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ABSTRACT 

REGION-BASED APPROACH FOR SINGLE IMAGE SUPER-
RESOLUTION 

Min Zhang 
Old Dominion University, 2016 
Director: Dr. Chung Hao Chen 

Single image super-resolution (SR) is a technique that generates a high-

resolution image from a single low-resolution image [1,2,10,11]. Single image super-

resolution can be generally classified into two groups: example-based and self-similarity 

based SR algorithms. The performance of the example-based SR algorithm depends on 

the similarity between testing data and the database. Usually, a large database is 

needed for better performance in general. This would result in heavy computational 

cost. The self-similarity based SR algorithm can generate a high-resolution (HR) image 

with sharper edges and fewer ringing artifacts if there is sufficient recurrence within or 

across scales of the same image [10, 11], but it is hard to generate HR details for an 

image region with fine texture.  

Based on the limitation of each type of SR algorithm, we propose to combine 

these two types of algorithms. We segment each image into regions based on image 

content, and choose the appropriate SR algorithm to recover the HR image for each 

region based on the texture feature. Our experimental results show that our proposed 

method takes advantage of each SR algorithm and can produce natural looking results 

with sharp edges, while suppressing ringing artifacts. We compute PSNR to qualitatively  



evaluate the SR results,  and our proposed method outperforms the self-similarity based 

or example-based SR algorithm with higher PSNR (+0.1dB). 
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NOMENCLATURE 

dB                       Decibel 

EM        Expectation-Maximization 

HR                       High Resolution 

MAP                    Maximum A Posteriori Probability 

ML                       Maximum-Likelihood 

LR                        Low Resolution 

PSNR                  Peak Signal-To-Noise Ratio 

PSF        Point Spread Function 

SR                       Super Resolution 
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CHAPTER 1 

INTRODUCTION 

A digital image is made of pixels; spatial image resolution refers to the pixel density of 

an image [1, 18]. An image with higher resolution contains more high frequency details. 

Image spatial resolution is usually limited by image acquisition devices, optical 

distortions, and motion blurs [18]. Super-resolution refers to methods that are used to 

generate or reconstruct high-resolution (HR) images from a single or a set of low-

resolution (LR) images from the same scene.  

1.1 What Is Super-Resolution 

One simple and computationally efficient method is the interpolation based SR method.  

As shown in Figure 1, the high-resolution image is generated by combing multiple LR 

images. Those LR images are blurred and are a noisy version of the true HR image.  

Let X denote the HR image; Yi is the ith LR image from the same scene. Given k LR 

images of X, the interpolation based method recovers HR image X through three steps: 

1) low resolution images registration; 2) interpolation; 3) de-blur and remove noise [18]. 

In the registration step, motion model such as shifting needs to be estimated. This 

estimation error will affect the quality of the final HR image. In the interpolation step, 

non-uniform interpolation is applied. The goal of the last step is to remove noise and 

blur. However, since no additional HR information is provided, the resulting image lacks 

HR details and tends to have ringing or aliasing artifacts. The registration errors from 
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the first step will affect the quality of the HR image as well. All those drawbacks prevent 

the interpolation based SR algorithm from being used in real-world applications. 

 

Figure 1: Framework of Interpolation Based Super Resolution [18] 

Images from figure 2 demonstrate the ringing artifacts and aliasing artifacts by 

comparing them with the same images without artifacts. The ringing artifact usually 

appears near edges as we see in figure 2(a). As explained by Mitchell [114], the ringing 

artifacts are caused by the Gibbs phenomenon. In the frequency domain, when a single 

image that does not contain high frequency information passes through a low-pass filter, 

it will cause ringing artifacts. Thus improper shifting estimation or alignment between 

sub-images results in ringing artifacts. The Nyquist-Shannon sampling theorem states 

that aliasing happens when a signal is sampled at less than the double of the highest 
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frequency contained in the signal [115]. Figure 2(c) shows an example of aliasing 

artifacts. 

  (a) (b) 

 
 

 

(c) (d) 

Figure 2: Images showing Artifacts. (a) image with ringing artifacts (b) same image 

without ringing artifacts. (c) image with aliasing artifacts (d) same image without aliasing 

artifacts  

Example-based SR approaches [10, 11] train a set of LR-HR image patch pairs; {𝑥!}!!!
!  

are HR image patches, and {𝑦!}!!!
!  are their corresponding LR image patches. For each 

image patch xi, yi is the blurred and down-sampled version of xi. Each image patch pair 

{xi, yi} is constrained by yi =DHxi +v, where D is the down-sampling operation, H is the 
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blurring operation, and v is random noise. The relationship between the high-resolution 

image patch and low-resolution image patch is learned from the training dataset. This 

relationship will be used as a priori information. This learned information could be used 

to reconstruct the high-resolution details for the LR input image [18].  

Statistical SR algorithms treat the blur effect and motions or shifting among low-

resolution images as stochastic variables, and the desired high-resolution image is 

considered as stochastic variable as well [18]. Let X denote the desired HR image, and 

Y denote the LR version image of X. Y is affected by the blurring operation and noise. 

Let M denote the blurring and down-sampling operation, then the SR problem can be 

described as: 

                                                      𝑋 = argmax! Pr 𝑋 𝑌                                            (1.1). 

There are four popular statistical approaches to the estimate X [18]. One popular 

method is the Maximum a Posteriori (MAP) approach, where M is assumed given.  

Then Eqn. 1.1 becomes 

𝑋 = argmax
!

Pr(𝑌|𝑋,𝑀)Pr (𝑋) 

                                                         = argmin! 𝑌 −𝑀𝑋
!

+ 𝜆𝐴(𝑋)                                   (1.2). 

Another popular statistical method is the Maximum Likelihood (ML) statistical method, 

where blurring estimation M is assumed as a prior.  M is assumed uniform over X, and 

the most likely estimation for X becomes: 

                                                        𝑋!" = argmin! 𝑌 −𝑀𝑋
!

                                              (1.3). 
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If all the parameters are known, 𝑋!" can be calculated directly by: 

                                                          𝑋!"  = (𝑀!
𝑀)!!𝑀!

𝑌                                                     (1.4). 

The ML method is ill-suited for real world practice; it will widely spread the noise and 

registration errors [18]. What’s more, if 𝑴𝑻
𝑴 is singular, there will be infinite possible 

solutions for equation 1.4. 

Given several low-resolution images, Bayesian approaches [20-23] reconstruct HR 

image through three steps: 1) Use a Gaussian process prior to estimate the high-

resolution image; 2) Estimate the blurring parameters and point spread function (PSF) 

by integrating over the estimated high-resolution images; 3) Fix the estimated 

parameters, and apply MAP to estimate the HR image.  

Joint MAP restoration methods divide the SR problem into three steps: 1) registration, 

2) restoration, and 3) interpolation [18]. The registration and restoration parameters are 

estimated simultaneously using Expectation-Maximization (EM). By doing this, the 

blurring parameters estimation and HR estimation can benefit each other.  

1.2 Challenge for Super-Resolution 

In recent years, researchers have focused on different ways to improve the quality of 

HR images recovered from the LR image, and they have made certain progress. 

However, there are still many challenges that prevent the application of SR algorithms 

in real world practice.  
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One well-known challenge in image processing is image registration. This problem is 

even worse in multi-image SR techniques. The registration errors will widely spread 

during the SR image reconstruction process and, as a result, will generate annoying 

artifacts, ringing effects or aliasing [18].   

The second challenge in SR techniques is computation efficiency. For example-based 

SR algorithms, the quality of the recovered HR image depends on the similarity 

between the input image and training dataset. In order to generate high quality HR 

images in general, a huge database is needed. This training database needs to contain 

as many different types of image contents as possible. As a result, it will cause 

extremely heavy computation costs while searching for the best matched image patch 

from the database [18]. For self-similarity based SR algorithms, building the internal 

database through the image itself, and searching for similar image patches using a 

different transformation matrix also requires expensive computation costs.  

1.3 Motivation 

We have introduced several popular super resolution approaches in the previous 

section. In this section we will discuss why we are interested in reconstructing a high-

resolution image from a single image instead of using multiple low-resolution images. 

Then we will introduce the state-of-the-art single image super-resolution methods 

followed with our proposed SR method.  

Multiple image based super-resolution assumes multiple LR images of the same scene 

are available; the high-resolution value is estimated by combining the information from 
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each low-resolution image. Each low-resolution image contributes a new constraint on 

estimating the high-resolution image. In practice, multiple LR image based super-

resolution algorithms face different challenges such as image registration, motion 

estimation, and proper low resolution blur filter estimation [18]. Image registration is a 

well-known ill-posed image processing problem; researchers are still working on the 

algorithm to increase registration accuracy. Registration errors will propagate in the HR 

image estimation step and result in severe artifacts.   

In real world applications, it is hard to get several images from the same scene. Thus, 

generating a high-resolution image from a single LR image becomes very important. It 

is also worth mentioning that single image SR algorithms do not involve image 

registration or shift estimation between multiple images. As a result, registration errors 

can be avoided, so in this paper, we will propose approaches to generate an SR image 

from a single low-resolution (LR) image. 

The goal of single image super-resolution is to reconstruct a high-resolution image with 

a sharp edge from a single low-resolution image. Single image super-resolution 

algorithms can be broadly classified into two categories: example-based and self-

similarity based algorithms [18]. 

The basic idea of example-based super resolution methods can be divided into two 

steps:  1) model the relationship between the high-resolution and lower-solution image 

pairs through the training data; 2) apply this model to the new input low-resolution 

image in order to generate its corresponding high-resolution image. Example-based 

super-resolution algorithms usually need an external database composed of high-
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resolution (HR) image patches and their corresponding low-resolution (LR) patches. For 

each LR patch from the input image, one of the first k best-matched LR patches will be 

found from the database. The corresponding HR patches will be used to predict the HR 

details of the given LR image patch.  

Self-similarity based super-resolution algorithms [1, 10, 11] are based on the 

observation that patches of a natural image repeat within or across different scales of 

the same image, so an internal database containing LR-HR image patch pairs can be 

built through a pyramid of the given image itself [1, 10]. This internal database will be 

used to learn the relationship between LR and HR images. 

Each SR algorithm may have its own strength and limitation. One method may perform 

better than other state-of-the-art methods on some types of images with particular 

textural structure. The performance of example-based algorithms depends on the 

similarity between the testing image and image database. Usually a huge set of training 

data is needed for better performance in general, which will result in heavy computation 

costs. It is unclear how big training LR-HR image patches are needed in order to 

generate good results in general. Database retraining is needed for different scaling 

factors. What’s more, the high-resolution details learned from LR-HR image patches of 

the database cannot be guaranteed accurate [1,18].  

As for self-similarity based SR methods, the internal database built from the image itself 

contains more relevant LR-HR image patches. The reconstructed HR image has fewer 

ringing and artifact effects compared to example-based algorithms. One common 
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limitation of self-similarity algorithms is the ability to recover textural details for super 

low-resolution input images.  

1.4 Problem Statement 

Single image super-resolution is intended to reconstruct a high-resolution image from 

the single low-resolution input image. The recovered high-resolution image should obey 

the following constraints: 1) the recovered high-resolution image contains more high 

frequency details with sharp edges, and 2) the recovered image needs to be consistent 

with the original low-resolution input image. Single image super-resolution algorithms 

can be classified into two groups: 1) example-based super-resolution, and 2) self-

similarity based super-resolution. Each type of image super-resolution algorithm has its 

own advantages and limitations.  

As we know, example-based super-resolution algorithms [2, 12, 103] learn the 

relationship between high-resolution images and their corresponding low-resolution 

images through an external training database. They then apply this relationship to 

recover the high-resolution details for the testing low-resolution input image. Example-

based image super-resolution algorithms have shown the ability to produce high-

resolution images with more details and sharper edges when there exists an image in 

the database that is similar to the testing low-resolution input image. However, the 

general performance of such algorithms highly depends on the similarity between the 

testing image and the images from the training database.  What’s more, the recovered 
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high-resolution details are not always consistent with the ground truth [12], and it may 

generate some details that do not exist in the ground truth image.  

Research found that image content tends to repeat both within an image itself at 

different locations and across different scales of the original image [11]. Self-similarity 

based super-resolution algorithms [1, 11] are proposed to create an internal high-

resolution and low-resolution image pairs database through an image itself, and high-

resolution image details can be recovered by referring to this internal database. Since 

this internal database contains more relevant image content, the recovered high-

resolution image can preserve the sharpness of the edge when there exists multiple 

image recurrence across different scales. However, it will fail to produce the high-

resolution image details for image patches when there is not enough recurrence exists 

for such an image patch or when the input low-resolution image has poor resolution 

quality. 

Given the limitation of each type of image super-resolution algorithm, one super-

resolution algorithm cannot always produce the best high-resolution image for any low-

resolution input image. In this paper we propose to take advantage of both super-

resolution algorithms (example-based and self-similarity based), and develop a scheme 

to combine the two approaches to obtain high-resolution details. The main idea of our 

proposed method is to divide an image into multiple regions based on image content 

information and utilize appropriate super-resolution techniques to generate the high-

resolution image for each image region. To our knowledge, we are the first to take 

image contextual information into account in image super-resolution techniques. In 

order to determine the proper super-resolution technique for different image content, we 
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compared and evaluated the performance of both example-based and self-similarity 

based super-resolution techniques on a variety of image contents. Our proposed 

method focuses on learning the performance of super-resolution algorithms on different 

image contextual information and applies the appropriate super-resolution technique to 

recover the high-resolution details.  

1.5 Contribution and Organization 

Current methods for image super-resolution algorithms are dealing with the whole 

image. To our knowledge, no existing method considers employing contextual 

information to a super-resolution algorithm. We are the first to take image content into 

account in image super-resolution techniques. We proposed a new concept that 

segments the image into multiple regions based on spatial context and chooses the 

appropriate SR algorithm for each region based on image content.  

We quantitatively compared the existing example-based and self-similarity based SR 

algorithms on a wide variety of real world image content, which included faces, animals, 

architecture, and nature scenes. The purpose of doing this is to evaluate the 

performance of existing example-based and self-similarity based SR algorithms on 

different types of image content. Our proposed SR method will refer to the evaluation 

results in order to choose the appropriate SR algorithm for each image region. 

Comparing two of the state-of-the-art SR algorithms, our proposed SR algorithm can 

produce better results in terms of visual quality and PSNR (+0.1dB). 
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Chapter 1 introduces the basic SR algorithms, current challenges and limitations. 

Chapter 2 reviews the state-of-the-art single image SR algorithms. Chapter 3 describes 

our proposed SR approach in detail. Quantitative evaluation and supplementary 

experiments are performed in chapter 4. Finally, the thesis carries out an overall 

conclusion in chapter 5.  
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CHAPTER 2 

STATE-OF-THE-ART SINGLE IMAGE SR APPROACHES REVIEW 

Compared to singe image SR methods, multiple image SR methods have the following 

limitations that prevent their application to real world problems: 1) it is hard to get 

several images from the same scene in practice, and 2) multiple image SR methods 

involve image registration and blur estimation. The registration errors and estimation 

errors will spread more widely in the HR image reconstruction phase. In real world 

applications, recovering a high-resolution image through single image SR methods can 

successfully avoid the limitations mentioned above. Thus, researchers have become 

more interested in reconstructing a HR image from a single LR image in recent years.  

Single image super-resolution algorithms can be grouped into two categories in general: 

1) example-based SR algorithms that rely on an external training dataset to recover a 

high-resolution image, and 2) self-similarity based SR algorithms that recover the high-

resolution detail through an image itself. In this section, we will introduce several state-

of-the-art single image SR algorithms. 

2.1 Example-Based SR Algorithms Review 

The basic idea of example-based super-resolution methods contains two steps: first 

model the relationship between the high-resolution and low-resolution image pairs 

through the training dataset. Then apply this model to the new LR image in order to 
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generate its HR image. The performance of the learning-based methods largely depend 

on the similarity between the training data and the testing data.   

 

Figure 3: framework of example-based super-resolution approach 

Example-based super-resolution was first proposed by Freeman [12], who suggested 

recovering the missing high-resolution details from a training dataset. The training 

dataset is composed of high-resolution images and their corresponding all possible low-

resolution images. Figure 3 shows the general overview of the example-based super-

resolution approaches. The up scaled image using the interpolation operation lacks high 

frequency details; those missing high-resolution details will be estimated through the 

training data. Freeman [12] proposed to build a training dataset containing a set of low-

resolution and high-resolution image pairs, through two steps: 1) generate the 

corresponding LR images by applying blurring and subsample operations to the HR 

images; 2) break the images into small patches, and store the high-resolution image 

patches and their corresponding low-resolution image patches in the database. The 
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Markov network model is used to describe the relationship between LR image patches 

and HR image patches. 

The input low-resolution image is divided into small patches, for each image patch, 

searching for its most similar image patch from the training dataset, the corresponding 

high-resolution image patch will be used to predict the missing high frequency details of 

the input low-resolution image patch. There are two main drawbacks for this method. 1) 

expensive computation costs. Since the size of training database is very large, 

searching for the nearest neighbor for each image patch is time consuming. 2) this 

method may generate annoying artifacts due to noise.  

In order to reduce searching time, Sun et al. [94] improved the approach by employing a 

sketch prior into the high-resolution estimation. His idea is motivated by the observation 

that; the human eye is more sensitive to high frequency details. In order to accelerate 

computation, he proposed classifying the image patches into two groups: 1) high 

frequency image patches, which contain edges, and 2) low frequency image patches, 

which contain no sharp edges, and are low contrast. Instead of estimating the high-

resolution details for the entire image patch, Sun suggested enhancing the sharp edge 

only. As a result, for image patches containing high frequency details, search the 

training dataset in order to estimate the missing high-resolution details. While for image 

patches containing only low frequency information, a bicubic interpolation method is 

used to estimate the missing image information. This strategy reduced the searching 

time by a certain degree.  
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Instead of using image information directly, Yang et al. [2] extract image features using 

a sparse coding technique. Their approach is motivated by: 1) research results from 

Compressed sensing [3], which conclude that the linear representation for high-

resolution signals can be successfully reconstructed from their low-dimensional 

projections [2, 3], and 2) sparse representation has been widely used in image 

processing, such as image denoising, object recognition, and restoration [3, 26, 27]. 

Yang generated two over complete dictionaries Dh and Dl by training the LR-HR image 

patch pair’s database. Each LR image patch can represented by a linear combination of 

vectors to form the over complete dictionary [2]. The sparse representation vector will 

be used to generate the HR image patch.  

Compared to other example-based SR algorithms, the sparse-coding based SR 

algorithm has two advantage: 1) the sparse representation is robust to noise, while most 

other methods cannot perform denoising and super-resolution simultaneously, and 2) 

As we know, most elements in sparse coefficient are zeros; this will simplify the 

computation process and accelerate the processing time. The Sparse representation 

technique is adopted in our proposed algorithm. 

2.2 Self-Similarity Based SR Algorithms Review 

Research shows image patch texture tends to repeat within or across different scales of 

the same image at different locations [48,69]. Recurrence or redundancy from different 

scales of image makes it possible to build an internal image database though the input 
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image itself. As a result, without the assistance of an external training dataset, the high-

resolution image details can be recovered through these self-samplers.  

The idea of recovering high-resolution image details by using self-similarity examples 

from the image itself was first proposed by Glasner et al. [11], it does not need any prior 

sample data. Given an input LR image I0, first construct a set of image pyramid {I-1, I-

2,…, I-n }, where I-i is a blurred and downscaled version of input image I0. Image I-i is 

generated from image I0 by: 

       𝐼!! = (𝐼 ∗ 𝐵!) ↓!"                                          (2.1). 

where,  

Bi is Gaussian blurring operator. 

↓!" is down-sampling operator with downscale factor setting to i. 

Then divide the input image I0 into small patches of size n*n. Since image patch 

recurrence exists across different scales, for each image patch, a similar image patch 

can be found from the down-sampled image I-i (i = 1, 2 …, n). The corresponding HR 

version of the image patch from image I0 will be used to recover the high-resolution 

details. As shown in figure 4, for the image patch in light blue from the input image I0, a 

similar image patch (marked in the dark blue box) was found from the image pyramid I-2 

by using nearest neighbor searching. The image patch in I-2 is generated by the image 

patch (marked by the dark blue box) from image I0 by using a blurring operator and 

downscaling operator. The HR image patch marked in the dark blue box from image I0 
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contains the missing details, which can be used to recover the HR details for the image 

patch marked in light blue. The same is true for the image patch in the light purple box; 

the nearest neighbor (marked in the dark purple box) is found from the down-sampled 

image I-n. the corresponding HR version image patch from image I0 will be used to 

recover the high frequency details of the image patch in light purple.  

The self-similarity based image SR algorithm is very similar to the traditional example-

based image SR algorithm. The only difference is instead of searching through external 

training data for a similar low-resolution/high-resolution image patch pair, the self-

similarity based SR algorithm searches across different scales of the image itself at 

different locations. The relationship between the high-resolution image patch and low-

resolution image patch are learned from the image itself. This method can preserve 

edge sharpness when several recurrences exist, since the internal database generated 

through itself contains more relevant image information. However, it does not always 

guarantee redundancy for each of the image patches; as a result, the quality of the 

high-resolution image is not guaranteed. 
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Figure 4: Architecture of self-similarity based SR algorithm [11] 

Later, Freedman and Fattal [10] extended their example-based image SR algorithm with 

self-similarity. Their research shows that image patch recurrence tends to happen within 

a local neighborhood, and it can produce good high-resolution results if the up scaling 

factor is small. Based on those observations, they accelerated the computation cost by 

only searching the local spatial neighborhood across different scales for the best-

matched image patch. The similarity between image patches is calculated by traditional 

L2 distance.  

However, some limitations exist for the self-similarity based SR algorithm. One limitation 
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of self-similarity based SR algorithm is that the accuracy of finding the best-matched 

image patch is relevant to or depends on the size of image patch. When the size is 

small, little image information is contained in the image patch, which will lead to a lower 

probability of finding the best matched image patch accurately. However, if the size of 

the image patch is too big, it will result in heavy computation cost, so we have to 

leverage the computation cost and accuracy and choose the proper image patch size. 

Another limitation for the self-similarity base SR algorithm is that, the number of self-

samplers learned from different scales of image itself is small. Thus, for image patches 

that contain complex texture such as hair, fur, tree leaves, the algorithm is less likely to 

recover fine details and image patches with those types of textures tend to generate 

over-smoothed HR results [36].  

In order to overcome the limitations mentioned above, Singh et al. [36] proposed a sub-

band self-similarity SR algorithm. Figure 5 shows the framework of this method. 

 

Figure 5: Framework of Sub-Band self-similarity SR algorithm [36]. I0 is the given input 

image. Divide image I0 into small sub-bands B0
i, i=1... K.  For each patch of the given 

sub-band, find the best-matched patch in the down-sampled image sub-band. The 

corresponding patch in B0
i will be used as a HR prior. This patch is used to recover the 
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missing HR details. For the patch shown in blue, this algorithm allows for its various 

sub-bands to find the match image patches in different spatial locations independently.  

Given an input LR image I0, Singh [36] decomposed image I0 into K small sub-bands 

𝐵
!

!

! !!

!

 and recovered the high-resolution details of each sub-band separately through 

the following steps: 

1. For each sub-band B0
j, generates its down-sampled version of the sub-band by  

       𝐵
!!

!
=  {𝐵

!

!
∗ 𝑓!"#} ↓             (2.2). 

where 

fpsf is a point spread function  

↓ is down-sampling operator. 

2. Divide sub-band B0
j into small image patches, and create an internal LR-HR 

image patches database for all the image patches.  

3. For each image patch P in sub-band image B0
j, find its first k nearest neighbors 

from the internal database generated using image patches from the same sub-

band. The corresponding k HR image patches will be used to recover the HR 

details of image patch P. Repeat this step for all the image patches in order to 

generate the HR version of the sub-band image B0
j. 

4. Combine all those HR sub-bands to reconstruct the HR image I0
h of the given 

input image I0.  
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5. Perform a back-projection operation in order to make the HR image consistent 

with the original input image. The back-projection function is defined as: 

    𝐽(𝐼!)  =  (𝐼! ∗ 𝑓!"#) ↓ −𝐼!
!

!

         (2.3). 

The optimal solution of equation 2.3 can be calculated by using gradient decent 

iteration with I0
h from step 4 as the initial value.  

Given that the number of recurrence for each image patch is limited, it cannot be 

guaranteed that there exist sufficient numbers of similar image patches from the image 

itself. As a result, the performance of the self-similarity based SR algorithm is not stable. 

In order to overcome this problem, we expand the internal database by using image 

patches from different scales of image itself. Huang [1] applied geometric transformation 

to each image patch when searching for the best-matched image patch. Given an input 

LR image I, the main steps to recover its high-resolution image using Huang’s approach 

are as follows:  

1. Blur and down sample the input image to get its low resolution images I-1, I-2, …, 

I-k at different down scales.  

2. Divide the input image I into small patches P1, P2,…Pn. For each patch P in 

image I, find the best-matched patch Q in the down-sampled image I-I, where Q 

is the nearest neighbor of P after applying geometric transformation matrix T.  
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3. Extract the corresponding HR version of Q from the original input image I, which 

is QH. Use the inverse of transformation matrix T to obtain the HR version of P 

from QH. 

                                                                       PH = T-1QH                                               (2.4). 

4. Repeat steps 2 and 3 for all input image patches to generate the HR image IH.  

5. In order to make the HR image consistent with the original input image, run back-

projection iteratively in order to deliver optimal results. 

So far, we have introduced several state-of-the-art single image super-resolution 

algorithms. Because of the limitations we discussed above, it is impossible to always 

generate good HR image results for all types of input image using a particular image 

super-resolution algorithm. The performance of example-based SR algorithms always 

relies on the similarity between the testing image texture and the training dataset. It is 

impossible to cover all image texture cases in the training dataset, because the huge 

set of the training dataset will result in super heavy computation when searching for the 

nearest neighbor, and the performance of the method for recovering high-resolution 

image details from self-exemplars is also not reliable. Such methods can deliver poor 

high-resolution results if there is not a sufficient number of image patches that reappear 

at different locations in the downscaled image. What’s more, those self-similarity based 

SR methods will not be able to recover the high-resolution details for image patches 

with complex structure.   
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Given the limitation of each type of single image SR algorithm, we propose to take the 

advantage of each type of SR algorithm, and combine those two types of SR algorithm. 

Our goal is to better recover the HR details by using both the internal database and 

external training dataset.  
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CHAPTER 3 

PROPOSED SINGLE IMAGE SUPER-RESOLUTION METHODOLOGY  

It is impossible to improve image resolution by overcoming the Nyquist limit through a 

single image itself. The high-resolution details must be provided from elsewhere. 

Example-based SR algorithms learn the relationship between high-resolution images 

and low-resolution images from training dataset. Freeman et al. [12] used Markov 

Random Field (MRF) to model the relationship between LR and HR image patch pairs, 

and used Belief Propagation to generate the missing high-resolution details. Tappen et 

al. [39, 40] suggested to learn the high-resolution image prior through natural image 

statistics, and improve high-resolution quality on the image edge. Self-similarity based 

SR algorithms are based on the research result that image texture tends to recur within 

or across different scales of the same image itself, so instead of learning the 

relationship between HR and LR image pairs through an external database, self-

similarity based algorithms build an internal database from an image itself.  

3.1 Overview of Proposed SR Algorithm 

In this section, we will first describe the overview of our proposed scheme. Then we will 

describe details of the self-similarity SR algorithm and example–based SR algorithm 

that are adopted in our proposed method. 
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Figure 6: Framework of Proposed Single Image Super-Resolution 

The framework of our proposed method is shown in figure 6. The main steps are as 

follows: 

1. Segment input LR image I into multiple regions based on image content. For 

example, divide image I into two regions R1 and R2. 

2. Apply self-similarity algorithm [1] to generate the HR image Ih1 for image region R1, 

and apply example-based algorithm [2] to reconstruct HR image Ih2 for region R2.  

3. Combine Ih1 and Ih2 to get the estimated HR image Ih(0). 

4. In order to satisfy the global reconstruction constraint, we need to refine Ih(0) 

iteratively using back projection as follows [2, 36, 37]: 

                      𝐼
! (!!!) = 𝐼!(!) + 𝜆![𝐻

!
𝑆
!
𝐼 − 𝑆𝐻𝐼! ! + 𝜆!(𝐼! ! − 𝐼!(!))]                      (3.1). 
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where 

𝐼!(!) is the HR image after the t-th iteration.  

S is the down-sampling operator. 

 H is the blurring filter, such that I = SHIh. 

In the image pre-processing step, we segment the image into multiple regions, and 

classify those regions based on the image content in that region. In order to choose the 

appropriate SR approach for each image region, we quantitatively compare the 

performance of two state-of-the-art super-resolution algorithms (example-based and 

self-similarity based SR algorithms) on a variety of real world image textures, which 

include faces, animals, architecture, and nature scenes. We tested 100 natural scene 

images, taken from the Berkeley segmentation dataset and 100 urban images that 

contain urban and architectural scenes. The purpose of this evaluation is to identify 

which types of image texture’s high-resolution details can be successfully recovered 

using the self-similarity based approach and for which types of image texture, a high-

resolution image can be better recovered by utilizing example-based super-resolution 

algorithm.  

Our evaluation shows the self-similarity based SR algorithm always outperforms the 

example-based SR algorithm on urban architectures, animals, and insects while  the 

example-based SR algorithm generates more natural looking faces, trees, flowers, and 

grasses. For image patches containing tree leaves and grasses, it is hard to accurately 

find the best-matched patch from an image itself within or across different scales. It is 
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because the structures of grass and tree leaves are irregular; it is hard to estimate a 

proper geometric transformation. As a result, we are not guaranteed to find the right 

nearest neighbor that can provide high-resolution details. In the high-resolution image 

reconstruction step, our proposed SR method refers to the evaluation result in order to 

choose the appropriate SR algorithm for each image region.  

The purpose of step 4 is to force the reconstructed HR image to be consistent with the 

input LR image [2]. The final HR results can be optimized by [2, 36]: 

      𝐼!
∗
= arg𝑚𝑖𝑛 𝜆!!

𝐼! ! − 𝐼!(!)
!

!

+ 𝜆! 𝐼 − 𝑆𝐻𝐼!(!)
!

!

                      (3.2). 

The optimal solution of equation 3.2 can be calculated by using the gradient decent 

algorithm [113]. In order to find the local minimum solution, we can update Ih(t) iteratively 

through equation 3.3: 

   𝐼
! (!!!) = 𝐼!(!) + 𝜆![𝐻

!
𝑆
!
𝐼 − 𝑆𝐻𝐼! ! + 𝜆!(𝐼! ! − 𝐼!(!))]                           (3.3). 

where,  

Ih(t)  is the HR results after the t-th update.  

𝜆! and 𝜆! are two parameters that control how fast it converges. With proper selection of 

these two parameters, the local optimal solution will also lead to the global optimal 

solution. 
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(a) 

(b) 

Figure 7: Divide Image into Small Regions (a) Original image to be segmented, (b) 

image segmented into two regions based on textural information. 

As shown in figure 7, we divide the input image into two regions. The region containing 

a horse is region R1, and the other part, which contains trees and grasses, is region R2. 

We choose different super-resolution methods to recover the high-resolution details for 



30 
	

region R1 and region R2. We apply a self-similarity based SR approach to generate the 

high-resolution image for image region R1, and utilize an example-based SR algorithm 

to generate the high-resolution image for image region R2. Since the two regions utilize 

different SR algorithms to reconstruct their high-resolution image, in order to avoid 

unnecessary artifacts around the boundary, and be consistent with the original input 

image. We need to refine the result by iteratively updating the high-resolution image  

using equation 3.3. The updating will stop when it converges. The final optimal solution 

will be the target high-resolution result.  

3.2 Image Pre-processing 

Our research is focused on recovering a high-resolution image; we assume the input 

image is segmented based on textural information and the properly labeled in the pre-

processing phase. Many recent works on region-based image segmentation [107,108, 

110] perform remarkably well. In implementation, we used a multi-class image 

segmentation tool provided by the Darwin software library [109] to segment and label 

the regions.  

There are two main goals in image segmentation: 

1. Decomposing an image into multiple regions based on image content 

information. 

2. Classifying and labeling each region.  
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The Darwin software library is implemented using an algorithm from [108,110]; the main 

steps of this algorithm are: 

1. Generate a segmentation dictionary Ω by running a mean-shift algorithm [111]; 

this dictionary will be referred to during region assignment or movement. 

2. Initialize each pixel in the image to one region in Rp ϵ {1, 2,…,K} by comparing 

with the labeled training data. 

3. Given current region assignment, propose to assign pixels to the new regions { 

Rp : p ∈ ω} ← r. 

4. Update the corresponding features and region appearance that was affected by 

the proposal assignment in step 3. 

5. Update the a priori location information vhz. 

6. Compute total energy E, which will be used to decide whether to accept the 

region update or not. If E < Emin, then accept the move and set Emin = E; 

otherwise, no change is needed. 

7. Repeat steps 3 to 6 until convergence.  

The energy function contains five terms used to determine which region the pixel 

belongs to. It can be defined as: 
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                                                                                                                                   (3.4). 

where 

𝜓!!
𝑣
!!  captures the a priori location in the scene. It is implemented using Log-

Gaussian. 

The term 𝜓
!

!"#
(𝑆! , 𝑣

!!)!  shows the likelihood to assign a region to different 

image classes. 

The term 𝜓
!"

!"#$
!,!  measures similarity between regions, and the contrast 

between boundaries. It encourages regions with similar content to merge into 

one region.  

The term 𝜓
!

!"#
(𝐶! , 𝑣

!!)!  measures the likelihood of a group of regions being 

assigned to a given object label. 

The term 𝜓!"
!"#"(𝐶! , 𝑆!)!,!  measures the relationship between objects and their 

background. 

In the image segmentation stage, the image would be segmented into different regions 

based on textural information: tree, road, face, flower, building, mountain, human, grass, 

animal.  The image regions can be grouped into one of 21 classes compared with the 

21-class MSRC dataset [112]. 
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In our experiment, we will first evaluate the performance of the self-similarity based SR 

algorithm and example-based SR algorithm on different types of image regions.  We 

observe which types of image region can better generate HR details. For the other 

image regions, an external database will be used to recover the corresponding HR 

details.  In the following sections, we will detail the self-similarity based SR algorithm [1] 

and example-based SR algorithm [2].  

 

Figure 8: Example Results of Image Segmentation on The 21-Class MSRC Dataset 

[113]. Images in (a) and (c) are original images. (b) and (d) are results of segmented 

images into regions, and classified region into different group based on image content. 
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As shown in figure 8, the sample images are properly segmented into multiple regions 

based on image content; each region has been correctly labeled based on content. 

Input image 4(a) has been segmented into four regions: human, mountain, tree, and 

water. Image 4(b) has been segmented into five different regions: human, tree, road, 

building, and vehicle.  

3.3 Self-Similarity Based Image Super-Resolution 

Research shows image patch texture tends to repeat within or across different scales of 

the same image at different locations [11]. This self-similarity within an image makes it 

possible to build an internal LR-HR image patch pairs database through input image 

itself and reconstruct high-resolution image details without using an external database. 

As shown in figure 9, image recurrence from different scales makes it possible to 

recover high-resolution details. 

In this section, we will briefly describe the self-similarity based algorithm developed by 

[1] that is used in our proposed method to generate the HR image. The main steps are 

as follows: 

1. Given an input LR image I, blur and down-sample the input image to get several 

low resolution images I-1, I-2, …, I-k at different scales.  

2. Divide input image I into small patches P1, P2,…Pn. 
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3. For each patch P in image I, use the PatchMatch algorithm [5] to find the best 

matched patch Q in down-sampled image I-I, where Q is the nearest neighbor of 

P after applying geometric transformation matrix T.  

4. Extract the corresponding HR version of Q from the original input image I, which 

is QH.  

5. Use the inverse of transformation matrix T to obtain the HR version of P from QH. 

                                                                       PH = T-1QH                                               (3.5). 

6. Repeat steps 3 to 5 for all input image patches; we can generate the HR image 

IH.  

7. At the end, run back-projection iteratively in order to satisfy the global 

reconstruction constraint. 



36 
	

 
(a) (b) (c) 

Figure 9: Image Patch Recurrence Across Different Scales of The Same Image. Images 

in (b) and (c) are smaller and downscaled version of the original image in (a). Image 

patch marked in solid red box in (a) reappears in image (c) at different location (marked 

in solid red box). The corresponding parent image patch (marked in dashed red box) 

from input image (a) could be used to generate the HR details. The same for image 

patch marked in green box.  

When searching for the best matched patches, affine transformation, shearing or 

rotation operation is applied to the image patch. The use of the transformed operation 

results in lower matching errors, and can predict the HR details more accurately. Since 

the PatchMatch algorithm [5] is well known for finding the correspondence between 

image patches in a short time, the method is used to quickly estimate the transformation 

function between image patches.  
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Figure 10: Self-Similarity Based Single Image Super-Resolution 

As shown in figure 10, given a LR input image I, blur it using Gaussian low pass filter 

and down-sample it with different scale factors to generate the low frequency images I-1, 

…, I-n. Image I are divided into small patches Pi of size a*a. For image patch P1 in I, the 

best match patch (Q1) is found in lower-resolution images (I−2) by using the algorithm 

described in the following section. For the found image patch (Q1), a corresponding 

region (R1) in image I will be used to generate the corresponding HR version of patch 

P1. Similarly, for image patch P2, R2 will be used to recover the HR image patch of P2. A 

proper size of the image patch plays an important role in recovering the HR image 

details. Since the image information in the small image patch is limited; as a result, it will 

affect the performance of finding the best-matched image patch. On the other hand, if 
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we choose a large size for the image patch, the computation cost will be very 

expensive. Thus, in implementation, we need to tune the size in order to balance the 

computation cost and match accuracy. 

The core of the self-similarity based image super-resolution algorithm is to find the best-

matched patch from the down-sampled image patches accurately. Since the number of 

similar image patches within an image itself is limited. Simply apply transition cannot 

guarantee to find the nearest neighbor accurately. In order to expand the number of 

repeating image patches, geometric transformation is used when searching for the best-

matched patch. The corresponding image patch from the input image will be used to 

recover the HR details. In this section, we will describe the detail of best-matched patch 

algorithm.  

The self-similarity based super-resolution algorithm built an internal LR-HR image patch 

pairs within and across scales of the input LR image itself. The size of the internal 

database is much smaller than the external database used in the example-based super-

resolution algorithm; however, this internal database contains more similar image patch 

pairs. The self-similarity based super-resolution algorithm is based on the observation 

that image patches repeat inside an image at different locations, both within the same 

scale and across different image scales [1]. For each image patch, in order to recover 

the fine details accurately, enough recurrence must exist across different scales. 

Transformation operation, such as rotation, shearing mapping, scaling expands the 

chance of recurrence.  
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Given an input low resolution image I, we divide it into small image patches Pi of size 

a*a, i=1, 2… m. For each image patch Pi centered at position (xi, yi), find the best match 

patch Q from down-sampled images. Since the internal image patch pairs database is 

small, it may not generate a satisfactory result by simply searching for the most similar 

patch from sub-image patches. It is possible the image patch Q’ from the down-sampled 

image becomes the best match patch after applying the transformation operation, such 

as rotation, scaling operation, or shearing mapping. In such a case, instead of simply 

comparing Pi with every patch Q from down-sampled images, and computing the 

similarity between Pi and Q, we apply a translation operation T to Q and compare the 

similarity between P and TQ. The best matched patch can be found by solving: 

                                  min !!
𝐸!"" 𝑖,𝜃! + 𝐸!"#$% 𝑖,𝜃! + 𝐸!"#$% 𝑖,𝜃!

!

!!!                         (3.6). 

where,  

θi is a set of parameters used to build the transformation matrix Ti. 

Eapp measures the similarity between Pi and the best match patch Q from down 

sampled images after applying transformation matrix Ti. 

Eplane is plane compatibility cost, which encourages us to search for multiple 

planes in order to find the best match patch. 

Escale is scale cost, which encourages to search the best match patch from the 

down-sampled image with a larger scaling factor.  
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The similarity cost Eapp is measured by  

                                                        𝐸!""(𝑖,𝜃!) = 𝑤!(𝑃! − 𝑄(𝑖,𝜃!)) !

!                         (3.7). 

where,  

wi is the Gaussian weights. 

𝑄(𝑖,𝜃!) is a transformation operation to the image patch from down-sampled 

image I-i. For example, Qi is an image patch from the down-sampled image after 

applying  𝑄(𝑖,𝜃!) operation; image patch Qi becomes Ti Qi. Instead of measuring 

the similarity between Pi and Qi straightly, the similarity cost Eapp measures the 

similarity between Pi and Ti Qi. 

The transformation matrix Ti is defined as [1]: 

                                               Ti (θi) = H(i, si
x, si

y, mi) S(si
s, si

θ) A(si
α, si

β)                     (3.8). 

where  

S(.) is the scaling and rotation transformation 

                                                    𝑆(𝑠!
!
,  𝑠!

!) = 𝑠!
!
𝑅(𝑠!

!) 0

0 1
                                        (3.9). 

Here, 𝑠!
! is a scaling factor, and 𝑅(𝑠!

!) is a rotation operation. 

A(.) is the shearing mapping transformation 
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                                                     𝐴(𝑠!
! ,  𝑠

!

!
) =

1 𝑠!
!

0

𝑠
!

!
1 0

0 0 1

                                             (3.10). 

H(.) is the perspective deformation given the position of Pi from input image and 

the matching patch Qi from down-sampled images.  

As shown in figure 11, for image patch Q1 marked in the red box in (a), the best-

matched patch P1 (marked in the green box) is from the down-sampled image (b). 

Image patch P1 is similar to Q1 after applying the scaling transformation. For image 

patch P2 (marked in the blue box), without any transformation operation, the difference 

between image patches P2 from down-sampled image (b) to Q1 is very big. But after 

applying the shearing mapping and rotation operation, the translated version of P2 

becomes the nearest neighbor of Q1.   

As figure 11 illustrates, transformation matrix T expands the internal LR-HR image 

patches database space and makes it possible to find the best matched image patch 

accurately.  
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(a) (b) (c) (d) 

Figure 11: Example Demonstrating Transformation Operation.  (a). original input image, 

(b) down-sampled image, (c) 2x HR image patch recovered by using green box, (d) 2x 

HR image patch recovered by using blue box 

The example in figure 11 demonstrates the reason why we need to apply the 

transformation operation in best-matched patch search. For the image patch P in the 

red box from the LR input image, in order to construct its 2x up-scaling HR image patch. 

Without using the transformation operation, we compare image patch P with all image 

patches from the down-samples image. By comparing the similarity between those 

image patches, we found the image patch in the green box is the nearest neighbor of 

image patch P. In such case, the corresponding image patch of the green box from 

input image I is used to recover the HR detail of image patch P. The image in figure 7(c) 

is the 2x HR image of image patch P recovered by using the image patch in the green 

box. However, if we apply a different affine transformation operation to the image 

patches from down-sampled while searching for the nearest neighbor, we found the 

image patches in blue box are similar to image patch after applying affine 

transformation. In such case, the corresponding image patch of the blue box from input 

image will be used to generate the HR image patch of P. As we can see, the 

corresponding image patch of the blue box contains more detail than the image patch 
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from the green box. As a result, the 2x HR image patch generated by using  the image 

patch in the blue box recovers more HR details. The image in figure 7(d) is the 2x HR 

image of image patch P recovered by using the image patch in the blue box. This 

example shows why using the transformed version of the image patch from the down-

sampled image when comparing similarities between image patches is useful in 

estimating the HR details. 

The compatibility cost Eplane is used to encourage search over different plane label:  

                                       Eplane =-λplanelog(Pr[mi|(si
x, si

y)]xPr[mi|(ti
x, ti

y)])                  (3.11). 

where,   

Pr[mi|(x, y)] is the posterior probability that pixel (x,y) belongs to plane mi. 

The purpose of scale cost Escale is to avoid matching a patch to itself in the down-

sampled image.  

                                                 Escale = λscale max(0, SRF - Scale(Ti))                      (3.12). 

where 

SRF is the desired SR factor.   

Scale(.) is the scale estimation of the source patch using Ti 
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                              𝑠𝑐𝑎𝑙𝑒(𝑇!) =  𝑑𝑒𝑡([
𝑇!,! − 𝑇!,!𝑇!,! 𝑇!,! − 𝑇!,!𝑇!,!

𝑇!,! − 𝑇!,!𝑇!,! 𝑇!,! − 𝑇!,!𝑇!,!
])                      (3.13). 

In implementation, seven types of geometric transformations were estimated over all 

target image patches in order to find the best-matched patch. The geometric 

transformations include translations, scaling, shearing, rotation, homograph, non-linear 

and perspective deformation. There are three main steps [1]: 

1. Initialization 

Research results from [106, 107] conclude that a good matched image texture 

can always be found in the local neighborhood. Based on this statement, the 

nearest neighbor field form scale equal to the desired SR magnified factor will be 

used for initialization. This strategy will result in faster convergence.  

2. Propagation 

Use shearing, homography, scaling and rotation transformation at different plane 

indexes to widely spread good match neighbors.  

3. Randomization 

Perform randomized search to refine the current solution at the end of each 

iteration. In the meantime, search for the best transformation for the input image 

patches, and reduce the matching errors between the input patch and the best-

matched image patch.  
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The process to estimate the geometric transformations between two image patches 

involves heavy computation. Seven different types of geometric transformation need to 

be estimated in order to map and measure the difference between the target image 

patch and the source image patch. The PatchMatch algorithm is employed in order to 

speed up the mapping process. Figure 12 demonstrates the geometric transformations 

involved in the matching process.  

 
                       (a)                                        (b)                                             (c) 

                 (d)                                               (e)                                               (f) 

Figure 12: Different Types of Geometric Transformations Applied to Target Image 

Patch. (a) Translation, (b) Shearing, (c) Scaling, (d) Homography, (e) Rotation, and (f) 

non-linear transformation                                                                                                                             

Examples in figure 12 demonstrate the results after applying each geometric 

transformation. The objects in blue are the original image shape, and the objects in red 
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are the results after applying the corresponding geometric transformation. As it shows, 

translation is simply a moving operation, the shape and size of the original object will 

not change, and Shearing, scaling, and homography are linear transformations. Those 

operations will distort the shape of the original objects, but the number of edges will 

keep the same after those transformations. Rotation operation does not change the 

shape and size of the original object as well. As we can see from figure 8(f), the shape, 

size and edge will change after non-linear transformation. The purpose of employing 

those geometric transformations to the image patch is to enlarge the searching 

database.  

3.4 Example Based Image Super-Resolution 

Let X and Y denote the HR and LR images respectively. The example-based super 

resolution algorithm reconstructs the HR image by satisfying the following constraint [2]: 

                                                                   𝑌 =  𝐷!𝐻𝑋                                   (3.14). 

where  

Ds is the down-sampling operator. 

H is the blurring filter.  

Example based super resolution methods need a training database, which contains a 

set of LR-HR image patch pairs. The core of example based methods is to learn the 
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relationships between LR and HR image patches {xi, yi} from the database, then apply 

the relationship to estimate the HR image details for the target image patch.  

The nearest neighbor-based methods [12, 13, 17, 25] use the image patch pairs 

directly, find the first or k nearest neighbors, and the corresponding HR image patches 

will be used to recover the HR image details for the LR input image patch.  Freeman et 

al. [12] generated the training dataset using a set of high-resolution images through two 

steps: 1) generate the corresponding LR images by applying blurring and subsample 

operation to the HR images; 2) break the images into small patches, and store the high-

resolution image patches and their corresponding low-resolution image patches in the 

database. A Markov network is then used to model the relationship between LR image 

patches and HR image patches. As shown in figure 13, the circles indicate network 

nodes; yi at each node represents the observed low-resolution image patch, and xi 

represents the corresponding high-resolution image patch that we are going to estimate. 

The lines represent statistical dependencies between nodes. The Markov network 

probability is defined as: 

             𝑃 𝑥 𝑦 =
!

!
𝜓!"(𝑥! , 𝑥!)(!,!) (𝑥! ,𝑦!)!                               

                                s.t.  𝜓!" 𝑥! , 𝑥! = exp (−
!!"(!!,!!)

!!!
)                              (3.15). 

where,  

z is a constant, which is used for normalization.  
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𝑑!" 𝑥! , 𝑥!  measures the difference between image patch xi and xj. 

The corresponding high-resolution image patches that can maximize the Markov 

network probability will be used to reconstruct the high-resolution image [12].  

In order to produce good results in general, this type of method requires a huge training 

database which includes as many image textures as possible; this will result in heavy 

computation cost.  

 

Figure 13: Markov Network Model for The Super-Resolution Problem [12] 

Another more effective way is sparse-coding based methods. The LR-HR image patch 

pairs database is trained to generate an over complete dictionary. Each LR image patch 

can be represented by a linear combination of vectors from the over complete dictionary 

[2]. This sparse representation vector will be used to generate the HR image patch. One 

limitation of those methods is that the performance heavily depends on the similarity 

between the training image patches in the database and testing image patch.  
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We will briefly present the sparse coding based SR method proposed by [2] in the 

following section. 

3.4.1 Sparse Coding Based SR Method 

Recently sparse representation has drawn a lot of interest in computer vision and image 

processing. It has been widely used in image processing, such as image denoising, 

object recognition, and restoration [3, 26, 27].  Sparse coding based SR approach is 

motivated by the research results from Compressed sensing [3], which conclude that 

the linear representation for high-resolution signals can be successfully reconstructed 

from their low-dimensional projections [2, 3].  

Let X and Y denote the HR and LR images respectively; {xi} are image patches of HR 

images, and {yi} are corresponding LR image patches. The basic idea of the sparse 

coding algorithm [2] is that each image patch yi can be represented as  

                                                            𝑦! ≐ 𝐿𝑥! = 𝐿𝐷𝛼                                         (3.16). 

where  

α is a sparse representation vector with few nonzero entries.  

D = [d1,….,dk] ∈ ℝ mxk  is an over-complete dictionary learned from training image 

examples; each element di in the dictionary is a basis vector. We will introduce 

the over-complete dictionary training process in the section follows.  
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Research shows the sparsest solution α can be sparse and unique under certain 

conditions, and if D satisfies restricted isometry property at a certain level, the linear 

representation of a HR image patch can be accurately reconstructed from the 

corresponding low-resolution image patch [ 2, 28].  

For the sparse coding based SR method proposed by [2], there are two constraints it 

has to satisfy:  

1. Reconstruction constraint: the reconstructed high-resolution image X and the 

corresponding input low-resolution image Y should satisfy: 

                                                                    Y = SHX                                                (3.17). 

where,  

S is subsampling operation. 

H is blurring operation. 

2. Sparsity constraint: each low-resolution and high-resolution image patch pair 

should have the same sparse representation. Two over-complete dictionaries are 

trained from the LR-HR image patch database using a tool developed by [4]. Dh 

is learned from HR image patches {xi}, and Dl is trained using LR image patches 

{yi} simultaneously by enforcing proper constraint. Each image patch yi from low-

resolution image Y can be described by a linear sparse combination of dictionary 

Dl: 
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𝑦! ≈ 𝐷!𝛼 

                                                        s.t. 𝛼 ! ≪ K,αϵℝ!                                            (3.18). 

The sparse representation, which is calculated from low-resolution image patch yi 

could be used to recover the corresponding high-resolution image patch xi by 

using the high-resolution dictionary Dh: 

                                                                𝑥! ≈ 𝐷!𝛼                                          (3.19). 

The main steps of the sparse coding based super-resolution algorithm [2] are as 

follows: 

1. Use LR and HR image patch pairs to train over complete dictionary Dh and Dl. 

2. Divide the input LR image Y into small patches of size n*n with 1-pixel overlap. 

For each patch yi, solve the optimization problem  

                                                       min! 𝐷𝛼 − 𝑦𝚤
!

!

+ λ 𝛼 !                                  (3.20). 

3. Once the optimal solution α* from step 2 has been calculated, the HR patch can 

be obtained by xi=Dh α* 

4. Repeat step 2 and 3 for all the patches to generate the HR image X0. 

5. Optimize X0 in order to meet the global reconstruction constraint. 
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                                      𝑋∗ = argmin! 𝑆𝐻𝑋 − 𝑌 !

!
+ 𝑐 𝑋 − 𝑋! !

!                            (3.21). 

X* is the final super-resolution version of input image Y.  

In dictionary training step, instead of using absolute intensity values, each image patch 

subtracts its mean pixel value. By doing this, the LR and HR image patches used for 

dictionary training represent image texture. In step 2, the input LR image patch also 

needs to subtract its mean pixel value before calculating the optimal sparse 

representation α. After generating the HR image patch from step 3, the mean pixel 

value will be added back to reconstruct the HR absolute intensity [2].  

Dh and Dl are jointly trained in order to have the same sparse coefficient α for each LR 

and HR image patch pair. The sparse representation α for LR image patch yi using [2] 

                                                                     yi = Dl α                                                (3.22). 

 can be used to recover the corresponding HR image patch xi by  

                                                                     xi = Dh α                                               (3.23). 

For each input LR patch yi, the parse representation of yi can be calculated as:  

𝑚𝑖𝑛 𝑎 ! 

                                                              𝑠. 𝑡.   𝐹𝐷!𝑎 − 𝐹𝑦 !

!
≤ 𝜖                               (3.24). 
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where, 

F is a function that extracts features from image patch. F controls how closely the 

sparse representation approximate y. In practice, F can be one of the following filters 

[2]: 

1. High-pass filter, which is used to extract the edge and high frequency content 

from the LR image patch.  

2. Gaussian derivative filter, which is used to extract contour information from the 

LR image patch. 

3. First and second order gradient, which is used to extract the derivative 

information.  F is composed of four 1-D filters: 

f1 = [-1, 0,1], 

f2  =  f1
T 

f3 = [1, 0, -2, 0, 1], 

f4  =  f3
T                      (3.25). 

Equation 3.24 is a NP-hard problem; it is very difficult to get the optimal solution. 

According to research in [29, 30], minimizing the L1 norm can also produce an optimal 

sparse solution. 

In order to simplify the problem, we solve equation 3.26 instead: 

                                            min! 𝐹𝐷!𝛼 − 𝐹𝑦! !

!
+ λ 𝛼 !                             (3.26). 

where,  
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F is a feature extraction function, which is the same as equation 3.25. 

Lagrange multiplier λ is used to balance the sparsity of 𝛼  and reconstruction 

error. 

In order to enforce the compatibility between adjacent image patches, equation 3.26 is 

modified as [2] 

min! 𝐷𝛼 − 𝑦𝚤
!

!

+ λ 𝛼 !          

         s.t.  𝐷 = [
𝐹𝐷!

𝛽𝑃𝐷!
] 

                                                 𝑦 = [
𝐹𝑦

𝛽𝜔
]                                                                 (3.27). 

β is a tradeoff control parameter, which is set to be 1 in experiment. 

P is the overlap region between current image patch xi and previously 

reconstructed image patch xi-1.  

𝜔 holds the values of xi-1 on the overlap region. 

3.4.2 Over-Complete Dictionary Training  

Before describing how to train an over-complete dictionary, let’s introduce what is over-

complete first. If every element in Banach space X can be approximated arbitrarily well 

in norm by linear combinations of elements in {vi} iϵK, then the system {vi} iϵK is 
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complete. If the system is still complete after removing a vj, then the system {vi} iϵK is 

over-complete [26, 27].  

In this section, we will describe how to train the over-complete dictionary using the K-

SVD algorithm [33]. The purpose of this algorithm is to generate an over-complete 

dictionary matrix DϵℝnxK, which contains K atoms, {𝑑!}!!!
! . Such a dictionary matrix can 

lead to the best possible presentations for each image patch with strict sparsity 

constraints.  

Given a set of sample image patches X = {x1, x2, ..., xk}, the over-complete dictionary is 

trained by the following model [2]: 

min
!,!

𝑋 − 𝐷𝑎 !

!  

                                                   S.t., ∀𝑖, 𝑎! ! ≤ 𝑇! , i=1,2,…,M                              (3.28). 

where, 

X = {x1, x2, ..., xm}∈ ℝ!∗! is the training sample image patches.  

𝐷 ∈ ℝ
!∗! is a dictionary matrix needed to be optimized. 

𝑎 is the sparse representation matrix. 

There are two main steps for the K –SVD algorithm [33]: 

1. Fix dictionary D, find the best sparse representation matrix 𝑎. 
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In this stage, the optimization problem becomes finding the optimal sparse 

representations with coefficients summarized in the matrix 𝑎: 

     𝑋 − 𝐷𝑎 !

!
=  𝑥! − 𝐷𝑎! !

!!

!!!                                      (3.29). 

        The problem in equation 2.28 becomes: 

min
!!

𝑥! − 𝐷𝑎! !

! 

                  s.t., ∀𝑖, 𝑎! ! ≤ 𝑇! , i = 1,2,…,M                                (3.30). 

2. Given the optimal representation matrix 𝑎 from step 1, update each column of D.  

In this step, both representation matrix 𝑎 and dictionary D are fixed; only update one 

column dk in dictionary D each time. The problem in this step becomes: 

   𝑋 − 𝐷𝑎 !

!
= 𝑋 − 𝑑!𝑎!

!!

!!!
!

!

 

 

                  = (𝑋 − 𝑑!𝑎!
!
)− 𝑑!𝑎!

!

!!! !

!

 

                                                              = 𝐸! − 𝑑!𝑎!
!

!

!

                                         (3.31). 

where 

𝑎!
!  is the kth row in matrix 𝑎. 
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Ek is the error matrix for all the terms except the kth term. 

For the problem in equation 3.31, K-1terms in dictionary D are fixed; we only need to 

find the optimal solution for the kth term.   

In practice, equation 3.30 is a NP-hard problem; it is computationally difficult to find the 

exact solution. One easier way is to approximate a solution to the following formulation: 

𝐷 =  min
!,!

𝑋 − 𝐷𝑎 !

!
+ 𝜆 𝑎 ! 

                               𝑠. 𝑡. 𝐷! !

!
≤ 1, 𝑖 = 1,2,… ,𝐾                           (3.32). 

As we see, the problem described in equation 3.32 is a convex problem; there are two 

variables D and a. It is impossible to keep both variables convex at the same. In order to 

find the optimal solution, we need to update one variable and keep the other variable 

fixed each time. The approximate K-SVD algorithm [33] to find the optimal over-

complete dictionary is: 

Input: a set of sample image patches X = {x1, x2, ..., xn} 

1. Initialize D = D0, with each column unit normalized 

2. Fixed D, optimize the sparse representation matrix 𝑎 by solving  

𝑎 =  min
!

𝑋 − 𝐷𝑎 !

!
+ 𝜆 𝑎 !                (3.33). 

3. Using 𝑎 from step 2, update D column by column by: 
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For all k = 1, 2, …, K 

• Compute the overall error matrix Ek by: 

𝐸! = 𝑋 − 𝑑!𝑎!
!

!!!                                   (3.34). 

• Fix all the K-1 terms in the dictionary D, update dk and 𝑎!
!  by: 

     { dk, 𝑎!
!} = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐸! − 𝑑!𝑎!

!

!

!

 

s.t. 𝑑! ! = 1                                     (3.35). 

4. Repeat step 2 and step 3, alternately update sparse coding matrix and the 

dictionary until they converge. 

Output:  over-complete dictionary D.  

3.4.3 Joint Dictionary Training  

In the previous section, we mentioned that we need to add constraint to Dh and Dl, so 

that they can be guaranteed to have the same sparse coefficient α for each LR and HR 

image patch pair. Given the sample image patch pairs {X, Y}, where X = {x1, x2, ..., xn} 

are the set of high-resolution image patches and Y = {y1, y2, ..., yn} are the 

corresponding low-resolution image patches, in order to enforce Dh and Dl share the 

same sparse coefficient, instead of training Dh and Dl separately using the method 

discussed in over-complete dictionary training section, Yang et al. [2] suggested training 
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Dh and Dl  jointly by adding a constraint, which force the two over-complete dictionary to 

share the same spare representation. The problem can be defined as:  

 min
{!!,!!,!

!,!!}
 
1

2 
 { 𝑋 − 𝐷!𝑎

!
!

!
+ 𝜆 𝑎

!
!}+

1

2
{ 𝑌 − 𝐷!𝑎

!
!

!
+ 𝜆 𝑎

!
!} 

𝑠. 𝑡. 𝐷!(!)
!

!

≤ 1, 𝐷! !
!

!

≤ 1,𝑎! =  𝑎
! , 𝑖 = 1,2,… ,𝐾                     (3.36). 

which is equivalent to  

 min
{!!,!!,!}

 𝑋 − 𝐷!𝑎 !

!
+ 𝑌 − 𝐷!𝑎

!
!

!
+ 𝜆 𝑎 !} 

𝑠. 𝑡. 𝐷!(!)
!

!

≤ 1, 𝐷! !
!

!

≤ 1, 𝑖 = 1,2,… ,𝐾      (3.37). 

We can group the two reconstruction error terms together, letting  

𝑋! =

!

!
𝑋

!

!
𝑌

, 𝐷! =

!

!
𝐷!

!

!
𝐷!

                  (3.38). 

Then Eqn. 3.36 becomes: 

 min
{!!,!!,!}

𝑋! − 𝐷!𝑎 !

!
+ 𝜆(

!

!
+

!

!
) 𝑎 !      

s.t. 𝐷!(!)
!

!

≤ 1, 𝑖 = 1,2,… ,𝐾       (3.39).  
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The algorithm of joint dictionary training is similar to the algorithm discussed in the 

previous section. We still use the K-SVD algorithm to find the optimal solution. This 

time, there are three variables in the equation: Dh, Dl and a. Again, it is a convex 

problem; it is impossible to keep all the three variables convex at the same time, but we 

can update one variable each time. In order to find the optimal solution, we need to 

update one variable and keep the other two variables fixed each time. The main steps 

for reaching the optimal solution are as follows [2, 105]. 

Given a set of sample image patch pairs {X, Y}, X = {x1, x2, ..., xk}, and Y = {y1, y2, ..., 

yk}. X contains high-resolution image patches, and Y contains their corresponding low-

resolution image patches. 

1. Initialize Dh = Dh0 and Dl  = Dl0 with some random value.  

2. Fixed Dh and Dl, update 𝑎 by 

𝑎 =  min
{!}

𝑋! − 𝐷!𝑎 !

!
+ 𝜆(

!

!
+

!

!
) 𝑎 !                (3.40). 

3. Fixed Dl and 𝑎, update Dh by  

𝐷! =  min
{!!}

𝑋! − 𝐷!𝑎 !

!
+ 𝜆(

!

!
+

!

!
) 𝑎 !      (3.41). 

4. Fixed Dh and 𝑎, update Dl by  

𝐷! =  min
{!!}

𝑋! − 𝐷!𝑎 !

!
+ 𝜆(

!

!
+

!

!
) 𝑎 !                    (3.42). 
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5. Repeat step 2 to step 4, update Dh and Dl, and 𝑎 iteratively until convergence.  

Output the optimized solution of Dh and Dl 

The over-complete dictionaries Dh and Dl generated through the methods described 

above can be used to present the image information since the two dictionaries are 

trained with the constraint that both dictionaries share the same sparse representation 

for low-resolution image patch and its corresponding high-resolution image. As a result, 

for each LR image patch, we can calculate its sparse representation with respect to the 

over-complete dictionary Dl. This sparse representation will be used to recover the HR 

image details through the over-complete dictionary Dh. 

So far, we have described our proposed method for recovering the high-resolution 

image in detail. We use both objective and subjective methods to evaluate the 

performance of our proposed method. The subjective measurement is performed using 

our eyes. We demonstrated the HR results using our proposed method in section 4.  

The objective measurement is calculated using Peak Signal to Noise Ratio (PSNR), 

which is defined as: 

    𝑀𝑆𝐸 =  
[!(!,!)!!(!,!)]!!!

!∗!
      (3.43). 

    𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔!"(255 ∗ 255/𝑀𝑆𝐸)     (3.44). 

where 

M*N is the dimension of the image, and 
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MSE measures the mean square error between image X and Y 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

Quantitative evaluation has been conducted to compare the performance of the self-

similarity based SR algorithm with the example-based SR algorithm on a variety of 

image contents. The purpose of this evaluation is to identify which types of an image 

texture’s high-resolution details can be successfully recovered by using a self-similarity 

based approach and for which types of image texture, its high-resolution image can be 

better recovered by utilizing an example-based super-resolution algorithm.  

4.1 Comparison of Two Existing SR Algorithms 

In this section, we quantitatively compare the performance of two state-of-the-art super-

resolution algorithms (example-based and self-similarity based SR algorithms) on a 

variety of real world image textures, which include faces, animals, architecture, and 

nature scenes. The purpose of doing this is to evaluate the performance of example-

based and self-similarity based SR algorithms on different types of image content. Our 

proposed SR method will refer to the evaluation result in order to choose the 

appropriate SR algorithm for each image region.  

We tested 100 natural scene images taken from the Berkeley segmentation dataset, 

and 100 urban images that contain urban and architectural scenes. Figure 14 is an 

example of a human face with magnified factor 2. From the result, we can see that the 
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self-similarity method can successfully recover the HR details through the internal 

database generated from the LR input image itself.   

                                                         (a) (b) 
  

(c) (d) 

Figure 14: Results of The Girl Image Magnified by a Factor of 2. (a) LR input image, (b) 

ground truth HR image, (c) 2x HR image generated using self- similarity SR algorithm, 

(d) 2x HR image generated using example-based sparse coding SR algorithm 
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                                 (a) 

 

(b) 
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(c) 
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(d) 
 

Figure 15: Results of Image Lena Magnified by a Factor of 2 (a) LR input image, (b) 

ground truth HR image, (c) 2x HR image generated using self- similarity SR algorithm, 

(d) 2x HR image generated using example-based sparse coding SR algorithm 

Figure 15 is another example of a human face with magnified factor 2. From the result, 

we can see that the self-similarity method can successfully recover the HR details of the 

hat through the internal database generated from the LR input image itself. 
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                                 (a) 

 
(b) 
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(c) 

 
(d) 

 Figure 16:  Results of Flower Image Magnified by a Factor of 2 (a) LR input image, (b) 

ground truth HR image, (c) 2x HR image generated using self- similarity SR algorithm, 

(d) 2x HR image generated using example-based sparse coding SR algorithm 
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Figure 16 is an example of a natural scene with magnified factor 2. From the result, we 

can see that the self-similarity method can successfully recover HR details for the 

flowers and leaves through the internal database generated from the LR input image 

itself. 

Figures 14, 15, and 16 show super resolution results (2X) on the face and natural 

images.  From the result, we can see that when the magnified factor is small (equal to 

or less than 2), and the resolution of the testing image is good, the self-similarity method 

can successfully recover HR details without using the external database. From visual 

inspection, we cannot tell the difference between the high-resolution images recovered 

using the two SR approaches.  

Figure 17 shows the super-resolution result with a magnified factor of 4. The testing 

image is a down-sampled image of the testing image in figure 14. From the result, we 

can see a blocky effect from the face recovered using the self-similarity based method 

[1]; we also can see annoying artifacts around the hair area. The face recovered using 

the example-based algorithm [2] looks more natural and is less noisy.    
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                                                (a) (b) 

(c) (d) 

Figure 17: Results of Little Girl Magnified by a Factor of 4 (a) LR input image, (b) ground 

truth HR image, (c) 4x HR image generated using self- similarity SR algorithm, (d) 4x 

HR image generated using example-based sparse coding SR algorithm 
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              (a) 

 (b) 
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(c) 

Figure 18: Results of Image Lena Magnified by a Factor of 4 (a) LR input image, (b) 4x 

HR image generated using self- similarity SR algorithm, (c) 4x HR image generated 

using example-based sparse coding SR algorithm 

For the example shown in figure 18, self-similarity based algorithm generates 

comparable results with the example-based algorithm in most image areas, but for the 

decoration of the hat area, the example-based algorithm generates more natural looking 

details.  
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             (a) 

 
(b) 
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(c) 

Figure 19: Results of Flower Image Magnified by a Factor of 4 (a) LR input image, (b) 

4x HR image generated using self- similarity SR algorithm, (c) 4x HR image generated 

using example-based sparse coding SR algorithm. 

For the flower image shown in figure 19, the self-similarity based algorithm failed to 

recover the fine details of the flowers and leaves. We can see the petals are over 

smoothed and look unnatural in the recovered 4x HR image.   

In figures 17, 18, and 19, we show the 4x super resolution results for the same images. 

Comparing with examples in figures 14, 15, and 16, we use the same image with lower 

resolution as the input image. The LR input image is built by blurring and down 

sampling the original image at a scale of 4. For results in figure 17, we can see over 

smoothing on the girl’s face in the HR image recovered by the self-similarity algorithm 

while the example-based algorithm generates more natural looking details.  
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When the input LR image has good resolution quality, as the examples shown in figures 

14, 15, and 16, the self-similarity algorithm is able to generate fine, natural looking HR 

details, and preserve image sharpness. However, when the resolution of the input LR 

image is low, the self-similarity based algorithm performs slightly worse than the 

example-based algorithm.  

Table 1: Super-Resolution Quality Measurement on Examples In PSNR 

 Scale Little girl Lena Flower 

Self-similarity 
based SR [1] 

2x 35.6412 36.5361 33.0719 

4x 32.4178 31.4381 27.2028 

Example-
based SR [2] 

2x 35.6125 36.5054 33.2846 

4x 32.4851 31.5048 27.2319 

 

The figures compare the visual quality of high-resolution results using two state-of-the-

art algorithms, but since visual quality is subjective, each person may have a different 

standard. We compared the quality of the high-resolution image in terms of PSNR as 

well. From the comparison results of table 1, we can see that when the resolution of the 

input image is good, the self-similarity based SR algorithm [1] can produce a better or 

comparable high-resolution results[2], but when the resolution of the input image is 

poor, the self-similarity based SR algorithm performs slightly worse than the example-
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based SR algorithm because there is limited high-resolution information that can be 

found through the input image itself.  

 

   
(a) (b) (c) 

Figure 20: Results of Urban Architecture Magnified by a Factor of 4 (a) LR input image, 

(b) 4x HR image generated using self- similarity SR algorithm [1], (c) 4x HR image 

generated using example-based sparse coding SR algorithm [2]. 

Figure 20 shows an example of urban architecture. We cropped the HR images due to 

size and only show the area in the rectangular box. By comparing the two results, we 

can see the building recovered using the self-similarity based SR algorithm has a 

sharper edge and fewer artifacts. For the image region marked in the red rectangle, we 

can clearly see that the self-similarity based SR algorithm [1] has less noise and fewer  

artifacts, and preserves sharper edges than the example-based SR algorithm. 
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(a) (b) (c) 

 Figure 21: Results of Urban Architecture Magnified by a Factor of 4 (a) LR input image, 

(b) 4x HR image generated using self- similarity SR algorithm, (c) 4x HR image 

generated using example-based sparse coding SR algorithm. 

Figure 21 shows an example of urban architecture. We cropped the HR images of two 

regions: 1) architecture, and 2) tree leaves. By comparing the results, we can see the 

building recovered using the self-similarity based SR algorithm preserves sharper edges 

and contains fewer artifacts but for the tree leaves, the example-based SR algorithm 

generates better, more natural looking results.  

We evaluated the self-similarity algorithm and the example-based algorithm on 100 

urban architectural images using a dataset named Urban100. Our test results show that 

the self-similarity algorithm always outperforms the example-based SR algorithm on 

urban architecture. Figures 20, and 21 show two examples of urban architectural 

images, we can see that the HR image of architecture recovered using the self-similarity 

algorithm is sharper than the one generated using the example-based SR algorithm, but 
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the tree leaves and stone generated using the example-based algorithm looks more 

natural than the ones reconstructed through the self-similarity approach. 

 
             (a) 

 
(b) 
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(c) 

Figure 22: Results of Squirrel Magnified by a Factor of 4 (a) LR input image, (b) 4x HR 

image generated using self- similarity SR algorithm, (c) 4x HR image generated using 

example-based sparse coding SR algorithm. 

Figure 22 shows an example of super resolution results on a natural scene. We can see 

the stone obtained through the example-based SR method 22(c) has more natural 

looking details than the one shown in figure22 (b), which is reconstructed through the 

self-similarity based SR method. We can clearly see annoying blocky and over-smooth 

effects in figure 22(b). 
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(a) (b) (c) 

Figure 23: Results of Penguin Magnified by a Factor of 4 (a) LR input image, (b) 4x HR 

image generated using self- similarity SR algorithm, (c) 4x HR image generated using 

example-based sparse coding SR algorithm. 

Figure 23 is another example of super resolution results on a natural scene containing 

wild animals and natural scenes. We can see the penguin reconstructed though the 

self-similarity approach has a slightly sharper beak. While the ground obtained through 

the example-based method has more natural looking details.  

So far, we have shown the high-resolution results on several images with a variety of 

different contents. The self-similarity based SR algorithm always outperforms the 

example-based SR algorithm on urban architecture, animals, and insects. The example-

based SR algorithm generates more natural looking faces, trees, flowers, and grasses. 

We also compared the performance of the existing example-based [2] and self-similarity 

based [1] SR algorithms on a variety of image textures, which include faces, animals, 

architecture, and nature scenes. The comparison was conducted in terms of visual 

quality and PSNR. The purpose of this comparison is to evaluate the performance the 

example-based and self-similarity based SR algorithms on different types of image 
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content. Our proposed SR method will refer to the comparison results in order to select 

the appropriate SR algorithm for each image region.  

Table 2 Quantitative Comparisons on 100 Urban Images in PSNR 

 Self-similarity algorithm Example-based algorithm 

2x 31.2546 31.1215 

4x 26.8719 26.8066 

 

Table 3 Quantitative Comparisons on 100 Images of Natural Scene in PSNR 

 Self-similarity algorithm Example-based algorithm 

2x 28.8515 29.0486 

4x 24.3624 24.6692 

Table 2 and table 3 show the comparison results for different magnification factors (2x 

and 4x). Our quantitative evaluation shows that the self-similarity based algorithm can 

produce compelling or better results on urban images (about 0.1dB better in terms of 

PSNR). The self-similarity based algorithm can successfully recover the HR details by 

properly selecting the similar image patch across different image scales. 
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4.2 Comparison of Our Proposed Method Versus Existing Methods 

Our quantitative evaluation shows that for urban images with regular geometric texture 

structure, the self-similarity based SR algorithm can generate a HR image with sharper 

edges and fewer artifacts, but for some nature images containing an irregular texture 

structure, it is hard to estimate the proper transformation matrix and find the best 

matched image patch accurately. As a result, the self-similarity based algorithm 

performs worse than the example based algorithm.  

Based on our evaluation results, we divide the image into several regions based on 

textural structure. Instead of using the same algorithm to process the whole image, we 

apply a different SR method based on image texture structure. Figure 19 shows the 

result of using the proposed combined SR algorithm. In this example, we divide the 

image into two regions; the self-similarity based algorithm is used to reconstruct HR 

details for the region containing the horse while the example-based algorithm is applied 

to recover the HR details of the rest of the image region.  

For testing the image in figure 24, our proposed method first segments the image into 

two regions: 1) one region contains the horse and 2) the other region contains trees and 

grass. By referring to our evaluation result, we learn that the self-similarity based SR 

algorithm performs slightly worse on tree and grass image textures, so the self-similarity 

based SR algorithm is used to recover the HR image region containing the horse, while 

the example-based SR algorithm recovers the other region. As a result, the recovered 

HR image produces better HR image than using the self-similarity based SR algorithm 

on the grass region. 



84 
	

 
             (a) 

 
(b) 

 
(c) 
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(d) 

Figure 24: Results of Horse Magnified by a Factor of 4(a) Original LR image, (b) 4X up 

scaling SR using self-similarity based algorithm, (c) 4X up scaling SR using example-

based SR algorithm, (d) 4X up scaling SR using proposed SR algorithm. 

 
 

 
          (a) 

 
(b) 
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(c) 

 
(d) 

Figure 25: Results of Tiger Magnified by a Factor of 4 (a) Original LR image, (b) 4X up 

scaling SR using self-similarity based algorithm, (c) 4X up scaling SR using example-

based SR algorithm, (d) 4X up scaling SR using proposed SR algorithm 

For testing the image in figure 25, our proposed method segments the image into two 

regions. By referring to our evaluation results, we learn that the self-similarity based SR 

algorithm performs slightly worse on tree or grass textures, so the self-similarity based 

SR algorithm is used to recover the HR image region containing the tiger, while the 

example-based SR algorithm recovers the other region. As a result, the recovered HR 
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image using our proposed approach produces a better HR image than using the self-

similarity based SR algorithm on the grass region.  

 

 
          (a) 

 
(b) 

 
(c) 
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(d) 

 Figure 26: Results of Natural Scene Magnified by a Factor of 4 (a) Original LR image, 

(b) 4X up scaling SR using self-similarity based algorithm, (c) 4X up scaling SR using 

example-based SR algorithm, (d) 4X up scaling SR using proposed SR algorithm. 

For images containing a natural scene and architecture, as shown in figure 26, our 

proposed algorithm divided the image into two regions: 1) one region contains 

manmade architecture, and 2) the other region contains trees. Our proposed method 

selects the self-similarity based SR algorithm to reconstruct the HR details for the region 

containing manmade architecture and uses the external database to recover the HR 

details of the tree region. As a result, the recovered HR image looks more natural in the 

tree region.  
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             (a) 

 
(b) 

 
(c) 
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(d) 

Figure 27: Results of Penguin Magnified by a Factor of 4 (a) Original LR image, (b) 4X 

up scaling SR using self-similarity based algorithm, (c) 4X up scaling SR using 

example-based SR algorithm, (d) 4X up scaling SR using proposed SR algorithm 

For the example shown in figure 27, the penguin is recovered through the self-similarity 

method, and the other region is recovered using example-based SR approach. The 

penguin recovered from our proposed method is slightly sharper and has less of the 

ringing effect; the background generated from our proposed method is more natural. 

The HR image recovered by our proposed method makes it possible to keep the 

sharpness with natural visualization. 

Figures 24, 25, 26, and 27 present the visual comparison of the proposed SR algorithm 

with the self-similarity based SR algorithm and the example-based SR algorithm. As 

shown in the examples, our proposed method takes advantage of those two state-of-

the-art SR approaches; the recovered HR image using our proposed SR method is 

slightly sharper and looks more natural.  



91 
	

For the example in figure 28, the structure of the flower is not regular. We can see the 

high resolution of this area using the self-similarity based algorithm has a blocky and 

over smooth effect. That’s because the self-similarity based algorithm is not able to 

accurately detect the best matches for the HR image patch. The database used by the 

example-based algorithm contains natural texture without regularity. We can see the HR 

image recovered by the example-based algorithm looks more natural. Our proposed 

method takes advantage of those two SR approaches. The recovered HR image using 

our proposed SR method is slightly sharper and looks more natural.  

 
             (a) 

 
(b) 
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(c) 

 
(d) 

Figure 28: Results of Butterfly Magnified by a Factor of 4 (a) Original LR image, (b) 4X 

up scaling SR using self-similarity based algorithm, (c) 4X up scaling SR using 

example-based SR algorithm, (d) 4X up scaling SR using proposed SR algorithm 
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(a) (b) 

 

  
(c) (d) 

Figure 29: Results of Human Magnified by a Factor of 4 (a) Original LR image, (b) 4X 

up scaling SR using example-based SR algorithm, (c) 4X up scaling SR using self-

similarity based algorithm, (d) 4X up scaling SR using proposed SR algorithm. 
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For the example shown in figure 29, we can see the high resolution of these areas using 

the self-similarity based algorithm have blocky and over smooth effects. That’s because 

the structure of tree leaves is not regular; as a result, the self-similarity based algorithm 

is not able to accurately detect the best matches for HR image patch. The database 

used by the example-based algorithm contains image patches with natural texture 

without regularity. We can see the HR image recovered by the example-based 

algorithm looks more natural. Our proposed method takes advantage of those two SR 

approaches; the recovered HR image using our proposed SR method looks more 

natural.  

Table 4 Super-Resolution Comparisons on Examples in PSNR 

   Self-similarity based SR    Example-based SR Proposed method 

horse 4x 21.1502 21.1737 21.2543 

tiger 4x 22.8315 22.8418 22.8605 

natural scene 4x 23.4748 23.2946 23.5096 

penguin 4x 32.7132 32.7908 32.8461 

human 4x 27.9602 27.8935 28.0563 

Squirrel 4X 29.3127 29.6012 29.6408 

butterfly 4x 29.5343 29.6684 30.0852 
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Table 4 compares image quality in terms of PSNR. as shown in the table, our proposed 

method takes advantage of the two existing SR algorithms, and performs slightly better 

than using each algorithm alone on the whole image. 
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CHAPTER 5 

CONCLUSION AND FURTURE WORK 

5.1 Conclusion 

Interest in different approaches to improve the quality of high-resolution images 

recovered from a single LR image has increased in recent years. Researchers have 

made progress, but there are still many challenges and limitations than prevent the 

application of SR algorithms in real world practice. 

This thesis has focused on the problem of single image super-resolution. The reasons 

why we are more interested in recovering HR image details from a single LR image are: 

1) in real world applications, it is hard to get several images from the same scene; 2) 

registration errors between multiple images will spread in the HR image reconstruction 

process, which will result in annoying artifacts, and aliasing effects. Given the fact that 

single image super-resolution techniques can successfully avoid the problems 

mentioned above, we are more interested in improving the performance of generating a 

HR image from a single LR image. 

The current state-of-the-art single image super-resolution algorithms are dealing with 

the whole image with the same method. To our knowledge, no existing method 

considers employing contextual information to super-resolution algorithm. We proposed 

a new concept in image SR research, which suggests segmenting the image into 
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multiple regions based on spatial context and selecting the appropriate SR algorithm for  

each region based on image content.  

We quantitatively evaluated the performance of example-based and self-similarity 

based SR algorithms on a wide variety of image contents using 200 images, which 

contain nature scenes, humans, animals, urban architecture. Compared to the example-

based SR algorithm, we learned that the self-similarity based algorithm has difficulty 

reconstructing HR details for images containing contextual information such as small 

tree leaves, faces and grass, while it can recover the edges better with less noticeable 

artifacts for images with content such as architecture and animals. The example-based 

algorithm can generate more natural looking HR details for an image containing 

irregular geometrical structures, such as trees, flowers, and the ground. Our proposed 

method refers to the evaluation results in order to choose the appropriate SR method 

for each image region.  

We tested our proposed method on different natural images, which contain animals, 

architecture, and nature scenes. From our experimental results, we can see that our 

proposed SR method takes advantage of the existing self-similarity based and example-

based SR algorithm; it can produce better results with more high-resolution details in 

terms of visual quality and in terms of PSNR (+0.1dB) than using each algorithm alone 

on the whole image.  

However, our proposed method consumes more computation time than the other two 

existing SR methods. For our proposed method, image pre-processing takes a 

considerable amount of time in order to reach proper segmentation and classification. 
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What’s more, since we apply different SR algorithms on different image regions based 

on image content, we need one more back-projection step at the end to ensure that the 

generated HR image satisfies the global reconstruction constraints. As a result, the 

computation complexity of our proposed method is higher than using each algorithm 

alone on the whole image.  

5.2 Future Research Work 

Since edge sharpness plays an important role in image quality perception, our future 

work may take the gradient profile prior into account. We will make efforts to improve 

our proposed SR method by employing rational constraints on the gradient field to 

preserve image sharpness. The gradient profile may vary with image contents. In our 

future work, we will study the relationship between gradient features and image textural 

content and employ the relationship to establish an appropriate gradient profile for 

different types of image content.   

We are also interested in improving computational performance. We will make efforts to 

speed up our proposed SR algorithm by reducing computational complexity and try to 

extend our proposed SR algorithm to real-time video application.  
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