that combines a greedy heuristic algorithm for finding

feasible schedules with a meta-heuristic for searching for near-optimal solutions. Using

this framework, several hybrid meta-heuristic algorithms are developed that employ local

search as well as several varieties of simulated annealing.
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In Chapter 9, extensive computational experiments are conducted on the hybrid

meta-heuristic algorithms to assess their performance. Four different problem-generation

algorithms were developed and used (detailed in Appendix 1) to generate large numbers

of problems of differing sizes and qualitative characteristics. The hybrid meta-heuristic

algorithms are tested on a wide variety of generated benchmark problems. The

performance of these algorithms is assessed in comparison to the calculated lower bound,

to optimal solutions found using the models (in small problem instances), and to each

other. The hybrid meta-heuristic algorithms are found to be generally effective in

obtaining good solutions, and the best-performing algorithm variants are identified.

Finally, Chapter 10 summarizes the findings of this dissertation and highlights several

future research areas.
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CHAPTER 3: LITERATURE REVIEW

As has been discussed in the preceding chapters, spatial scheduling superimposes

both temporal and geometric aspects into a single problem. Because of this dichotomy, a

sizeable portion of research that addresses bin-packing or strip-packing problems is

highly relevant to spatial scheduling. Literature related to spatial scheduling may thus be

grouped into two broad categories: literature that directly addresses problems of spatial

scheduling, and relevant literature that addresses problems related to bin, box, and tile-

packing. Spatial scheduling appears to be a relatively new area of research; there are few

papers published directly on the subject. However, there is a significant amount of

literature addresses problems related to packing problems.

3.1. EXISTING SPATIAL SCHEDULING LITERATURE

Most of the research that directly addresses spatial scheduling deals with

problems in the shipbuilding industry. One such problem, the block assembly scheduling

problem, is addressed by several papers in the literature. This problem is succinctly

described by Park et al. [13]. The hull of a ship is constructed from a set of sub-parts

called blocks. Blocks are assembled inside of bays. Each block has an earliest- and latest-

start-time, a set of acceptable bays in which it can be assembled, and a shape. The block's

shape is specified by a convex polygon. The objective is to schedule the blocks to be

assembled in bays and allocate their spatial layout in such a way that minimizes the

maximum tardiness of any block assembly.

The approach in [13] relaxes the latest-start-time constraint in order to ensure

feasibility. A decomposition and heuristic approach is used that involves breaking the
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planning horizon into periods. A schedule is generated for each period and then these

schedules are concatenated together to form the final schedule. In order to reduce the

computational burden a predetermined set of block shapes was used based on the

shipbuilder's practice. The algorithm for generating schedules makes use of a search tree

that expands partial schedules until complete schedules have been generated or

termination conditions occur. At each step, a set of possible schedules are generated by

expanding the current partial schedule. These are evaluated, and the most promising ones

are chosen as child nodes of the search tree. This process is repeated until a suitable

schedule is found. The assignment of blocks to bays is a sub-algorithm of the overall

scheduling process. It is essentially a spatial load-balancing procedure that assigns blocks

to bays based on an over-estimated rectangularization of the blocks and the space

availability of the bays. The spatial layout of blocks within bays is another sub-algorithm

of the scheduling process. For a given bay at any time in the schedule, there are a set of

blocks within that bay. A scanning algorithm traverses the bay and looks for an open

space in which the next block can fit, and then allocates the block to that space.

The block assembly scheduling problem is also addressed Lee et al. [12]. In this

paper the basis for an expert system to solve the block scheduling problem was detailed.

The problem of placing two-dimensional convex polygons into fixed rectangular areas is

explored. Specifically, four placement strategies are examined. The Maximal Remnant

Space Utilization Strategy is a vertex-based strategy useful when the problem involves

many trapezoidal or triangular blocks. The Maximal Free Rectangular Space Strategy is

based on 90-degree corner-spaced areas and is useful when allocating rectangular-shaped

objects. The Initial Positioning Strategy is useful on empty areas when positioning the
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first object inside. The Edging Strategy is an edge-based strategy that aims to minimize

the fractioning of space by properly positioning along edges. These four strategies are

utilized by a composite partitioning algorithm that places objects based on its

characteristics and that of the space. The scheduling of objects in two dimensions is then

shown to be a type of three-dimensional packing problem, where the third dimension is

time. This is not a general three-dimensional packing problem, however, because of start-

time and end-time constraints. This three-dimensional representation is a kind of schedule

search space, and schedules are generated in this space. Six types of backtracking

operations are used to search for feasible solutions. These backtracking operations either

select new bays or adjust the positioning of the blocks either spatially, temporally, or

both.

The two papers mentioned thus far utilize a combination of searching and

knowledge-based approaches to develop schedules for the block assembly scheduling

problem. In Varghese et al.[30] a genetic algorithm is used to solve a related problem. In

this problem, the dates of erection of each block are determined ahead of time, and the

objective involves determining the appropriate locations for the blocks near appropriate

machinery. The approach employed involves using a penalty function-based genetic

algorithm.

A related problem to the block assembly in shipbuilding is the block painting

problem. This problem is discussed by Cho et al. in [14]. Block painting consists of two

phases: blasting and painting. These phases are carried out in sequence - every block is

first blasted and then painted. The blasting and painting take place in different cells
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within the paint shop, thus blocks go through the process in batches. The objective of

this problem is to maximize space utilization while also balancing the workload of the

teams. The approach developed in [14] entails the use of four separate algorithms that

work in separate steps: operation strategy, block scheduling, block arrangement, block

assignment. The operation strategy is applied first and determines which cells to use for

blasting and which ones to use for painting. The block scheduling and block arrangement

algorithms are then applied in tandem. The block scheduling algorithm determines the

block operation schedules and the block arrangement algorithm geometrically positions

the blocks within the cells. Finally, the block assignment algorithm assigns work teams to

blocks.

Another type of problem that is very similar to spatial scheduling is called the

berth allocation problem. This problem is encountered in maritime cargo terminals. Each

terminal has cargo ships coming and going, loading and unloading, and the objective is to

coordinate ship arrivals and departures as efficiently as possible. At any given time there

is a set of known ships that must be scheduled, and re-scheduling occurs on an ongoing

basis as conditions change. Ships utilize a certain amount of water space, and there is a

limited amount of space surrounding the ports (called quays). Thus, this problem is

essentially a spatial scheduling problem, although it is not referred to by this term in the

literature. Imai et al. [28] developed a heuristic algorithm that incrementally places ships

in the quay, working from the outer borders inwardly. At each step the target ship is

placed within the open "window" and the window is updated to reflect the addition of the

new target ship. However, an important insight is also made in this paper about the

underlying nature of the problem: solving the scheduling problem at a given time is
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equivalent to the cutting stock problem [29]. This problem involves determining how to

cut stock material into rectangular pieces to be used in products in such a way that the

minimum amount of stock is wasted (i.e. not able to be used in any product). This insight

enabled an integer programming formulation of the problem.

In certain business and industrial scenarios it is critical to be able to rapidly detect

and resolve spatial-temporal conflicts. Such problems are not concerned with

optimization (as is the case with spatial scheduling) but rather the detection (and

sometimes the resolution) of spatial-temporal conflicts. Song and Chua [62] address a

problem in the construction industry involving the detection of spatial-temporal conflicts

in project scheduling. They employ a vector- and logic-based approach for detection of

such conflicts. Howorth and Sang [63] address a problem in airport operations that

involves determining appropriate aircraft takeoff positions and times. They utilized a

constraint-based approach that involves automated reasoning to detect and resolve

potential spatial-temporal constraints. Their objective was to aid human controllers by

suggesting feasible takeoff positions.

3.2. LITERATURE ON RELEVANT PACKING PROBLEMS

Because of the clear geometric aspects involved in spatial scheduling, literature

addressing certain types of packing problems has a high degree of relevancy. Two types

of packing problems are particularly relevant: bin packing problems and strip packing

problems.

The classical bin-packing problem (BPP) [35] involves determining how to pack

? objects into fixed-sized bins of size W in a way that minimizes the total number of bins
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required. The simplest form of this problem involves one-dimensional bins and objects. A

more complex variation of this problem, the variable-sized bin-packing problem

(VSBPP) [31] involves determining how to pack ? objects into bins where there are m

different bin sizes VK¿ to choose from, each with an associated cost q. The objective is to

determine a packing that minimizes the total cost. For each of these problem variants,

two- and three-dimensional variations exist. For each of these variations of the problem,

two- and three-dimensional variants also exist. The two-dimensional variations involve

packing rectangular objects into larger rectangular bins. Some varieties require fixed

orientations for the objects, while others may also allow objects to be rotated by 90

degrees. Analogously, the three-dimensional variations involve packing three-

dimensional box-like objects into larger boxes. These problems may likewise have fixed

orientations or permit one of six possible rotations to be selected for each object.

Another type of packing problem, the strip-packing problem (SPP) [8], is also

very relevant to spatial scheduling. The classical SPP has some similarities to the two-

dimensional bin-packing problem. The classical SPP involves determining how to pack

two-dimensional rectangular objects into a two-dimensional strip - a container with a

fixed width and without a fixed height. The objective is to determine how to pack the set

of objects into the strip in a way that minimizes the required strip height. One variation

on the classical SPP permits the objects to be rotated by 90 degrees. In addition, there are

also three-dimensional variants of the SPP as well [38]. A three-dimensional SPP

involves packing a set of three-dimensional boxes into a strip with a fixed length and

width in a manner that minimizes the required height. As with three-dimensional BPP 's,
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some three-dimensional SPP variants also permit the objects to be rotated into one of six

possible orientations.

Before continuing on to look at particular approaches to packing problems, it is

appropriate to first examine the similarities and differences between packing problems

and spatial scheduling problems.

3.2A) Similarities and Differences between Spatial Scheduling and Packing Problems

In Chapter 1 an example spatial scheduling problem was given, and as part of this

example a visual representation of the solution was shown in Figure 1 . In this depiction

the packing aspect is clearly seen: each time a new job is placed inside the area to be

processed, its location and orientation within the area must be determined. Furthermore,

as jobs continuously enter and leave the processing area, the resulting available space can

become very irregular and result in formidable challenges in determining where new jobs

should go. Thus, there is a clear two-dimensional packing aspect to spatial scheduling.

Another way to conceive two-dimensional spatial scheduling problems is to

understand them as three-dimensional problems, where the dimensions are processing

area width (x-dimension), processing area height (y-dimension), and time (z-dimension).

A depiction from this perspective is shown below in Figure 2.
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Figure 2: An example of a two-dimensional spatial schedule in three dimensions

It is clear by looking at this example that there are similarities between spatial scheduling

and packing problems. Indeed at first glance, this example makes it tempting to think of a

spatial scheduling problem as simply a box-packing problem in disguise. This would be a

mistake, however, because it ignores some of the fundamental aspects of spatial

scheduling: the earliest available start dates and the due dates associated with each job.

The earliest start date associated prevent jobs from being placed at just any z-coordinate

(i.e. start time). Similarly, the job due dates will certainly affect when the jobs should be

started, and depending on the objective function may also directly bear on where such

jobs should be placed as well. In addition, when the jobs are scheduled affects where they
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can be placed and how they can be laid out, and vice versa. So although significant

similarities exist, these problems in general cannot be reduced to box-packing problems

and, thus, their temporal and spatial components simply cannot be addressed separately.

Because of these similarities, however, a number of concepts and problem

representations found in the packing literature can be brought to bear on the problem of

spatial scheduling.

3.2.B) Packing Solution Methods in the Literature

The one-dimensional classical BPP is known to be NP-hard [34], and because the

VSBPP is a generalization of the BPP it follows that it is also NP-hard [31]. As a

consequence, heuristic approaches are most commonly utilized in practice. The classical

BPP has been widely studied and there is a sizeable body of literature on this problem.

One widely-used heuristic for this problem is the first-fit heuristic, a greedy algorithm

that successively adds objects to bins. Each object is placed in the first bin it fits in, and

new bins are added only when the current object does not fit into any currently utilized

bin. Another well-known heuristic, the best-fit heuristic, places objects into the most-full

bin in which it fits. As it turns out, these heuristics both perform generally well. Johnson

et al. [35] proved that for a given BPP with optimal number of bins L*, both of these

17

algorithms will never do worse than — L * +2 bins. Furthermore, in this paper it was also

shown that by sorting objects in decreasing order of size, these heuristics will never do

worse than— L * +4 bins. Such an algorithm is called a first-fit-decreasing (FFD)

heuristic. An improved variation on FDD, the MFFD heuristic, was given by Garey and

71

Johnson in [36] and was shown to perform in no worse than — L * +1 bins [37].
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A number of modern heuristics for the one-dimensional VSBPP are complied and

reviewed in Haouari et al. [31]. In particular, six different heuristics for this problem are

discussed and results compared. Of the six, four are constructive heuristics that involve

iteratively using the subset-sum heuristic, one is a heuristic based on set covering, and

one involves the use of genetic algorithms. An important empirical result discovered in

this paper is that the set-covering heuristic performed extremely well for the VSBPP,

yielding very near-optimal solutions to large problem instances while consuming only a

small amount of computational time. This heuristic is based on column-generation and

works in two phases: first, it generates a set of "attractive" feasible solutions prior to

solving the set-covering model and secondly, it obtains an approximate solution by

solving a restriction model. In the paper, the only discussion of this heuristic is in relation

to the one-dimensional VSBPP. However, a reference is given to [33], where it is

employed to solve a basic version of the two-dimensional bin-packing problem. In this

version, all bins were of equal size and rotations on the rectangles were not permitted.

Another approach reviewed in [31], the genetic algorithm approach, is particularly

relevant to spatial scheduling because the problem representation may be adapted for

certain spatial scheduling variants, in particular those that involve more than one

processing area. Multiple bins are inherent to the VSBPP, and the chromosome

representation used in the paper suggests a good way to represent multiple-area variants

of spatial scheduling problems. In this representation scheme, the chromosomes are

represent a list of bins, and items are packed one at a time in the first bin until it is full,

then the next bin is packed, and so on. One, two, and three-point crossover schemes are

given that can all operate on this representation.



36

A wide variety of recent approaches for the two-dimensional SPP are reviewed by

Riff, et al. in [41]. These approaches may be categorized into three broad classes: exact

methods, heuristic methods, and meta-heuristic methods. Two exact approaches are

reviewed that are both based on a branch-and-bound strategy. On exact approach by Lesh

et al. [42] is reviewed that considers perfect packing problems, a very difficult type of

strip-packing problem where an optimal solution results in no empty space left inside the

strip. This approach employs branch-and-bound and tries to avoid making "holes" - open

areas inside the strip surrounded by objects. In this approach, branches are cut when new

objects cannot be placed inside the strip without generating a hole. This approach

performed well for problems instances with less than 30 objects. Another exact method is

that of Martello et al. in [43]. This approach relaxes constraints on the objects' areas to

obtain a lower bound. It performed well on the same set of problems as experimented

with in [42], and also on other test problems as well. In [41] it was concluded that in

general, exact approaches work well for problems with less than 30 objects.

A wide range of heuristic methods have been developed for the SPP. One of the

earliest, the bottom-left heuristic (BL), was introduced by Baker et al. [8]. BL entails

ordering the objects by the amount of area they consume and placing them one at a time

into the strip in a bottom-left-first manner. An improved version of this heuristic,

developed by Chazelle [44], is called bottom-left-fit (BLF). This heuristic works by

placing each object at the left-bottom-most location in which it will fit. Hopper and

Turton [46] in turn improved the BLF into a new heuristic called BLD. BLD entails

ordering the objects according to multiple criteria, such as height, width, and area. A

greedy packing is obtained for each of these lists, and the best results are returned. Lesh
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et al. developed a probabilistic version of BLD called bubble-search (BLD*) [47]. In this

heuristic, objects are ordered in decreasing order according to some criteria (e.g. width,

height, area, etc.). At each iteration, starting with the first object in the remaining list and

working backward, the first object is greedily packed with a probability p. If it is not

selected, another is selected in the same manner starting with the next item in the list.

This packing process is carried out until all objects have been packed. It is then repeated

as many times as can be executed within a specified time limit, and the best solution

obtained is returned. Another heuristic, the best fit decreasing height (BFDH), was

developed by Mumford-Valenzuela et al. [49] for guillotine-cut variants of the SPP. A

guillotine-cut problem is one where the strip must be packed by cutting into sections

using only straight-line "guillotine" cuts. Thus, a packing results in such a "guillotine-

cut" division of the strip. BFDH first orders the objects from tallest to shortest. Objects

are then packed in a bottom-left-first manner into the area, making "guillotine cuts" to the

area and resulting in sub-areas. Objects are then packed left-justified into the resulting

sub-area which results in the least amount of space remaining in that area. If an object

cannot fit into any existing sub-area, a new guillotine cut is made for the object.

Bortfeldt [50] developed an improved version of BFDH (called BFDH*) for use in

initializing a genetic algorithm population. BFDH* permits rotations, and so selects the

best orientation for each object at a given time. Additionally, before creating new sub-

areas BFDH* attempts to first fill holes in existing sub-areas by making guillotine-cut

packings to these sub-areas. Finally, Zhang et al. [52] present a recursive heuristic for

guillotine-cut packing that involves packing an object, then recursively packing the two

sub-areas that result. In this scheme, objects with larger areas are given higher priority
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and are thus packed first. They reported very good results for this heuristic, with solutions

coming within 1.8% of the optimum on Hopper's difficult benchmark problems.

A number of meta-heuristic approaches are also reviewed by Riff et al. in [41].

Soke et al. [53] present two hybrid meta-heuristic approaches. One involves combining

simulated annealing with the BLF heuristic, and the other involves combining genetic

algorithms with the BLF heuristic. In each case the meta-heuristic is used to determine

the input ordering, and the BLF packing heuristic is then applied to the resulting input

ordering. Bortfeldt [50] developed a genetic algorithm approach called the strip packing

genetic algorithm layer (SPGAL) that according to [41] has produced the best results

known in the literature for benchmark strip packing problems with rotations. An initial

population is generated with the BFDH* heuristic. This results in solutions that are cut

into "layers". A genetic algorithm then searches directly on these layers in such a way as

to preserve the guillotine cut constraint. For non-guillotine-cut problems, a post-

optimization procedure is used that breaks this layer structure and adds to the solution

quality, although it becomes negligible as problems become larger. Finally, Burke et al.

[54] developed three hybrid algorithms by combining TABU search, simulated annealing,

and genetic algorithms, respectively, with the BF heuristic. In these algorithms, the BF

heuristic was used to create the packings and the respective meta-heuristic was used to

search through input orderings. It was found that the simulated annealing-BF hybrid gave

the best quality solutions.

A few important conclusions are given in [41] regarding the different approaches

that were evaluated. The first is that for packing problems of size less than 30, it is
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generally feasible and thus appropriate to use an exact method such as branch-and-bound.

The second is that the genetic algorithm-based SPGAL approach developed Bortfeldt

performed the best of any known approach on benchmark packing problems where the

objects may be rotated.

Most of the packing approaches reviewed up to this point have applied to one-or

two-dimensional packing problems. Furthermore, it has been shown that two-dimensional

spatial scheduling problems are essentially problems involving three dimensions. The

differences between a one- or two-dimensional problem compared to a three-dimensional

problem are not generally trivial. As a consequence, many solution methods for one-

dimensional problems cannot be directly applied to their three-dimensional counterparts.

One applied three-dimensional packing problem, the container loading problem, is

addressed by Chen et al. [40]. This problem involves packing three-dimensional

rectangular cartons into rectangular containers in such a way to minimize the total unused

space inside all containers. A mixed-integer program is formulated for this problem and

validated with a numerical example. Although correct, the computational performance of

this approach was not good, requiring about fifteen minutes to obtain an optimal solution

for a problem involving only six cartons. Wu et al. [32] modified this model to solve the

VSBPP and reported similar computational results for this approach.

Certain meta-heuristics, such as genetic algorithms or simulated annealing, rely

on probabilistic search and utilize generic operators for transforming solutions as well as

generic objective functions. In order to be applied to a certain type of problem, they

require only that problem-specific adaptations of the solution-transforming operators and
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objective functions be developed. Thus, if such meta-heuristics have been successfully

applied to three-dimensional packing problems, similar operators used to transform

packing solutions may be able to be used to transform spatial scheduling solutions as

well. These may be able to be used with differing objective functions to solve many

different types of spatial scheduling problems. Thus, this represents one viable approach,

granted that we can find these types of meta-heuristics applied to packing problems in the

literature.

It turns out that such meta-heuristics have indeed been applied to three-

dimensional packing problems. One approach used by Wu. et al. [32] applies a genetic

algorithm to several variants of the three-dimensional bin-packing problem. In one

variant involving only a single bin, the three-dimensional boxes can be rotated into one of

six orientations when they are packed. Relying on a result in [39] that shows a greedy

first-fit heuristic based on decreasing box volume is a good heuristic for 3D bin packing,

a genetic algorithm scheme is devised. This scheme aims to determine an optimal box

ordering and selection of orientations to feed into the heuristic so that the best possible

packing results. In the problem representation the chromosome contains an ordering of

boxes paired with the corresponding orientation of each box (a number from 1 to 6). In

the initial population, all solutions are sorted in decreasing volume order and have

randomly assigned orientations to each box. Roulette wheel-based selection is used for

reproduction, and a one-point crossover scheme is used. In this scheme, two

chromosomes are split at a certain point and the new chromosomes get one side from

each parent. A repair scheme is also employed because under the crossover mechanism it

is possible to have chromosomes that are either missing certain boxes or have duplicates.



41

Finally, two different types of mutations are used: one that swaps boxes, and one that

changes the orientations of boxes.

Thus, this scheme is reminiscent of many hybrid algorithms employed to solve

the 2D strip-packing problem reviewed in [41], where a heuristic is employed to pack

objects based on an input ordering and a meta-heuristic is used to search through input

orderings. This type of problem representation may be readily adapted to spatial

scheduling problems. In one sense, the spatial scheduling problems are simpler than this

type of bin-packing problem: Spatial scheduling jobs can have at most two possible

orientations rather than six, since they cannot be "rotated" in time. The only missing

piece is something analogous to the first-fit decreasing-volume heuristic. This warrants

further investigation into such heuristics that may be used for spatial scheduling.

3.3. SYNOPSIS OF LITERATURE AND RESEARCH GAP

A cursory glance over this chapter will reveal that there is a significant body of

literature that systematically addresses packing problems, but there are only a few

miscellaneous papers addressing spatial scheduling by comparison. Although the claim is

not made that every existing paper published that directly addresses spatial scheduling

has been examined in this literature review, the literature that is presented on this topic

appears to represent a nearly comprehensive review of such material at the writing of this

dissertation.

Knowledge-based methods dominate the current literature addressing spatial

scheduling. Thus, rather than relying primarily on an underlying body of spatial

scheduling theory or known algorithms, the current state of the art is best represented by
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the expert systems-approach. This approach is characterized by encoding expert domain

knowledge of a specific problem into rule-based computer programs as can be seen in,

for example, the literature addressing the block assembly or block painting problems in

the ship-building industry. Because of their reliance on domain or industry-specific

knowledge, these methods are generally brittle and cannot readily be transferred to

problems in different domains.

What appears to be missing in the literature is an approach to spatial scheduling

that aims to study the mathematical properties underlying such problems in general and

that provides more general algorithms that can be readily applied to a broad range of

problems. Currently there are no standard models of spatial scheduling problems.

Furthermore, this scheduling sub-discipline lacks a firm body of theoretical knowledge

suitable for general problem-solving. In light of this gap in knowledge, this dissertation

aims to advance the fundamental understanding of spatial scheduling by developing

standard models of spatial scheduling problems, analyzing the complexity of such

problems, and developing new approximation algorithms capable of providing near-

optimal solutions to a wide range of problems within reasonable amounts of

computational time.
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CHAPTER 4: OPTIMIZATION MODELS FOR SPATIAL

SCHEDULING

In this chapter, integer programming models are developed for both single-area

and multiple-area variants of spatial scheduling problems. These models are able to

provide exact optimal solutions through computer solvers and, perhaps more importantly,

provide insight into the essential mathematical properties of such problems. The models

will be developed primarily with regard to one objective function in particular, namely to

minimize total tardiness. However, the objective function is fairly interchangeable in

these models, and this objective function was chosen simply because it is quite common

in the literature. As will be shown in these model formulations, there are certain

constraints that are inherent to nearly any spatial scheduling problem. Thus these

constraints form a reusable core of virtually any spatial scheduling model. As an example

of how this core can be readily transferred to other objective functions, a model

formulation for a spatial scheduling problem with a different objective function, weighted

earliness/tardiness, is given. Finally, several solved problems and computational results

are also provided in this chapter.

4.1. SINGLE-AREA MODELS

To define the problem, it is assumed that a set ofjobs is given. Each job consumes

a certain rectangular space and has a required width, height, earliest start date, due date,

and processing time. It is also required that all jobs be processed within a single larger,

two-dimensional processing area of specified width and height. The objective is to

determine when each job should start and also where inside the area each job should be
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placed when it is processed in order to minimize the total tardiness for all jobs. The

Tardiness for job j is defined as 7) = max (0, Cj_df) where C, is the job's completion

time and djis its due date. Specifically, two variants of the problem are formulated: 1) a

fixed-orientation variant, where jobs retain their specified orientation, and 2) a rotation

variant, where jobs may be rotated by 90 degrees.

4.1A) Fixed-Orientation Model

As has been previously discussed, a problem of this type actually involves three

dimensions: width (x), height (y), and time (z). By considering the problem from this

perspective, the most distinguishing constraints become immediately perceivable - no

two jobs can consume the same space at the same time. Feasible solutions thus require

that for any two jobs i and;', either (I) i and; do not intersect in the width dimension (x-

dimension), or (II) i and ;' do not intersect in the height dimension (y-dimension), or (III)

t and ; do not intersect in the time dimension (z-dimension).To explain this more

precisely, consider the x-dimension. Let xk denote the x-coordinate assigned to job k, and

wk denote the width ofjob k. Then (I) above can be stated mathematically as follows: For

jobs i and ;' either x{ + W1 < x¡ or x¡ + w¡ < xt , which can be rewritten as X1 — Xj +

Wi < 0 or Xj; — X1 + Wj < 0. In a similar manner, if we let hk and pk denote the length

and required processing time for job k, respectively, we can rewrite I-III above as

follows:

I. X1 — Xj + Wi < 0 or Xj — X1 + Wj < 0
II. yi -yj + hi<0 or y¡ - yi + hj < 0
III. Z1 - Zj + Pi < 0 or Zj - z¿ + p; < 0
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The general form of each of these constraints can be reduced to the following

constraint: a < 0 or b < 0 for decision variables a and b . This general constraint can

then be rewritten as an equivalent set of constraints in a form appropriate for a linear

programming model as follows: 1) let M be a constant larger than any possible value a or

b can take on, and 2) let U1, U2 be decision variables. Then we have:

a < 0 or ò < 0 ?

(1) a - Mu1 < 0
(2) b - Mu2 < 0
(3) U1 + U2 <1
(4) U1, U2 e {0,1}

In this set of constraints, if a < 0 is not true then U1 = 1, and a similar case holds

for b < 0 and U2 . Because of this property, we will refer to U1 as the violator of a < 0

and U2 as the violator of b < 0. By letting U1 and U2 be binary decision variables that

sum to at most 1 , we assure that at least one of a < 0 or b < 0 is true. If we let a¿J

denote the violator for the constraint x¿ - x¡ + w¿ < 0 , /?¿;- denote the violator for

y¿ — Vj + h <0, and y¿;- denote the violator for Zj — z}, + p¿ < 0 then we can ensure that

at least one of constraints I-III above is true by using the following set constraints:

(6) Xi - Xj +Wj- McCij < 0
(7) Xj -Xi + Wj - Mctji < 0
(.S)yi-yj + hi-Mßij<0
Wyj-yi + hj-Mßji^o
(10) Zi - Zj +pi- MYij < 0
(ll)Zj-Zi + Pj-MYji<0
(12) ay + ajt + ßn + ßn + Yij + Yji < 5
(13) CLij.aji.ßij.ßji.Yij.Yji E {0,1}
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In the above set of constraints, if (6) or (7) are true then there is no intersection in

the x-dimension, if (8) or (9) are true there is no intersection in the y-dimension, and if

(10) or (11) are true there is no intersection in the z-dimension. Since there must be no

intersection in at least one dimension, at least one of the violators must be 0 - hence

constraint (12). Finally, there is constraint (13) so violators are binary decision variables.

This set of constraints is required for every pair of jobs i and; in the problem instance.

These constitute the most important core constraints common to all single-area problem

instances.

In order to formulate the basic non-rotational single-area model, we will utilize

the following nomenclature:

Constants Meaning
? The number ofjobs to be processed

W1- The width (x-dimension) ofjob j
The length (y-dimension) ofjob j

Pi The processing time (z-dimension) ofjob j
The earliest start time ofjob j

dj The due date ofjob j
W The processing area width (x-dimensional size)
H The processing area height (y-dimensional size)
M A constant larger than any conceivable decision variable value

Decision Variables

The x-coordinate ofjob j

Il The y-coordinate ofjob j
The z-coordinate (start time) ofjob j
The tardiness ofjob j

gj/ = 0 if Xj — Xj + w¿ < 0 is true, 1 otherwise (explained above)
ILL 0 if yj — y¡ + hj < 0 is true, 1 otherwise (explained above)

IiL = 0 if Zj — Zj + Pj < 0 is true, 1 otherwise (explained above)
Table 4: Nomenclature for the single-area fixed-orientation model
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Model 1: Single-Area Fixed-Orientation Model

?

Minimize ? = y Tj

Subject To:
Xi - Xj + W1- McCij < 0 for i,j = 1 ... n, i F j (14)
Ji - Yj + hi- Mßn < 0 for i,j = 1 ... n, i F j (15)
Zi - Zj +Pi- Myíj < 0 for i,j = 1 ... n, i F j (16)
au + ccji + ßij + ßn + Yij + Yji < 5

for i,j = 1 ...n,i F j (17)
Xj + Wj < W for ; = 1 ... ? (18)
y¡ + hj <H forj= 1...71 (19)
Zj - ey > 0 for) = 1 ... ? (20)
Xj.yj.Zj > 0 for j = 1 ...n (21)
<*ij> ßij> Yji e i0-1) for i>J = 1-?,?F j (22)
Tj - (Zj + pj - dj) >0forj = l ... ? (23)
Tj>0forj = l...n (24)

In this formulation it is assumed that jobs are not rotated; rather they always

preserve their specified orientation. Constraints (14)-(17) and (22) together ensure that

any two jobs i and; do not intersect in at least one dimension. The rationale behind these

constraints was explained above for (6)-(13). Constraints (18) and (19) ensure that no job

goes outside the area's width and length, respectively. Constraints in (20) ensure that no

job is assigned a starting time before its earliest start time. Constraints in (21) ensure that

all coordinates are assigned non-negative values. Constraints (23) and (24) together

appropriately set 7} for each job j. To understand these constraints, first consider that for

job j with due date dj, start time Zj, and processing time p¡, the ending time must be

Zj + Pj. Thus, the tardiness for job j is max(0,z;· + p¡ — dj) since tardiness cannot be

less than 0. Because the objective is to minimize the sum of all Tj, constraint (23) will
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ensure that 7) = Zj + p¡ — dj whenever job j is tardy - that is, whenever z, + p¡ — dj >

0. In a similar way, constraints in (24) will ensure that 7} = 0 whenever job j is not tardy

- that is, whenever Zj + p¡ — d¡ < 0.

4. LB) Incorporating Rotations

Model 1 shown above does not permit jobs to be rotated. In reality jobs may

sometimes be rotated in order to make better use of processing space. This model above

can be extended to allow for 90-degree rotation ofjobs by means of two basic

modifications. The first modification is to make each job width (w7) and height (ft,·) into

decision variables. In place of the prior constants ??,-and ft,we use dimension constants

D1J and D2; to arbitrarily designate the two dimensions of each job. The other

modification is to introduce a pair of "orientation selectors" R1J and R2j for each job. The

orientation selectors are binary decision variables, and each job has a pair of these that

sums to one. The resulting model is shown below.
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Model 2: Single-Area Rotational Model
IL

Minimize ?

Subject To:

Xi — Xj + Wi- McCij < 0 for i,j = 1 ... n, i F j (25)
yi - Vj + hi- ?ß? < 0 for i,) = 1...?,?F j (26)
Zi - Zj +Pj- Mfij < 0 for i,j = 1 ... ?, i ? j (27)
an + (?µ + ßu + ßµ + Yij + Yji < 5

for i,j = 1 ...n,i F j (28)

Xj +Wj < W for] = 1 ... ? (29)
y¡ + hj <H forj = 1 ... ? (30)
Zj -e¡ > 0 forj = l...n (31)
Xj, Jj, Zj > 0 for j = 1 ... ? (32)
«¿;. % X/i G ^0'1) /or ¿<^ = 1 - ?, i ^ j (33)
7} - (zy + Pj - dj) >0forj = l ... ? (34)
Tj>0forj=l...n (35)
w,· - Ki;£>i; - fl2;£>2y = 0 forj = 1 ... ? (36)
/iy - A17-D2, - A27-D1,- = 0 for j = 1 ... ? (37)
??; + ?2; = 1 forj = 1 ...? (38)
A17-, A27 e {0,1} /or; = 1... ? (39)

Constraints in (25)-(35) are exactly the same as (14)-(24) in the basic model. Constraint

(38) ensures that each job has exactly one orientation selected. Constraints (36)-(37) use

the selected orientation for each job j to assign one job dimension to the width variable

Wj and the other to the height variable Zi7 . Finally, constraint (39) enforces a binary

restriction on each orientation selector variable.
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4.1.C) Computational Results

A number of problems were hand-generated in order to computationally test these

models. The primary objective of these experiments was to verify the correctness of these

models rather than to test the performance of a particular solution method. Excessive

computational experiments thus avoided in favor of a small but carefully designed set of

test problems. Seven instances for each problem variant (i.e. with and without job

rotations) were devised by hand: one instance with 5 jobs, two with 6, two with 10, one

with 13, and one with 15. Each problem used a processing area of width 10 and height 8.

To verify that optimal solutions were found, all problem instances of size 5-10 jobs were

intentionally designed to have an optimal objective function value of 0. In order to further

test the models, certain problems were designed so that optimal solutions would require

some processing space to be used by different jobs at different times. Additionally, for

the variant permitting job rotations two nearly identical versions of the 5 -job instance

were developed, each containing a job having a dimension of 10 ? 3. In this case only one

orientation is possible. In order to verify correct orientation selection this job j was set to

D1J = 10, D2J = 3 in the first version, and D1J = 3, D2¡ = 10 in the second. The models

were formulated using ILOG OPL and solved using the ILOG CPLEX solver version

12.1.0 on a dual-core 2.1 GHz PC running Windows with 4 GB of RAM. For problem

instances with ten or fewer jobs, optimal solutions were found in less than one second.

Two solved 10-job problem instances are shown in Table 5. The non-rotation instance

with 13 jobs was solved in 7 minutes and 7 seconds. For the remaining three problem

instances, solutions could not be found within fifteen minutes of computational time. This
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is consistent with the complexity results in Duin [2] and Paulus [I]. The complexity of

such problems will be addressed in greater depth in the next chapter.

Problem with fixed job
orientations

Solution Problem with job
rotations

Solution

Job Wj hj e¡ Pj dj I Xj y¡ z¡ Dg D2j e/ Pj dj I Wj hj x¡ iL
1
2

3

4

5

6

7

8

9

10

4
4

2
1

3

10

2

5
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3

1

3

1

4

2

2

0
2

3
1

1

1
1

2

0

3

6
4

5
6

5

3
4

5

9

7

8

8

8
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6

5
6

9
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6

6

1

3

0 0
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7
0

5

0
2

2

0
4

0

4
2

0

0

4

3

4

1
1

1

4
0

6

2

5

4

3

1
10

1

4
2

2

0

2

3

1

0
0

0

0
0

0

6

4

5

6

2
3

4

5
9

7

8

8

8

4

5

4

10 1

6
5

6

9
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1
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2

5

3

2

2

4

2

3

3
3

1

4

2

1

3

1

0

0

0

4

0

6

2

5

1

0 0

5 4

0 0

8 8 0

0
4

3

4

1

0

0

1

4

6

Tabie 5: A solved 10-job instance for each problem variant

4.2. MULTIPLE-AREA MODELS

The models shown in the preceding section assume that there is only one

processing area available in which jobs may be processed. In reality, there may be two or

more processing areas available, each of differing dimensions, in which jobs may be

processed in parallel. Multiple-area problems are essentially generalizations of their

single-area counterpart previously discussed. The work in this section builds on that of

the preceding section by extending models 1 and 2 into their multiple-area counterparts.

In the multiple-area version of the problem, we are given ? jobs each having a

width Wj, height hj, processing time p¡, due date dj, and earliest start date e,·. Each job

must be processed inside a processing area, and we are given m available processing
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areas each having a width Wk and height Hk. Jobs may be processed in parallel and any

job may be assigned to any processing area, provided it can fit inside. The objective is to

assign each job a start time, a processing area, and a location inside the assigned

processing area in order to minimize total tardy time. As is the case for single-area

problem variants, the tardiness for job y is defined as 7} = max (0, C,_d;) where C, is the

job's completion time and d;is its due date. The objective will then be S;=? Tj where ? is

the total number of jobs. In this section multiple-area models for both fixed-orientation

and rotational problem variants are formulated.

4. 2.A. Rotational Model

Model 2 (the single-area rotational model) can be extended into a more general

model that incorporates multiple areas. In the multiple-area problem, we assume we are

given m processing areas each having a width Wk and height Hk . In order to extend

Model 2 into one that accommodates multiple areas we must determine 1) how to assign

each job to a processing area, 2) how to ensure that no two jobs assigned to the same

processing area occupy the same space at the same time, and 3) how ensure that each job

remains completely inside the bounds ofits assignedprocessing area. In order to assign a

job to an area, we employ a binary decision variable Ajk where A¡k = 1 if job j is

assigned to area k, and 0 otherwise. To ensure that no two jobs assigned to the same

processing area occupy the same space at the same time, we can modify constraints (25)-

(28) in Model 2. First, we revise the indexing of violators cr¿;·, /?¿;-, y;¿ to account for

multiple areas as follows:
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ai]k = O if Xi — Xj: + Wi < O is true inside of area k, 1 otherwise for i,j = 1 ... n, i F
j,k = l..m (40)

ßijk — 0 if y¿ — yj + h-i < 0 is true inside of area k, 1 otherwise for i,j = 1 ... n, t =£
j,k = l..m (41)

K/i/c = 0 if Zf — ?,- + Pi < 0 is true inside of area /c, 1 otherwise for i,j = 1 ... n, i F
j,k = l..m (42)

In Model 2, constraint (28) uses the violators to prevent any two jobs i and j from

colliding (i.e. prevents them from intersecting in at least one dimension). For the

multiple-area model we must revise this constraint to ensure only that two jobs i and y do

not collide if they are assigned to the same area. We thus extend constraint (28) as

follows:

<*ijk + ajik + ßijk + ßjik + Yijk + Yjik + Aik + Ajk < 7 for i,j = 1 ... n, i F j, k =
1..771 (43)

When jobs i and; are assigned to area k, it follows that Aik = 1 and AJk = 1. When this

is the case, (43) simply reduces to (28). Furthermore, if jobs i and j are assigned to

different areas, collision between them is impossible. Thus, by revising constraints (25)-

(27) in Model 2 to use the violators and indexing shown in (40)-(42), and by replacing

constraint (28) with (43), we can ensure that that no two jobs assigned to the same

processing area occupy the same space at the same time.

Finally, in order to ensure that each job stays within the bounds of its assigned

area, we must revise constraints (29) and (30) of Model 2 to incorporate multiple areas.

We first introduce binary decision variables A'}k where A'Jk = 1 if job; is not assigned

to area k, and 0 otherwise. Thus, A'jk is the complement to AJk and by definition
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Ajk + Äjk = 1. In order to prevent job; from going outside its assigned area's width, we

can revise constraint (29) as follows:

Xj + Wj - MA'jk <Wkforj = l...n,k = l..m (44)

In this constraint, x¡ + Wj > Wk only if A'¡k = 1. A similar case also holds for the height

dimension. We are now able to formulate the multiple-area model permitting rotations as

shown below.

Constants Meaning
? The number ofjobs to be processed
m The number of available processing areas
Pi The processing time (z-dimension) ofjob j

The earliest start time ofjob j
The due date ofjob j

W, The width (x-dimensional size) of processing area k
H, The height (y-dimensional size) of processing area k
M A constant larger than any conceivable decision variable value

Decision Variables

Xi The x-coordinate ofjob j

Il The y-coordinate ofjob j
The z-coordinate (start time) ofjob j

W; The width (x-dimension) ofjob j
The length (y-dimension) ofjob j
The tardiness ofjob j

Ä1 1 if Wj = D1J and h¡ = D2j, 0 otherwise
R2/ 1 if Wj = D2j and h¡ = D1/, 0 otherwise
*ik 1 ifjoby is assigned to area k, 0 otherwise

A'iL· = 1 ifjoby is not assigned to area k, 0 otherwise
aijk = 0 if Xj — Xj + Wj < 0 is true in area k, 1 otherwise
>ijk 0 if yj — y¡ + hj < 0 is true in area k, 1 otherwise

Yijk = 0 if Zi — Zj-, + Pi < 0 is true in area k, 1 otherwise
Table 6: Nomenclature for the multiple-area rotational model
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Model 3: Multiple-Area Rotational Model

?

Minimize ? = y 7}
J = I

Subject To:
Xi - Xj + wt- Maijk < 0

for i,j = 1 ...n,i F j,k = l..m (45)
yi - jj + hi- Mßijk < 0

for i,j = 1 ... ?, i F j, k = 1. . m (46)
z¿ - ?, +?— Myyfc < 0

for i,j = 1 ... n, i F j, k = 1. . m (47)
«£;* + «jifc + ßijk + ßjik + Yijk + Yjik + Aik +

Ajk < 7 for i,j = 1 ... n, i F j, k = 1. . m (48)
Xj + Wj - MA'jk < Wk

forj = l...n,k = l..m (49)

y¡ + hj - MA'jk < Hk
forj = 1 ...n, k = l..m (50)

Zj - e¡ > 0 /or; = 1 ...n (51)
7} - (z;· + Pj - dj) >0forj = l ... ? (52)
Tj>0forj = l...n (53)
Wj - R1JU1J - R1JD2J = 0 for j = 1 ... ? (54)
fy- - Ri]D2j - R2]D1J = 0 forj = 1 ...n (55)
Ai; + ^2; = 1 /or; = 1 ...n (56)
/?1J(/?2;G{0,1} forj = 1... ? (57)
m

2/,-fc = l /or; = l..n (58)
fc=l

Ajk + A'jk = 1 /or; = 1 ... n, k = 1. . m (59)
?,, y;, Zj > 0 /or ; = 1 ... ? (60)
^ijk. ßijk. Yjik e {0,1}

for i,j = 1 ...n,i F j,k = l..m (61)

i4;fc,i4';k e {0,1}
forj = l...n,k = l..m (62)

In this model, constraints (45)-(48) reflect the revisions necessary to prevent

collisions between jobs assigned to the same area as discussed in (40)-(43). Similarly,
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constraints (49)-(50) reflect the revisions necessary to ensure a job is placed within the

bounds of its assigned area, as discussed in (44). Constraint (58) ensures that each job is

assigned to exactly one area, and constraint (59) ensures that Ajk F Äjkfor each job y and

area k. Finally, constraint (62) enforces binary restrictions on the assignment and un-

assignment variables A¡k and A'jk. The remaining constraints are incorporated from the

single-area model (Model 2) without modification.

It may be pointed out that the constraints in this model, excluding (28) and (29),

can be transferred to other problem varieties with different objective functions.

4. 2.B. Fixed-Orientation Model

The multiple-area model shown above (Model 3) assumes that jobs may be

rotated by 90 degrees. In some cases, however, it may be required for jobs to have a fixed

orientation. The model shown above may be easily adapted to accommodate this

requirement by means of two modifications. First, each job's width Wj and height h¡ are

made to be pre-specified constants rather than decision variables. In this case D1J and

D2jare not needed. Secondly, constraints (54)-(57) are simply removed from the model,

as they specify how rotations should be selected. The resulting fixed-orientation model is

shown below.
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Model 4: Multiple-Area Fixed-Orientation Model
?

Minimize ? = y 7)
;'=?

Subject To:

X1 - Xj + W1- Maijk < 0
for i,j = 1 ... n, i F j, k = 1. . m (63)

yi - yj + hi- Mßijk < o
for i, i = 1 ... ?, i F j, k = 1. . m (64)

z¿ - z; + p¿ - My07c < 0
for i,j = 1 ...n,i F j,k = l..m (65)

«¿;fc + «jik + ßijk + ßjik + Yijk + Yjik + Aik +
Ajk < 7 for i,j = 1 ... n, i F j,k = 1. . m (66)

Xj + Wj - MA'jk < Wk
for j = 1 ...?, k = l..m (67)

yj + hj - MA'jk < Hk
forj = l...n,k = l..m (68)

Zj - e; > 0 forj = 1 ... ? (69)
Tj - (zj + Pj - dj) > 0 forj = 1 ... ? (70)
Tj > 0 for j = 1 ...? (71)
t?

2/,fc = l /ory = l..n (72)
?,* + ?';* = lforj = l ... n,k = l..m (73)
X7-, Jj, Zj > 0 /or j = 1 ... ? (74)
<*ijk> ßijk> Yjik e Rl]

for i,j = 1 ...n,i F j,k = l..m (75)

for j = 1 ...n,k = l..m (76)

4. 2. C Computational Results

As in the single-area case, the primary aim of these computational experiments is

to verify the correctness of these (multiple-area) models rather than to test the

performance of a particular solution method. Excessive experimentation is thus avoided
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in favor of a small but carefully designed set of test problems. Five problem instances

were developed for both the rotation and non-rotation models: one instance with 2 areas

and 8 jobs, two instances with 2 areas and 12 jobs, and two instances with 3 areas and 16

jobs. In each instance, all processing areas were of different sizes and each instance

included jobs not able to fit inside all processing areas. This was to verify the correct

assignment of jobs to processing areas. In order to verify correct rotation selection, two

versions were created of the 2-area, 8-job instance for the model permitting rotations. The

larger area in this problem had a width of 8 and height of 5. A job was included in these

instances that is able to fit only inside this larger area, having dimensions Dl = 7 and

D2 = 4. In the alternate version Dl and D2 were switched so that Dl = 4 and D2 = 7.

This enabled the correct orientation selection to be verified.

The models were formulated using ILOG OPL and each problem instance was

solved using the ILOG CPLEX solver version 12.1.0 on a dual-core 2.1 GHz PC running

Windows with 4 GB of RAM. For both problem variants (rotation and non-rotation)

optimal solutions were found for all instances in under 1 minute, excluding one 3 -area,

16-job problem instance whose jobs all shared an earliest start date, processing time, and

due date. These conditions made the problem difficult to solve, and the solver could not

find solutions within a 15-minute time limit for either the rotation or the non-rotation

variant. This is consistent with the complexity results in Duin [2] and Paulus [I]. The

complexity of spatial scheduling problems is discussed in more depth in the next chapter.

One solved problem instance for both problem varieties is given in Table 1. These

problems both utilized two processing areas: Areal with width =10, height = 5, and
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Area2 with width = 5, height = 4. Both cases have an optimal objective function value of

1.

Fixed-
Orientation
Problem

Solution Problem With

Rotations

Solution

Jo
b

Wj hj ej Pj dj xj yi Zi Are D1J D2j ej pj dj Wj hj Xj Jj Zj A
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O
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2
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1
0

9

9
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8

1
1

3 3 0 2 4 1
1 2 0 2 3 2
7 4 3 12 1

1 10 2 0 1
4 3 115 2
3 2 0 0 11
6 2 0 0 8 1
2 2 0 0 9 1

Table 7: Two solved mu tiple-area problem instances: with and without rotations

4.3 ADAPTATION EXAMPLE: A WEIGHTED EARLINESS-TARDINESS PROBLEM

The models developed thus far have all been concerned with the objective of

minimizing total tardiness. However, each model contains a core of constraints that can

be readily transferred to other types of spatial scheduling problems. In order to

demonstrate this more clearly, a model will be formulated for a problem with another

widely-known and more complex objective function: the weighted earliness-tardiness

objective function. In this objective function, both the earliness and tardiness of each job

contribute a certain weighted cost to the objective function. The objective is to minimize

total cost. Thus, given the earliness of job; is Ej with cost C17 and tardiness Tj with cost

C2j, the objective is to minimize S;=? C17-JS) + C27T). The earliness of a job; is defined as

max(0, dj — (z¡ + p7)).
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In order to demonstrate the adaptation of core constraints, a model will be

formulated for a single-area fixed-orientation problem with a weighted earliness-tardiness

objective function.

Constants Meaning
? The number ofjobs to be processed
w¡ The width (x-dimension) ofjob j

The length (y-dimension) ofjob j
Pi The processing time (z-dimension) ofjob j

The earliest start time ofjob j
The due date ofjob j

-i/ The weighted cost associated with the earliness ofjob j

'2L The weighted cost associated with the tardiness ofjob j
W The processing area width (x-dimensional size)
H The processing area height (y-dimensional size)
M A constant larger than any conceivable decision variable value

Decision Variables

The x-coordinate ofjob j

Il The y-coordinate ofjob j
The z-coordinate (start time) ofjob j
The earliness ofjob j

Il The tardiness ofjob j
Ci; = 0 if Xj — Xj + Wj < 0 is true, 1 otherwise (explained above)
IiL = 0ifyi—yj + hi < 0 is true, 1 otherwise (explained above)
IiL 0 if Zj — Zj + Pj < 0 is true, 1 otherwise (explained above)

Table 8: Nomenclature for the single-area fixed-orientation model with weighted
earliness/tardiness objective function
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Model 5: Single-Area Fixed-Orientation Weighted Earliness/Tardiness Model

?

Minimize ? = y CijEj + CijTj

Subject To:
Xi — Xj + Wi — Matj < 0 for i,j = 1 ... n, i F j (77)
Yi - y¡ + hi- Mßij < 0 for i,j = 1 ... n, i F j (78)
Zi - Zj +Pi- My1J < 0 for i,j = 1 ... n, i ? j (79)
ccij + ccji + ßij + ßji + Yij + Yji < 5

fori.j = 1...?,?F) (80)

Xj + Wj < W forj = 1 ... ? (81)
y¡ + hj <H forj = 1 ... ? (82)
Zj -ej>0 forj = 1 ... ? (83)
Xj, Jj, Zj > 0 forj =1... ? (84)
<*ij> ßij> Yjí e i0-1) for i·] = l-n,i* j (85)
Ej - (dj - (zj + Pj)) > 0 for j = 1 ... ? (86)
Ej > 0 for j = 1 ...? (87)
Tj - (Zj + pj - dj) > 0 for j = 1 ... ? (88)
Tj>0forj = l...n (89)

In addition to constants found in Model 1, this model also contains C1J and C2j- constants

for the weighted earliness and tardiness costs of each job ;'. Additionally, it contains the

decision variables Ej - the earliness of each job;. In this model, constraints (86) and (87)

have been derived from constraints (23) and (24) in Model 1, and constraints (88)-(89)

are identical to (23)-(24). These are re-stated as follows:

Tj - (Zj + pj - dj) > 0 for j = 1 ... ? (23)
Tj > 0forj = l... ? (24)

The rationale for these constraints was explained for Model 1 . In summary, (23) and (24)

together ensure that 7} is the end time minus the due date of job; if job; is tardy, and
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Tj = O if job y is early or on time. This same approach may also be used analogously for

properly determining the earliness Ej :

Ej - (dj - (zj + Pj)) > 0 for j = 1 ... ? (86)
Ej>0forj = l...n (87)

Thus, apart from the objective function and the addition of two constraints, this

model is otherwise identical to Model 1. In particular, (77)-(85) apply to virtually any

single-area problem variant with fixed orientations. This example demonstrates how the

core constraints developed in this chapter can in general be readily transferred intact to

other variants of spatial scheduling problems.
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CHAPTER 5: COMPLEXITY OF SPATIAL SCHEDULING

In this chapter, the worst-case complexity of spatial scheduling is examined.

Using the properties of the models given in the last chapter, the complexity for branch-

and-bound approaches will be examined first. Branch-and-bound is the most commonly

used approach for solving integer programs. Next, a proof of NP-hardness by reduction

will be given for a class of spatial scheduling problems. Finally, a number of complexity

results from the literature will be discussed and consequently, some conclusions will be

drawn about the complexity of spatial scheduling in general.

As spatial scheduling problems can vary widely, it is beyond the scope of this

dissertation to be able to analyze the complexities of each of these on an individual basis.

However, some problems variants are generalizations of others, and by analyzing the

worst-case complexity of more specific variants conclusions may be drawn about their

generalizations. For the spatial scheduling problems considered in this dissertation, the

generalization relationships among problem variants are depicted below in Figure 3.

Single-Area,
Fixed-Orientation

Single-Area,
Rotational

HlSHMMHBi

Multiple-Area,
Fixed-Orientation

Multiple-Area,
Rotational

Figure 3: Generalization relationships among problem classes. Arrows go from specific
to general.
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In Figure 3 above, the most specific problem class is the single-area fixed-

orientation. A rotational problem generalizes a fixed-orientation problem by simply

removing the fixed orientation restriction. Thus, a solution to a fixed-orientation problem

is a feasible solution when the fixed orientation requirement is removed, but not every

rotational solution is feasible when a fixed orientation requirement is introduced. In a

similar manner, a multiple-area problem also generalizes a single-area problem: a single-

area problem is simply a multiple-area problem where the number of areas m = 1.

What is apparent from Figure 3 is that every type of spatial scheduling problem

addressed by this dissertation is a generalization of the single-area fixed-orientation

problem class. Thus, by drawing conclusions about the worst-case complexity of this

class, conclusions can be made about the worst-case complexity of the rest of these

classes as well. As a consequence, the majority of the analysis in this chapter will focus

on this problem class.

5.1. COMPLEXITY FOR BRANCH-AND-BOUND INTEGER PROGRAM SOLUTION

Branch-and-bound is a common algorithm strategy for solving optimization

problems, and is the most widely employed method for solving integer programs [27]. In

this section the complexity of solving spatial scheduling problems through branch-and-

bound will be analyzed.

5. 1.A. Model Complexity

As previously discussed, this analysis will focus on the single-area fixed-

orientation problem variant (Model 1). For Model 1 it is possible to determine the
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number of binary variables, total decision variables, and constraints in terms of the

number ofjobs n. We can define three functions to specify these quantities, respectively,

in terms of n: B(n), VQn), and K(n). For convenience, Model 1 is reproduced below.

Model 1: Single-Area Fixed-Orientation Model

?

Minimize ? = y 7}
;'=?

Subject To:
X1 - Xj + W1- Mctij < 0 for i,j = 1 ... n, i F j (14)
Ji - ?) +hi- Mßij < 0 for i,j = 1 ... n, i F j (15)
Zi - Zj + Pi- Mfij < 0 for i,j = 1 ... n, i F j (16)
ccij + ocji + ßij + ßji + Yij + ?a < 5

for i,j = 1 ...n,i F j (17)
Xj + Wj < W for] = 1 ... ? (18)
yj + hj <H forj = 1-n (19)
Zj -ej > 0 forj = l...n (20)
Xj, Jj, Zj > 0 forj = l...n (21)
"H. ßij, Yji e {0,1} for i,j = 1 ... n, i F j (22)
Tj - (Zj + Pj - dj) >0forj = l ... ? (23)
Tj>0forj = l...n (24)

1) Number of binary variables in the model B (t?): By examining Model 1 it can

be observed that it contains the following binary variables: a¿;·, /?¿;-, and y¿;-. Each of these

variables is indexed over i,j = 1 ...n, i F j. A variable having this indexing has n(n -

1) = n2 —n instances. Since there are three such binary variables that have this

indexing, it follows that B (?) = 3n2 - 3n.
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2) Number of total variables in the model: V (ri): In addition to the binary

variables, the model also has the four additional types of decision variables: x¡, y¡, z¡, and

Tj. Each of these variables is indexed over; = 1 ...n, giving An total instances. Thus,

V(n) = B(n) + An = 3n2 - 3n + An = 3n2 + n.

3) Number of constraints in the model: K(n): As noted above, a variable

indexed over i,j = 1 ...n, i ? j will have n2 —n instances and the same holds true for

constraints. Looking at the list above, we see that constraints (14)-(17) and (22) are

indexed in this way. However, (22) puts three constraints together, giving a total of 7

constraints that have this indexing. This gives a total of In2 — In constraint instances

indexed over i,j — 1 ... n, i F j.

Constraints (18)-(21) and (23)-(24) are indexed over; = 1 ...n. It is also seen that

(21) puts three constraints together, which gives a total of 8 constraints with this

indexing. This gives a total of 8n constraint instances indexed over j = 1 ...n. Thus, it

follows that (n) = In2 -In + 8n = In2 + n.

5.1.B. Branch-and-Bound Solution Complexity

The spatial scheduling models developed in the previous chapter are all integer

programs with binary decision variables. As a brief review, branch-and-bound solution of

binary integer programs may be summarized as follows:

1 . Solve a linear programming (LP) relaxation of the integer program (IP). If all

decision variables are integers, terminate.

2. For non-integer-valued binary variables X1 ...Xn, choose a variable Xie{i...n] and

solve two sub-problems (branches) A and B where x¿ = 0 in A and x¿ = 1 in B.
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3. If:

a. A and B both contain all integer-valued binary decision variables, choose

the best solution

b. A and B are both infeasible, there is no solution

c. A or B contain non-integer-valued binary variables, recursively repeat step

2 for each sub-problem lacking a full integer solution

4. Always keep track of the best integer-valued solution found. At each branch, if a

sub-problem does not give a solution better than the best found so far, the entire

branch may be discarded.

Thus, branch-and-bound avoids doing unnecessary work through Step 4 - comparing

best-case branch solutions to the best integer solution found up to that point, and ceasing

to branch further when it will not lead to an optimal solution. It may be observed,

however, that in the worst case a branch will be required on each integer variable. Under

these conditions, for ? variables 2n branches would be required. This may be stated in

terms of the big-0 notation [56] as follows:

For a binary IP having ? binary variables, the branch-and-bound solution method is

0(2n). (90)

In the previous section the number of binary decision variables B (ri) was calculated

for the single-area fixed-orientation model (Model 1). Specifically, B(n) = Zn2 — 3n.

Thus, (90) implies that the complexity of solving this spatial scheduling model by

branch-and-bound for a given problem size of ? jobs is 0(23n _3n).
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The famous Boolean Satisfiability Problem (SAT) is one the first problems to be

proven NP-complete [57]. This problem involves assigning TRUE or FALSE to a set of

Boolean variables in a logical proposition. The objective is to assign Boolean values to

each variable in the proposition so as to make the proposition true. Because each variable

can take on two values, TRUE or FALSE, in the worst case it requires trying 2n

possibilities for ? variables. Thus, the complexity of the SAT problem is 0 (2n) - the

same complexity as branch-and-bound has in terms of the number of integer variables. As

a result, as the number of variables increases linearly, the worst-case number of steps

required to solve the problem increases exponentially - rendering this problem intractable

in the worst case. The following theorem may now be given:

Theorem 1: Solution of the single-area fixed-rotation integer program (Model 1) through

branch-and-bound is at least NP-complete.

Proof: Let P be a single-area fixed-rotation spatial scheduling problem having ? jobs,

and let S be an SAT problem having ? variables, where ? > 1. Then:

O(P) = 0(BQn)) = 0(23n2"3n) > 0(2n) = 0(S)

Thus, it follows that the complexity of P solved with Model 1 through integer

programming branch-and-bound is at least that of S.

5.1.C. A ReductionProof ofNP-Hardness

Strictly speaking, the results of the previous section apply only when the branch-

and-bound method is employed to solve the problem formulated as an integer program.

This leaves open the question of whether another method may be able to solve the
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problem in polynomial time. In this section a proof will be given that a particular class of

spatial scheduling problems is NP-hard.

The three-dimensional strip packing problem (3DS) was discussed in the literature

review in Chapter 3. This problem involves an open-ended rectangular carton with fixed

length and width, and an unbounded height. The objective is to determine a packing of ?

three-dimensional rectangular boxes into the carton in a way that minimizes the required

height. The 3DS is an NP-hard problem [38]. By reducing 3DS to a spatial scheduling

problem, the NP-hardness of this spatial scheduling problem can be established.

Theorem 2: Let S be a single-area spatial scheduling problem where 1) all jobs have a

common earliest start time of 0, and 2) the objective is to minimize the total time required

to complete all jobs. Then S is NP-hard.

Proof: Let G be a 3DS problem with a carton width W and length L, and a set B of boxes

to be packed. We assume that each b £ B is a triple having the form

b = (length, width, height). Now let S have a processing area of width I?7 and length L,

and a set of jobs J where each j E J is a triple having the form

j = (length, width, processing time) . Then we can assign J as follows: / =

{(w, h, p) I (w', h', G) G B,w = w', h = h', and ? = ?}. Since B and J are identical and

since the processing area and the carton have the same length and width, a schedule that

minimizes the total processing time T for S is equivalent to a packing that minimizes the

height H for G. Thus, G is solved by solving S, and since G is NP-hard it follows that S

must also be NP-hard.
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This result demonstrates NP-hardness for certain spatial scheduling problems, in

particular those with a common earliest start time and an objective to minimize total job

completion time. More specifically, this example illustrates the complexity of spatial

scheduling through its relation to packing problems. Clearly, it may be concluded that

spatial scheduling includes NP-hard problems.

5.1.D) Resultsfrom the Literature

The complexity of bin packing and strip packing problems has been widely

addressed in the literature and virtually every form of these problems is known to be NP-

hard. On the other hand, there is very little literature that addresses spatial scheduling

directly. However, within a very small body of literature some important complexity

results are found that have far-reaching implications for spatial scheduling.

One important result is found in Duin and Van Sluis [2]. In this paper they

describe a problem quite similar to the single-area problems with which this dissertation

is concerned, although somewhat simpler. The problem also bears similarities to the two-

dimensional strip-packing problem (2DS) already discussed in the literature review. In

2DS a strip is given of a specified width, and ? rectangles. The objective is to pack the

rectangles within the strip to minimize the strip's height. The problem described in [2]

involves jobs that have fixed start times and fixed horizontal positions, and the objective

is simply to determine the vertical positions. This problem is proven to be NP-hard.

Some very important results for spatial scheduling are discussed in Paulus and

Hurink [I]. In this paper, several elementary machine scheduling problems are

considered including, among others, makespan minimization for parallel machines with



71

unit processing times and flow shop problems. These problems are known to be solvable

in polynomial time. The 3-Partition Problem [58] is a well-known NP-hard problem.

This problem involves partitioning a list of numbers into three equally-sized lists. The

objective is to create these three partitions in such a way that each list of numbers sums to

the same number. Using reductions involving the 3 -Partition Problem it is shown that the

incorporation of a single spatial resource turns these problems into NP-hard problems.

Very importantly, it is pointed out in [1] that similar reductions can be applied to virtually

any scheduling problem, and that such reductions render these problems NP-hard with

the introduction of any spatial resources. This leads to the conclusion that the problems

addressed in this dissertation are NP-hard in general.
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CHAPTER 6: A LOWER BOUND FOR THE TOTAL TARDINESS

OBJECTIVE

In this chapter, a lower bound is derived for the objective of minimizing total

tardiness in a multiple-area spatial scheduling problem. A lower bound provides the

ability to objectively judge the quality of a proposed solution to an optimization

(minimization) problem. Consequently, a lower bound provides an important theoretical

insight into a problem. By definition, a lower bound for a given minimization problem is

a value always less than or equal to the optimal objective function value for that problem.

From this definition it is clear that the larger the lower bound is, the better the estimate of

the optimal solution value it will provide. For many objective functions (including the

total tardiness objective function) there is a trivial lower bound of zero. This is implicit in

the non-negativity constraints common to many minimization problems. This provides

little insight in estimating the optimal objective, however. In this chapter, a method is

developed for finding a better lower bound.

In order to begin to derive the lower bound for the total tardiness objective, recall

from Chapter 3 that a two-dimensional spatial scheduling problem is essentially a three-

dimensional problem where each job has a width, height, and time dimension. With

respect to the time dimension, each job has three different times associated with it: a

processing time, an earliest start date, and a due date. When a job is processed it requires

a certain amount of area (equal to width * height) for a certain amount of time (the

specified processing time, to be specific). Thus, for a given job j this results in a three

dimensional processing volume in space-time, where
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Processing volumeO) = width(y) * height(/) * processing time(y) (91)

Job y requires this volume of space-time in order to be processed. If job; is processed

within the interval of [earliest start date(y), due date(y)] - that is, it begins and ends

within this interval - then job j will not be tardy. Feasibility constraints prevent job;

from beginning before its earliest start date, but it may exceed the due date. Thus, the

amount of open time available for job ;' to be processed without being tardy is

Open time(y) = due date(y) - earliest start date(/) (92)

This open time multiplied by the area of job; results in an open volume of space-time in

which a job may be processed without being late:

Open volume^) = width(/) * height(/) * [due date(/) — earliest start date (/)] (93)

At any given time, the absolute maximum amount of space available Smax for processing

is the sum of area over each of the processing areas:

Smax = V width(a) * height(a) (94)
aBAreas

It is normally assumed that the amount of processing time required by a job is not

greater than the time interval between the earliest start date and the due date (otherwise it

is impossible for the job not to be tardy). Thus, the sum of all jobs' open volume will be

greater than or equal to the sum of the jobs' processing volume. However, because of the

total area limitation Smax, not all of the open volume is usable. As will be shown, the

difference between the total processing volume and the total usable open volume can be

used to determine a lower bound. Accordingly, a critical step in determining this lower
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bound lies in determining the amount of total usable volume. In order to do this, a

timeline can be constructed from the earliest start dates and the due dates of each job.

Events on this timeline occur when either a job's earliest start date occurs or its due date

occurs. An event may entail any number of jobs becoming eligible to start or becoming

due - this is simply determined if their earliest start dates or due dates coincide. By

definition of this timeline, during each time interval between any two consecutive events

no jobs become either eligible to start or become due.

Assume there are ? + 1 events on a timeline, and let each event £"¿ be numbered

where Ei < Ej if time(£¿) < time(F;·). This results in ? distinct time intervals (referred to

as periods for the remainder of this chapter) in which no jobs either become eligible to

start or become due. The duration of time for period P¿ beginning at time^) is given by:

Duration(i) = time(£"i+1) — time^i) (95)

Now let Ji denote the set of jobs with an earliest start date < time(F¡) and a due date

> time^i+i). Thus, each job; E Ji is eligible to be processed during period i and will

not accumulate any tardiness during this period. Moreover, during this period there is a

certain amount of total open volume contained:

Open volume(P[) = / width(y) * height(y) * Duration(i) (96)
;'ey¿

However, as previously stated, not all of this open volume is necessarily usable. The

total amount of available (two-dimensional) processing space Smax constrains the amount

of usable volume. As a result, the maximum amount of usable volume during period i is

Duration(i) * Smax. This gives the following usable volume for period i:
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Usable open volume(P¿) = min [Open volume(P¿), Duration(í) * Smax] (97)

Together with (91), this result enables the total amount of processing volume and usable

volume to be computed, respectively:

Total processing volume = y Processing volume(/) (98)
jsjobs

?

Total usable open volume = j Usable open volume(P¿) (99)
¿=i

The total processing volume is the required amount of space-time for job

processing, while the total usable open volume is the maximum available amount of

space-time in which jobs may be processed without being tardy. Because the total amount

of available (two-dimensional) processing area Smax is fixed, it immediately follows that

some jobs are guaranteed to be tardy whenever the total processing volume exceeds the

total usable open volume.
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This concept is illustrated in the figure below:

./

/

Time

A

Event i-t- 3

Eventi + 2

Event i -fri

Eventi

Figure 4: The open volumes of two jobs

The outer box represents the total amount of available processing area over time, and the

left and right inner boxes represent the time intervals between two different jobs' earliest

start dates and due dates. In other words, the inner boxes represent the two jobs' open

volumes. The events are shown, and the periods are the time intervals that occur between

the events. It is not difficult to imagine a situation where there are more inner boxes

within a specific time interval than can fit inside the processing area. In this case, the

maximum amount of usable open volume is the available processing area times the length

of the time interval.

In order to determine a lower bound, maximum space utilization efficiency will

be assumed. This assumption means that 100% of the available processing space (in other
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words, Smax ) is always utilized whenever jobs are processed. This assumption precludes

any unused space within a processing area when jobs are processed. Because the total

processing volume is a function of the jobs' width, height, and processing time, it is

fixed. Under the maximum space utilization assumption the minimum amount of time

Tmin required to process all jobs must be as follows:

Total processing volume
Train = ^ ~ (100)

Under the same assumption, the maximum amount possible of usable processing time

Tuopen is as follows:

Total usable open volume
Tuopen = ^ (101)

A lower bound may now be given.

Theorem 3: Let L = max(0, Tmin — Tuopen). Then L is a lower bound.

Proof: By definition, the total tardiness cannot be less than 0. Thus, only the case where

Tmin > Tuopen needs to be considered. Consequently, it is assumed that L = Tmin —

Tuopen- m order to prove L is a lower bound it must be shown that L is always less than

or equal to the minimum possible amount of total tardy time Z. Now assume to the

contrary that Z < L and let Vp denote the total processing volume as shown in equation

(98) above. By the assumed value of L it follows that Tmin = L + Tuopen which gives the

following:
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\Z + luopenjK^max) <¦ ^ + l uopenjK^max) ~ v* minJK^max) ~ Vp \*-V¿)

This contradicts the definition of Vp , which is the volume of space-time required to

process all jobs. ¦

6. 1 . AN EXAMPLE DEMONSTRATING AN OPTIMAL LOWER BOUND

Although it is possible for problem instances to have an optimal objective value

greater than the lower bound, an example can be quite easily demonstrated where the

calculated lower bound is equal to the optimal solution. The existence of such problems

demonstrates that this lower bound is not trivial and is capable of determining the optimal

objective value for some problems. Assume a single processing area having a width = 2

and height = 1, and assume that the following jobs must be processed:

Job Width Height

Earliest

Start

Processing

Time Due date dj

0

Table 9: Example jobs to be processed

Because there is 1 processing area with dimension 2 ? 1 , it follows that Smax =

(2)(1) = 2. The total processing volume can be calculated by summing each job's

processing volume (width * height * processing time) as follows:
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Total processing volume = (1)(1)(2) + (1)(1)(2) + (2)(1)(3) = 10

Events occur at times 0, 3, and 4; this totals three events or equivalently, two

periods. Period 1 occurs from time 0 to 3, having duration(l) = 3, while period 2 occurs

from time 3 to 4 having duration(2) =1. Jobs 1, 2, and 3 are all eligible to be processed

during period 1 without accumulating tardiness during this period, and job 3 is also

eligible to be processed in period 2 without accumulating tardiness within the period.

Recalling that the open volume for a period i is the sum of width(y') * height(j) *

duration(i) over all jobs j eligible to be processed without tardiness in period i. This

gives the following open volumes:

Open VOlUHIe(P1) = (1)(1)(3) + (1)(1)(3) + (2)(1)(3) = 12

Open volume(P2) = (2)(1)(1) = 2

The usable open volume for period i is min [Open volume(P¿), Duration(i) * Smax] ,

which gives the following:

Usable open VOlUmC(P1) = min(12, 3 * 2) = 6

Usable open volume(P2) = min(2, 1 * 2) = 2

The total usable open volume is the sum of usable open volumes over each period. Thus:

Total usable open volume = Usable open VoIuHIe(P1) + Usable open volume (P2) = 6 +

2 = 8.

Dividing by Smax = 2, the following are obtained:
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Total usable open volume 8
T = = - = 4

'max

These results give the lower bound L = Tmin — Tuopen = 5 — 4 = 1.

An optimal solution to this problem is shown below:

Joby Start Completion

Time q

Due

Date

Tardiness

Tj

Widt

h

Height

Table 10: Optimal solution to example problem

Thus, the total tardy time is 1, which is equal to the calculated lower bound.

6.2. A POLYNOMIAL-TIME ALGORITHM FOR COMPUTING THE LOWER

BOUND

The preceding results may be applied to develop a polynomial-time algorithm for

computing the lower bound. This algorithm utilizes two types of data structures:
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1. Job: This data structure contains the following attributes: width, height, earliest

start date, due date, and processing time.

2. Event: This data structure contains a time and two sets of jobs: starting and

ending. Jobs in the starting set are those that become eligible to begin at the

event's time (i.e. the jobs whose earliest start times occur at the event's time).

Jobs in the ending set are those that become due at the event's time (i.e. the jobs

whose due dates occur at the event's time).

Pseudocode for the lower bound algorithm and corresponding auxiliary procedures is

shown below. Comments follow the // symbol.

// The main algorithm.

Procedure COMPUTELB (Jobjist, Smax) DO:

// Events is a time-ordered array of events - so Events[l].time < Event[2].time < . . .

Events := BUILD_EVENT_LIST(JoZ>_Z/sO

OpenJJsableJ/olume := O

FOR / = 1 . . .Event_List.Length - 1 DO:

Duration := Events[i + I].time - Events[ i J.time

Current_Open_Volume := Y,jejob_List OPEN_VOLUME(/, Events[i], Events[i +
I])

OpenJJsable Volume := Open UsableJ^olume + min(Current_Open_Volume,

^max)

END FOR

Tmin- = SjejobMst Processing_Time(j) /Smax

Tuopen: = OpenJJsable_Volume / Smax

RETURN max (O, Tmin - Tuopen)
END COMPUTELB

Table 11: COMPUTELB - the main lower bound algorithm
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// Given a job with a start time and end time of a period, compute the corresponding open

// volume

Procedure OPENVOLUME {Job, StartJime, Endjime) DO:

IF Job.Earliest_Start_Date <= Start_Time AND Job.DueDate >= End_Time DO:

RETURN (EndTime - StartTime) * Job. Width * Job.Height

ELSE DO:

RETURNO

END IF-ELSE

END OPENVOLUME

Table 12: The OPENVOLUME procedure

// Generate and order the event list.

Procedure BUILDEVENTLIST (JobJList) DO:

AllJTimes :={x\x = j. Ear liest_Start OR ? = j. Due_Date for; G ]ob_List}.sort
Events := 0

FOR / = 1 . . . AllJTimes.Length DO:

Evt := New Event with Evt.time = All_Times[ i ]

FOR; G ]ob_List DO:

Add; to Evt.Starting IF';'.Earliest_Start_Date = All_Times[ i ]

Add; to Evt.Ending IF;'.Due Date = All_Times[ i ]
END INNER FOR

END OUTER FOR

RETURN Events

END BUILDEVENTLIST

Table 13: The BUILDEVENTLIST procedure
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It is assumed that the number ofjobs is n. Since each job has an earliest start date

and a due date, this gives two times for each job, making the number of events no greater

than 2p G 0(n). The FOR loop inside the Compute LB procedure spans over the events,

requiring 0(n) iterations. Inside this loop, the assignment of the Current Open Volume

variable sums over each job, making it 0(n). Thus, the complexity of this FOR loop is

0(n * n) = 0(n2) . The assignment of Tmin sums over each job, requiring 0(n)

operations. Thus, the total complexity to this point is (n) + 0(n2) < 20(n2) G 0(n2).

However, since the Build Event List procedure is used at the beginning of the Compute

LB procedure, the Build Event List complexity must also be analyzed and factored into

Compute LB as well.

In the Build Event List procedure, the assignment of the All Times variable

requires iterating over each job (which requires 0(n) operations) and sorting up to In

unique times. Sorting ? items is known to require 0(n * log(n)) operations [56]. Thus,

this assignment requires 0(n) + ?(? * log(n)) < 20(n * log(n)) G 0(n * Iog(n))

operations. The outer FOR loop requires at most 2n G 0(n) iterations and the inner loop

requires ? G 0(n) iterations, making the total complexity of the outer FOR loop 0(n *

n) = 0(n2). Thus, the total complexity for the Build Event List procedure is ?(?*

log(n)) + 0(n2) < 20(n2) G 0(n2).

Noting that the Open Volume procedure contains no loops, attention can be turned

back to the Compute LB procedure. The complexity of Compute LB excluding the

operations included in Build Event List was shown to be 0(n2). The complexity of Build



Event List was also shown to be 0(n2). Thus, the total complexity of Compute LB is

0(n2) + OQn2) = 20(n2) E 0(n2).
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CHAPTER 7: HEURISTIC ALGORITHMS

In this dissertation, a number of approximation algorithms will be developed to

solve spatial scheduling problems under the total tardiness objective. Although the

primary emphasis is on the total tardiness objective, the problem representations and data

structures developed are fairly generic and can be readily adapted to problems with other

objective functions as well. The approximation algorithm developed in this dissertation

may be classified into two broad categories: heuristics and hybrid meta-heuristics. The

emphasis of this chapter will be on heuristic algorithms, while hybrid meta-heuristic

algorithms will be addressed in a subsequent chapter. This chapter will begin with a brief

justification as to why approximate methods are generally necessary for solving spatial

scheduling problems in practice. Next, several spatial scheduling heuristic algorithms will

be developed. The heuristic algorithms developed all utilize a greedy approach and

require no search. These aim to provide a reasonable solution in a very short amount of

computational time. Finally, the algorithms are run on a small number of problems in

order to verify their correct implementation, and the results are discussed.

7.1. WHY APPROXIMATE METHODS ARE NECESSARY FOR SPATIAL

SCHEDULING

In general, it is always preferable to use exact methods wherever possible. The

justification for using approximate methods comes when there is reason to believe that

many of the problem instances one is interested in solving may not be able to be solved

through exact methods. In the case of spatial scheduling problems, there are two principal

reasons that indicate exact methods will not suffice for large, realistic problems.
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The first reason to believe that exact methods will not generally suffice is because

of the worst-case intractability of spatial scheduling problems. In Chapter 5, a proof was

given of the NP-hardness for one class of such problems. In addition, results from the

literature were presented that render virtually any scheduling problem that involves

spatial resources to be NP-hard.

The second reason has to do with the complexity of using integer programming

models to solve such problems, in particular the models developed in Chapter 4. In

Chapter 5 it was shown that solving these models by branch-and-bound, the usual method

of solution implemented in commercial software packages, is at least NP-complete. This

indicates that when these problems are solved in practice, one can expect to run into

problem instances that cannot be tractably solved. Perhaps most convincing of all,

however, are the relatively small problem instances discussed in Chapter 4 that could not

be solved. Specifically, there were several tight problem instances of size 13, 15, and 16

jobs that could not be solved. This demonstrates that even for small problems, unsolvable

instances are likely be encountered.

Thus, from a theoretical perspective spatial scheduling problems have been shown

to be intractable in general, and from a practical perspective a number of very small

problem instances could not be solved using ILOG CPLEX, arguably the most powerful

solver on the market at the writing of this dissertation. Consequently, approximate

methods appear to be justified.
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7.2. HEURISTIC ALGORITHMS

In this section a number of heuristic methods are developed for spatial scheduling.

The primary intent of these methods is to provide feasible schedules of a modest (not

necessarily optimal) quality, in a deterministic fashion.

7. 2.A. Bottom-Left Time-Incrementing Heuristic

The bottom-left time-incrementing heuristic (BLTI) is a new heuristic developed

as part of this dissertation research for deterministically constructing feasible spatial

schedules based on the ordering of an input list ofjobs. BLTI is designed to be used in

combination with other heuristic and meta-heuristic methods, and the solution quality is

entirely determined by the ordering of the input job list. BLTI schedules jobs to a single

processing area. However, it can readily be incorporated (as will be shown in a later

section) into multiple-area heuristics by first assigning jobs to processing areas, and then

applying BLTI separately to each processing area to determine each assigned job's start

time and location inside the area. Additionally, BLTI has two sub-variants depending on

whether or not jobs are permitted to be rotated by 90 degrees: BLTI-F enforces fixed

orientations, while BLTI-R rotates jobs as needed.

BLTI will always generate a feasible spatial schedule. A spatial schedule is

feasible if three basic conditions hold:

1. No two jobs ever occupy the same space at the same time inside a processing

area

2. Every job's assigned ? and y coordinate is such that the job remains entirely

within the bounds of its assigned processing area
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3. No job is ever assigned a start time before its earliest start time

BLTI is essentially an adaptation of the bottom-left heuristic (BL) found in 2D

strip-packing literature combined with a simple time-incrementing scheme. Jobs are

sequentially assigned start times and (x, y) coordinates in the order in which they appear

in the input list. A "current time" variable for the processing area is kept, which is

incremented when jobs enter and exit the processing area. Whenever a new job is

assigned its start time and location, the current time is set to the job's earliest start time if

the current time was earlier than the job. In this way, no job is ever assigned an infeasible

start time, ensuring condition 3 above.

In order to place jobs inside the processing area, BLTI relies on an adaptation of

BL. When the next job is to be assigned its location inside the area, BLTI first sets the

current time appropriately. BLTI then attempts to pack the job into the area using a

bottom-left strategy - that is, to pack the job into the first feasible space found starting at

the bottom left corner of the area and moving left-to-right, bottom-to-top. If jobs may be

rotated (BLTI-R) and no such fit is found in this manner, BLTI rotates the next job by 90

degrees and attempts to pack this rotated job using the same bottom-left strategy. It may

be that the current job may not be able to be packed into the area at the current time, due

to other jobs occupying all the available space. When this is the case, BLTI increments

the current time to the end time of the next-ending job and removes this job from the

processing area. It then attempts to fit the next job into the processing area, and this

process of removing jobs currently inside the area continues until the next job can be fit

inside.
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A job is represented in BLTI as a simple data structure having the following attributes:

1 . Job Number

2. Due Date

3. Earliest Start Time

4. Processing Time

5. Width (Initially as specified)

6. Height (Initially as specified)

7. X (Initially 0)

8. Y (Initially 0)

9. Start Time (Initially 0)

10. End Time (Initially 0)

Attributes 1-4 are fixed and never change, while attributes 5-10 are modified by the

algorithm. The width and height for each job are specified in the problem statement;

however, their values may be swapped if the job is rotated by 90 degrees.

The processing area is represented in BLTI as a data structure having a width and

height. The essential function of the area data structure is to keep track of what space

inside the area is available and what space is occupied by jobs at the current time. The

area data structure supports two operations: PACK and CLEAR. The PACK operation

takes a single job as input. Using the bottom-left strategy, it tries to pack the job and

assign the job's resulting X and Y coordinate. If it is successful it internally marks the

space consumed by that job as occupied and unavailable. If successful it returns

SUCCESS and if unsuccessful it returns FAIL. The CLEAR operation takes a single job
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as input and uses the job's X, Y, width, and height to determine which space inside the

area is occupied by that job. It then internally marks that space as open and available to

be used by other jobs.

The following variables are utilized by the BLTI algorithm:

1 . Current_Time: The current schedule time

Continuously incremented by the algorithm

2. Open: A list of all jobs currently remaining to be scheduled

- Initially, all jobs in problem statement

Order is pre-determined before BLTI

- This order is ALWAYS preserved

Jobs are removed from this list when they are assigned their processing

time and coordinates

3. Inprocessing: A list ofjobs currently inside the area in processing

Initially empty

Sorted in ascending order by end time (earliest end time first)

This order is ALWAYS preserved

4. Area: An area data structure

- Width and height reflect the width and height of the processing area

At a high level, the algorithm involves the alternating between following steps until the

Open list is empty:
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1 . Move jobs from Open to Inprocessing one at a time until no jobs can be packed

into Area. With each move, Current Time is updated to the next job's earliest

start time. In between of each these moves, the jobs in Inprocessing whose end

times occur prior to or at the next job's earliest start time are removed to make all

possible space available.

2. Remove the next job to be completed out of Inprocessing and update

Current_Time to this job's end time.

The BLTI algorithm is described in pseudo-code in the table below. Comments follow

the // symbol.
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Procedure BLTI (Open, Area_Width, Areajfeight) DO:

Injrocessing := 0

CurrentJime := 0

Area := Initialize empty area data structure with dimension AreaJVidth ? Area_Height

WHILE Open IS NOT EMPTY DO:

Next_FinishedJob := NEXTJEEMENT(InJrocessing)

Il Remove jobs that are finished

WHILE InJProcessing IS NOT EMPTY AND NextfinishedJob.endJime <

CurrentJime DO:

Area.KEMOVE(Next_Finished_Job)

DELETE Next_Finished_Job FROM In_Processing

Next^FinishedJob := NEXT_ELEMENT(In_Processing)
END

// Add jobs until we run out of space or all open jobs have been added

NextJob := NEXT_ELEMENT(Ope«)

CurrentJime := MAX(NeXtJob.earliest_start_time, CurrentJime)

SuccessfulJack := PACK(Area, NextJob) Il Procedure defined in Table below

WHILE NOT Successful Pack DO:

Nextjinishedjob := NEXT ELEMENT(InJrocessing)

Area.KEMOVE(NextJinishedJob)

DELETE Nextjinishedjob FROM Injrocessing

CurrentJime := MAX(NeXtJob.earliestjstartjtime,

Nextjinishedjob. endJime)

SuccessfulJack := YAC¥L(Area, NextJob)

END

NextJob.startJime := CurrentJime

END

END

Table 14: The BLTI Algorithm
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The PACK procedure is called by the BLTI. This procedure delegates to the area

data structure's PACK operation to assign a set the X and Y coordinates. The PACK

procedure essentially encapsulates the rotation procedure before utilizing the Area's

PACK procedure. The PACK procedure is shown below.

Procedure PACK (Area, Job) DO:

Successful_Pack := Area.PACKÇfob) // Utilize the Area 's PACKprocedure

IF NOT Successful_Pack DO:

# Change layout - rotate job 90 degrees

SWAP(JoO. Width, Job.Height)

RETURN Area.FACKÇIob)

ELSE

RETURN Successful_Pack

END

END

Table 15: The PACK procedure

7. 2.B. Combining BLTI with Round-Robin Area Assignmentfor Multiple Areas

BLTI can readily be adapted to incorporate multiple processing areas. There are

potentially a wide variety of schemes that can be used to assign jobs to areas. A very

simple approach that can be used for deterministically assigning jobs to areas is a slightly

modified version of round-robin. In a purely round-robin approach, the assignment

algorithm would cycle sequentially through the list of processing areas when assigning

jobs, until no more jobs remain. In this fashion, each area would have at most one job

more than any other area. However, it is possible that not every job will fit inside every



94

processing area. A simple modification can be added to remedy this problem: if the

current job to be scheduled will not fit in the current area, simply move on to then next

area or until an area is found in which the job can fit. The pseudo-code for his multiple-

area version of BLTI is shown below.

Procedure BLTI-RR {Jobsfl ...n], Areas[1 ...mj) DO:

Position := 1

Assignments :=mxn matrix // Assignments[i] is a list ofjobs assigned to the ith area

Il First, assign jobs to areas

FOR/ := 1, j < ? DO:

a := Areas[Position]

IF Jobs[j] fits inside a DO:

ADD Jobsjj] to Assignments[Position]

ELSE

WHILE Jobs[j] does not fit inside a DO:

INCREMENT Position or reset to 1 if greater than m

a := Areas[Position]

END

END

increment;

END

// Second, apply BLTI to each area based on the jobs assigned through RR

FORA: 6 {l...m} DO:

BLTl(Assignments[k], Areasfk]. Width, Areas[k].Height)
END

END

Table 16: BLTI combined with round-robin area assignment for multiple areas
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There are two important properties of BLTI-RR. The first property is that

assignment of jobs to areas is determined by input ordering. By looking at the algorithm

above, the other important property of this area assignment may be noted: area input

order preservation. That is, for any two jobs a and b in an input list for BLTI-RR where a

comes before b, if a and b are assigned to the same area then a will always come before b

in that area's assigned input list of jobs. Together these two properties, determination of

area assignment by input ordering, along with preservation of original input ordering for

each area's input list, enable BLTI-RR to be used or called from procedures in essentially

the same way as BLTI. Finally, it should be pointed out that when there is only one

processing area, the behavior of BLTI-RR exactly reduces to that of BLTI.

7. 2. C. Multiple-Area BLTI with External Assignment ofProcessing Areas

BLTI-RR provides the ability to assign jobs to processing areas in addition to

scheduling the jobs within their assigned areas. In some cases it may be desirable for the

assignment of processing areas to be fixed while the heuristic is used for scheduling only.

Another multiple area adaptation of BLTI is possible. This variant will be called BLTI-

External. It assumes that each job has an attribute called Assigned_Area in addition to the

usual job attributes. The pseudocode for BLTI-External is shown below.
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Procedure BLTI-External (Jobsfi ...?], Areas[1 ...m]) DO:

FOR EACH Area in Areas DO:

Area_Jobs := 0

// Select out ONLY jobs assigned to current area, then perform BLTI on current

area.

FORiINl...n DO:

ADD Jobsfi] TO Area_Jobs IF Jobsfi]' .Assigned_Area = Area

END FOR

BLTl (Area Jobs, Area.Width, Area.Height)

END FOR

END BLTI-External

Table 17: The BLTI-External heuristic

7. 2.D. Earliest-Due-Date-First Heuristic

Although the BLTI heuristic (and its multiple-area variants) is guaranteed to

provide feasible solutions, it does not aim towards optimizing any particular objective

function. Rather, BLTI simply constructs a feasible solution deterministically based on

the order of the input job list. Thus, the quality of solutions generated by BLTI is entirely

determined by this input ordering.

The earliest-due-date-first (EDD) heuristic is a simple and widely-known

heuristic in the scheduling literature [24], and has been applied to a number of objective

functions including the total tardiness objective function. EDD can be readily combined

with BLTI to produce good solutions to many problem instances for the total tardiness

objective function and this heuristic can produce optimal solutions for sufficiently sparse

problem instances. Intuitively, a sparse problem instance is one where there is a large

amount of space available resulting in little "competition" for space for each job, or
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where due dates and earliest start times are such that all or most jobs can have the entire

area to themselves. This approach by no means guarantees optimality in general,

however, and the solution quality may rapidly deteriorate as problems become tighter.

The heuristic involves no search and consequently executes very fast, as was shown in

Garcia and Rabadi [60]. The EDD-BLTI heuristic is described in pseudo-code in the table

below.

Procedure EDD-BLTI (Jobs) DO:

SORT Jobs in earliest-due-date-first order

Apply BLTI to Jobs

END

Table 18: The EDD heuristic for spatial scheduling

In the procedure above, the BLTI can be any variant of BLTI, including BLTI-RR for

multiple areas.

7. 2.E. Computational Results

Extensive computational experiments and solution quality analyses are discussed

in a subsequent chapter. However, in order to inform the design of the hybrid algorithms

it is necessary to have at least a basic idea of how the heuristics perform, especially in

terms of computational speed. For verification of correctness and to gain a preliminary

understanding of the heuristic performance, an implementation of EDD combined with

BLTI-RR was programmed using the Ruby programming language. A small 20-job



98

problem for a single processing area with a width 100 and height of 60 is shown below,

along with the results generated by this algorithm.

Job

10

11

12

13

14

15

16

17

18

19

20

Width

11

15

16

Height

14

12

15

23

Earliest Start

10

12

22

11

30

15

40

33

25

Processing Time

18

10

20

10

11

25

16

14

21

Table 19: A small 20-job problem
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Job X

17

12

11

Width Height Start

_______16_
_______19_
_______13_
_______10_
_______15_
______20_ 0
_______14_

18 I 0
Total Tardiness

13

14

22

11

1

0.0

15

11

16

14

15

23

12

End

11

11

12

15

33

33

33

33

33

33

40

Area

11

12

14

12

16

26

18

21

18

31

42

43

53

58

54

44

54

Table 20: EDD-BLTI-RR algorithm-generated solution to the small 20-job problem
instance. Jobs are listed in earliest-start-time-first order.

The solution generated by the algorithm is optimal, as may be seen by the total

tardy time. It may be noted that the Y-coordinate for each job assignment was 0, and that

at no point in time was the processing area near capacity. This problem may be said to be

sparse, and in general the EDD-BLTI heuristic will always generate optimal solutions for

sufficiently sparse problems under this objective function.

Each of the remaining problems discussed in this chapter were used in Garcia and

Rabadi [60]. Each problem instance was generated using Algorithm 1 found in Appendix
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1 (the problem generation algorithms utilized in this dissertation are specified in

Appendix 1). G?-depth computational experiments and solution quality analysis are

discussed in a later chapter; the results shown here simply give a brief overview of the

general computational speed and quality ranges. A single processing area with width of

10 and height of 7 was used in each problem instance. Problem sizes ranged from 100 to

10,000 jobs. The problem-generation Algorithm 1 in Appendix 1 uses a tightness factor

ranging from 1.0 to 10.0, and the problems generated use tightness factors ranging from

3.3 to 9.9. The results of these computational experiments are shown in the table below.

Problem
Instance

Number

of Jobs
Tightness Total Tardiness

(Objective
Function)

Computational Time
(seconds)

E-100 100 3.3 0 0.125

H-100 100 9.9 668 0.156

E-500 500 3.3 0.624

H-500 500 9.9 94462 0.717

E- 1000 1000 3.3 0 1.4

M- 1000 1000 8.5 2328 1.26

H- 1000 1000 9.9 147,225 1.26

E- 10000 10,000 3.3 0 13.76

M- 10000 10,000 8.9 256,152 14.69

H- 10000 10,000 9.9 3,142,787 14.18

Table 21: Results for experimental problems

A number of features may be pointed out about these solutions. Perhaps most

observable is the speed at which this algorithm can produce solutions. 100-job instances

required far less than one second of computational time, while the longest processing

time of any problem instance took less than 15 seconds to process 10,000 jobs. It may

also be observed that this algorithm was able to obtain optimal solutions for all sparse

(tightness = 3.3) problem instances, regardless of size. Thus, EDD-BLTI executes very
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fast and can arrive at good and even optimal solutions for many problem instances,

particularly sparse instances.
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CHAPTER 8: HYBRID ????-HEURISTIC ALGORITHMS

In this chapter, a number of hybrid meta-heuristic algorithms for spatial

scheduling are developed. In each case, a heuristic algorithm (specifically, forms of the

BLTI heuristics developed in the previous chapter) is utilized in conjunction with a meta-

heuristic algorithm. The heuristic is utilized to rapidly construct feasible solutions, while

the meta-heuristic is utilized to search through the space of inputs into the heuristic. This

chapter begins by introducing a general framework for hybrid meta-heuristic spatial

scheduling algorithms. While this framework forms the basis of all subsequent algorithms

developed, it is not restricted to these algorithms and may also be used to combine many

different types of heuristics and meta-heuristics for solving spatial scheduling problems.

Several hybrid heuristic algorithms based on different varieties of local search and

simulated annealing are developed. In-depth computational experiments and solution

quality analyses will be discussed in a later chapter.

8. 1 . A FRAMEWORK FOR HYBRID SPATIAL SCHEDULING APPROXIMATION

ALGORITHMS

Hybrid approximations algorithms have been used very successfully in the bin-

and strip-packing literature (for example, Wu [32] or Soke [53]). This literature was

covered in significant detail in the literature review (Chapter 3). In general, these hybrid

algorithms combine a greedy heuristic together with a meta-heuristic to obtain near-

optimal solutions. In this approach a heuristic is used to construct a packing in a greedy

and most often deterministic manner, while a meta-heuristic is used to modify and search

through the space of inputs fed into the greedy heuristic. In most of the literature that uses
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this approach, the meta-heuristic operates on input orderings while the greedy heuristic is

dependent upon its input orderings.

Because of the success on packing problems, similarity in structure of spatial

scheduling problems to packing problems, and the existence of greedy heuristics to

construct feasible schedules (e.g. BLTI), a similar hybrid approach may be used for

spatial scheduling problems. Moreover, a general framework based upon this principle

can provide an infrastructure for the implementation and testing of many approximation

algorithms for spatial scheduling. Such a framework is outlined below and forms the

basis of the remaining approximation algorithms developed in this dissertation.

->f Solution Initializer

Termination

®<r H^

-^
Solution

Candidate

/F

tore Search?
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eund ition?
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Best-Found
Solution

Maintainer

<r

->[ Greedy Heuristic J

Meta-Heuristic K:

r:
?

Constructed

Schedule

?

Solution Quality
Evaluator

Jf.

Figure 5: A framework for hybrid spatial scheduling algorithms
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In this framework, the white blocks represent components of the algorithm. The

shaded blocks represent outputs of certain algorithm components that are passed as input

to other components. The shaded "Candidate Solution" block is a candidate solution in

the appropriate input format required by the heuristic algorithm. The shaded

"Constructed Schedule" block is a full schedule constructed by the greedy heuristic.

Candidate solutions are represented as inputs into the greedy heuristic, and the greedy

heuristic constructs feasible schedules from inputs it receives from the meta-heuristic or

initializer. Schedules are evaluated by the solution quality evaluator. Based on feedback

by the solution quality evaluator, the meta-heuristic searches for optimal solutions by

improving these greedy heuristic inputs until a termination condition occurs.

The individual components are described in more detail as follows:

• The Solution Initializer: This component begins the algorithm process by

constructing the initial candidate solution. The output of this component is

an initial solution in the inputformat required by the Greedy Algorithm.

• The Greedy Heuristic: This component implements some kind of greedy

method for constructing a feasible schedule based on the jobs and possibly

other input parameters. Although a wide variety of approaches are

possible, this component should construct solutions without search. Its

output is a feasible schedule that goes to the Solution Quality Evaluator.

• The Solution Quality Evaluator: This component evaluates schedules

from the Greedy Algorithm with respect to a particular objective function.

It has two outputs: 1) the objective function value of its input schedule,
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and 2) its input schedule. Its objective function evaluation is input for both

the Meta-Heuristic and the Best-Found Solution Maintainer, and its input

schedule is also input for the Best-Found Solution Evaluator.

• The Meta-Heuristic: This component searches through the space of

Greedy Heuristic Inputs to find the most optimal solution possible. In

order to guide its search, it takes as input evaluations of the solution

candidates it generates from the Solution Quality Evaluator component.

The Meta-Heuristic component also makes the decision after each

schedule evaluation (i.e. each algorithm iteration) as to whether or not the

algorithm should terminate. If the algorithm should not terminate, the

Meta-Heuristic generates as output a new input or set of inputs for the

Greedy Heuristic component.

• The Best-Found Solution Maintainer: The objective is always to find

the best possible solution. Many meta-heuristics operate on a probabilistic

basis and may not necessarily terminate on the absolute best solution

encountered. The Best-Found Solution Maintainer component simply

ensures that the best solution is always kept. It takes as input schedule

combined with an evaluation of that schedule, both from the Solution

Quality Evaluator. If the schedule is better than the schedule its best-so-far

schedule, it simply replaces its best-so-far with this schedule.

This framework can provide a common structure for many types of spatial

scheduling approximation algorithms. It is designed to make research into such problems

more effective by enabling the interchangeability and interoperability of different meta-
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heuristics, greedy algorithms, and objective functions. This allows for easier

experimentation and incremental progress by focusing being able to focus on single

components at a time.

8.1.A. Naming Convention

The modular nature of this framework lends itself to a convenient naming

convention based on three core components: 1) the initial solution generator, 2) the meta-

heuristic, and 3) the greedy heuristic. Consequently, the following naming convention

will be used:

<name of initial solution generator> / <name of meta-heuristic> / <name of greedy

heuristic>

In this notation, for example, an algorithm that initializes with BLTI-RR, uses a local

search as a meta-heuristic, and creates schedules with BLTI would be named EDD-BLTI-

RR/Local Search/BLTI.

8. LB. Solution Representations and Formats

This framework pairs a constructive heuristic algorithm with a meta-heuristic. The

heuristic is used to construct feasible schedules deterministically from an input list of

jobs. The quality of the schedule is thus a function of the properties of the input list of

jobs. The meta-heuristic is used to modify the input list of jobs and search for the input

configuration that, when fed into the constructive heuristic, will produce the best quality

schedule. Thus, there are essentially two basic solution formats that must be represented:

1) the heuristic input and 2) the constructed schedule. This is depicted in the figure

below:
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Heuristic

Constructed

Schedule
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Figure 6: The two types of problem representations needed and their relationship to the
hybrid algorithm components

There are many possible ways to represent the heuristic inputs and constructed schedules

that can be incorporated into this framework. Based on the heuristics employed (BLTI-

based heuristics) a single basic representation is used for all of the hybrid meta-heuristic

algorithms developed in this dissertation.

1) Heuristic Input Representation: The heuristic input consists of an ordered list
of elements, where each element contains the following attributes:

• Job: a job containing the following information:
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o A unique job name (or number)

o Width

o Height

o Earliest Start Date

o Due Date

o Processing Time

• Assigned Area: The processing area to which the job is currently assigned

2) Constructed Schedule Representation: The constructed schedule contains a

feasible schedule generated by the heuristic. Specifically, it provides the

following information for each job:

• Name: The unique name or number of the corresponding job

• Start Time

• End Time

• Assigned Area

• X Coordinate

• Y Coordinate
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8. 1 . C. Meta-Heuristic Mutator Operations and Associated Parameters

Meta-heuristic algorithms work by intelligently transforming one solution or set

of solutions into another and intelligently searching for better-quality solutions until some

termination condition occurs. In order to transform one solution into another, meta-

heuristics rely on specific mutator operations for transforming solutions encoded in the

chosen solution representation. Because a single solution representation scheme is used

for all of the hybrid meta-heuristic algorithms developed, a single set of mutation

operations will also be used.

In this hybrid meta-heuristic framework, the meta-heuristic algorithm searches

through the space of heuristic inputs and seeks to find the input configuration producing

the best schedule when fed into the heuristic algorithm. Thus, the meta-heuristic must

transform and search through heuristic inputs as opposed to constructed schedules. As

discussed above, a heuristic input is essentially an ordered list of jobs along with each

job's assigned area. Consequently, two mutator operations have been designed to

facilitate appropriate transformation: SWAPJOBS and SWAPAREAS.

1) SWAPJOBS: The SWAPJOBS operator works by randomly swapping the

positions of two jobs. This mutator is thus used to transform one job ordering into

another. In order to accomplish this, the mutator randomly chooses two jobs in an ordered

job list and swaps their positions. However, swapping a job located near the front of the

list and has a very early due date with a job near the end of the list with a late due date

will not generally be beneficial. A better option is to swap jobs near each other so that the

solution quality is not drastically changed in one mutation operation. In order to facilitate
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this, a parameter called the SWAP RANGE is employed. The swap range is the

maximum distance allowed for a single swap operation between two jobs in an ordered

list. For example, if the swap range is 3, a job in position 1 could be swapped with jobs in

positions 2, 3, or 4, but not 5 or higher.

2) SWAP AREAS: The SWAPAREAS operator works by randomly changing

the assigned area of each job according to a specified probability. This probability takes

the form of a user-specified parameter called AREA CHANGE PROBABILITY. This

operator is most easily describe in pseudocode, and is shown below.

Procedure SWAPAREAS {Heuristic_Input_Elements) DO:

FOR EACH Element IN Heuristic_Input_Elements DO:

R := Random Number in [0, 1]

IF R <= AREACHANGEPROBABILITY DO:

New_Area := Different area than Element.Job is assigned to, and that

Element.Job fits within

£7eme«/.Assigned_Job := New_Area IF New_Area exists

END

END FOR

END SWAP AREAS
Table 22: The SWAPAREAS operator

Thus, SWAPJOBS and SWAPAREAS perform the two types of transformations used

to turn one solution into another in these hybrid algorithms. At each search step, a meta-
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heuristic must mutate the candidate solution into another, but it need not have any

knowledge of the inner workings of the mutator. Thus, for generality SWAPJOBS and

SWAPAREAS are combined into a single generic MUTATE operation as shown below.

Procedure MUTATE (Heuristic_Input_Elements) DO:

SWAP JOBS(Heuristic_Input_Elements)

SWAP_AREAS(Heuristic_Input_Elements)

END MUTATE
Table 23: The MUTATE operation

By combining the mutator operations together, the specific mutator operations need not

be tightly tied to the meta-heuristics, making it possible to easily replace meta-heuristic

components and obtain an entirely new algorithm. It also enables new mutator operations

or even entirely new definitions of MUTATE to easily be incorporated in future research.

8.2. HYBRID ALGORITHM 1 : EDD-BLTI-RR/LOCAL SEARCH/BLTI-EXTERNAL

The first hybrid algorithm obtains the initial solution using EDD-BLTI-RR and

then combines a local search meta-heuristic with BLTI-External for schedule

construction. Also, because the objective is minimizing total tardiness the solution quality

evaluator will evaluate for this objective. The design for the EDD-BLTI-RR/Local

Search/BLTI-External algorithm is shown in the figure below.
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Figure 7: The EDD-BLTI-RR/Local Search/BLTI-External Algorithm Design

Local search is perhaps the simplest of all meta-heuristics and works by mutating

candidate solutions, evaluating them, and accepting only changes that result in better

quality solutions. The algorithm terminates once termination certain conditions have been

reached. Three common termination conditions are 1) terminate when the maximum

specified number of iterations are reached, 2) terminate when a maximum period of time

has passed, or 3) terminate if a particular cost lower bound is reached. These are the three

conditions utilized in this algorithm. Accordingly, there are three user-specified

parameters associated with this meta-heuristic (in addition to the swap range and area

change probability parameters needed for the mutator): MAX ITERATIONS, MAX

TIME, and LOWER BOUND. The max time parameter is in seconds. The general local

search algorithm is given below.
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Procedure LOCALSEARCH {Initial_Solutiori) DO:

Current_Solution := Initial_Solution

Iterations := 0

WHILE Iterations < MAXJTERATIONS AND MAXJIME NOT EXCEEDED AND
LOWERBOUND NOT REACHED DO:

NextJSolution := MUTATE(Current_Solution)

Current Solution := NextJSolution IF NextJSolution is better than

Current_Solution

INCREMENT Iterations BY 1

END WHILE

RETURN Current_Solution

END LOCALSEARCH

Table 24: The LOCALSEARCH algorithm

The Solution Quality Evaluator component provides the objective function value for each

candidate solution, and the current solution's objective value is compared to the next

solution's objective value. If the next is better it simply replaces the current solution, and

the process continues until termination.

This meta-heuristic can in some cases perform very well, but it is prone to

converging on a local, rather than global, optima. The next algorithm design is intended

to overcome this pitfall.
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8.3. HYBRID ALGORITHM 2: EDD-BLTI-RR/SIMULATED ANNEALING/BLTI-

EXTERNAL

Simulated annealing (SA) is a widely-used meta-heuristic originally developed by

Kirkpatrick et al. [18] that simulates a molten metal being cooled in a controlled manner.

At higher temperatures metal particles are in constant transition, and as a metal is cooled

in a controlled manner its particles gradually settle into a state of low energy. When

metals are quickly cooled they have the tendency to freeze in a high-energy state, with

the resulting crystal structure containing many cracks and flaws. This is generally an

undesirable property. In contrast, when cooled in a slow and controlled manner the

particles settle into a regular crystal structure with few flaws, resulting in maximum

strength. In SA, candidate solutions represent "metal states", and a simulated temperature

is used to determine the probability of accepting a "higher energy" solution than the

current solution at any given time. In SA, a good solution is analogous to a "low-energy"

state, while a bad solution is analogous to a "high-energy" state. One state (i.e. solution)

is transformed into another using a meaningful mutator operation. SA utilizes a "current

temperature" variable that is gradually decreased. Lower-energy states are always

accepted when encountered, but at any given time there is also a certain probability of

accepting a higher-energy state. Specifically, this probability is a function of temperature.

Thus, as the temperature is gradually decreased so is the probability of transitioning into

a higher-energy state, until a stable temperature is reached. This allowing of higher-

energy states to be occasionally accepted based a temperature-determined probability

enables SA to avoid becoming trapped in local optima.



115

In the bin- and strip-packing literature SA has been very successful as the meta-

heuristic component of hybrid heuristic/meta-heuristic algorithms similar to those

prescribed by the framework above. Burke et al. [54] tried this approach with SA, genetic

algorithms, and TABU search all combined with the bottom-left heuristic. Their best

results were obtained using SA, providing good evidence that it will be an effective meta-

heuristic for spatial scheduling given the clear similarities between spatial scheduling and

multi-dimensional bin-packing. Additionally, this meta-heuristic is well-suited to spatial

scheduling because in contrast to evolutionary methods, which require generating and

evaluating large populations of solutions at a time, SA only needs to generate and

evaluate a single solution at a time. The computational results for BLTI showed that in

large problem instances it could take nearly 1 5 seconds to generate and evaluate a single

solution. While it would take a prohibitively long time to iterate through a large number

of populations, it is not prohibitive to do this for a large number of individual solutions.

In light of these results a hybrid spatial scheduling algorithm combining SA with BLTI

has been developed as part of this dissertation. This algorithm is an implementation of the

framework developed in the previous section. The algorithm design is shown below as an

adaptation of the general framework.
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Figure 8: The EDD-BLTI-RR/Simulated Annealing/BLTI-Extemal Algorithm Design

8. 3.A. Basic Simulated Annealing

SA always accepts a better solution when it is encountered. However, SA will

also accept a worse solution with a certain probability P, which is based on the current

temperature T. SA relates P to 7 using the following equation, based on the Boltzmann

distribution:

-C2-C1
P = e t (103)

In (103) C1 designates the cost of the current solution (in this case, the total tardiness) and

C2 designates the cost of the potential next solution to transition into. The basic SA has

two main loops, an outer loop and an inner loop. The outer loop performs temperature

cooling, while the inner loop performs a set number of mutations and potential transitions
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at each temperature. At the end of each execution of the outer loop the temperature is

decreased exponentially by a cool rate multiplier C E (0,1) such that in the ith iteration,

T = T(C1).

In the basic SA implementation used in this research a number of parameters are

required, some of which are related to the algorithm termination conditions while others

are related to the mutator operations or algorithm iterations. These parameters are user-

specified and are as follows:

Parameter Purpose
Swap Range The mutator swap range (discussed in preceding section)
Area Change Probability The probability of a mutator switching the assigned

processing area of a job (discussed in preceding section)
Max Time The maximum number of seconds the algorithm is allowed to

run before terminating
Max Iterations The maximum amount of outer iterations permitted before

terminating
Inner Iterations The number of inner iterations to run within each outer

iteration

Cool Rate A number between 0 and 1 - the rate at which the temperature
should be cooled at each outer iteration i. In the ith iteration
T = T(C1).

Initial Acceptance
Probability

The initial probability (at the starting temperature) that a
worse solution will be accepted.

Max Improvement Time The maximum number of seconds that can pass without
improvement before the algorithm terminates

Lower Bound A lower bound on solution cost that if reached, will cause the
algorithm to terminate.

Min Temperature The stopping temperature - the algorithm terminates once this
temperature becomes the current temperature.

Table 25: User-specified parameters required by the basic simulated annealing algorithm
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The basic simulated annealing algorithm (adapted from [65]) may be described as

follows:

Procedure BASICSAOPTIMIZE (Initial_Solution) DO:

T := NlTlALJTEM?(Initial_Solution, INNERJTERATIONS,

INITIAL_ACCEPTANCE_PROBABILITY)

CurrentJSolution := Initial_Solution

Best_Solution := Current Solution

Outer Iterations := 0

WHILE Termination Conditions Not Reached DO:

FOR i in 1 . . . INNERJTERATIONS DO:

NextSolution := MUTATE(Current_Solution)

IF COS>T(Next Solution) < COST (Current^Solution) DO:

Current Solution := Next_Solution

BestJSolution := CurrentJSolution IF COST(Current_Solution) <

COSY(BeSt Solution)

ELSE

P := eA( -COST(Next_Solution) - COST'{CurrentJSolution)) I T

/? := Uniform Random in [0, 1]

CurrentJSolution := NextSolution IF R <= P

END IF-ELSE

END FOR

T= T* COOL RATE

Outeriterations := Outer Iterations + 1

END WHILE

RETURN BestJSolution

ENDBASIC SA OPTIMIZE

Table 26: The basic simulated annealing algorithm
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1) Initial Temperature Determination: Although there are a number of possible

ways to determine the initial temperature, the approach used in this algorithm is to set the

initial temperature in such a way that it corresponds to the user-specified initial

acceptance rate of worse solutions. This is accomplished as follows. Let C1 denote the

cost of the initial solution S and let C2 denote the cost of some neighboring solution

MUTATE(S). The definition of a logarithm is as follows:

x = by = y = log6(x) (104)

Based on this definition, the corresponding starting temperature T can then be obtained

mathematically starting with (103) as follows:

-C2-Cj — Cy — Ci , v — Cj — Ci _^

P = e^-^r^=log,(P)^T=1^ (105)

Using (105) it is possible to compute a starting temperature given the initial acceptance

probability by comparing the quality of a neighbor. However, the starting temperature

can vary based on the cost of the neighbor. Thus, the average over the number of inner

iterations is used in order to obtain a more certain initial temperature. The

INITIALTEMP procedure called by the SA algorithm above is defined as follows:
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Procedure INITIALTEMP (Initial_Solution, Iterations, P) DO:

T=O

FOR i in 1 . . . Iterations DO:

Neighbor := MUTATE(Initial_Solution)

T := T + [( -COST(Neighbor) - COST(InMaI Solution) I In(P)]

END FOR

RETURN G / Iterations

END INITIALTEMP

Table 27: The INITIALTEMP procedure

2j Termination Conditions: A number of user-specified parameters relate to

termination conditions. Accordingly, the SA algorithm terminates when any of the

following conditions occur:

1 . The number of outer iterations exceed MAX ITERATIONS

2. The amount of time since the algorithm started exceeds MAX TIME

3. The cost of the current solution < LOWER BOUND

4. The amount of time that has passed since an improvement was found exceeds

MAX IMPROVEMENT TIME

5. Current temperature < MIN TEMPERATURE

8. 3.B. Simulated Annealing with Reheating and Restarting

The simulated annealing algorithm utilizes a temperature-based probability to

occasionally permit a lower-quality solution to be accepted. This mechanism reduces the
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likelihood that the algorithm settles into local optima. In the basic SA algorithm

described above, the temperature is cooled exponentially in each outer iteration, resulting

in a strictly decreasing temperature as time moves forward. However, more sophisticated

cooling schedules are possible that may further reduce the likelihood of settling into a

sub-optimal solution ([65], [66], [67]). One insight by Abramson et al. [65] is the notion

of "phase changes" analogous to physical phase changes that occur in matter. They

observed that at certain temperatures large solution improvements are more likely to be

encountered. This research uses their insight as the basis for another, more sophisticated

SA design.

SA always keeps track of the best solution found, regardless of the current

solution. It is also quite easy to keep track of the temperature at which the best solution

was found. By keeping track of these items it becomes possible to retain a memory not

only of the best solution, but also the conditions under which it was produced. By having

this stored in memory it becomes possible to return to this state if needed. This forms the

basis for a variation on the basic SA: 1) keep track of both best solution and best

temperature, 2) if the difference between current solution and best found exceeds a

certain threshold, then 3) revert the current solution and temperature back to the best

solution and temperature, respectively. Thus, this variation incorporates instantaneous

reheating and restarting. In order to determine when to revert, this algorithm variation

utilizes a user-specified parameter called MAX SOLUTION DEVIATION in addition to

the other SA parameters described above. The max solution deviation is a value that

represents the threshold as a proportional difference from the best solution. For example,

if max solution deviation = 1.4 this means that if the current solution exceeds 140% of
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the best solution then the algorithm should reheat to the best temperature and restart with

the best solution. This modified version of simulated annealing is shown in Table 28.

The same termination conditions used in the basic version of SA are also used in this

algorithm as well. Moreover, the MAX SOLUTION DEVIATION parameter enables

significant flexibility in the way this algorithm behaves. If MAX SOLUTION

DEVIATION is set to be very large - such that the cost difference between the current

solution and the best could never conceivably exceed this deviation - then

reheating/restarting will never occur and this algorithm will behave exactly as the basic

SA above. On the other hand, if MAX SOLUTION DEVIATION is set to 1 then only

improvements are accepted. This behavior is equivalent to local search. As a result, this is

the simulated annealing algorithm implemented for computational experimentation, and

the basic SA as well as local search are employed by simply setting the MAX SOLUTION

DEVIATION parameter accordingly.
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Procedure PvEHEATBEST SAOPTIMIZE (Initial_Solutiorì) DO:
T = TNlTlAL_TEMF(Initial_Solution, INNERJTERATIONS,

INITIAL_ACCEPI"ANCE'PROB'ABILITY)
Current Solution := Initial_Solution
BestjSolution := Current_Solution
BestJTemp := T
Outeriterations := 0
WHILE Termination Conditions Not Reached DO:

FOR i in 1 . . . INNERJTERATIONS DO:
Next_Solution := MUTATE(Current_Solution)
IF COST(Next_Solution) < COST\Current_Solution) DO:

Current Solution := Next_Solution
IF COST(Current Solution) < COS,!(Best_Solution) DO:

Best_Solution := Current_Solution
BestJTemp := T

ENDIF

ELSE

P := eA( -COST(Next_Solution) - COSY(Current_Solution)) I T
/? := Uniform Random in [0, 1]
Current_Solution := Next_Solution IF R <= P
IF CurrentJolution > MAX SOLUTIONr_DEVlATION * Best_Solution

Current Solution : = Best_Solution
T := BestJTemp
i := INNERJTERATIONS + 111 Force inner loop to terminate

ENDIF

END IF-ELSE

END FOR

T-= T* COOL RATE

Outeriterations := Outer_Iterations + 1
END WHILE

RETURN Best_Solution
ENDREHEAT BEST SA OPTIMIZE

Table 28: The Reheat-Best simulated annealing algorithm
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CHAPTER 9: COMPUTATIONAL EXPERIMENTS AND RESULTS

In order to test the performance of the algorithms developed in this dissertation, a

large number of test problems with differing characteristics were generated. Specifically,

three distinct problem generation algorithms were developed in order to facilitate the

computational experimentation. These problem-generating algorithms will be discussed

later in this chapter, and they are described in detail in Appendix 1 . This chapter provides

a detailed discussion of the computational experiments and the results. This entails the

experiment design, the experimental results, and conclusions about the algorithm

performances.

The algorithms developed in the preceding two chapters were implemented in the

Ruby programming language [59] and were used in this experimentation. Specifically, all

algorithms in Chapter 7 (heuristic algorithms) were implemented, and the EDD-BLTI-

RR/Simulated Annealing/BLTI-External hybrid meta-heuristic algorithm from Chapter 8

was also implemented. The meta-heuristic component used in this algorithm was the

Reheat-Best simulated annealing. This variant was chosen for implementation because it

can behave as a local search only, as basic simulated annealing, and also as simulated

annealing with reheating/restarting depending on how the parameters are set. This was

discussed in Chapter 8. Additionally, the lower bound-calculating algorithm discussed in

Chapter 6 was also implemented and included in the experiments.

9. 1 . EXPERIMENT DESIGN

The computational experiments were designed to test the performance of the

algorithms developed in this dissertation on a wide range of problems across many
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dimensions including 1) problem size, 2) degree of space limitation (tightness), and 3)

qualitative differences. Because the hybrid meta-heuristic algorithms are parameter-

driven, a number of different algorithm behaviors are possible depending on how certain

parameters are set. As a result, different parameter settings may be viewed as treatments,

and the combination of different treatments results in differently-behaving algorithms.

The experiment design is composed of five distinct parts: 1) Treatments and

Combinations, 2) Problem Sets, and 3) Performance Measures, 4) Analytical

Methodology, and 5) Computational Resources. The "Treatments and Combinations"

section describes the different algorithms and parameter settings used. The "Problem

Sets" section describes the different problem sets on which the algorithms were tested.

The "Performance Measures" section describes the dimensions and measures of

performance used to evaluate the algorithms. The "Analytical Methodology" section

describes the approaches used for the data analysis and for drawing conclusions about

algorithm performance. Finally, the "Computational Resources" section provides a

specification of the computer on which the experiments were carried out.

9. 1.A. Treatments and Combinations

A number of solution methods and algorithms were utilized in these experiments.

Apart from the hybrid meta-heuristic algorithms, these include the following:

• Model 3 solved with CPLEX (CPLEX)

• Earliest-Due-Date Heuristic (EDD)

• Lower Bound (LB)
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The implemented EDD-BLTI-RR/Simulated Annealing/BLTI-External hybrid meta-

heuristic algorithm utilizes a number of user-specified parameters to determine its

behavior. Because different parameter settings determine algorithm behavior (including

behaving as local search, basic SA, or SA with reheating/restarting), certain parameter

settings are treated as treatments. Consequently, individual parameter settings may be

viewed as a treatment and each solution method may be viewed as a treatment

combination. In this manner, one complete parameter set is designated as a control, while

the other treatments are applied by modifying a particular parameter from the control to

another value. The specific treatments used in these experiments are as follows:

• Local Search (Control)

• Basic Simulated Annealing

• High Area Swap Probability

• Reheat/Restart Simulated Annealing with Low Solution Deviance

o This permits the search to accept modestly worse solutions but forces the

algorithm to reheat and restart if the current solution wanders too far from

the best found solution. Thus, this behaves like a local search with an

additional (but limited) neighborhood exploration capability.

• Reheat/Restart Simulated Annealing with High Solution Deviance

o This permits the search to deviate farther away from the best found

solution before forcing to reheat/restart. This provides more freedom for

neighborhood exploration, but without limitless ability to wander away

from the best found solution.
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Treatment Parameter Value Comments

Local Search Swap Range 3

Area Change Probability 0.05

Max Iterations 600

Max Time

Min Temp

Lower Bound

Cool Rate

Inner Iterations

Depends on
problem size

0.1

0

0.96

1

Max Solution Deviation 1

Max Improvement Time

Initial Acceptance Prob. 0.85

Accept only
improvements
Depends on #
Areas

Basic SA Max Solution Deviation 500

Make impossibly
large so that no
solution would ever
cause a

reheat/restart

High Area Swap Area Change Probability 0.2

SA-Low Deviation Reheat Max Solution Deviation 1 .4

SA-High Deviation Reheat Max Solution Deviation 2.6

Table 29: Hybrid meta-heuristic algorithm parameter settings (treatments)

In the table above, Local Search is regarded as the control treatment, while other

treatments modify a specific parameter from Local Search. For example, the Basic SA

modifies the Max Solution Deviation parameter. It is clear that a number of these
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treatments may be used in combination (for example, High Area Swap with Basic SA).

Based on this principle, a number of treatment combinations were chosen to create the

specific hybrid meta-heuristic algorithm variants used in the experiments. These are

shown in the table below.

Combination

Abbreviation
Treatment 1 Treatment 2

LS Local Search
BSA Basic SA
RSAL SA-Low Deviation Reheat
RSAH SA-High Deviation Reheat
LSS High Area

Probability
Swap Local Search

BSAS High Area
Probability

Swap Basic SA

RSALS High Area
Probability

Swap SA-Low Deviation Reheat

RSAHS High Area
Probability

Swap SA-High Deviation Reheat

CPLEX Model 3 with CPLEX
EDD Earliest-Due-Date-First

/BLTI

LB Lower Bound Algorithm
Table 30: Treatment combinations used in experiments

In addition to the combinations related to the hybrid meta-heuristic algorithms, the last

three items in the table are included because they are used for certain problems as well.

Thus, this table represents a comprehensive list of all methods used in experimentation.



129

1) Replications: In Table 30 above, it should be noted that the hybrid meta-

heuristic algorithm treatments are stochastic in nature, while the CPLEX, EDD, and LB

algorithms are deterministic. As a result, repeated trials are necessary for the hybrid

meta-heuristic algorithm variants, but not for the deterministic methods. In order to test

the consistency of each stochastic algorithm, ten runs per algorithm were used in each

application of a stochastic algorithm. For example, for all test problems that BSA was

applied to, it was run ten times on each problem. This replication allows for testing the

consistency.

9.1.B. Problem Sets

Three sets of benchmarks problems were developed for this experimentation, each

with distinct characteristics. Three different problem-generation algorithms (detailed in

Appendix 1) were developed and used to create each of the three different problem sets.

As a result, the sets are called A2, A3, and A4 correspond to the algorithm that generated

them. Each of these problem generation algorithms utilizes a tightness factor ranging

from 0 to 10 to generate a problem of a specified number of jobs. The tightness factor

controls how much of a general processing space limitation there is - and consequently,

how difficult the problem is. At higher tightness levels there is much less space available

at any given time and as a result it is more difficult to find the optimal locations and times

for each job. Conversely, at very low tightness levels each job is likely to be able to have

the processing space to itself, with little competition for processing space resources.

The problem generation algorithms all create qualitatively different problems.

Problems generated by the Algorithm 2 have their size slightly correlated with the

tightness level. As tightness increases there is a limit on how little space a job can
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consume. As a result, this algorithm creates bulkier jobs at higher tightness levels.

Problems generated by the Algorithm 3 create jobs with evenly distributed sizes, and

there is no correlation of job size to tightness. Neither Algorithm 2 nor Algorithm 3

correlates job size to job processing time. Algorithm 4 does precisely this. Algorithm 4

generates jobs with a perfect correlation ofjob size to job processing time - so the larger

the job the more processing time it requires. There is no correlation between job size and

job tightness in A4, however.

1. Problem Set Naming Convention: There are three major problem sets (A2, A3,

and A4), and within these three sets there are problems with a number of characteristics.

These include the number of processing areas used, the number ofjobs, and the tightness

level. In order to classify the problems, the following naming convention is used:

<Generating Algorithm> / <Number Processing Areas> / <Number Jobs> / <Tightness>

For example, A3/ 10/500/6 denotes a problem generated by Algorithm 3 having ten

processing areas, 500 jobs, and a tightness level of 6.

2. Processing Area Configurations Used: A number of different processing area

configurations were used for to generate the test problems. The number and dimensions

of each configuration are shown below, along with the problem sets in which each

configuration was included.
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Configuration Used in Sets Area Widths Area Heights

A2 15

A3, A4 12

A2 15

20

10

8

12

6

A3, A4 12

15

10

12

5

9

7

5

14

12

9

5

5

6

6

11

13

5

4

8

Table 31: Area configurations used in each problem set

3. Problem Set Combinations: Within each major set, test problems span over

different numbers of processing areas, number of jobs, and tightness levels. Thus, each

problem type is a specified by specific combination of these attributes. The problem sets

are summarized in the table below.
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Generation

Algorithm

Numbers of

Processing

Areas

Numbers of

Jobs

Tightness

Levels

Instances of

Each

Combination

A2 1,3 10, 50, 100 2,4,6 10

A3 1, 10 500 4,6,8 10

A4 1,10 500 4,6,8 10

Table 32: Summary of test problems used in experiments

In this table, for instance, there are two different processing area configurations

used for A2 (1 area and 3 areas) with each configuration having three different numbers

ofjobs used (10, 50, and 100), each of which has three different tightness levels (2, 4, and

6), with 10 problem instances for each of these combinations. Thus, the total number of

problems in the A2 set is (2)(3)(3)(10) = 180. Similarly, the total number of problems in

the A3 set is (2)(1)(3)(10) = 60, and the total number for the A4 set is also (2)(1)(3)(10) =

60.

In the problems sets, A2 consists of small and medium-sized problems (ranging

from 10 to 100 jobs) at three different tightness levels (low=2, medium=4, and high=6),

while A3 and A4 consist of large problems (500 jobs) at three different tightness levels

(medium=4, high=6, very high=8). A2 preceded A3 and A4 in time, and was used to

compare the algorithms to solutions obtained with Model 3 run in CPLEX. Only these

smaller problems can be solved with CPLEX, consequently CPLEX is only applied to

problems in A2. In many instances, the problems were not able to be solved with CPLEX
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within the time limit of 10 minutes. In these cases, the incumbent solution found at 10

minutes was used in lieu of the optimal solution.

When the CPLEX and the hybrid meta-heuristic algorithm variants were applied

to the problems, certain time limits were imposed based on problem size. Because the

EDD and LB methods were deterministic and run in polynomial-time, no time limit

needed to be imposed (these ran very quickly). For the hybrid meta-heuristic algorithm

variants, two parameters control timing: MAX TIME, which limits the total amount of

time permitted, and MAX IMPROVEMENT TIME, which terminates the algorithm if a

certain time passes without finding an improvement. The time limits are shown below

based on problem size and method.

Method Problem

(Jobs)

Size Total Time Limit

(MAX TIME)

MAX

IMPROVEMENT

TIME

CPLEX < 100 600 seconds N/A

CPLEX 500 N/A N/A

Hybrid Algorithms < 100 1 80 seconds 40 seconds

Hybrid Algorithms 500 480 seconds 120 seconds

Table 33: Time limits for experimental methods based on problem size

9A.C. Performance Measures

The algorithms developed in this dissertation are intended to provide solutions for

spatial scheduling problems under the total tardiness objective. All solution algorithms
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are approximation algorithms, and with the exception of the EDD heuristic all algorithms

are stochastic as well. A good approximation algorithm is one that will find high-quality

solutions quickly and consistently. As a result, three criteria are used to assess algorithm

performance: 1) solution quality, required solution time, and algorithm variance.

These experiments involve a fairly large number of algorithm and problem set

combinations, and each hybrid algorithm is run ten times on each individual problem. As

is shown in Table 32 above, each problem combination contains ten problems. Because

of the large number of problem combinations, this analysis compares the performance of

each algorithm for each problem combination. Thus, the measures of performance used

aggregated the results for all problems within a problem combination over all runs for

each algorithm applied. For example, the A3/ 10/500/4 problem set contains ten problems,

and each of the BSA, BSAS, LS, LSS, RSAL, RSALS, RSAH, and RSAHS algorithms

were run ten times on each of these problems. The performance measures will compare

each algorithm based on aggregate performances of over all runs on all problems within

the A3/1 0/500/4 set.

The three performance measures are as follows:

1) Quality: The quality metric for a particular algorithm on a particular problem

combination will be its average objective function over all runs over all problems in the

combination set. For example, if BSA is used on A3/1/500/4, the quality rating is the

average objective on all ten runs over all ten problems.

2) Time: The time metric used is similar to the quality, but instead of objective

function values the average computational time is used.
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3) Variance: Because each different test problem may have a different optimal

value, the standard statistical variance over all runs over all problems within a

combination set is not a meaningful measure of algorithm variance. In order to

meaningfully measure algorithm variance, a measure called the Min-Max Delta Average

was developed and is used. This method involves first taking the difference of the

minimum and maximum algorithm's objective function values over all ten runs of a

particular problem (called the min-max delta). Then, the min-max deltas for all problems

in a combination set are simply averaged. For example, suppose BSA is run on the

A3/ 10/500/6 problem combination set. Given that there are ten problems in this set, the

Min-Max Delta Average, let P1 = [O11O2, .-.,O10] denote the objective function values

obtained on BSA's ten runs on problem i for i = 1 ... 10 . Then the Min-Max Delta

Average is computed as follows:

?

MinMaxDeltaAvg(BSA) = -V max(P¿) - min(P¿) (106)? ¿—?
i=i

Here, ? = 10 and denotes the number of problems in the combination set.

This metric provides a meaningful measure of variance because as an algorithm

becomes more consistent on a given problem set, the Min-Max Delta Average will

decrease. In the case where all solutions obtained have exactly the same objective

function values, it is clear that the Min-Max Delta Average will be zero.

9.1.D. Analytical Methodology

The analytical data in these experiments are centered on problem combination

sets, where each combination set includes the generating algorithm, the number of
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processing areas, the number of jobs, and the tightness level. For each problem

combination, all applicable solution algorithms are utilized and their performance is

assessed in terms of the three performance measures described in the preceding section:

Quality, Time, and Variance. Based on the results over all problem combinations, two

types of analysis will be carried out: 1) Best Solution Quality Analysis, and 2)

Comparative Algorithm Performance Analysis. The Best Solution Quality Analysis will

examine the quality of solutions obtained by the best-performing hybrid meta-heuristic

algorithm for each problem combination. These will be compared to the CPLEX results

(where applicable) and the EDD results. These comparisons will be summarized to draw

an overall conclusion about how well the hybrid meta-heuristics generally perform in

terms of solution quality.

The Comparative Algorithm Performance Analysis will score each hybrid meta-

heuristic algorithm over several different problem characteristics. Scores will be obtained

by counting the number of times an algorithm won or placed second and was within 5%

of the winner for problems having the specified characteristic. Three dimensions of

comparison are used for each category: solution quality, variance (i.e. algorithm

consistency), and solution time required. By tallying the scores, conclusions will be

drawn about which algorithms perform best and the pertinent circumstances for this

performance.
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9. I.E. Computational Resources

The computer used to perform the experiments on was a Dell computer running

Windows 7 with a quad-core 2.5 GHz processor and 6 GB of RAM.

9.2. EXPERIMENTAL RESULTS

In the results that follow, a cells marked with (W) indicates that the corresponding

hybrid algorithm (row) won in terms of the particular performance metric (column). A

cell marked with (S) indicates that the corresponding hybrid algorithm came in second

place and was within 5% of the winner. EDD, CPLEX, and LB are not counted in terms

of winning but are shown for comparison. The * next to CPLEX indicates when some

problem instances in the set could not finish within the ten-minute time limit, and in such

cases the incumbent found at ten minutes was taken in place of the optimal. Cases where

all hybrid algorithms reached the optimal solution were not marked with winners.
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9. 2.A. A2 Problem Set Results

Algorithm Quality Variance Time

BSA

EDD 0.0204

LB 0.0016

LS

RSAH

RSAL

CPLEX 0

Table 34: Results for problem set A2/1/10/2

Algorithm
BSA

EDD

LB

LS

RSAH

RSAL

CPLEX

Quality Variance Time

0.0234

(T

(T

(G

(T

Table 35: Results for problem set A2/1/10/4
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Algorithm Quality Variance Time

BSA 110.36 51.9 1.08544

EDD 147.9 0.0172

LB 2.084167 0.0015

LS 95.19 16.2 (W) 0.38128

RSAH 101.89 44.7 1.49049

RSAL (W) 90.28 (W) 14.1 2.57835

CPLEX 78.5 10.2

Table 36: Results for problem set A2/1/10/6

Algorithm
BSA

EDD

LB

LS

RSAH

RSAL

CPLEX

Quality Variance

0

Time

0.1138

0.0155

Table 37: Results for problem set A2/1/50/2
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Algorithm Quality Variance Time

BSA 42.32 36 (W) 7.48739

EDD 55.9 0.1123

LB 0.0142

LS (W) 18.32 (W) 16.3 14.3221

RSAH 27.47 30 19.44077

RSAL (W) 18.32 (S) 16.4 18.19153

CPLEX 9.4 33.1

Table 38: Results for problem set A2/1/50/4

Algorithm Quality Variance Time

BSA 3964.27 1259.6 (S) 28.7415

EDD 5947.5 0.1027

LB 10.365 0.0154

LS (W) 3445 (W) 947.6 49.33272

RSAH

RSAL

CPLEX *

4000

3953.61

3074

1325.4

1306.6

(W) 28.53357

29.55301

>600

Table 39: Results for problem set A2/ 1/5 0/6
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Algorithm Quality Variance Time

BSA 5.05 (S) 4.1 (W) 2.05233

EDD 6.1 0.2246

LB 0.0593

LS (W) 2.77 (W) 4 7.76911

RSAH 4.25 4.4 5.19138

RSAL 3.16 4.8 7.40691

CPLEX 0.1 0 16.4

Table 40: Results for problem set A2/1/100/2

Algorithm Quality Variance Time

BSA 332.59 218.2 (W) 24.80731

EDD 564.1 0.2122

LB 0.0593

LS

RSAH

RSAL

CPLEX

(W) 164.04

313.51

238.03

96.3

(W) 96.6

231.3

156.5

61.7666

31.46904

55.13094

>600

Table 41: Results for problem set A2/1/ 100/4
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Algorithm Quality Variance Time

BSA 17251.97 4115.7 69.98187

EDD 26291.4 0.2229

LB 11.51833 0.0484

LS (W) 15728.53 (W) 3291.6 109.7983

RSAH 17307.78 4436.7 (W) 68.64963

RSAL 17168.13 3968.3 (S) 69.46582

CPLEX * 17071.1 >600

Table 42: Results for problem set A2/1/ 100/6

Algorithm
BSA

BSAS

EDD

LB

LS

LSS

RSAH

RSAHS

RSAL

RSALS

CPLEX

Quality Variance Time

0.0139

(G

(G

(T

(G

(T

(G

(T

Table 43: Results for problem set A2/3/10/2
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Algorithm Quality Variance Time

BSA 0.07646

BSAS 0.01122

EDD 0.0188

LB 0.0016

LS 0.04365

LSS 0.00796

RSAH 0.04226

RSAHS 0.01233

RSAL 0.02965

RSALS 0.01217

CPLEX 0

Table 44: Results for problem set A2/3/10/4



Algorithm Quality Variance Time

BSA 2.87 8.4 1.22944

BSAS

EDD

LB

LS

LSS

RSAH

RSAHS

RSAL

RSALS

CPLEX

1.91

29.6

0.95

0.71

1.16

(W) 0.58

0.93

0.85

0.5

5.3

1.3

1.7

3.2

(W) 0.6

1.6

1.7

(W) 0.86826

0.0171

0.0016

1.8668

1.21991

2.19516

1.17122

2.21848

1.36578

Table 45: Results for problem set A2/3/10/6
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Algorithm Quality Variance Time

BSA 0.26816

BSAS 0.09578

EDD 1.7 0.145

LB 0.0139

LS 0.40501

LSS 0.0922

RSAH 0.26285

RSAHS 0.08768

RSAL 0.38685

RSALS 0.10327

CPLEX 0 10.6

Table 46: Results for problem set A2/3/50/2
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Algorithm
BSA

Quality Variance

12.57

Time

18.5 7.0239

BSAS 8.5 13.1 (W) 4.6752

EDD 104 0.1717

LB 0.0156

LS 5.91 5.1 13.60511

LSS (S) 5.2 (W) 4 8.13945

RSAH 8.44 14.2 14.94082

RSAHS 5.57 5.3 8.55212

RSAL 7.15 9.6 11.26042

RSALS (W) 4.95 5.2 6.67088

CPLEX 2.9 208.6

Table 47: Results for problem set A2/3/50/4
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Algorithm Quality Variance Time

BSA 774.48 347.1 20.73854

BSAS 740.17 260.1 (W) 18.63512

EDD 1370.4 0.1622

LB 2.085 0.0141

LS 692.16 268 28.5627

LSS (S) 683.52 (W) 231.6 31.02349

RSAH 749.59 343.3 24.85256

RSAHS 706.31 271.4 25.47106

RSAL 708.26 256.4 28.4284

RSALS

CPLEX

(W) 676.7

284.5

250.2 28.5191

>600

Table 48: Results for problem set A2/3/50/6



Algorithm Quality Variance Time

BSA (W) 0 (W) 0 4.47515

BSAS 0.05 0.5 0.57325

EDD 8.5 0.3433

LB 0.0578

LS (W) 0 (W) 0 3.32798

LSS (W) 0 (W) 0 (S) 0.8549

RSAH (W) 0 (W) 0 3.63693

RSAHS (W) 0 (W) 0 0.84456

RSAL 0.01 0.1 2.22051

RSALS

CPLEX

(W) 0 (W) 0 (W) 0.83509

168.2

Table 49: Results for problem set A2/3/ 100/2



Algorithm Quality Variance Time

BSA 61.58 73.7 (S) 22.96493

BSAS 48.12 51.4 (W) 21.81195

EDD 536.6 0.3464

LB 0.0546

LS 45.77 69.5 30.77508

LSS (S) 37.08 (W) 36.1 29.4806

RSAH 52.29 84.3 26.94921

RSAHS 38.64 (S) 36.8 33.19781

RSAL 48.24 66.5 31.49741

RSALS

CPLEX

(W) 36.58

11.11

(S) 36.8 29.14601

>600

Table 50: Results for problem set A2/3/100/4
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Algorithm Quality Variance Time

BSA 4797.9 1438.9 (W) 26.89427

BSAS (W) 4639.86 1099.8 31.00228

EDD 6866.9 0.3526

LB 2.395 0.0484

LS 4770.58 1206.2 30.29597

LSS (S) 4668.49 (S) 993.3 32.02694

RSAH 4845.33 1106.5 30.85922

RSAHS 4706.21 1030 29.59528

RSAL 4774.12 1264.9 29.83365

RSALS 4669.82 (W) 953.2 29.80651

CPLEX ** N/A **N/A **N/A

Table 51: Results for problem set A2/3/ 100/6

** Indicates no feasible solution could be found for any problems in the set within the
ten-minute time limit.
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9. 2.B. A3 Problem Set Results

Algorithm Quality Variance Time

BSA 433.25 (S) 196.3 (W) 36.29984

EDD 489.2 0 0.9001

LB 1.5794

LS (W) 292.94 260.4 221.9161

RSAH 416.08 (W) 195.6 (S) 39.50159

RSAL 407.59 223.3 84.71218

Table 52: Results for problem set A3/1/500/4

Algorithm Quality Variance Time

BSA 35248.56 21252.2 373.4832

EDD 97752.9 0.911

LB 1.6974

LS (W) 27703.46 (W) 16075.3 470.754

RSAH 36333.23 27433.7 (S) 369.4155

RSAL 36134.54 30322.7 (W) 363.0544

Table 53: Results for problem set A3/1/500/6



Algorithm Quality Variance Time

BSA 776830.3 73017.5 (W) 405.3713

EDD 884517.2 0.8958

LB 1540.967 1.5644

LS (W) 763812.9 (W) 41443.6 472.9361

RSAH 777539.1 61043.2 (S) 409.9439

RSAL (S) 775331.2 51497.1 418.1327

Table 54: Results for problem set A3/1/500/8

Algorithm Quality Variance Time

BSA 302.23 281.8 86.62901

BSAS 271.58 195.8 (W) 77.95707

EDD 1895.9 0.5491

LB 1.2394

LS 292.24 320.7 87.21973

LSS (W) 247.39 221.2 (S) 83.31195

RSAH 296.06 274.9 98.3677

RSAHS 250.72 (W) 186.9 85.08191

RSAL 264.05 216 98.20824

RSALS (S) 248.07 (S) 190.9 99.1589

Table 55: Results for problem set A3/1 0/500/4



Algorithm Quality Variance Time

BSA 14386.51 3217.1 84.79285

BSAS (S) 13918.87 3840.3 (W) 73.95548

EDD 24211.8 0.5477

LB 0.9283

LS 14215.2 3647.1 96.45603

LSS 13931.26 (W) 3067.7 91.37448

RSAH 14581.91 4305.9 78.75917

RSAHS 13947.35 3136.6 79.28835

RSAL 14358.85 4002.4 90.26367

RSALS (W) 13865.68 3115.1 95.581

Table 56: Results for problem set A3/1 0/500/6



Algorithm Quality Variance Time

BSA 88475.37 4831.9 94.5521

BSAS 87752.61 4675.4 91.10116

EDD 100324.1 0.5522

LB 150.2083 0.5158

LS 88107.82 4421.7 107.3271

LSS (W) 87630.1 4552.7 98.41894

RSAH 88387.85 4636.8 95.47611

RSAHS (S) 87636.26 4801.8 (W) 87.55033

RSAL 88167.35 4504.6 92.04264

RSALS 87785.83 (W) 4169.4 100.1691

Table 57: Results for problem set A3/1 0/500/8
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9. 2.C. A4 Problem Set Results

Algorithm Quality Variance Time

BSA 849033.7 87691.9 (S) 413.4883

EDD 959508.9 0.916

LB 907.3019 1.7157

LS (W) 829120.8 (W) 55277.3 475.06

RSAH 850463 75546.6 414.1899

RSAL (S) 844013.6 84874.4 (W) 410.7197

Table 58: Results for problem set A4/1/500/4

Algorithm Quality Variance Time

BSA (S) 1578900 84688.4 433.6951

EDD 1705902 0.9251

LB 3202.327 1.6851

LS (W) 1563916 (W) 53989.1 475.5586

RSAH 1583208 87459.3 (S) 429.4015

RSAL 1581623 73352.7 (W) 417.515

Table 59: Results for problem set A4/1/500/6
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Algorithm Quality Variance Time

BSA (S) 2248969 71877.6 458.2324

EDD 2389030 0.9297

LB 5895.187 1.5928

LS (W) 2240755 (W) 61347.1 475.7197

RSAH 2259811 101370.6 (W) 435.5452

RSAL 2254627 90554.9 (S) 446.6047

Table 60: Results for problem set A4/1/500/8

Algorithm Quality Variance Time

BSA 49929.28 7288.1 85.48364

BSAS 48922.86 6792.2 107.4652

EDD 66892.9 0.568

LB 1.2384

LS 49819.81 7141.2 100.6848

LSS 48620.4 6199.4 88.03727

RSAH 49644.03 7862.7 87.45657

RSAHS (S) 48464.61 (W) 5642.6 89.52469

RSAL 50221.84 6868.6 88.79947

RSALS (W) 48402.51 6032.8 (W) 77.85881

Table 61: Results for problem set A4/1 0/500/4



Algorithm Quality Variance Time

BSA 87304.18 7201.8 95.17158

BSAS 86433.04 6071.8 91.93623

EDD 102245.8 0.5724

LB 105.4749 0.9982

LS 87893.88 7461.1 103.659

LSS (W) 86343.02 (W) 5777.4 90.72987

RSAH 87891.39 7728.1 87.24683

RSAHS (S) 86380.18 7185.8 87.13509

RSAL 88162.12 7893.9 (S) 83.75141

RSALS 86677.39 6223.1 (W) 82.83173

Table 62: Results for problem set A4/1 0/500/6
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Algorithm Quality Variance Time

BSA 115288.3 6078.6 (S) 91.1078

BSAS (S) 114412.9 (S) 5271.8 107.1338

EDD 128202.3 0.5881

LB 370.6453 0.5519

LS 115232.7 6514.3 99.22911

LSS 114583.4 4938.2 99.61771

RSAH 115609.8 6852.5 92.57541

RSAHS 114523.7 (W) 5023.9 83.44613

RSAL 115701.8 6137.3 93.11543

RSALS (W) 114347.8 5702.5 (W) 88.75499

Table 63: Results for problem set A4/10/500/8

9.3. ANALYSIS OF HYBRID ALGORITHM PERFORMANCE

In this section, the overall performance of the hybrid meta-heuristic algorithms is

analyzed. The first branch of analysis is focused on the how the best meta-heuristic

hybrids performed in terms of quality compared to CPLEX, the calculated lower bound,

and the EDD solution. The second part examines the performances of the different hybrid

algorithm variants to one another over quality, variance, and time. The performances are

compared with regard to different problem characteristics and recommendations are made

accordingly.
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9.SA. Best Solution Quality Analysis

In this section, the winning solutions of each problem set are compared to the

lower bound, the solutions obtained the EDD heuristic, and the solutions obtained by

CPLEX (where applicable).

The following acronyms are used:

BMH = winning hybrid meta-heuristic solution quality

LBCP = lower bound

CPLEX = obtained solution quality

MCP = BMH / CPLEX

MEP = BMH / EDD solution quality

CEP = CPLEX solution quality / EDD solution quality.
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Set

A2-1-

10-2

A2-1-

10-4

A2-1-

10-6

LB

2.084

CPLEX

78.5

BMH

90.28

EDD

147.9

LBCP

?/?

?/?

0.026548

MCP

?/?

?/?

1.150064

MEP

?/?

?/?

0.610412

CEP

?/?

?/?

0.530764

?2-1-

50-2 0
?/? ?/? ?/? ?/?

?2-1-

50-4 0 9.4 18.32 55.9 1.948936 0.327728 0.168157

?2-1-

50-6 10.366 3074 3445 5947.5 0.003372 1.12069 0.579235 0.516856

?2-1-

100-2 0.1 2.77 6.1 27.7 0.454098 0.016393

?2-1-

100-4 96.3 164.04 564.1 1.703427 0.2908 0.170714

?2-1-
100-6 11.52 17071.1 15728.53 26291.4 0.000675 0.921354 0.598239 0.649304

?2-3-
10-2

?/? ?/? ?/? ?/?

?2-3-

10-4
?/? ?/? ?/? ?/?

?2-3-
10-6 0.5 0.58 29.6 1.16 0.019595 0.016892

?2-3-

50-2 1.7
?/? ?/?

?2-3-

50-4 2.9 4.95 104 1.706897 0.047596 0.027885

?2-3-

50-6 2.085 284.5 676.7 1370.4 0.007329 2.378559 0.493797 0.207604

?2-3-

100-2 8.5
?/? ?/?

?2-3-

100-4 11.11 36.58 536.6 3.292529 0.06817 0.020704

?2-3-

100-6 2.395 ?/? 4639.86 6866.9
?/? ?/?

0.675685

Table 64 ?2 problem set comparisons
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Set

A3- 1-500-4

LB BMH

292.94

EDD

489.2

MEP

0.598814

A3-1 -500-6 27703.64 97752.9 0.283405

A3-1-500-8 1540.97 763812.9 884517.2 0.863537

A3-10-500-4 247.39 1895.9 0.130487

A3-10-500-6 13865.68 24211.8 0.572683

A3-10-500-8 150.21 87630.1 100324.1 0.87347

Table 65: A3 problem set comparisons

Set LB BMH EDD MEP

A4- 1-500-4 907.3 829120.8 959508.9 0.86411

A4- 1-500-6 3202.37 1563916 1705902 0.916768

A4- 1-500-8 5895.19 2240755 2389030 0.937935

A4- 10-500-4 48402.51 66829.1 0.724273

A4- 10-500-6 105.47 86343.01 102245.8 0.844465

A4- 10-500-8 370.65 114347.8 128202.3 0.891933

Table 66: A4 problem set comparisons

Within the A2 problems, values of N/A occur for 1) algorithms with a high area

swap probability in relation to single-area problems (this makes no difference in such

cases), 2) when CPLEX solutions could not be obtained, and 3) where a division by zero

occurs in calculation of values. CPLEX solutions were available for most problem sets.

In many of these problem sets the optimal solutions were found for all problems within
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the set. It may be observed that the calculated lower bound (LB) is significantly smaller

than the CPLEX solutions in all of the non-zero objective function value cases. As a

result, it is not expected that the best hybrid meta-heuristic solutions (BMH) come near

the calculated LB (either within the A2 set or others). As can be seen, the BMH / CPLEX

ratios (the MCP value) show that the hybrid algorithms perform well compared to

CPLEX, most often coming within 1.7 times the optimal/CPLEX solution objectives. In

some problem sets it is observed that the hybrid algorithms beat CPLEX as well. When

compared to the EDD heuristic, it is observed that in all cases the hybrid algorithms far

outperformed the EDD heuristic and in most cases gave objective function values only a

small fraction of the EDD. The MEP and CEP values represent the ratios of the best

hybrid solutions to EDD solutions and CPLEX solutions to EDD solutions, respectively.

It is may be observed that these ratios are very close together in almost all cases, and that

the solutions obtained by the hybrid algorithms are much closer to the CPLEX solutions

than they are to the EDD heuristic (and in some cases the hybrid algorithms even beat

CPLEX). It thus appears the hybrid meta-heuristic algorithms performed well in this

problem set.

The A3 problems were all much larger than any A2 problems and were thus too

large to be applied to for CPLEX. These problems were much larger and also somewhat

different from the A2 jobs in that the job sizes were more uniformly distributed at higher

tightness levels. Additionally, this set included problems of extremely high tightness

levels (level 8). At tightness levels 4 and 6, the MEP values ranged from 0.13 to 0.59,

indicating that the hybrid algorithms far outperformed the EDD heuristic at these

tightness levels. At tightness = 8 level, the MEP went up to the 0.86-0.87 range.
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The A4 problems were identical to the A3 problems in size and tightness levels.

However, the A4 problems correlated job processing time to job size. As can be observed

by the relative EDD performances, these problems tended to be significantly tighter than

their A3 counterparts at any given tightness level (in other words, an A4 problem with a

tightness of 6 is tighter than an A3 problem of tightness 6). This is particularly indicated

by the LB, which is far higher in these problems than in all the other problem sets. The

MEP ranges from 0.72 to 0.92 in the A4 problems, indicating that the hybrid algorithms

outperformed the EDD, but not as significantly as they did for the A2 and A3 problems.

Because the calculated lower bounds are so much higher in these problems, it is probable

that the optimal solutions are far closer to the EDD solutions in these problems than in

others. Under these circumstances there would be no reason to imagine that the hybrid

meta-heuristic algorithms perform generally worse on this type of problem than on

others.

9. 3.B. Comparative Algorithm Performance Analysis

In this section the different hybrid meta-heuristic algorithm variants are compared

to one another with respect to performance in three dimensions: solution quality,

variance, and time. Within each dimension, the algorithms are compared across differing

problem characteristics including 1) single processing area versus multiple processing

areas, 2) different tightness levels, and 3) problem type (i.e. A2, A3, and A4). With

respect to each criterion/problem characteristic an algorithm's score is the number of

times that algorithm either won or came in second place within 5% of the winner for that
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criterion/problem characteristic. For instance, if BSA won twice and came in second once

(within 5% of winner) for the single area criteria, its score would be 3 for this criterion.

In the tables below, the top scores in each category are marked with (W) and the second-

place scores are marked with (S). However, this denotation is used only where two or

fewer algorithms win or come in second.

In each table it should be noted that in single area problems the algorithm

varieties that employ a high area swap probability (e.g. BSAS, LSS, RSAHS, and

RSALS) were not applied, since this treatment will not make any difference in single-

area cases.

Criteria

Single

Area

Multiple

Areas

Tightness

= 2

Tightness

= 4

Tightness

= 6

Tightness

= 8

~A2

"Al

"A4

BSA BSAS LS

(W)

11

(W) 2

(W) 4

(W) 4

(W) 2

(W) 6

(W) 3

(W) 3

LSS

0

(W)

8

(S) 3

(S) 3

(S) 5

(S) 2

RSAH RSAHS

(S) 5

RSAL

(S) 4

(S) 3

RSALS

(W) 8

(W) 4

(W) 2

Table 67: Quality score for each algorithm over each criterion/problem characteristic
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The superior performance of algorithm variants that use local search as the meta-

heuristic is clearly seen in the table above (LS and LSS). Perhaps the most important

dimension of difference in problem varieties is the distinction between problems that

have only one processing area versus those that have multiple processing areas. In the

latter case the decision must be made as to which processing area each job should be

assigned to. Interestingly, the local search-based algorithms won in both problem

categories along this dimension. For the multiple-area problems, the algorithm varieties

with the high area swap probabilities (i.e. those ending with S, especially LSS, RSALS,

and RSAHS) far outperformed those that did not have this feature. In addition to the local

search varieties, algorithms that used simulated annealing with reheating also performed

well, and matched the local search in many instances. In particular, the algorithms that

used simulated annealing with reheating either matched local search or came in second

on both sides of the single area-multiple area problem dimension.
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Criteria BSA BSAS LS LSS RSAH RSAHS RSAL RSALS

Single Area (S) 2
(W)

10 0 (S) 2

Multiple
Areas

(W)
7 (S) 6

Tightness
2 (W) 2 (W) 2

Tightness
4 (W) 3 (S) 2 (W) 3 (S) 2

Tightness
6 (W) 4

(W)
4

Tightness =
8 (W) 2

A2 (W) 6 (S) 5

A3 (W) 2 (S) 2

A4 0 (W) 3 (S) 2

Table 68: Variance score for each algorithm over each criterion/problem characteristic

The local search algorithm variants (LS and LSS) clearly show superior

performance with regard to variance as well, as can be observed in the table above.

Interestingly enough, both the single-area and multiple-area categories were won by local

search-based algorithms. Furthermore, algorithm varieties that used the high area swap

probability also far outperformed those that did not on the multiple-area problems.

Although not as good as a local search, simulated annealing with reheating appears to

perform fairly well in terms of consistency. Interestingly, the variance results appear to
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follow a pattern quite similar to solution quality results and appear to have quite a strong

correlation.

Criteria BSA BSAS LS LSS RSAH RSAHS RSAL RSALS

Single Area
(W)

7 (S) 5

Multiple
Areas (W) 6

Tightness
2 1

Tightness
4

(W)
5 (S) 3 1 1

Tightness
6 1 (S) 3

(W)
4

(W)
4

Tightness
8

(W)
2

(W)
2

A2
(W)

5 (S) 4

A3
(S)

2 (S) 2
(W)

3 1

A4

(W)
4

Table 69: Time score for each algorithm over each criterion/problem characteristic

In contrast to the solution quality and variance, it appears that the basic simulated

annealing variants performed the best in terms of computational time. Furthermore,

simulated annealing with reheating came in second place while local search did not even

win once. Thus, the computational time appears to be inversely correlated with quality
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and variance. However, the high area swap probability was a part of both the winner and

second place solution in the multiple-area category.

9.4. SUMMARY OF RESULTS

In this chapter, a computational experimentation was carried out on a large

number of problems to investigate the performance of several varieties of hybrid meta-

heuristic spatial scheduling algorithms. It appears that in general the hybrid meta-

heuristic algorithms are effective in finding near-optimal solutions to spatial scheduling

problems over a wide variety of differing characteristics. Where optimal solutions could

be found, it was seen that these algorithms tend to find solutions that are far closer to the

optimal solution than to the solutions found by the EDD heuristic algorithm. Hybrid

algorithms that used local search as the meta-heuristic (LS and LSS) were found to be the

most effective and provided the best solutions in nearly all problem categories.

Furthermore, in problems involving multiple processing areas the high area swap

probability led to superior performance in terms of quality, consistency (variance), and

time. Algorithms that utilized simulated annealing with reheating also generally

performed well and matched the local search-based algorithm performance on many

problem sets.

In summary, the LS algorithm won in nearly all single-area problems, while the

LSS (local search with high area swap probability) won in nearly all multiple-area

varieties both in terms of solution quality and in terms of minimal variance.

Consequently, because the LSS will behave as the LS whenever there is only a single

processing area, this algorithm appears to give the best overall performance.
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CHAPTER 10: CONCLUSIONS

In this dissertation a number of important contributions were made to field of

spatial scheduling. From the literature review it was seen that there is relatively little

research done in spatial scheduling compared to other types of scheduling. Furthermore,

most of the research was conducted from an Expert Systems point of view as opposed to

an Operations Research perspective. In this dissertation, spatial scheduling as a problem

class was addressed mathematically and systematically from an Operations Research

perspective. General optimization models for several spatial scheduling problem classes

were developed and it was shown that these models contain a set of core constraints that

apply (and can thus be transferred) to almost any spatial scheduling problem regardless of

objective function. The complexity of the spatial scheduling models was addressed and it

was proven that the models are at least NP-complete. Furthermore, spatial scheduling

problems were shown to be NP-hard in general. In addition to complexity, a method for

computing a lower bound for the total tardiness objective was developed. Furthermore,

this lower bound was shown to be non-trivial, and a polynomial-time algorithm for

computing this lower bound was also given.

In addition to theoretical aspects of spatial scheduling, a number of approximation

algorithms for solving spatial scheduling problems were developed in this dissertation.

Broadly speaking, these algorithms fell into two categories: greedy heuristic algorithms

and hybrid meta-heuristic algorithms. The greedy heuristic algorithms were designed to

quickly provide solutions with guaranteed feasibility. The hybrid meta-heuristic

algorithms combine greedy heuristics with a meta-heuristic to find near-optimal solutions
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for larger, realistic problems that cannot be solved using exact methods such as integer

programming. Furthermore, a general, modular algorithm framework was given for the

hybrid meta-heuristic algorithms that can incorporate many different greedy heuristics

and meta-heuristics. Although the algorithms were designed to optimize the total

tardiness objective, the representations, data structures, and framework developed are

sufficiently general to be adapted for use on other objectives as well.

In order to test the performance of the algorithms developed, extensive

computational experiments were carried out on a wide variety of problems. Four different

problem generation algorithms were developed (detailed in Appendix 1) to provide

problems of different sizes, tightness levels, numbers of processing areas, and qualitative

characteristics. The computational experiments were extensive enough to require nearly a

full month of continuous computing time. These experiments tested the earliest due date

heuristic algorithm, CPLEX (for small and medium-sized problems) and several varieties

of hybrid meta-heuristic algorithms. The algorithms were assessed with respect to

solution quality (objective function value), variance (consistency), and computational

time. The hybrid meta-heuristic algorithms were effective in providing near-optimal

solutions. Where optimal solutions could be obtained it was found that the hybrid meta-

heuristic algorithms tended to give solutions much closer to the optimal solution than to

the EDD heuristic solution. Furthermore, in some cases it was found that the hybrid

algorithm solutions obtained within three minutes beat the CPLEX incumbent solutions

at the CPLEX 10-minute time limit (in terms of objective function). Of the hybrid meta-

heuristic algorithm varieties examined it was found that the local search meta-heuristic

had superior performance in both solution quality and algorithm consistency.
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Furthermore, for problems involving multiple processing areas it was found that the high

area swap probability yielded superior performance in solution quality, consistency, and

time.

This dissertation has contributed a number of advances to the discipline of spatial

scheduling. However, a number of future research areas are indicated. One such area is to

investigate the utility of the lower-bound developed in Chapter 6 for finding solutions via

integer programming. By incorporating the calculated lower bound into the mathematical

models developed in Chapter 4 a large number of candidate solutions may be able to be

pruned away in the branch-and-bound search, resulting in the speed of solution being

greatly enhanced as well as the ability to solve significantly larger problems with integer

programming. Another research area involves the development of better area-assignment

heuristics. Chapter 7 developed several heuristics for quickly constructing schedules for

several problem variants. However, only one scheme was introduced for area assignment

to jobs: Round Robin. This is a very naive approach and from the results of the meta-

heuristic algorithms applied to multiple-area problems it is clear that the area assignment

has a very important role in finding good solutions. One area of future research is to

develop more intelligent area assignment schemes to be incorporated into the BLRT

heuristic.

In this dissertation the solution methods focused on the total tardiness objective.

However, the models developed contain reusable core sets of constraints that apply to

many other problems as well. Additionally, the hybrid meta-heuristic framework and

associated representations and data structures may be applied to problems with differing
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objectives as well. Thus, other future research areas include adapting the methods

developed in this dissertation for use on problems with different objective functions, and

also experimenting with different hybrid algorithm components including alternative

greedy heuristics and meta-heuristics.
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APPENDIX 1: PROBLEM GENERATION ALGORITHMS

In order to facilitate testing of the models and algorithms developed in this

dissertation, four separate problem generation algorithms were developed. This

dissertation research spans over several years and the four algorithms were developed in

sequence. Each algorithm produces problems with differing characteristics including

tightness levels ranging from 1 to 10. A tighter problem is one with more jobs needing to

be processed at a any given time on average, resulting in more competition for spatial

resources.

Algorithm 1 was the first problem generation algorithm to be developed. In this

appendix it is taken directly from Garcia and Rabadi [60] and is reproduced almost

verbatim (with a few modifications for contextual fit). Problems generated by Algorithm

1 were used to verify the correctness of the greedy heuristic algorithms in Chapter 7 and

to test the computational speed of these algorithms. However, when Model 3 solved with

CPLEX was applied to these problems, it was found that they were not typically tight

enough to produce a non-zero optimal objective value. Consequently, it was not deemed

suitable for investigating solution algorithm performance. As a result newer, better

problem generation algorithms were then developed.

Algorithm 2 was developed to enable problems of a higher tightness to be

produced. Algorithm 2 utilizes a fundamentally different approach from Algorithm 1 and

enables a much greater range of problem tightness levels to be generated, both at the

lower end as well as the higher end. Algorithm 2 also correlates job sizes to problem

tightness levels to a moderate degree. In particular, it limits how small a job can be based
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on a tightness level. Thus, higher tightness levels will tend to produce fewer small jobs

and as a result, tighter problems tend to have more bulky jobs.

Algorithm 3 was developed using a similar approach to Algorithm 2. However,

Algorithm 3 was designed to remove the correlation between job size and problem

tightness. Algorithm 3 is also capable of producing a wide range of tightness levels but

without a correlation between problem tightness and job size.

Algorithm 4 was also developed using a similar approach to Algorithm 2 and

Algorithm 3. However, Algorithm 4 was designed specifically to correlate job size with

job processing time. This is a very realistic assumption that may be encountered in

practice. For instance, a machine may need to move over more space or perform more

operations on a larger job, resulting in a longer processing time. Algorithm 4 uses a

simple mechanism to generate job duration: the job processing time is equal to the job

area (width multiplied by height). This results in a perfect correlation between size and

processing time. Algorithm 4 has does not correlate problem tightness with job size.

AT. ALGORITHM 1 (PROBLEMS FOR HEURISTIC PERFORMANCE TESTING)

Algorithm 1 was developed to generate random spatial scheduling problem

instances of varying tightness levels, based on a given maximum area width and height.

Algorithm 1 was implemented in Ruby [59] and used primarily to generate problems for

testing the performance of the greedy heuristic algorithms developed in Chapter 7. In this

algorithm, each job's width and height are generated using a uniform distribution over [1,

width or height of area]. Durations (i.e. processing times) are generated using a uniform

distribution over [5, 25]. Earliest allowable start times and deadlines are generated using
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an incremented current time and a tightness factor ranging from 1 to 10, with 10

generating the most tightly-packed problems. Earliest allowable start times were

generated by

E = current time - r

where r is a random number uniformly distributed over [0, (current time) / tightness}.

Deadlines are generated by

D = current time + currentjob duration + (r * tightness)

where r is a random number uniformly distributed over [0, current job duration}.

Finally, current time is initialized to 0 prior to the generation of any job and subsequently

incremented after each job generation by

Increment = 10 * r / tightness

where r is a random number uniformly distributed over [0, currentjob duration].

A.2 ALGORITHM 2: (CORRELATION OF PROBLEM TIGHTNESS WITH JOB SIZE)

Algorithm 2 produces problems with a modest correlation between problem

tightness and job size. This algorithm consists of two procedures: a procedure to generate

a problem for a single area and another that uses this single-area procedure to generate a

problem for multiple areas. In the single-area procedure the input consists of 1) the

desired number of jobs to be generated n, 2) a processing area width and height, and 3) a

tightness factor ranging from 0 to 10, with 10 generating the most tightly-packed

problems. Intuitively, a "tighter" problem is one that requires more jobs to be scheduled
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within a shorter period of time, thus requiring a tighter packing of jobs inside the area to

reach an optimal solution. This tightness factor determines 1) the minimum width and

height each job can have relative to the area dimensions (tighter = larger minimum

dimensions), 2) the amount of "slack" time - the amount of time in addition to processing

time - a job may have before it is tardy (tighter = less slack time), and 3) the variance in

earliest start dates, processing times, and due dates (tighter = less variance). The problem

generation algorithm is centered on the concept of a current time that is incremented each

time a job is created. The higher the tightness level, the less current time is incremented

during each iteration. The procedure for generating a single-area problem is shown

below.
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Procedure GENERATESINGLEAREAPROBLEM (Width, Height, Tightness, ?)

DO:

Jobs :=0

Current_Time := 0

Min_Dim_Percent := 0.3

// Minimum percentage of area dimension a job must have at max tightness

Ratio := Tightness /10 // The tightness ratio - always assumed to be in [0, 1]

MaxJDur := 25 // Maximum duration

Min_Dur := 5

MaxJTime Pad := 50

// Maximum amount of slack time until next job becomes eligible

Max Time_Increment := 50

// Maximum amount current time may be incremented in a single iteration

FORy' := 1, j < ? DO:

W:= uniform random value in [min(l, Ratio * Min_Dim_Percent * Width),

Width]

H := uniform random value in [min(l, Ratio * Min_Dim_Percent * Height),

Height]

Procèssing_Time := uniform random value in [Min_Dur + ((Max_Dur -

Min_Dur) * Ratio), MaxJDur]

EarliestJStart := Current_Time

Due_Date := EarliestJStart + ProcessingJTime + (1-Ratio) * MaxJTimePad

CurrentJTime := CurrentJTime + uniform random value in [(l-Ratio) *

MaxJTime Increment]

ADDjob = {W, H, EarliestJStart, ProcessingJTime, DueDate) TO Jobs

END

RETURN Jobs

END GENERATESINGLE AREAPROBLEM

Table 70: The GENERATESINGLEAREAPROBLEM procedure for Algorithm 2
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In order to generate multiple-area problems, the above procedure is utilized for each area.

The input for generating multiple-area problems consists of 1) width and height values

for areas \...m, 2) a tightness factor ranging from 1.0-10, and 3) the desired number of

jobs to be generated n. The multiple-area procedure is shown below.

Procedure GENERATEMULTIPLEAREAPROBLEM {Width[l...m], Height[1 ...m],

Tightness, n) DO:

Jobs := 0

FOR / := 1, i<m DO:

IF i < m THEN K := [? / m\

ELSE K :=\n / ml

Next_Set := GENERATE_SINGLE_AREA_PROBLEM (Widthfi], Heightfij,

Tightness, K)

Jobs := Jobs \JNext_Set

END

RETURN Jote

END GENERATE MULTIPLEAREA PROBLEM

Table 71: The GENERATEMULTIPLEAREAPROBLEM procedure for Algorithm
2
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A.3. ALGORITHM 3 (NO CORRELATION OF PROBLEM TIGHTNESS WITH JOB

SIZE)

Algorithm 3 provides a similar range of tightness to Algorithm 2 in the problems

it is capable of generating. However, whereas Algorithm 2 has a limitation on how small

a job can be based on tightness, there is no such limitation in Algorithm 3. As a

consequence, job sizes are uniformly distributed regardless of tightness. Algorithm 3

utilizes the same basic logic as Algorithm 2, with the exception of the manner in which

job widths and heights are generated. Structurally, Algorithm 3 uses the same two

procedures as Algorithm 2: GENERATESINGLEAREA PROBLEM and

GENERATE MULTIPLE AREA PROBLEM. The GENERATE

MULTIPLEAREAPROBLEM procedure is exactly the same, while the

GENERATESINGLEAREAPROBLEM is modified accordingly. The version of

GENERATE SINGLEAREA PROBLEM used in Algorithm 3 is shown below.
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Procedure GENERATESINGLEAREAPROBLEM (Width, Height, Tightness, n)

DO:

Jobs :=0

Current_Time := 0

Min_Dim_Percent := 0.3

// Minimum percentage of area dimension a job must have at max tightness

Ratio := Tightness /10 // The tightness ratio - always assumed to be in [0, 1]

Max_Dur := 25 // Maximum duration

Min_Dur := 5

MaxTimeJPad := 50

// Maximum amount of slack time until next job becomes eligible

Max_Time_Increment := 50

// Maximum amount current time may be incremented in a single iteration

FORy == 1, j < ? DO:

W := uniform random value in [1, Width]

H := uniform random value in [1, Height]

Processing_Time := uniform random value in \Min_Dur + ((MaxJDur -

Min_Dur) * Ratio), MaxJDur]

Earliest Start := Current Time

Due_Date := Earliest_Start + ProcessingJTime + (1 -Ratio) * Max_Time_Pad

Current Time := Current Time + uniform random value in [(l-Ratio) *

Max_Time_Increment]

AOOjob = {W, H, Earliest_Start, ProcessingJTime, Due_Date} TO Jobs
END

RETURN Jobs

END GENERATESINGLE AREAPROBLEM

Table 72: The GENERATESINGLEAREAPROBLEM procedure for Algorithm 3
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A.4. ALGORITHM 4: (CORRELATION OF JOB SIZE TO PROCESSING TIME)

Algorithm 4 is designed to generate jobs where there is a direct correlation

between job size and job processing time. This is a very realistic assumption that may be

readily expected in industrial problems, such as when machines need to cover more space

to process jobs (resulting in longer processing times). The basic structure of Algorithm 4

is the same as with Algorithm 2 and 3, consisting of the two procedures

GENERATESINGLEAREAPROBLEM and

GENERATEMULTIPLEAREAPROBLEM. In Algorithm 4, the

GENERATEMULTIPLE AREAPROBLEM procedure is exactly the same as is found

in Algorithm 2 and Algorithm 3. However, the

GENERATESINGLEAREAPROBLEM procedure is modified to correlate the job

processing time to job size. In this problem, the processing time is set to be equal to the

total job area (width by height). Additionally, Algorithm 4 does not correlate job size to

problem tightness; in this respect it is like Algorithm 3 rather than Algorithm 2. The

GENERATESINGLEAREAPROBLEM for Algorithm 4 is shown below.
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Procedure GENERATESINGLEAREA PROBLEM (Width, Height, Tightness, n)

DO:

Jobs :=0

Current Time := 0

Min Dim Percent := 0.3

// Minimum percentage of area dimension a job must have at max tightness

Ratio := Tightness /10 // The tightness ratio - always assumed to be in [0, 1]
MaxDur := 25 // Maximum duration

Min_Dur := 5

MaxJTimePad := 50

// Maximum amount of slack time until next job becomes eligible

Max_Time_Increment := 50

// Maximum amount current time may be incremented in a single iteration

FORy ~ 1, j < ? DO:

W := uniform random value in [1, Width]

H := uniform random value in [1, Height]

ProcessingJTime := Width * Height

Earliest_Start := CurrentJTime

DueDate := Earliest Start + ProcessingTime + (1-Ratio) * Max_Time_Pad

CurrentJTime := Current_Time + uniform random value in [(I -Ratio) *

Max_Time_Increment]

ADDjob = {W, H, Earliest_Start, Processing Time, Due_Date) TO Jobs

END

RETURN Jobs

ENDGENERATE single area problem

Table 73: The GENERATESINGLEAREAPROBLEM procedure for Algorithm 4
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