Old Dominion University
 ODU Digital Commons

Spring 2009

Towards the Quantitative Analysis of the Connectivity Value of Networked Operations

Dean Deller
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds
Part of the Military and Veterans Studies Commons, Operational Research Commons, and the Systems Engineering Commons

Recommended Citation

Deller, Dean. "Towards the Quantitative Analysis of the Connectivity Value of Networked Operations" (2009). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/8ndb-fg13
https://digitalcommons.odu.edu/emse_etds/73

TOWARDS THE QUANTITATIVE ANALYSIS OF THE

 CONNECTIVITY VALUE OF NETWORKED OPERATIONSby
Sean Deller
B.S. May 1988, United States Military Academy
M.E. December 1999, Old Dominion University
A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ENGINEERING MANAGEMENT OLD DOMINION UNIVERSITY
May 2009

Approved by:
$\overline{\text { Ghaith Rabadi (Director) }}$

Shannon Bowhing (Membeq

Andread thill (Mamher)

Steven Malns (Member)

ABSTRACT
 TOWARDS THE QUANTITATIVE ANALYSIS OF THE CONNECTIVITY VALUE OF NETWORKED OPERATIONS

Sean Deller
Old Dominion University, 2009
Director: Dr. Ghaith Rabadi

While the nature of and the approach to command and control is evolving in order to meet the challenges of Information Age warfare, the essential functions that must be accomplished remain constant. One of those essential functions is the arrangement of the assets within a combat force. Certainly, the many different ways to arrange a given set of assets will have different impacts on the combat effectiveness of the force. Some arrangements will cnable self-synchronization, while other arrangements will impede it. How then, should an Information Age combat force be organized in order to optimize its effectiveness?

The concept of Network Centric Operations (NCO) represents a shift from traditional attrition-based approaches to a warfighting style that emphasizes speed of command and self-synchronization. One goal of NCO is to field a force that is capable of achicving information superiority, thus enabling a massing of effects instead of the traditional massing of forees that will disrupt the enemy's strategy and preclude potential courses of action. NCO shifts the focus from the numbers and capabilities of platforms toward the information-based aspects of forec employment: information collection, communication, and exploitation. Central to the ability of a force to manage and exploit information is its connectivity: the existence, capacity, reliability, and other attributes of the links that connect its platforms, command and control centers, and other entities. A fundamental problem is to develop an understanding of the influence of connectivity on force effectiveness that can lead eventually to quantitative prediction and guidelines for design and employment. This research presents an initial attempt to achieve such understanding through the quantitative analysis of a model of NCO focused on the correlation between comectivity and effectivencss.

To Pam, Brendan, and Thomas...

ACKNOWLEDGEMENTS

I am deeply grateful to Professors Ghaith Rabadi, Shannon Bowling, and Andreas Tolk at Old Dominion University for their endless patience, encouragement and valuable advice, without which I would never have completed this work. I am especially indebted to Colonel Steven Mains for many years of mentorship, friendship, and support. I would also like to thank Mr. Jeff Cares and Dr. Michael Bell for their generous support and cooperation.

Thank you all.

TABLE OF CONTENTS

Page
LIST OF TABLES VII
LIST OF FIGURES IX
INTRODUCTION 1
BACKGROUND 1
EVOLUTIONARY SHIFTS IN MODERN WARFARE 1
CYBERWAR AND NETWAR 4
INTO THE FOURTH GENERATION 5
LITERATURE REVIEW 7
WHY ARE LEGACY COMBAT MODELS INADEQUATE? 7
NETWORK CENTRIC OPERATIONS 8
THE INFORMATION AGE COMBAT MODEL 12
ANALYSIS OF THE IACM 17
METHODOLOGY 21
AN AGENT-BASED SIMULATION MODEL USING THE IACM 21
STRUCTURE OF THE EXPERIMENT 22
DEVELOPING THE NETLOGO MODEL 29
EXPERIMENTAL APPROACH 36
MODELING RESULTS 37
MODELING A 7-3-7-1 NETWORK 37
MODELING AN 8-3-8-1 NETWORK 41
MODELING A 9-5-9-1 NETWORK 44
CONCLUSION 49
ACHIEVING THE RESEARCH PURPOSE 49
RECOMMENDATIONS FOR FUTURE WORK 50
SUMMARY 51
REFERENCES 53
APPFNDIX
MEANINGFUL CONFIGURATIONS 56
PERRON-FROBENIUS EIGENVALUE VALUES 75
UNIQUE PERRON-FROBENIUS EIGENVALUE VALUES 81
MODELING RESULTS 84
REGRESSION RESULTS 97
METRICS FOR A 7-3-7-1 NETWORK 103
NETLOGO CODE 105
VITA 125

LIST OF TABLES

Page
Table 1. Types of links available in the IACM 16
Table 2. The numbers of meaningfully different configurations of all $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ networked forces where $\mathrm{X}<11$ and $\mathrm{Y}<8$. 25
Table 3. The numbers of unique $\lambda_{\text {PFE }}$ values of all X-Y-X-1 networked forces where $\mathrm{X}<11$ and $\mathrm{Y}<8$. 27
Table 4. The percentages of $\lambda_{\text {PFE }}$ values that are unique for all $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ networked forces where $\mathrm{X}<11$ and $\mathrm{Y}<8$. 28
Table 5. All Possible Configurations of a 4-3-4-1 Network 56
Table 6. All Possible Configurations of a 5-3-5-1 Network 57
Table 7. All Possible Configurations of a 7-3-7-1 Network 58
Table 8. Meaningful Combinations of an X-3-X-1 Network 61
Table 9. Meaningful Combinations of an X-4-X-1 Network 66
Table 10. Meaningful Combinations of an X-5-X-1 Network 71
Table I1. Meaningful Combinations of an X-6-X-1 Network 73
Table 12. Meaningful Combinations of an X-7-X-1 Network 74
Table 13. $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of a 7-3-7-1 Network 75
Table 14. $\lambda_{p f e}$ Values for all Meaningful Configurations of a 8-3-8-l Network 76
Table 15. $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of a 9-5-9-1 Network 78
Table 16. Unique $\lambda_{\text {PriE }}$ Values for all Meaningful Configurations of a 7-3-7-1 Network 81
Table 17. Unique $\lambda_{\text {pfi }}$ Values for all Meaningful Configurations of an 8-3-8-I Network 82
Table 18. Unique $\lambda_{\text {ffe }}$ Values for all Mcaningful Configurations of a 9-5-9-1 Network 83
Table 19. Modeling Results for a 7-3-7-1 Network 84
Table 20. Modeling Results for an 8-3-8-I Network 85
Table 21. Modeling Results for a 9-5-9-1 Network 87
Table 22. Modeling Results for a 9-5-9-1 Network (not including ties) 90
Table 23. Modeling Results for a 9-5-9-I Network (Ranked by $\lambda_{\text {pfe }}$ value) 93
Table 24. Modeling Results for all 9-5-9-1 configurations with a $\lambda_{\text {PFE }}$ value of 2.031 96
Table 25. Regression Results for a 7-3-7-1 Network 97
Table 26. Regression Results for an 8-3-8-1 Network 98
Table 27. Regression Results for a 9-5-9-1 Network 99
Table 28. Rcgression Results for a 9-5-9-1 Nctwork (minus ties) 100
Table 29. Two-Variable Regression Results for a 9-5-9-1 Network (minus ties) 101
Table 30. Two-Variable Regression Results for a 9-5-9-1 Network 102
Table 31. Metric Values for a 7-3-7-1 Network 104

LIST OF FIGURES

Page
Figure 1. The basic combat network represents the simplest situation in which one side can influence another. 14
Figure 2. The simplest two-sided combat network consists of two opposing combat cycles. 14
Figure 3. The simplest complete combat network represents all the ways in which Sensors, Deciders, Influencers and Targets interact meaningfully with cach other 15
Figure 4. An adjacency matrix for the simplest complete combat network 18
Figure 5. The two meaningfully different configurations of a 4-3-4-1 network 23
Figure 6. An adjacency matrix for one of the 42 meaningfully different configurations of a 7-3-7-1 network. 26
Figure 7. The probability of a BLUE Win for each of the 42 BLUE configurations (with $\lambda_{\text {BLUE }}$ values varying from 1.821 to 2.280) against each of the 42 RED configurations (also with $\lambda_{\text {RFD }}$ values varying from 1.821 to 2.280) 38
Figure 8 . The average probability of a BLUE win by $\lambda_{\text {PlE }}$ for 42 configurations of a 7-3-7-1 BLUE network 39
Figure 9. The disparity and robustness values of the 42 configurations of a 7-3-7-1 BLUE network. 40
Figure 10 . The average probability of a BLUE win by $\lambda_{\text {PFE }}$ for 78 contigurations of an 8-3-8-1 BLUE network 42
Figure 11. The disparity and robustness values of the 78 configurations of an 8-3-8-1 BLUE network 43
Figure 12. The average probability of a BLUE win by $\lambda_{\text {ple }}$ for 95 configurations of a 9-5-9-1 BLUE network. 44
Figure 13. The average probability of a BLUE win by $\lambda_{\text {pfer }}$ for 95 configurations of a 9-5-9-1 BLLE network (not including ties). 46
Figure 14. The disparity and robustness values of the 95 configurations of a 9-5-9-1 BLUE network 47

CHAPTER I

INTRODUCTION

> "New approaches to accomplishing the functions that are associated with Command and Control are becoming an essential part of an Information Age transformation of military and civilian institutions; such a transformation is required to meet twenty-first century security challenges." (Alberts 2007, 2) ${ }^{1}$

BACKGROUND

While the nature of and the approach to command and control is evolving in order to meet the challenges of Information Age warfare, the essential functions that must be accomplished remain constant. One of those essential functions is the organization, or "arrangement" (from the definition of "Command and Control" in Joint Publication 1-02, $79-80)^{2}$, of the assets within a combat force. Certainly, the many different ways to arrange a given set of assets will have different impacts on the combat effectiveness of the force. Some arrangements will enable self-synchronization, while other arrangements will impede it. How then, should an Information Age combat force be organized in order to optimize its effectiveness?

EVOLUTIONARY SHIFTS IN MODERN WARFARE

The organizations of military forces throughout history have been largely dependent on the capabilities of the weapons of that age. Lind, et al., (1989) provide the first classification of modern military development into distinct generations. The first generation of warfare consists of "the tactics of line and column" (Lind, et al. 1989, 23)

[^0]and is focused on massed manpower. Second generation warfare evolved due to the increased lethality of firearms and artillery and, coupled with the advent of the machinegun, indirect fire and other technological advances on the battlefield, resulted in a change of focus from massed manpower to massed firepower. The tactics of second generation warfare evolved towards fire and movement, although they remained linear in nature and focused on attrition. The third generation of warfare reflects the emergence of maneuver warfare and its employment on nonlinear tactics. This was manifested in the blitzkrieg style of war introduced in early World War II.

In addition to establishing classifications for the evolutionary steps of warfare, Lind, et al., (1989) identified the catalysts for change. The two predominant catalysts for change were technological advances and ideas. They attributed the initial shift towards the first generation to both of these catalysts, fueled further by the social conditions and changes of the French revolution. The principle cause for the shift towards second generation warfare was the advancing technology, but the emergence of the operational art of war represented an extraordinarily important idea to develop. The ideas of maneuver warfare were the primary drivers of change for the third generation.

Toffler (1993) proposes his own definitions of war based on three waves of societal evolution. He categorizes the transition between the ages of civilizations as waves, thereby implying their dynamic and expansive nature. The civilizations of the First Wave were the agrarian societies predominant from early history until the $18^{\text {th }}$ century. Every aspect of these societies revolved around the land and man's use of it. Most of these societies were transformed by the Industrial Revolution. Toffler described the mass production capabilities of factories as a new way of creating wealth, and calls it the driving force behind many political, social and theological transformations. The intersection of the First and Sccond Wave societies inevitably resulted in conflicts, and Toffler credits the destabilizing effects of these transformations for being "the central tension from which other conflicts derived" (Toffler 1993, 20). Internal conflicts within each industrializing country were followed by the external conflicts of conquest, resulting
procedures employed by a commander in planning, direcling, coordinating, and controlling forces and operations in the accomplishment of the mission."
in a "bisected" world of Second Wave civilizations dominating First Wave colonies (Toffler 1993, 21).

The emergence of the Information Age is the catalyst for the arrival of the Third Wave civilizations. A Third Wave civilization will dominate "based on the new ways in which it creates and exploits knowledge" (Toffler 1993, 22). Like its predecessors, the Third Wave's transformational impact is all-encompassing, destabilizing, and is further dividing the world. Toffler's summary of these three "contrasting and competing" civilizations is striking: "...the first still symbolized by the hoe; the second by the assembly line; and the third by the computer" (Toffler 1993, 21). He predicts that the resulting trisection of the world's societies will set "the context in which most wars from now on will be fought" (Toffler 1993, 25).

Toffler links the evolution of warfare to these three waves of civilizations, tracing each wave's way of war back to the catalyst that spawned it. Each wave is a reflection of the way its wealth is created and, subsequently, each wave's form of warfare reflects that source as well. Pre-industrial era armies were a refection of their agrarian roots, often campaigning only during the off-season and deriving their power from the feudal lords and landowners. The mass production capabilities of the Second Wave enabled mass production armies, resulting in higher technology weapons, mass conscription and the idea of a standing army for the nation-state. From the Napoleonic Wars through World War II, the ever-increasing efficiency of the Second Wave civilization resulted in the cver-increasing lethality of war, all focused on the destruction of the enemy armies or nations. Toffler argues that the arrival of Third Wave warfare is imminent as the "outer limits" of the range, speed and lethality of weapons has been reached (Toffler 1993, 43).

Toffler calls the Gulf War the advent of the Third Wave War. United States forces were tapping the awesome potential of information and the results were impressive. Increased knowledge allowed the American forces to accelerate their decisions and actions and bypass the traditional, linear approach to war. "Smart" weapons increased destructive efficiency and reduced collateral damage. Whereas Second Wave armies resemble "machines," Third Wave armies represent "thinking systems" (Toffler 1993, 80). The Gulf War represented the first clash between the Second and Third Waves and the battle was decided before it had begun.

CYBERWAR AND NETWAR

Arquilla and Ronfeldt (1993) also recognized that the nature of warfare was transforming, with information replacing hardware as the key commodity. They envisioned two new products of the information revolution: cyberwar and netwar. They define cyberwar as "conducting, and preparing to conduct, military operations according to information-related principles" (Arquilla and Ronfeldt 1993, 146). In essence, this term represents high-technology warfare where information is exploited in order to defeat an enemy's military capabilities. Netwar, on the other hand, reflects "information-related conflict at a grand level between nations or societies" (Arquilla and Ronfeldt 1993, 144). Such conflict may include non-state actors and will often be non-violent, although some low-intensity conflicts are included. Netwar employs all available networks to disrupt, damage, or modify what a target population thinks about itself and the world, as well as to influence public or elite opirion. Arquilla and Ronfeldt (1996; 1998; 2001) continued to develop the netwar concept by elaborating on its defining concept: the networked nature of the combatant's organization.

Arquilia and Ronfeldt (2000) investigated the concept of swarming as well, calling it the next evolutionary step in the nature of war. Early warfare was defined by the melee: large formations dissolving into small contests to resolve the battle. This was replaced by massing well-organized formations into set-picec battles. Massing was subsequently replaced by maneuver, which reflected synchronized mobile operations to disrupt the enemy before striking the decisive point with mass. Since the key weapon of netwar is information, then the key form of engagement must be able to exploit it. Swarming is that new form of engagement for netwar. They define swarming as "the systematic pulsing of force and/or fire by dispersed, internetted units, so as to strike the adversary from all directions simultaneously" (Arquilla and Ronfeldt 2000, 8). The key concept of swarming is "sustainable pulsing," which represents the swarmers" ability to disperse, concentrate to strike a common target from multiple directions, and then redisperse again. The swarmers are acting either autonomously or semi-autonomously with the intent of disrupting the enemy's cohesion. Swarming, therefore, is a characteristic of the next generation of war.

INTO THE FOURTH GENERATION

Lind, et al., (1989) identify four trends of the shifts between the first three generations of warfare that likely indicate what the characteristics of fourth generation warfare may be. The first trend indicates that fourth generation warfare will be "...widely dispersed and largely undefined; the distinction between war and peace will be blurred to the vanishing point" (Lind, et al. 1989, 23). It will be nonlinear, and "the distinction between 'civilian' and 'military' may disappear" (Lind, et al. 1989, 23). The second trend indicates that increases in dispersion and battlefield tempo will reduce the value of centralized logistics and a fixed military infrastructure. Thirdly, armies will forgo masses of men or firepower for increased maneuverability. Lastly, the desired endstate will change from the physical destruction of the enemy's armed forces to the climination of the enemy's capabilities or will to fight. Lind, et al., (1989) concede that while these characteristics are already present to some degree in the third generation, they will become the defining characteristics in the next generation.

As previously established, the evolution to fourth generation warfare will be stimulated by some combination of the recent advances in technology and new ideas. Lind, et al. (1989) conducted an exploration into what a technology-driven fourth generation war might look like and established some additional characteristics. They suggest that a variety of futuristic weapons, such as directed energy weapons, robotics, and "smart" assets will be employed. The predominant theme amongst these visions is the expansion of war from the military domain into the political and cultural domains. Lind, et al., however, caveat this investigation with a skepticism that, while possible, such technological developments are not likely be fulfilled, or fulfilling.

Lind, et al., (1989) conduct a similar exploration into what an idea-driven fourth generation war might look like; in particular, a new generation driven by non-Western ideas originated from Islamic or Asiatic cultures. Concepts such as "collapsing the enemy" and turning an enemy's strength into a weakness originate with Sun Tzu. The disorderly nature of modern war provides an environment where terrorism may be effective. The lack of uniforms, rank, and order make it a perplexing challenge for a conventional western military approach. A combination of terrorism, high technology,
and a transnational base is a good indication that the next generation of warfare has arrived.

Fourth generation warfare has impacted each of the three levels of war: strategic, operational, tactical. Where they were traditionally distinct from each other they are now intertwined, such that a tactical action can now have an immediate, significant strategic effect. The accelerating effect of television is a significant factor in this change. Lind (2005) points out that while an action can simultancous impact each of the three levels of war, those impacts may not all be the same. They may even be contradictory. He uses overwhelming firepower as an example of this. While it may ensure tactical success in a particular situation, it most likely is counterproductive at the operational and strategic levels.

Hammes $(1994,2005)$ builds his definition of fourth generation warfare on the work of Lind, et al., (1989), while acknowledging Toffler (1993) and Van Creveld (2000) for providing valuable insight into the context of the problem. Hammes also embraces the concept of netwar by Arquilla and Ronfeldt (1993) as fourth generation warfare. He dismisses cyberwar, however, as technologically-oriented third generation warfare and expresses frustration with the Department of Defense's infatuation with it. Like his predecessors, he sees the next generation of warfare spanning the entire political, economic, social and technical spectrums. It will employ networks, and it will be lengthy. Since the evolution of warfare is continuous; the arrival of the fourth generation is not the end-state. Understanding fourth generation warfare is a necessary step in preparing for the fifth generation.

CHAPTER II

LITERATURE REVIEW

"One of the great questions at the root of all strategy is that of concentration; the concentration of the whole resources of a belligerent on a single purpose or object, and concurrently the concentration of the main strength of his forces, whether naval or military, at one point in the filed of operations."

- Frederick W. Lanchester $(1914,422)$

WHY ARE LEGACY COMBAT MODELS INADEQUATE?

The concept of concentration is an important military tenet that was recognized as early as the $5^{\text {th }}$ century B.C., by Sun Tzu. It remains relevant to the training of modern military forces in the form of the principles of war, specifically mass: to bring decisive force to bear at critical times and places. Concentration represents the essence of Lanchester's (1914) differential equations, which provided a method for calculating the rates of loss for two opposing forces. These equations assume a battlefield populated with homogenous, evenly-distributed entities, and are incapable of addressing the spatial and temporat complexities of modern combat. Epstein states that Lanchester's equations "offer a fundamentatly implausible representation of combat under all but a very small set of circumstances" because they do not account for the ability of a force to withdraw from an engagement (i.e., "feedback"), nor do they allow for the "trading of space for time" (Epstein 1985, 4-6). Additionally, the casualty-exchange rates grow at a constant, not at a marginally diminishing rate.

Despite these shortcomings, Lanchester's equations became the basis of the mathematical calculations within many past and current combat models and simulations. Cares declares such models are inadequate representations of modern (post-Industrial Age) combat for the following reasons (Cares 2005, 33-34):
"(1) The models rely on mathematics that represent combat activities as independent processes. Networked processes are by definition interdependent.
(2) The models aggregate and disaggregate in a way that treats fine-scale behaviors as noise at the aggregate level. Such a process cannot adequately represent local tactical arrangements, clever use of information or massed effects from distributed forces. These, of course, are each important Information Age Warfare precepts.
(3) The models do not reflect the fact that the distribution of networked performance is highly skewed. Network-enabled feedback and feed-forward mechanisms can create increasing returns - 'tipping point' bchaviors - within Information Age systems. Although NCW [network centric warfare] concepts are said to capitalize on these types of networked effects, contemporary model assumptions deliberately inhibit them."

In summary, the nature of modern combat is nonlinear and Lanchester-based simulations are not able to adequately model it. Deterministic combat models, such as Lanchester's, preclude the types of non-linear outcomes possible in Information Age combat. Lanchester's equations can account for measures of performance such as lethality and weapon ranges; but they cannot account for command and control and networked effects. While Industrial Age combat may be defined by the former; Information Age combat is defined by the latter. Consequently, these legacy models may have been useful for modeling the large-scale, linear warfare of the Industrial Age, but they are not capable of providing insights into Information Age warfare.

NETWORK CENTRIC OPERATIONS

> "Network Centric Warfare (NCW) is no less than the embodiment of an Information Age transformation of the DoD. It involves a new way of thinking about how we accomplish our mission, how we organize and interrelate, and how we acquire and field the systems that support us."

> Department of Defense Report to Congress (Executive Summary, i)

The concept of Network Centric Operations ${ }^{3}$ (NCO) represents a shift from traditional attrition-based approaches to a warfighting style that emphasizes speed of

[^1]command and self-synchronization. One goal of NCO is to field a force that is capable of achieving information superiority, i.e. "having a dramatically better awareness or understanding of the battlespace rather than simply more raw data" (Cebrowski and Garstka 1998,32), thus enabling a massing of effects instead of the traditional massing of forces that will disrupt the enemy's strategy and preclude potential courses of action. Prior to the introduction of the NCO concept, assessment of the combat potential of a force tended to focus on force composition (the number of platforms or other entities of each type) and individual platform capabilities, with force lay-down (spatial distribution) and employment (tactics) as important but scenario-dependent factors. NCO shifts the focus towards the information-based aspects of force employment: information collection, communication, and exploitation. Central to the ability of a force to manage and exploit information is its connectivity: the existence, capacity, reliability, and other attributes of the links that connect its platforms, command and control centers, and other entities. A fundamental problem is to develop an understanding of the influence of connectivity on force effectiveness that can lead eventually to quantitative prediction and guidelines for design and employment. While NCO is reliant on the technological advances that will enable sensor, and data transfer and management capabilities to achieve the necessary speed of command, it is also dependent on the bottom-up organization that allows for self-synchronization. Cebrowski and Garstka state that in order "to fight on a network-centric rather than platform-centric basis, we must change how we train, how we organize, and how we allocate our resources" [emphasis added] (Cebrowski and Garstka 1998, 34).

Alberts, et al., (1999) expanded on this initial proposal by delining the characteristics of NCO and recommending a process for developing the desired NCO capabilitics. They emphasized three key concepts of NCO: 1) military forces will be geographically dispersed, 2) these military forces will be empowered by knowledge, and 3) these military forces will be effectively linked. Alberts, et al., (2001) offered a more detailed articulation of information superiority and NCO. They achieved this by establishing a language that enables us to communicate and gain insight into the issues unique to Information Age warfare. This language is based on the three domains of warfare and the interactions between them: physical, information, and cognitive. While
this insight yields a greater understanding of Information Age warfare, it does not provide a capability for a quantiffable value proposition, and no specific recommendations for organizational changes are made.

Alberts and Hayes (2003) stated again that current command and control concepts, organizations, and systems are inadequate, and warned against a fixation on technical solutions. They endorsed a power to the edge approach that empowers "individuals at the edge of an organization (where the organization interacts with its operating environment to have an impact or effect on that environment)" (Alberts and Hayes 2003, 5). Power to the edge achieved in each of the domains of warfare (physical, information, cognitive) will result in a self-synchronizing capability. This selfsynchronizing capability is dependent on certain assumptions (Alberts and Hayes 2003, 27):

- "Clear and consistent understanding of command intent;
- High quality information and shared situational awareness;
- Competence at all levels of the force; and
- Trust in the information, subordinates, superiors, peers, and equipment."

While Power to the Edge by Alberts and Hayes (2003) reflects a continued refinement of the concepts and theory of NCO, it does not offer any new techniques or metrics for quantifying network performance. Alberts, ct al., (1999) acknowledge that the NCO theory alone cannot provide what we are looking for: "As such, we cannot simply apply new technologies to the current platforms, organizations, and doctrine of warfare" (Alberts, et al. 1999, 3). If this is so, how do we organize?

Cebrowski and Garstka (1998) did include one quantifiable metric. They identified that network-centric computing "is governed by Metcalf's Law, which asserts that the 'power' of a network is proportional to the square of the number of nodes in the network" (Cebrowski and Garstka 1998, 30). Consequently, more nodes equal more "power". They concluded that we should pursue the same value proposition in preparation for network centric warfare. Alberts, et al., (1999) also employ Metcalf's Law to quantify the power of a network, but they do acknowledge that it is merely a measurement of potential gains which will not be realized without "appropriate organizational and doctrinal changes" (Alberts, et al. 1999, 103). It is a measurement of
potential because a straight application of Metcalf's Law assumes that all interactions have an equal positive value, and this is an assumption that Alberts, et al., explicitly reject. Consequently, they employ Metcalf's Law to calculate a network's potential for information interaction, but recognize that further application of this quantification would require "a value-creation logic and a user-defined value preference (value function)" (Alberts, et al. 1999, 264). They do not, however, propose any other metrics for quantifying the performance of a network.

Alberts, et al., (2001) do propose to measure network performance according to the attributes of information richness, i.e., "an aggregate measure of the quality of information (Alberts, et al. 2001, 46), and information reach, i.e., "an aggregate measure of the degree that information is shared" (Alberts, et al. 2001, 46); but, unfortunately, these motrics are predominantly either information technology metrics (i.e., measurements of hardware, software, and computing network performance) or traditional platform performance metrics (i.e., lethality, survivability, etc.). None of the metrics used in the examples directly quantify organizational or doctrinal attributes. They do, however, introduce a quantifiable metric for measuring the degrec of synchronization, i.e., an "output characteristic of the $\mathrm{C} 2^{4}$ processes that arrange and continually adapt the relationships of actions (including moving and tasking forces) in time and space in order to achieve the established objective(s)," (Alberts, et al. 2001, 206). Synchronization is an important military principle that is becoming increasingly difficult to achicve with the growing speed and complexity of warfare. To measure synchronization, S, each interaction between every entity in the network is assigned a valuc between l and -l , which reflects the degree of synchronization (+1 , if perfect) or interfercnce $(-1$, if perfect), or neutrality (0) of the relationship between that particular pair. These values are then summed up in a combinatorial manner. The value of S can be measured over time, thereby allowing us to calculate and compare the rates of change of S between different networks. While Alberts, et al., (2001) admit that this metric will likely need refining, it is a uscful step towards quantifying network performance.

Ling, et al., (2005) agree that the body of knowlcdge lacks cffective quantifiable metrics with which to measure network performance: "Specifically, there is currently no

[^2]clear means by which one can link the internal metrics of the performance of a network to the external measure of the decision-action cycle rate for a networked force" (Ling, et al. 2005,5). While their refinements of the metrics of connectivity, reach, richness and tempo represent another important developmental step, the utility of these metrics in measuring force effectiveness is not yet known. More recently, Reid, et al. (2007) reiterated the lack of quantifiable metrics in NCO theory: "It predicts no limits to the useful capacity of the network, and so cannot answer our questions about how to make effective use of modest resources. How are we to make difficult balance-of-investment decisions in light of such advice?"' (Reid, et al. 2007, 337). In other words, the theory of NCO remains incapable of providing a value proposition for organizing a networked combat force.

THE INFORMATION AGE COMBAT MODEL

The Information Age Combat Model (IACM), recently introduced by Cares (2005), attempts to describe combat (or competition) between distributed, networked forces or organizations. The basic objects of this model are not platforms or other entities capable of independent action, but rather nodes that can perform elementary tasks (sense, decide, or influcnce) and links that connect these nodes. Information flow between the nodes is generally necessary for any useful activity to occur. This focus on "networkcentric" rather than "platform-centric" operations is intended to advance the state of the art in combat modeling "by explicitly representing interdependencies, properly representing complex local behaviors and capturing the skewed distribution of networked performance" (Cares 2005, 34). The content of this section is mostly included in Deller, et al. (2009).

The IACM employs four types of nodes defined by the following properties:

- Sensors receive signals about observable phenomena from other nodes and send them to Deciders;
- Deciders receive information from Sensors and make decisions about the present and future arrangements of other nodes;
- Infuencers receive directions from Deciders and interact with other nodes to affect the state of those nodes;
- Targets are nodes that have military value but are not Sensors, Deciders, or Influencers.
These properties represent the minimum required for each type of node. Other possible characteristics will emerge in the following discussion. Each node belongs to a "side" in the competition, of which there are at least two. We will restrict the present discussion to two sides, conventionally termed BLUE (depicted in black in the figures) and RED (depicted in gray). In principle, any pair of nodes can interact, regardless of side, but some restrictions will be found to occur for both theoretical and practical reasons. It is worth noting that Influencers can act on any type of node, and Sensors can detect any type. The Target type was introduced primarily to reflect the fact that not all military assets fall into one of the other three types. In most situations, however, an Influencer will target an adversary Sensor, Decider, or Influencer.

The basic combat network shown in Figure 1 represents the simplest situation in which one side can influence another. The BLUE Sensor (S) detects the RED Target (T) and informs the BLUE Decider (D) of the contact. The Decider then instructs the BLUE influencer (I) to engage the Target. The Influencer initiates effects, such as exerting physical force, psychological or social influence, or other forms of influence on the target. The process may be repeated until the Decider determines that the desired effect has been achieved. It should be noted that the effect assessment requires sensing, which means that this will be conducted in a new circle. This most basic combat network is also referred to as a combat cycle.

Figure 1. The basic combat network represents the simplest situation in which one side can influence another.

Each of the four links in Figure 1 is shown with a different type of line in order to emphasize the fact that the flows across these links may be very different. In particular, some links may represent purely physical interactions, while others may entail both physical processes and information flows. Two opposing combat cycles comprise the simplest two-sided combat network (Figure 2). The figures in this dissertation utilize the basic elcments of graph theory. For more details on graph theory the interested reader is referred to Chartrand (1984).

Figure 2. The simplest two-sided combat network consists of two opposing combat cycles.

Cares (2005) described the simplest complete (two-sided) combat network as having 36 possible links. While the number of possible links for eight nodes (four each for BLUE and RED) is 64 , we were able to exclude 28 and reduce that number to 36 based on the following important assumptions. The results are shown in Figure 3.

- Targets are passive; their only role is to be sensed and influenced. Therefore, 12 links from Targets to any nodes other than a Sensor were excluded.
- Sensors take no action; they provide information to Deciders and Sensors. Therefore, 10 links from Sensors to any nodes other than a Sensor or own Decider were excluded.
- Deciders act only through Influencers but can be sensed. Therefore, 6 links from Deciders to any adversary nodes except a Sensor were excluded.

Figure 3. The simplest complete combat network represents all the ways in which Sensors, Deciders, Influencers and Targets interact meaningfully with each other.

When the BLUE/RED symmetry is taken into account, the number of link types is reduced to 18. These are listed in Table 1, where the nodes are identified as in Figure 3. Links between a node and itself in Figure 3 have been interpreted as connecting two different nodes of the same type and side.

Table 1. Types of links available in the IACM.

| Link |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: | :--- |
| Type | From

The intcrpretation of some of the links (types 1, 4, 9, 10, 11, and 13 in Table 1) is ambiguous. This was recognized in the initial development of the 1ACM (Cares 2005), and resolving this issue was described as both "the next major advance". in the development of the model and a requirement for "practical" (i.c., quantitative) analysis based on it. The simulations presented here are a step in this direction, since they cmploy
only basic combat networks similar to Figure 1, but with the Target replaced by an adversary Sensor or Influencer. These combat cycles (Cares 2005) contain only links of types $2,3,6,13$, and 15 . Of these, only type 13 is ambiguous. Both interpretations of this link will be used, but the context of the model always makes clear which is intended.

ANALYSIS OF THE IACM

Once the IACM has been defined in terms of a network of nodes and links, the language and tools of graph theory (see, for example, Chartrand 1984) can be used for both description and analysis. A concise description of any graph is provided by the adjacency matrix A, in which the row and column indices represent the nodes, and the matrix elements are either one or zero according to the rule: $A_{\mathrm{ij}}=1$, if there cxists a link from node i to node j and $A_{\mathrm{ij}}=0$, otherwise. Many properties of a graph or network can be calculated directly from the adjacency matrix, and two are of particular interest here. Since combat power or influence can be exerted only when there exists a connected cycle that includes the node to be influenced, the detection of cycles in the graph is of great importance. Cares attributes the increased capabilities of networked forces to the presence of cycles, which are represented by sub-networks within the overall combat network. These sub-networks are arrangements of linked nodes where the path of directional links revisits at least one node previously departed from. The absence of cycles indicates the absence of any potential networked effects. Cares defines four different types of cycles in his model (control cycles, catalytic control cycles, catalytic competitive cycles, and combat cycles) which reflect the ability to direct actions, share information, and influence enemy nodes. The content of this section is mostly included in Deller, et al. (2009).

One method used in studying the cvolution of complex adaptive systems (chemical, biological, social, and economic) is calculation of the principal (maximum) eigenvalue of the adjacency matrix (Jain and Krishna 1998). The existence of a real, positive principal eigenvalue of $A_{i \mathrm{i}}$ is guaranteed by the Perron-Frobenius theorem, and this eigenvalue $\lambda_{\text {PFE }}$ (and the corresponding eigenvector) are often referred to as the Perron-Frobenius Eigenvalue (eigenvector). It is readily shown (Jain and Krishna, 1999)
that for a graph with no closed cycles $\lambda_{\text {PFF }}=0$. For a graph with a single cycle of any length, one obtains $\lambda_{\text {PrE }}=1$. Graphs with more complicated cycle structures have $\lambda_{\mathrm{PFE}}>$ 1 . This had led to the proposal (Cares 2005) that $\lambda_{\text {PFF }}$ be adopted as a measure of the ability of a network to produce feedback effects in general and combat power specifically in the case of the IACM. This is essentially the hypothesis explored in the present work.

Note that the links in both the graphical depiction and the adjacency matrix are directional, in that their meanings differ depending on which nodes they go "from" (left column) and "to" (top row). Figure 4 is an adjacency matrix representation of the simplest complete combat network depicted in Figure 3. Given that the number of different sub-networks for any $N \times N$ matrix is $2^{(\mathbb{N} \times N)}$, it is obvious that attempts to optimize the arrangement of nodes and links for any but the simplest combat networks quickly becomes impossible.

Figure 4. An adjacency matrix for the simplest complete combat network.

An alternative, but closely related approach is based on the fact that $A^{\text {n }}$ (the $n^{\text {it }}$ power of the adjacency matrix) can be uscd to obtain the number of distinct paths connecting any pair of nodes (Chartrand 1984). Specifically, $\left(A^{\mathrm{n}}\right)_{\mathrm{ij}}$, which is the ij matrix element of $A^{\prime \prime}$, is equal to the number of distinct paths of length n connecting nodes i and j. In particular, $\left(A^{\mathrm{tI}}\right)_{\mathrm{ii}}$ is the number of distinct closed paths from node i back to itself. If
node i is an adversary Target T, then $\left(A^{n}\right)_{\text {TT }}$ is the number of distinct combat cycles of length n that include T. This represents the number of different ways that T can be engaged by the opposing force. In general, combat cycles must be of length at least four, and if the links are restricted to the types shown in Figure I, they must be of length exactly four. In this case, the matrix element $\left(A^{4}\right)_{\mathrm{Tr}}$ is equal to the number of combat cycles that pass through the Target T and is therefore a potential measure of the combat power that can be brought to bear on it. Under special conditions that will be described below, it is possible to establish a quantitative connection between $\lambda_{\text {PFE }}$ and $\left(A^{4}\right)_{\mathrm{rr}}$, lending further support to the hypothesis that $\lambda_{\text {PFE }}$ can be used as a measure of effectiveness for a distributed, networked force or organization.

It is important to note that the IACM does not rely on Metcalf's Law to measure the power of a network. While the $\lambda_{\text {PFE }}$ is the predominate metric, Cares (2005) compiled a number of other statistics from numerous disciplines to measure the adaptability, robustness, survivability and other properties of a network:

- Number of nodes (N).
- Link to node ratio $(/ / \mathrm{N})$: This ratio will vary depending on whether the network is minimally connected, where all the nodes within the network are connected with the minimum number of links possible (i.e., $l=N-1$), or maximally connected, where every node is directly connected to every other node (i.e., $l=(N-I)!)$. Cares claims that "very good connectivity can be achieved with orders of magnitude fewer links than the NCW literature suggests" (Cares 2005, 102).
- Degree distribution: A measurement of whether the number of links connected to each node is uniformly distributed throughout a network. Adaptive, complex networks have a skew degree distribution (i.e., a very small number of highly connected nodes).
- Size, connectivity of largest hubs: In order to reduce the network's Robustness, the largest hubs should not be connected to cach other.
- Characteristic path length: The median of the mean of the lengths of all the shortest paths in the network.
- Clustering coefficient: The average clustering coefficient is a measurement of a network's cohesion and self-synchronization, and is calculated from the proportion of a node's direct neighbors that are also direct neighbors of each other. The best type of autocatalytic cycles in a combat network are 3-node cycles because they represent feedback or feed-forward shorteuts in the 4node combat cycles. The distribution of clustering coefficients among all nodes should be skewed.
- Betweenness: The measure of the proportion of shortest paths that pass through a node (i.e., a node's importance to the network structure). Combat networks should have a skew distribution of betweenness.
- Path horizon: The measure of the number of nodes on average that a node must interact with for consecutive self-synchronization to occur. Selfsynchronization occurs when the path horizon is the logarithm of the number of nodes.
- Neutrality rating $((l-N+1) / N)$: A measure of the additional structure in a complex network over and above the minimum connectivity requirements.
- Coefficient of networked effects ($\lambda_{\text {PFE }} / \mathrm{N}$): The CNE is a measure of the amount of cyclic behavior per node, and is calculated by normalizing the adjacency matrix's $\lambda_{\text {Ple }}$.
- Susceptibility: A measure of the number of links or nodes that can be removed before dynamic structure begins to break down.

For a more detailed understanding of these rules of thumb or the Information Age Combat Model see Cares (2005).

CHAPTER III

METHODOLOGY

AN AGENT-BASED SIMULATION MODEL USING THE IACM

The structure of the IACM makes it clear that the $\lambda_{\text {PFE }}$ is a quantifiable metric with which to measure the organization of a networked force, but is it an indicator of combat effectiveness? To determine this we constructed an agent-based simulation representation of the IACM and conducted a series of force-on-force engagements using opposing forces of equal assets and capabilities, but differing in their connectivity arrangements or configurations. These differences in connectivity often, but not necessarily, lead to uncqual $\lambda_{\text {PFE }}$ values.

The agent-based paradigm was utilized for this purpose because the resulting models provide the ability to account for small unit organization, maneuver, and the networked effects that are the focus of our investigation. An additional advantage of utilizing an agent-based simulation was the ability to work around the ambiguities of link interpretation in the IACM. For example, instead of a mutually exclusive choice between defining a directional link from a BLUE Influencer to a RED Sensor (type 13 in Table 1) as either the Influencer "targeting" the Sensor or as the Sensor "sensing" the Influencer, both abilities can be represented in the agent-based simulation.

The first challenge in modeling the 1 ACM concerned the adjacency matrix representation of the network. The IACM as originally described by Cares (2005) uses a single adjacency matrix to reflect the collective organization of both BLUE and RED forces. In this approach, the $\lambda_{\text {PFE }}$ value is dependent on the configurations of both the BLUE and RED forces and might well represent the extent to which feedback effects occur in the engagement. Obviously, BLUE and RED cach seek separately to maximize their own networked effects while minimizing those of the opposing force. This cannot be represented by a single $\lambda_{\text {PFE }}$ value, so we calculate separate values ($\lambda_{\text {BLUE }}$ and $\lambda_{\text {RED }}$) to reflect the potential networked effects of the configurations of each of the opposing forces. These calculations required the adjacency matrices include a single Target node
representative of all the enemy forces capable of being targeted. In other words, the values of $\lambda_{\text {ELUE }}$ and $\lambda_{\text {RED }}$ are determined solely by the arrangement of their respective assets, independent of the asset arrangement of the opposing force.

STRUCTURE OF THE EXPERIMENT

In order to best associate any difference in force effectiveness to the difference in connectivity, the opposing forces consisted of the same number of Sensors, Deciders, and Influencers, differing only in the manner in which they were arranged (i.e., linked). Since the potential value of a Sensor may not equal the potential value of an Influencer, the composition of each configuration considered in this work contained an equal number Sensors and Influencer to preclude any bias towards those configurations that have more of one or the other. Additionally, both types of nodes had identical performance capabilities (i.e., the sensing range was chosen equal to the influencing range, and the speeds of movement of the two types of node were equal). Consequently, the composition of both forces followed an X-Y-X-1 (Sensor-Decider-Influencer-Target) template.

For any particular values of X and Y , there is a finite number of ways to arrange those assets. In order to gain a "first order" understanding of the IACM, we made two key scoping decisions. First, each Sensor and Influencer would only be comected to one Decider (but any given Decider could be connected to multiple Sensors and Influencers). Second, the comectivity within any X-Y-X-1 forcc was limited to only those "vertical" links necessary to create combat cycles (i.e., link types $2,3,6,13$, and 15 in Table 1), which are the essence of the $\lambda_{\text {PFE }}$ (the most basic element of the IACM). As noted below, future work will include "horizontal" links between Sensors, Deciders, and Influencers, such as link types I, 5 , and others. This can significantly enhance both the $\lambda_{\text {ple }}$ value and the performance of any given network configuration, but it requires the introduction of additional rulcs to manage and exploit the information carried by these links. The present model provides a baseline for assessing the effect of adding additional types of links. In addition the simplification used here is sufficient to insure that $\left(\lambda_{\mathrm{PFL}}\right)^{4}$ is oqual to $\left(A^{4}\right)_{\mathrm{Tr}}$,
providing the exact, quantitative relationship mentioned previously between $\lambda_{\text {PFE }}$ and the number of combat cycles.

While the $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ template significantly scoped the focus of this effort, the number of possible configurations for a given force still becomes large very quickly. For example, there are a total of nine possible ways to distribute four Sensors and four Influencers across three Deciders (see Table 5 in the Appendix). No matter how you distribute them, one Decider will have two Sensors linked to it, and one Decider (which may or may not be the same Decider) will have two Influencers assigned to it. Fortunately, since the nodes of the IACM are generic it is possible to reduce this set by eliminating those configurations that are, in effect, identical. The only meaningful difference between the nine possible configurations of a 4-3-4-1 networked force is whether the Decider that is linked to two Sensors is the same Decider that is linked to two Influencers (see Figure 5). The remaining seven possible configurations are all modeled identically to these two configurations in the IACM (and are shaded gray in Table 5).

Configuration \#1

Configuration \#2

Figure 5. The two meaningfully different configurations of a 4-3-4-1 network.

Adding a single Sensor and Influencer yields a 5-3-5-1 networked force, which can be organized in 36 different ways (see Table 6). By applying this same logic, we reduce those 36 possible configurations to only eight meaningfully different configurations. Even with these most basic of examples, the difference between the number of possible configurations and number of meaningfully different configurations becomes quite apparent.

Identifying the meaningfully different configurations is crucial for the purpose of scoping the problem. While a 7-3-7-1 networked has 225 possible configurations (see Table 7), applying this same logic reduces this to a much more manageable number of only 42 meaningfully different configurations. Testing each of the 225 possible configurations of a 7-3-7-1 networked force against all 225 possible configurations of an opposing 7-3-7-1 networked force would require 50,625 (i.e., 225^{2}) unique engagements, but 42 combinations would only require 1,764 (i.e., 42^{2}) unique engagements. Since the number of meaningfully different combinations for any given set of nodes is a function of the number of unique values of the allocation combinations of X across Y , we attempted to define the function in order to automatically generate the combinations. This was not a simple task. Although the allocation resembles a partition problem, the exact numerical sequence of the numbers of meaningful combinations was difficult to establish. Since determining what this function might be is not the purpose of this rescarch, we calculated the numbers of meaningfully different configurations for all $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ forces where $\mathrm{X}<$ 11 and $\mathrm{Y}<8$ using a simple algorithm based on the numbers of unique values for the distributions of Sensors and Influencers across the Deciders. The resulting totals are summarized in Table 2:

Table 2．The numbers of meaningfully different configurations of all X－Y－X－1 networked forces where $\mathrm{X}<11$ and $\mathrm{Y}<\mathbf{8}$ ．

		Number of Deciders（Y）				
		3	4	5	6	7
x	3	1		－		
is	4	2	1	：		
¢	5	8	2	1		
\bigcirc	6	19	9	2	1	
若 岂	7	42	27	9	2	1
㤐	8	78	74	30	9	2
E	9	139	168	95	31	9
2	10	274	363	248	105	31

Each of these configurations has a unique adjacency matrix representative of the connectivity of its nodes．The adjacency matrices for all configurations will only differ in two sections（sec the unshaded sections of an example adjacency matrix in Figure 6）， regardless of the total numbers of Sensors，Deciders，or Influencers．These unshaded sections reflect the connectivity of each Sensor and Influencer to and from a particular Decider，and vary by configuration based on the allocation of Sensors and Influencers across the Deciders．The shaded areas represent the absolute absence of any links between those types of nodes（such as the＂horizontal＂links discussed earlier），or the absolute existence of links between those types of nodes（such as the links from all BLUE influencers to the RED Target）．Since fourteen of sixteen sections of the adjacency matrices for cach of the 42 configurations are identical，the variance between the $\lambda_{\text {PFP }}$ valucs is greatly reduced．

Figure 6. An adjacency matrix for one of the 42 meaningfully different configurations of a 7-3-7-1 network.

In the case of a 7-3-7-1 networked force, the 42 meaningfully different configurations had 30 unique $\lambda_{\text {pre }}$ values ranging from 1.821 to 2.280 (see Table 13 in the Appendix). The $\lambda_{\text {pfe }}$ values were calculated using this matrix calculator: http://www.bluebit.gr/matrix-calculator/. The adjacency matrix depicted in Figure 6 served as a template by varying the links in the two unshaded regions to represent all 42 meaningfully different combinations. The particular configuration used in this example represents Configuration ID $\# 0^{5}$ which has a $\lambda_{\text {PFE }}$ value of 2.280 . The $\lambda_{\text {PFF }}$ values for each of the meaningfully different combinations of both an 8-3-8-I and 9-5-9-1 networked forces are listed in Tables 14 and 15 . Tables 16,17 , and 18 detail the unique $\lambda_{\text {PFF }}$ valucs for the meaningfully different combinations of a 7-3-7-1 , an 8-3-8-1 , and a 9 -5-9-I networked forces.

[^3]Identical configurations always have the same $\lambda_{\text {PIE }}$ value; however, it is possible for meaningfully different configurations to share the same $\lambda_{\text {PFE }}$ value. When this occurs, the $\lambda_{\text {PFL }}$ loses its utility as an indicator of potential performance between these configurations. The numbers of unique $\lambda_{\text {PFE }}$ values for the meaningful configurations for all X-Y-X-1 forces where $\mathrm{X}<11$ and $\mathrm{Y}<8$ are depicted in Table 3:

Table 3. The numbers of unique $\lambda_{\text {PFE }}$ values of all X-X-X-1 networked forces where $\mathrm{X}<11$ and $\mathrm{Y}<8$.

		Number of Deciders (Y)				
		3	4	5	6	7
	3	1				
	4	2	1			
	5	4	2	1		
	6	8	4	2	1	
	7	13	8	4	2	1
	8	20	13	8	4	2
	9	27	20	13	8	4
	10	38	27	20	13	8

Note that the numbers of unique $\lambda_{\text {PFE }}$ values are not directly proportional to the numbers of meaningfully different configurations. For example, while an 8-3-8-1 networked force has 78 meaningfully different configurations with 20 unique $\lambda_{\text {PFF }}$ values, the 95 meaningfully different configurations of a 9-5-9-1 networked force only have 13 unique $\lambda_{\text {Prit }}$ values. This reduction will have a significant impact on the analysis of the modeling results presented later in this research. Table 4 depicts the percentage of $\lambda_{\text {PR: }}$ values that are unique for the meaningful contigurations for all $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ forces where X <11 and $\mathrm{Y}<8$:

Table 4. The percentages of $\lambda_{\text {PIE }}$ values that are unique for all $\mathrm{X}-\mathrm{Y}-\mathrm{X}-1$ networked forces where $X<11$ and $Y<8$.

		Number of Deciders (Y)				
		3	4	5	6	7
	3	100\%			.	$\stackrel{+}{2}$
	4.	100\%	100\%			
	5	50.00\%	100\%	100\%		
	6	42.11\%	44.44\%	100\%	100\%	
	7	30.95\%	29.63\%	44.44\%	100\%	100\%
	8	25.64\%	17.57\%	26.67\%	44.44\%	100\%
	9	19.42\%	11.90\%	13.68\%	25.81\%	44.44\%
	10	1.6.96\%	7.44\%	8.06\%	12.38\%	25.81\%

The full range of mathematical values for a $\lambda_{\text {PFE }}$ of an adjacency matrix containing 18 nodes is from 0 (for a network with no links at all) to 18 (for a maximally connected network). Note that the range of $\lambda_{\text {PFE }}$ values for the 42 meaningfully different combinations of a 7-3-7-1 force is only a small segment (1.821 to 2.280) of the full range of possible values due to the relatively small differences of the links within any two of those configurations. The cause of this constrained range, however, is significant and becomes apparent when applying the statistical measures from various studies of network systems compilcd by Cares (2005).

Of all the network statistics referenced in those studies, the λ_{PIE} (and its dependent Coefficient of Networked Effects) was the only one that varied in value between the 42 meaningfully different configurations; all others remained constant (see Table 31). Each configuration consists of the same numbers of nodes (18) and links (28). Each configuration shares a similar skewed degree distribution and, consequently, since each path within these conligurations is the shortest path, the betweeness value for each configuration must also be skewed. Each configuration lacks any direct connectivity between its largest hubs, such as between Deciders or from any Decider directly to the

Target node. Likewise, the characteristic path length, clustering coefficient, path horizon, neutrality rating, and susceptibility of each of these configurations is identical. Given that the $\lambda_{\text {PFE }}$ is the only one of these metrics that varies between these configurations, it is the only one of these metrics that might measure any potential variation in the effectiveness of these 42 configurations.

DEVELOPING THE NETLOGO MODEL

The agent-based simulation environment utilized for this research was NetLogo (Wilenski 1999). The purpose of this section is to explain the underlying logic of key parts of the NetLogo code utilized in this research; the entire code is provided in the Appendix). The code of the agent-based modeI closely follows the logic of the IACM, with a few notable exceptions. Agents served as Sensors, Deciders, and Influencers, but Targets were not included as they served no purpose other than to absorb losses. Given that this work represents a "first cut" effort, including Target agents with no detect, direct, or influence capabilities would only serve to clutter the results.

Additionally, Deciders cannot be destroyed in the present model. This was done in recognition of their unique role in connecting multiple Sensors and Influencers. Destruction of a Decider typically renders a number of other nodes useless (effectively destroyed), making it a particularly high value target. Since targets are detected and engaged in random order in our model, we wished to give all targets equal value in order not to generate atypical engagements that might bias the results.

The agent rules sets, themselves, function in accordance with the IACM. Scnsors detect enemy nodes within the sensing range parameter, and communicate that information to their assigned (connccted) Deciders. Deciders communicate the sensing information to their assigned Influencers. Influencers destroy the nearest enemy node that is both "sensed" by a Sensor connected to that Influencer's Decider, and within the influencing range parameter. Deciders direct Sensor movement towards areas of suspected enemy nodes. Deciders direct Influencers to move towards the nearest "sensed" enemy node. All nodes are assumed to perform their functions perfectly and instantaneously. Agent interactions are deterministic, i.e., the probabilities of detect,
communicate and kill are all " 1 ". A stochastic dimension to the model can be built once a better understanding of the research questions is gained, and this new dimension can be used to model errors and delays representing technological and human performance factors. Most importantly, the rules sets and parameter values for both BLUE and RED agents were identical.

Each agent in the model is defined as a part of an agentsct (i.e., "breed") associated with a particular Decider. Since the nodes of the IACM are generic, the most important defining characteristic of any agent is its connectivity. For example, all BLUE Sensors and Influencers connected to the BLUE Decider ${ }_{1}$ are established by the following breeds:

```
breed [ BInfluencerls BInfluencerl ]
breed [ BSensorls BSensor] ]
```

The actual numbers of agents within these breeds will vary according to the configuration being tested. Sliders were utilized for this purpose, thereby enabling the BehaviorSpace feature to vary the configurations automatically. The BLUE Decider ${ }_{1}$ itself is also defined as a breed, but consists only of just that single agent:
breed [BDeciderls BDeciderl]
Similar agents for all other BLUE and RED Sensors, Influencers and Deciders were established.

The connectivity between these breeds represents the combat cycle links of the IACM (specifically link types $2,3,6,13$ and 15 as explained in Table 1). Link types 2 ("detection"), 6 ("order"), 13 ("LOF") ${ }^{6}$ and 15 ("LOF") are delined in the simulation by the "directed-link-breed" keyword:

```
directed-link-breed [detections detection]
directed-link-breed [orderg order]
directed-link-breed [LOFs LOF]
```

As mentioned earlier in this research, link type 13 has an ambiguous meaning in the IACM. The "directed-link-breed" kcyword defines the Influencer-to-Sensor link as the Influencer attacking an enemy Sensor. Both link type 3 and the other IACM interpretation of link type 13 (i.e., a Sensor detecting an adversary Influencer) will be defined by the "sense" procedure later in the code. Finally, all agents within each breed

[^4]have certain variables that are tracked during the simulation, such as "side" (i.e., BLUE or RED), "dead" (i.e., agents that are attacked by an opposing Influencer may no longer act), and "sensed" (i.e., at any given "tick" count within the simulation an agent may be within sensing range of one or more opposing Sensors).

Given the large number of engagements within this experiment, it was imperative to utilize the BehaviorSpace feature of NetLogo. To enable this, each of the meaningfully different configurations was defined by using the "set" command to establish the appropriate numbers of Sensors and Influencers for each of the BLUE and RED Deciders. For example, BLUE Configuration (i.e., "BID") \#0 for a 9-5-9-1 networked force assigned 5 Sensors and 5 Influencers to BLUE Decider ${ }_{1}$, and one of each to the other 4 Deciders:

```
if BID = 0 [set Bconfig [[5 1 1 1 1 1 1 5 5 1 1 1 1 1]]
if BID = 2 [set Bconfig [5 [1 1 1 1 1 1 4 4 2 lllll]
    set number-BSensorls item 0 Bconfig
    set number-BSensor2s item 1 Bconfig
    set number-BSensor3s item 2 Bconfig
    set number-BSensor4s item 3 Bconfig
    set number-BSensor5s item 4 Bconfig
    set number-BInfluencerls item 5 Bconfig
    set number-BInfluencer2s item 6 Bconfig
    set number-BInfluencer3s item 7 Bconfig
    set number-BInfluencer4s item 8 Bconfig
    set number-BInfluencer5s item g Bconfig
```

BLUE Configuration \#2 is nearly identical, differing only in one link. Decider ${ }_{1}$ now only has 4 assigned Influencers while Decider $_{2}$ now has 2 . The movement of a single link is not trivial as it may have a significant impact on both the $\lambda_{\text {PFF }}$ value and the average probability of Win for that particular configuration. Establishing all 95 meaningfully different configurations of a 9-5-9-1 networked force in this manner allows the BehaviorSpace feature to automatically cycle through all possible engagements between the BLUE and RED configurations instead of running the simulation one engagement at a time.

Since the focus of this effort is to gain insight into the relationship between the $\lambda_{\text {pfe }}$ value and the effectivencss of a networked force, the agent-based simulation rules of engagement were quite simple. The battlespace (i.e., "world") within the model is deliberately featureless in order to focus on the configurations themselves. The agents
are randomly distributed across the battlespace at the beginning of each engagement. Engagements continued until either all of the Sensors and Influencers of one force were annihilated, or both forces were incapable of continued combat (i.e., neither side contained a functioning combat cycle). A single run of the agent-based model will result in a BLUE win, a RED win, or an undecided result.

During each time tick of the simulation, the following procedures are executed: "establish-links," "sense," "track," "shoot," "kill," "move-Influencer," "move-Sensor," and "reset." The "establish-links" procedure establishes the links defined by the "directed-link-breed" keyword earlier in the code. It does so by breed, thereby ensuring each Sensor and Influencer is connected to only one Decider.

```
to establish-links
    ask BDeciderls [
        ask BSensorls [create-detection-to myself [set
                color blue] ]
        ask BInfluencerls [create-order-from myself [set
                color blue] ] ]
```

At this time, two of the four necessary links (types 2 and 6) of the IACM combat cycle have been established in the simulation. Link type 3 and one of the two interpretations of link type 13 are established in the "sense" procedure. In this procedure, cvery Decider asks its assigned Sensors (i.e., "in-link-neighbors") to identify all adversary Sensors and Influencers within its sensing range (i.e., "s-range"). Upon identification, the specific "sensed" variable of the targeted agent for that particular opposing Decider is set to a value of " 1 ." The "s-range" parameter remains constant for all Sensors, either BLUE or RED, over time. The "sense" procedure depicted below is repeated for every BLUE and RED Decider breed:

```
to sense
    ask BDeciderls [
        ask in-link-neighbors [
            ask RTnfluencerls in-radius s-range [set
                sensedBD1 1]
                ask RSensorls in-radius s-range [set sensedBDl
            1]
        ask RInfluencer2s in-radius s-range Fset
            sensedBDl 1]
        ask RSensor2s in-radius s-range [set sensedBDl
            1]
        ask RInfluencer3s in-radius s-range [set
```

```
    sensecBD1 1]
ask RSensor3s in-radius s-range [set sensedBD1
    1]
ask RInfluencer4s in-radius s-range [set
    sensedBD1 1]
ask RSensor4s in-radius s-range [set sensedBD1
    1]
ask RInfluencer5s in-radius s-range [set
    sensedBD1 1]
ask RSensor5s in-radius s-range [set sensedBDl
    1] ] ]
```

The remaining links necessary to complete the IACM combat cycles (link type 15 and the alternate interpretation of link type 13) are established by the "track," "shoot," and "kill" procedures. During the "track" procedure, every Decider asks its assigned Influencers (i.e., "out-link-neighbors") to identify all adversary Sensors and Influencers within its influencing range (i.e., " i -range"). Upon identification, the targeted agent is linked to that particular Influencer using the "create-LOF-from-myself" keyword. The "irange" parameter remains constant for all Influencers, cither BLUE or RED, over time. The "track" procedure depicted below is repeated for every BLUE and RED Decider breed:

```
to track
    ask BDeciderls [
        ask out-link-neighbors [
            ask RInfluencerls in-radius i-range [create-LOF-
                from myself]
            ask RSensorls in-radius i-range [create-LOF-from
                myself]
            ask RInfluencer2s in-radius i-range [create-LOF-
                from myself]
            ask RSensor2s in-radius i-range [create-LOF-from
                myself]
            ask RInfluencer3s in-radius i-range [create-LOF-
                from myself]
            ask RSensor3s in-radius i-range [create-LOF-from
                myself]
            ask RInfluencer4s in-radius i-range [create-LOF-
                from myself]
            ask RSensor4s in-radius i-range [create-LOF-from
                myself]
            ask RInfluencer4s in-radius i-range [create-LOF-
            Erom myse].f.]
            ask RSensor4s in-radius i-range fcreate-LOF-from
```

```
myselfl ] ]
```

Now that the complete IACM combat cycle has been established, the "shoot" and "kill" procedures represent its execution. During this procedure, each Decider directs its assigned Influencers to identify the single closest opposing Sensor or Influencer with which it shares a "LOF" link. This limits all Influencers to the same rate of fire of one targeted node per time tick. Identification is portrayed by setting the "dead" variable equal to " 1 ."

```
to shoot
    ask BDeciderls [
        ask out-link-neighbors [
        ask out-link-neighbors [
            let $targets-sensed turtles with [(sensedBD1 =
            1) and (side = 2)]
            if any? $targets-sensed [
                ask min-one-of $targets-sensed [distance
                myself] [set dead l] ] ] ] ]
```

Following this identification, the "kill" procedure deletes all agents that have been "sensed," "tracked" and "shot." The purpose of separating the "kill" procedure from the "shoot" procedure is to allow simultaneous shots, thereby precluding any advantage that would be gained by the order of execution of the "shoot" procedure code.

```
to kill
    ask turtles with [(dead = 1)] [die]
end
```

The collective effect of the "sense," "track," "shoot," and "kill" procedures is to require that a Sensor and an Influencer must be assigned to the same Decider and within their respective "s-range" and "i-range" in order to successfully complete a combat cycle (i.e., eliminate the targeted node).

Upon completion of all combat cycle execution, all remaining Sensors and Influencers are moved. The "move-Influencer" procedure directs all Influencers to move towards the nearest opposing Sensor or Influencer that has been "sensed" by a friendly Sensor assigned to the same Decider. If there are no qualifying opposing Sensors or influencers, then the Influencer will not move. Each time tick includes five iterative moves of a distance of "l" that are sequential between Deciders and sides in order to preclude any advantage of moving first or last. An example iteration for one Decider follows below:

```
to move-Influencer
    ask BDeciderls [
        ask out-link-neighbors [
            let $targets-sensed turtles with [(sensedBD1 =
            1) and (side = 2)]
                if any? Stargets-sensed [
                set heading towards min-one-of Stargets-
                sensed [distance myself] forward 1 ] ] ]
```

The "move-Sensor" procedure directs all Sensors to move towards the nearest Sensor or Influencer that is not currently "sensed" by a friendly Sensor assigned to the same Decider. This procedure is necessary to enable both sides to eventually target those opposing Sensors and Influencers that did not start the simulation within any friendly Sensor's "s-range."

```
to move-Sensor
        ask BDeciderls [
            ask in-link-neighbors [
            let $targets-sensed turtles with [ (sensedBD. =
            1) and (side = 2)]
                if not any? Stargets-sensed [
                let Stargets-unsensed turtles with
                [(sensedBD1 = 0) and (side = 2)]
                    if any? $targets-unsensed [
                        let Snearest-unsensed min-one-of
                        $targets-unsensed [distance myself]
                                set heading towards $nearest-unsensed
                        Forward 1 ] ] ] ]
```

The final procedure during each time tick is "reset." During this procedure, all "sensed" variables are reset to " 0 " and all links, to melude the "LOF" tracking links, are deleted in preparation for the "establish-links," "sensc," "track," "shoot," "kill," "moveInfluencer," "move-Sensor," and "reset" procedures for the next time tick.

EXPERIMENTAL APPROACH

The scientific method was employed in this research in the following manner:

Step 1: Identify the Problem. The problem statement was derived from the background information provided in Chapter 1: How should an Information Age combat force be organized in order to optimize its effectiveness?

Step 2: Review Literature. Chapter 2 provided an in depth description of the problem statement and a discussion of the relevant literature to date.
Step 3: Formulate Hypothesis. Is the $\lambda_{\text {PFE }}$ a significant indicator of combat effectiveness?

Step 4: Design Empirical Test of Hypothesis. Identify an X-Y-X-I networked force with a number of meaningfully different combinations that is small enough to allow a comprehensive test of each configuration against each other configuration. Create an agent-based simulation model that will accurately model the IACM.
Step 5: Conduct Experiment. Conduct 30 agent-based simulation replications of each engagement (a test of any two configurations against each other).

Step 6: Analyze Data. Provided in Chapter 4.
Step 7: Draw Conclusions. Provided in Chapter 5.

CHAPTER IV

MODELING RESULTS

MODELING A 7-3-7-1 NETWORK

The initial experiment consisted of all possible force-on-force engagements of the 42 meaningfully different configurations of two networked forces (BLUE and RED) containing 7 Sensors, 3 Deciders, 7 Influencers, and 1 Target (i.e., two 7-3-7-1 forces). The sole Target node is representative of all the opposing nodes vulnerable to destruction. Additionally, the capabilities for each of these node types were identical between the forces. Since each of these configurations contains the same numbers of Sensors, Deciders, and Influencers, differing only in their connectivity, it is most likely that any difference in performance would be a consequence of this connectivity difference. A comprehensive test of each of these 42 configurations against each other required 1,764 different engagements. Each engagement was represented by 30 replications, each with a random distribution of the BLUE and RED nodes across the battlespace. Each replication resulted in a BLUE win, a RED win, or an undecided result (i.e., neither side contained a functioning combat cycle). The number of replications yielding an undecided result was 2,717 (5.13% of the 52,920 total). A graphical representation of the results is presented in Figure 7, with the shaded surface representing those engagements where the probability of a BLUE win was greater than 0.5 and the unshaded surface representing those engagements where the probability of a BLUE win was less than 0.5 .

Figure 7. The probability of a BLUE Win for each of the 42 BLUE configurations (with $\lambda_{\text {BLUE }}$ values varying from 1.821 to 2.280) against each of the 42 RED configurations (also with $\lambda_{\text {RED }}$ values varying from 1.821 to 2.280). Surface values $>$ 0.5 are shaded gray and surface values <0.5 are unshaded.

These initial results indicate that as the BLUE force is organized to enhance its networked effects (i.e., the $\lambda_{\text {PFF }}$ value increases), its effectiveness generally increases. While the resulting surface is far from smooth, a general trend does appear: the smaller the $\lambda_{\text {fFe }}$ value, the smaller the probability of a win. This trend becomes more apparent in Figure 8, where the probability of a BLUE win for any particular configuration is averaged over all RED configurations. Note that many BLUE configurations had an identical $\lambda_{\text {PFe }}$ value (there were 13 unique $\lambda_{\text {Pre }}$ values for the 42 configurations). The average probability of a BLLE win for each of the configurations of the 7-3-7-1, 8-3-8-1 and 9-5-9-1 forces are listed in Tables 19, 20 and 21.

Figure 8. The average probability of a BLUE win by $\lambda_{\text {PFE }}$ for 42 configurations of a 7-3-7-1 BLUE network.

Clearly, it appears that the probability of a BLUE win increases for those BLUE configurations with a greater $\lambda_{\text {pFe }}$ value. A simple linear regression confirms this with a cocfficient of determination $\left(R^{2}\right)$ equal to 0.896 for the following equation (sce Table 25 for the full regression results):

$$
y=1.0162(x)-1.5780
$$

where, $y=$ the average probability of a BLUE win for that configuration $x=$ the $\lambda_{\text {PFE }}$ value of a configuration

Utilizing an ordinal scale, these BLUE configurations can be ranked from 1 to 42 based on their average probability of a BLUE win. Doing so gives us some insight as to why there is a positive correlation between the $\lambda_{\text {PFF }}$ value and the probability of a win (see Figure 9).

Figure 9. The disparity and robustness values of the 42 configurations of a 7-3-7-1 BLUE network.

Disparity is defined as the sum of the inequality of distribution of Sensors and Influencers across the Deciders. This can be mathematically expressed as:

$$
\text { Disparity }=\left[\max \left(\mathrm{S}_{n}\right)-\min \left(\mathrm{S}_{n}\right)\right]+\left[\max \left(\mathrm{I}_{n}\right)-\min \left(\mathrm{I}_{n}\right)\right]
$$

where, $\mathrm{S}_{n}=$ the number of Sensors assigned to each of n Deciders
$\mathrm{I}_{n}=$ the number of Influencers assigned to each of n Deciders

For example, Configuration \#3 of a 7-3-7-1 networked force has linked five Sensors to Decider $_{1}$, one to Decider $_{2}$, and one to Decider $_{3}$, for a Sensor Disparity value of four. Configuration \#3 has also linked one Influencer to Decider ${ }_{1}$, four to Decider ${ }_{2}$, and two to Decider ${ }_{3}$, for an Influencer Disparity value of three. The total Disparity value of Configuration \#3 is seven. The greater the disparity of a configuration, the greater the likelihood of an extreme high or low value for $p(\mathrm{Win})$.

Whether a configuration's disparity has a positive or negative impact on the $p($ Win $)$ is determined by the balance of Sensors and Influencers for each Decider within that configuration. Decider ${ }_{1}$ of Configuration \#3 has five Sensors but only one Influencer, while Decider $_{2}$ has one Sensor and four Influencers. This lack of balance has a negative impact on the configuration's performance as it reduces the minimum number of nodes that can be lost before a portion of the force is rendered combat ineffective. If the sole Influencer linked to Decider, is lost, then the five Sensors are combat ineffective as the information collected by the Sensors cannot be acted on. Consequently, the average probability of the BLUE Win for Configuration \#3 was only 0.2365 , which was the second-worst performance across all of the 7-3-7-1 configurations (see Table 19). Barabasi (2002) uses the term "robustness" to describe a network's resilience to failure due to the loss of some of its nodes.

Robustness is defined as the minimum number of nodes lost that would render the entire configuration unable to destroy any more enemy nodes. This can be mathematically expressed as:

$$
\begin{aligned}
\text { Robustness } & =\left[\min \left(\mathrm{S}_{1}, \mathrm{I}_{1}\right)\right]+\left[\min \left(\mathrm{S}_{2}, \mathrm{I}_{2}\right)\right]+\cdots+\left[\min \left(\mathrm{S}_{n}, \mathrm{I}_{n}\right)\right] \\
\text { where, } \mathrm{S}_{n} & =\text { the number of Sensors assigned to Decider } n \\
\mathrm{I}_{n} & =\text { the number of Influencers assigned to Decider } n
\end{aligned}
$$

In essence, the robustness value reflects the rate of the reduction of the $\lambda_{\text {PFF }}$ value over time. The greater the robustness value, the longer a configuration will maintain combat effectiveness. Configurations that were more robust have a greater $\mathrm{p}(\mathrm{W}$ in) value, while less robust configurations had a lower $\mathrm{p}(\mathrm{Win})$ value. Consequently, while disparity can be positive or negative in impact, robustness is predominantly positive.

MODELING AN 8-3-8-1 NETWORK

Adding just one additional Seusor and one additional Influencer to the 7-3-7-1 force increased the number of meaningful combinations to 78. A comprehensive test of
each of these 78 configurations against each other required 6,084 different engagements. Each engagement was represented by 30 replications, each with a random distribution of the BLUE and RED nodes across the battlespace. Each replication resulted in a BLUE win, a RED win, or an undecided result (i.e., both BLUE and RED are unable to complete the annihilation of the opposing force due to a lack of Sensors or Influencers). The number of replications yielding an undecided result was $8,820(4.83 \%)$. The average p (win) value for each of these configurations is shown in Figure 10. There were 24 unique $\lambda_{\text {PFE }}$ values for the 78 configurations.

Figure 10. The average probability of a BLUE win by λ_{PFE} for 78 configurations of an 8-3-8-1 BLUE network.

Thesc results also indicate that as the BLUE force is organized to enhance its networked effects (i.e., the $\lambda_{\text {Pfe }}$ value increases), its effectiveness generally increases. A simple linear regression confirms this with a coefficient of determination $\left(R^{2}\right)$ equal to 0.876 for the following equation (see Table 26 for the full regression results):

$$
y=0.9484(x)-1.5633
$$

where, $y=$ the average probability of a BLUE win for that configuration $x=$ the $\lambda_{\text {PFE }}$ value of a configuration

Again, utilizing an ordinal scale these BLUE configurations can be ranked from 1 to 78 based on their average probability of a BLUE win (subsequently ordered by their $\lambda_{\text {PFE }}$ values for those configurations with equal $\mathrm{p}(\mathrm{Win})$ values, where possible). The resulting trends in disparity and robustness are shown in Figure 11.

Figure 11. The disparity and robustness valucs of the 78 configurations of an 8-3-8-1 BLUE network.

MODELING A 9-5-9-1 NETWORK

Since increasing the number of Sensors and Influencers substantiated the initial results, the next logical step was to determine the impact of increasing the number of Deciders. A 9-5-9-I force was selected since the number of meaningful combinations (95) was considerable, yet small enough to be modeled in a rcasonable amount of time (it required approximately 78 hours of agent-based simulation model runtime). A comprehensive test of each of these 95 configurations against each other required 9,025 different engagements. Each engagement was represented by 30 replications, each with a random distribution of the BLUE and RED nodes across the battlespace. Each replication resulted in a BLUE win, a RED win, or an undecided result (i.e., both BLUE and RED are unable to complete the annihilation of the opposing force due to a lack of Sensors or Influencers). The number of replications yielding an undecided result was 19,892 (7.35%). The average p (win) value for each of these configurations is shown in Figure 12. There were 13 unique $\lambda_{\text {PFE }}$ values for the 95 configurations.

Figure 12. The average probability of a BLUE win by $\lambda_{\text {PFE }}$ for 95 configurations of a 9-5-9-1 BLUE network.

Note that the highest p (win) value does not belong to the configuration with the highest $\lambda_{\text {PFE }}$ value. This indicates that there is some other correlating factor, and the dramatic reduction in the coefficient of determination $\left(R^{2}\right)$ to 0.519 for the resulting equation confirms that (see Table 27):

$$
y=0.5861(x)-0.7736
$$

where, $y=$ the average probability of a BLUE win for that configuration
$x=$ the $\lambda_{\text {PFE }}$ value of a configuration

One cause of this was the marked increase in the number of ties. The first two experiments averaged 1.54 ties per engagement (for the 7-3-7-1 force), and 1.45 ties per engagement (for the 8-3-8-1 force). This experiment averaged 2.20 ties per engagement. Eliminating the tic results from the p (Win) calculations results in the correlation depicted in Figure 13.

Figure 13. The average probability of a BLUE win by $\lambda_{\text {PFE }}$ for 95 configurations of a 9-5-9-1 BLUE network (not including ties).

Note that the highest p (win) value still does not belong to the configuration with the highest $\lambda_{\text {pre }}$ value. The results of the linear regression (see Table 28) yield the following equation:

$$
y=0.7147(x)-1.0002
$$

where, $y=$ the average probability of a BLUE win for that conf!guration $x=$ the $\lambda_{\text {PFE }}$ value of a configuration

However, the coefficient of determination (R^{2}) only increased moderately to a value of 0.621 . Another significant correlating factor remained.

An unexpected result of the increase of the number of assets to 9-5-9-1 force was the significant reduction in the number of unique $\lambda_{\text {pFF }}$ values to 13 , for a ratio of 13.68%. The first two experiments contained much larger ratios of unique $\lambda_{\text {pFF }}$ values: 13 of 42 (30.95%) for the $7-3-7-1$ force, and 24 of 78 (30.77\%) for the 8-3-8-1 force. The impact
of this reduction is a greater disparity of $\mathrm{p}(\mathrm{Win})$ values for any particular unique λ_{PIFE} value. Consequently, the coefficient of determination $\left(R^{2}\right)$ value is reduced significantly. This is the point at which the robustness value becomes particularly useful. Once again, utilizing an ordinal scale these BLUE configurations can be ranked from 1 to 95 based on their average probability of a BLUE win (subsequently ordered by their $\lambda_{\text {PFE }}$ values for those configurations with equal $p(W i n)$ values, where possible). The resulting trends in disparity and robustness are shown in Figure 14.

Figure 14. The disparity and robustness values of the 95 configurations of a 9-5-9-1 BLUE network.

Since the $\lambda_{\text {PFF }}$ values now have a reduced correlation to the values of $p(W i n)$, the robustness value becomes much more useful in discriminating between configurations. For example, 20 of the 95 configurations share the $\lambda_{\text {PFF }}$ value of 2.031 (see Table 24). Which configuration should have a greater average p (Win) value? By looking at the robustness value for each configuration (which vary from 6 to 9), we sce that the sole
configuration with a robustness value of 9 (Configuration \#93) has the highest average $p($ Win $)$ value. This average $p($ Win) value of 0.5425 is substantially larger than any configurations with an equal $\lambda_{\text {PFE }}$ value. Configuration \#93 has the highest average p (Win) among the configurations with equal $\lambda_{\text {Pre }}$ values regardless of whether ties are included or not (0.5710 without including ties). Note that the configuration with the highest average p (Win) (Configuration \#43) is not the configuration with the highest $\lambda_{\text {PFE }}$ value (although its $\lambda_{P F E}$ value of 2.141 is quite high), but one of the configurations with the highest robustness value. A regression analysis of both the $\lambda_{\text {PFE }}$ value and the robustness value yields a significant increase in the coefficient of determination (R^{2}) from a value of 0.621 to 0.850 (see Table 29) and provides the following equation:

$$
y=\left[0.0997\left(x_{1}\right)+0.0613\left(x_{2}\right)\right]-0.1617
$$

where, $y=$ the average probability of a BLUE win for that configuration
$x_{1}=$ the $\lambda_{\text {PFE }}$ value of a configuration $x_{2}=$ the robustness value of a configuration

The increase in the value of the coefficient of determination (R^{2}) remains significant even if we include the tie results again. In this case the value of R^{2} is 0.805 (see Table 30) and provides the following equation:

$$
y=\left[(-0.0307)\left(x_{1}\right)+0.0615\left(x_{2}\right)\right]+0.0678
$$

where, $y=$ the average probability of a BLUE win for that configuration
$\mathrm{x}_{1}=$ the $\lambda_{\text {PFF. }}$ valuc of a configuration
$\mathrm{x}_{2}=$ the robustness value of a configuration

CHAPTER V

CONCLUSION

ACHIEVING THE RESEARCH PURPOSE

The purpose of this research was to gain insight into how an Information Age combat force should be organized in order to optimize its effectiveness. Given the lack of quantifiable metrics that are able to discriminate between various networked forces that differ solely in their arrangement (see Table 31), this research represents an initial attempt to determine the utility of the Perron-Frobenius Eigenvalue ($\lambda_{\text {PIL }}$) as a measure of the ability of a network to produce feedback effects in general and combat power specifically in the case of the Information Age Combat Model (Cares 2005). This was accomplished by testing various force configurations of the Information Age Combat Model (IACM) in an agent-based simulation model.

The results of the agent-based simulation modeling presented in this work indicate that the value of the $\lambda_{\text {PFE }}$ is a significant measurement of the performance of an Information Age combat force. A force organized for greater networked effects (i.e., the value of $\lambda_{\text {Pre }}$ is greater) will defeat a force with equal assets and capabilities, but organized in a less-optimal manner, more often. The coefficient of determination (R^{2}) of both the 7-3-7-1 and 8-3-8-1 networked forces showed a strong degree of correlation between the λ_{p} a value and the average probability of a Win.

While the $\lambda_{\text {pFF }}$ value alone was a sufficient indicator for networked forces with three Deciders, it was not sufficient for a networked force with five. The greater number of configurations with the same $\lambda_{\text {PFE }}$ value reduced the effectiveness of the $\lambda_{\text {PFF }}$ value in discriminating between those configurations. Consequently, another metric was required. Disparity and robustness factors were introduced in this research to improve the effectiveness of the $\lambda_{\text {pFe }}$ value as a quantifiable metric of network performance, and can be utilized in other similar research as quantifying factors. By utilizing both the $\lambda_{\text {pre }}$ value and the robustness value, the cocfficient of determination $\left(R^{2}\right)$ for the 9-5-9-1 nctworked force showed a strong degree of correlation with the average probability of a Win. No other quantifiable network metrics arc able to consistently discriminate
between configurations that differ by a single link, regardless of the significance of that link.

RECOMMENDATIONS FOR FUTURE WORK

The success of this research warrants further exploration in a number of areas:

- Determining the mathematical function to identify the meaningfully different configurations of any particular networked force. The 1,758 meaningfully different configurations considered in this research were identified through the manual application of a simple algorithm based on the numbers of unique values for the distributions of Sensors and Influencers across the Deciders. This process of identification would be simplified through the application of the actual mathematical function that defines the numbers of meaningfully different configurations.
- Expanding the experiment to include horizontal links (i.e., those links that connect nodes linked to different Deciders) within the tested configurations. How should these horizontal links be interpreted within the IACM? What effects will these horizontal links have on the $\lambda_{\text {Pfe }}$ value and the average probability of a win? Will the $\lambda_{\text {PFE }}$ remain a significant measurement of the performance of an Information Age combat force?
- Investigating the effects of replacing the deterministic links with stochastic values between 0 and 1 representing the probabilities of detect, communicate and kill. What effects will these stochastic values have on the $\lambda_{\text {pfe }}$ value and the average probability of a win? Will the $\lambda_{\text {PFE }}$ remain a significant measurement of the performance of an Information Age combat force?
- Detcrmining the value of a Sensor relative to an lnfluencer. What are the marginal values of Sensors and Influencers? Are those values equal?
- Expanding the research to larger networks (i.e., significantly increasing the numbers of Sensors, Deciders, and Influencers). Will the $\lambda_{\text {PFE }}$ remain a significant measurement of the performance of an Information Age combat force?
- Investigating the effects of making the Deciders a vulnerable target for opposing Influencers. What effect will this vulnerability have on the average probability of a win? Will the $\lambda_{\text {fie }}$ remain a significant measurement of the performance of an Information Age combat force?
- Developing the simulation to include specific capabilities of individual Sensors, Deciders, and Influencers such as rates of movement, sensing and influencing ranges, search patterns, survivability, etc.
- Investigate the effects of engagements between forces without the same numbers of assets. Will a smaller, more-optimally organized force defeat a larger force? How many assets can optimization offset?

SUMMARY

Mecting the security challenges of the twenty-first century will require innovative approaches to implementing the functions of command and control in the Information Age. Selecting the right approach requires an understanding of the potential networked effects of a combat force resulting from quantifiable metrics that properly represent the interdependencies and complex local behaviors of Information Age warfare. The content of this section is mostly included in Deller, et al. (2009).

While the IACM can provide useful insights to inform the difficult decisions and trade-offs during the ongoing transformation into an Information Age combat force, it can also be generalized beyond attrition applications. Since the IACM is focused on network capability, the abstract representation of the acts of sensing (information), deciding, and influencing (whether it be combat or some other action taken) enable it to model almost any activity involving planning and decision making. The nodes represent capabilities and the connections the accessibility. Each mission consists of certain required capabilities and their connectivity can therefore be represented as a network. The likelihood of success for a mission can be directly mapped to the connectivity of its required capabilities. That connectivity can be informed by the quantitative metric ($\lambda_{\text {PFF }}$ value) addressed in this work. As such, this research is not limited to merely addressing net-centric attrition but represents a quantitative approach towards analyzing all
networked operations in a more rigorous manner and can be applied to the kinds of NCO as described in the NATO Code of Best Practice for C2 Assessment (2002), among others.

REFERENCES

Alberts, David S., Garstka, John J., and Stein, Frederick P. (1999). Network Centric Warfare, CCRP Press, Washington D.C.

Alberts, David S., Garstka, John J., Hayes, Richard E., and Signori, David A. (2001). Understanding Information Age Warfare, CCRP Press, Washington D.C.
Alberts, David S., and Hayes, Richard E. (2003). Power to the Edge, CCRP Press, Washington D.C.

Alberts, David S. (2007). Agility, Focus, and Convergence: The Future of Command and Control. The International C2 Journal, Vol. 1 No. 1 , http://www.dodccrp.org/html4/journal_vlnl.html (accessed April 24, 2008).

Arquilla, John, and Ronfeldt, David (1993). Cyberwar is Coming! Comparative Strategy 12: 141-165.

Arquilla, John, and Ronfeldt, David (1996). The Advent of Netwar, RAND National Defense Research Institute, Santa Monica.

Arquilla, John, and Ronfeldt, David (1998). The Zapatista Netwar in Mexico, RAND National Defense Research Institute, Santa Monica.
Arquilla, John, and Ronfeldt, David (2000). Swarming \& The Future of Conflict, RAND National Defense Research Institute, Santa Monica.

Arquilla, John, and Ronfeldt, David (2001). Networks and Netwars, RAND National Defense Research Institute, Santa Monica.

Barabasi, A (2002). Linked, Perseus Publishing, Cambridge.
Bell, Michael 1. (2008). Private Communication.
Cares, Jeff (2005). Distributed Networked Operations. iUniverse, New York.
Ccbrowski, Arthur K., and Garstka, John J. (1998). Network-Centric Warfare: Its Origin and Future. United States Naval Institute Proceedings 124: 28-35.

Chartrand, Gary (1984). Introductory Graph Theory. Dover Publications.
Deller, Sean, Bcll, Michael I., Rabadi, Ghaith A., Bowling, Shannon R., and Tolk, Andreas (2009). Applying the Information Age Combat Model: Quantitative Analysis of Network Centric Operations. Accepted for publication in The International C2 Journal.

Department of Defense (2001). Network Centric Warfare: Department of Defense Report to Congress.

Epstein, Joshua M. (1985). The Calculus of Conventional War: Dynamic Analysis Without Lanchester Theory, The Brookings Institute, Washington, D.C.

Hammes, Thomas X. (1994). The Evolution of War: The Fourth Generation, Marine Corps Gazette.

Hammes, Thomas X. (2005). The Sling and the Stone, Zenith Press, St Paul.
Jain, Sanjay, and Krishna, Sandeep (1998). Autocatalytic Sets and the Growth of Complexity in an Evolutionary Model. Physical Review Letters 81: 5684-5687. Jain, Sanjay, and Krishna, Sandeep (1999). Emergence and growth of complex networks in adaptive systems. Computer Physics Communications 121-122: 116-121.

Joint Publication I-02 (2001). Department of Defense dictionary of military and associated terms. http://www.dtic.mil/doctrine/jel/new_pubs/jpl1 02.pdf (accessed, September 19, 2008).

Kewley, Robert H., and Embrechts, Mark J. (2008). A Multiagent System for Tactical Control of Automated Forces The International C2 Journal 2(2), 1-28.

Lanchester, Frederick W. (1914). Aircraft in Warfare: The Dawn of the Fourth Arm, Engineering 48: 422-423.

Lind, William S., Nightengale, Keith, Schmitt, John F., Sutton, Joseph W., and Wilson, Gary I. (1989). The Changing Face of War: Into the Fourth Generation, Marine Corps Gazetle, Oct: 22-26.

Lind, William S. (2005). Draft FMFM 1-A Fourth Generation War, viewed 21 September 2005, http://www.d-n-i.net/lind/lind_7_0605.htm.

Ling, Michael F., Moon, Terry, and Kruzins, Ed. (2005). Proposed Network Centric Warfare Metrics: From Connectivity to the OODA Cycle, Military Operations Research, 10: 5-13.

NATO Code of Best Practice for C2 Assessment, Rev.Ed. CCRP Press, (2002).
Reid, Darryn J., Goodman, Graham, Johnson, Wayne, Giffin, Ralph E. (2007). All That Glisters: Is Network-Centric Warfare Really Scientific?, Defense \& Security Analysis, 21: 335-367.

Sun Tzu. The Art of War, Ed. James Clavell, Delacorte Press, New York, (1983).

Toffler, Alvin, and Toffler, Heidi. (1993). War and Anti-War: Survival at the Dawn of the Twenty-First Century, Little, Brown and Company, New York.
Van Creveld, Martin. (2000). Through A Glass Darkly: Some Reflections on the Future of War, Naval War College Review, Fall 2000.
Wilenski, Uri (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ecl.northwestern.edu/netlogo.

APPENDIX A
 MEANINGFUL CONFIGURATIONS

Table 5. All Possible Configurations of a 4-3-4-1 Network.

				Number oflaflueneers tinked to Dectder 1,		
1	2	1	1	2	1	1
2	2	1	1	1	2	1
3	2	16	\% 1	1	1	2
4	7	2	1	2	1.	7
5.	1	2.	1	1	2	1
6	1	2	1	1	1	2
7	1	1	2	2	1	1
8	1	1.	2	1	2	1
9	1	1	2	1	1	2

Table 6. All Possible Configurations of a 5-3-5-1 Network.

1	3	1	1	3	1	1
2	3	1	1	1	3	1
3	3.	1	17	1	\% 1	\% 3
4	1	3	1	3%	6.1	¢1
5	-1	3	1	1	3	-1
6	1	3	1	1	1	3
7.	1	1	3	3	t	1
8	1	1	3	1	$\bigcirc 3$	1
9	1	1	3	1%	\cdots	3
10	3	1	1	2	2	1
11	3	1	1	1	2	2
12	3	1	1	2	1	2
13	1	3	1	2	2	1
14	1	3	1	1	2	2
15	1	3	1	2	1	2
16	1	1	3	2	2	1
17	1	1	3	1	2	2
18	1	1	3	2	1	2
19	2	2	1	3	1	1
20	2	2	1	1	3	1
21	2	2	1	1	1	3
22	2	1	2	3	1	1
23	2	1	2	1	3	1
24	2	1	2	1	1	3
25	1	2	2	3	1	1
26	1	2	2	1	3	1
27	\dagger	2	2	1	1	3
28	2	2	1	2	2	1
29	2	2	1	2	1	2
30	2	2	1	1	2	2
31	2	1	2	2	2	1
32	2	1	2	2	1	2
33	2	1	2	1	2	2
34	1	2	2	2	2	1
35	1	2	2	2	1.	2
36	1	2	2	1	2	2

Table 7. All Possible Configurations of a 7-3-7-1 Network.

\%	5	,	1	5	1	1
2	5	1	1	1	5	1
3	\%F\%		¢ल	+1/	1 ,	\%5\%
4	4,	45,	W1	-5.\%	W14	-
5.	,	*5	-1,	13.	5\%	\%123
6	¢	954	\% 1	1	1	5
7.	\& 1	¢12	世5	5	\% 1	+1\%
8.	51	L2 4	\% 5	1.	5	1 c
9.	¢, 1	1	\% 5	1	1.	5
10	5	1	1	4	2	1
11	5	1	1	4	1	2
12	5	1	1	2	4	1
43	5	1	1.	2	1	4
14	5	1	1	t	4	2
15	5	,	1	1	2	4
16	1	5	1.	4	2	1
17	1	5	1	4	7	2
18	1	5.	1	2	4	1
19	1	5	1	2	1	4
20	1	5	1	1	4	2
21	1	5	1	1	2	4
22	1	1	5	4	2	1
23	1	1	5	4	1	2
24	1	1	5	2	4	1
25	1	${ }^{4}$	5	2	1	4
26	1	1	5	1	4	2
27		1	5	1	2	4
28	5	1	1	3	3	1
29	5	1	1	3	1	3
30	5	1	1	1	3	3
31	1	5	1	3	3	1
32	1	5	,	3	1	3
33	1	5	1	1	3	3
34	1	1	5	3	3	1
35	1	1	5	3	1	3
36	1	1	5	1	3	3
37	5	1	1	3	2	2
38	5	1	1	2	3	2
39	5		1	2	2.	3
40	1.	5	1	3	2	2

$\frac{6}{5}$						
41	\% 1 \%	Ei5 5	170	\% 28	, 3 3x	\%2\%
42	M1.4	- 5\%	¢1\%	22.	\%22,	+ 3
43.	स14	स1\%	5 \%	43	, 82	+2
44.	\% 10	大\%19,	55	\%24	Cl34	-2
45	¢1\%	साक.	5.	2	. 62	-3\%
46	4	2	1	5	1	1
47	4	2	1	1	5	
48	4	2	1	1	1	5
49	$4 \times$	1	2	5.	1	1
50	4	1	2	1	5	-
51	4	1	2	1	1	5
52	2	4	1.	5	1	1
53	2	4	1	I	5	1
54	2	4	18	1	1	5
55	2	1	4	5	1	1
56	2	4	4	1	5	4
57	2	1	4	1	1	5
58	1	4	2	5	1.	1
59	1	4	2	1	5	1
60	1	4	2		1	5
61	1	2	4	5	1.	1
62	1	2	4	1	5	1
63	1	2	4	1	1	5
64	4	2	1	4	2	1
65	4	2	1	4	1	2
66	4	2	1	2	4	1
67	4	2	1	2	1	4
68	4	2	1	1	4	2
69	4	2	1	1	2	4
70	4	1	2	4	2	1
71	4	1	2	4	1	2
72	4	1	2	2	4	1
73	4	1	2	2	1	4
74	4	1	2	1	4	2
75	4	1.	2	1	2	4
76	2	4	1	4	2	1
77	2	4	1	4	1	2
78	2	4		2	4	1
79	2	4	,	2	1	4
80	2	4	1	1	4	2

Table 7 (continued).

8 H	\% 2.	-4,4	+148	W	2 2	4
82	\%22	Wetm	C, 43	cise	\$2\%	9
83.	2	\%-2	- 4	$4 \times$	\%1.	2
84.	+2\%	¢1]	-4de	-62\%	安4.4	Vib
85	-29	-	44	+22	¢14	4
86	22	1	4	Qt	4	2
87	22	4 t	4	etme	2	24
88	1.	4	2	4.	2	4
89.	1	4	2	+44	1	2
90	E12	4	2	\%2\%	4. 4	-
91	1	4	2	2	1	3
92	1	4	2	13	4	2
93	-1	4	2	1 1	\cdots	4
94	1	2	4	4	2	1
95	1	2	4	4	1	2
96	1	2	4.	2	4	1
97	1	2	4	2	1	4
98	1	2	4	1	4	2
99	1	2	4.	1	2	4
100	4	2	1	3	3	1
101	4	2	1	3	1	3
102	4	2	1	1	3	3
103	4	1	2	3	3	1
104	4	1	2	3	1	3
105	4	1	2	1	3	3
106	2	4	1	3	3	1
107	2	4	1	3	1	3
108	2	4	1	1	3	3
109	2	1	4	3	3	1
110	2	1	4	3	1	3
111	2	1	4	1	3	3
112	1	4	2	3	3	1
113	1	4	2	3	1	3
114	1	4	2	1	3	3
115	1	2	4	3	3	1
116	1	2	4	3	1	3
117	1	2	4	1	3	3
118	4	2	1	3	2	2
119	4	2	1	2	3	2
120	4	2	1	2	2	3

720	प4	10.8.	W22	\%0,	+52+	+ 2
522.	4	¢1	K2\%	22,	3	2\%
123	4	1	\%2	\cdots	2	- 3
124	¢, 2	+4\%	प1\%8	\% 3	2\%	2
125	2	4	18	2	3	2
126	2	4	1	2	2	-
127	2	1	- 4	3	2	2-2
128	2	1	4	2	3	2
129	2	1	4	2	2	3
130	17	4	6, 2	3	2	$\square 2$
. 134	1	4	2	2	3	2
132	\%	4	2	2	2	3.
133	1	2	4	3	2	2
134	1	2	4	2	3	2
135	4	2	4	$\therefore 2$	2	3
136.	3	3	1	5	1	1
137	3	3	1	1	5	1
138	3	3	1	1	1	5
139	3	1	3	5	1	4
140	3	1	3	1	5	1
141	3	1	3	1	1	5
142	1	3	3	5	1	1
143	1	3	3	1	5	7
144	7	3	3	1	1	5
145	3	3	1	4	2	1
146	3	3	1	4	1	2
147:	3	3	1	2	4	1
148	3	3	1	2	1	4
149	3	3	1	1	4	2
150	3	3	1	1	2	4
15t	3	1	3	4	2	1
152	3	1	3	4	1	2
153	3	1	3	2	4	1
154	3	1	3	2	1	4
155	3	1	3	1	4	2
156	3	1	3	1	2	4
157	1	3	3	4	2	1
158	1	3	3	4	1	2
159	1	3	3	2	4	1
160	1	3	3	2	1	4

Table 7 (continued).

164	- \%	\%-34 ${ }^{3}$	-	\% $1 \times$	药 4	
168	, 17	\% 3 3	W3\%	V 1 1	W224.	- 44
166	3	3	1	3	3	1
164	3	3	1	3	1	3
165	3	\%3\|	¢	क+ 109.	2-3, ${ }^{2}$	- ${ }^{\text {3 }}$
166	3	C2	Q33\%	abe	+3\%	4 1 T
167	x 3	\%rab	93	+32	¢ ${ }^{2}$	- 3
168	3	\%19	Q34	¢ 10	\% 3	63\%
169	¢ ${ }^{2}$	3	\%38	3 \%	\% ${ }^{\circ}$	\% L
170	$\bigcirc 1 \mathrm{~m}$	4,3\%	33!	Cr ${ }^{\text {a }}$	¢ 5	C 3 32
171	41	E. 3.	33:	\%	3.	43
172	3	3	1	3	2	2
173	3	3	: 1	2	3	2
174	3	3	4	2	2	3
175	3	1	3	3	2	2
176	3	1	3	2	3	22
177	3	1.	3	2	2	3
178	1	3	3	3	2	2
179	1	3	3	2	3	2
180	1	3	3	2	2	3
181	3	2	2	5	1	1
182	3	2	2	1	5	1
183	3	2	2	1.	1	5
184	2	3	2	5	1	1
185	2	3	2	1	5	1
186	2	3	2	1.	1	5
187	2	2	3	5	1	1
188	2	2	3	1	5	1
189	2	2	3	1	1	5
190	3	2	2	4	2	1
191	3	2	2	4	1	2
192	3	2	2	2	4	1
193	3	2	2	2	1	4
194	3	2	2	1	4	2
195	3	2	2	1	2	4
196	2	3	2	4.	2	1
197	2.	3	2	4	1	2
198	2	3	2	2	4	1
199	2	3	2	2	1	4
200	2.	3	2	\%	4	2

204	482.		\% $2+3$	\$ 1 W	- 2 20	$\underline{4}$
202	\% $2+$	Maticy	- 3 ,	854\%	\% 2 R	4
203	2	$2{ }^{2}$		E4E	+1\%	\%2
204	2?	152	bram	+2,	+44\%	Fry
205	W\%	K2\%	- ${ }^{\text {axa }}$	क2*	-	-
206	- 2 ,	W29]	- 3 3		74 48	大 2 \%
207	प22	\%2,	W. B	2t	182	-
208	3	2	2	3	3	1
209	3	2 L	2\%	3 ,	1 18	3
210	3	2	2	1	3	3
211	2 L	3 3.	2	3	3	1
212	$\underline{9}$	3	2	3	12	3
213	2.	- 3	\% 2	1	3 S	3
214	2	2	3	3	$3 \times$	1
215	2	2	\%	3	1	3
216	2	2	3	1	3	3
217	3	2	2	3	2	2
278	3	2	2	2	3	2
219	3	2	2	2	2	3
220	2	3	2	3	2	2
221	2	3	2	2	3	2
222	2	3	2	2	2	3
223	2	2	3	3	2	2
224	2	2	3	2	3	2
225	2	2	3	2	2	3

Table 8. Meaningful Combinations of an X-3-X-1 Network.

Table 8 (continued).

	Sensor Allocations tor $Y=3$			Influencer Allocations for $\mathrm{Y}=3$			Nümber of Meaningful Configurations
$x=8$	6	1	1	4	2	2	2
(cont)	6	1	1	3	3	2	2
	5	2	1	6	1	1	3
	5	2	1	5	2	1	6
W+	5	2	1	4	3	1	6
	5	2	1	4	2	2	3
	5	2	1	3	3	2	3
	4	3	,	6	1	1	3
	4	3	1	5	2	1	6
\cdots	4	3	1	4	3	1	6
	4	3	1	4	2	2	3
4	4	3	1	3	3	2	3
	4	2	2	6	1	1	2
	4	2	2	5	2	1	3
	4	2	2	4	3	1	3
	4	2	2	4	2	2	2
	4	2	2	3	3	2	2
	3	3	2	6	1	1	2
	3	3	2	5	2	1	3
	3	3	2	4	3	1	3
	3	3	2	4	2	2	2
	3	3	2	3	3	2	2
	Total =						66
$X=9$	7	1	1	7	1	1	2
	7	1	\uparrow	6	2	1	3
	7	1	1	5	3	1	3
	7	1	1	5	2	2	2
	7	1	1	4	4	1	2
	7	1	1	4	3	2	3
	7	1	1	3	3	3	1
	6	2	1	7	1	1	3
	6	2	1	6	2	1	6
	6	2	1	5	3	1	6
	6	2	1	5	2	2	3
	6	2	1	4	4	1	3
	6	2	1	4	3	2	6
	6	2	1	3	3	3	1
	5	3	1	7	1	1	3
	5	3	1	6	2	1	6

Table 8 (continued).

Table 8 (continued).

	Sensor Allocations for $\mathrm{X}=3$			Influencer Allocations for $Y=3$			Number of Meaningfúl Configuration
$x=10$	8	1	1	5	3	2	3
(cont)	8	1	1	4	4	2	2
4.4	8	1	1	4	3	3	2
,	7	2	1	8	1	1	3
\cdots	7	2	1	7	2	1	6
	7	2	1	6	3	1	6
	7	2	1	6	2	2	3
	7	2	1	5	4	1	6
	7	2	1	5	3	2	6
	7	2	1	4	4	2	3
	7	2	1	4	3	3	3
	6	3	1	8	1	1	3
	6	3	1	7	2	1	6
	6	3	1	6	3	1	6
	6	3	1	6	2	2	3
	6	3	1	5	4	1	6
	6	3	1	5	3	2	6
	6	3	1	4	4	2	3
	6	3	1	4	3	3	3
	6	2	2	8	1	1	2
	6	2	2	7	2	1	3
	6	2	2	6	3	1	3
	6	2	2	6	2	2	2
	6	2	2	5	4	1	3
	6	2	2	5	3	2	3
	6	2	2	4	4	2	2
	6	2	2	4	3	3	2
	5	4	1	8	1	1	3
	5	4	1	7	2	1	6
	5	4	1	6	3	1	6
	5	4	1	6	2	2	3
	5	4	1	5	4	1	6
	5	4	1	5	3	2	6
	5	4	1	4	4	2	3
	5	4	1	4	3	3	3
	5	3	2	8	1	1	3
	5	3	2	7	2	1	6
	5	3	2	6	3	1	6
	5	3	2	6	2	2	3

Table 8 (continued).

	Sensor Allocations fory $y=3$			Influencer Allocations for $\mathrm{y}=3$			Number of Meaningful Configurations
$x=10$	5	3	2	5	4	1	6
(cont.)	5	3	2	5	3	2	6
\%	5	3	2	4	4	2	3
¢ ${ }^{\text {c }}$	5	3	2	4	3	3	3
W\%	4	4	2	8	1	1	2
4	4	4	2	7	2	1	3
,	4	4	2	6	3	1	3
\bigcirc	4	4	2	6	2	2	2
	4	4	2	5	4	1	3
t,	4	4	2	5	3	2	3
	4	4	2	4	4	2	2
	4	4	2	4	3	3	2
	4	3	3	8	1	1	2
	4	3	3	7	2	1	3
	4	3	3	6	3	1	3
	4	3	3	6	2	2	2
	4		3	5	4	1	3
	4	3	3	5	3	2	3
	4	3	3	4	4	2	2
	4	3	3	4	3	3	2
						tal $=$	224

Table 9. Meaningful Combinations of an X-4-X-1 Network.

Table 9 (continued).

Table 9 (continued).

	Sensol Allocations for $Y=4$				Influencer Alocations for $Y=4$				Númber of Meaningful Gonfigurations
$x=9$	3	2	2	2	4	2	2	1	3
(cont)	3	2	2	2	3	3	2	1	3
	3	2	2	2					
W,	\%								
$X=10$	7	1	1	1	7	1	1	1	2
	7	1	1	1	6	2	1	1	3
	7	1	1	1	5	3	1	1	3
	7	1	1	1	5	2	2	1	3
	7	1	1	1	4	4	1	1	2
	7	1	1	1	4	3	2	1	4
	7	1	1	1	4	2	2	2	2
	7	1	1	1	3	3	3	1	2
	7	1	1	1	3	3	2	2	2
	6	2	1	1	7	1	1	1	3
	6	2	1	1	6	2	1	1	7
	6	2	1	1	5	3	1	1	7
	6	2	1	1	5	2	2	1	7
	6	2	1	1	4	4	1	1	4
	6	2	1	1	4	3	2	1	12
	6	2	1	1	4	2	2	2	3
	6	2	1	1	3	3	3	1	3
	6	2	1	1	3	3	2	2	4
	5	3	1	1	7	1	1	1	3
	5	3	1	1	6	2	1	1	7
	5	3	1	1	5	3	1	1	7
	5	3	1	1	5	2	2	1	7
	5	3	1	1	4	4	1	1	4
	5	3	1	1	4	3	2	1	12
	5	3	1	1	4	2	2	2	3
	5	3	1	1	3	3	3	1	3
	5	3	1	1	3	3	2	2	4
	5	2	2	1	7	1	1	1	3
	5	2	2	1	6	2	1	1	7
	5	2	2	1	5	3	1	1	7
	5	2	2	1	5	2	2	1	7
	5	2	2	1	4	4	1	1	4
	5	2	2	1	4	3	2	1	12
	5	2	2	1	4	2	2	2	3
	5	2	2	1	3	3	3	1	3

Table 9 (continued).

	Sensor Allocations fory $y=4$				Tifluencer Allocations$4+\text { for } Y-4$				Nuntiber of Meaningfül Configurations
$x=10$	5	2	2	1	3	3	2	2	4
(cont)	4	4	1	1	7	1	1	1	2
W, \%	4	4	1	1	6	2	1	1	4
6ז, \%	4	4	1	1	5	3	1	1	4
\%re	4	4	1	1	5	2	2	1	4
W, m	4	4	1	1	4	4	1	1	3
Cr.	4	4	1	1	4	3	2	1	6
	4	4	1	1	4	2	2	2	2
	4	4	1	1	3	3	3	1	2
-4	4	4	1	1	3	3	2	2	3
	4	3	2	1	7	1	1	1	4
¢	4	3	2	1	6	2	1	1	12
	4	3	2	1	5	3	1	1	12
\leq	4	3	2	1	5	2	2	1	12
	4	3	2	1	4	4	1	1	6
	4	3	2	1	4	3	2	1	24
	4	3	2	1	4	2	2	2	4
	4	3	2	1	3	3	3	1	4
	4	3	2	1	3	3	2	2	6
	4	2	2	2	7	1	1	1	2
	4	2	2	2	6	2	1	1	3
	4	2	2	2	5	3	1	1	3
	4	2	2	2	5	2	2	1	3
	4	2	2	2	4	4	1	1	2
	4	2	2	2	4	3	2	1	4
	4	2	2	2	4	2	2	2	2
	4	2	2	2	3	3	3	1	2
	4	2	2	2	3	3	2	2	2
	3	3	3	1	7	1	1	1	2
	3	3	3	1	6	2	1	1	3
	3	3	3	1	5	3	t	1	3
	3	3	3	1	5	2	2	1	3
	3	3	3	1	4	4	1	1	2
	3	3	3	1	4	3	2	1	4
	3	3	3	1	4	2	2	2	2
	3	3	3	1	3	3	3	1	2
	3	3	3	1	3	3	2	2	2
	3	3	2	2	7	1	1	1	2
	3	3	2	2	6	2	1	1	4

Table 9 (continued).

	Sensor Allocations fory $=4$				Infliencer Allocations for $\mathrm{V}=4$				Númber of Meaningful configurations
$x=10$ (cont.)	3	3	2	2	5	3	1		4
	3	3	2	2	5	2	2	1	4
	3	3	2	2	4	4	1	1	3
	3	3	2	2	4	$\overline{3}$	2	1	6
	3	3	2	2	4	2	2	2	2
	3	3	2.	2	3	3	3	1	2
	3	3	2	2	3	3	2	2	3
	\%	\%	\%	m.	T			,	- ${ }^{3} 363$

Table 10. Meaningful Combinations of an X-5-X-1 Network.

Table 10 (continued).

Table 11. Meaningful Combinations of an X-6-X-1 Network.

Table 12. Meaningful Combinations of an X-7-X-1 Network.

APPENDIX B

PERRON-FROBENIUS EIGENVALUE VALUES

Table 13. $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of a 7-3-7-1 Network.

0	5	1	1	5	1	1	2.280
1	5	1	1	1	5	1	1.821
2	5	1	1	4	2	1	2.190
3	5	1	1	1	4	2	1.821
4	5	1	1	2	1	4	1.968
5	5	1	1	3	3	1	2.088
6	5	1	1	1	3	3	1.821
7	5	1	1	3	2	2	2.088
8	5	1	1	2	3	2	1.968
9	4	2	1	5	1	1	2.190
10	4	2	1	1	5	1	1.968
11	4	2	1	1	1	5	1.821
12	4	2	1	4	2	1	2.141
13	4	2	1	4	1	2	2.115
14	4	2	1	2	4	1	2.031
15	4	2	1	2	1	4	1.934
16	4	2	\uparrow	1	4	2	1.934
17	4	2	1	1	2	4	1.861
18	4	2	1	3	3	1	2.088
19	4	2	1	3	1	3	2.031
20	4	2	1	1	3	3	1.899
21	4	2	1	3	2	2	2.060
22	4	2	1	2	3	2	2.000
23	4	2	1	2	2	3	1.968
24	3	\dagger	3	5	1	1	2.088
25	3	1	3	1	5	1	1.821
26	3	1	3	4	2	1	2.031
27	3	1	3	1	4	2	1.899
28	3	1	3	2	1	4	2.088
29	3	1	3	3	3	1	1.968
30	3	1	3	3	1	3	2.088
31	3	1	3	3	2	2	2.031
32	3	1	3	2	3	2	1.968
33	3	2	2	5	1	1	2.088
34	3	2	2	1	5	1	1.968
35	3	2	2	4	2	1	2.060
36	3	2	2	1	4	2	1.968
37	3	2	2	2	1	4	2.000
38	3	2	2	3	3	1	2.031
39	3	2	2	1	3	3	1.968
40	3	2	2	3	2	2	2.031
41	3	2	2	2	3	2	2.000

Table 14. $\lambda_{\text {pfe }}$ Values for all Meaningful Configurations of a 8-3-8-1 Network.

0	6	1	1	6	1	1	2.483
\% -	6	1	1	1	6	1	1.899
-2	6	1	1	5	2	1	2.397
3	6	1	1	1	5	2	1.899
4	6	1	1	2	1	5	2.060
5	6	1	1	4	3	1	2.300
\% 6	6	1	1	1	4	3	1.899
7	6	1	1	3	1	4	2.190
-8 8	6	1	1	4	2	2	2.300
$\therefore 9$	6	1	1	2	4	2	2.060
$\square 10$	6	1	1	3	3	2	2.190
11	6	1	1	2	3	3	2.060
$\because 12$	5	2	1	6	1	1	2.397
13	5	2	1	1	6	1	2.060
14	5	2	1	1	1	6	1.899
15	5	2	1	5	2	1	2.340
16	5	2	1	5	1	2	2.231
17	5	2	1	2	5	1	2.141
18	5	2	1	2	1	5	2.031
19	5	2	1	1	5	2	2,031
20	5	2	1	1	2	5	1.934
21	5	2	1	4	3	1	2.280
22	5	2	1	4	1	3	2.236
23	5	2	1	3	4	1	2.213
24	5	2	1	3	1	4	2.141
25	5	2	1	1	4	3	2.000
26	5	2	1	1	3	4	1.968
27	5	2	1	4	2	2	2.258
28	5	2	1	2	4	2	2.115
29	5	2	1	2	2	4	2.060
30	5	2	1	3	3	2	2.190
31	5	2	1	3	2	3	2.166
32	5	2	1	2	3	3	2.088
33	4	3	1	6	1	1	2.300
34	4	3	1	1	6	1	2.190
35	4	3	1	1	1	6	1.899
36	4	3	1	5	2	1	2.280
37	4	3	1	5	1	2	2.236
38	4	3	1	2	5	1	2.213

Table 14 (continued).

39	4	3	1	2	1	5	2.000
40 ?	4	3	1	1	5	2	2.141
41	4	3	1	1	2	5	1.968
42	4	3	1	4	3	1	2.258
\%43	4	3	1	4	1	3	2.166
\therefore A4	4	3	1	3	4	1	2.236
44\%	4	3	4	3	1	4	2.088
46	4	3	1	1	4	3	2.088
47	4	3	1	1	3	4	2.031
48	4	3	1	4	2	2	2.213
49	4	3	1	2	4	2	2.166
50	4	3	1	2	2	4	2.060
51	4	3	1	3	3	2	2.190
52	4	3	1	3	2	3	2.141
53	4	3	1	2	3	3	2.115
54	4	2	2	6	1	1	2.300
55	4	2	2	1	6	1	2.060
56	4	2	2	5	2	1	2.258
57	4	2	2	1	5	2	2.060
58	4	2	2	2	1	5	2.115
59	4	2	2	4	3	1	2.213
60	4	2	2	1	4	3	2.060
61	4	2	2	3	1	4	2.166
62	4	2	2	4	2	2	2.213
63	4	2	2	2	4	2	2.115
64	4	2	2	3	3	2	2.166
65	4	2	2	2	3	3	2.115
66	3	2	3	6	1	1	2.190
67	3	2	3	1	b	1	2.060
68	3	2	3	5	2	1	2.166
69	3	2	3	1	5	2	2.088
70	3	2	3	2	1	5	2.190
71	3	2	3	4	3	1	2.141
72	3	2	3	1	4	3	2.115
73	3	2	3	3	1	4	2.190
74	3	2	3	4	2	2	2.166
75	3	2	3	2	4	2	2.115
76	3	2	3	3	3	2	2.141
77	3	2	3	3	2	3	2.166

Table 15. $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of a 9-5-9-1 Network.

		$\begin{aligned} & \text { Namborof Sensors } \\ & \text { linkedtoDecder } 2 \end{aligned}$	$\begin{aligned} & \text { Numberiofsentors: } \\ & \text { finkedto Decider } 3 \end{aligned}$	$\begin{aligned} & \text { Number of Seasors } \\ & \text { linedto Declder } 4 \end{aligned}$							
0	5	1	1	1	1	5	1	1	1	1	2.321
\% 1	5	1	1	1	1	1	5	1	1	\dagger	1.899
2	5	1	1	1	1	4	2	1	1	1	2.236
3	5	1	1	1	7	1	4	2	1	1	1.899
4	5	1	1	1	7	2	1	4	1	1	2.031
5	5	1	1	1	1	3	3	1	1	1	2.141
6	5	1	1	1	1	1	3	3	1	1	1.899
7	5	1	1	1	1	3	2	2	1	1	2.141
8	5	1	1	1	1	1	3	2	2	1	1.899
9	5	1	1	1	1	2	3	2	1	1	2.031
10	5	1	1	1	1	2	2	2	2	1	2.031
11	5	1	1	1	1	1	2	2	2	2	1.899
12	4	2	1	1	1	5	1	1	1	1	2.236
13	4	2	1	1	1	\dagger	5	1	1	1	2.031
14	4	2	1	1	1	1	1	5	1	1	1.899
45	4	2	1	1	1	4	2	1	1	1	2.190
16	4	2	1	1	1	4	1	2	1	1	2.166
17	4	2	1	1	1	2	4	1	1	1	2.088
18	4	2	1	1	1	2	1	4	1	1	2.000
19	4	2	1	1	1	1	4	2	1	1	2.000
20	4	2	1	1	1	1	2	4	1	1	1.934
21	4	2	1	1	1	1	1	4	2	1	1.899
22	4	2	1	1	1	3	3	1	1	1	2.141
23	4	2	1	1	1	3	1	3	1	1	2.088
24	4	2	1	1	1	1	3	3	1	1	1.968
25	4	2	1	1	1	1	1	3	3	1	1.899
26	4	2	1	1	1	3	2	2	1	1	2.115
27	4	2	1	1	1	3	1	2	2	1	2.088
28	4	2	1	1	1	2	3	2	1	1	2.060
29	4	2	1	1	1	1	3	2	2	1	1.968
30	4	2	1	1	1	2	2	3	1	1	2.031
31	4	2	1	1	1	2	1	3	2	1	2.000

Table 15 (continued).

32	4	2	1	1	-	1	2	3	2	- 1	1.934
33\%	4	2		1	1	1	1	3	2	2	1.899
34	4	2	1	1	1	2	2	2	2	1	2.031
35	4	2	1	1	1	2	1	2	2	2	2.000
36	4	2	1	1	1	1	2	2	2	2	1.934
37	3	3	1	1	1	5	1	1	1	1	2.141
36	3	3	1	$?$	1	1	1	5	1	1	1.899
39	3	3	1	1	1	4	2	1	1	1	2.141
\%40	3	3	1	1	1	4	1	2	1	1	2.088
, 41\%	3	3	1	1	1	2	1	4	1	1	1.968
42	3	3	1	1	1	1	1	4	2	1	1.899
43	3	3	1	1	1	3	3	1	1	1	2.141
844	3	3	1	1	\dagger	3	1	3	1	1	2.031
45	3	3	1	1	1	1	t	3	3	1	1.899
46	3	3	1	1	1	3	2	2	1	1	2.088
478	3	3	1	1	1	3	1	2	2	1	2.031
48	3	3	1	1	1	2	2	3	1	1	2.031
49.	3	3	1	1	1	2	1	3	2	1	1.968
50	3	3	1	1	1	1	1	3	2	2	1.899
51	3	3	1	1	1	2	2	2	2	1	2.031
52	3	3	1	1	1	2	1	2	2	2	1.968
53	3	2	2	1	1	5	1	1	1	1	2.141
54	3	2	2	1	1	1	5	1	1	1	2.031
55.	3	2	2	1	1	1	1	1	5	1	1.899
56	3	2	2	1	4	4	2	1	1	1	2.115
57	3	2	2	1	1	4	1	1	2	1	2.088
58.	3	2	2	1	1	2	4	1	1	1	2.060
59	3	2	2	1	1	2		1	4	1	1.968
60	3	2	2	1	1	1	4	2		1	2.031
61	3	2	2	1	1	1	4	1	2	1	2.000
62	3	2	2	1	1	1	2		4	1	1.934
63	3	2	2	1	1	1	1	1	4	2	1.899

Table 15 (continued).

\%64	3	2	2	1	1	3	3	7	1	1	2.088
659	3	2	2	1	1	3	1	1	3	1	2.031
66	3	2	2	1	1	1	3	3	1	1	2.031
67%	3	2	2	1	1	1	3	1	3	1	1.968
68%	3	2	2	1	1	1	1	1	3	3	1.899
69	3	2	2	1	1	3	2	2	1	1	2.088
\%70	3	2	2	1	1	3	2	1	2	1	2.060
71	3	2	2	1	1	3	1	1	2	2	2.031
72	3	2	2	1	1	2	3	2	1	1	2.060
73	3	2	2	1	1	2	3	1	2	1	2.031
74	3	2	2	1	1	2	2	1	3	1	2.000
75	3	2	2	1	1	2	1	1	3	2	1.968
76	3	2	2	1	1	1	3	2	2	1	2.000
77	3	2	2	1	1	1	3	1	2	2	1.968
78	3	2	2	1	\uparrow	1	2	2	3	1	1.968
79	3	2	2	1	1	1	2	1	3	2	1.934
80	3	2	2	1	1	2	2	2	2	1	2.031
81	3	2	2	1	1	2	2	1	2	2	2.000
82	3	2	2	1	1	1	2	2	2	2	1.968
83	2	2	2	2	1	5	1	1	1	1	2.141
84	2	2	2	2	1	1	1	1	\dagger	5	1.899
85	2	2	2	2	1	4	2	1	1	1	2.115
86	2	2	2	2	1	4	1	1	1	2	2.088
87	2	2	2	2	1	2	1	1	\dagger	4	1.968
88	2	2	2	2	1	3	3	1	1	1	2.088
89	2	2	2	2	1	3	1	1	1	3	2.031
90	2	2	2	2	1	3	2	2	1	1	2.088
91	2	2	2	2	1	3	2	1	1	2	2.060
92	2	2	2	2	1	2	2	1	1	3	2.000
93	2	2	2	2	1	2	2	2	2	1	2.031
94	2	2	2	2	1	2	2	2	1	2	2.031

APPENDIX C

UNIQUE PERRON-FROBENIUS EIGENVALUE VALUES

Table 16. Unique $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of a 7-3-7-1
Network.

Count	Unique $\lambda_{\text {PFE }}$ values	Number of Each Value	7-3-7,1 Configuration Identification \#s
1	1.821	5	$\begin{array}{lllll}1 & 3 & 6 & 11 & 25\end{array}$
2	1.861	1	17
3	1.899	2	$20 \quad 27$
4	1.934	2	$15 \quad 16$
5	1.968	9	$\begin{array}{lcccccccc}4 & 8 & 10 & 23 & 29 & 32 & 34 & 36 & 39\end{array}$
6	2.000	3	$\begin{array}{llll}22 & 37 & 41\end{array}$
7	2.031	6	$\begin{array}{llllll}14 & 19 & 26 & 31 & 38 & 40\end{array}$
8	2.060	2	2135
9	2.088	7	$\begin{array}{lllllll}5 & 7 & 18 & 24 & 28 & 30 & 33\end{array}$
10	2.115	1	13
11	2.141	1	12
12	2.190	2	29
13	2.280	1	0
42 = Total Number of Configurations			

Table 17. Unique $\lambda_{\text {PFE }}$ Values for all Meaningful Configurations of an 8-3-8-1
Network.

	Unique APFE values	Number of Each Value	83-8-1 Configuration ldentification \#s
1	1.899	5	$\begin{array}{lllll}1 & 3 & 6 & 14 & 35\end{array}$
2	1.934	1	20
3	1.968	2	2641
4	2.000	2	2539
5	2.031	3	$\begin{array}{lll}18 & 19 & 47\end{array}$
6	2.060	10	4 9 11 13 29 50 55 57 60 67
7	2.088	4	$\begin{array}{llll}32 & 45 & 46 & 69\end{array}$
8	2.115	7	$\begin{array}{llllllll}28 & 53 & 58 & 63 & 65 & 72 & 75\end{array}$
9	2.141	6	$\begin{array}{lllllll}17 & 24 & 40 & 52 & 71 & 76\end{array}$
10	2.166	8	$\begin{array}{lllllllll}31 & 43 & 49 & 61 & 64 & 68 & 74 & 77\end{array}$
11	2.190	8	$\begin{array}{llllllll}7 & 10 & 30 & 34 & 51 & 66 & 70 & 73\end{array}$
12	2.213	5	$\begin{array}{lllllll}23 & 38 & 48 & 59 & 62\end{array}$
13	2.231	1	16
14	2.236	3	$\begin{array}{llll}22 & 37 & 44\end{array}$
15	2.258	3	$\begin{array}{llll}27 & 42 & 56\end{array}$
16	2.280	2	2136
17	2.300	4	$\begin{array}{llll}5 & 8 & 33 & 54\end{array}$
18	2.340	1	15
19	2.397	2	212
20	2.483	1	0
		78	= Total Number of Configurations

Table 18. Unique $\lambda_{\text {rfe }}$ Values for all Meaningful Configurations of a 9-5-9-1 Network.

APPENDIX D

MODELING RESULTS

Table 19. Modeling Results for a 7-3-7-1 Network.

										\square	Disparity ofinfluencers		\square
1	5	1	1	1	5	1	1.821	0.2095	1	4	4	8	3
3	5	1	1	1	4	2	1.821	0.2365	2	4	3	7	3
6	5	1	1	1	3	3	1.821	0.2381	3	4	2	6	3
25	3	1	3	1	5	1	1.821	0.2405	4	2	4	6	3
11	4	2	1	1	1	5	1.821	0.2492	5	3	4	7	3
17	4	2	1	1	2	4	1.861	0.3127	6	3	3	6	4
16	4	2	1	1	4	2	1.934	0.3548	7	3	3	6	4
20	4	2	1	1	3	3	1.899	0.3619	8	3	2	5	4
4.	5	1	1	2	1	4	1.968	0.3683	9	4	3	7	4
27	3	1	3	1	4	2	1.899	0.3714	10	2	3	5	4
8	5	1	1	2	3	2	1.968	0.3833	11	4	1	5	4
10	4	2	1	1	5	1	1.968	0.3657	12	3	4	7	4
34	3	2	2	1	5	1	1.968	0.4056	13	1	4	5	4
15	4	2	1	2	1	4	1.934	0.4063	14	3	3	6	4
29	3	1	3	3	3	1	1.968	0.4413	15	2	2	4	5
23	4	2	1	2	2	3	1.968	0.4468	16	3	1	4	5
36	3	2	2	1	4	2	1.968	0.4476	17	1	3	4	5
22	4	2	1	2	3	2	2.000	0.4667	18	3	1	4	5
19	4	2	f	3	1	3	2.031	0.4730	19	3	2	5	5
32	3	1	3	2	3	2	1.968	0.4738	20	2	1	3	5
39	3	2	2	1	3	3	1.968	0.4817	21	1	2	3	5
37	3	2	2	2	1	4	2.000	0.4952	22	1	3	4	5
14	4	2	1	2	4	1	2.031	0.4960	23	3	3	6	5
26	3	1	3	4	2	1	2.031	0.4984	24	2	3	5	5
24	3	1	3	5	1	1	2.088	0.5000	25	2	4	6	5
41	3	2	2	2	3	2	2.000	0.5063	26	1	1	2	6
5	5	1	1	3	3	1	2.088	0.5079	27	4	2	6	5
31	3	1	3	3	2	2	2.031	0.5198	28	2	1	3	6
7	5	1	1	3	2	2	2.088	0.5214	29	4	1	5	5
21	4	2	1	3	2	2	2.060	0.5270	30	3	1	4	6
38	3	2	2	3	3	1	2.031	0.5310	31	1	2	3	6
33	3	2	2	5	1	1	2.088	0.5397	32	1	4	5	5
35	3	2	2	4	2	1	2.060	0.5611	33	1	3	4	6
30	3	1	3	3	1	3	2.088	0.5619	34	2	2	4	7
40	3	2	2	3	2	2	2.034	0.5643	35	1	1	2	7
18	4	2	1	3	3	1	2.088	0.5651	36	3	2	5	6
13	4	2	1	4	1	2	2.115	0.5659	37	3	3	6	6
28	3	1	3	2	1	4	2.088	0.5714	38	2	3	5	6
9	4	2	1	5	1	1	2.190	0.5921	39	3	4	7	6
2	5	1	1	4	2	1	2.190	0.6040	40	4	3	7	6
12	4	2	1	4	2	1	2.141	0.6230	41	3	3	6	7
0	5	1	1	5	1	1	2.280	0.6683	42	4	4	8	7

Table 20. Modeling Results for an 8-3-8-1 Network.

1	6	1	1	1	6	1	1.899	0.1872	1	5	5	10	3
$\bigcirc 3$	6	1	1	1	5	2	1.899	0.1996	2	5	4	9	3
14	5	2	1	1	1	6	1.899	0.2051	3	4	5	9	3
6.	6	1	1	1	4	3	1.899	0.2085	4	5	3	8	3
35	4	3	1	1	1	6	1.899	0.2137	5	3	5	8	3
20	5	2	1	1	2	5	1.934	0.2637	6	4	4	8	4
26.	5	2	1	1	3	4	1.968	0.2684	7	4	3	7	4
41	4	3	1	1	2	5	1.968	0.3056	8	3	4	7	4
25	5	2	1	1	4	3	2.000	0.3145	9	4	3	7	4
55	4	2	2	1	6	1	2.060	0.3184	10	2	5	7	4
4	6	1	1	2	1	5	2.060	0.3188	11	5	4	9	4
18	5	2	1	2	1	5	2.031	0.3269	12	4	4	8	4
13	5	2	1	1	6	1	2.060	0.3274	13	4	5	9	4
39	4	3	1	2	1	5	2.000	0.3325	14	3	4	7	4
19	5	2	1	1	5	2	2.031	0.3355	15	4	4	8	4
9	6	1	1	2	4	2	2.060	0.3457	16	5	2	7	4
11	6	1	1	2	3	3	2.060	0.3526	17	5	1	6	4
47	4	3	1	1	3	4	2.031	0.3829	18	3	3	6	5
67	3	2	3	1	b	1	2.060	0.3880	19	1	5	6	4
60	4	2	2	1	4	3	2.060	0.3932	20	2	3	5	5
45	4	3	1	3	1	4	2.088	0.3957	21	3	3	6	5
29	5	2	1	2	2	4	2.060	$0.40 \overline{47}$	22	4	2	6	5
50	4	3	1	2	2	4	2.060	0.4077	23	3	2	5	5
46	4	3	1	1	4	3	2.088	0.4094	24	3	3	6	5
57	4	2	2	1	5	2	2.060	0.4128	25	2	4	6	5
24	5	2	1	3	1	4	2.141	0.4274	26	4	3	7	5
58	4	2	2	2	1	5	2.115	0.4308	27	2	4	6	5
32	5	2	1	2	3	3	2.088	0.4402	28	4	1	5	5
69	3	2	3	1	5	2	2.088	0.4470	29	1	4	5	5
40	4	3	1	1	5	2	2.141	0.4487	30	3	4	7	5
7	6	1	1	3	1	4	2.190	0.4500	31	5	3	8	5
34	4	3	1	1	6	1	2.190	0.4585	32	3	5	8	5
10	6	1	1	3	3	2	2.190	0.4684	33	5	1	6	5
66	3	2	3	6	1	1	2.190	0.4692	34	1	5	6	5
28	5	2	1	2	4	2	2.115	0.4692	35	4	2	6	5
17	5	2	1	2	5	1	2.141	0.4705	36	4	4	8	5
43	4	3	1	4	1	3	2.166	0.4799	37	3	3	6	6
53	4	3	1	2	3	3	2.115	0.4825	38	3	1	4	6
65	4	2	2	2	3	3	2.115	0.4829	39	2	1	3	6

Table 20 (continued).

72\%	3	2	3	1	4	3	2.115	0.4944	402*	1	3	4	6.
75	3	2	3	2	4	2	2.115	0.4979	441	1	2	3	6
¢52	4	3	1	3	2	3	2.141	0.5047	42	3	1	4	6
463	4	2	2	2	4	2	2.115	0.5081	433.	2	2	4	6
+23	5	2	1	3	4	1	2.213	0.5081	44	4	3	7	6
\% 70	3	2	3	2	1	5	2.190	0.5098	,45\%	1	4	5	6
$\bigcirc 30$	5	2	1	3	3	2	2.190	0.5103	46	4	1	5	6
\% 76	3	2	3	3	3	2	2.141	0.5115	47	1	1	2	7
531	5	2	1	3	2	3	2.166	0.5115	48	4	1	5	6
\% 68	3	2	3	5	2	1	2.166	0.5265	49	1	4	5	6
61	4	2	2	3	\dagger	4	2.166	0.5286	50	2	3	5	6
64	4	2	2	3	3	2	2.166	0.5346	51	2	1	3	7
71.	3	2	3	4	3	1	2.141	0.5402	52	1	3	4	6
38	4	3	1	2	5	1	2.213	0.5427	53	3	4	7	6
33	4	3	1	6	1	1	2.300	0.5479	54	3	5	8	6
73	3	2	3	3	1	4	2.190	0.5496	55	1	3	4	7
49	4	3	1	2	4	2	2.166	0.5521	56	3	2	5	6
37	4	3	1	5	1	2	2,236	0.5528	57.	3	4	7	6
51	4	3	1	3	3	2	2.190	0.5560	58	3	1	4	7
22	5	2	1	4	1	3	2.236	0.5594	59	4	3	7	6
77	3	2	3	3	2	3	2.166	0.5650	60	1	1	2	8
44	4	3	1	3	4	1	2.236	0.5739	61	3	3	6	7
5	它	1	1	4	3	1	2.300	0.5752	62	5	3	8	6
59	4	2	2	4	3	1	2.213	0.5765	63	2	3	5	7
54	4	2	2	6	1	1	2.300	0.5791	64	2	5	7	6
74	3	2	3	4	2	2	2.166	0.5795	65	1	2	3	7
62	4	2	2	4	2	2	2.213	0.5863	66	2	2	4	8
48	4	3	1	4	2	2	2.213	0.5923	67	3	2	5	7
16	5	2	1	5	1	2	2.231	0.6013	68	4	4	8	7
8	6	1	1	4	2	2	2.300	0.6047	69	5	2	7	6
15	5	2	1	5	2	1	2.340	0.6081	70	4	4	8	8
42	4	3	1	4	3	1	2.258	0.6162	71	3	3	6	8
56	4	2	2	5	2	1	2.258	0.6162	72	2	4	6	7
21	5	2	1	4	3	1	2.280	0.6201	73.	4	3	7	7
27	5	2	1	4	2	2	2.258	0.6222	74	4	2	6	7
2	6	1	1	5	2	1	2.397	0.6312	75	5	4	9	7
36	4	3	1	5	2	1	2.280	0.6342	76	3	4	7	7
12	5	2	1	6	1	1	2.397	0.6402	77	4	5	9	7
0	6	1	1	白	1	1	2.483	0.6962	78	5	5	10	8

Table 21. Modeling Results for a 9-5-9-1 Network.

		$\begin{gathered} \frac{2}{5}+ \\ \frac{0}{6}+ \\ \frac{9}{6}, \\ \frac{1}{2} \\ \frac{1}{2} \\ \hline 8 \end{gathered}$														$\begin{gathered} \frac{5}{5} \\ \frac{2}{2} \\ \frac{8}{2} \end{gathered}$	
1	5	1	1	1	1	1	5	1	1	\uparrow	1.899	0.2070	4	4	4	8	5
\%3\%	5	1	1	1	1	1	4	2	1	1	1.899	0.2530	2	4	3	7	5
144	4	2	1	1	1	1	1	5	1	1	1.899	0.2611	3.	3	4	7	5
81	5	1	1	1	1	1	2	2	2	2	7.899	0.2758	4	4	1	5	5
024	4	2	1	1	1	1	1	4	2	1	1.899	0.2761	5	3	3	6	5
25	4	2	1	1	1	1	1	3	3	1	1.899	0.2779	6	3	2	5	5
6.	5	1	1	1	1	1	3	3	1	1	1.899	0.2821	7	4	2	6	5
33	4	2	1	1	1	1	1	3	2	2	1.899	0.2993	8.	3	2	5	5
55	3	2	2	1	1	1	1	1	5	1	1.899	0.3056	9.	2	4	6	5
38	3	3	1	1	1	1	1	5	1	1	1.899	0.3088	10	2	4	6	5
8	5	1	1	1	1	1	3	2	2	1	1.899	0.3095	1.1	4	2	6	5
84	2	2	2	2	1	1	4	1	1	5	1.899	0.3291	12	$\overline{1}$	4	5	5
4	5	1	1	1	1	2	1	4	1	1	2.031	0.3312	13	4	3	7	6
$45^{\text {²}}$	3	3	1	1	1	1	1	3	3	1	1.899	0.3333	14	2	2	4	5
63	3	2	2	1	1	1	1	1	4	2	1.899	0.3354	15	2	3	5	5
36	4	2	1	1	1	1	2	2	2	2	1.934	0.3365	16	3	1	4	6
20	4	2	1	1	1	1	2	4	1	1	1.934	0.3379	17	3	3	6	6
42	3	3	1	1	1	1	1	4	2	1	1.899	0.3446	18	2	3	5	5
9	5	1	1	1	1	2	3	2	1	1	2.031	0.3495	19	4	2	6	6
68	3	2	2	1	1	1	1	1	3	3	1.899	0.3575	20	,	2	4	5
19	4	2	1	1	1	1	4	2	1	1	2.000	0.3586	21	3	3	6	6
18	4	2	1	1	1	2	1	4	1	1	2.000	0.3593	22	3	,	6	6
32	4	2	1	1	1	1	2	3	2	1	4.934	0.3625	23	3	2	5	6
41	3	3	1	1	1	2	1	4	1	1	1.968	0.3663	24	2	3	5	6
59	3	2	2	1	1	2	1	1	4	1	1.968	0.3677	25	2	,	5	6
50	3	3	1	1	1	1	1	3	2	2	1.899	0.3688	26	2	2	4	5
35	4	2	1	1	1	2	1	2	2	2	2.000	0.3712	27	3	1	4	6
24	4	2	1	1	1	1	3	3	1	1	1.968	0.3716	28		2	5	6
86	2	2	2	2	1	4	1	1	1	2	2.088	0.3754	29	1	3	4	6
62	3	2	2	1	1	1	2	1	4	1	1.934	0.3765	30	2	3	5	6
52	3	3	1	1	1	2	1	2	2	2	1.968	0.3772	31	2	1	3	6
5	5	1	1	1	1	3	3	1	1	1	2.141	0.3782	32	4	2	6	7

Table 21 (continued).

			Nutbiberof Sensors to Decinked														
B75		2	2	1	,	2	1 1	+ 1	3	2	1.968	0.3811	33	2	2	4	6
710	5	1	1	1	1	2	2	2	2	1	2.031	0.3828	34	4	1	5	6
13	4	2	1	1	1	1	5	1	1	1	2.031	0.3842	35	3	4	7	6
49	3	3	1	!	1	2	1	3	2	1	1.968	0.3846	36	2	2	4	6
31	4	2	1	1	1	2	1	3	2	1	2.000	0.3954	37	3	2	5	6
71	3	2	2	$!$	1	3	1	1	2	2	2.031	0.3965	38	2	2	4	7
87	2	2	2	2	1	2	1	1	1	4	1.968	0.4018	39	1	3	4	6
67	3	2	2	1	1	1	3	1	3	1	1.96B	0.4021	40	2	2	4	
29	4	2	1	1	1	1	3	2	2	1	1.968	0.4021	41	3	2	5	6
54	3	2	2	1	1	1	5	1	1	1	2.031	0.4025	42	2	4	6	6
65	3	2	2	1	1	3	1	1	3	1	2.031	0.4025	43	2	2	4	7
83	2	2	2	2	1	5	1	1	1	1	2.141	0.4042	44	1	4	5	6
7	5	1		1	1	3	2	2	1	1	2.141	0.4105	45	4	2	6	7
44	3	3	1	1	1	3	1	3	1	1	2.031	0.4119	46	2	2	4	7
23	4	2	1	1	1	3	1	3	1	1	2.088	0.4119	47	3	2	5	7
79	3	2	2	1	1	1	2	1	3	2	1.934	0.4123	48	2	2	4	6
74	3	2	2	1	1	2	2	1	3	1	2.000	0.4975	49	2	2	4	7
77	3	2	2	1	1	1	3	1	2	2	1.968	0.4232	50	2	2	4	6
89	2	2	2	2	1	3	1	1	1	3	2.031	0.4235	51	1	2	3	6
47	3	3	1	1	1	3	1	2	2	1	2.031	0.4260	52	2	4	6	7
37	3	3	1	1	1	5	1	1	1	1	2.141	0.4260	53	2	2	4	7
40	3	3	1	1	1	4	1	2	1	1	2.088	0.4298	54	2		5	7
27	4	2	1	1	1	3	1	2	2	1	2.088	0.4298	55	3	2	5	7
81	3	2	2	1	1	2	2	1	2	2	2.000	0.4323	56	2	1	3	7
85	2	2	2	2	1	4	2	1	1	1	2.115	0.4333	57	1	3	4	7
30	4	2	1	1	1	2	2	3	1	1	2.031	0.4340	58	3	2	5	7
16	4	2	1	1	1	4	1	2	1	1	2.166	0.4375	59	3	3	6	8
78	3	2	2	1	1	1	2	2	3	1	1.968	0.4407	60	2	2	4	7
34	4	2	1	1		2	2	2	2	1	2.031	0.4432	61	3	1	4	7
82	3	2	2	1	1	1	2	2	2	2	1.968	0.4470	62	2	1	3	7
61	3	2	2	1	1	1	4	1	2	1	2.000	0.4474	63	2	3	5	6
53	3	2	2	1	1	5	1	1	1	1	2.141	0.4495	64	2	4	6	7

Table 21 (continued).

69	2	2	2	2	1	3	2		1	2	2.060	0.4519	\% 65	1	2	3	7
28:	4	2	1	1	1	2	3	2	1	1	2.060	0.4558	\% 66	3	2	5	7
47\%	4	2	1	1	1	2	4	1	1	1	2.088	0.4586	67 \%	3	3	6	7
-48	3	3	1	1	1	2	2	3	1	1	2.031	0.4621	68	2	2	4	7
73	3	2	2	1	1	2	3	1	2	1	2.031	0.4642	69	2	2	4	7
57	3	2	2	1	1	4	1	1	2	1	2.088	0.4681	70	2	3	5	7
58	3	2	2	1	1	2	4	1	1	1	2.060	0.4709	71	2	3	5	7
92\%	2	2	2	2	1	2	2	1	1	3	2.000	0.4737	72	4	3	7	8
2	5	1	1	1	1	4	2	1	1	1	2.236	0.4737	73	1	2	3	7
51	3	3	1	1	1	2	2	2	2	1	2.031	0.4747	7.4	2	1	3	7
70	3	2	2	1	1	3	2	1	2	1	2.060	0.4775	75	2	2	4	8
26	4	2	1	1	1	3	2	2	1	1.	2.115	0.4793	76	3	2	5	8
22	4	2	1	1	1	3	3	1	1	1	2.141	0.4796	77	3	2	5	8
60	3	2	2	1	1	1	4	2	1	1	2.031	0.4800	78	2	3	5	7
76	3	2	2	1	1	1	3	2	2	1	2.000	0.4825	79	2	2	4	7
94	2	2	2	2	1	2	2	2	1	2	2.031	0.4860	80	1	1	2	8
15	4	2	1	1	1	4	2	\dagger	1	1	2.190	0.4888	81	3	3	6	9
12	4	2	1	1	1	5	1	1	1	1	2.236	0.4891	82	3	4	7	8
56	3	2	2	1	1	4	2	1	1	1	2.115	0.4902	83	2	3	5	8
64	3	2	2	1	1	3	3	1	1	1	2.088	0.4916	84	2	2	4	8
88	2	2	2	2	1	3	3	1	1	1	2.088	0.4989	85	1	2	3	7
46	3	3	1	1	1	3	2	2	1	1	2.088	0.5042	86	2	2	4	8
66	3	2	2	1	1	1	3	3	1	1	2.031	0.5077	87	2	2	4	7
0	5	1	1	1	1	5	1	1	1	1	2.321	0.5081	88	4	4	8	9
80	3	2	2	1	1	2	2	2	2	1	2.031	0.5095	89	2	1	3	8
90	2	2	2	2	1	3	2	2	1	1	2.088	0.5161	90	1	2	3	8
72	3	2	2	1	1	2	3	2	1	1	2.060	0.5168	91	2	2	4	8
69	3	2	2	1	1	3	2	2	1	1	2.088	0.5172	92	2	2	4	9
39	3	3	1	1	1	4	2	7	1	1	2.141	0.5249	93	2	3	5	8
93	2	2	2	2	1	2	2	2	2	1	2.031	0.5425	94	1	1	2	9
43	3	3	1	1	1	3	3	1	1	1	2.141	0.5684	95	2	2	4	9

Table 22. Modeling Results for a 9-5-9-1 Network (not including ties).

\%	5	1	1	1	1	,	5	,	1	1	1.899	0.2215	1	4	4	8	5
3.	5	1	1	1	1	1	4	2	1	1	1.899	0.2713	2	4	3	7	5
14	4	2	1	1	1	1	1	5	1	1	1.899	0.2802	3	3	4	7	5
114	5	1	1	1	1	1	2	2	2	2	1.899	0.2944	4	4	1	5	5
27.	4	2	1	1	1	1	1	4	2	1	1.899	0.2947	5	3	3	6	5
25	4	2	1	1	1	1	1	3	3	1	1.899	0.2961	6	3	2	5	5
6.	5	1	1	1	1	1	3	3	1	1	1.899	0.3019	7	4	2	6	5
33	4	2	1	1	1	1	1	3	2		1.899	0.3179	8	3	2	5	5
55	3	2	2	1	1	1	1	1	5	1	1.899	0.3258	9	2	4	6	5
38 :	3	3			1	1	1	5	1	1	1.899	0.3308	10	2	4	6	5
8.	5	1	1	1	1	1	3	2	2	1	1.899	0.3332	11	4	2	6	5
84	2	2	2	2	1	1	1	1	1	5	1.899	0.3492	12	1	4	5	5
45	3	3	1	1	1	1	1	3	3	1	1.899	0.3554	13	2	2	4	5
36	4	2	1	1	1	1	2	2	2	2	1.934	0.3586	14	3	1	4	6
63	3	2	2	1	1	1	1	1	4	2	1.899	0.3592	15	2	3	5	5
20	4	2	1	1	1	1	2	4	1	1	1.934	0.3594	16	3	3	6	6
4	5	1	1	1	1	2	1	4	1	I	2.031	0.3620	17	4	3	7	6
42	3	3	1	1	1	\uparrow	1	4	2	1	1.899	0.3844	18	2	3	5	5
68	3	2	2	1	1	1	1	1	3	3	1.899	0.3774	19	2	2	4	5
9	5	1	1	1	1	2	3	2	1	1	2.031	0.3794	20	4	2	6	6
19	4	2	1	1	1	1	4	2	1	1	2.000	0.3836	21	3	3	6	
32	4	2	1	1	1	1	2	3	2		1.934	0.3885	22	3	2	5	6
50	3	3	1	1	1	1	1	3	2	2	1.899	0.3888	23	2	2	4	5
59	3	2	2	1	1	2	1	1	4	1	1.968	0.3917	24	2	3	5	6
18	4	2	1	1	1	2	1	4	1	1	2.000	0.3945	25	3	3	6	6
41	3	3	1	1	1	2	1	4	1	1	1.968	0.3958	26	2	3	5	6
24	4	2	1	1	1	1	3	3	1	1	1.968	0.3968	27	3	2	5	6
35	4	2	1	1	1	2	1	2	2	2	2.000	0.3969	28	3	1	4	6
62	3	2	2	1	1	1	2	1	4	1	1.934	0.3996	29	2	3	5	6
52	3	3	1	1	1	2	1	2	2	2	1.968	0.4005	30	2	1	3	6
75	3	2	2	1	1	2	1	1	3	2	1.968	0.4066	31	2	2	4	6
86	2	2	2	2	1	4	1	1	1	2	2.088	0.4068	32	1	3	4	6

Table 22 (continued).

, 139	4	2	1	1	1	1	5	1	1	1	2.031	0.4082	033	3	4	7	6
10	5	1	1	1	1	2	2	2	2	1	2.031	0.4133	\% 34	4	1	5	6
\%49	3	3	1	1	1	2	1	3	2	1	1.968	0.4136	\% 35	2	2	4	6
97	2	2	2	2	1	2	1	1	1	4	1.968	0.4278	36	1	3	4	6
5	5	1	1	1	1	3	3	1	1	1	2.141	0.4291	37	4	2	6	7
678	3	2	2	1	1	1	3	1	3	1	1.968	0.4299	38	2	2	4	6
71	3	2	2	1	1	3	1	1	2	2	2.031	0.4303	39	2	2	4	7
${ }^{2} 1$	4	2	1	1	1	2	1	3	2	1	2.000	0.4306	40	3	2	5	6
29	4	2	1	1	1	1	3	2	2	1	1.968	0.43 ¢8	41	3	2	5	6
54.	3	2	2	1	1	1	5	1	1	1	2.031	0.4379	42	2	4	6	6
65	3	2	2	1	1	3	1	1	3	1	2.031	0.4348	43	2	2	4	7
79	3	2	2	1	1	1	2	1	3	2	1.934	0.4369	44	2	2	4	6
83	2	2	2	2	1	5	1	1	1	1	2.141	0.4416	45	1	4	5	6
44	3	3	1	1	1	3	1	3	1	1	2.031	0.4463	46	2	2	4	7
74	3	2	2	1	1	2	2	7	3	1	2.000	0.4464	47	2	2	4	7
23	4	2	1	1	1	3	1	3	1	1	2.088	0.4508	48	3	2	5	7
77	3	2	2	1	1	1	3	\uparrow	2	2	1.968	0.4522	49	2	2	4	6
89	2	2	2	2	1	3	1	1	1	3	2.031	0.4553	50	1	2	3	6
47	3	3	1	1	1	3	1	2	2	1	2.031	0.4634	51	2	2	4	7
81	3	2	2	1	1	2	2	1	2	2	2.000	0.4638	52	4	2	6	7
7	5	1	1	1	1	3	2	2	1	1	2,141	0.4660	53	2	1	3	7
78	3	2	2	1	1	1	2	2	3	1	1.968	0.4663	54	2	2	4	7
85	2	2	2	2	1	4	2	\%	1	1	2.115	0.4680	55	1	3	4	7
27	4	2	1	1	1	3	\uparrow	2	2	1	2.088	0.4705	56	3	2	5	7
30	4	2	1	1	1	2	2	3	1	1	2.031	0.4717	57	3	2	5	7
40	3	3	1	1	1	4	1	2	1	1	2.088	0.4746	58	2	3	5	7
82	3	2	2	1	1	1	2	2	2	2	1.968	0.4748	59	2	\dagger	3	7
61	3	2	2	1	1	1	4	1	2	1	2.000	0.4757	60	2	3	5	6
37	3	3	1	1	1	5	1	1	1	1	2.141	0.4824	61	2	4	6	7
34	4	2	1	1	1	2	2	2	2	1	2.031	0.4833	62	3	1	4	7
91	2	2	2	2	1	3	2	1	1	2	2.060	0.4872	63	1	2	3	7
16	4	2	1	1	1	4	1	2	1	1	2.166	0.4932	64	3	3	6	8

Table 22 (continued).

873	3	2	2	1	1	2	3	1	2	1 1	2.031	0.4954	65	2	2	4	7
448	3	3	1	1	1	2	2	3	1	1	2.031	0.4956	66	2	2	4	7
28	4	2	1	1	1	2	3	2	1	1	2.060	0.4956	67	3	2	5	7
53	3	2	2	1	1	5	1	1	1	1	2.141	0.4980	68	2	4	6	7
17	4	2	1	1	1	2	4	1	1	1	2.088	0.4989	69	3	3	6	7
92	2	2	2	2	1	2	2	1	1	3	2.000	0.5032	70	1	2	3	7
58	3	2	2	1	1	2	4	1	1	1	2.060	0.5047	71	2	3	5	7
51	3	3	1	1	1	2	2	2	2	1	2.031	0.5077	72	2	3	5	7
60	3	2	2	1	1	1	4	2	1	1	2.031	0.5108	73	2	1	3	7
76	3	2	2	1	1	1	3	2	2	1	2.000	0.5110	74	2	2	4	7
57	3	2	2	1	1	4	1	1	2	1	2.088	0.5159	75	2	3	5	7
70	3	2	2	1	1	3	2	1	2	1	2.060	0.5187	76	2	2	4	8
94	2	2	2	2	1	2	2	2	1	2	2.031	0.5189	77.	1	1	2	8
22	4	2	1	1	1	3	3	1	1	1	2.141	0.5243	78	3	2	5	
26	4	2	1	1	1	3	2	2	1	1	2.115	0.5276	79	3	2	5	8
64	3	2	2	1	\uparrow	3	3	1	1	1	2.088	0.5298	80	2	2	4	8
88	2	2	2	2	1	3	3	1	1	1	2.088	0.5331	81	1	2	3	7
56	3	2	2	1	1	4	2	1	1	1	2.115	0.5356	82	2	3	5	8
66	3	2	2	7	1	1	3	3	1	1	2.031	0.5382	83	2	2		7
2	5	1	1	1	1	4	2	1	1	1	2.236	0.5415	84	4	3	7	8
80	3	2	2	1	1	2	2	2	2	1	2.031	0.5452	85	2	1	3	8
46	3	3	1	1	1	3	2	2	1	1	2.088	0.5456	86	2	2	4	8
15	4	2	1	1	1	4	2	1	1	1	2.190	0.5504	87	3	3	6	9
72	3	2	2	1	1	2	3	2	1	1	2.060	0.5515	88	2	,	4	8
90	2	2	2	2	1	3	2	2	1	1	2.088	0.5515	89		2		8
12	4	2	1	1	1	5	1	1	1	1	2.236	0.5587	90	3	4	7	8
69	3	2	2	1	1	3	2	2	1	1	2.088	0.5625	91	2	2	4	9
39	3	3	1	1	1	4	2	1	1	1	2.141	0.5705	92	2	3	5	8
93	2	2	2	2	1	2	2	2	2	1	2.031	0.5710	93	1	1	2	9
0	5	1	1	1	1	5	1	1	1	1	2.321	0.5944	94	4	4	8	9
43	3	3	1	1	1	3	3	1	1	1	2.141	0.6109	95	2	2	4	9

Table 23. Modeling Results for a 9-5-9-1 Network (Ranked by $\lambda_{\text {PFE }}$ value).

									Numberoflyfuencers a							Totail Dispaty	
1	5	1	1	1	1	1	5	1	1	1	1.899	0.2070	1	4	4	8	5
3	5	1	1	1	1	1	4	2	1	1	1.899	0.2530	2	4	3	7	5
14\%	4	2	1	1	1	1	1	5	1	1	1.899	0.2611	3	3	4	7	5
1\%	5	1	1	1	1	1	2	2	2	2	1.899	0.2758	4	4	1	5	5
21	4	2	1	1	1	1	1	4	2	1	1.899	0.2761	5	3	3	6	5
25.	4	2	1	1	1	1	1	3	3	1	1.899	0.2779	6	3	2	5	5
6	5	1	1	1	1	1	3	3	1	1	1.899	0.2821	7	4	2	6	5
33	4	2	1	1	1	1	1	3	2	2	1.899	0.2993	8	3	2	5	5
55	3	2	2	1	1	1	1	1	5	1	1.899	0.3056	9	2	4	6	5
38	3	3	1	1	1	1	1	5	1	1	1.899	0.3088	10	2	4	6	5
8	5	1	1	1	1	1	3	2	2	1	1.899	0.3095	11	4	2	6	5
84	2	2	2	2	1	1	1	7	1	5	1.899	0.3291	12	1	4	5	5
45	3	3	1	1	1	1	1	3	3	1	1.899	0.3333	13	2	2	4	5
63	3	2	2	1	1	1	1	1	4	2	1.899	0.3354	14	2	3	5	5
42	3	3	1	1	1	1	1	4	2	1	1.899	0.3446	15	2	3	5	5
68	3	2	2	1	1	1	1	1	3	3	1.899	0.3575	16	2	2	4	5
50.	3	3	1	1	1	1	1	3	2	2	1.899	0.3688	17	2	2	4	5
36	4	2	1	1	1	1	2	2	2	2	1.934	0.3365	18	3	1	4	6
20	4	2	1	1	1	1	2	4	1	1	1.934	0.3379	19	3	3	6	6
32	4	2	1	1	1	1	2	3	2	1	1.934	0.3625	20	3	2	5	6
62	3	2	2	1	1	1	2	1	4	1	1.934	0.3765	21	2	3	5	6
79	3	2	2	1	1	1	2	1	3	2	1.934	0.4123	22	2	2	4	6
41	3	3	1	1	1	2	1	4	1	1	1.968	0.3663	23	2	3	5	6
59	3	2	2	1	1	2	1	1	4	1	1.968	0.3677	24	2	3	5	6
24	4	2	1	1	1	1	3	3	1	1	1.968	0.3716	25	3	2	5	6
52	3	3	1	1	1	2	1	2	2	2	1.968	0.3772	26	2	1	3	6
75	3	2	2	1	1	2	1	1	3	2	1.968	0.3811	27	2	2	4	6
49	3	3	1	1	1	2	1	3	2	1	1.968	0.3846	28	2	2	4	6
87	2	2	2	2	1	2	1	1	1	4	1.968	0.4018	29	1	3	4	6
67	3	2	2	1	1	1	3	1	3	1	1.968	0.4021	30	2	2	4	6
29	4	2	1	1	\dagger	7	3	2	2	1	1.968	0.4021	31	3	2	5	6
77	3	2	2	1	1	1	3	1	2	2	1.968	0.4232	32	2	2	4	6

Table 23 (continued).

\%76	3	2	2	1	1	1	2	2	3	1	1.968	0.4407	33	2	2	4	7
82	3	2	2	1	1	1	2	2	2	2	1.968	0.4470	34	2	7	3	7
19	4	2	1	1	1	1	4	2	1	1	2.000	0.3586	35	3	3	6	6
18	4	2	1	1	1	2	1	4	1	1	2.000	0.3593	36	3	3	6	6
35	4	2	1	1	1	2	1	2	2	2	2.000	0.3712	37	3	1	4	6
31:	4	2	1	1	1	2	1	3	2	1	2.000	0.3954	38	3	2	5	6
74	3	2	2	1	1	2	2	1	3	1	2.000	0.4175	39	2	2	4	7
81:	3	2	2	1	1	2	2	1	2	2	2.000	0.4323	40	2	1	3	7
64	3	2	2	1	1	1	4	1	2	1	2.000	0.4474	41	2	3	5	6
92	2	2	2	2	1	2	2	1	1	3	2.000	0.4737	42	2	2	4	7
76.	3	2	2	1	1	1	3	2	2	1	2.000	0.4825	43	2	2	4	7
4	5	1	1	1	t	2	1	4	1	1	2.031	0.3312	44	4	3	7	6
9	5	1	1	1	1	2	3	2	1	1	2.031	0.3495	45	4	2	6	6
10	5	1	1	1	1	2	2	2	2	1	2.031	0.3828	46	4	1	5	6
13	4	2	1	1	\dagger	1	5	1	1	1	2.031	0.3842	47	3	4	7	6
71	3	2	2	1	1	3	1	1	2	2	2.031	0.3965	48	2	2	4	7
54	3	2	2	1	1	1	5	1	1	1	2.031	0.4025	49	2	4	6	6
65	3	2	2	1	1	3	1	1	3	1	2.031	0.4025	50	2	2	4	7
44	3	3	1	1	1	3	1	3	1	1	2.031	0.4119	51	2	2	4	7
89	2	2	2	2	1	3	1	1	1	3	2.031	0.4235	52	1	2	3	6
47	3	3	1	1	1	3	1	2	2	1	2.031	0.4260	53	3	2	5	7
30	4	2	1	1	1	2	2	3	1	1	2.031	0.4340	54	3	2	5	7
34	4	2	1	1	1	2	2	2	2	1	2.031	0.4432	55	3	1	4	7
48	3	3	1	1	1	2	2	3	1	1	2.031	0.4621	56	2	2	4	7
73	3	2	2	1	1	2	3	1	2	1	2.031	0.4642	57	2	2	4	7
51	3	3	1	1	1	2	2	2	2	1	2.031	0.4747	58	2	1	3	7
60	3	2	2	1	1	1	4	2	1	1	2.031	0.4800	59	2	3	5	7
94	2	2	2	2	1	2	2	2	1	2	2.031	0.4860	60	1	1	2	8
66	3	2	2	1	1	1	3	3	1	1	2.031	0.5077	61	2	2	4	7
80	3	2	2	1	1	2	2	2	2	1	2.031	0.5095	62	2	1	3	8
93	2	2	2	2	1	2	2	2	2	1	2.031	0.5425	63	1	1	2	9
91	2	2	2	2	1	3	2	1	1	2	2.060	0.4519	64	7	2	3	7

Table 23 (continued).

																Total Disparity, , , ,	
\%28	4	2	1	1	1	2	3	2		1	2.060	0.4558	65	3	2	5	7
-58\%	3	2	2	1	1	2	4	1	1	1	2.060	0.4709	66	2	3	5	7
870\%	3	2	2	1	1	3	2	1	2	1	2.060	0.4775	67.	2	2	4	8
472	3	2	2	1	1	2	3	2	1	1	2.060	0.5168	68	2	2	4	8
88	2	2	2	2	1	4	1	1	1	2	2.088	0.3754	69	1	3	4	6
23\%	4	2	7	1	1	3	1	3	1	1	2.088	0.4119	70	3	2	5	7
40	3	3	1	1	1	4	1	2	1	1	2.088	0.4298	71	2	3	5	7
278	4	2	1	1	1	3	1	2	2	1	2.088	0.4298	72	3	2	5	7
171	4	2	1	1	1	2	4	1	1	1	2.088	0.4586	73	3	3	6	7
57%	3	2	2	1	1	4	1	1	2	1	2.088	0.4681	74	2	3	5	7
64	3	2	2	1	1	3	3	1	1	1	2.088	0.4916	75	2	2	4	8
88	2	2	2	2	1	3	3	1	1	?	2.088	0.4989	76	1	2	3	7
46	3	3	1	1	1	3	2	2	1	1	2.088	0.5042	77	2	2	4	8
90	2	2	2	2	1	3	2	2	1	1	2.088	0.5161	78	1	2	3	8
69	3	2	2	1	1	3	2	2	1	1	2.088	0.5172	79.	2	2	4	9
85	2	2	2	2	1	4	2	1	1	1	2.115	0.4333	80	1	3	4	7
26	4	2	1	1	1	3	2	2	1	1	2.115	0.4793	81	3	2	5	8
56	3	2	2	1	1	4	2	1	1	1	2.115	0.4902	82	2	3	5	8
5	5	1	1	1	1	3	3	1	1	1	2.141	0.3782	83	4	2	6	7
83	2	2	2	2	1	5	1	1	1	1	2.141	0.4042	84	1	4	5	6
7	5	1	1	1	1	3	2	2	1	1	2.141	0.4105	85	4	2	6	7
37	3	3	1	1	1	5	1	1	1	1	2.141	0.4260	86	4	2	6	7
53	3	2	2	1	1	5	1	1	1	1	2.141	0.4495	87	2	4	6	7
22	4	2	1	1	1	3	3	1	1	1	2.141	0.4796	88	3	2	5	8
39	3	3	1	1	1	4	2	1	1	1	2.141	0.5249	89	2	3	5	8
43	3	3	1	7	1	3	3	1	1	1	2.141	0.5684	90	2	2	4	9
16	4	2	1	1	1	4	1	2	1	1	2.166	0.4375	91	3	3	6	8
15	4	2	1	1	1	4	2	1	1	1	2.190	0.4888	92	3	3	6	9
2	5	1	1	1	1	4	2	1	1	1	2.236	0.4737	93	3	3	6	9
12	4	2	1	1	1	5	1	1	1	1	2.236	0.4891	94	3	4	7	8
0	5	1	1	1	1	5	1	1	1	1	2.321	0.5081	95	4	4	8	9

Table 24: Modeling Results for all 9-5-9-1 configurations with a $\lambda_{\text {pre }}$ value of 2.031.

										Number of influencersilinked to peciders.							Robustness
4	5	1	1	1	1	2	1	4	1	1	2.031	0.3312	0.3620	4	3	7	6
9	5	1	1	1	1	2	3	2	1	1	2.031	0.3495	0.3794	4	2	6	6
13	4	2	1	1	1	1	5	1	1	1	2.031	0.3842	0.4082	3	4	7	6
10	5	1	1	1	1	2	2	2	2	1	2.031	0.3828	0.4133	4	1	5	6
71	3	2	2	1	1	3	1	1	2	2	2.031	0.3965	0.4303	2	2	4	7
54	3	2	2	1	1	1	5	1	1	1	2.031	0.4025	0.4319	2	4	6	6
65	3	2	2	1	1	3	1	1	3	1	2.031	0.4025	0.4348	2	2	4	7
44	3	3	1	1	1	3	1	3	1	1	2.031	0.4119	0.4463	2	2	4	7
89	2	2	2	2	1	3	1	1	1	3	2.031	0.4235	0.4553	1	2	3	6
47	3	3	1	1	1	3	1	2	2	1	2.031	0.4280	0.4634	2	2	4	7
30	4	2	1	1	1	2	2	3	1	1	2.031	0.4340	0.4717	3	2	5	7
34	4	2	1	1	1	2	2	2	2	1	2.031	0.4432	0.4833	3	1	4	7
73	3	2	2	1	1	2	3	1	2	1	2.031	0.4642	0.4954	2	2	4	7
48	3	3	1	1	1	2	2	3	1	1	2.031	0.4621	0.4956	2	2	4	7
51	3	3	1	1	1	2	2	2	2	1	2.031	0.4747	0.5077	2	3	5	7
60	3	2	2	1	1	1	4	2	1	1	2.031	0.4800	0.5108	2	1	3	7
94	2	2	2	2	1	2	2	2	1	2	2.031	0.4860	0.5189	1	1	2	8
66	3	2	2	1	1	1	3	3	1	1	2.031	0.5077	0.5382	2	2	4	7
80	3	2	2	1	1	2	2	2	2	1	2.031	0.5095	0.5452	2	1	3	8
93	2	2	2	2	1	2	2	2	2	1	2.031	0.5425	0.5710	1	1	2	9

APPENDIX E

REGRESSION RESULTS

Table 25. Regression Results for a 7-3-7-1 Network.

Regression Statistics	
Multiple R	0.945487911
R Square	0.895839365
Adjusted R Square	0.893235349
Standard Error	0.037481712
Observations	42

ANOVA					
	df		$S S$	$M S$	F
Regression	1	0.483309524	0.483309524	344.0222363	Significance F
Residual	40	0.056195149	0.001404879		
Total	41	0.539504673			

	Coefficients	Standard Error	IStat	P-value	Lower 95\%	Upper 95\%
Intercept	-1.578048553	0.109974571	-14.34921309	$2.29505 \mathrm{E}-17$	-1.800315449	-1.355781656
X Variable 1	1.016281894	0.054792477	18.54783643	$2.9851 \mathrm{E}-21$	0.905542169	1.127021619

Table 26. Regression Results for an 8-3-8-1 Network.

Regression Statistics						
Multiple R	0.93597811					
R Square	0.875055022					
Adjusted R Square	0.874424167					
Standard Error	0.043051289					
Observations	78					
ANOVA						
	$d f$	SS	MS	F	Significance F	
Regression	1	0.995607969	0.995607969	537.175308	$3.39433 \mathrm{E}-36$	
Residual	76	0.140859426	0.001853414			
Tota!	77	1.136467396				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-1.563275855	0087779687	-17.80908442	$7.63064 \mathrm{E}-29$	-1.738104251	-1.38844746
XVariable 1	0.948403389	0.040919948	23.17704269	$3.39433 \mathrm{E}-36$	0.85690425	1.029902528

Table 27. Regression Results for a 9-5-9-1 Network.

Regression Statistics						
Multiple R	0.720469333					
R Square	0.519076059					
Adjusted R Square	0.513904834					
Standard Error	0.051037801					
Observations	95					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	0.261469758	0.261469758	100.3777717	1.86779E-16	
Residual	93	0.242251717	0.002604857			
Total	94	0.503721475				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-0.773582375	0.118392171	-6.534066951	$3.3772 \mathrm{E}-09$	-1.008585758	-0.538478991
X Varlable 1	0.58608456	0.058498066	10.01887078	1.86779E-16	0.469918998	0.702250122

Table 28. Regression Results for a 9-5-9-1 Network (minus ties).

Regression Statistics	
Multiple R	0.788156947
R Square	0.521191373
Adjusted R Square	0.617118162
Standard Error	0.050490392
Observations	95

ANOVA

	$d f$		$S S$	$M S$	F	Significance F
Regression		1	0.388781853	0.388781853	152.5065526	$2.59237 \mathrm{E} \cdot 21$
Residual	93	0.237083009	0.00254928			
Total	94	0.625864861				

	Coefficients	Standard Eror	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-1.000220931	0.117122348	-8.539966551	$2.49582 \mathrm{E}-13$	-1.232802696	-0.767639166
X variable 1	0.714665043	0.05787064	12.34935434	$2.59237 \mathrm{E}-21$	0.599745423	0.829584663

Table 29. Two-Variable Regression Results for a 9-5-9-1 Network (minus ties).

Regression Statistics	
Multiple R	0.922019216
R Square	0.850119434
Adjusted R Square	0.846861161
Standard Error	0.031931479
Observations	95

ANOVA						
	df	55	MS	F	Significance F	
Regression	2	0.532059882	0.266029941	260.911037	1.21419E-38	
Residual	92	0.09380498	0.001019619			
Tetal	94	0.625864861				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-0.161260669	0.102447289	-1.574084292	0.11890076	-0.364729824	0.042208486
$A_{\text {Pre }}$ value	0.099672387	0.063490214	1.569885814	0.119874799	-0.026424656	0.22576943
Rotustmess value	0.061285406	0.00516995	11.85415947	$3.1785 \mathrm{E}-20$	0.05101744	0.071553372

Table 30. Two-Variable Regression Results for a 9-5-9-1 Network.

Regression Statistics	
Multipiple R	$\overline{0.897294287}$
R Square	0.805137037
Adjusted R Square	0.800900386
Standard Error	0.032663745
Observations	95

ANOVA

	$d f$	SS	MS	F	Significonce \bar{F}
Regression	2	0.405564816	0.202782408	190.0633305	$2.12592 \mathrm{E}-33$
Residual	92	0.09815659	0.00106692		
Total	$\mathbf{9 4}$	0.503721475			

	Coefficients	Stondord Error	t Stot	P-value	Lower 95%	Upper 95%
Intercept	0.067766532	0.104796652	0.646547875	0.519469884	-0.14036866	0.275901724
$\lambda_{\text {PFE }}$ value	-0.030659072	0.064945198	-0.472068781	0.637995484	-0.159647824	0.098329679
Robustness value	0.061459895	0.005288509	11.62140329	$9.56346 \mathrm{E}-20$	0.05095646	0.071963329

APPENDIX F

METRICS FOR A 7-3-7-1 NETWORK

The values of the network metrics depicted in Table 31 were calculated as follows:

- Number of nodes $(\mathrm{N})=$ the total number of Sensors, Deciders, and Influencers in that configuration, plus one representative Target
- Number of Links $(l)=$ the total number of links in the adjacency matrix of the configuration (see Table B-1 for an example matrix)
- Link to node ratio $=(/ / \mathrm{N})$
- Degree distribution $=$ skewed, since the number of links connected to each node is not uniformly distributed for any of these network configurations, although the degree of skewness does vary)
- Size, connectivity of largest hubs = distributed, since the largest hubs (i.e., the Deciders) are not be connected to each other
- Characteristic path length = the median of the mean of the lengths of all the shortest paths in the network
- Clustering coefficient $=0$, since none of the nodes within these network contigurations have any direct neighbors that are adjacent to each other (i.e., 3-node cycles)
- Betweenness $=$ skewed, since the degree distribution for each configuration is skewed and each path within these configurations is the shortest path, then the betweeness values must be skewed
- Path horizon $=1$ (since each node within these configurations only needs to interact one adjacent node for consecutive self-synchronization to occur
- Neutrality rating $=((I-N+1) / \mathrm{N})$
- Coefficient of networked effects $=\left(\lambda_{\mathrm{PrL}} / \mathrm{N}\right)$
- Susceptibility $=$ high, given that the dynamic structure of each of these configurations breaks down with the removal of the Deciders.

Table 31. Metric Values for a 7-3-7-1 Network.

								Number of Nodes (N)	Number of Likiks(I)	Link to Node Rato $/ / / \mathrm{N}$		Connectivity of largest hubs					Neutrallty Rating $(f(N+1) / N)$		Aiflylydessns
0	5	1	1	5	1	1	2.280	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.127	high
1	5	1	1	1	5	1	1.821	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.101	high
2	5	1	1	4	2	1	2.190	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.122	high
3	5	1	1	1	4	2	1.821	18	28	1.556	skewe	distributed	4	0	skewt	1	0.611	0.101	h
4	5	1	1	2	1	4	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
5	5	1	1	3	3	†	2.088	18	28	1.556	skewed	distribu	4	0	skew	1	0.611	0.116	gh
6	5	1	1	1	3	3	1.821	18	28	1.556	skewed	cistributed	4	0	skewed	1	0.611	0.101	high
7	5	1	1	3	2	2	2.088	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.116	high
8	5	1	1	2	3	2	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
9	4	2	1	5	1	1	2.190	18	28	1.556	skewed	distributed	4	0	skew	1	0.611	0.122	high
10	4	2	1	1	5	1	1.968	18	28	1.556	skewe	distributed	4	0	skewed	1	0.611	0.109	high
11	4	2	1	1	1	5	1.821	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.101	high
12	4	2	1	4	2	1	2.141	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.119	high
13	4	2	1	4	1	2	2.115	18	28	1.556	skewred	distributed	4	0	skewed	1	0.611	0.118	high
14	4	2	1	2	4	1	2.031	18	28	1,556	skewed	distributed	4	0	skewed	1	0.611	0.113	high
15	4	2	1	2	1	4	1.934	18	28	1.556	skewe	distributed	4	0	skewed	1	0.611	0.107	high
16	4	2	1	1	4	2	1.934	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0,107	high
17	4	2	1	1	2	4	1.861	18	28	1.556	skewe	distributed	4	0	skewed	1	0.611	0.103	high
18	4	2	1	3	3	1	2.088	78	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.116	high
19	4	2	1	3	1	3	2.031	18	28	1.556	skewed	distributed	4	0	skew	1	0.611	0.113	high
20	4	2	1	1	3	3	1.899	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.106	high
21	4	2	1	3	2	2	2.060	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.114	high
22	4	2	1	2	3	2	2.000	18	28	1.556	skewe	distribute	4	0	skewed	1	0.611	0.111	high
23	4	2	1	2	2	3	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
24	3	1	3	5	1	7	2.088	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.116	high
25	3	1	3	1	5	1	1.821	18	28	1,556	skewed	distributed	4	0	skewed	1	0.611	0.101	high
26	3	1	3	4	2	1	2.031	18	28	1.556	skewed	distributed	4	0	skew	1	0.611	0.113	high
27	3	1	3	1	4	2	1.899	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.106	high
28	3	1	3	2	1	4	2.088	18	28	1.556	skew	distribut	4	0	skewed	1	0.611	0.116	high
29	3	1	3	3	3	1	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
30	3	1	3	3	1	3	2.088	18	28	1.556	ske	distributed	4	0	skewed	1	0.611	0.116	high
31	3	1	3	3	2	2	2.031	18	28	4.556	skewed	distributed	4	0	skewed	1	0.611	0.113	high
32	3	1	3	2	3	2	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
33	3	2	2	5	1	1	2.088	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.116	high
34	3	2	2	1	5	\dagger	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
35	3	2	2	4	2	7	2.060	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.114	high
36	3	2	2	1	4	2	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
37	3	2	2	2	1	4	2.000	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.111	high
38	3	2	2	3	3	t	2.031	18	28	1.556	skewed	distributed	4	0	skewer	7	0.611	0.113	high
39	3	2	2	1	3	3	1.968	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.109	high
40	3	2	2	3	2	2	2.031	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.113	high
41	3	2	2	2	3	2	2.000	18	28	1.556	skewed	distributed	4	0	skewed	1	0.611	0.111	high

APPENDIX G

NETLOGO CODE

The agent-based simulation model used for this study was NetLogo (version 4.0.2). This software can be downloaded here: http://ccl.northwestern.edu/netlogo/.

The following code was used to model the meaningful configurations of the 9-5-9-1 networked force. The code used to model the 7-3-7-1 and 8-3-8-1 networked forces differed only in the code necessary to generate the different configurations and in the reduced number of "breeds."

```
breed [ BInfluencerls BInfluencerl ]
breed [ BSensor1s BSensor1 ]
breed [ BDecider1s BDeciderl ]
breed [ BInfluencer2s BInfluencer2 ]
breed [ BSensor2s BSensor2 ]
breed [ BDecider2s BDecider2 ]
breed [ BInfluencer3s BInfluencer3 ]
breed [ BSensor3s BSensor3 ]
breed [ BDecider3s EDecider3 ]
breed [ BInfluencer4s Binfluencer4 ]
breed [ BSensor4s BSensor4 ]
breed [ BDecider4s BDecider4 ]
breed [ BInfluencer5s Binfluencor5 ]
breed [ BSensor5s BSensor5 ]
breed [ BDecider5s BDecider5 ]
breed [ RInfluencer1s RInfluencerl ]
breed [ RSensorls RSensorl ]
breed [ RDeciderls RDeciderl ]
breed [ RInfluencer2s RInfluencer2 ]
breed [ RSensor2s RSensor2 ]
breed [ RDecider2s RDecider2 ]
breed [ RTnEluencer3s RTrifluencer3 ]
breed [ RSensor3s RSensor3 ]
bread [ RDecider3s RDecider3 ]
breed [ RInfluencer4s RInfluencer4 ]
brced [ RSensor4s RSensor4 ]
breed [ RDecider4s RDecider4 ]
breed [ RInfluencer5s RInfluencer5 ]
breed [ RSensurbs RSensorb ]
breed [ RDecider5s RDecider5 ]
directed-link-broed [detections deteclion]
directed-link-oreed [orders order]
directed-link-brced [LOFs LOF]
glohals [BWir RWin Bconfig Rconfig]
BInfluemcerls-own [side dead semsedBDl sensedBDD sensedBD3 sensedBD4
sensedBD5 sensedRDl sensedRD2 sensedRD3 sensedRD4 sensedRD5]
BSersorls-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4
senscdBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5]
```

BDeciderls-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BInfluencer2s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BSensor2s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedB04 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedrD4 sensedRD5] BDecider2s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BTnfluencer3s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sersedRD3 sensedRD4 sensedRD5] BSensor3s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BDecider3s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BInfluencer4s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRDl sensedRD2 sensedRD3 sensedRD4 sensedRD51 BSensor4s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BDecider4s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] EInfluencer 5 s-own iside dead sensedBD1 sensedBD2 sensedBD3 sersedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] ESensor5s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] BDecider5s-own [side dead sensedBD. sensedBD2 sensedBD3 sonsedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] RInfluencerls-own [side dead sensedBDl sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] RSensorls-own [side dead sensedBDI sensedBD? sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] RDeciderls-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 senscdBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 serisedRD5] RInfluencer2s-owri [side dead sensedBD1 sensedBD2 sensedBD3 sensedBi4 sensedBD5 sensedRD1 serlsedRD2 sensedRD3 sensodRp4 sensedRD5] RSensor2s-own [side dead sensedBD1 sensedpD2 sensedBD3 senscdBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRO4 sensedRD5] RDecider $2 s$-own [side dead sensedBD1 sensedBD2 sensedBD3 scnsedBry 4 semsedBD5 sensedRD1 sensedRD2 sensedRD3 sensodRT4 sensedRD5] Riffluencer3s-own [side doad sensedBDl sensedBD2 sensedBD3 sersedBD4 sensedRD5 sensedRDl sensedRD2 sensedRD3 sensedRD4 sensedRD5] RSonsor 3 s-own [side dead sornsedBal sensedBJ2 sensodBD3 sensedBL4 sensedRD5 sensedRD1 sonsedRD2 sensedRD3 sensodri4 sersedRD5] RDecider 3 s-own [side dead sensedBDl sensedBD2 sensedBD3 sensedBD4 sensedRD5 sensedRD1 sensedRD2 sensedRD3 sonsedRD4 sersedRD5\} RInfluencer 4 s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBra 4 sonsedfos sensedRDI sensedRDP sensedRD3 sensedRD4 sensedRo5) RSensor4s-own [side doad sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRDl sensedRD2 sonsedRD3 sensedRD4 senscdRD5] RDecider4s-own [side dead sensedBD1 sensedBD2 serscdBD3 serisedBDA sensedBD5 sensedRDl sensedRD2 sorisedRD3 sensedRD4 sensedRD5] RTnfluencer5s-own [side dead sensedBD1 sensedBD2 sensedBD3 sensedBD4 sensedBD5 sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] RSensor5s-own lside dead senscdBry sensedBD2 sensedBD3 semsedBD4 scnsedBD sensedRD1 sensedRD2 sensedRD3 sensedRD4 sensedRD5] RDecidea5s-owr [side dead sensedBDl sensedBo? sensedBD3 senscdBn4 sensedBob sensedRD1 sensedRD2 sersedRD3 sensedRD4 serisedRDbl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
to setup
    clear-all
    random-seed seed
    set-default-shape BInfluencerls "square"
    set-default-shape BSensorls "triangle"
    set-default-shape BDeciderls "star"
    set-default-shape BInfluencer2s "square"
    set-default-shape BSensor2s "triangle"
    set-default-shape BDecider2s "star"
    set-default-shape BInffuercer3s "square"
    set-default-shape BSensor3s "triangle"
    set-default-shape BDecider3s "star"
    set-default-shape BInfluencer4s "square"
    set-default-shape BSensor4s "triangle"
    set-default-shape BDecider4s "star"
    set-default-shape BInfluercer5s "square"
    set-default-shape BSensor5s "triangle"
    set-default-shape BDecider5s "star"
    set-default-shape RTargets "circle"
    set-default-shape RInfluencerls "square"
    set-default-shape RScnsorls "triangle"
    set-default-shape RDecider1s "star"
    set-default-shape RInfluencer2s "square"
    set-defoulu-shape RSensor2s "triangle"
    set-default-shape RDecider2s "star"
    set-default-shape RInfluencer3s "square"
    set-default-shapo RSensor3s "triangle"
    set-default-shape RDedider3s "star"
    set-default-shape RInfluencer4s "square"
    set-default-shape RSensor4s "triangle"
    set-defeult-shape RDecider4s "star"
    set-def玉ult-shape RTnftuencer5s "square"
    set-default-shape RSensor5s "triangle"
    set-defacul-shape RDecider5s "star"
    if BTD = 0 [set Bconfig [5 l l l l 1 1 5 1 l l 1 1]]
    if BID = ] [set Econfig [[5 1 1 1 1 1 l l S l l 1]]
    if BTD = 2 [set Bconfig [5 l l l 1 1 1 4 2 2 1 1 1]]
    if BID = 3 Lset Bconfig [5 1 1 1 1 1 1. ll 4
    if EID = 4 [sel Bconfig [[\begin{array}{llllllllllllll}{5}&{1}&{1}&{1}&{1}&{2}&{].}&{4}&{l}&{l}\end{array}]
    if BID - b [set Bconfig [5 1 1 l l l 3 3 1 1 1 1)]
    if BID = 6 [set Bconitig [5 1 1 1 1 1 1 % 3 3 l ll]
    if EID = 7 lset. Econfig [5 llllllllllllll]
    if EID = 8 [set Econfig [\begin{array}{llllllllllllll}{5}&{1}&{1}&{1}&{1}&{1}&{3}&{2}&{2}&{1]}\end{array}]
    if BID = 9 [set Econfig [[\begin{array}{lllllllllllll}{5}&{1}&{1}&{1}&{1}&{\lambda}&{3}&{2}&{1}&{1]}\end{array}]
    if BTO = 10 [set Bconfig [5 1 l l l l 2 2 2 2 2 2 1]]
    if BID = ll [se.. Bconfig [[\begin{array}{llllllllllll}{5}&{1}&{1}&{1}&{1}&{1. 2 2. 2 2]]}\end{array}]
    if BIO = 12 [set. Bconfig [4 2 1 l 1 5 S l l 1 1]]
    if BIJ = 13 [set Bconfig [4 2 2 1 1 1 1 1 1 5 l l l l] ]
    if BID = 14 [set BConfig [4 [ 2 1 1 1 1 1 1 1 1. 5 l 1 l]]
    if BID = 15 [set Bcorfig [4 2 1 1 1 1 4 4 2 lllll]
    if BID = 16 [set Bconfig [[4 2 1 1 1 1 1. 4 ] 2 1 1 l]]
    if BID - 17 [set Bconfig [4 [ 2 l l l l 2 4 4 1 1 1 1]]
    if BID = 18 [set Bconlig [4 2 1 1 1 1 1 2 1 1 4 l l l]]
    if BID = 19 [sel Bconfig [4 [ 2 1 1 1 I 1. 4 % l l l] ]
    if BTD = 20 [set Bconfig [4 2 2 1 1 1 1 1 1 1 2 4 4 1 1 1l]
    if BID = 21 [set. Bconfig}[[\begin{array}{lllllllllllll}{4}&{2}&{1}&{1}&{1}&{1}&{1}&{4}&{2}&{1]}\end{array}
    if BID = 22 [set Bronfig[[4 [4 1 1 1 1 3 3 3 1 1 1 ll]]
```

```
if BID = 23 [set Bconfig [[4 2 1 1 1 1 1 3 1 1 3 1 1]]
if BID = 24 [set Bconfig [4 2 2 l l l 1 1 1 3 3 3 1 l]]
if BID = 25 [set Bconfigg [4 [ 2 1 1 1 1 1 1 1 1 3 3 3 l]]
if BID = 26 [set Bconfigg[[4 [ 2 1 1 1 l. 3
if BID = 27 [set Bconfigg [[4 2 1 1 1 1 1 3 3 1 2 2 2 2 l]]
if BID = 28 [set Bconfig [[4 2 1 1 1 1 1 2 2 3
if BID = 29 [set Bconfigg [4 [4 1 1 1 1 l l. 3
if BID = 30 [set Bconfig [[4 2 [ 1 1 1 1 1 2 2 2 3 llll]
if BID = 31 [set Bconfigg [[4 2 2 1 1. 1
if BID = 32 [set Bconfig [4 2 2 1 1 1 1 1 1 2 2 3 2 2 1]]
if BID = 33 [set Bconfigg [[4 2 1 1 1 1 1 1 1 1 3 2 2 2]]
if BID = 34 [set Bconfigg [\begin{array}{lllllllllllll}{4}&{2}&{1}&{1}&{1}&{2}&{2}&{2}&{2}&{1]}\end{array}]
if BID = 35 [set Bconfigg[[4 [4 1.llllllllll
if BID = 36 [set Bconfig [[4 2 1 1 1 1 1 1 1 2 2 2 2 2 2]]
if BID = 37 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{5}&{1}&{]}&{1}&{1]}\end{array}]
if BID = 38 [set. Bconfigg [[3 3 1 1 1 1 1 1 1 1 1 5 1 1 1l]
if BID == 39 [set Bconfig [[\begin{array}{llllllllllllll}{3}&{3}&{1}&{1}&{1}&{4}&{2}&{1}&{1}&{1]}\end{array}]
if BID = 40 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{4}&{1}&{2}&{1}&{1]}\end{array}]
if BID = 41 [set Rconfig [[\begin{array}{lllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{1}&{4}&{1}&{1}\end{array}]}
if BID = 42 [set Bconfig}[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{1}&{1}&{4}&{2}&{1}\end{array}
if: BID = 43 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{3}&{1}&{1}&{1]}\end{array}
if BID = 44 [set Bconfig [[3 3 1 1 1 1 3 l l 3 1 1]]
if BID = 45 [set Bconfig [[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{1}&{1}&{3}&{3}&{1]}\end{array}]
if BID = 46 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{2}&{2}&{1}&{1]}\end{array}]
if BID = 47 [set Bconfig[[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{1}&{2}&{2}&{1]}\end{array}]
if BTD = 48 [set Bconfig[[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{2}&{3}&{1}&{1]}\end{array}]
if BID = 49 [set Bconfig [[3 3 1 1 1 1 1 2 l l 3 2 2 1]]
if BID = 50 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{1}&{]}&{3}&{2}&{2]}\end{array}]
if BID = 5l [set Bconfig [[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{2}&{2}&{2}&{].]}\end{array}]
if BID = 52 [sct Bconfig[[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{1}&{2}&{2}&{2}\end{array}]
if BID - 53 [set Bconfig}[\begin{array}{llllllllllllll}{3}&{2}&{2}&{1}&{1}&{5}&{1}&{1}&{1}&{1]}\end{array}
i.f BID = 54 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{]}&{5}&{1}&{1}&{1]}\end{array}]
if BID = 55 [set Bconfig [[\begin{array}{llllllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{1}&{1}&{5}&{1]}\end{array}]
if BID = 56 [set Bconfig [[3 2 2 2 1 1 1 4 4 2 1 1 1 1 1]]
if BTD = 57 [set Bconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{4}&{1}&{1.}&{2}&{1]}\end{array}
if BID = 58 [set Bconfigg [[3 2 2 2 1 1 2 2 4 1 1 1] ]
if BTD = 59 [set Bcorfig [\begin{array}{llllllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{1}&{1}&{4}&{l}\end{array}]
if BID = 60 [set Bconfig}[\begin{array}{lllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{4}&{2}&{1}&{1]}\end{array}
if BID = 61 [set Bconfigg [ [3 2 2 2 1 1 1 l l 4 l l 2 l]]]
if BID = 62 [set Bconfigg [ [3 2 2 ? 1 1 1 1 2 1 4 4 1]l]
if BID = 63 [set Bconlig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{1}&{1}&{4}&{2}\end{array}]
if BID = 64 [set Bconfigg [\begin{array}{llllllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{3}&{1}&{1}&{1]}\end{array}]
if BID - 65 [set Bconfjg [3 2 2 1 1 3 1 1 3 l]f
if BID = 66 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{l}&{3}&{3}&{1}&{1]}\end{array}]
if BID = 6% [set Bconfig [ [3 \ 2 1 1 1 1 3 1 1 3 1]]
if BID = 68 [set Bconfigg [[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{1}&{1}&{3}&{3}\end{array}]
if BID = 69 [set Econfigg[[\begin{array}{lllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{2}&{2}&{1}&{1]}\end{array}]
if BID = 70 [set Bconfig lllllllllllllll]
if BID = 71 [set Bconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{1}&{1}&{2}&{2]}\end{array}
if EID = 72 [ser Econfig[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{3}&{2}&{1}&{11]}\end{array}]
if BID = 73 [set Bconfig}[\begin{array}{lllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{3}&{1}&{2}&{1]}\end{array}
if BID = 74 [set. Pconfig[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{]}&{2}&{2}&{1}&{3}&{1]}\end{array}]
if BID == 75 [set Bconfig [3 2. 2 1 1 1 2 1 1 1 3 2]]
if BID = 76 [set Bconfi.g [[3 2 2 2 1 1 1 1 1 3 3 2 2 2 ll]
if BID = 77 [seL Fconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{3}&{1}&{2}&{2}\end{array}
if BID - 78 [set Econfig [[3 2 2 2 1 1 1 1 2 2 2 3 3 1]]
if BID = 79 [set Econfig [\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{2}&{1}&{3}&{2]}\end{array}]
```

```
if BID = 80 [set Bconfig[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{2}&{2}&{2}&{l}\end{array}]
if BID = 81 [set Bconfig [[3 2 2 1 1 1 2 2 1 2 2]]
if BID = 82 [set Bconfig [[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{2}&{2}&{2}&{2]}\end{array}]
if BID = 83 [set Bconfig [\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{5}&{1}&{l}&{l}&{1]}\end{array}]
if BID = 84 [set Bconfig}[\begin{array}{lllllllllll}{2}&{2}&{2}&{2}&{1}&{1}&{1}&{1}&{1}&{5}\end{array}
if BID = 8b [set Bconfigg [\begin{array}{llllllllllllll}{2}&{2}&{2}&{2}&{1}&{4}&{2}&{1}&{1}&{1}\end{array}]
if BID = 86 [set Bconfig [[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{4}&{1}&{1}&{1}&{2]}\end{array}]
if BID = 87 [set Bconfig[[2 2 2 2 2 1 2 2 1 1 1 1 4 4]]
if BTD = 88 [set Bconfigg [lllllllllllll
if BID = 89 [set Bconfig}[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{1}&{1}&{1}&{31]}\end{array}
if BID = 90 [set Bconfig [[\begin{array}{lllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{2}&{2}&{1}&{1]}\end{array}]
if BID = 91 [set Bconfig[[\begin{array}{lllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{2}&{1}&{1}&{2}\end{array}]
if BID = 92 [set Bconfig [[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{2}&{2}&{1}&{1}&{3}\end{array}]
if BID = 93 [set Bconfig}[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{2}&{2}&{2}&{2}&{1]}\end{array}
if BID = 94 [set Bconfig}[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{2}&{2}&{2}&{1}&{2}\end{array}
set number-BSensorls item 0 Bconfig
set number-BSensor2s item 1 Bconfig
set number-BSensor3s item 2 Bconfig
set number-BSensor4s item 3 Bconfig
set number-BSensor5s item 4 Econfig
set number-BInfluencerls item 5 Bcontig
set number-BInfluencer2s item 6 Bconfig
set number-BInfluencer3s item 7 Bconfig
set number-BInfluencer4s item 8 Bconfig
ses number-BInfluencer5s item y Bconfig
if RIO = 0 [set Rconfig [[5 1 1 1 1 1 1 5 l l l l l 1]]
i [ RID = 1 [set Rconfig [5 1 1 1 l l l l 5 1 1 1]]
if RID = 2 [set Rconfig [5 1 1 1 1. l 4 2 l 1 1 l]]
if RTD = 3 [set Rconfig [ [5 1 1 1 1 l l l 4 2 l l l])
if RID = 4 [set Rconfig [[5 1 1. 1 1 1 2 2 1 4 4 1 1]]
if RID = 5 [set Rconfig [[5 1 1 1 1 1 1 3 3 3 l l l l]]
if RID = 6 [set Rconfig [[5 1 1 1 l l l 1 3 3 3 1 1]]
if RID = 7 [set Rconfig [[5 1 1 1 1 1 1 3 2 2 2 1 1 1]]
if RID := 8 [set Rconfig [5 l 1 1 1 1 1 1 1 3 2 2 2 1]]
if RID = 9 [set Rconfig [[\begin{array}{lllllllllll}{5}&{1}&{1}&{1}&{1.}&{2}&{3}&{2}&{1}&{1]}\end{array}]
if RID - lo {set Rconfig [b l l l 1 1 2 2 2 2 l ll},
if RID = 11 [sot Rcontig [5 l 1 1 1 1 ] 2 2 2 2])
if RID = = l2 [set Rconfig [4 2 1 1 1 1 1 5 l 1 1 l l])
if RID = ].3 {set Rconfig [4 % l l 1 1 1 5 l 1 l.]]
if RTD = 14 [set Rconfig i4 [4 1 1 1 1 1 1 .l 5 1 1 l]]
if RID = 15 [set Rconfig [4 2 1 l l l 4 2 1 1 1 l]]
if RID = l6 [set Rconfig [4 2 1 1 1 1 4 4 l 2 l 1]]
iE RID = 17 [set. Roonfig [4 [ 2 l ll l 2. 4 4 1 1 1 1]]
if RID - 18 [set Rconfig [4 2 2 1 1 1 1 1 2 l 4 4 ] l]]
iE RIS = 19 [set Rconfigg [4 [4 1 1 1 1 1 1 1 4 2 l l 1]]
if RID = 20 [set. Rconfig [4 \ l l I 1 1 1 2 4 4 1 l]]
if RID - 2l [set Rconfig [4 2 2 1 1 1 1 1 l l 4 % l]]
if RID = 22 [set Rconfig [[4 2 2 1 1 1 1 3 3 3 1 1 1 1]]
```



```
i f RID = 24 [sct Rconfig[ [4 2 1 1 1 ] 1 1 3 3 1 1 1] %
if RID -- 25 (set Rconfig [4 2 1 1 1 1 1 1 1 3 3 ll]l
if RID = 26 [set Rcon[ig [4 [4 1 1 1 1 1 3 2 2 2 l l]]
if RID = 27 [sel Rconfig [4 4 2 1 1 1 1 l 3 1 1 2 2 1]ll
if RID = 28 Lset Rconfig [4 2 2 l 1 1 1 1 2 2 3 2 i i 1]]
iF RID = 29 [set Rconfig}[\begin{array}{lllllllllllll}{4}&{2}&{1}&{1}&{1}&{1}&{3}&{2}&{2}&{1]}\end{array}
if RID = 30 [set Rconfig [[4 2 1 1 1 1 1 2 2 2 3 l l l] ]
if RID = 3l [set Rconfig}[\begin{array}{lllllllllllll}{4}&{2}&{1}&{1}&{1}&{2}&{1}&{3}&{2}&{1.f}
```

```
if RID = 32 [set Roonfig [[4 2 1 1 1 1 1 1 2 3 2 1]]
if RID = 33 [set Rconfig [4 4 2 1 1 1 1 l l 1 3 3 2 2]]
if RID = 34 [set Rconfig [4 2 2 1 1 1 1 2 2 2 2 2 2 1]]]
if RID = 35 [set Roonfig [[4 2 2 1 1 1 1 1 2 % 1 2 2 2 2 2]]
if RID = 36 [set Rconfig [4 [ 2 1 1 1 1 1 1 2 2 2 2 2]J
if RID = 37 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{5}&{1}&{1}&{1}&{1]}\end{array}
i.f RID = 38 [set Rconfig}[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{l}&{1}&{1}&{5}&{1}&{1}\end{array}
if RID = 39 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{4}&{2}&{1}&{l}&{1]}\end{array}
ir RID = 40 [set Rconfigg[[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1.}&{4}&{1}&{2}&{1}&{1]}\end{array}]
if RID = 41 [set Rconfigg[[\begin{array}{lllllllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{1}&{4}&{1}&{I]}\end{array}]
if RID = 42 [set Rconfig [[\begin{array}{llllllllllllll}{3}&{3}&{1}&{1}&{1}&{1}&{1}&{4}&{2}&{1]}\end{array}]
if RID = 43 [set Rconfig}[\begin{array}{lllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{3}&{1}&{1}&{1]}\end{array}
if RID = 44 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{1}&{3}&{1}&{1]}\end{array}
```



```
if RTD = 46 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{2}&{2}&{1}&{1]}\end{array}
if RID = 47 [set Rconfigg[[\begin{array}{lllllllllllll}{3}&{3}&{1}&{1}&{1}&{3}&{1}&{2}&{2}&{1]}\end{array}]
if RID = 48 [set Rconfig [[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{2}&{3}&{1}&{1]}\end{array}]
if RID = 49 [set Rconfig [[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{1}&{3}&{2}&{1]}\end{array}]
if RID = 50 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{1}&{1}&{3}&{2}&{2}\end{array}
if RID = 5l [set Rconfig [[3 3
if RID = 52 [set Rconfig}[\begin{array}{llllllllllll}{3}&{3}&{1}&{1}&{1}&{2}&{1}&{2}&{2}&{2}\end{array}
if RTD = 53 [set Rconfig [[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{5}&{1}&{1}&{1}&{1]}\end{array}]
if RID = 54 [set Rconfig [[3 2 2 2 1 1 1 1 1 5 1 1 1 1]]
if RID = 55 [set Rconfig [ [3 2 2 2 1 1 1 1 1 1 1 1 5 5 1])]
if RID = 56 [set Rconfig [ [ 2 2 2 2 1 1 1 A 2 1 1 1 1 l]l
if RID = 57 [set Rconfig [[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{4}&{1}&{1}&{2}&{1]}\end{array}]
if RID = 58 [set Rconfig}[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{4}&{1}&{1}&{1]}\end{array}
if RID = 59 [set Rconfig [[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{1}&{1}&{4}&{l}\end{array}]
jF RID = 60 [sct Rconfig [ [3 2 2 2 1. 1 1 1 4 4 2 1 1]]]
if RID = 6l [set Rconfig}[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{4}&{1}&{2}&{1]}
if RID = 62 [set Rconfig}[\begin{array}{lllllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{2}&{1}&{4}&{1]}\end{array}
if RID - 63 [set Rconfigg [ [ 2 2 2 1 1 1 1 1 1. l 4 2])]
if RID = 64 [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{3}&{1}&{1}&{1]}\end{array}
if RID = 65 [set Rconfigg[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{1}&{1}&{3}&{1]}\end{array}]
if RID = 66 [set Rconfig [[3 2 2 lllllllllll]
if RID = 67 [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{3}&{1}&{3}&{1]}\end{array}
if RID = 68 [set. Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{\mathbf{1}}&{1}&{1}&{1}&{1}&{3}&{3]}\end{array}
if RID = 69 [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{2}&{2}&{1}&{1]}\end{array}
if RID = 70 [set Rconfigg[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{2}&{1}&{2}&{1]}\end{array}]
if RID = 71 [sct Rconfigg[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{3}&{1}&{1}&{2}&{2}\end{array}]
if RTO - %2 [set Rconfigg[[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{3}&{2}&{l}&{1]}\end{array}]
if RID = 73 [set Rconfigg[[\begin{array}{lllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{3}&{1}&{2}&{1]}\end{array}]
if RID = 74 \set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{2}&{1}&{3}&{1]]}
if RID = 75 [set Rconfig [[3 2 2 2 1 1 1 2 2 l 1 1 % 3 2]]
if RID = 76 [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{3}&{2}&{2}&{1}\end{array}
if RID = 77 [set Rconfig [3 2 2 2 1 1 1 1 3 l 2 2]]
if RID = 78 [ser Rconfig [[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{2}&{2}&{3}&{1]}\end{array}]
if RID = 79 [set Rconfig [3 \ 2 2. 11 1 1 1 2 1 1 3 2]]
if RID - 80 [set Rconfig [lllllllllllll
if RID = 8] [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{2}&{2}&{1}&{2}&{2.]}\end{array}
if RID = 82 [set Rconfig}[\begin{array}{llllllllllll}{3}&{2}&{2}&{1}&{1}&{1}&{2}&{2}&{2}&{2]}\end{array}
ir RID = 83 [set Rconfigg[[\begin{array}{lllllllllll}{2}&{2}&{2}&{2}&{1}&{b}&{1}&{1}&{1}&{11]}\end{array}]
if RID - 84 [set Rconfig[[\ 2 2 2 2 2 1 1 1 1 l l ] b]]
if RTD = 85 [set Rconlig [\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{4}&{2}&{l}&{1}&{1]}\end{array}]
i.f RID = 86 [set Rcorfigg[[2 2 2 2 2 2 1 4 4 1 1 1 1 1 2]]
if RID - 87 [set Rcorfig}[\begin{array}{llllllllllllll}{2}&{2}&{2}&{2}&{1}&{2}&{1}&{1}&{1}&{4]}}
iE RTD = 88 [set Rconftg [[2 2 2 2 2 1 3 3 3 1 1 1 1]]
```

```
if RID = 89 [set Rconfig [[\begin{array}{lllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{1}&{1}&{1}&{3]}\end{array}]
if RID = 90 [set Rconfig[[\begin{array}{llllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{2}&{2}&{1}&{1|}\end{array}]
if RID = 91 [set Rconfig [\begin{array}{lllllllllllll}{2}&{2}&{2}&{2}&{1}&{3}&{2}&{1}&{1}&{2}\end{array}]
if RID = 92 [set Rconfigg[[2 2 2 2 2 2 1 2 2 2 l l l 3]]
j)f RID = 93 [set Rconfig [llllllllllllll]
if RID = 94 lset Rconfig [2 2 2 2 1 2 2 2 2 l 2]।
set number-RSensorls item 0 Rconfig
set number-RSensor2s item 1 Rconfig
set number-RSensor3s item 2 Rconfig
set number-RSensor4s item 3 Rconfig
set number-RSensor5s item 4 Rconfig
set number-RInfluencerls item 5 Rconfig
set number-RInfluencer2s item 6 Rconfig
set number-RInfluencer3s item 7 Rconfig
set number-RTnfluencer4s item 8 Rconfig
set number-RInfluencer5s item 9 Rconfig
croate-BInfluencerls number-BInfluencerls
    [ set size 3
        set color blue
        set side 1 ;; side l is ali BLUE S and T.
        set dead 0
        setxy random-xcor random-ycor ]
create-BSensorls number-BSensorls
    [ set size 3
        set colox bluc
        set side 1 ;; side l is all BLUE S and I
        set dead 0
        setxy random-xcoz random-ycor ]
creaLe-BDecider1s 1
    [ set sizc 3
        set color blue
        set side 3 ;; side 3 is all BLUE D
        set dead 0
        setxy tandom-xcor random-ycor l
cceate-BInfluencer2s mumber-BInfluencer2s
    [ set size 3
        set color blue
        set side l ;; side 1 is all Bt:UF S and I
        set dead 0
        selxy random-xcoz random-ycor !
create-BSonsor2s number-ESensor2s
    [ set sime 3
        set color bluc
        set side 1 ;; side 1 is all. BlUF S and I
        set dead 0
        sotxy ramdom-xoor randor!-yoor ]
crcate-BDecider2s 1
    [ set size 3
        set color blue
        set side 3 ;; side 3 is all BLUE D
        set: dead 0
        setxy random-xcor randor:-ycor ]
create-BInflucmcer3s number-BInfluencer3s
    [ set size 3
        set color blue
        set side ]. ;; side 1 is all BLUE G and I
        sot dead 0
```

```
        setxy random-xcor random-ycor ]
create-BSensor3s numbor-BSensor3s
    [ set size 3
        set color bl:le
        set side 1 ;; side 1 is all BLUE S and I
        set dead 0
        setxy random-xcor random-ycor ]
create-BDecider3s 1
    [ set size 3
        set color blue
        set side 3 ; s side 3 is all BLUE D
        set dead 0
        setxy random-xcor random-ycor J
create-BInfluencer4s number-BInfluencer4s
    [ set size 3
        set color blue
        set side 1 ; ; side l is all BLUE S and I
        set dead 0
        setxy random-xcor random-ycor ]
create-BSensor4s number-BSensor4s
    [ set size 3
        set color blue
        set side 1 ;; side l is all BLUE S and I
        set dead 0
        setxy random-xcor random-ycor ]
croate-BDecider4s 1
    [ set sizo 3
        set color blue
        sel side 3 ;; side 3 is all BLUE D
        set dead 0
        setxy random-xcor random-ycor ]
create-BInfluencer5s number-BInfluencer5s
    [ set size 3
        set color blle
        set side 1 ;: side ] is all BLUE S and I
        set dead 0
        setxy random-xcor rerdom-yoor ]
create-BSensor5s number-BSensor5s
    [ set size 3
        set color blue
        set side l ;; side 1 is all BLUE S and I
        set dead 0
        setxy randon-xoor random-ycor |
croate-Brjecider5s 1
    L se:- size 3
        set color blue
        set side 3 ;; side 3 is all BLUUE D
        set dead 0
        setxy random-xcor random-ycor ]
create-RInfluencerls number-RInfluencerls
    [ sot si%e 3
        sel coloz red
        set side 2 ; ; side 2 is all RED S and I
        set dead 0
        setxy random-xcor random-ycor ]
create-RSensorls number-RSensorls
    [ sot size 3
```

```
    set color red
    set side 2 ;; side 2 is all RED S and I
    set dead 0
    setxy random-xcor random-ycor ]
create-RDeciderls l
    [ set size 3
        set color red
        set side 4 ;; side 4 is all RFD D
        set dead 0
        setxy random-xcor randon-ycor ]
create-RInfluencer2s number-RInfluencer2s
    [ set size 3
        set color red
        set side 2 ;; side 2 is all RED S and I
        set dead 0
        setxy random-xcor random-ycor ]
create-RSensor2s number-RSensor2s
    [ set size 3
        set color red
        set side 2 ;; side 2 is all RED S and I
        set dead 0
        setxy random-xcor random-ycor ]
create-RDecider2s I
    [ set size 3
        set color red
        set side 4 ;; side 4 is all RED D
        set dead 0
        setxy random-xcor random-ycor ]
create-RInfluencor3s rumber-RInfluencer3s
    [ set size 3
        set color red
        set side 2 ;:.side 2 is all RFD S and I
        set dead 0
        setxy random-xcor random-yoor ]
create-RSensor3s number-RSensor3s
    L set size 3
        set color red
        set side 2 ;: side 2 is \equivli RED }5\mathrm{ and J.
        set dead 0
        setxy random-xcor rerdom-ycor ]
creato-RDecider3s 1
    L set size 3
        set color red
        set side 4 ;; side 4 is all RED D
        set dead 0
        selxy random-xcor randor-ycor ]
create-RSensor4s number-RSensor4s
    [ set size 3
        set color red
        set side ? ;; side 2 is all RED S and .I
        set dead 0
        setxy random-xcor random-ycor ]
create-RDecider4s 1
    [ sel size 3
        set color red
        set side 4 ;; side 4 is al.l RFD []
        set dead 0
```

```
            setxy random-xcor random-ycor ]
    create-RInfluencer4s number-RInfluencer4s
            [ set size 3
                set color red
                set side 2 ;; side 2 is all RED S and I
                set dead 0
                setxy random-xcor random-ycor ]
    create-RSensor5s number-RSensor5s
    [ set size 3
                set color red
                set side 2 ;; side 2 is all RED S and I
                set dead 0
                setxy randor:-xcor random-ycor ]
    create-RDecider5s 1
    [ set size 3
                set color red
                set side 4 ;; side 4 is all RED D
                set dead 0
                setxy random-xcor random-ycor I
    create-RInfluencer5s number-RInfluencer5s
    [ set size 3
        set color red
        set side 2 ;; side 2 is all RED S and I
        set dead 0
        setxy random-xcor random-ycor |
end
to go
    if count turtles with [(side = 1)] - 0 [ ;; stop wher al] BLUE S&I
are dead
        set BWin 0
        set RWin 1
        stop ]
    i[ count turtles with [(side = 2)] = 0 [ ;; stop when al] RPD S&I
are dead
        set BWin l
        set RWin 0
        stop ]
    if (Licks = 500) [stopl ;; stop if there is a stardoff (BLUE & RED
cannot shoot duc to lack of Sensors)
    establish-links
    sense
    track
    shoot
    kill
    move-Trfluencer
    move-Influencor
    move-Influencer
    move-Influencer
    move-Influencer
    move-Sensor
    move-Sensor
    movo-Sensor
    nove-Sensor
    move-Sensor
    reset
    tick
```

```
end
to establish-links ; ; establishes specific S->D and D->I links for
each Decider
    ask EDeciderls [
            ask BSensorls [create-detection-to myself [set color blue] ]
            ask BInfluencerls [create-order-from myself [set color blue] ] ]
    ask BDecider2s [
            ask BSensor2s [create-detection-to myself [set color blue] ]
            ask BInfluencer2s [create-order-from myself [set color blue] ] ]
    ask BDecider3s [
            ask BSensor3s [create-detection-to myself [set color blue] ]
            ask BInfluencer3s [create-order-from myself [set color blue] ] ]
    ask BDecider4s [
            ask BSensor4s [create-detection-to myself [set color blue] ]
            ask BInfluencer4s [create-order-from myself [set color blue] ] ]
    ask BDecider5s [
            ask BSensor5s [create-detection-to myself [set color blue] ]
            ask BInfluencer5s [create-order-from myself [set color blue] ] ]
    ask RDeciderls [
            ask RSensoris [create-detection-to myself [set color red] ]
            ask RInfluencerls [create-order-from myself [sct color red] ] ]
    ask RDecider2s {
            ask RSensor2s [create-detection-to myself [set color red] ]
            ask RInfluencer2s [create-order-from myself [set color rod] ] ]
    ask RDecider3s [
            ask RSensor3s [create-detection-to myself [sct color red] ]
            ask RIrif]uencer3s [create-arder-from myself [set color red] ] ]
    ask RDecider4s [
            dsk RSensor4s [create-detection-to myself [set color red] l
            ask RInfluencer4s [create-order-from myself [set color red] ] ]
    ask RDecider5s [
            ask RSonsor5s [create-detection-to myself [set color red] ]
            ask RInfluencer5s [creato-order-from myself [set color red] ] }
end
to sorlse ; idencifies all enemy S & I within s-range of each
Decider's Sensor
    ask BDeciderls [
        ask in-link-moighbors [
            ask RJnfluencerls in-radius s-range [set semsedBD1 1]
            Ask RSensorls in-radius g-rajge [set sensedB[l ].]
            ask RIrfluencer\s in-radius s-range [set sensedBDi 1]
            ask RSensor2s in-radius s-range [set sensedBD1 l]
            ask RInfluercor3s in-redius s-range [set sensedEDl I]
            ask RSensor3s in-radius s-range [set semsedBD] 1]
            ask RInfluencer4s in-radius s-range [set sensedBrjl l]
            ask RSerisor4s in-radius s-range [set sensedBDl 1]
            ask RTnfluencer5s in-radius s-ramge [sct semsedBDl l]
            ask RSersorbs ir-radius s-range [set sensedBDl 1] ] ]
        ask BDecider2s [
            ask inmlink-noighbors [
            ask RTriluencerls in-radius s-range [set sonsedBD2 1]
            ask RSensorls in-radius s-range [set semsedB0% l]
            ask RInfluorucer2s in-radius s-range [set sensedED2 1]
            ask RSensor2s in-radius s-range [set serlsedBD2 l]
            ask RInfluencer3s in-radius s-range [set sensedBD2 l]
```

```
    ask RSensor3s in-radius s-range [set sensedBD2 1]
    ask RInflucncer4s in-radius s-range [set sensedBD2 l]
    ask RSensor4s in-radius s-range [set sensedBD2 1]
    ask RInfluencer5s in-radius s-range [set sensedBD2 1]
    ask RSensor5s in-radius s-range [set sensedBD2 1] ] ]
ask BDecider3s [
    ask in-link-neighbors [
        ask RInfluencerls in-radius s-range [set sensedBD3 1]
        ask RSensorls in-radius s-range [set sensedBD3 1]
        ask RInfluencer2s in-radius s-range [set sensedBD3 1]
        ask RSensor2s in-radius s-range [set sensedBD3 1]
        ask RInfluencer3s in-radius s-range [set sensedBD3 1]
        ask RSensor3s inmradius s-range [set sensedBD3 l]
        ask RInfluencer4s in-radius s-range [set sensedBD3 1]
        ask RSensor4s in-radius swrange [set sensedBD3 1]
        ask RInfluencer5s in-radius s-range [set sensedBD3 1]
        ask RSensor5s in-radius s-range [set sensedBDS l] ] ]
ask EDecider4s [
    ask in-link-neighbors [
        ask RInfluencerls in-radius s-range [set sensedBD4 1)
        ask RSensorls jn-radius s-range [set sensedBD4 1]
        ask RInfluencer2s in-radius s-range [set sensedBD4 1]
        ask RSensor刀s in-radius s-range [set sensedBD4 1]
        ask RInfluencer3s in-radius s-range [set sensedBD4 1]
        ask RSensor3s in-radius s-range [set sensedBD4 1]
        ask RInfluencor4s in-radius s-range [set sensedBD4 l]
        ask RSensor4s in-radiLs s-range [set sensedBD4 1]
        ask RInfluencer5s in-radius s-range [set sensedBD4 1]
        ask RSensor5s ju-radius s-range [set sensedPD4 l] ] ]
ask BDecider5s [
    ask in-link-nejghbors [
        ask RInfluencerls in-radius s-range [set sensedBD5 1]
        ask RSensorls in-radius s-range [set sensedBDS l]
        ask RInfluencer2s in-radius s-range [set sensedBD5 l]
        esk RSensor2s in-radius s-range [set. sensedEDS l]
        ask RInfluencer3s in-radius s-range [set sensedBry l]
        esk RSensor3s in-radius s-range [set sensedED5 l]
        ask RInfluencer4s in-radius s-range [set sensedBD5 l]
        ask RSensor4s in-radius s-rargo [se= senscdBD5 1]
        ask RInfluencer5s in-radius s-renge [set semsedBry 1]
        ask RSensor5s in-radias surarge [se: sensedBD5 1] ] ]
ask RDeciderls [
    ask in-link-neighbors L
        ask BInfliuencerls in-radius s-ramge [set senscdRDl l]
        ask BSensorls in-radius s-mange [set sensedRol. l]
        ask BInfluencer2s in-radius s-range [set sensedRDl 1]
        ask BSensor2s in-radius s-ramge [set semsedRDl 1.]
        ask ETnfluencer3s in-radius s-range [set sensedRЭ1 1]
        ask BSensor3s in-radius s-range [set sensedRD1 ll
        ask BInfluencew4s jn-radius s-range [set sensedRDl l]
        ask BSensor4s in-radius s-ramge [set semsedRDl l]
        ask BImfluencer5t in-rddius s-range [sei semsedRD] l]
        ask BSensorbs in-radilis s-range [set. sensedRD1 1] ] ]
ask RDecider2s [
    ask in-link-neighoors [
        ask EInfluencerls in-radius s-range [set sensedRD2 1]
        ask ESensorls in-radius s-range [set sensedRD2 ll
```

```
            ask BTnfluencer2s in-radius s-range [set sensedRD2 1]
            ask BSensor2s in-radius s-range [set sensedRD2 l]
            ask BInfluencer3s in-radius s-range [set sensedRD2 1]
            ask BSensor3s in-radius s-range [set sensedRD2 1]
            ask BInfluencer4s in-radius s-range [set sensedRD2 1]
            ask BSensor4s in-radius s-range [set sensedRD2 1]
            ask BInfluencer5s in-radius s-range [set sensedRD2 lI
            ask BSensor5s in-radius s-range [set sensedRD2 1] ] ]
    ask RDecider3s [
        ask in-link-neighbors [
            ask BInfluencerls in-radius s-range [set sensedRD3 i]
            ask BSensorls in-radius s-range [set sensedRD3 1]
            ask BInfluencer2s in-radius s-range [set sensedRD3 l]
            ask BSensor2s in-radius s-range [set sensedRD3 1]
            ask BInfluencer 3s in-radius s-range [set sensedRD3 1]
            ask BSensor3s in-radius s-range [set sensedRD3 1]
            ask BInfluencer4s in-radius s-range [set sensedRD3 1]
            ask BSensor4s in-radius s-range [set sensedRD3 1]
            ask BInfluencerss in-radius s-range [set sensedRD3 l]
            ask BSensor5s in-radius s-range [set sensedRD3 1] ] ]
    ask RDecider4s [
            ask iri-link-neighbors [
                ask BInfluencerls in-radius s-range [set sensedRD4 l]
            ask BSensorls in-radius s-range [set sensedRD4 1]
            ask BInfluencer2s in-zadius s-rargo [set sensedRD4 l]
            ask BSensor2s in-radius s-range [set sensedRD4 l]
            ask BInfluencer3s in-radius s-range [set sensedRD4 1]
            ask BSensor3s in-radius s-range [set sensedRD4 l]
            ask BInfluencor4s in-radius s-range [set sensedRD4 ll
            ask BSensor4s in-radius s-range [set sensedRD4 1]
            ask BInfluencer5s in-radius s-range [set sensedRö4 l]
            ask BSensor5s in-radius s-range [set sensedRD4 1} ] ]
    ask RDecider5s !
    ask in-link-neighbors [
        ask BInfluoncerls in-radius s*range [sot sensedRob ]]
        ask BSensorls in-radius s-rerge [sez sensedRD5 1]
        ask BInflucncer2s in-radius s-range [sct sursedRo5 ]]
        esk BSensor2s in-radius s-rorge {sef. sensedRD5 l}
        ask ATnfluencer3s in-radius s-remge [set sensedRO5 1]
        ask BSensor3s in-radius s-range [set sensedRD5 l]
        ask BInfluencer4s in-radius s-rarge [set sensedRD5 1]
        ask BSensor4s in-radius s-range [set. sensedRD5 1]
        ask BTrfluencerbs in-radius s-rarge [set sensedRijs l]
        ask BSensor5s in-radius s-range [set sensedRD5 1] ] ]
end
to irack ;; linss ail InElucncers to enemy S sI within i-range
    ask BDecidorls [
        ask out-limk-neighbozs [
            ask RInflumcerls ir-radius i-range [croate-iof-from myself]
            ask RSensorls in-radius i-range [create-LOF-from myself]
            ask RInfluencer2s in-radius i-range [create-íOF-from mysel[`]
            ask RSerisor2s in-radius i-range [create-rof-rrom myself]
            ask RTnfluencer3s in-radius i-ramge lcreate-LOF-from myself]
            ask RSensor3s in-radius i-range {create-LOF-from myself]
            ask RIflfluercer4s in-radius i-range [create-tof-fron myself]
            ask RSensor4s in-a,adius i-range lcreate-LOF-from myself]
```

```
        ask RTnfluencer4s in-radius i-range [cceate-LoF-from myself]
        ask RSensor4s in-radius i-range [create-Lof-from myself] ] ]
ask BDecider2s [
    ask out-link-neighbors [
        ask RInfluencerls in-radius i-range [create-Lof-fron myself]
        ask RSensorls in-radius i-range [create-Lof-from myself]
        ask RInfluencer2s in-radius i-range [create-LoF-from myself]
        ask RSensor2s in-radius i-range [create-bof-from myself]
        ask RInfluencer3s in-radius i-range {create-Lof-from myself]
        ask RSensor3s in-radius i-range [create-LoF-froml myself]
        ask RInfluencer4s in-radius i-range [create-LOF-from myself]
        ask RSensor4s in-radius i-range [create-LOE-from myself]
        ask RInfluencer5s in-radius i-range [create-LoF-from myself]
        ask RSensor5s in-radius i-range [create-Lof-from myself] ] ]
ask BDecider3s [
    ask out-link-neighbors [
        ask RInfluencerls in-radins i-range [create-Lof-from myself]
        ask RSensorls in-radius i-range [create-Lof-from myself]
        ask RInfluencer2s in-radius i-range [create-Lof-from myself]
        ask RSensor2s in-radius i-range [create-J.OE-from myself]
        ask RInfluencer3s in-radius i-range [create-Lof-from myself]
        ask RSensor3s in-radius i-range [create-J.OF-from myself]
        ask RInfluencer4s in-radius i-range [create-Lof-from myself]
        ask RSensor4s j.n-radius i-range [create-iof-from myself]
        ask RInfluencer5s in-radius i-range [create-Lof-from myself]
        ask RSensorSs in-radius i-range [create-LOF-from myself] ] ]
ask BDecider4s [
    ask out-link-neighbors [
        ask RInfluencerls in-radius i-range [create-LOF-frorn myself]
        ask RSensorls in-radius i-range [creato-LOE-from myse]f]
        ask RInfluencer2s in-radius i-range [create-LOF-from myself]
        ask RSensor2s in-radius i-range [create-DOF-from myse]E]
        ask RInfluencer3s in-radius i-range [create-Lor-frorn myself]
        ask RSensor3s in-radius i-range Lcreate-Lor-from myselif
        ask RInfluencer4s in-radius i-range [create-LOF-from myself]
        ask RSensor4s in-radius i-range [create-LoF-from myseJf]
        ask RInfluencer5s in-radius i-range [create-LOF-from myself]
        ask RSensor5s irl-adi.us i-range [create-LOF-from myself`] ] ]
ask BDecider5s [
    ask o:1t-1ink-neighbors [
        ask Rfnflucncerls in-radius j-ramge Lcreate-lof-From myself]
        ask RSensorls irl-radius i-vange [create-LoF-from myselfi]
        ask RInfluencer2s in-radius i-ranue [creato-LOF-from myself]
        ask RGensor2s iri-radjus i-range {create-LOF-fron mysel.f]
        ask RInfluencer3s in-radius i-range [create-IOF-from myself]
        ask RSensor3s in-radius i-range [create-Jof-from myself]
        ask RIn[luencer4s in-radius i-range [create-Lof-from r.yselfj
        ask RSensor4s in-radius i-range [create-LOF-from myself]
        ask RTnflucncer5s in-radius i-range lcreate-lof-rron ryself]
        ask RSensor5s in-radius i-range [create-LOF-from myself] ] ]
ask RDeciderl.s [
    esk out-link-neighbors l
        ask BInfluencerls in-radius j-range [oreate-Lof-from myself]
        ask BSensorls in-radius i-range [create-Jof-from mysolf]
        Esk BInfluencer%s in-radi:us i-range [create-LOF-from myself]
        ask BSensor2s in-radius i-range [create-fof-from mysele]
        ask BInfluencer3s in-radius i-range [create-tof-from myself]
```

```
            ask BSensor3s in-radius i-range [create-LOF-from myself]
            ask BInfluencer4s in-radius i-range [create-IOF-from myself]
            ask BSensor4s in-radius i-range [create-LOF-from myself]
            ask BInfluencer5s in-radius i-range [create-Lof-from myself]
            ask BSensor5s im-radjus i-range [create-LOF-from myself] ] ]
    ask RDecider2s [
    ask out-link-neighbors [
        ask BInfluencerls in-radius i-range [create-LoF-from myself]
        ask BSensorls in-radius i-range [create-fof-from myself]
        ask BInfluencer2s in-radius i-range [create-LOF-front myself]
        ask BSensor2s in-radius i-range [create-LOF-from myself]
        ask BInfluencer3s in-radius i-range [create-Lof-from myself]
        ask BSensor3s in-radius i-range [create-Lof-from myself]
        ask BInfluencer4s in-radjus i-range [create-LOE-from myself]
        ask BSensor4s in-radius i-range [create-LOE-fronk myself]
        ask BInfluencer゙5s in-radius i-range [create-LoF-from myself]
        ask BSensor5s in-radius i-range [create-LOF-from myse]f] ] ]
    ask RDecider3s [
    ask out-link-neighbors [
        ask EInfluencerls in-radius i-range [croate-Lofwfrom myself]
        ask BSensoris in-radius i-range [create-iof-from myself]
        ask BInfluencer2s in-radius i-range [create-LOF~from myself]
        ask BSensor2s in-radius i-range {create-LOF-from myself]
        ask BInfluencer3s in-radius i-range [create-T,OF-from myself]
        ask ESensor}s in-radius i-range [create-IOF-from myself]
        ask BInfluercer4s in-radius i-range [oreate-LOF-fromimyself]
        ask BSensor4s in-radius i-range [create-LOF-from myself]
        ask BIrfluencer5s in-radius i-range lcreate-Lof-irom myself!
        ask ESensor5s in-radius i-range [create-l,OF-from mysel.f] ] ]
    ask RDecider4s [
    ask out-lirnk-nej.ghbors [
        ask EInfluencerls in-radius i-range [create-Lof-from myself]
        ask BSersorls in-radius i-renge [create-LOF-from myself]
        ask BInfluencer2s in-radius i-range [create-LOF-from myself]
        ask BSorisor2s irl-radius i-renge [create-iOF-from myself]
        ask BInfluencer3s in-radius i-xange [create-J_OF-from mysel.f]
        ask BSonsor3s in-radjus i-range Lcreele-Lor'from myselt]
        ask BInfluencer4s in-redius i-range [create-LoE-from myse].f]
        ask BSensor4s in-radius i-range [create-LOF-from myself]
        ask BInflucncer5s in-radius j-ramúe Lcreate-Tof-from mysolfi
        ask BSensorbs in-radiLs i-range [create-LOF-from myself] ! ]
    ask RDeciderss {
    ask oul-link-neighbors [
        ask BInfluencerls in-radius i-range [create-lof-from myse].f]
        ask BSonsorls inmradius i-range lcreate-tof-from rryself]
        ask BEnfluencer2s in-radius i-range [crcate-LOF-from myself]
        ask BSensor2s in-radius i-range [create-LOF-from miyself]
        ask BInfluencer3s im-radius i-range [create-Lof-Erom myself]
        ask BSensor3s in-radius i-range [creare-LOF-from myself]
        ask BTmffuencer4s itu-radius i-range [create-LOF-iron myself]
        ask BSensor4s in-radius i-rarge [create-LOF-from myself]
        ask BInfluencor5s in-radius i-rerge [create-iof-fzom nyself]
        ask BSensor5s in-radius i-rarge [create-LOF-from myselfif ] ]
end
    uo shoot. ; ; identifjes the nearest enemy S & I that has been
    "sensed" and "tracked" by a friendly S &I linked to the same Decider
```

```
ask BDeciderls [
    ask out-link-neighbors [
        ask out-link-neighbors [
            ]et $targets-sensed turtles with [(sensedBD) = 1) and (side =
2)]
                if any? Stargots-semsed l
                        ask min-one-of Stargets-sensed [distance mysclf] lset dead
1] ] ] ] ]
    ask BDecider2s [
    ask out-link-neighbors [
            ask ont-link-neighbors [
            let stargets-sensed turtles with [(sensedBD2 = 1) and (side =
2)]
                if any? Stargets-sensed [
                        ask min-one-of Stargets-sensed [distance myself] [set dead
l] ] ] ] ]
        ask BDecider3s [
            ask out-link-neighbors [
        ask out-link-nejghbors [
            let stargets-sensed turtles with [(sensedBD3 = ]) and (side =
2) ]
                if any? Stargets-sensed [
                        ask min-one-of $targetsmsensed [distance myself] [set dead
1] ] ] ] ]
    ask EDecider4s [
    ask Olit-link-neighbors L
            ask out-link-neighoors [
                    let Stargess-sensed turtles with [(sensedBD4 = 1) and (side =
2)]
                    if any? Stargets-sensed [
                        ask min-one-of Stargets-sensed [djstance myself] [set dead
l] ] ] ] ]
    ask EDecider5s [
        ask out-link-neighbors [
            esk out-link-reighbors [
                    l.ei. St:=rgets-sensed turiles with [(sensedBD5 - l) and (side =
2) ]
                    if any? Stargets-sersed [
                        ask min-ore-of Starqets-sensed [distanco myself] lset dead
1] ] ] | !
    ask RDecidorls [
            ask out-link-neighbors [
                ask out-link-neighbors [
                    lel. $targets-sensod tumbles with [(senscdRD) = l.) and (side =
1) 1
                    if eny? Stargets-sensed [
                        ask min-one-of $targets-sensed [distance myself] [set dead
1] ] ] ] ]
    ask RDecidcr2s |
    ask out-link-nojgtiDoss [
        ask out-i ink-neighbors [
            let $targets-sensed Lurtles with [(sensedRD) = l) and (sido =
1)]
                if any? $targets-sensed [
                        ask min-one-of Stargets-sensed [distance myself] [set dead
1] ] ] ! 1
    ask RDecidor3s [
```

```
    ask out-link-neighbors [
    ask out-link-neighbors [
        let $targets-sensed turtles with [(sensedRD3 = 1) and (side =
1) ]
            if any? $targets-sensed [
                        ask min-one-of Stargets-sensed [distance myself] [sct dead
1] ] ] 」 \
    ask RDecider4s [
    ask out-link-neighbors [
        ask out-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD4 = 1) and (side =
1)]
                    if any? Stargets-sensed [
                        ask min-one-of $targets-sensed [distance myself] [set dead
1] ] ] ] ]
    ask RDecider5s [
    ask out-link-neighbors [
        ask out-lirk-neighbors [
            let Stargets-sensed turtles with [(sensedRD5 = 1) and (side =
1)]
                    if any? Stargets-sensed [
                        ask min-one-of Stargets-sensed [distance myself] [set dead
1] ] ] ] ]
end
to kill ;; kills all turlles that have been "sensed", "tracked" and
"shot"
    ask turcles with [(dead = l)] [die)
end
to move-Influencer ;; moves all I towards the nearest enemy S or I
within a related Sensors's s-range
    ask BDeciderls [
        ask out-]irn-neighbors [
            let $tergets-sensed turties with [(sensedBDl - l) and (side = 2)]
                if any? $targets-semsod [
                    set heading towards min-one-of $targems-sensed ldistiance
mysolf] forward 1 ] ] ]
    ask RDeciderls [
        ask out-link-reighbors [
            let Stargets-sensed turtles with [(sensedRDI = l) and (side = l)]
                if any? Stargots-scnsod [
                    set heading towards min-one-of Stargets-sensed [distance
mysele] forward l j ] ]
        ask BDecider2s [
            ask out-link-neighoors [
                let Stargets-sensod turtles witr [(sonsedBD2 = 1) and (side = 2)]
                if ary? $targets-sensed [
                    set heading towards min-one-of $targets-sensed [distarce
myself] forward 1 ] ] ]
        ask RDecider2s [
            ask oul-|ink-neighbors [
            let $targets-sensed turtles with ( (sensedRD2 = l) and (side = 1))
                if any? $targets-sensed [
                    set. heading towards mim-cne-of $targets-sensed [distance
myself] forward 1 ] ] ]
    ask BDocider3s [
```

```
        ask out-link-neighbors [
            let Stargets-sensed turties with [(sersedBD3 = 1) and (side = 2)]
                if any? Stargets-sensed [
                set heading towards min-onle-of Stargets-sensed [distance
myself] forward 1 ] ] ]
    ask RDecider3s [
        ask out-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD3 = 1) and (side = 1)]
                if any? $targets-sensed [
                set heading towards min-one-of $targets-sensed [distance
myself] forward 1 ] ] ]
    ask BDecider4s [
        ask out-link-neighbors [
            let Stargets-sensed curtles with [(sensedBD4 = 1) and (side = 2)]
                if any? $targets-sensed [
                set heading towards min-one-of Stargets-sensed [distance
myself} forward 1 | | ]
    ask RDecider4s [
        ask out-link-neighbors [
            ].et Stargets-sensed turtles with [(sensedRD4 = 1) and (side s= 1)]
                if any? stargets-sensed [
                set heading towards min-one-of Stargcts-sensed [distance
myself] forward l ] ] J
    ask BDecider5s [
        ask out-]ink-neighbors [
            let Stargets-sensed turtles with \(sensedBD5 = 1) and (side = 2)]
                if any? Stargets-sensed |
                set heading towards min-one-of $targets-sensed [distance
myself] forward 1 ] ] ]
    ask RDecider5s [
        ask out-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD5 = 1) and (side = 1)]
                if any? 5targets-sensed [
                        set heading towards min-onc-of $targets-sensed [disiance
myselfl forward 1 ] ] ]
end
to move-sensor ;; moves all S without a "sensed" ememy S or" T towards
Lhe nearest "unsersed" (by that Decider's Someorg!) ememy S or f
    ask BDeciderls [
        ask in-link-neighbore [
            let $Largets-sensed turtles with [(sensedeD] - 1) and (side - 2)]
                if nol any? $largets-sensed [
                let stargetsmunsensed tuztlos with [(sensedBrl = 0) and (side
=2)3
                                    if eny? $targets-unsensed [
                            let $nearest-ansensed mim-ore-of $targeLs-insensed
[distance myself]
                        sel headirg lowards §neazest-unsensed
                        Eorward ] | ] | |
    ask RDecider1s [
        ask in-link-neighbors [
            let Stargets-sensed Lumbjes with [(sensedRDl = l) and (side = l)]
            if not any? $targets-sensed [
                let $targets-unsensed turlues with [(sensedRDl = 0) and {side
= 1)]
                if any? Stargets-unsensed |
```

```
    let $nearest-unsensed min-one-of Stargets-unsensed
[distance myself]
                    set heading towards $nearest-unsensed
                    forward 1 ] ] ] l
    ask EDecider2s [
        ask in-link-neighbors [
            let Stargets-sensed turtles with [(sensedBD2 = 1) and (side = 2)]
                if not any? $targets-sensed [
                    let Stargets-unsensed turtles with [(sensedBD2 = 0) and (side
= 2)]
                    if any? {targets-unsensed [
                        let Snearest-unsensed min-one-of Stargets-unsensed
[distance myself]
                                    set heading towards $nearest-unsensed
                                    forward 1 ] ] ] ]
    ask RDecider2s [
        ask in-link-neighbors [
        let $targets-sensed turtles with [(sensedRD2 - 1) and (side = 1)]
            if not any? Stargets-sensed [
                let $targets-unsensed turtles with [(sensedRD2 - 0) and (side
= 1)]
                            if any? $targets-unsensed [
                            let Snearest-unsensed min-one-of $targets-unsonsed
[distance myself]
                                    set heading towards $nearest-ursenscd
                                    forward 1 ] ] ] ]
    ask BJecider3s [
        ask in-1ink-neighbors [
        let Stargets-sensed turtles with [(sensedBD3 = 1) and (side = 2)]
            if not any? Stargets-sensed [
                let $targets-unsensed turtles with [(sensedBD3 = 0) and (side
- 2)]
                    ir any? Stargets-unsensed [
                            let Snearcst-umserised min-one-of Stargets-unsensed
[distarlce myse1E]
                            set hoading towards snearest-unsensed
                            forward l ] J J ]
        ask RDecider3s [
        ask ir-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD3 = l) and (side = 1)]
            if not any? Stargets-sensed {
                let Stargots-unsensed turlles with \(sensedRD3 = 0) and (side
= 1)]
                    if any? Stargets-unsensed l
                        let Snearest-unsensed min-one-of Stargets-unsensed
[distance myself]
                            set hoadirg towards Snearest-unsensed
                        forward 1 ] ] ] ]
        ask BDecider4s [
        ask in-link-neighbors [
            let Stargets-sensed turtles with \(sensedBD4 = I) and (side = 2))
                        if not any? stargets-sensed [
                let $targets-unsensed turtles with [(sonscdBra = 0) and (side
= 2.)]
                    if any? $Largets-unsensed [
                            let Snearest-unsensed min-one-of Stargets-unsensed
[distance myself]
```

```
            set heading towards $nearest-unsensed
                    forward 1 ] ] ] ]
    ask RDecider4s [
        ask in-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD4 - l) and (side = 1)]
            if not any? {targets-sensed [
                let $targets-unsensed turtles with [(sensedRD4 = 0) and (side
= 1)]
                    if any? Stargets-unsensed [
                        let $nearest-unsensed min-one-of Stargets-unsensed
[distance myself]
                                    set heading towards $nearest-unsensed
                                    forward 1 } ] ] l
    ask BDecider5s [
        ask in-link-neighbors [
            let Stargets-sensed turtles with [(sensedBD5 = 1) and (side = 2)]
                if not any? $targets-sensed [
                        let $targets-unsensed turtles with [(serscdBD5 - 0) and (side
= 2)]
                    i[ any? Stargets-unsensed [
                        let \xinearest-ansensed min-one-of $targets-unsensed
[distance myself]
                    set heading towards Snearest-unsensed
                    forward l ] ] ] ]
    ask RDecidcr5s [
        ask in-link-neighbors [
            let Stargets-sensed turtles with [(sensedRD5 = l) and (side = l)]
                    if not any? Stargots-sensed [
                        let Stargets-unsensed turtles with [(sensedRo5 - 0) and (side
= 1)]
                    if any? Stargets-unsensed [
                        lct Snearest-unsensed min-one-of $targers-unsensed
[distance myself]
                            set heading towards §nearest-unsenscd
                        forward 1 ] ] ] ]
and
to reset ;; clears all "sensed" and "tracked" targets, and all links
    ask turtles [
        set sensodBDl 0
        set. sensedBL2 0
        set sensedBD3 0
        set sensedBD4 0
        set sensedBD5 0
        set sensedR[1 0
        set sensedRD2 0
        set sensedRD3 0
        set sensedRc4 0
        set sensedRD5 0]
    ask links [die]
end
```


VITA

Lieutenant Colonel Sean Deller was born in Baldwin, New York on December 24, 1965. He graduated from the United States Military Academy in 1988 with a B.S. in Mathematics and was commissioned as a Second Lieutenant in the Aviation branch of the United States Army. He received a M.E. in Engineering Management from Old Dominion University in 1999, and he conducted this research while a student of the Department of Engineering Management and Systems Engineering, Old Dominion University, Kaufman Hall, Room 241, Norfolk, VA, 23529.

During his 21 years of active service, he has served in Aviation units in Korea, Egypt and Fort Stewart, Georgia. He became an operations research analyst in 1997 and has served at the United States Army Training and Doctrine Command, and at the Joint Center for Operational Analyses and the Joint Experimentation Directorate of the United States Joint Forces Command. He is now serving as the Capabilities Assessment Branch Chief at the Army Capabilities Integration Center at Fort Monroe, Virginia. His operational assignments include deployments in support of Operation Enduring Freedom in Afghanistan, Operation Iraqi Freedom in Iraq, and the NATO Kosovo Force in Kosovo.

His military education includes the Aviation Basic and Advanced Courses, Airborne School, Flight School, and the Command and Gencral Staff Officer Course.

His military awards include the Bronze Star.

[^0]: 'Citation and relerence list format for this manuscript are taken from The Jmemotional C2 Joumal.
 ${ }^{2}$ JP 1-02 delines command and confrol as "the exercise of authority and direction by a properly designated commander over assigned and attached forces in the accomplishment of the mission. Command and control funclions are performed through an arangement of personnel, equipment, communications, facilities, and

[^1]: ${ }^{3} \mathrm{NCO}$ was originally referred to as Network Centric Warfare (NCW)

[^2]: ${ }^{4} \mathrm{C} 2$ is an acronym for "command and control".

[^3]: ${ }^{5}$ Each meaningful configuration is identified by a number. These $1 D$ numbers started at " 0 " due to the code used in the Behavior Space experimentation feature of the NetLogo agent-based model used in this research.

[^4]: ${ }^{6}$ LOF is an acronym for "line of fire," which is a direct horizontal line from a fring weapon to its largel.

