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ABSTRACT

INVESTIGATION OF NbNx THIN FILMS AND NANOPARTICLES GROWN BY  
PULSED LASER DEPOSITION AND THERMAL DIFFUSION

Ashraf Hassan F arha 
Old Dominion University, 2013 
Director: Dr. Hani Elsayed-Ali

Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using 

pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium 

nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG 

laser (X = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser 

fluences, different nitrogen background pressures and deposition temperatures. The effect 

of changing PLD parameters for films done by PLD was studied. The seen observations 

establish guidelines for adjusting the laser parameters to achieve the desired morphology 

and phase o f the grown NbNx films.

When the fabrication parameters are fixed, except for laser fluence, surface 

roughness, deposition rate, nitrogen content, and grain size increases with increasing laser 

fluence. Increasing nitrogen background pressure leads to change in the phase structure 

of the NbNx films from mixed -Nb2N and cubic 5-NbN phases to single hexagonal P- 

Nb2N. A change in substrate temperature led to a pronounced change in the preferred 

orientation o f  the crystal structure, the phase transformation, surface roughness, and 

composition o f the films.

The structural, electronic, and nanomechanical properties o f niobium nitride PLD 

deposited at different nitrogen pressures (26.7-66.7 Pa) on Si(100) were investigated. The 

NbNx films exhibited a cubic 8-NbN with a strong (111) orientation. A correlation 

between surface morphology, electronic, and superconducting properties was found. The



highly-textured 8 -NbN films have a Tc up to 15.07 K. The film was deposited at a 

nitrogen background pressure o f 66.7 Pa exhibited improved superconducting properties 

and showed higher hardness values as compared to films deposited at lower nitrogen 

pressures. NbN nanoclusters that were deposited on carbon coated Cu-grids using PLD at 

laser fluence o f 8 J/cm2 were observed.

Niobium nitride is prepared by heating o f Nb sample in a reactive nitrogen 

atmosphere (133 Pa) at a temperature o f 900 °C. The results suggest that the niobium 

nitride was crystalline in the single phase o f hexagonal /?-Nb2N. As heating time 

increased, film growth continued with improvement in hardness and modulus.

The XRD o f samples prepared by a thermal diffusion method at low nitrogen 

pressure and high temperatures were reported. The samples were prepared at 

temperatures ranging from 1250-1500 °C. 2D-XRD images of samples, processed at 

temperature range from 1250 -1500 °C at pressure o f 1.3x1 O'3 Pa, showed the formation 

of an a  phase. As pressure increased to 0.13 Pa, an a-NbN phase mixed with P-Nb2N 

phase appeared.

Niobium nitride samples were prepared by laser nitridation using a Q-switched 

Nd: YAG nanosecond laser and Ti: sapphire femtosecond lasers. The effects o f  laser 

fluence on the formed phase, surface morphology, and electronic properties o f  the NbNx 

were investigated. Samples were prepared using Nd: YAG laser are o f NbNx in the cubic 

8-NbN phase. The femtosecond laser-nitrided samples were prepared by different laser 

fluences o f 0.1-1.3 mJ/cm2 at 4.0><104 Pa nitrogen pressure. NbNx samples with mixeda, 

(3 and 8 phases were observed. The cubic 8-NbN structure is dominated over the other 

two phases.
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CHAPTER I 

INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

Niobium nitride (NbN) is one o f the nitrides o f transition metals. NbNx films 

show many interesting properties, such as high hardness, chemical inertness, and 

relatively high superconductivity transition temperature (17.3 K). These properties make 

NbNx films valuable for many superconductor-related applications, such as infrared 

imaging photo-detectors, superconducting magnets, and other microelectronic devices [1, 

2] and superconducting RF cavities [3-7]. Not only can NbNx be used in 

superconductivity applications, but it is a good candidate for applications requiring 

corrosive resistant coatings and hard material. For example, NbN coatings enhance wear 

resistance o f steel surfaces [8]. These good superconductive and mechanical properties of 

NbNx thin films are influenced by their crystallographic structure and chemical 

composition [9, 10].

An NbN system has a complex phase diagram with a wide range o f  compositions 

[8]. Different phases o f NbN form as the nitrogen-to-metal ratio changes. Several stable 

phases with different structures have been reported [11]. A list of NbN phases includes a- 

Nb(N), which is a cubic solid solution formed by dissolving nitrogen in Nb metal, cubic 

8-NbN(cubic), hexagonal phases p-Nb2N, s-NbN and 5 -NbN phases, and the y-Nb4N 3 

tetragonal phase [12, 13]. Both y and 8 phases have been widely used in many 

superconducting applications because o f their relatively high Tc compared to other 

phases. Superconductive properties o f NbN are affected by the stoichiometric 

compositions and the crystal structures [14].
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A laser provides a monochromatic and coherent high power beam o f photons. 

This results in high power densities at focus and allows the use o f pulsed laser for 

ablating materials. The properties o f plasma formation from laser ablation are dependent 

on the laser's parameters, such as energy density (fluence) laser pulse duration, 

wavelength, polarization, and laser repetition rate as well as the material being treated 

[15]. These parameters need to be optimized for each particular material to receive the 

benefits o f laser processing at their surfaces and improving the surface properties. There 

is much interest in using a surface treatment that leads to creating and improving material 

properties. A variety o f surface treatments results as the laser power density changes from 

lower to higher values, depending on the temperature achieved by the absorption process. 

The applied time o f laser irradiation is an important variable parameter to determine the 

effect o f  the thermal heating [16]. Processes which rely on surface heating without 

melting, such as surface heating for hardening or annealing, occur at relatively low 

energy densities [16]. Others require surface melting and/or evaporations. Forming new 

materials can result in such as surface alloying, deeper surface hardening, and pulsed 

laser deposition [16, 17]. The wavelength o f the laser affects the reflectivity and 

absorption o f the material. Reflectivity can be defined as the ratio o f  reflected intensity 

from the surface o f the material to the incident intensity, while absorption determines 

how the amplitude of the incident radiation is deposited over the distance in the sample. 

One o f the key parameters in controlling a laser-material interaction process is the 

amount o f energy being used, which predicts the type o f material modification that will 

occur [16].



Pulsed laser deposition (PLD) became a widely used technique after the success 

of producing films with a stoichiometry close to that o f  bulk target. In 1987, Dijkkamp et 

al. showed that Yttrium barium copper oxide (YBCO) superconductor films, with 

composition close to that o f the bulk material, were produced by PLD [18]. Since that 

work, PLD has been used extensively to grow thin films from many materials [19]. The 

principle o f PLD is that a high-powered pulsed laser is focused onto a target that causes 

material removal (ablation) and forms a plasma plume. Then, the martials from the plume 

are allowed to condensate to form a thin film [15]. In contrast to its simplicity, the 

mechanism o f PLD is rather complex. PLD is a non-thermal growth technique in which 

interactions and material modifications are described by physical and chemical processes, 

this includes breaking or creating chemical bonds for ensembles of species that cannot be 

described by a single temperature distribution [20 ].

PLD can work in an ultrahigh vacuum or in a reactive gas atmosphere. One or 

more targets can be also used. This makes it easy to prepare samples that are difficult to 

prepare through thermal evaporations [19]. The kinetic energy of particles during PLD 

can be varied by changing the laser fluence or increasing the pressure o f  the background 

gas [19, 21]. Varying the laser fluence shows slight changes in the properties o f the film, 

while changing the kinetic energy o f the deposited particles by increasing inert gas 

pressure has stronger influence on texture and microstructure properties o f the film [19]. 

Deposition o f metallic films (e.g., Ag, Fe and Fe/Ag) under an inert gas atmosphere (Ar) 

showed a reduction in both particle energy, and re-sputtering o f the surface atoms 

compared to films deposited in ultra-high vacuum (UHV) was reported [21]. The 

reduction in particle energy was explained by scattering o f  ablated material in a diluted
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gas (4.0 Pa) [21]. Changes in background pressure can cause changes in stress conditions 

of the film or even result in growth o f a stress-free film [19].

Thermal diffusion is a technique used for materials processing, either as a bulk or 

a thin film [3, 22, 23]. The first work done on thermal diffusion o f  NbN was reported in 

1941 [5]. In this method, niobium is heated at high temperatures in a nitrogen gas 

background. Niobium has high reactivity to nitrogen gas at high temperatures that causes 

the diffusion o f gas in Nb to form NbN. The diffusion occurs by movement o f lattice 

defects. The type o f defects determines the mechanism o f diffusion. Nitrogen diffused in 

Nb by vacancy diffusion mechanism occurs in both y and 8 niobium nitrides [24, 25]. 

This means that large concentrations o f nitrogen vacancies exist in these two phases. The 

amount o f nitrogen that can be interstitially absorbed by niobium is a function o f the 

temperature and the nitrogen pressure [26]. The results o f the solubility o f  nitrogen in Nb 

differ to some extent between different studies. This may be due to the methods of 

preparation, see, for example, [26] and the references within. Since, upon cooling o f 

samples, the amount o f  nitrogen that can be retained in solution changes, this may cause 

conflicts in the atomic percentages o f alpha phase in Nb lattice, even when the Sieverts 

apparatus is free from the problem o f nitrogen loss during cooling down [27], Also, the 

extremely rapid rate o f  formation of other nitrides prevents a-NbN from retaining more 

than about 1.0 at. %. These make it difficult to determine alpha phase by XRD, as 

reported by Cost and Wert [27].

Much work has been done on high-temperature reactive diffusion to form 

different phases o f NbNx. Interest in using thermal diffusion technique comes from its 

advantages, such as simplicity and low cost. Thermal diffusion can be applied to samples



with complicated geometries and gives homogenous thickness and thick nitride layers 

which can be prepared in a few seconds. The advantages o f  using a thermal diffusion 

method make it much more favorable than other methods. Theoretical works are 

predicting good performances o f NbNx if  it replaces Nb in superconducting applications 

of rf cavities [6 ].

Several experimental works were done using the thermal diffusion method to find 

equilibrium phases and structural properties o f the formed NbN phases. Most o f these 

were done on powder samples, with only a few on bulk samples. Some o f these studies 

were done to study the formation o f niobium nitrides for possible usages in 

superconducting rf cavities [3-7]. Most were done using heating. Also, these were done at 

higher nitrogen gas pressures to obtain phases that show high superconducting transition 

temperature Tc, such as 8-NbN, y-NbN and (3-Nb2N phases. a-Nb(N) solid solution phase 

could be obtained as Nb is heated at temperatures as low as 800 °C or heated for short 

reaction time as low as 60 sec [5, 26], Other phases o f niobium nitrides are formed at 

higher temperatures or longer reaction times [28]. Few works deal with mechanical and 

structural properties o f the formed NbN. In the present study, the formation o f different 

NbN phases at various nitrogen pressures and their influence on the morphology and 

crystal structure were explored.

In this dissertation, lasers were used in several applications for fabricating NbN. 

These include heating o f the niobium surface, producing cubic and hexagonal phases o f  

niobium nitride, depositing thin films o f niobium nitride on silicon wafers and niobium 

substrates at different conditions. The treated materials were examined using X-ray 

diffraction (XRD), electron probe microanalysis (EPMA), energy-dispersive X-ray
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spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), atomic force microscopy (AFM), X-Ray photoelectron spectroscopy 

(XPS) and nanoindentation for nanomechanical measurements.

This dissertation is based on references [29-35] and is organized as follows: 

Chapter II presents an overview on properties o f  niobium and niobium nitride materials 

that are used for film fabrication. The structural and other properties o f  these materials as 

well as a survey on previous work done on NbNx by PLD and thermal diffusion are 

given. Chapter III describes the experimental techniques used to fabricate samples and 

characterization techniques. The chapter also addresses the laser ablation o f matter, 

plume characteristics, and thin film formation. In Chapter IV, NbNx thin films on Nb 

substrates are obtained by changing PLD experimental parameters: temperature, pressure, 

and laser fluence. The effects o f changes in the substrate temperature, nitrogen 

background pressure and laser on the grown phases and the morphology o f NbNx films 

are studied. Chapter V presents the fabrication o f NbNx thin films on Si substrate. The 

effect o f nitrogen background pressure o f  pulsed laser deposited NbNx films on Si (100) 

is discussed and characterization o f that using XRD, SEM, AFM, XPS, superconductivity 

and nanoindentation. Chapter VI discusses the formation o f NbNx samples by thermal 

diffusion at high and low mitogen pressure. In this chapter, samples are studied for the 

phase formation, electronic structure and nanomechanical characterizations.
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CHAPTER II 

OVERVIEW ON NIOBIUM AND NIOBIUM NITRIDE 

SUPERCONDUCTOR MATERIALS

II.l. INTRODUCTION

Superconductivity was first discovered in mercury by Dutch physicist Heike 

Onnes at Leiden University in 1911. Later, he won the Nobel Prize in physics in 1913 for 

his work on liquidation o f gases and discovery o f  superconductivity [36]. When the 

temperature o f mercury was decreased to liquid helium temperature (4.2 K), the 

resistance o f mercury suddenly disappeared. A year later, superconductivity o f tin and 

lead confirmed that superconductivity is not a unique property for mercury. More 

superconducting elements were discovered later [36].

Transition metal nitrides have attracted attention for use in different technical 

applications due to their unusual mechanical, thermal, and electrical properties, such as 

chemical and thermal stabilities and high electrical conductivity [37]. The bonding in the 

transition metal nitrides is a mixture o f three types o f  bonding: metallic, covalent and 

ionic components [38]. NbN is one of interstitial transition metal nitrides in which 

nitrogen atoms occupy interstitial sites between metal atoms [39]. These interstitial 

nitrides are early transition metals o f groups IV and VI, formed by dissolution o f nitrogen 

atoms into the metal lattices in which the metal atoms form lattices o f  (fee), simple 

hexagonal or hexagonal closed-packed (hep) structures, while the nitrogen atoms set in 

the interstitial sites between the metal atoms [39].

Since most applications o f niobium nitride NbN are related to its superconductive 

properties, there is much interest in studying superconductivity o f  NbNx. The
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superconductivity o f NbN was first reported in 1941 [40]. Presently, the highest Tc value 

reported for cubic NbNx thin films is about 17.3 K [14, 41], NbNx has recently received 

much attention for its superconductive microelectronic applications [42]. The fabrication 

of tunnel junctions for superconductor-insulator-superconductor (SIS) receivers, high 

resolution X-ray detectors and high-field magnets are some of the examples o f  the 

applications o f NbNx films [12]. The NbNx with a cubic rock salt structure (8 -NbN) is the 

commonly studied phase in the NbN system. High quality single crystals or 

polycrystalline NbNx films are needed for high Tc values. The superconductive properties 

of NbNx films are affected by the stoichiometric compositions and by the crystal 

structures o f  the NbNx films [14].

Other useful properties o f NbNx, such as thermal stability, chemical inertness, and 

good mechanical properties make it very useful as a corrosion protective coating for 

surfaces. The high melting point o f NbN allows it to withstand different thermal effects 

without degradation [12], Applications o f superconducting materials that have higher 

critical current with high magnetic fields include high-field magnets for accelerators, 

such as the Large Hadron Collider (LHC), power transmission applications and higher 

resolutions Nuclear Magnetic Resonance (NMR) scanners. Efforts were concentrated on 

increasing the critical magnetic field (Hc) o f superconductors by doping [43, 44], Doping 

of NbNx sputtered thin films with Gd increases the films' resistivity and, as a result, the 

critical magnetic field increases [45]. Another way to increase the critical magnetic field 

and the critical current is by having nanocrystalline superconductors [43]. The properties 

of the nanocrystalline materials are different when compared to their bulk materials [3 9 , 

43]. The size o f the superconductor influences the superconductivity parameters o f that



material. For example, it has been reported that there are more than two order of 

magnitude enhancements o f the critical fields o f Sn nanoparticles (15 nm particle size) 

than bulk material [39].

n's

B

Distance, x

Fig. II.l. Variation o f magnetic field strength B and the number o f density of 
superconducting electrons (ns) in type-II superconductor. Redrawn from [46].

Nanocrystalline materials have very small grain sizes which mean an increase in 

the critical current. The defects act as pinning centers for the magnetic flux in the 

vortices, and this results in high resistivity and a high o f Hc field [47]. Also, the grain 

boundaries in nanocrystalline are different from those o f  conventional grains. The 

superconductors can carry very high current without any resistance. In large magnetic 

fields, the vortices moving in type-II superconductor causes energy dissipation and limit 

current flow through the material and hence electrical resistance suppresses the
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superconductivity o f  the materials [48], Defects can be introduced to the materials that 

cause pinning o f these vortices.

Using nanometer scale particles is the key feature to give essential pinning to the 

vortexes, otherwise if  large defects are made then the vortices will still move within 

them. NbN nanoparticles work as artificial pinning centers for the magnetic field flux. 

The introduction o f NbN nanoparticles into polycrystalline high temperature 

superconductors leads to an increase in the critical current and also an increase in the 

magnetization of the samples [43]. These increases are related to the decrease in the size 

of the nanoparticles comparable to the coherence length o f material, see Refs. [48, 49]. In 

Type II superconductors, the penetration depth is much larger than the coherence length 

(k >Q so it exists in a mixed state o f normal and superconducting areas, called a vortex 

state, as shown in Fig. II. 1 [46]. Normal states are in form o f cores. The core has a size of 

coherence length (Q. The supercurrent flows in circles around these tubes and this why 

they are called vortices. Magnetic field penetration occurs through the normal states. A 

perpendicular force to the vortices results as current flows around. The resistance 

increases in vortices as current flow and that limits the superconductor applications of 

Type II superconductors. Impurities could be added to Type II superconductors to avoid 

this energy dissipation effect. The defects cause pinning o f the vortices to their places 

that maintaining zero electric resistivity and hence sustain the superconducting state [46]. 

Fig. II. 1 shows how the number o f density o f  superelectrons ns and the magnetic field 

strength B vary over with the distance for Type II superconductors. Nano wires 

superconductor single-photon detectors (SSPDs) are one of the applications on



nanomaterial superconductors [50, 51]. SSPDs have high efficiency to detect single 

photon with high speed [51].

II.2. Nb AND NbN SUPERCONDUCTOR MATERIALS

Properties and applications o f Nb are introduced in this section. This is followed 

by more details on different structures o f NbNx and most common applications o f NbNx 

superconductors. In the next sections, NbNx thin films preparation methods are covered. 

Reviews from pervious publications on NbNx thin films deposited by pulsed laser 

deposition (PLD) are presented. Characteristics and effects o f changing laser and other 

experimental conditions, such as deposition pressure and substrate temperature, are 

given. A discussion on the importance o f  superconductor nanoparticles and their 

application is given. Applications o f NbNx and initial results obtained from this work are 

also introduced.

II.2.1. PROPERTIES AND SUPERCONDUCTIVITY OF Nb

Niobium is a transition metal o f group V within the Periodic Table with a soft 

grey color and body-centered cubic crystal structure. It is usually found in minerals with 

tantalum [52]. Nb has atomic number o f 41 with electronic configuration [Kr].4d4.5s'. 

This makes Nb like other transition metals, with an inner shell that is not completely 

filled (4d in Nb case) [52]. Nb is Type II superconductor and has the highest critical 

transition temperature o f all elements (9.3 K) [53, 54]. A paramagnetic effect was 

observed in Nb samples [55]. This effect is much more pronounced in Type II 

superconductors than in Type I superconductors [56]. In paramagnetic materials, there 

are free magnetic dipole moments with random orientations. Under a magnetic field, the 

dipoles in paramagnetic materials will point in direction o f the field and results in a net



positive magnetization in the direction o f the field. Paramagnetic was observed at the 

surface o f  niobium resulting from the defected native oxides on the surface [55]. Also, 

they resist organic and inorganic compounds and acids such as HC1, H2SO4, HNO3 and 

nitro-hydrochloric acids (Aqua Regis) [52]. All these properties and, especially the 

superconductivity, make Nb very attractive in industrial applications. A common 

application o f Nb is in steel industry. Hard metal alloys o f  niobium carbides, nitrides, 

borides and silicides are very stable compounds. They are characterized by high bond 

energy that results in a high modulus o f elasticity and a high melting point [57]. Oxygen, 

also, can easily dissolve in interstitial sites o f  the Nb body-centered lattice; numerous 

oxides could be formed; and this could significantly affect the Nb properties [58]. As an 

example, the addition o f oxygen to Nb changes its electrical properties from conductor 

Nb to insulator N ^ O j [52], An addition o f a very small amount (~ 0.1%) o f Nb to steel 

forms compounds such as NbC and NbNx. These compounds help increase the strength, 

ductility, and hardening o f steel [59]. Also, Nb is used in nonlinear optical materials, such 

as KNb03  and KNbC^Bs, which are used in harmonic generators, frequency mixers, and 

other electro-optical applications [60]. Nb is used for superconducting rf cavity 

applications for particle accelerators [61-64].

The solubility o f oxygen in Nb increases as temperature increases [58]. Handling 

of Nb in air causes a formation o f an unavoidable native oxide layer on its surface. Many 

studies assumed that this layer principally consisted o f  Nb2 0 s [65]. Others observed NbO 

with different thicknesses [66 ]. Thickness and compositions o f this native oxide layer is 

complex. It depends on ambient conditions, oxygen partial pressure, temperature, and 

duration o f exposure. The presence o f the oxide layer on an Nb surface affects



superconductivity properties o f  Nb. Also heating o f Nb will enhance the diffusion of 

oxygen to the inside o f bulk Nb. A decrease in superconductivity critical temperature was 

observed as the amount o f  oxygen increased in Nb films [63]. Most o f  the studies done 

on the effect o f  oxide layers on Nb are related to superconducting applications such as 

superconductivity o f rf cavity [62, 64].

Also, Nb is widely used in the fabrication o f Josephson Tunnel Junctions for 

superconductor applications, such as superconducting quantum interference devices 

(SQUIDs) and single-photon detectors [67-69]. SQUIDs can be used in medical devices, 

such as studying activity in the brain, and other measurements on magnetic properties of 

materials. Also, superalloys o f  Nb, such as Ni-based alloys, are widely used for high 

temperature aerospace applications [70]. The term super alloy refers to alloys that have 

excellent mechanical performance and good stability against corrosion and oxidation at 

elevated temperatures [70]. Nb can form an alloy with many different elements such as 

NbTi, NbaSn and NbsGe, which are superconductors with transition temperatures o f  10, 

18 and 23 K with an upper critical field at 4.2 K o f 15, 30 and 37 Tesla, respectively. 

These high critical fields makes Nb superconductor alloys very good choices to be used 

as wires in high power superconducting magnets [52], These alloys are difficult to use in 

the commercial market because they are brittle [54],

II.2.2. PROPERTIES, STRUCTURE AND APPLICATIONS OF NbN

NbNx has complex phase diagrams with a wide range o f compositions. Different 

phases o f NbN can be formed as the nitrogen-to-metal ratio is changed. Fig. II.2 shows 

the phase diagram o f NbN system [71]. As the percent o f  nitrogen changes, different 

phases or mixtures o f NbN compositions result. a-NbN phase has a bcc structure with



lattice constant o f  3.303 at 2 % o f N in Nb [72], As the percent o f nitrogen increases, it 

shows mixture o f both a-NbN and hexagonal P-NbaN phase. Then the P-NbaN phase in 

the range NbNo.4-NbNo.5. With a nitrogen percentage increase, P-NbaN is mixed with y- 

Nb4N3 tetragonal. Near stoichiometry, three phases with different structures, namely, 5- 

NbN, 5'-NbN and s-NbN, were reported [72, 73]. The 8'-NbN has hexagonal (B8i) 

structure (NiAs) that appears as a metastable phase during the phase transformation from 

8-NbN to e-NbN phase [73],
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Fig. II.2. Phase diagram o f NbN (Adapted from ASM Handbook, 1990) [71].
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8-NbN e-NbN y-Nb4N3 p-Nb2N

(a) Cubic B l,
NaCl-type
structure

(b) Hexagonal (Bi), 
TiP-type structure

(c)Tetragonal, 
deformed NaCl- 
type structure

(d) Hexagonal, 
Fe2N-type structure

Fig. II.3. Crystallographic structures o f  NbN: (a) cubic B l, (b) hexagonal Bi, (c) 
Tetragonal, and (d) hexagonal o f  Nb2N. The bigger spheres correspond to the metallic Nb 
sites; the smaller spheres represent N  atoms, while small spheres with bold edges 
correspond to vacancy. The notation o f means the site is occupied by only half o f  
nitrogen atom. From [74].

y-N bN - e -N b N

N/Nb

Fig. II.4. Composition ranges o f NbN for four different phases. Redrawn from [26],



Nitrogen atoms have lattice arrangements in the hexagonal structure in both 8' 

and e phases. They are distinguished by different sequences of niobium atoms in the c 

direction. The 8' phase has an ABAB . . . sequence, whereas e has an AABBAA BB... 

sequence [13]. y- Nb4N 3 phase has a tetragonal structure with a = 4.382 and c = 4.316 A 

lattice constants [73]. Fig. II.3 shows examples o f  theses NbN phases. The 8-NbN phase 

has cubic B l (NaCl) structure with 4.3927 A lattice constant. The hexagonal (B j)  

structure (TiP) is for e-NbN with a = 2.96 and c = 5.535 A lattice constants. The 

tetragonal phase is a distorted NaCl structure due to nitrogen deficiency, as shown in Fig.

11.3(c). Another structure far from stoichiometry is P-Nb2N phase with hexagonal 

structure (Fe2N) with a = 3.055 and c = 4.948 A lattice constants shown Fig. II.3 (d). Fig.

II.4 shows the composition ranges for four phases (P-Nb2N, y-NbN, e-NbN and 8-NbN) 

o f NbN system [13].

II.3. NbNx THIN FILM PREPARATION METHODS

There are many methods to prepare nitride thin films. In physical vapor 

deposition (PVD), the transition metal is evaporated by electron beam or plasma as in 

plasma-enhanced physical vapor deposition (PEPVD) [75], or sputtering and then reacted 

with nitrogen at low pressure. There are some limitations on PVD, such as formation of  

defects in the film, and this is because o f poor coverage o f  these methods. Another 

method is chemical vapor deposition (CVD), and its alternatives, such as metal-organics 

chemical vapor deposition (MOCVD) and atomic layer deposition (ALD) [14]. In these 

techniques, the nitrides metal films are deposited from the reaction o f their chlorides in 

the gas phase with ammonia/nitrogen or ammonia/hydrogen/nitrogen mixtures. Then, 

after reaction, the products nucleate on the substrates to form uniform nitride films. The
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conformity o f thin films results by CVD methods is higher than those obtained by PVD 

methods [76].

There are several reports on the growth and characterization o f  metastable nitride 

compounds such as CNX and c-BN [77]. Different phases o f transition metals can be 

formed as the nitrogen-to-metal ratio is changed. NbNx thin films have been prepared for 

many applications by different techniques, such as reactive ion sputtering [41, 78], ion 

beam deposition [52] and chemical vapor deposition (CVD) [14]. In all o f  these methods, 

to obtain single-crystal NbNx thin films, the substrate was heated to temperatures 

between 350 to 1200 °C. Such a high-substrate temperature may induce impurity 

diffusion and that prevents the potential application o f single-crystal NbNx films in 

fabricating superconducting devices and circuits.

11.3.1. NbNx FILM FABRICATION

11.3.1.1. PULSED LASER DEPOSITION OF NbNx

Pulsed laser deposition (PLD) has been used to grow various compounds. 

Epitaxial NbNx films were grown by PLD on MgO (100) substrates [37]. Both MgO and 

NbN have a B l (NaCl) structure and a lattice mismatch o f less than 4%, therefor MgO is 

a natural candidate for an epitaxial substrate [37], PLD is a well-developed method for 

preparation o f metastable compounds that form as transient phases because o f high 

quenching rate that occurs to the films prepared by PLD [79], One o f  the advantages o f  

PLD is that the target stoichiometry can be transferred easily to the film. In PLD very 

short high-energy laser pulses are focused onto a solid martial target. This causes rapid 

heating, vaporization and ionization of the target material, resulting in a dense plasma 

plume above the target. This vapor is collected on the substrate.



Bhat et al. [80] grew NbNx on MgO (100) and SiNx/Si substrates using PLD at 

substrate temperature o f 600 °C. SiNx instead o f SiOx substrates was used because SiNx is 

more stable at high temperatures. Using SiOx causes oxygen diffusion into the grown 

films at high temperature and that may corrupt the superconducting properties o f nitride 

films. The maximum observed Tc here was 16 K for films deposited on MgO at 8 Pa N2 

pressure. The NbNx film deposited on SiNx/Si substrate shows maximum Tc ~12 K at 

slightly higher N2 pressure than those on MgO. In addition, the films on SiNx/Si were 

amorphous, while those grown on MgO were (100) textured. Tc values o f  films prepared 

by PLD show sensitivity to N2 background pressure.

Boffa et al. [81] studied the effect o f changing the substrate temperature, nitrogen 

pressure and gas flow on NbNx films grown by PLD. MgO (100) substrate and Nd: YAG 

laser (X = 532 nm) in pure N2 background were used in this work. The deposition was 

done at nitrogen operating pressures either at static or constant flow o f N 2. The films 

were deposited at substrate temperatures ranging from 400 to 650 °C. An NbN cubic 

structure was obtained at different conditions, substrate temperatures and nitrogen 

pressures. The best superconducting characteristics were obtained for samples deposited 

at 600 °C in static N 2 atmosphere at a pressure o f 8 Pa.

Growth o f NbNx films by PLD was also reported in [82],The laser source used 

was a KrF Excimer laser (X = 248 nm), 10 Hz focused into Nb target at laser fluence o f  6 

J/cm in reactive gas atmosphere of N 2 (10% H2). The structural and electrical properties 

of the deposited films grown on MgO (100) and fused silica substrates were studied as a 

function o f substrate temperature at gas pressure o f 8 Pa. Highly textured (100) NbNx 

film was obtained on MgO (100) with Tc = 16.6 K and p (20 K) = 60 pQ cm at 600 °C,
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while films grown on fused silica under the same conditions were polycrystalline with Tc 

= 11.3 K and higher resistively at p (20 K) = 120 pQ cm than films deposited on MgO 

substrate. The improvements in the electrical properties o f  the films are due to the 

reduction o f the grain boundaries and increasing o f the mean free path within the 

individual grain as film goes from polycrystalline films (on fused silica) to highly 

oriented films on MgO (100). The growth o f crystalline NbNx films o f different phases 

by PLD, (0 < x <1.3) is described in [83]. This was achieved by changing the pressure of 

the reactive gas during growth under the same conditions as that described previously 

[37]. Also Treece et al. used same conditions to study the structural and electrical 

properties o f new phase o f  NbNx films (0 < x < 1.2), grown by PLD on MgO (100) [84, 

85]. As they concluded, the growths o f this new phase are due to aspects o f  PLD, such as 

high energies o f  ablated species and the very large instantaneous growth rates.

PLD was used to grow NbN/MgO/NbN multilayer hetero-structures [86], Nd: 

YAG laser operating at X = 532 nm, pulse width 10 ns, and energy density in the range 1 

-  2.5 J/cm was used. The layers were grown on SrTiO (100) substrates. A rotating 

multiple-target holder system allowed depositions o f the multilayers without air 

exposure. The ablations were done from pure Nb and Mg targets under different 

pressures o f  N 2 and O2, respectively. The static operating pressures were achieved by 

maintaining the chamber with a certain amount o f gas. The N 2 pressure was 8 Pa and the 

O2 pressure, was 100 Pa. The substrate temperature was 550 °C for Nb and 250 °C for 

Mg during the ablation. The NbNx layers consist o f  5- NbN cubic phase since the layers 

show Tc = 14 K. The NbNx layers grown on the MgO show different morphologies with a
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higher density o f microholes and greater granularity compared to the single NbNx layer 

grown on the substrate [86].

II.3.1.2. THERMAL DIFFUSION OF NbNx

Niobium has high reactivity with nitrogen especially if  it is heated at high 

temperatures. Several studies have been done on thermal diffusion in bulk Nb, powder 

and thin films [3-7, 13, 23, 26, 27, 87-90]. Treatment of Nb samples at different heating 

temperatures or environment pressures results in samples with different properties.

Fabbricatore et al. [4] reported on using nitrogen diffusion at high nitrogen and 

temperatures in the range o f  9.9 -  29.9 x 103 Pa and 1000 — 2000 °C, respectively. Films 

with mixed phases were obtained. Temperatures below 1300 °C gave only p and a  

phases o f NbNx. As the temperature was increased to 1300 °C and above, y, 8 and s 

phases were identified. Tu et al. [5], reported on thermal diffusion o f nitrogen into bulk 

niobium at 800 °C, results in samples with surface resistance lower than that o f  Nb by 2 -  

3 times. Nothing was reported there on the diffusion mechanism o f nitrogen in NbNx 

samples. The mechanisms o f nitrogen diffusion in niobium were reported for different 

phases o f NbNx [3]. The diffusion occurs by movement o f  lattice defects. The types o f  

defects determine the mechanism o f diffusion. Nitrogen diffused in Nb was by vacancy 

diffusion mechanism in both y and 8 niobium nitrides [24, 25]. This means a large 

concentration o f nitrogen vacancies existed in these two phases.

Benvenuti et al. [6] studied formation o f niobium nitride by reactive diffusion at 

1270 -  1500 °C and nitrogen pressure in the range 103 — 105 Pa. They studied the 

influence o f annealing time, nitriding pressure and nitriding temperature on critical 

temperatures ofip, y and 8 phases. As they reported, applying higher temperatures or



21

longer process times results in poor quality films. Also, nitriding should be carried out at 

10s Pa and 1380 °C or higher for more than 6 min to get higher Tc value.

Niobium nitrides with both 5 and |3 phases grown by thermal nitriding in the 

range 1100 -  1900 °C at 150 kPa were indicated [3]. As samples cooled down to less 

than 1350 °C, thin layer o f 5 phase transformed into y, s and 8' phases. Lengauer et al. 

[11] studied high-temperature nitridation o f niobium annealed in high-purity nitrogen of 

various pressures, times and temperatures below 1400 °C [11]. Phase transformations of 

y-Nb4N 3 to 5-NbN and q-NbN to 5-NbN were observed between 1070 and 1300 °C, 

respectively. In their previous work, an investigation was done in nitrogen pressure range 

103 -  3x l0 6 Pa and temperature range 1400 -  1800 °C [91]. As they reported, choice of 

nitrogen pressure considerably affected the growth rate and homogeneity ranges o f NbN 

phases [91].

Most o f these works were done using the thermal annealing method to find the 

equilibrium phases and structural properties o f these phases. Also, these works were done 

at higher nitrogen gas pressures to obtain phases that show high superconducting 

transition temperature Tc, such as the 5-NbN, y-NbN and P-Nb2N  phases. Here, the 

interest is obtaining alpha NbN solid solution phase by doing experiments at lower 

nitrogen pressures than previously reported. A series o f experiments were performed to 

investigate the formation of NbNx on Nb at different annealing temperatures and nitrogen 

pressures using the thermal annealing method. The formation o f different phases at 

various nitrogen pressures and their influence on the morphology and crystal structure 

were explored.
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CHAPTER III 

THIN FILM GROWTH BY PULSED LASER DEPOSITION

III.l. INTRODUCTION

Pulsed laser deposition (PLD) is an attractive deposition technique because o f  its 

simplicity and success o f  depositing thin films o f complex compounds. The first 

experiment on PLD was reported in 1965 using a ruby laser [92], The discovery of 

electronic Q-switches allowed for laser designs with highly energetic short pulses in the 

nanosecond range [93]. There were extensive efforts to develop the lasers and PLD 

systems. Many materials were difficult to deposit at before, such as high-transition 

temperature superconducting films, oxides films, and other different materials, but they 

became relatively easy to be grown by PLD. PLD allows for overcoming problems that 

may arise in the preparation o f  these kinds o f materials. This includes requirements to 

control the composition and use o f reactive gas background during the growth o f the film 

[93, 94],

In PLD, high-energy laser pulses are focused to evaporate material from the 

surface o f the target. As a result, ablated species (called a plasma plume) are ejected 

normal to the target. The plume expands in a forward direction with velocity distribution 

depending on the background condition. The film growth on the substrate that is placed at 

the opposite direction to a target occurs after the condensing o f the ablated species. As a 

result o f absorption o f the laser photons, the material melts and vaporizes. Depending on 

the properties o f the laser and those o f the substrate, the qualities, stoichiometric and 

uniformity o f thin films can be achieved. Fig. III.l shows a schematic which describes 

how the PLD mechanism is done inside a vacuum chamber.



Vacuum chamber

Fig. III.l. A schematic o f typical PLD mechanism.

PLD has many advantages that include a relatively simple experimental 

apparatus, the capability to create particles with high-energy, and the growth o f high 

quality film at low temperatures with stoichiometric preservation. The reason for this can 

be understood from the generation and transport o f the ablation species at a very high 

kinetic energy, resulting in enhanced surface diffusion reducing the growth temperature 

for epitaxial growth. In addition, multitargets with a smaller size than that required for 

sputtering can be used to grow multilayer films of different materials without breaking 

the vacuum or interrupting the deposition process [79]. Also, PLD can take place in a 

vacuum chamber either under high/ultrahigh vacuum or in the presence o f some 

background gas. In reactive PLD, a solid target that consists o f  the material o f  interest is



24

ablated under a reactive gas atmosphere. As a result, a new compound is collected on the 

substrate.

Films formed by PLD using ns lasers can have some macroscopic particles in 

them. These particulates are as large as a few microns, which may affect the properties of 

the films [20]. The origin o f these particulates on the surface may be related to thermal 

effects during the laser-matter interaction. Their formation mechanism is linked to the 

ejection o f droplets from the molten target. The use o f femtosecond lasers shows some 

advantages. Different studies were done to compare quality and properties o f  films using 

ns and fs lasers for PLD [95-98].

The advantage o f using a fs laser is that ablation occurs without thermal diffusion. 

In other words, the ablation results from multiphoton ionization, hence, no thermal 

melting occurs. This also overcomes low optical absorption in wide band gap materials 

[94, 95]. Once shorter laser pulses o f picosecond or femtosecond scales were used, the 

thermal processes, which occur in laser ablation, are greatly modified [99]. The effect of 

pulse length on the ablation process is governed by the heat diffusivity o f the material, 

velocity o f sound, and the time for electron-electron thermalization and electron-phonon 

coupling [100], For short laser pulses as in a femtosecond laser, the ablation is considered 

a direct solid-vapor transition. In this case, the thermal conduction into the target is 

neglected since the lattice is heated on a picosecond time scale and results in the creation 

of vapor and plasma [101]. The threshold laser fluence for evaporation o f femtosecond 

pulses and picosecond lasers is independent o f pulse durations, while in the nanosecond 

case it grows as (T j)1/2. This is why, with long laser pulses, there will be enough time for 

the thermal wave to propagate into the target and to create a relatively large layer o f
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melted material. In this case, the evaporation occurs from the liquid metal [101]. Also, 

femtosecond ablation lowers the fluence required for ablation by a factor o f 10 -10  

compared to ns ablation. This is due to better spatial concentration o f fs pulses compare 

to ns pulses [102, 103]. PLD was previously used to study the growth o f nitride 

compounds, e.g., [97, 102] and oxides, e.g., [95, 104].

The advantages o f  PLD can be summarized as follows [79, 93]:

(i) A high preservation o f stoichiometry;

(ii) The ability to produce films out o f any material (solid or liquid ) targets 

and in the form of multicomponent or multilayered films;

(iii) Epitaxial growth at low temperature;

(iv) High deposition rate leads to producing smoother films particularly for 

meta films;

(v) Flexible and easy to implement;

(vi) Growth in any environment, under vacuum or ambient gas;

(vii) Greater control o f growth and thickness o f films;

(viii) The energy source is outside the deposition chamber. This minimizes the 

possibility o f impurities and increases flexibility to grow different 

materials [20]; and

(ix) growth mode that separates the nucleation and growth phases, which can 

alert growth and morphologies.

Like any deposition technique, although there are advantages, there are some 

disadvantages in PLD:



26

(i) The production o f macroscopic particulates during the ablation process; 

leads to higher roughness.

(ii) It covers small area (several square centimeters). This is because o f the 

highly forward-directed plume expansion property.

(iii) There are defects in the film caused by bombardment o f the film by high 

kinetic energy condensing atoms and ions.

(iv) There are inhomogeneous fluxes and angular energy distributions within 

the ablation plume. The flux falls off rapidly with a distance from target.

The unique pulsed feature o f PLD makes it different from other techniques. PLD 

offers an instantaneous high deposition rate (~106 ML/min) which is by 5 -6  orders of 

magnitude relative to that o f  thermal deposition [105]. Low deposition rates could lead to 

long deposition times. The deposition rate can be increased by decreasing the target to 

substrate distance or by increasing the laser energy/fluence. Rapid deposition o f energetic 

species helps to enhance adatom surface diffusion. Therefore, lower temperature epitaxial 

growth could be achieved by PLD.

III.2. MECHANISM OF PLD

PLD involves complicated interactions between a plume species and laser 

interactions with material species. Also, it includes the formation of the plume with a 

high energetic species and their transfer through the plasma to the substrate. That makes 

the theory behind PLD complicated. Furthermore, the laser ablation process and the 

plume expansion under background gas pressure are more complicated than that o f a 

vacuum. The mechanism o f PLD for thin film formation is achieved by four stages which 

will be discussed in more detail in the following sections [79, 93].
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(i) Laser-target interaction and ablation o f the target material.

(ii) Dynamics o f  the ablated species (surface melting and species ejection).

(iii) Deposition o f the ablated species and growth o f  thin film.

(iv) Growth mode o f thin film.

Fig. III.2 shows schematic diagrams o f the processes o f  laser interactions with 

target and plasma, plasma expansion, and film growth.

Substrate

Laser beam Pulse duration

Fig. III.2. Schematic diagram showing mechanism of PLD. (a) Absorption o f laser 
radiation as indicated by long arrows; shaded areas indicate melted material and short 
arrows indicate motion o f solid-liquid interface, (b) Surface melt propagates into the 
solid, (c) Absorption o f incident laser radiation by the plume and plasma formation, (d) 
Condensation on substrate and film growth [106].
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III.2.1. LASER-TARGET INTERACTION AND ABLATION OF THE TARGET 

MATERIAL

When the focused laser beam hits the surface o f the target, all elements in the 

target are rapidly heated to their evaporation temperature. Then, species are ablated from 

the target surface with the same stoichiometry as that in the target. The rate o f  ablation is 

dependent on the fluence o f the laser irradiating the surface. This ejection o f materials 

from targets takes about tens o f  picoseconds o f the laser pulse [107]. The plasma plume 

results as the ejected species continuously absorb energy from the laser pulse, as shown 

in Fig. III.2. The rate o f  the energy transfer from the laser to the target is a function of 

temperature gradient for the target surface, thermal conductivity of the target material and 

the optical properties, including absorption coefficient and reflectivity o f  the target 

material [108]. Therefore, the coupling o f the laser energy to the target surface increases 

as the optical penetration depth, the surface reflectivity and the thermal diffusivity o f the 

target all decrease. There is a minimum value o f  laser energy density that causes 

vaporization o f the target species that is called threshold value. This threshold laser 

fluence energy varies from material to material. Other factors that influence the coupling 

of the laser energy to the target surface are duration and energy of the laser pulse and also, 

the surface roughness and density o f the target materials [79]. The main parameters of 

interest in such laser absorption mechanisms are the peak surface temperature and the 

volume of the heated region, both o f  which are governed by the optical, the thermal 

properties o f  the target and the laser peak intensity I. The energy transport from laser 

pulses into the metal can be described as a two-temperature heat diffusion model in one 

dimension [101]:
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C*JF = K S + (1 “ R)CCl° eX?(~ az) ~ y (Te ~ T«) (III.l)

(III.2)

where z is the direction perpendicular to the target surface. The first term in Equation 

(III.l) is the rate o f heat flux and the second term is the laser heating source term. R is 

reflectivity, a ,  absorption coefficient; and K thermal conductivity o f  the target. T e, T j, Ce 

and Ci are temperatures and heat capacities o f electron and lattice subsystems (phonon 

component). /  is the laser peak intensity, y is the parameter that characterizes the 

electron-lattice coupling [101]. The coupling factor y is related to the heat capacity o f the 

electron and lattice by xe = CJ  y and Xj = C J y, where xe is the electron cooling time, and 

Xj is the lattice heating time (xe «  Xj). The relation between these two time scales and 

laser pulse duration time xl defines the femtosecond, picosecond and nanosecond 

regimes o f the laser-metal interaction [101].

The ejection o f the materials from the target is a complex process. Contributions 

for the target excitation and sputtering mainly come from electronic excitations. Other 

thermal contributions are dominated if  longer laser pulses are used. The formation of 

wavelike structures on the target surface after laser irradiation is evidence for thermal 

contribution [106]. An unwanted effect is phase explosion, which occurs as a result o f  

explosive boiling o f the target material at higher laser fluence and this causes ejection of  

particulates. These particulates may also result if  the target surface has some pores on it 

and is not perfectly flat. Also, another thing which affects the uniformity and 

stoichiometry o f  the films is formation of secondary sputtering as a result o f the back- 

scattering o f some o f the ablated material [106].



III.2.2. DYNAMICS OF THE ABLATED SPECIES

The plume tends to move toward the substrate in a cone shape [109]. The 

expansion o f a plasma plume in ambient gas is different from that in a vacuum. The 

plume expansion in a vacuum is characterized by certain characteristics: First, the plasma 

expansion is isothermal during the time of the laser pulse. After termination o f the laser 

pulse, it expands adiabatically [100]. During the adiabatic expansion, there is no heat 

exchange occurring at any instant between the system and its surrounding. So, in this 

process, the internal energy o f the plume is converted to work that is represented by a 

decrease in the pressure o f the gas as the volume is expanded. As plasma expands, 

thermal energy is converted into kinetic energy and that causes rapid cooling o f the 

plasma [100]. The temperature o f the plume drops as evidence of the decrease in internal 

energy. The recombination of the ionized species makes the temperature decrease much 

more slowly than predicted. The plasma temperature typical value for the temperature 

during the initial expansion is as high as 104 K [100]. Second, Knudsen layer (KL) is 

formed. A Knudsen layer is a thin layer o f thermally activated vapor that forms at some 

distance from the surface where Maxwell-Boltzmann velocity distribution is not at 

equilibrium (Fig. III.3) [110], In KL, the ablated particles absorb laser energy and this 

causes transformation o f anisotropic velocity distribution into an isotropic one. Then, 

collisions with the plasma in a few mean-free paths from the target surface establishes 

thermodynamic equilibrium [93]. Third, the collisions between the particles lead to an 

anisotropic forward expansion o f the plume in a normal direction to the target [100]. Fig.

III. 3 shows the formation o f melted surface and vapors, and flows by a Knudsen layer 

under ambient gas [111].
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The shorter dimension o f plasma in one direction is the highest velocity. The 

dimensions o f the plasma in transverse directions to the target are much larger than the 

parallel direction. As a result, plasma will be accelerated more rapidly in a forward 

direction than in other directions. This strong forward direction is caused by pressure 

gradients in axial and radial directions of the plume [112]. The plasma will retain its 

elliptical shape during expansion and this controls the density distribution o f particles in 

it which will affect the deposition profile. The plasma is assumed to have exponential 

density gradient with linear increase in the velocity o f species with distance from target 

surface [100].

Melted surface 
and saturated

Knudsen layervapor

Ambient gas Chamber 
wall

Target Expanded plume

Fig. III.3. Laser ablated plume flow under ambient gas. From [111].

The plume angular dependence have the form [112] 

377 =  acosQ +  bcosn0,
H O  "

(III.3)
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where a, b, and n are material dependents, with n values reported in the range o f 4-14  

[113]. According to this equation, the distribution o f the plume is described with two 

components, cos0 distribution, which has considerable thermal energy as in conventional 

thermal evaporation [114], and the other component has cosn0 distribution, which is 

dominated distribution o f the plume. This component is close to stoichiometric and has 

high expansion velocities (~ 106 cm/s) [114], Fig. III.4 shows the schematic o f  the plume 

shape as a function o f n. The relation o f the vapor pressure with the temperature is given 

though the Clausius-Clapeyron equation [115]:

where L, M and p are specific heat, molecular weight and density o f  the target material,

pressure P0. Generally, the typical velocities o f the particles during the isothermal

(HI-4)

respectively; R is gas constant (= 8.3145 J mol'1 K'1), and Tb is boiling temperature at

expansion in vacuum are in the range o f 105—106 cm/s [115],

n =  16',

Fig. III.4. The shape o f PLD plasma plume as a function o f n. From [114].
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The expansion velocities o f species are different depending on their masses. Ion 

velocities are higher than those o f neutral species. In absorption spectroscopy, ground- 

state atoms and ions have been observed in the plume after the initial expansion [108]. 

The existence o f fast neutrals in the plume can be explained by recombination o f fast ions 

with electrons or resonant charge exchange between fast ions and neutrals [100].

Under background gas, there will be some force on the plume from the plasma- 

gas interaction. Under reactive background gases, the chemical reactivity o f  ablation 

species is enhanced by the addition o f a separate ion source. This may cause a lowering 

in the activation energy needed for dissociation o f  the gas molecule and formation of 

films with nearly stoichiometric composition at lower temperatures or even at room 

temperature [116]. Carrying out PLD in background gas induces reactions with ablated 

elements to form compound with used gases or compensate for any loss o f an elemental 

component o f the target [15].

The beginning o f the expansion of the plume under a background gas is similar to 

expansion in a vacuum. Then, the plume expansion is controlled by the interaction o f the 

plume with the background gas. This is depends on the type and pressure o f background 

gas in use [117]. In other words, more collisions will occur as the gas pressure increases 

and that means the number o f ablated particles that are reaching the substrate without any 

collision will decrease. The shape of the plasma plume is directly related to particle 

density. The shape o f the plume is sharpened in the forward direction since the 

acceleration is much stronger in the forward direction. The sharpening of the plume 

indicates the formation o f shock waves at the front [118]. The spot size o f  the laser and 

the plasma temperature have significant effects on the uniformity o f deposited films
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[119]. The target-to-substrate distance is another parameter that governs distribution of 

the ablated materials [120].

III.2.3. DEPOSITION OF THE ABLATED SPECIES AND GROWTH OF THIN-FILM

Many factors, such as density, energy, and the type o f  the condensing material, as 

well as the temperature and the physical-chemical properties of the substrate, affect the 

growth o f the films. The two main thermodynamic parameters for the growth mechanism 

are the substrate temperature Ts and the supersaturation [121]. Supersaturation in vapor is 

defined as a vapor of a compound that has higher partial pressure that exceeds normal 

saturation vapor pressure. So, in supersaturation, the density of vapor is high and that 

makes atomic separation short and condensation occurs. The way particles nucleate 

determines the structure and morphology o f the film. The nucleation process depends on 

the interfacial energies between phases present at the substrate, condensing material, and 

vapor. Nucleus size depends on the deposition rate and the substrate temperature. Small 

supersaturation leads to large nuclei, which subsequently unite together. As the 

supersaturation increases, the nucleus size shrinks to minimum critical height like o f the 

atomic diameter and two-dimensional layer formed. For very large supersaturation, layer- 

by-layer nucleation will occur [122].

The ejected species impinges onto the substrate surface and may induce various 

types o f damage to the substrate due to their high energies. The neutrals have kinetic 

energies in the range of a few eV to tens of eV [96]; at the same time, the kinetic energy 

of ions is significantly larger. These energetic species may cause sputtering o f some 

surface atoms. That creates compressive stress pulses normal to the surface o f the liquid. 

The estimated value o f this pressure is about 103 to 104 Pa [123].
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Film growth mainly depends on both the substrate temperature T and 

supersaturation, which are related by a thermodynamic driving force (AM) equation

AM =  kBTln(—), where R is the actual deposition rate, and Re is the equilibrium value Re

o f deposition rate at the temperature T, and ke is Bolztman's Constant [121]. At 

equilibrium, AM is zero, and at condensation it is positive and negative during 

sublimation or evaporation. For PLD, the deposition rate is order o f magnitudes higher

I f t  ' ) ' )  0than the conventional method, ( 1 0 - 1 0  cm /s) which leads to a very high degree of 

supersaturation in plasma [115],

The structure o f deposited films is determined by diffusion o f particles on the 

substrate surface. The certain amount o f energy that is provided to the adatoms 

determines diffusion processes [113]. This energy is initiated from kinetic or potential 

energy, of the adsorbate or can be supplied thermally by substrate heating. The rate of 

surface diffusion depends on a variety o f factors, including the energy o f the incoming 

adsorbate, the strength o f the surface-adatom bond, orientation o f the surface lattice, 

densities o f atomic steps, surface reconstruction, attraction and repulsion between surface 

species, and externally-supplied energy [121]. The diffusion coefficient, D, o f  adatom 

migrates on surface with diffusion energy Ediff given by: D =  D0 exp{—Edi^ / k BT̂ ), 

where D0 is diffusion coefficient constant corresponding to the pre-exponential. The time 

that atoms coming from the vapor stay on surface before desorption is called residence 

time Tad and it is given by: xads =  (1 /v)exp{Eads/ k BT) , where Eads is by adsorption 

energy. For diffusion to occur, it is expected that Ediff < EadS. This energy can originate 

from kinetic or potential energy o f the adsorbate or can be supplied thermally by 

substrate heating [115].



III.2.4. GROWTH MODES OF THIN FILM

The growth mode o f epitaxial film depends on surface energies o f  both substrate 

and adsorbents and on the interface energy o f film and substrate. During film growth, 

different processes occur for the incoming atoms on the substrate surface, such as 

diffusion, nucleation on islands (clusters), diffusion on clusters, detachment from the 

island, diffusion along a step edge, detachment from an island, diffusion o f cluster 

surface or detached from and remain on the substrate surface. There are three growth 

modes for nucleation and growth of the films [124]:

i. Three-dimensional island (Volmer-Weber) growth,

ii. Two-dimensional layer by layer (Frank-van der Merwe) growth, and

iii. Two-dimensional growth o f monolayers followed by nucleation and growth of three- 

dimensional islands (Stranski-Krastinov) growth.

These growth mechanisms are shown in Fig. 111.5(a) and show Volmer-Weber 

growth as small clusters nucleate on the substrate and grow to form three-dimensional 

islands [125]. Frank-Van der Merwe or layer-by-layer growth is shown in Fig. 111.5(b). 

In layer-by-layer growth the depositing atoms are more strongly bonded to the substrate 

than to each other. The Stranski-Krastanov mode is shown in Fig. 111.5(c) is a 

combination o f the layer-by-layer and island growth [124]. In the following section, brief 

descriptions o f these modes are given.

III.2.4.1. VOLMER-WEBER GROWTH

Volmer-Weber growth of three-dimensional (3D) islands results if  there is an 

energy loss due to formation o f the film as shown in Fig. 111.5(a). Therefore the Volmer- 

Weber growth is considered a non-wetting growth [125]. The growth or dissolution o f the



37

cluster is governed by the difference between the total free energy o f  the cluster and 

energy needed to assemble the individual atoms. The clusters will be stable i f  this 

difference in energy is above the critical cluster size [124]. Island growth occurs when 

the surface energy of the film exceeds that o f  the substrate (yFiim + Yinterface ^ Ysubstrate) YFiim, 

Ysubstrate, and Yinterface are surface-free energies o f film, substrate- and interfacial-free 

energy between film and substrate, respectively. The possibility of getting Volmer-Weber 

growth increases as the cluster nucleation rate increases. This increase can be achieved by 

either increasing the deposition rate or decreasing the substrate temperature. The growth 

is by the formation o f large numbers o f nuclei on the surface, then, their nucleation 

occurs. This mode o f growth was presented for many metals grown on insulators [124],

III.2.4.2. FRANK-VAN DER MERWE GROWTH

In the two-dimensional, layered structures Frank-van der Merwe growth mode or 

layer-by-layer growth mode, a new layer is nucleated only after completion o f  the first 

layer. In other words; nucleation and growth o f islands that are only one monolayer thick 

is completed and coalesced before significant clusters o f the next film layer is developed. 

Fig. 111.5(b) shows the layer-by-layer growth mode. In this case, there is no free energy 

barrier to nucleation [121]. The adatoms o f deposit material are more strongly attracted to 

the substrate than they are to each other [124]. This is opposite to the Volmer-Weber 

mode case, where the deposit atoms are more strongly bound to each other than to the 

substrate. Layer-by-layer growth will result, assuming the substrate temperature is high 

enough to achieve thermodynamic equilibrium [126]. This mode was observed in 

epitaxial growth o f metal and semiconductor with close lattice match.



III.2.4.3. STRANSKI-KRASTINOV GROWTH

The Stranski-Rrastinov growth mode is considered an intermediate between the 

two previous modes and is much more common [121]. It characterized by both 2D layer 

and 3D islands growth, as shown in Fig. 111.5(c). This happens when there is a significant 

lattice mismatch between the film and substrate. The first deposited few monolayers 

follow the Frank-van der Merwe growth mode. The key parameter that determines the 

growth mode is the interface energy. The strain results from the lattice mismatch. That 

increases the interfacial energy because the strain energy increases with the thickness. At 

some critical thickness, the interfacial free energy will exceed the surface energy o f  the 

substrate and the growth mode transformation from the 2D wetting layers growth to 3D 

islands occurs. This mode observed in metal-metal and metal-semiconductor [124].

Fig. III.5. Schematics o f thin film growth modes, (a) Volmer-Weber (b) Frank-Van der 
Merwe and (c) Stranski-Krastanov growth. From [114].



CHAPTER IV 

EXPERIMENTAL TECHNIQUES

IV. 1. INTRODUCTION

Niobium nitride (NbN) has recently received interesting attention in the 

fabrication o f tunnel junctions for superconducting applications o f  SIS receivers, 

resolution X-ray detectors, and high-field magnets. NbNx exhibited supercomputing 

transitions above 10 K, which is one o f  the important considerations for using the 

superconductor in electrical applications. NbNx films commonly have known cubic FCC 

or rock salt structure. NbN has bulk Tc o f about 16 K; the cubic phase shows high values 

of Tc; besides that, it is mechanically and chemical stable and of large superconducting 

energy gap. Also, it can easily be created in thin film form.

Several reports have been done on the growth and characterization o f metastable 

nitride compounds, such as CNX and c-BN [77]. Different phases o f  transition metals can 

be formed as nitrogen-to-metal ratio is changed. Transition metal nitrides have important 

superconducting properties because they are metal, have high melting points, and are 

very hard. NbNx thin films have been prepared for many applications by using different 

techniques, such as reactive ion sputtering, ion beam deposition and chemical vapor 

deposition (CVD). In all these methods to obtain single crystal NbNx thin films, the 

substrate was heated to temperatures- between 350 to 1200 °C. Such a high-substrate 

temperature may induce impurity diffusion and that prevents the potential application o f  

single-crystal NbNx films in fabricating superconducting devices and circuits. PLD has 

been used to grow various compounds.



IV.2. PULSED LASER DEPOSITION SYSTEM

Fig. IV. 1 shows schematic diagram o f a PLD system in which films were grown 

by PLD in the current research. As shown in the diagram, a six-way 8-inch stainless steel 

chamber is used for deposition. The chamber is pumped down to UHV via a roughing 

pump (Edwards), a turbo pump (Varian, 70 1/s), and an ion pump (Varian, 300 1/s). A 

vacuum can be reached o f ~  6.66 xlO'6 Pa without backing. If the system is backed, a 

base pressure o f <1.3x1 O'7 Pa can be reached. A convectron gauge is used for pressure 

readings from 101, 325 Pa down to 0.13 Pa. An ion gauge is used to monitor the pressure 

from 0.13 Pa down to 1.3x1 O'9 Pa. A “homemade” sample holder, which is used to mount 

the substrate, was designed to heat the sample. The substrate holder is mounted on a 

manipulator (a 4.5 inch conflate flange), which enables the azimuthial rotation o f the 

sample by 360° and the adjustment o f the sample-to-target distance. The target is 

mounted on an electrically rotated sample holder with a variable rotation speed. The 

rotation o f the target minimizes the formation o f particulates by exposing a fresh area to 

the laser pulses all the time. A nanosecond Nd: YAG laser (Lumonics, 45 ns, 1064 nm 

and 10 Hz) is used to ablate the Nb targets. More technical details o f  such a system are 

found in Appendix A. The laser hits the target at ~  45° through a 2.5 inch glass window.
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Fig. IV. 1. UHV chamber used for the PLD.

IV.3. CHARACTERIZATION TECHNIQUES

IV.3.1. X-RAY DIFFRACTION

In this study, a theta: 2-theta goniometer was used. The goniometer refers to the 

assembly o f  the sample holder, detector, and associated gear mechanism. For this kind o f  

scan the X-ray tube is stationary, and both the sample and detector move simultaneously 

by the angles theta and 2-theta, respectively. In this setup, the distance from the X-ray 

focal spot to the sample is the same as from the sample to the detector, with the detector 

moving on a circle.
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XRD measurements were done at X-ray Crystallography Center at the College of 

William & Mary using a Bruker-AXS three-circle diffractometer. A Bruker SMART 

APEX II instrument is equipped with graphite-monochromated CuKa radiation and a 

SMART Apex II CCD detector. The X-ray source o f  the wavelength o f  1.5406 A (Cu-Ka 

line) is fixed, and both the charge coupled device (CCD) detector (20) and sample (co) are 

movable. The detector (20) covers about 30° per image position. Three image positions 

were used for the experiment. In each case, the angle 20 is the center position o f the 30° 

CCD image, so that the angles o f  incidence and diffraction are equal.

The crystallite size o f deposited films was examined using X-ray diffraction. The 

investigation o f a crystallite size is performed by measuring the broadening o f a 

particular peak in a diffraction pattern associated with a particular set o f  planes from the 

crystal unit cell. The average crystallite size in this work is obtained from the Scherrer 

relation [127].

where X and (3 are the X-ray wavelength and Full Width at Half-Maximum (FWHM) of 

the XRD peak, respectively. The constant K is the Scherrer constant, sometimes called 

the shape factor, and is taken as 0.94. The shape factor depends on the way it is used to 

determine the width and crystallite shape [128]. K can be 0.62 -  2.08 and the most 

common value o f K is 0.94 -  0.89. For spherical crystals the value 0.94 is used for K if  

FWHM is used, while 0.89 is used if  integral breadth is considered [128]. FWHM is the 

width o f the diffraction peak in radians at half-way o f the height between the background 

and the peak maximum. The integral breadth is defined as the total area under the peak 

divided by the peak height. A careful evaluation for the peaks and the background is
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required. Scherrer's equation can be used for small particles determination (100 nm or 

crystallite smaller). In this case, this dominates the peak-broadening compared to strain. 

Scherrer equation does not include instrumental and strain broadening effects; it just 

considers line broadening that is entirely caused by size effect [129]. According to 

Equation (IV. 1), the narrower the diffraction peak is, the larger the crystallite size. For 

the correct result on the crystallite size, the broadening from strain effect and the 

instrumental profile width must be separated. Multiple peaks need to be analyzed to 

separate these effects from integrated width calculations [130]. Also, the variation in the 

c/a ratio for hexagonal phases (so-called hexagonality) can be calculated from XRD as a 

function of investigating parameters o f  the laser. The lattice constants “a” and “c” were 

calculated from one or more o f the peaks o f the XRD pattern. The following equation is 

used for lattice constant calculations for the hexagonal phase [131]:

(IV .2 )

IV.3.1.1. TEXTURE COEFFICIENT

The degree o f texture in the films was measured using an integrated peak intensity 

analysis o f XRD. A texture coefficient can give the dominant reflection and therefore, 

shows the preferred orientation o f the deposited films. This may be useful for the 

fabrication o f films of the desired orientation in the applications, as it is reported on the 

effect o f the grain size and the texture degree o f NbNx films on the electrical, optical, and 

catalytic properties [132], The integrated intensity o f  diffraction peaks decreased while 

FWHM increased. The texture coefficient (TC) or an average texture coefficient from 

XRD data, was calculated using the following equation [133]:
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TC(hkl) (IV.3)

where I(hkl) are measured peak intensities o f (hkl) reflection; I0(hkl) are powder 

diffraction intensities o f the standard data; and n is the number of reflections used in the 

calculations. For example, if  the following (hkl) reflections from XRD spectra: (100), 

(002), (102), (110), (103), (112) and (202) for p-Nb2N, were used in texture coefficient 

calculations, then n = 7 and I0(hkl) are intensities o f  the standard data for these 

reflections. For a preferentially oriented sample, the texture coefficient TC(hkl) should be 

greater than one. In order to select the dominant reflections which show the strong texture 

in the films, TC (hkl) was calculated.

Fig. IV.2. Components o f  two-dimensional XRD (XRD2) system: X -ray source X-ray 
optics; goniometer and sample stage; sample alignment and monitor; and area detector. 
Diffraction cones from a polycrystalline sample and diffraction from powder.

X-ray generator

Goniometer and 
sample stage

Area detector

Sample 
alignment and 
monitorjgfeitfxR S til l

Diffraction cones from Diffraction from
polycrystalline sample powder sample
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Two-dimensional X-ray diffraction (2D) XRD, sometimes written as (XRD2), 

images resulted from thecollection of the diffraction pattern with the area detector. Two- 

dimensional X-ray diffraction system consists o f five basic components [134]. Fig. IV.2

'y
shows basic components in an XRD system, namely, X-Ray Source, X-Ray optics, 

goniometer and sample stage, sample alignment, monitor, and area detector, is shown in 

Fig. IV.2. The diffraction cones from a polycrystalline sample in 3D and diffraction rings 

from powder samples are shown.

The two-dimensional diffractometer is based on the four-circle diffractometer 

[131]. One circle is for the detector position and the other three for sample positions on 

the three-circle goniometer [134]. In the case o f conventional XRD, the measurements 

are limited to the diffractometer plane and any variation o f the diffraction pattern in Z 

direction is not considered. On the other hand, with the two-dimensional detector, the 

diffraction measured, whole or part o f diffraction rings, is measured depending on the 

detector to sample distances and detector size [131]. Fig. IV.3 shows the geometric o f  the 

diffraction cones in the laboratory coordinates system (XYZ). The X-ray incident in X- 

direction and the apex angles o f the cones are determined by the 29 values given by the 

Bragg equation. The y angle is used to describe the variation of the diffraction pattern 

along the diffraction ring. The y angle takes a value from 0 to 360° and 29 takes a value 

from 0 to 180°. The intersection o f the 2D detector plane with the diffraction cone forms 

so-called conic section or diffraction ring. The conic section takes circle shape when the 

detector is in axis. The 2D diffraction image collected in a single exposure is referred to 

as a frame, which is stored as intensity values on 2D pixels [134],
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Fig. IV.3. (a) The geometry o f a diffraction cone, (b) Diffraction cone and the conic 
section by a 2D detector plane.

IV.3.2. ELECTRON PROBE MICRO ANALYSIS

Electron probe micro analysis (EPMA) is based on bombarding the samples with 

accelerated electrons and then measuring the intensity ratio of characteristic X-rays 

emitted (usually at K and L-edges) from the sample. The signal o f  the sample is 

compared to that o f a standard sample o f known chemical composition. Thus, the atomic 

ratios are calculated. EPMA measurements were made at Electron Probe Microanalysis 

Labs at Old Dominion University. The C AMEC A SX 100 equipment was used for 

EPMA measurements. This machine is equipped with five spectrometers and large
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crystals for analyzing spots on materials down to about five microns and with an 

accuracy in the tens o f parts per million. The samples were bombarded with electrons 

accelerated at 10 kV and 100 nA. The chemical composition value o f  each film is an 

average of at least 5 measurements performed on different sample places.

IV.3.3. SCANNING ELECTRON MICROSCOPY

Scanning electron microscopy (SEM) is based on collecting information from 

secondary electrons emitted from the surface as the result o f  scanning the sample surface 

using an electron beam with energies between 5 to 30 kV. The intensity o f the collected 

electrons depends on the angle between the emitting surface and the detector. Regions in 

the specimen emitting an intense signal appear brighter than regions emitting a weaker 

signal. This contrast allows the formation o f a surface image. The lateral resolution in 

SEM, in the range of 100 nm, limits the observations o f nanostructures. The surface 

topography and morphology can be examined for the purpose o f this research. Also, 

conformity o f film in case o f  film deposition in trench microstructures is also evaluated. 

Conformity is defined as the ratio between the film thickness of a point taken at center 

bottom o f the trench and the reference thickness that is measured at the top o f the 

microstructure [135]. Thickness can be evaluated by SEM. The fracture cross-section of  

NbNx films on Si was examined.

IV.3.4. ENERGY DISPERSIVE X-RAYS SPECTROSCOPY

Energy dispersive X-ray spectroscopy is an analytical capability used for 

elemental characterization and quantification o f the chemical compositions near the 

surface o f the samples. This technique depends on measuring the energy o f the X-rays 

that are emitted from the sample. The X-rays resulted as the electron beam excited the
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electrons in the sample; these excited electrons changed their orbitals. Counts and energy 

emitted X-rays are measured energy-dispersive spectrometer. Accuracy in EDX depends 

on the energy o f the X-ray and density and thickness o f  material. This can result in 

reduced accuracy in inhomogeneous and rough samples. The chemical composition of 

(N/Nb = x) o f the NbNx films was determined by EDX. The EDX measurements were 

done using an Hitachi S-4700 field emission scanning electron microscope (FESEM) 

operated at 15 kV accelerating voltage, working distance 8 to 12 mm, and counting time 

of 200 s. The FESEM microscope is equipped with a Rontec EDX detector to determine 

the chemical composition.

IV.3.5. ATOMIC FORCE MICROSCOPY

The atomic force microscope (AFM) belongs to the scanning probe microscopy 

(SPM) branch. AFM was invented by three scientists, Binnig, Quate and Gerber in 1986 

[136]. From its name, it refers to the interactions between the probe and sample on the 

atomic level. The AFM is like all other scanning probe microscopes, uses a sharp tip that 

moves over the surface o f the sample. The tip is attached at the end o f a cantilever, which 

bends in response to the force between the tip and the sample. The cantilever itself bends 

in consistency with the surface. The AFM images are obtained by measuring this force on 

a sharp tip. The AFM images result as the tip scans the surface with line by line scans and 

assembles topographical images. A laser beam is reflected from the cantilever and 

collected by a position sensitive photodiode. Any deflection o f the cantilever results in 

one photodiode collecting more light than the other photodiode, producing an output 

signal which is proportional to the deflection o f the cantilever. The information o f the 

deflection is used to assemble an image. AFM images can illustrate the topography and



morphology o f  the surface. All o f  the images in this work were obtained in air using the 

tapping mode on Digital Instruments Dimension 3100 atomic force microscope (Veeco 

Instruments Inc.). The AFM is equipped with a NanoScope Ilia controller to control the 

microscope head and scanning and operated using NanoScope VI software. Silicon tips 

with 10 nm tip radius and resonant frequency ± 1 0 0  kHz were used. In the tapping mode 

the tip taps the surface for a very short time of this oscillation period. AFM is capable of 

scanning to sub-Angstrom (A) resolution in all directions with extremely precise 

positioning. Both the horizontal and vertical resolutions depend on the distance between 

tip and sample; the lower the tip, the higher the resolution.

IV.3.6. HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY

In high-resolution transmission electron microscopy (HRTEM) high-energy 

electrons (100 keV-1 MeV) are transmitted through the sample to generate an image of 

the internal structure o f  the sample. Usually, a very thin film sample is deposited on a 

thin carbon coated Cu grid or prepared by a series o f  grinding, polishing and ion-milling 

steps to be thin enough for the transmission o f electrons. The resulting image displays 

structural details at very high spatial resolution. JEOL JEM-21 OOF high-resolution 

transmission electron microscope was used for TEM images recording. HRTEM operates 

with ZrO/W field emission gun. The transmitted electron beam is affected by the 

structures and objects in the sample. This transmitted beam is then projected onto a 

phosphor screen, forming the image. The dark areas in the image mean fewer electrons 

were transmitted through and that represents areas o f the sample with thicker or denser 

materials and vice versa. Different type images can be obtained by TEM. Bright field 

images, dark field images, and high-resolution lattice images.
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CHAPTER V 

PULSED LASER DEPOSITION OF NbNx THIN FILMS ON Nb 

SUBSTRATE

V .l. INTRODUCTION

Niobium nitride NbNx thin films potentially have been used in many applications. 

Most o f  the applications are related to superconducting properties NbNx thin films [137- 

141]. The good superconductivity o f NbNx films allows them to be used in low- 

temperature superconducting electronics, such as tunnel junctions [12, 75].

Optoelectronic applications o f NbNx films are such as the single-photon infrared photo 

detector [50] and the nano-structured X-ray detectors [142, 143]. In addition to the 

superconductivity, NbNx films showed excellent mechanical properties, such as high 

hardness and toughness compared to Nb, and this makes it a suitable material for 

protective-wear coatings [144-146]. Because o f  these attractive properties o f  NbNx thin 

films, considerable efforts have been devoted to study their growth and characterization.

Pulsed laser deposition (PLD) is a relatively simple and promising technique for 

preparation o f highly textured thin films. PLD allows the stoichiometric transfer o f a 

material from a solid target to a substrate. One o f the advantages of PLD is that it can be 

used to deposit thin films in reactive gases. This reactive PLD is widely used for 

fabrication o f many thin films, such as high-temperature superconductor oxides, 

semiconductors, and nitrides [93]. PLD is used to deposit thin films in reactive gases. The 

influence changing o f PLD fabrication parameters, such as laser fluence, substrate 

temperature, and ambient gas pressure on the microstructure o f NbNx films, has been
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previously studied [80-86, 147-151]. NbNx thin films prepared by PLD have non­

stoichiometry and phase change as nitrogen content in the film is changing [86, 147]. 

Most studies on NbNx films are related to superconducting properties using Si or MgO 

substrates [137, 138, 152], Growth o f NbNx films on Nb substrates is studied for the 

possibility for improving the performance o f superconducting radio frequency (SRF) 

cavities that are used for linear particle accelerator [153, 154]. Coating Nb cavities with 

superconductors with higher Tc and lower critical field than Nb, such as NbNx, could 

reduce surface resistance and, hence, increase the field for vortex penetration greater than 

that o f Nb and that increases the quality factor [155]. Another importance o f coating Nb 

substrates with NbNx layer is to increase surface hardness and provide a barrier for 

hydrogen diffusing into Nb [40].

A series o f experiments were performed to understand the processing parameters 

and optimize them to obtain high quality NbNx films by PLD. NbNx films were deposited 

onto Nb substrates with varying laser fluences, nitrogen background pressure and 

substrate temperature. The films were examined by using various characterization 

techniques such as XRD, SEM, and AFM. The changes in laser fluence, nitrogen 

background pressure and substrate temperature have significant influence on properties o f  

formed NbNx film, such as phase formation, size o f the crystallites, and surface 

roughness. Highly textured NbNx layers can be prepared on a single Nb crystal using 

PLD. Study variations o f structure, texture and morphology o f  NbNx thin films grown on 

Nb substrate by PLD are presented. The control o f  surface microstructure plays a key role 

in determining the surface properties and film quality for various applications.



V.2. EXPERIMENTAL DETAILS

NbNx films were grown on Nb single-crystal substrate by ablating Nb target in 

nitrogen background. The chamber was equipped with a turbo-molecular and ion pump 

operated at a base pressure of —1.3x1 O'7 Pa. A pulsed Nd: YAG laser beam (wavelength 

1064 nm, repetition rate 10 Hz, pulse duration 40 ns) was focused with a 50 cm focal 

length lens at 45° onto a rotating (25 rpm) Nb metal target (99.995% pure). The 

background pressure o f  the ambient nitrogen gas was measured with a convectron gauge. 

The nitrogen operating pressure was achieved by filling the vacuum chamber with the 

amount o f gas required to reach operating pressure. The samples were 8.6 x 6.6 x 0.7 

mm3 cut by wire electro-discharge machining from an Nb slice o f Ingot "H" from the 

Companhia Brasileira de Metalurgia e Minera9ao (CBMM) Company, Brazil. The 

samples were etched by the buffered chemical polishing (BCP) method [156]. The etched 

samples were rinsed in deionized water, dried under nitrogen flow, and then finally 

degassed for a few hours at 900 °C in UHV chamber under a base pressure o f 1.3 xlO-7 

Pa. X-ray diffraction (XRD) o f cleaned Nb substrate indicates that most crystalline grains 

of Nb substrate exhibit crystallographic Nb (110), (200), (211), and (310) orientations 

[157]. The substrate to target distance is approximately 5 cm. The substrate temperature 

was measured using a chromel-alumel (K-type) thermocouple that was mechanically 

attached to the substrate surface. The temperature can be measured reproducibly and with 

an accuracy o f ±20 °C, which is mainly limited by the sample to the heater surface 

contact. The thickness o f  the deposited films is 20±3 nm. Film thickness was obtained by 

following the same deposition conditions on silicon substrate then performing cross- 

section SEM measurements. The X-ray diffraction studies were carried out in a Bruker-



AXS three-circle diffractometer with graphite-monochromated CuKa radiation and a 

SMART Apex II CCD detector. The crystallite size D is obtained from the Scherrer 

formula [127].

where X (0.154056 nm) and B are the X-ray wavelength and full width at half-maximum 

(FWHM) o f the XRD peak, respectively. The texture coefficient (TC) was calculated 

from XRD data, using the following equation [133]:

where /(hkl) are measured peak intensities o f (hkl) reflection; /o(hkl) are powder 

diffraction intensities o f P-Nb2N according to the standard data [23]; and n is the number 

of reflections used in the calculations. The morphology o f the films was studied using 

JEOL JSM-6060 LV SEM and a Digital Instruments Dimension 3100 atomic force 

microscope (AFM). SEM images were taken at an accelerating voltage o f  30 kV. All 

AFM images were taken in air using tapping mode. An energy dispersive X-ray 

spectroscopy (EDX) and an electron probe micro analyzer (EPMA) were used to 

determine the chemical composition o f the samples. EPMA were done by point scan 

using a Cameca SX100. For the EDX measurements, an Hitachi S-4700 field emission 

scanning electron microscope (FESEM) equipped with a Rontec EDX detector was used 

to determine the chemical composition (N/Nb = x) o f  the NbNx films. The FESEM was 

operated at 15 kV accelerating voltage, working distance 8 to 12 mm, and counting time 

200 s. The concentrations o f the A phase in an A+B mixed phase film was calculated by 

the following formula [158]:

TC{hkl) = I ( hk l )  

l0(hk l )
I j h k l )

I0 (hk l )
(V.2)
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where £  I a  ar)d Z h  are the sum o f the integral intensities o f  A phase and B phase peaks 

in the measured XRD patterns. The deposition parameters of PLD include substrate 

temperature, target-to-substrate distance, background gas pressure, and laser wavelength, 

pulse width, repetition rate, and fluence. By adjusting the laser fluence, the 

microstructure and surface properties o f the NbNx films can be controlled. For effect of 

the laser fluence on the pulsed laser deposited NbNx different laser fluences from 8 J/cm2

■y

to 40 J/cm were used. Both substrate temperature and nitrogen background pressure were 

maintained at constant values 600 °C and 20.0 Pa, respectively, during all film growth 

processes. Nitrogen background pressure from 10.7 to 66.7 Pa was used with constant 

laser fluence o f 15 J/cm and substrate temperature o f 600 °C to study the influence of 

nitrogen pressure. For effect o f substrate temperatures NbNx, films were deposited at 

different substrate deposition temperatures from RT to 950 °C under constant values of 

nitrogen pressure and laser energy density o f 13.3 Pa and 15 J/cm2, respectively.

V.3. RESULTS AND DISCUSSION

V.3.1. LASER FLUENCE EFFECT

V.3.1.1. STRUCTURE AND PHASE COMPOSITION

In order to study the effect o f  laser fluence on the structure NbNx films, XRD 

patterns were obtained as shown in Fig. V .l. For a laser fluence range o f 8 -40  J/cm2, 

highly textured films were obtained with mainly a hexagonal (3-Nb2N phase [159], It is 

well known that the Nb-N system crystallizes in several phases and in most cases in a 

mixed-phase composition as presented by XRD patterns [37, 160]. In addition to the p-
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Nb2N phase, the XRD shows peaks that correspond to 5-NbN cubic [161] and 8'-NbN 

hexagonal [162] phases. The films prepared at low laser fluence (8 J/cm2) showed mostly 

p-Nb2N phase and weak reflection o f 8'-NbN hexagonal phase. The crystal structure of 

the film obtained at 15 J/cm2 showed mixed (cubic + hexagonal) phase o f NbNx and it 

became pure hexagonal phase with increasing laser fluence.

X>

40 Jem"2

C /5C
C

40 60 80

2 Theta (degree)

Fig. V .l. X-ray diffraction patterns o f NbNx films deposited at various laser fluences, 
constant nitrogen background pressure o f 20.0 Pa, and substrate temperature o f  600 °C.

The nitrogen content in the NbNx films was obtained by EDX analyses. Fig. V.2 

shows the chemical composition o f the surface layer. The N/Nb ratio in the hexagonal P* 

Nb2N phase was determined to be between 0.36±0.03 to 0.52±0.03, which is in
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agreement with previously reported for NbNx films [4, 13]. The N/Nb ratio in the film 

increased from 0.36 to 0.52 as the laser fluence was increased from 8 to 40 J/cm2. The 

laser fluence not only controls the flux o f niobium atoms and ions, but also it determines 

the energy o f the ablated material and the extent o f  nitrogen dissociation and ionization. 

The higher the laser fluence, the more nitrogen dissociation and ionization will be created 

and this increases nitrogen content in the NbNx film.

The crystallite size o f the NbNx films deposited at different laser fluences was 

examined using X-ray diffraction and the results are shown in Fig. V .3. The investigation 

of the hexagonal p-Nb2N phase crystallite size is performed by measuring the broadening 

of the peak in a diffraction pattern. The mean crystallite size o f  the hexagonal phase from 

the different XRD peaks was calculated from the Scherrer formula, as shown in Fig. V.3. 

The crystallite size decreases with increasing the laser fluence, and then decreases for 

laser fluence at 40 J/cm . Increasing the laser fluence enhances the grain size o f  the NbNx 

films. The Scherrer formula only addresses line broadening that is entirely caused by size 

effect with no contribution from lattice strain [129]. So it gives the minimum possible 

value of the average crystallite dimension. The peak broadening results from different 

contributions, such as an instrumental component, e.g., slit size, and usually includes 

instrument-related geometrical factors diffraction optics and sample contributions from 

sample transparency and sample geometry [163]. When no mechanical activation, such as 

ball milling and mechanical alloying, is used, the crystallite size is due to a nucleation 

and growth at high temperatures; only corrections for instrumental profile width should 

be considered in the Scherrer equation to obtain crystallite size [130].
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Fig. V.2. EDX measurement o f N/Nb ratio in the NbNx films for different laser fluences. 
The data points, along with error bars, represent an average o f  at least 3 spectra obtained 
across each sample area. The line is included as a guide.
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Fig. V.3. The mean hexagonal crystallite size as a function o f  laser fluence.
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In PLD, increasing the laser fluence increases the kinetic energy o f the particles 

being ejected from the target [120]. For higher laser fluence, the laser-produced plasma 

contains more energetic Nb particles. These particles have higher flux and kinetic energy. 

Therefore, once they arrive on the surface o f the substrate, they will accumulate to form a 

larger grain on the substrate in order to minimize their surface energy [93]. The laser 

fluence significantly influences the film density and change in crystal structure. As the 

fluence was increased from 8 to 30 J/cm , a decrease in crystallite size was observed for 

the grown NbNx films because o f the phase change from mixed (cubic + hexagonal) to 

pure hexagonal structure. The results in Fig. V.3 indicate that in the case o f  the film 

deposited with different laser fluences, the crystallite size o f  (102) and (100) orientated 

domains were observed to be changed from 12 to 16 nm, while the changes in crystallite 

size o f (002) and (112) orientated domains are in the range o f  8 to 16 nm.

V .3.1.2. TEXTURE COEFFICIENT

The degree o f texture in the films was calculated using integrated peak intensity 

analyses o f  XRD. The (102) peak analyses are shown in Table V .l for NbNx films 

deposited at laser fluence between 8 and 40 J/cm2. The (102) peak has an FWHM of 

0.58° to 0.75° and the peak positions are slightly shifted to higher 2-theta values. The 

peak shift indicates that the growth orientations of the grains in some o f the films were 

tilted with respect to the substrate due to different internal strain. It is observed from 

Table V .l that the lattice constant o f f3-Nb2N films can be tuned by changing the laser 

fluence at a fixed nitrogen pressure and substrate temperature. The broadening o f the 

(102) peaks o f P-NbaN phase was observed for the film deposited at 30 J/cm2 due to
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lower crystalline quality which can be confirmed in XRD measurements, where the 

integrated intensity o f the diffraction peak decreased while FWHM increased.

Table V .l. The degree o f texture in the (102) plane o f P-Nb2N.

Laser
fluence
(J/cm2)

FWHM
(°)

Integrated peak 
intensity (arb. units)

Ratio of lattice 
constants c/a

Peak position 
(degree)

0.58 488 ; 1.614 50.37

15 0.68 842 1.613 50.39

30 0.75 567 1.619 50.40

40 0.68 838 1.618 50.42

Table V .l also shows the variation in the d a  ratio (hexagonality) as a function of 

the laser fluence. The lattice constants “a” and “c” were calculated from (102) and (100) 

peaks o f the XRD pattern. The da  ratio for laser fluence o f 30 J/cm2 is about 1.619, while 

the a-lattice parameter is 0.3059 nm and the c-lattice parameter is 0.4953 nm, which are 

almost the same as bulk values o f  p-Nb2N  [159]. This result indicates that the deposition 

condition gives us P-Nb2N, whose atomic size is the same as the bulk. As shown in Table

V .l, only the film deposited at highest laser fluence has (102) peak position at 50.42° and 

it came close to the standard powder diffraction value (50.46°) as the laser fluence was 

increased to 40 J/cm2 [159].

In order to select the dominant reflections which show the strong texture in the 

NbNx films, an average texture coefficient was calculated. The following (hkl) diffraction 

peaks from XRD patterns corresponding to P-Nb2N  were used in texture coefficient
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calculations: (100), (002), (102), (110), (103), (112) and (202). For a preferentially- 

oriented sample, the texture coefficient TC(hkl) is greater than one. Table V.2 

summarizes the results o f texture coefficient calculations for the observed (hkl) 

diffraction peaks at various laser fluences. Note that the values of the texture coefficient 

of the (100) (102) and (110) planes are greater than unity, while (002), (103), (112) and 

(202) planes are less than one. The intensities o f  (100) and (110) diffraction peaks

'y
reached maximum at the laser fluence o f 15 J/cm , resulting in corresponding maximum 

texture coefficient. The texture coefficient for the (110) plane increases from 1.35 to 1.88 

and then decreases to 1.68 with increase o f  laser fluence. On the other hand, the texture 

coefficient for (110) is dominant for most laser fluences, indicating that the (110) is the 

preferred orientation o f most deposited films. This may be useful for the fabrication of 

oriented NbNx films. The texture degree affects electrical, optical, and catalytic properties 

significantly [132].

Table V.2. The texture coefficient o f  different planes for NbNx films on Nb grown at 
different laser fluences.

hkl 8 J/cm2 15 J/cm2 30 J/cm2 40 J/cm2 TCav(hkl)

100 0.93 1.29 1.15 0.97 1.08

002 0.40 0.67 1.09 0.62 0.69

102 1.21 0.88 1.06 0.99 1.03

110 1.35 1.72 1.03 1.50 1.40

103 1.24 0.64 0.92 0.94 0.93

112 0.87 0.79 0.75 0.97 0.845

202 0.36 0.61 0.43 0.54 0.48
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Fig. V.4. Texture coefficient ratio o f the (110) diffraction peak to the (100) peak as 
function laser fluence. The error bars represent 2 % o f  data calculations.

The texture coefficient ratio o f the (110) peak to the (100) peak, /(n o ) /  7(ioo)> a s  a 

function o f the laser fluence is plotted in Fig. Y.4. It can be seen that the intensity ratio 

first decreases with increasing laser fluence up to 15 J/cm2 and then increases 

significantly. Accordingly, the decrease o f 7(no) / 7(ioo> ratio indicates a decreasing amount 

of (110) texture. It can be concluded that the crystals formed at the beginning o f film 

growth are dominantly (110) textured, but the (100) texture develops especially in the 

film deposited at 15 J/cm .

V.3.1.3. SURFACE MORPHOLOGY

The surface morphology o f NbNx films was characterized by AFM and SEM. Fig.

V.5 shows topographic AFM images o f NbNx films deposited at different laser fluences. 

All AFM images were taken in air using tapping mode. For the films deposited at laser 

fluence o f 8 AND 15 J/cm2, micron-sized large particles with some small fraction o f



smaller size islands were observed. As the laser fluence was increased to 30 J/cm2, those 

large clusters disappeared, while the films became smoother. At this condition, some 

islands are also visible, as shown in Fig. V.5(c). Further increase in laser fluence resulted 

in more reduction in the fraction o f the large clusters and increase in the smoothness of 

the deposited film. Controlling thin-film growth by changing the laser parameters, 

namely, fluence and repetition rate is a unique feature o f  PLD. Increasing the laser 

fluence is expected to result in higher flux and kinetic energy of ions and electrons in 

plume. The higher kinetic energy can promote formation o f  smooth NbNx films, which 

may contribute to the low surface roughness, as observed in Fig. VI.5. It was reported 

that lowering the deposition rate resulted in larger island size and rougher surface [164], 

Previous PLD studies have discussed the growth rate and shown that the larger the laser 

fluence, the smaller the island’s size, while the film became smoother [165]. 

Accordingly, lower laser fluences produce a smaller density o f  islands when compared to 

higher laser fluences.

SEM images o f films grown at different laser fluences, shown in Fig. V.6, also 

confirm the same behavior observed in AFM images. As shown in Fig. V.6(a) the films 

grown at a laser fluence o f 8 J/cm show smoother surface. As the laser fluence was 

increased to 15 J/cm2, clusters that were well distributed over the surface became visible, 

as seen in Fig. V.6 (b). Further increase in the laser fluences results in smoother surface, 

as shown in Fig. V.6(c) and (d).
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Fig. V.5. AFM images o f NbNx on Nb deposited with a laser fluence o f (a) 8, (b) 15, (c) 
30, and (d) 40 J/cm2.

The root mean square (RMS) surface roughness was obtained from the AFM 

images. The dependence o f the RMS value on the laser fluence over an area of 

2000x2000 nm and line scans at different fluences are shown in Fig. V.7 and its inset. 

The error bars in Fig. V.7 represent the variations in RMS roughness values in the line 

scans on three different AFM images with same area. The roughness o f  the film grown at 

8 J/cm2 is ~14.0±2.5 nm. For the films deposited with 15 J/cm2, the surface is quite 

rough, with mixed (cubic + hexagonal) to pure hexagonal. The increase o f the laser 

fluence to 30 J/cm2 resulted in a rapid decrease o f  RMS to 12.4±2.7 nm. A further

a

increase o f the laser fluence to 40 J/cm leads to a decrease o f  RMS to 5.4±2.3 nm.



Fig. V.6. SEM images o f the NbNx films deposited at different laser fluences (a) 8, (b) 
15, (c) 30, and (d) 40 J/cm2.
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Fig. V.7. Dependence o f RMS values on laser fluence. The inset shows individual line 
scans at different laser fluences.
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V.3.2. BACKGROUND PRESSURE INFLUENCE

V.3.2.1. STRUCTURE AND PHASE COMPOSITION

The crystal structure o f the NbNx films was analyzed by X-ray diffraction 

measurements. Fig. V.8 shows XRD patterns o f the NbNx films prepared in various 

nitrogen background pressures between 10.7 and 66.7 Pa. The XRD patterns can be 

identified as these o f  cubic and hexagonal phases. In general, the patterns recorded from 

the films grown at different pressures have similar diffraction peaks corresponding to the 

P-Nb2N and 8-NbN phases but show important differences on the relative intensities. In 

particular, the 8-NbN cubic phase appears at 13.4 and 20.0 Pa with corresponding planes 

of (111), (200), and (220), as well as reflections from P-Nb2N [159, 161], It can be seen 

that the phase composition o f the NbNx films changes with increasing nitrogen 

pressure PNz. The NbNx films deposited using various nitrogen pressures had the 

following phase compositions: at 10.7 Pa mainly P~Nb2N was observed but three weak 

reflections o f hexagonal 8'-NbN appeared at 33.22° (001), 47.94° (101) and 62.25° (110) 

[166]; for 13.4-26.7 Pa range, the films consisted of a cubic 8-NbN mixture with 

hexagonal P-M>2N; and for 40.0-66.7 Pa range, a single-phase of hexagonal p-Nb2N is 

identified. A single P-Nb2N phase was observed at highest Paused; however, 8-NbN 

mixed with the P-Nb2N phase was obtained only in the pressure range o f 13.4-26.7 Pa. 

The integrated intensity o f peaks at the (111) and (200) of 8-NbN phase showed changes 

as PNz increased from 13.4 to 20.0 Pa. The diffraction intensity ratio (I ( m /  I (200)) 

increased from 0.52 to 1.18, indicating that the cubic texture of the film changes from



(200) to (111) as PNz is increased. The full-width at half-maximum (FWHM) of the (200) 

and (111) peaks increased with increases o f Pn2 from 13.4 to 20.0 Pa. This indicates that 

the size o f the (200) and (111) oriented crystallites in the NbNx film decreased with 

increasing PNz, although the crystallite size o f the hexagonal P-Nt^N phase increased 

from 8.17 to 14.00 nm. At 66.7 Pa, the P-Nb2N phase exists in NbNx films with a 

predominant (100) texture.
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Fig. V.8. XRD patterns o f NbNx films deposited at various nitrogen pressures

Niobium forms several different nitride phases as the nitrogen-to-niobium ratios 

are changed in NbNx [167]. Phase assignment o f NbNx is complicated by the 

nonstoichiometric nature o f the transition metal nitrides. The nonstoichiometries can be
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present as defects or vacancies o f either the metal or nonmetal sublattices, or both, within 

a given phase [167]. Phase change may occur when the nitrogen background pressure 

changes. At pressures between 20.0 and 26.7 Pa, cubic and hexagonal phases were 

observed, and at pressure greater than 26.7 Pa, phase change occurred. High nitrogen 

pressure did not result in an increase in the amount o f nitrogen in NbNx but, on the 

contrary, the fraction of nitrogen atoms in NbNx thin films was reduced as the nitrogen 

pressure was increased.

In Fig. V.8, the 8-NbN phase only appears at 13.4 and 20.0 Pa nitrogen pressure, 

hence, it can be expected that the texture o f 8-NbN should be mainly governed by the 

atomic percentage o f  nitrogen in the film. It has been reported that in the case o f the cubic 

and hexagonal NbNx films, the atomic percentages o f nitrogen is about 50% and 30%, 

respectively [168]. After ejection o f Nb atoms and ions from the Nb target, collisions and 

scattering between ablated particles and gas molecules can be significant. The mean free 

path of the ablated particles is reduced in the presence o f  background nitrogen gas. 

Higher background nitrogen pressure lowers the kinetic energies of the ablated species in 

PLD and increases the recombination rate. Also, interaction with the ambient gas slows 

the ablation plume expansion. Time-resolved spectroscopy studies o f the ablation plume 

expansion have shown that kinetic energies on the order o f  several 100 eV can be 

observed. These energies are sufficiently high to create defects in the growing film [169]. 

Therefore, higher nitrogen pressure causes lower deposition rate and resulting in less 

nitrogen ratio in the deposited film. Use o f lower nitrogen pressure results not only in 

increasing particle fluxes from the target to the substrate but also in increasing the mean 

kinetic energies o f  the ablated species. It should be noted that some fraction o f the species
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in the ablated particle flux is ionized. The portion o f these ions in the ablated particle flux 

is higher when the lower nitrogen pressure is used. As a consequence, the ratio o f ions in 

the ablated particle flux decreases by increasing nitrogen pressure, and that affects the 

phase formation o f NbNx [170].
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Fig. V.9. EDX measurement o f N/Nb ratio in the NbNx films as a function o f nitrogen 
background pressure.

In order to determine the nitrogen content in the NbNx films, EDX analyses have 

been performed. Fig. V.9 shows the chemical composition o f  the surface layer based on 

the EDX analyses. Through EDX analyses, the N/Nb ratio was between 0.47 ± 0.02 to

0.6 ± 0.02, which is in agreement with previously reported phase results o f  Nb-N systems 

[4, 13]. According to the phase diagram o f the Nb-N system, a few single phases exist 

with increasing atomic ratio o f nitrogen in the 500 and 1000 °C temperature range [168].
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If the nitrogen content is between 30-35% , the P-Nb2N hexagonal phase exists but the 5- 

NbN phase requires a higher nitrogen ratio (>50%). As the pressure increases, nitrogen 

ratio in the film increases and that affects the phase structure.

Treece et al. reported that on NbNx films deposited using PLD the nitrogen 

content in the NbNx films increases with nitrogen gas pressure [83], They noted that the 

film compositions o f Nb2N, NbN, or Nb3N4 can easily by controlled by the background 

gas pressure in a dynamic equilibrium. In this case, the NbNx films with these phases 

were not deposited at static background gas pressure. The experimental conditions were 

optimized by changing laser power and nitrogen gas pressure. Nitrogen ion content is 

limited and did not increase with PNz due to saturation effect. However, results showed 

that an increase in PNz promotes the growth o f hexagonal phase with the increase o f very 

little amount o f nitrogen content in the films, as shown in Fig. V.9.

The phase purity in NbNx films can also be concluded from the intensity o f  the 

hexagonal peaks in the XRD pattern in Fig. V.8. The amount o f hexagonal p-Nb2N has 

been calculated for the hexagonal phase concentration as the ratio o f  the sum o f the 

intensities o f the hexagonal peaks divided by the total sum o f the intensities o f all peaks 

of hexagonal and cubic phases [158]. The variation o f hexagonal phase with background 

nitrogen pressure is shown in Fig. V.10. When PNz increases to 26.7 Pa, the main 

reflections o f  8-NbN phase in the XRD disappear. The ratio o f  the cubic and hexagonal 

phase concentration is strongly affected by nitrogen pressure, e.g., at constant laser 

fluence and deposition temperature, the 5/p concentration ratio is 1.48 at 13.4 Pa and 

decreases to 0.19 at 20.0 Pa. The lowest PNz (10.7 Pa) results in minimum interaction 

between the ablated species and the gas ambient, while at the highest pressure (66.7 Pa)
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the mean free path o f ablated material decreases and that affects the phase o f the film. 

Phase composition o f the film changes from mixed to pure hexagonal P-NbaN due to the 

decrease o f nitrogen content o f  the NbNx films. Nitrogen concentration in NbNx thin 

films is reduced, which results in niobium-rich P-NbaN single phase. The number of 

nearest-neighbor o f  N atoms for each Nb atom decreases from six to three when going 

from the cubic to the hexagonal phase and the volume increases by about 2% [171],

The peak position o f the (102) plane as a function o f PNi is shown in Fig. V.10. 

The peak position shows systematical changes with increasing nitrogen pressure; it first 

goes through a maximum, then decreases, and finally increases. After 20.0 Pa, it slightly 

shifts to lower diffraction angles as PN2 is varied, which is indicative o f  a change in the 

size o f lattice o f P-Nb2N. There is a shift o f the peaks to a lower diffraction angle o f  the 

(102) plane in going from 13.4 to 26.7 Pa, indicating an increase in lattice constant.
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Fig. V.10. Hexagonal phase concentration (left y-axis) and variation o f peak position of  
(102) plane (right y-axis) vs. nitrogen pressure. The solid line is drawn to guide the eye.



The FWHM o f the (100) and (102) peaks changes with the variation o f PNz as 

shown in Fig. V .l 1(a). The FWHM decreases with the increase in nitrogen pressure from

26.7 to 66.7 Pa. This indicates that the size o f the (102) oriented grains in the film first 

decreases, with increasing PNz, and after changing to single hexagonal phase, size o f  the 

grains increases again. This was later confirmed by AFM observations. A similar effect 

was observed from all oriented planes in the hexagonal phase. An increase o f the nitrogen 

pressure also caused a reduction in the defect structure o f the remaining hexagonal lattice, 

a sharpening o f  the hexagonal peaks, and an increase in the Bragg diffraction angles. 

Here, the crystallinity o f  the hexagonal phase improved considerably, as indicated by the 

decrease o f the FWHM o f the Bragg peaks shown in Fig. V .l 1(a). The broadening of 

diffraction peaks observed for deposition at 13.4 and 26.7 Pa is usually attributed to 

either reduction in crystallite size, distribution o f micro-strains within the crystallites, or a 

combination of both [172],

The crystallite size o f the hexagonal (3-Nb2N phase was calculated using the 

Scherrer formula [127], as shown in Fig. V .l 1(b). The average crystallite size was found 

to vary in a narrow range from 8 to 14 nm with change in background pressure. 

Generally, the mean crystallite size increased with PNz but significantly reduced at 13.4 

and 26.7 Pa, which is due to phase change with nitrogen background pressure from 

hexagonal to mixed, then from mixed to hexagonal phase. After phase change, the 

crystallite sizes increase in the pure hexagonal phase as the deposition pressure increases. 

A similar effect is reported in NbNx films prepared by reactive magnetron sputtering at 

various nitrogen partial pressures and attributed to different compressive stresses 

affecting the crystallite size [158].
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Fig. V .l l .  (a) Variation of FWHM o f (102) and (100) planes with nitrogen pressure, (b) 
Average crystallite size o f hexagonal phase P-Nb2N as a function of background nitrogen 
pressure. The lines are drawn to guide the eye. The error bars are standard deviations 
calculated from four different orientations of phase P-Nb2N in each sample.
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A large variation in the lattice parameters was observed as nitrogen gas pressure 

was changed, as shown in Fig. V .l2(a) and (b). The unit-cell parameter ratio (c/a) o f the 

P-Nb2N hexagonal phase was found to be changed from 1.613 to 1.621 with an increase 

of PN2, as shown in Fig. V. 12(b). The film deposited at highest nitrogen pressure has a 

da  ratio close to the bulk value o f  P-Nb2N, which is 1.619 [157], An increase o f the da  

ratio with PNz was observed as a result o f lattice expansion and growth o f P-Nb2N 

hexagonal phase. The hexagonal phase displays a qualitatively similar volume after the 

observed phase change at 26.7 Pa pressure. The d a  ratio increases slowly and reaches 

bulk value at 66.7 Pa. The hexagonal phase exhibits distorted structure at lower nitrogen 

pressures in the mixed other phase with a lower d a  ratio.

A deposition o f NbNx thin films by magnetron sputtering under different nitrogen 

flow rates reveals that the compressive stress in the film increases gradually with an 

increasing nitrogen flow rate [173]. In the present work, as nitrogen background pressure 

was increased, the compressive stress in the NbNx films increased as well. Experimental 

observations have shown the presence of a maximum compressive stress developed when 

the energy o f the incident ions is varied [174, 175], The XRD results indicate that a 

significant amount o f compressive stress in the NbNx films causes distortion o f the unit 

cell due to nitrogen pressure during growth. As shown in Fig. V .l2(a), the unit cell 

volume o f the film has maximum value at 13.4 Pa nitrogen pressure due to a nitrogen 

deficiency in the film that causes an expansion o f the unit cell. As the nitrogen 

background pressure increases, the compressive stress, created during the film growth,

i.e., the intrinsic stress in the NbNx films, increases. On the other hand, the typical
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particulate size created by PLD changes with background gas pressure and it increases as 

the gas pressure increases [93].

The influence o f PNz on the film growth can also be seen for the lattice parameter 

values. Fig. V. 12(b) gives the ratio o f  the lattice parameters o f  the hexagonal (3-Nb2N as a 

function o f nitrogen background pressure. Determination o f unit-cell parameters was 

based on XRD 20 diffraction angle measurements. The occurrence o f  compressive stress 

would explain the increase o f the lattice parameter. An increase in the lattice parameter 

with the can be understood by a higher amount o f lattice defects due to different 

nitrogen content on regular lattice sites [84].

The cubic lattice parameter in the NbNx films is calculated as 0.4457 nm for films 

deposited at 13.4 Pa nitrogen and 0.4414 nm at 20.0 Pa. Note that the lattice parameter 

reported for stoichiometric 8-NbN is 0.4392 nm [166]. This shows that the lattice 

parameter o f the cubic phase in the film is higher than the bulk value and also decreases 

with PW2. A decrease in the lattice constant o f  NbNx with x >1 is expected, since for cubic 

materials with x ~ l, the lattice constant has been shown to increase with nitrogen content 

to a maximum when x = 1, decreasing with increased nitrogen incorporation. Bulk cubic 

NbNx samples can maintain their structure over a broad range of x values 0.86<x<l by 

incorporating N defects when x< l and Nb vacancies when x> l. The lattice parameter 

increases as pressure increases, corresponding to a predominantly defective nitrogen 

sublattice where the nitrogen vacancies are progressively occupied. At higher pressures, 

the niobium sublattice becomes predominantly defective with formation o f an increasing 

number o f niobium vacancies and a decrease o f the lattice parameter [167].
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V.3.2.2. TEXTURE COEFFICIENT

The texture coefficients o f  (100), (002), (102), (110) and (103) planes, calculated 

from Equation (V.2), are shown in Table V.3. The hexagonal phase is strongly textured 

with (100) planes parallel to the substrate surface. This means that the deposited films are 

polycrystalline with a preferred orientation along the [100] direction. Similar results in 

preferred orientation o f the [100] direction have been reported for Nb2N films [83]. The 

preferred growth is generally favored by the deposition condition and specific interaction 

o f the nucleus with the substrate surface. In the case o f NbNx films, the (100) plane has 

been observed to have minimum surface energy interaction.

Table V.3. The calculated values o f  texture coefficients o f [3-Nb2N.

P n 2 (Pa) (100) (002) (102) (110) (103)
10.7 1.49 0.89 0.37 1.01 0.68 j

13.4 1.55 0.93 0.62 1.37 ' 0.45

20.0 1.37 0.63 0.92 1.35 0.59

26.7 1.76 0.76 0.65 1.00 0.80

40.0 1.42 1.18 1.18 0.49 0.71

66.7 1.37 0.62 1.24 0.57 1.16

V.3.2.3. SURFACE MORPHOLOGY

AFM and SEM were performed to examine the morphologies as well as finding a 

correlation between surface morphology and the phase change for the samples with 

increasing PNz. AFM images were taken in air using tapping mode. Fig. V .l3 shows 3D- 

AFM images o f NbNx films deposited at different PNz. It is observed that AFM images o f
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films grown at 10.7 Pa consist o f  triangular submicron-sized islands, as shown in Fig. 

V.l3(a). Once the ambient pressure was raised to 66.7 Pa, more regular shaped micron­

sized particles are observed. SEM images for films grown at different nitrogen pressures, 

shown in Fig. V.14, also confirm the same behavior observed in AFM images. When the 

nitrogen pressure was increased to 13.4 Pa, the morphology o f the islands became 

irregular. Irregular shape and size along with surface roughness, increased when the 

ambient nitrogen pressure was increased to 20.0 Pa. However, for a nitrogen pressure of

26.7 Pa, the surface became very smooth. Some regularly shaped islands started to appear 

at 40.0 Pa.

(a) ^ (b)

Fig. V .l3. 3D-AFM images o f the NbNx films deposited at different nitrogen background 
pressures (a) 10.7 Pa, (b) 13.4 Pa, (c) 20.0 Pa, (d) 26.7 Pa, (e) 40.0 Pa, and (f) 66.7 Pa.
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Fig. V .l4. SEM images o f the NbNx films deposited at different nitrogen background 
pressures (a) 10.7 Pa, (b) 13.4 Pa, (c) 20.0 Pa, (d) 26.7 Pa, (e) 40.0 Pa, and (f) 66.7 Pa.
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Fig. V .l5. Average surface roughness o f NbNx films at different pressures. The inset 
shows line scans across the samples prepared at different nitrogen pressures.

The root mean square surface roughness (R) was obtained from the AFM images. 

The average surface roughness versus ambient nitrogen pressure is plotted in Fig. V .l5. 

The error bars in Fig. V .l5 represent the standard deviation o f  RMS roughness calculated 

from three different line scans o f AFM images with same area. The surface roughness 

increases with nitrogen pressure until 20.0 Pa, and then there is a sudden decrease in 

roughness. However, for the film grown at 66.7 Pa, the roughness increases compared to 

that grown at 26.7 Pa and 40.0 Pa. The decrease in surface roughness at 26.7 Pa is related 

to the phase change of NbNx film. Otherwise, an increase in the surface roughness is 

expected when the background pressure is also increased. In vapor phase deposition, the 

nucleation density and the clusters’ sizes are determined through the competition between 

the atomic flux and the surface diffusion coefficient o f  adatoms.



The effect o f  background pressure is not trivial since change in N 2 pressure could 

cause change in flux o f the atoms and their kinetic energy. Therefore, it is possible that 

pressure can also affect surface diffusion. The kinetic energy of adatoms decreases with 

the increase of the pressure. Higher adatom kinetic energy could promote formation of 

smooth NbNx films, which is consistent with data shown in Fig. V .l 5. Line scans o f  the 

AFM images diagonally on the samples are shown in the inset of Fig. V .l5. The surface 

roughness increased as the pressure was increased from 10.7 Pa to 20.0 Pa. Once the 

deposition pressure reached 26.7 Pa, the surface roughness decreased very sharply up to 

40.0 Pa, then increased for the film grown at 66.7 Pa.

V.3.3. SUBSTRATE TEMPERATURE INFLUENCE

V.3.3.1. STRUCTURE AND PHASE COMPOSITION

Fig. V.16 shows the results o f XRD NbNx films prepared at different substrate 

deposition temperatures. The XRD pattern o f the Nb substrate is also included in Fig. 

V.16 as a reference. The substrate temperature measurements are reproducible with an 

estimated accuracy o f ±20 °C at 250 °C and ±50 °C at 950 °C. The accuracy is limited by 

the sample contact to the heater surface and the temperature gradient across the heater. 

The films grown at room temperature and 250 °C showed poor crystalline structures, 

while increasing the substrate temperature starts the better crystallization process. As the 

temperature increased from 450 to 650 °C, the films became highly textured and can be 

indexed with a mixture o f cubic and hexagonal phases. NbNx films deposited within the 

same temperature range were found to be with two or more phases [166,176].
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Fig. V.16. XRD patterns o f NbNx thin films deposited on Nb substrate at different 
temperatures. The XRD pattern o f the Nb substrate is also shown.

Further increase o f the substrate temperature can lead to the formation o f a 

sublayer o f NbNx by reaction with the Nb substrate and higher nucleation density 

develops on the surface. At higher temperatures, adatoms on the substrate’s surface gain 

thermal energy and surface diffusion is enhanced, thus promoting crystal growth. The 

transition from a textured microstructure to a densely packed crystal structure occurs over 

a range o f temperatures. The substrate temperatures above 750 °C result in the formation 

o f mainly films with p-NbaN phase.

In order to show the phase content for the NbNx films grown at different substrate 

temperatures, two o f the XRD patterns o f Fig. V.16 are redrawn in expanded scale, as 

shown in Fig. V.17. The two patterns show diffraction peaks o f the P-NbaN, 5-NbN, and



8'-NbN with differences in the relative intensities. In particular, the 8-NbN cubic phase 

appeared at 650, 750, and 850 °C with corresponding planes of (111), (200), and (220), 

as well as p-Nb2N, 8'-NbN and Nb peaks from the substrate.

c3 z a

»  950 °Q
c

750 °C

40 60 80 100

2 Theta (degree)

Fig. V .l7. XRD patterns o f  NbNx thin films deposited at 750 and 950 °C. The patterns 
show diffraction peaks o f the P-Nb2N, 8-NbN, and 8'-NbN phases.

The possibility o f nitride growth by heating the substrate in nitrogen pressure o f 

13.3 Pa for 60 min was checked and found not to affect the reported results. This is 

attributed to the low nitrogen background pressure used. The reactive PLD process 

involves the formation of highly reactive atomic nitrogen species in the plasma which 

interacts with the ablated Nb plume and the surface.



The chemical composition o f the films was determined by EPMA. Fig. V .l8(a) 

shows the stoichiometric coefficient x in N bN x as a function of deposition temperature. 

The error bars on EPMA values represent the standard deviation for analyses o f  five 

points done on each sample. The atomic nitrogen ratio in the film increases with 

temperature up to 850 °C and then suddenly drops to 0.43 due to the phase change of 

N bNx. It is noteworthy that 8 cubic niobium nitride can be obtained within the range o f  x: 

(0.57 <x < 0.99) [1]. The p-Nb2N hexagonal phase, has a wide range o f x = 0.43 -  0.93, 

which is in agreement with the phase diagram of the Nb-N system [3, 167]. Fig. V .l 8(b) 

shows a plot o f the da  ratio o f p phase lattice parameters versus atomic percentage of 

nitrogen in the film. The c/a ratio is initially reduced as the composition changes from 

NbNo.43 to NbNo.57, which is consistent with the literature [91]. However, after the 

nitrogen content increases to NbNo.57, the d a  ratio increases with increasing N/Nb ratio. 

The lattice parameter strongly depends on the crystal imperfection. The lattice constant, 

a, is independent o f  composition, but c increases with nitrogen content. Upon the 

deviation o f  x from 0.5, the da  ratio increases.

Increasing the temperature not only changes the crystal orientation o f the film but 

also changes the phases from mixed (cubic + hexagonal) to hexagonal (P*Nb2N and 8'- 

NbN). When the substrate temperature reaches 650 °C, the cubic 8-NbN phase is detected 

with (111), (200), and (220) reflections at the initial growth NbNx films. Treece et al [84, 

85] pointed out that NbNx films grown on MgO (100) by PLD acquire a metastable 

primitive cubic (PC) NbNx. The metastable PC NbNx phase is stabilized on MgO (100) 

and can be transformed to 8-NbN cubic phase by annealing o f the sample. The 8-NbN 

cubic phase is observed in the range o f 450 to 850 °C substrate temperature. In this case,
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the cubic phase was formed in the higher than the suggested temperature range o f PLD 

deposition conditions due to the different substrate material.
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Fig. V .l8. (a) Stoichiometric coefficient x in NbNx films as a function o f deposition 
temperature, (b) The lattice parameter da  ratio o f the hexagonal P-NbN2. The drawn lines 
are to guide the eye.



V.3.3.2. TEXTURE COEFFICIENT

The texture factor o f the 8-NbN phase is defined as the integrated intensity o f  an 

XRD peak relative to the integrated intensity o f ail peaks. Calculated texture factors were 

listed for the three peaks o f  the 8-NbN phase in Table V.4. It can be seen that the texture 

changes from a strong (200) orientation to a dominant (220) orientation, followed by an 

(111) orientation as the substrate temperature was increased from 450 to 750 °C. For 8- 

NbN cubic phase, the film deposited at 650 °C has a strong preferential (2 2 0) 

orientation, while the 750 °C sample shows (111) preferred crystallographic orientation.

The hexagonal phase concentration was calculated as the ratio o f  the sum o f the 

intensities o f  the P hexagonal XRD peaks divided by the total intensities o f  all (p+8+8') 

peaks. The effect o f  deposition temperature on the concentration o f P hexagonal phase in 

the film is shown in Fig. V.l9(a). When the deposition temperature is increased to 850 

and 950 °C, the peaks from the 8-NbN phase in the XRD diffraction patterns disappear. 

The phase composition of the film was changed from a mixed phase to a hexagonal phase 

with mainly p-Nb2N structure due to the decrease o f nitrogen content o f  the NbNx films. 

A mainly hexagonal P-M>2N phase with a predominant (110) texture and some trace o f  

8'-NbN phase exists in the NbNx film deposited at 950 °C. For crystalline samples at high 

temperatures, the 8-NbN becomes unstable [177]. When NbNx films were subsequently 

annealed at about 1000 °C in UHV, a decrease o f the nitrogen content in the NbNx films 

was observed (not shown here). This is in good agreement with results obtained by other 

studies on the effect o f annealing temperature on nitrogen content in NbNx films [178].
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Table V.4. Texture factor o f the cubic phase in NbNx films.

Tsubstrate (°C) 1111 / I  total I 2 0 0 /I  total I 2 2 0 /I  total

450 NA 0.14 NA
650 0.20 0.21 0.28
750 0.24 0.19 0.14 . ■ ;
850 NA 0.09 N A



The mean hexagonal crystallite sizes are determined from the XRD patterns for 

two crystallographic orientations o f P-Nb2N phase ((100) and (110)) as a function of 

substrate temperatures and plotted in Fig. V. 19(b). The size o f  the crystallites ranges from 

3 to 18 nm. It should be noted that the hexagonal crystallite sizes initially increase with 

temperature and then decrease at 650 °C as the cubic phase appears, then increase again 

with further increase in the deposition temperature. This increase o f crystallite size is due 

to increased solid-state and surface diffusion coefficients with temperature [179]. A small 

decrease o f crystallite size was observed in the film deposited at 950 °C due to phase 

change and loss o f  nitrogen in the film. The error bars in Fig. V. 19(b) represent the 

standard deviation in calculating the hexagonal crystallite size from the XRD peaks o f  the 

same phase for different diffraction peaks.

V.3.3.3. SURFACE MORPHOLOGY

The influence o f substrate temperature on the microstructures and surface 

properties o f  the films are investigated by AFM. Fig. V.20 shows topographic AFM 

images of NbNx films deposited at different substrate temperatures. The AFM images 

consist o f irregular submicron-sized features for the sample deposited at 450 °C, as 

shown in Fig. V.20(a).

When the substrate temperature is increased to 650 °C, very dense and almost 

uniform in height islands are visible in Fig. V.20(b). These islands show an increase in 

their average height and decrease in their density. A regular array o f islands is observed 

as the temperature is increased to 750 °C, as shown in Fig. V.20(c). Once the temperature 

increased to 850 °C, low density micron-sized islands were observed. The AFM image 

for this condition reveals better crystalline structure and more uniform size distribution.



The root mean square values (RMS) o f the surface roughness were obtained from AFM 

images using Nanoscope V5.31rl software.

Fig. V.20. Topographic AFM images o f films grown at (a) 450, (b) 650, (c) 750, and (d) 
850 °C.
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Fig. V.22. SEM images o f the NbNx films deposited at different substrate temperatures 
(a) 450, (b) 650, (c) 750, and (d) 850 °C.
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Fig. V.21 shows the RMS roughness o f NbNx films as a function o f substrate 

temperature. The error bars represent variations in RMS roughness in line scans from 

three different AFM images with same area. The RMS roughness o f  the film increased as 

the substrate temperature is increased. At substrate temperature of 450 °C, the RMS value 

is ~7 nm. When the temperature was increased to 650 °C, then to 750 °C, and finally to 

850 °C, RMS values increased to 10, 21, and 23 nm, respectively. This is consistent with 

the results for the crystallite sizes that were obtained from XRD. The smaller the 

crystallite sizes the smother the surface. This is consistent with the results for the 

crystallite sizes that were obtained from the XRD that range from 3 to 18 nm. The 

smaller the crystallite sizes, the smoother the surface obtained in the film. Fig. V.22 

shows SEM images for films grown at different substrate temperatures. As shown in Fig. 

V.22 (a)-(d), the same behaviors observed by AFM are confirmed by SEM images for 

films grown on substrates with temperatures that range from 450 to 850 °C.

V.4. CONCLUSIONS

V.4.1. LASER FLUENCE EFFECT

Pulsed laser deposition o f NbNx thin films on niobium substrate was carried out at 

different laser fluences. Detailed analyses o f  the texture and surface morphology of 

polycrystalline films were presented. The experimental results showed that the NbNx film 

N/Nb ratio in NbNx films increase with increasing laser fluence. The crystallite size o f  

the deposited NbNx films was calculated from the XRD spectra using Scherrer’s formula. 

Increasing the laser fluence resulted in smoother films with larger grain size. The texture 

coefficient ratio calculations for P-Nb2N phase showed that the preferred orientation o f  

the deposited NbNx films is (110).



V.4.2. BACKGROUND PRESSURE INFLUENCE

NbNx thin films were prepared on Nb substrate by PLD at different gas pressure. 

The nitrogen pressure affects film composition and phase. A phase transition from 

hexagonal to mixed, then a single hexagonal phase occurred as the nitrogen gas pressure 

was increased from 10.7 to 66.7 Pa. The nitrogen pressure affected the ratio o f the cubic- 

to-hexagonal phase. The present results indicate that the most favorable nitrogen 

background pressure for the formation o f NbNx with single P-NbaN phase by PLD is 66.7 

Pa at 600 °C.

V.4.3. SUBSTRATE TEMPERATURE INFLUENCE

Niobium nitride thin films were grown by PLD on niobium substrate at different 

temperatures. The substrate temperature during deposition o f NbNx thin films on Nb 

significantly affects the phase, morphologies and crystallinity of the films. NbNx film 

with highest concentration o f P-NbaN hexagonal phase was obtained for substrate 

temperatures above 850 °C. A systematic increase in lattice parameters with substrate 

deposition temperature along with an increase in the size o f  the grains was observed. The 

cubic phase o f NbNx was formed for deposition at 650 °C and 750 °C, although it was 

mixed with the hexagonal phase. The atomic ratio o f  nitrogen in the film depends on the 

substrate temperature. The highest N/Nb = 0.93 ratio was obtained at deposition 

temperature o f 850 °C, at which the highest lattice constant ratio o f P phase (c/a) was 

obtained. XRD and AFM results showed that the crystallite sizes and surface roughness 

o f the NbNx films increased as the substrate temperature was increased.



CHAPTER VI

PROPERTIES OF NIOBIUM NITRIDES PREPARED BY REACTIVE

THERMAL DIFFUSION

VI. 1. INTRODUCTION

The phase diagram o f the N b-N  system is very complex and several phases of 

NbNx exist upon variation in the nitrogen-to-niobium atomic ratio x, which also affects 

the concentrations o f nitrogen and niobium vacancies. From previous studies on the 

phase diagram o f the NbNx system [3, 91, 148, 180], the stable NbNx phases are 

classified as: solid solution, basic Nb with nitrogen solid solution (bcc) a-Nb(N), 

(x<0.40); hexagonal (W2C type) (3-Nb2Nx, (0 .75<x<l.l); tetragonal (distorted NaCl type) 

y-NbNx (0.72< x < 0.84); cubic (NaCl type) 5-NbN, 0.72 < x < 1.06); hexagonal (anti- 

WC type) e-NbNx, 0.95 < x <1.0; hexagonal (TiP type) r)-NbNx, 0.92< x <1; and 

hexagonal (anti-NiAs type) 5'-NbNx 0.95< x <0.98. Some o f NbNx phases show 

superconducting properties in the range o f 9 -17  K depending on their crystal structure. 

The cubic 5-NbN phase with highest Tc = 17.3 K makes it of great interest for many 

superconductor applications [181, 182].

Different methods are used to grow NbNx films. One technique to obtain a thin 

NbNx layer on Nb is by heating Nb at high temperature in nitrogen gas. Niobium is very 

reactive with nitrogen at high temperatures (>900 °C); therefore, NbNx samples can be 

prepared in nitrogen atmosphere by heating the Nb substrate [3, 22, 89, 183]. This 

method o f heating in a reactive gas atmosphere was used to study the phase diagram of
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NbNx [3, 4, 11, 91]. NbNx showed non-stoichiometry and phase change with increasing 

nitrogen content [11, 91].

As mentioned before, nitriding the surface of Nb improves the mechanical 

properties o f  the surface by increasing hardness and wear resistance. New generation 

accelerators employ superconducting Nb radio frequency (RF) cavities to achieve the 

highest accelerating field. Hydrogen diffusion in Nb can adversely affect the performance 

o f the superconducting RF cavity. A high-quality NbNx coating on Nb increases hardness 

of the surface and also provides a barrier layer for hydrogen diffusion into Nb for 

potential application o f RF cavities. Lengauer et al. [11] studied high-temperature 

nitridation of Nb heated in high-purity nitrogen of various pressures, times, and 

temperatures (below 1400 °C). Phase transformations of y-Nb4N3 to 8-NbN and r|-NbN 

to 8-NbN were observed at a temperature o f 1070 and 1300 °C, respectively. These phase 

transformations were not observed in powder samples of NbNx. The choice o f nitrogen 

pressure considerably affects growth rate and homogeneity ranges o f  NbNx phases [91]. 

Most of the work performed on thermal nitridation o f Nb was focused on the study o f the 

equilibrium phases and structural properties o f  the formed NbNx layer but not much work 

dealt with electronic properties.

One motivation for this work was to grow a hard, conformal nitride coating on the 

sealing surface o f niobium superconducting cavities. These cavities must be heated to 

over 1000 °C in vacuum, which results in softening o f the seals made by tightening the 

Nb flanges with a gasket between them. Having these seal areas hardened by growing a 

thin layer o f  the hexagonal P-NbaN at mechanically weak areas would result in better 

mechanical stability o f the superconducting niobium cavity and a more durable seal. In
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the first part o f  this chapter, the goal was to obtain single hexagonal phase o f NbNx and 

investigate the structural, electronic, and mechanical properties o f  the surface layers 

prepared by thermal diffusion o f nitrogen at different processing times. The formation of 

different NbNx phases at various processing times and the effect o f  the processing time 

on the morphology, crystal structure, and electronic property were studied. For this part 

of the work, NbNx was obtained at different processing times by heating Nb at 900 °C 

temperature under the same nitrogen background pressure (133 Pa). The nitrogen content 

in the NbNx layers was found to increase with the processing time. These results are 

interpreted in view o f crystal, surface, electronic, and chemical analyses.

The second part is an interest in obtaining an a-NbN solid solution phase by 

doing experiments at lower nitrogen pressure (as low as 1.0x1 O'3 Pa) and higher 

temperature (as high as 1500 °C) than previously reported. Not much work dealt with the 

mechanical and structural properties. In the present work, a series o f  experiments were 

performed to investigate formation o f NbNx layers on Nb at different heating 

temperatures and nitrogen pressures using the thermal diffusion method. The formation 

of different phases at various nitrogen pressures and their influence on the morphology 

and crystal structure were studied.

VI.2. EXPERIMENTAL SETUP

For the first part o f  the experiments, Nb substrates (8.6 x 6.6 x 0.7 mm3) cut by 

wire electro-discharge machining from an Nb slice of ingot "H" from the company 

CBMM, Brazil, were used. The Nb slice from the ingot has large grains (several cm2 

areas); therefore, the samples were either single crystals or had a single grain boundary. 

For the second part, Nb (8 x 3 x 0.2 mm3) and (8.6 x 6.6 x 0.7 mm3) substrates were



used. The samples were etched by the buffered chemical polishing (BCP) method [156]. 

Approximately a 50 micron layer o f material was removed by BCP that resulted in Nb 

substrates with 0.6 nm root-mean square (RMS) roughness for 2x2 p.m2 scan area, as 

determined by atomic force microscope (AFM). Before starting the nitridation o f  samples 

of the first part, the substrates were degassed for two hours at 900±20 °C in the 

experimental chamber at a base pressure o f 6.6x1 O'6 Pa. The background pressure o f the 

nitrogen gas was controlled by a leak valve and measured with a convectron gauge. The 

nitrogen operating pressure was achieved by filling the vacuum chamber with N 2 gas and 

keeping constant during samples' heating time. For all samples, it takes about 20-30  sec 

to reach the desired nitrogen pressure. The temperature o f  the samples was measured 

using the optical pyrometer through a quartz window and controlled by current-voltage 

values applied to the heater wires. The first part is for thick samples done at different 

processing times, same nitrogen pressure o f 133 Pa, and same substrate at a temperature 

of 900±20 °C were heated using a ceramic heater, as shown in Appendix A.

For the second part, two types o f heaters were used. Tungsten wire heater- baskets 

were used for sample heating o f the thin samples and thick samples were used in the 

second part. A Type I heater with single tungsten wire baskets (ID 0.35 inches diameter = 

0.03 inches, part # 74-1 from Ted Pella Inc.) was used. The second type is a 1” diameter 

heater manufactured by HeatWave Labs, Inc. The current was adjusted on the sample 

heaters to get the highest substrate temperature. The heat nitridation for the thin samples 

was done at different nitrogen pressures in the range l.OxlO"3 to 33.3 Pa and temperatures 

ranging from 1250-1500 °C. For thick samples, the maximum temperature that could be 

reached by Type I heater is 1150 °C. The samples were done at a processing time o f 180
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min. A Type II heater was used to heat Nb (0.7 mm thick) at 1000 °C , 0.66 Pa at 

different heating times (10-60 min), and in a vacuum o f  1.3 xlO'5 Pa at 1000 °C. As 

processing time is achieved, the UHV valve is opened to allow a pump down with turbo 

plus mechanical pumps (it takes 10-15 sec). Then, sample must cool down for 1-1.5 hour 

in a vacuum of 1.0x10‘5 Pa.

XRD measurements were done using the Bruker-AXS three-circle diffractometer. 

A Bruker SMART APEX II instrument is equipped with graphite-monochromated CuKa 

radiation and a SMART Apex II CCD detector. X-ray source o f wavelength o f 1.5406 A 

(Cu-Ka line) is fixed, and both the charge coupled device (CCD) detector (20) and 

sample (©) are movable. The detector (20) covers about 30° per image position. Three 

image positions were used for the experiment. In each case, the angle 20 is the center 

position of the 30° CCD image, and each value is set so that the angles o f incidence and 

diffraction are equal. The chemical composition o f the samples was determined by 

electron probe micro analyzer (EPMA) point scan using a Cameca SX100.

A JEOL JSM-6060 LV SEM and a Digital Instruments Dimension 3100 AFM 

were employed to study surface morphologies o f the NbNx. All AFM images were taken 

in the air using a tapping mode. SEM images were taken at an accelerating voltage o f  20 

kV. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoemission spectroscopy 

(UPS) analyses were performed by Drs. Y. Ufuktepe and S. Kimura at the UVSOR 

facility, Institute for Molecular Science, Japan, on the 100-mm radius hemispherical 

photoelectron analyzer (VG Scienta SES-100) with Mg Ka X-ray radiation (ho= 1253.6 

eV) and an He discharge lamp as a source for UV radiation, which provides two narrow 

lines at 21.2 eV (He I) and 40.8 eV (He II). All the results presented in this work were
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obtained with He II. The base pressure o f the photoemission chamber was better than 

2.0x1 O'8 Pa. Surface cleaning o f the samples was performed at room temperature by 

using Ar+ ions sputtering in the preparation chamber. The energy scale o f X-ray 

photoemission spectrum was calibrated by the binding energy of Au 4 f  level. The NbNx 

were obtained by diffusion o f nitrogen into the bulk niobium metal sheet.

The nanomechanical properties were measured by Md. Mamun and Dr A. 

Elmsutafa at ODU's Applied Research Center, using the continuous stiffness 

measurement (CSM) technique o f the Nanoindenter XP from Agilent. CSM technique 

enables the hardness and the elastic modulus to be continuously measured as a function 

of penetration depth as detailed elsewhere [184, 185], Prior to measurement, the 

nanoindenter was calibrated using a three-sided diamond Berkovick tip on fused silica 

calibration standards. Each sample was tested at ten different locations using the same 

test parameters. The indenter penetrated the surface with a harmonic displacement 

oscillation target o f  lnm at a frequency o f 45 Hz to a depth o f 1 pm with a strain rate of 

0.05 per second. The effect o f different heating times on the grown NbNx by heating is 

reported. The nitrogen content in the NbNx layers was found to increase with the 

processing time. These results are interpreted in view of crystal, surface, electronic and 

chemical structure analyses.

X-ray absorption near edge structure (XANES) measurements were performed on 

beamline 8.2 at Stanford Synchrotron Radiation Lightsource in the SLAC National 

Accelerator Laboratory. The total electron yield (TEY) mode was used for XANES 

measurements by measuring sample current. Current measurements were done using low  

noise preamplifier Stanford research system low noise preamplifier Model SR570. The
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beam flux (Io) signal from a gold grid was used to normalize the spectra. The chamber 

base pressure during the experiment was about 2.0 x 10'7 Pa.

VI.3. RESULTS AND DISCUSSION

VI.3.1. DIFFERENT PROCESSING TIMES

VI.3.1.1. STRUCTURE AND PHASE COMPOSITION

Results on Nb 8.6 x 6.6 x 0.7 mm3 samples are first discussed. Fig. VI. 1 shows 

XRD patterns o f NbNx samples in the same nitrogen background pressure (133 Pa) and 

substrate temperature o f (900 °C) at different processing times (5 -80  min). The 

formation o f nitrides was observed, even though the sample was heated for a short time 

of five min. XRD o f NbNx peaks in samples are attributed to P-Nb2N hexagonal phase 

with (100), (002), (102), (110), (103), (112) and (201) orientations in 2-theta range 30- 

80 0 [159]. The intensity o f  the (3-Nb2N phase XRD peaks shows systematic increases as 

processing time increases. This improvement o f the peaks is due to increasing the nitride 

thickness with the processing time. Also, it is observed from Fig. VI. 1 that the XRD peak 

of p-Nb2N at (110) shows the highest intensity relative to other peaks for all samples. 

This is confirming that the p-Nb2N phase in the samples is predominantly orientated in 

the (110) direction. The formation o f these oriented p-Nb2N  crystals depends greatly on 

the crystallographic planes o f the Nb substrate, as shown in Fig. VI. 1. XRD peaks o f Nb 

are predominantly orientated in the (110) direction. The change in the X-ray diffraction 

intensity, which is related to the integrated area under the peak, is shown as a function of 

time in Fig. VI.2. It is well known that the diffraction peak area is proportional to the 

mass of the material, which indicates an increase in thickness of the NbNx as a function
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of time. The increased XRD intensity is due to thickness increase with the processing 

time and not an increase in density, as confirmed below by nitride thickness 

measurements using nanoindentation. Crystallite size calculations were done based on the 

Scherrer relation o f  the broadening o f the XRD peak in a diffraction pattern. As seen in 

Fig. VI. 1, there are systematic decreases in the width o f the peak (FWHM) as time of 

heating increases. The narrower the diffraction peak, the larger the crystallite size. Fig. 

VI.3 shows that increasing the processing time enhances the crystallite size o f the NbNx 

layer from 17.5 to 19.2 nm. The error bars o f the crystallite size are standard deviations 

calculated from data at different orientations.
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Fig. VI. 1. X-ray diffraction patterns o f NbNx produced in different times by thermal 
processing at 900 °C.
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Fig. VI.2. XRD integrated intensity under the (110) peak as a function o f  time.
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Fig. VI.3. The mean hexagonal crystallite size o f  (110) and lattice parameter (c/a ratio) o f  
the hexagonal P-NbTSh as a function of time. The drawn lines serve only to guide the eye.



The variation o f the lattice parameter {da  ratio) o f  the hexagonal is also

shown in Fig. VI.3, and this is related to the N/Nb ratio in the NbNx. The da  ratio is 

initially increased as the processing time increased. However, after five min of 

processing, the d a  ratio decreases with increasing processing time. It is reported that 

decreases in lattice parameter o f 8-NbN occurs as the results of a decrease in the number 

of metal vacancies in the samples, while maximal lattice parameter is achieved at 

smallest amount o f nitrogen vacancies [186]. The decrease in c/a ratio here is due to the 

decrease in the amount o f Nb vacancies as time increases and is in good agreement with 

nitrogen content observed in the samples by EPMA.
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Fig. VI.4. EPMA measurement o f N/Nb ratio in the NbNx as a function o f processing 
time.
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The nitrogen content in the NbNx layer was obtained by EPMA. Fig. VIA shows 

the variation o f the N/Nb ratio with heating time. The N/Nb ratio in the hexagonal 0- 

Nb2N phase was determined to be between 0.67 ± .0.03 and 0.74 ± 0.03, which is in 

agreement with the phase diagram o f the Nb-N system [3, 181]. The error bars in Fig. 

VIA represent the values o f the standard deviation for analyses o f  five different points 

done on each sample. The N/Nb ratio in the NbNx layer increases with the processing 

time.

Surface morphologies were studied using AFM and SEM measurements. Fig. 

VI.5 shows AFM images of NbNx grown at different processing times. The surface 

morphology of NbNx sample shows grains o f  random shapes. Fig. VI.6 shows SEM of 

NbNx samples at different processing times. As shown from these images, triangular 

submicron-sized islands are present. The shapes and sizes o f  these islands did not show 

much change with the increasing times o f processing. It should be noted here that AFM 

images show the grain size while XRD gives the crystallite size, and these can be 

different. A comparison o f the root-mean square surface roughness (RMS) as a function 

of processing time is shown in Fig. VI.5(f). The RMS was obtained by performing line 

scans taken diagonally o f the AFM images (2pm x 2pm) using the Nanoscope V5.31rl 

imaging software. The RMS value o f surface roughness sharply increases with time from 

35 nm at 5 min to 59 nm at 10 min and then stays around the same values o f 52-56 nm 

with further increase in processing time.
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Fig. VI.5. Topographic AFM images (5pmx5pm) o f the NbNx produced at different 
processing times. All were done in the same nitrogen pressure o f 133 Pa (a) 5 min, (b) 10 
min, (c) 20 min, (d) 40 min, (e) 80 min, and (f) the RMS surface roughness versus 
processing time.



104

Fig. VI.6. SEM images (X6, 000) o f  the NbNx produced in different processing times (a) 
5 min, (b) 10 min, (c) 20 min, (d) 40 min, and (e) 80 min. All were done in the same 
nitrogen pressure o f  133 Pa nitrogen pressures and temperature of 900 °C.

The increase in the surface roughness is expected for samples processed for a long 

time since a longer heating time is more favorable for the formation o f larger faceted 

islands due to atom migration by diffusion Fig. VI.6(e). It is clearly observed that heating 

of the Nb sample at 900 °C in 133 Pa nitrogen gas pressure causes an increase o f surface 

roughness as NbNx develops on the surface. The SEM images confirm the same behavior 

as that observed in AFM images. The SEM analyses indicate that the grains are 

composed o f small crystallites, as shown in Fig. VI.6.
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VI.3.1.2. ELECTRONIC STRUCTURE

An X-ray photoelectron spectroscopy was conducted by Drs. Y. Ufuktepe and S. 

Kimura at the UVSOR facility, Institute for Molecular Science, Japan, for surface 

characterization o f the NbNx layer. Fig. VI.7 shows XPS spectra o f Nb 3d core levels for 

NbNx grown for various processing times at 900 °C in 133 Pa background nitrogen 

pressure. Binding energies are given with respect to the Fermi level. The corresponding 

peak positions are summarized in Table VI. 1. Comparing the binding energy o f NbNx 

with that obtained from pure Nb spectra (205.5 and 202.3 eV), it appears that Nb 3^/2 

and 3^5/2 peaks are shifted to higher binding energies as a result o f  Nb-N bonding, 

indicating the transfer o f electrons from niobium to nitrogen. Small binding energy 

differences for Nb 3d doublets are dependent on small variations in stoichiometry of 

NbNx. Samples heated for 10, 20, and 80 min show the third peak at -210  eV 

corresponding to Nb20s [187]. This suggests that these samples were contaminated by 

oxygen during or after deposition and exhibit a binding energy shift o f 3d doublets 

toward higher energy more than the others due to oxygen bonding. The Nb 3d binding 

energies o f  NbNx and NbNxOy agree with previous results [28, 187]. As soon as the NbNx 

film is exposed to the ambient air, oxygen is quickly adsorbed by the surface. On the 

other hand, mechanical and chemical polishing o f the Nb substrates can create roughness 

on the substrate surface and, thus, a rough surface provides a much larger adhesive 

contact area to the oxygen. Different roughness of the Nb substrates might be the possible 

reason o f different oxygen contributions in the spectra.
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Fig. VI.7. Nb 3d XPS spectra o f  NbNx surface layer produced for various processing 
times. All samples were heated in a nitrogen pressure o f  133 Pa and temperature of 
900 °C. Data were obtained and analyses were conducted by Drs. Y. Ufuktepe and S. 
Kimura at UVSOR facility, Institute for Molecular Science, Japan.

Fig. VI.8(a) and (b) show the best peak fit to spectra for samples processed for 5 

and 80 min. Formation o f an oxide layer on the surface o f the NbNx samples due to ex- 

situ XPS measurements. Studies on surface oxidation o f NbNx showed that a native oxide 

layer NbaOs grows on NbNx when exposed to air [65, 144], However, the Nb20s phase 

has higher binding energy than the NbNx phases giving XPS peaks that are outside the 

range o f Fig. V.8(a) [58, 144]. The two doublets in Fig. VI.8(a) could be attributed to the 

mix of the NbNx and Nb oxynitride phase.
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Fig. VI.8. Two representative spectra recorded from samples processed for 5 min (a) and 
80 min (b). The various components used for peak fit to the spectra, the sum o f which is 
shown by solid line. Data were obtained and analyses were conducted by Drs. Y. 
Ufuktepe and S. Kimura at the UVSOR facility, Institute for Molecular Science, Japan.
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Table VI. 1. Binding energies o f Nb 3d doublets in NbNx. Data were obtained and 
analyses were conducted by Drs. Y. Ufuktepe and S. Kimura at the UVSOR facility, 
Institute for Molecular Science, Japan.

Times (min) Nb 3d5n (± 0.05) (eV) Nb 3 ^3/2 (± 0.05) (eV)

5 203.6 206.4

10 204.1 207.1

20 204.1 207.2

40 203.4 206.1

80 203.9 207.0

The multiple peak fitting enabled us to distinguish two different contributions 

with different binding energies (BE); [NbNx (BE Nb 3d5/2) = 203.3 eV, full width at half 

maximum (FWHM) = 1 .0  eV] and [NbNxOy (BE»b 3d5/2) = 203.9 eV, FWHM = 1.3 eV]. 

The binding energies and FWHM values obtained from the fitting procedure agree with 

literature values o f a mixture o f  NbNx, NbNxOy, and N2Os [28, 58, 144]. The multiple 

peaks fit o f Nb 3ds/2 binding energies in Fig. VI.8(b) can be resolved as a sum o f three 

different doublets. Fig. VI.8(b) shows an additional weak shoulder is observed at -210  

eV which is due to Nb2Os. The best peaks fit to the measured data indicate the presence 

of Nb2Os, Nb oxynitride and NbNx that are consistent with the previous work [28, 187], 

From the peak fitting process, the higher Nb 3d5/2 binding energy doublet at 207.9 eV can 

be identified as Nb2Os, while the lowest binding energy doublet at 203.9 eV belongs to 

NbNx. Finally, the third component at 205.7 eV is associated with the oxynitride NbNxOy 

[58, 187],

Fig. VI.9 shows UPS spectra of the Nb valence band (VB) obtained from the 

NbNx. The UPS measurements and analyses were obtained by Drs. Y. Ufuktepe and S.
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Kimura at UVSOR facility, Institute for Molecular Science, Japan. All spectra were 

normalized with respect to the intensity of the peak at ~6 eV below Ef. The broad region 

of UPS spectra from 3 to 9.5 eV is mainly due to strong hybridization between N 2/?-Nb 

4d states. The difference spectrum was obtained by subtracting the spectrum for the 

sample processed for 5 min from that for the sample processed for 80 min and plotted in 

Fig. VI.9.
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Fig. VI.9. UPS valence band spectra of NbNx deposited at 900 °C and 133 Pa nitrogen 
pressure for various processing times. Data were obtained and analyses were conducted 
by Drs. Y. Ufuktepe and S. Kimura at the UVSOR facility, Institute for Molecular 
Science, Japan.

The positive peak in different spectra at about 8.5 eV reflects the difference in 

nitrogen content. The higher nitrogen ratio in the NbNx sample heated for 80 min leads to 

increase in the peak intensity. At the same time, there is a negative peak centered at about
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1.5 eV. It appears that the Ad and 5s states o f Nb near the Ef lose intensity with the 

increase o f nitrogen content in the film, which is consistent with the previous result [176]. 

Another reason for the negative peak is the presence o f NbaOs and the associated d 

electrons from Nb Ad transferring to the 0 -2p  band. The valence band is dominated by 

two peaks centered at 6 and 1.5 eV.

In order to understand the higher intensity and broadening o f the - 6  eV peak, the 

density o f states (DOS) was calculated. DOS calculations for |3-Nb2N and M^Os were 

obtained using the density functional theory (DFT) and many-body perturbation theory, 

which is derived from the Abinit code [188]. The partial and total DOS o f M^Os oxide 

are shown in Fig. VI. 10(b). The DOS calculations o f hexagonal P-Nb2N are shown in 

Fig. VI.10(a) and are in agreement with previous experimental results [176, 189]. The 

VB spectrum o f the hexagonal (3-Nb2N is very sensitive to nitrogen content in the film. 

Measured and calculated DOS results in Fig. VI.9 and 10 allow the identification o f these 

two peaks, which are arise from strong and weak hybridization of N 2p-Nb Ad states (-6  

eV peak) and N 2p  and Nb Ad states (—1.5 eV peak), respectively. Nevertheless, the peak 

~1.5 eV is mainly due to Ad and also 5s type electrons. This peak loses intensity with 

increasing processing time and increasing o f N/Nb ratio in the film as a result o f N-Nb 

bonding with weak nitrogen 2p-Nb Ad hybridization.

VI.3.1.3. NANOMECHANICAL PROPERTIES

Hardness and measurements were acquired by Md. Mamun and explanations of 

the results were conducted by Md. Mamun and Dr A. Elmustafa. The hardness as a 

function of contact depth o f indentation is shown in Fig. V I .ll. The data presented are 

the average o f ten indentation test results with error bar on each o f the heated samples.
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The hardness at deep indents converged for all of the samples to ~3 GPa, which agrees 

well with reported hardness values of Nb from the literature [33].
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Fig. VI. 10. (a) Calculated partial and total density o f states (DOS) o f (a) hexagonal [3- 
NbaN. (b) Nb205 oxide. Data were obtained and analyses were conducted by Drs. Y. 
Ufuktepe and S. Kimura at the UVSOR facility, Institute for Molecular Science, Japan.
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The composite film/substrate hardness at shallower depths depicted a gradual 

growth in film thickness as the processing time increases, which is shown in Fig. VI. 12. 

Square o f the thickness versus the processing time is shown in inset o f Fig. VI.12. The 

straight line is a linear curve fit to experimental data which follows a parabolic rate law 

[3]. In the nitridation process, parabolic kinetics occur when the mass gain, due to NbNx 

film formation on a substrate, is proportional to the square of the film thickness. The 

straight line relation is an indication that growth of the nitride in the samples is diffusion 

controlled [3]. For the shortest processing times (5 and 10 min), the zero crossing point o f  

the straight line is observed, while for the longer processing times (>20 min), the slope of 

the straight line decreases and, also, there are large deviations of the fitted line from the 

origin due to lower rate o f nitrogen diffusion or the effect of nitrogen saturation.
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Fig. VI. 11. Hardness as a function of contact depth for NbNx deposited at 900 °C and 133 
Pa nitrogen pressure for various heating times. Data were acquired by Md. Mamun and 
explanations of their results were conducted by Md. Mamun and Dr A. Elmustafa.
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The hardness o f  NbNx films increases with increasing processing time, with an 

average value in the range o f ~26 ± 3 GPa. The modulus versus depth o f indentation is 

shown in Fig. VI. 13. The average modulus o f the films is in the range o f -3 0 0  ± 20 GPa. 

The modulus at deep indents converges for all o f  the samples to the average substrate 

modulus o f  Nb (-100  GPa). The reported values o f  the bulk Nb Young’s modulus vary 

between 100 and 110 GPa [190]. The measured bulk Nb modulus o f 100 GPa correlates 

well with the literature data.
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Fig. VI.12. Estimated thickness from nanoindentation measurements for NbNx at various 
processing times. The inset shows the plot o f the square o f  the NbNx thickness as a 
function o f processing time. The straight line is a linear curve fit. The error bars represent 
5% of the thickness. Data were acquired by Md. Mamun.
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Fig. VI. 13. Elastic modulus as a function of contact depth for NbNx deposited at 900 °C 
and 133 Pa nitrogen pressure for various heating times. Data were acquired by Md. 
Mamun and explanations of their results were conducted by Md. Mamun and Dr A. 
Elmustafa.

VI.3.2. HIGH TEMPERATURE THERMAL NIOBIUM NITRIDE FORMATION 

VI.3.2.1.THIN SAMPLES

VI.3.2.1.1. STRUCTURE AND PHASE COMPOSITION

Fig. VI.14 shows the XRD of Nb and Nb substrates heated for 180 min at ~
•j

1.3x10' Pa o f nitrogen pressure and different temperatures. XRD patterns for samples in 

this figure show that no nitridation occurs for samples processed at temperature ranging 

from 1200-1500 °C.
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Two-dimensional (2D) XRD images o f these samples heated at 1.3xl0"3 Pa and 

different temperatures in the range 1250 to 1500 °C are shown in Fig. VI. 15. The 

advantages o f using 2D-XRD make XRD a good tool for phase identification o f the 

crystal orientation o f the samples.
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Fig. VI. 14. XRD patterns o f  Nb and Nb substrates heated for 180 min at 1.3x1 O'3 Pa o f  
nitrogen pressure and different temperatures.
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Fig. VI. 15. 2D-XRD patterns o f Nb heated for 180 min in i.3x1 O'3 Pa o f  nitrogen pressure 
and different temperatures.

Table VI.2. The 20 values and lattice constants for highest three peaks for samples heated 
ini .3x1 O'3 Pa of nitrogen pressure.

Peak positions, 20 (°) Lattice constant, a (A)
Nb 38.61 55.69 69.78 3.307 3.303 3.317

1250 °C 38.69 55.54 69.52 3.299 3.295 3.304
1300 °C 38.73 55.56 69.69 3.317 3.318 3.313

1400 °C 38.38 55.39 69.52 3.312 3.315 3.314

1500 °C 38.73 55.36 69.46 3.312 3.318 3.316

Table VI.2 shows the 20 values and lattice constants for highest three peaks for 

samples heated in i.3x1 O' Pa o f nitrogen pressure at different temperatures. The lattice 

constant o f heated samples is higher than that of unheated Nb substrate. Increases of
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lattice constant as nitrogen content increases in the samples was reported [90, 191]. The 

results o f lattice constants increasing for samples heated here are in agreement with the 

previous report on the formation a-NbN phase. This confirms formation o f a-NbN phase 

in our samples.

XRD patterns o f Nb and Nb substrates heated at 1300 °C in different nitrogen 

pressures for 180 min are shown in Fig. VI. 16. Also, XRD showed no interaction until 

nitrogen pressure reaches about 0.53 Pa. After that pressure, the P-NbjN phase starts to 

appear as mixed phase with a-NbN phase. Fig. VI. 17 shows 2D-XRD images o f Nb with 

Nb samples that were heated at 1300 °C in different nitrogen pressure in the range o f  

2.6x1 O'4- 3 .3  Pa.
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Fig. VI. 16. XRD patterns o f  unheated Nb substrate and Nb heated for 180 min at 1300 °C 
in different nitrogen pressures.
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Fig. VI. 17. XRD patterns o f unheated Nb substrate and Nb heated for 180 min at 1300 °C 
in different nitrogen pressures.

Table VI.3. The 20 values and lattice constants for highest three peaks for samples heated 
at 1300 °C.

Peak positions, 26 (°)___________Lattice constant, a (A)
Nb 38.61 55.69 69.78 3.307 3.303 3.317

2.6x10'4 Pa 38.69 55.54 69.52 3.299 3.299 3.298
1.3x10'3 Pa 38.73 55.56 69.69 3.317 3.318 3.313

0.53 Pa 38.91 55.77 69.87 3.297 3.31 3.308

3.3 Pa " 38.27 55.29 69.44 3.304 3.32 3.317



As pressure o f nitrogen is set to 1.3x1 O'4 Pa, the shape o f some spots on Nb 

substrate is changed into a continuous ring and this indicates growth o f small grains with 

random orientations o f crystallites, as indicated by a ring with uniform intensity. Further 

increase o f  the nitrogen pressure causes formation of larger grains, as can be seen by 

spots in 2D-XRD. As pressure is increased full spotty rings were obtained for alpha and 

other phase (P), which indicated formation o f large grains on the surface with weak 

texture. The average values o f crystallite size showed decreases from about 24 to 14 nm 

as pressure o f nitrogen is increased from 2.6xl0'4 to 3.3 Pa. Fig. V.18 shows average 

crystallite size and lattice constants calculated for peaks at three positions corresponding 

to Nb (211), (110) and (200) orientations. As shown in Fig. VI.18(a), the crystallites size 

is decreasing as pressure is increasing, which agrees with that seen in 2D-XRD images. 

The lattice constant is shown in Fig. VI. 18(b). The error bars in this Fig. VI. 18 represent 

standard deviations from the three positions. The trend o f  the lattice constant shows 

change from decreasing to increasing at 0.53 Pa as a result o f  the formation o f  p phase in 

the samples. Table VI.3 shows the 20 values and lattice constants for highest three peaks 

for samples heated at 1300 °C in different nitrogen pressures. The lattice constant 

increases for heated samples compared to that on Nb is in agreement with the formation 

a-NbN phase in the samples.

XRD peaks for samples prepared at 3.3 Pa showed P-Nb2N mixed with other 

peaks attributed to a-NbN. p-Nb2N phases are attributed to (100), (002), (102), (110), 

(103), (112) , (201) and (004) orientations, while those o f  a-NbN phase are attributed 

(400), (620), (930) and (12 6 0) orientations. The formation of a-NbN and p~Nb2N
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phases agrees with equilibrium phase diagram o f  NbNx and predicted P-Nb2N phase 

should appear in this temperature range [192].

According to results by Zhitomirsky and coworkers the formation o f a-NbN then 

P-Nb2N phase was first obtained when the surface o f  Nb was heated at high temperature 

[192]. This is also in agreement with what was previously reported on the reactivity of 

Nb in nitrogen atmosphere in the same range o f  temperature as we have here[3]. The 

intensity o f the peaks is enhanced as the nitrogen pressure is increased from 0.53 Pa to 

3.3 Pa, as clearly observed from Fig. VI. 17. The improvement o f the peaks is due to 

increases o f the samples' thickness; more reactions with nitrogen gas occur as the 

pressure increases. The lattice parameter o f Nb solid solutions was reported as decreases 

as atomic percent o f nitrogen increased [193].

Fig. VI. 19 shows XRD patterns o f  the Nb substrate and the Nb after heating at 

1400 °C in different nitrogen pressures for 180 min. The XRD patterns show no nitride 

formation until the nitrogen pressure reaches about 0.13 Pa. In Fig. VI.20, 2D-XRD  

images o f Nb samples heated at 1400 °C in different nitrogen pressure in the range of 

l.lx lO '3-  0.53 Pa are shown. Similar behavior is noticed as in Fig. VI.17.
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Fig. VI. 18. (a) The mean hexagonal crystallite size and (b) lattice parameter o f samples 
heated at 1300 °C in different nitrogen pressures.

The size o f grown a-NbN grains is getting bigger as the nitrogen pressure is 

increased while the texture changes to weak textured as indicated by spotty rings for 

samples done at 0.53 Pa. The grown grains for samples heated at 1400 °C are with higher



textured coefficient compared to samples done at 1300 °C. The lattice constant calculated 

from three peaks corresponding to Nb (211), (110) and (200) for samples heated at 

1400 °C shows the same style as shown for samples done at 1300 °C. The change in the 

trend o f lattice constants from decreasing to increasing at 0.13 Pa for samples heated at 

1400 °C is shown in Fig. VI.21. This change at 0.13 Pa is due to formation o f mixed 

phases o f NbNx.
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Fig. VI. 19. XRD patterns o f  unheated Nb substrate and Nb heated for 180 min at 1400 °C 
in different nitrogen pressures.
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Fig. VI.20. XRD patterns unheated Nb substrate and Nb heated for 180 min at 1400 °C in 
different nitrogen pressures.
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Fig. VI.21. The mean lattice parameter o f samples heated at 1400 °C in different nitrogen 
pressures.
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Table VI.4. The 20 values and lattice constants for highest three peaks for samples heated 
at 1400 °C.

Peak positions,29 (°)___________ Lattice constant, a (A)
Nb 38.56 55.69 69.73 3.307 3.303 3.317

1.3xl0 '3 Pa 38. 55.39 69.52 3.312 3.315 3.314
6.6x1 O'2 Pa 38.5 55.56 69.49 3.314 3.311 3.311

0.13 Pa 38.52 55.77 69.54 3.303 3.307

0.53 Pa 38.0 55.35 69.42 3.307 3.313 3.308

Table VI.4 shows the 20 values and lattice constants for highest three peaks for 

samples heated at 1400 °C in different nitrogen pressures. The lattice constant o f heated 

samples is higher than that o f unheated Nb substrate. The formation o f solid solution 

alpha phase does not cause change in strain o f Nb lattice, since nitrogen easily fits in the 

niobium lattice [27]. According to Taylor and Doyle [191], at about 10 at. %, N can be 

interstitially accommodated by Nb lattice at 2200 °C and 40.0 Pa, while only 1.0 at % is 

retained when it cools down. They also reported change in the lattice constant o f  Nb from 

a = 3.298 A  to 3.304 A and to a = 3.306 A when 0.77 at. % and 1.05 at. % o f the nitrogen 

retained in solid solution samples, respectively [90, 191]. In this work, this increase in 

lattice parameters o f heated samples can be noticed compared to that o f bare Nb. The 

average lattice constant calculated here for Nb substrate is a = 3.298 A , while for samples 

heated at 1.3 Pa and 1300 °C it increases to 3.316 A. Similar behaviors o f lattice constant 

increases can be seen for other set o f samples (done at 1400 °C) heated at different 

nitrogen pressures. Also, it seems that the amount o f  retained nitrogen in samples after 

cooling down is complex and depends on samples preparation history as well as their 

dimensions [191]. Cost and Wert [27] in their XRD study for Nb samples could not
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determine any other NbNx phases except P-Nb2N even at temperature as low as 840 °C 

with 0.8 at. % o f nitrogen reported [191]. EPMA measurements of samples heated at 0.53 

Pa and 1400 °C showed only about 5% at o f nitrogen given both beta and alpha phases 

were detected in this sample.

VI.3.2.1.2. SURFACE MORPHOLOGY

Fig. VI.22 (a-d) shows the 3D-AFM images (2000 x2000 nm2) o f samples done at 

different temperatures. The root mean square (RMS) surface roughness was obtained 

from the AFM images using Nanoscope V5.31rl software. The dependence o f RMS 

value on the temperature over and line scans at different temperature are shown in Fig. 

VI.22 (e). The roughness o f the samples increases from about 0.7 nm at to 2.3 nm as 

temperature increases from 1250 to 1500 °C. Fig. VI.23 shows the SEM images o f NbNx 

samples heated at constant nitrogen pressure o f 1.3 x 10'3 Pa.

The SEM images are clearly shown little differences between the treated surfaces 

with different temperatures. Increasing the temperature increases the surface roughness as 

recognized. The AFM confirms the same behavior observed in SEM images that shown 

in Fig. VI.23. Fig. VI.24(a-d) show 3D-AFM images o f NbNx prepared at different 

nitrogen pressures and 1300 °C. The RMS surface roughness versus nitrogen pressure is 

schemed in Fig. VI.24(e). The RMS was obtained by performing line scans taken 

diagonally o f the AFM images (2000 * 2000 nm2).
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Fig. VI.22. 3D-AFM images o f NbNx samples heated at (a) 1250 °C, (b) 1300 °C, (c) 
1400 °C, and (d) 1500 °C. (e) Dependence o f surface roughness RMS values on 
temperatures.
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(c) (d)

Fig. VI. 23. SEM images o f  NbNx samples (a) 1250 °C, (b) 1300 °C, (c) 1400 °C, and (d) 
1500 °C heated at 1.3x 10' Pa o f nitrogen pressure.

The samples show slightly decrease in surface roughness as pressure increases 

and the surface became very smooth as shown in Fig. VI.24 (d). These observations are 

confirmed by SEM images o f theses samples shown in Fig. VI.25. As the pressure 

increases to 3.3 Pa some regularly shaped islands started formed with appearance o f  (3- 

Nb2N phase in the samples. Fig. VI.26 and Fig. VI.27 show AFM and SEM images of 

NbNx grown at different nitrogen pressures and 1400 °C. As shown from these images, 

triangular submicron-sized islands are present. The shapes and sizes o f  these islands did 

not show much change with the increasing times o f  processing. It should be noted here 

that AFM images show the grain size while XRD gives the crystallite size, and these can 

be different. A comparison o f the root-mean square surface roughness (RMS) as a 

function o f processing time is shown in Fig. VI.26(e).
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Fig. VI.24. 3D-AFM images o f NbNx samples done at 1300 °C (a) 2.6X10"4 Pa, (b) 
1.3x1 O' 3 Pa, (c) 0.53 Pa, and (d) 3.3 Pa and. (e) Dependence of surface roughness RMS 
values on nitrogen pressure.
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Fig. VI.25. SEM images o f  NbNx samples done at 1300 °C (a) 2.6x1 O'4 Pa, (b) 1 .3x l0 '3 
Pa, (c) 0.53 Pa, and (d) 3.3 Pa.

The RMS surface roughness value sharply decreases with pressure and increase 

as Nb2N  phase start to show up in samples as confirmed by XRD. The increases o f  

roughness in samples done at 0.53 Pa is due to formation o f  small grains as seen in Fig. 

VI.20 o f 2D-XRD o f these samples.
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Fig. VI.26. 3D-AFM images o f NbNx samples done at 1400 °C: (a) 1 .3x l0 '3 Pa, (b) 
6.6x1 O'2 Pa, (c) 0.13 Pa, and (d) 0.53 Pa. (e) Dependence of surface roughness RMS 
values on nitrogen pressure.
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a®

Fig. VI.27. SEM images o f NbNx samples done at 1400 °C: (a) 1 .3xl0 ' 3 Pa, (b) 6 .6 x l0 '2 
Pa, (c) 0.13 Pa, and (d) 0.53 Pa.

VI.3.2.1.3. X-RAY ABSORPTION NEAR EDGE STRUCTURE (XANES) 

SPECTROSCOPY

XANES is considered a powerful tool to investigate the electronic and atomic 

structures o f  materials [72]. The sample does not need to be crystalline to be measured as 

this technique measures transitions from core levels. In the atom, each core shell has a 

distinct binding energy. When X-ray is absorbed, the binding energy o f a core shell gives 

rise to the so-called absorption edge. The spectrum o f the X-ray absorption as a function 

o f energy is shown in Fig. VI.28.
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Fig. VI.28. X-ray absorption spectrum shows the three major transitions at K, L, and M 
edges. Inset shows higher resolution o f the L edge splitting. Redrawn from [194],
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Fig. VI.29. Schematic representation o f electronic configuration with standard 
spectroscopic nomenclature of Nb and spin-splitting state with electron binding energies 
forNb element, taken from [195].
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The name o f the edges is according to the principle quantum number o f the 

electron that is excited from this shell: K for n = 1, L for n = 2, and M for n = 3. The inset 

in Fig. VI.28 shows the three edges, Li, L2, and L3 o f L edge. Li corresponds to 

excitation o f a 2s electron. The L2 and L3, edges correspond to spin-split o f the 2p 

excitation due to spin-orbit coupling: L2 corresponds to 2P1/2 excited state and L3 

corresponds to the 2P3/2 excited state at lower energy [194].

Fig. VI.29 shows a schematic o f the electronic configuration o f  Nb elements with 

standard spectroscopic nomenclature o f Nb and spin-splitting state with electron binding 

energies for Nb element. Spin-orbit coupling energies are relatively small for valence 

shells compared to core shells which can be quite large. For Nb as seen in Fig. VI.29, the 

L2-L3 splitting is about 85 eV compared to 2.7 and 1.8 eV splitting for M2-M3 and 

N2-N 3, respectively. The absorption measurements done at 1000 eV or more are referred 

to as extended X-ray absorption fine structure (EXAFS). X-ray absorption near-edge 

structure (XANES) refers to studying the structure in the vicinity o f  the edge (30 

eV)[194], Therefore, the distinction between XANES and EXAFS is arbitrary. In X-ray 

photoemission spectroscopy (XPS), the photon energy is fixed and the photoelectron 

intensity is measured as a function o f electron kinetic energy, In XANES the x-ray 

energy is scanned and the effect o f the absorbed X-ray is measured. When X-ray is 

absorbed, it causes excitations o f core electrons to empty states, lifting holes that are 

filled by Auger decay. In the case o f XPS, the intensity o f  the emitted primary Auger 

electrons is a direct measure o f the X- ray absorption process. For XANES, the primary 

Auger electrons create scattered secondary electrons, which dominate the total electron 

yield (TEY). The total electron yield (TEY) detection is commonly used to record spectra
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o f XANES. The sampling depth in XANES measurements is typically a few nanometers, 

while in XPS it is less than 1 nm [194].

Fig. VI.30 shows XANES o f NbNx samples heated at different temperatures 

(1250-1500 °C) and 1.3xl0"3 Pa after background subtraction and normalization. Fig. 

VI.30(a) shows XANES results for Nb M2,3 and N Is peaks, while Fig. VI.30(b) is at O K 

edge, both as a function o f heating temperature. Fig. VI.31 and Fig. VI.32 show XANES 

at Nb M2,3 and O K edges for samples in Fig. VI. 16 and Fig. VI. 19, respectively. The Nb 

M2,3 edges are attributed to the transition o f Nb 3p electrons to unoccupied 4d and 5s 

states while that o f the Nb M2,3 edge the general shape of the Nb M2,3 edges and is quite 

the same for the samples in Fig. VI.30. The two Nb 3p peaks at 365.5 and 380.5 eV can 

be assigned to the Nb 3Pi//2 and 3p3/2, respectively. The peak at 365.5 eV is stronger than 

that at 380.5 eV. The intensity o f N Is peak at 406.5 eV did not show any alteration with 

changing in heating temperature o f the samples. The same was observed from XPS 

results done on sputtered NbNx films as they do Ar+ ion etching [196]. The N  Is peak, at 

about 407 eV, is clearly seen at all temperatures in Fig. VI.30(a). The shift in peak 

position (N Is at 409.9 eV) for this edge may be due to the formation o f  an oxide layer in 

the samples. The detection o f this N Is peak by XANES confirms the observations made 

before on the formation o f  alpha phase in these samples; even its peaks are hard to be 

distinguishing from Nb peaks in XRD patterns. The reason was attributed to formation of 

an oxide layer on the films with thickness 0.7-1.4 nm. There were no observed shifts in 

binding energies at both Nb 3P and N Is as heating temperatures o f  samples was 

increasing. There should be more shifts by 1.4 eV or more in position o f  peak at 365.5 eV 

if  niobium oxidation state other than M^Os is found in the samples [6 6 ].
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Fig. VI.30. XANES data samples at 1.3xl0 ' 3 Pa. (a) at Nb edge and (b) at O K-edge. 
Measurements performed on beamline 8.2 at the Stanford Synchrotron Radiation 
Lightsource in the SLAC National Accelerator Laboratory.
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O K edge is attributed to a transition o f  O 1 s electrons to the unoccupied 2p states. 

The O K edge is characterized by a double-peak structure, as shown by the first two 

peaks (labeled a and b) o f XANES results in Fig. VI.30 (bottom) [6 6 , 197]. The relative 

height and energy splitting between two peaks at a and b positions are characteristics for 

the kind o f oxidation state in the samples. The splitting found here is around 3.9 eV and 

this very close to that reported for NbiOs oxidation [66 ].

Also, it is reported that the relative intensities between peaks a and b are very 

close in NbC>2, while in they showed similar relative intensities [66 ]. The shapes

of the peaks at 365.5 and 380.5 eV have some shoulders, as shown by small arrows in 

Fig. VI.30(a). This shape indicates the presence o f double peaks for these two positions. 

These double-peaks were reported for Nb-M3 and Nb-M2 lines when Nb2 0 s is formed in 

the samples but could not be detected for other oxide states [6 6 , 198].

This confirms observations on O K edge measurements in Fig. VI.30(b) that 

Nb205 oxide state is found in the samples. The source o f this oxide layer could be as a 

native layer on the Nb substrate or on surface o f NbNx samples that forms when handling 

samples in air. Fig. VI.31 shows the XANES results for samples heated at 1300 °C and 

different nitrogen pressures. There is not much difference between results in Fig. VI.31 

and in Fig. VI.30 except for the sample that was done at 0.53 Pa and 1300 °C. Also the 

peak labeled “a” in Fig. VI. 3 1(b) is slightly shifted to higher photon energy than other 

samples. This may be due to its higher concentrations o f oxygen than other samples. It is 

reported for Nb oxide samples that the intensity ratio o f  Nb peaks decreases with 

increasing oxygen concentration in the material [197], The change o f the concentration of 

oxygen may result from differences in surface roughness o f the Nb substrates.



137

Nb-M.

Nb-M2

C/2■*-*
C
3

3.3 Paco 0.53 PaQ.
1.3xl0’3 Pa

2.6x10 Pa

370360 380 390

Photon Energy (eV)

M 3 Pa

co
&
8
<

2.6xl0'4 Pa

530 540 550 560 570

P h o t o n  E n e r g y  ( e V )

Fig. VI.31. XANES data for substrates heated for 180 min at 1300 °C temperature and 
different nitrogen pressures, (a) At Nb M2,3 edge and (b) At O K-edge. Measurements 
performed on beamline 8.2 at the Stanford Synchrotron Radiation Lightsource in the 
SLAC National Accelerator Laboratory.



Fig. VI.32 shows the XANES spectra for samples done at 1400 °C in different 

nitrogen pressures. Fig. VI.32(a) is for spectra taken for Nb and nitrogen at Nb M2,3 and 

Is edges, respectively. The Nb M2,3 edges show no changes in peak positions or 

intensities as pressure changes for this set o f  samples. This is the same for the N  Is peaks, 

except for the sample done at 0.13 Pa. The N  Is peak shows splitting and increases in the 

intensity. The peak centered on 402.3 eV in state o f 407 eV is like other samples. 

Observation o f this peak (402.3 eV) was reported for GaN thin films [199]. The authors 

found this peak is corresponding to the presence o f  interstitial molecular nitrogen in the 

films [199]. The reason for the formation o f the molecular nitrogen could be due to high 

roughness as noticed on the surface o f this sample. Other samples show much smoother 

surfaces than samples processed at 0.13 Pa. Fig. VI.32(b) shows XANES spectra of 

samples heated at 1400 °C measured at O K edge. There are no changes in peak positions 

or intensities as pressure changes.
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Fig. VI.32. XANES data for substrates heated for 180 min at 1400 °C temperature and 
different nitrogen pressures, (a) at Nb M23 edge and (b) at O K-edge.



VI.3.2.2. THICK SAMPLES

XRD patterns o f Nb with Nb substrates heated at about 0.13 Pa o f nitrogen 

pressure in temperature range o f  800-1150 °C for 60 min is shown in Fig. VI.33. No 

nitriding can be seen from XRD patterns for these samples until temperature o f 1150 °C 

is reached. The same was noticed for the samples as shown by their 2D-XRD images in 

Fig. VI.34. The lattice constants o f Nb three peaks with (110), (200) and (211) are shown 

in Fig. VI.33. There are slightly decreases in lattice constants with increasing temperature 

under constant pressure is about 0.9% o f the values o f lattice constant which can be 

considered within experimental errors o f XRD measurements. The heating o f these 

samples using spiral heater filament was not well controlled due large thickness (0.7 mm) 

o f Nb substrates. That caused large temperature gradients over the samples since part of 

the sample was outside the heater.

Fig. VI.35 shows the XRD patterns o f Nb substrate and samples heated at 900 °C 

in different nitrogen pressures 1.3x10 , 0.13 and 1.3 Pa for 60 min. The XRD patterns 

show the start o fN b  nitrogen reaction as pressure is reaching 1.3 Pa, where sample shows 

peaks for mixed alpha and beta phases. The diffraction images o f these samples are 

shown in Fig. VI.36. The 2D-XRD image o f samples done at 1.3 Pa shows the formation 

of spotty rings for beta phase which is an indication o f  the formation o f  large size 

crystallites. The temperature at that pressure was not enough to cause more diffusion into 

material if  it is compared to thin samples, and this is why large crystallites were formed.
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Fig. VI.33. XRD patterns o f unheated Nb substrate and Nb heated for 60 min at 0.13 Pa 
of nitrogen pressure at different temperatures.
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Fig. VI.34. 2D-XRD patterns o f Nb heated for 60 min at 0.13 Pa o f nitrogen pressure at 
different temperatures.
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Fig. VI.35. XRD patterns o f unheated Nb substrate and Nb heated for 60 min at 900 °C in 
different nitrogen pressures.
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Fig. VI.36. XRD patterns o f unheated Nb substrate and Nb heated for 60 min at 900 °C in 
different nitrogen pressures.



Fig. VI.37 shows XRD pattern o f samples heated at 1000 °C, in pressure of 

2.6xl0 '5 Pa at different heating times: 1, 3, and 6 hrs. Fig. VI.38 shows 2D-XRD images 

of unheated Nb substrate and Nb heated at 1000 °C, in pressure o f 2.6x10‘5 Pa. These 

samples were heated using 1” diameter heater manufactured by HeatWave Labs Inc. As 

shown from the XRD pattern and 2D-XRD images, no change can be noticed for these 

samples with increased time o f heating. Not much change is seen between unheated Nb 

substrate and those heated in a vacuum for several hours. No changes are noticed in peak 

positions o f Nb (110), (200) and (211) or in the intensities o f  the peaks at 2Theta o f about 

19.3, 33.4 and 43.5°, even though they were seen in unheated Nb substrate, as shown in 

Fig. VI.38. These peaks may be attributed to multiple diffractions o f main peaks o f Nb. 

The peak at about 19.2° is at 2-theta value half that o f Nb (110) or may be due to the 

monochromatic o f  X-ray source, as reported for peak at about 33.4°, is considered N (110) 

KP [200],

Fig. VI.39 shows samples heated using a 1 inch HetatWave Inc. heater. The 

temperature was raised to 1000 °C, then nitrogen gas was allowed to fill the chamber to 

pressure o f 0.66 Pa. Samples were heated at different heating times: 10, 20, 30, 40, and 

60 min as shown from XRD pattern o f these samples; a-NbN and P-Nb2N phases appear 

at lower heating times (10 and 20 min). As heating time is increased to 30 min, the 

samples developed another phase (8 -NbN) beside the other two phases. Increasing the 

heating time causes enchantments in the peak intensities for all phases. The 5-NbN peaks 

at (200) is starting to be seen in 2D-XRD as time o f heating increases to 30 min.
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Fig. VI.37 XRD patterns o f unheated Nb substrate and Nb samples that were heated at 

1000 °C, in a pressure o f 2.6x1 O' 5 Pa.
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Fig. VI.38. 2D-XRD images o f unheated Nb substrate and Nb that were heated at 
1000 °C, in a pressure o f 2.6x10 ' 5 Pa.
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Fig. VI.39. XRD patterns of NbNx samples that were heated at 1000 °C, for different 
heating times in nitrogen pressure o f 0.66 Pa.

The preferred orientation for the beta phase is showing change with time. The 

samples show phase transformation from XRD peak at p-NbiN (110) for samples heated 

at 10 and 20 min to S-NbN (220) as the peak shifted to lower 2-Theta values with time of 

heating is increasing. 2D-XRD images for these samples are shown in Fig. YI.40. From 

the image o f the sample heated for 10 min, one recognizes spotty features in the images, 

which are indications o f growth o f the P-NbaN phase with larger grain size. As time 

increases, the spots change to non-continuous rings, which indicated decease in the grain 

size o f grown coating. The shape o f the rings became more continuous with heating time 

increasing, which indicated formation o f polycrystalline samples with smaller grain size 

than those obtained at lower heating times. The non-uniformity in the intensities o f  the 

diffraction rings is indication o f texture o f the formed crystallites. Diffraction spots
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corresponding to alpha phase show spotty rings which are clearly seen in 2D-XRD in Fig. 

VI.40. This is an indication o f the formation o f large crystallites for alpha phase at short 

times o f  heating; then, crystallites' size decreases as heating time increases.

10 min 

20  min 

30 min 

40 min 

60 min

Fig. VI.40. 2D-XRD images o f  NbNx samples heated at 1000 °C for different heating 
times in nitrogen pressure o f 0.66 Pa.

The c/a ratio o f the hexagonal (P-Nb2N) phase is shown in Fig. VI.41. As heating 

time increases, the c/a ratio o f the hexagonal phase shows a small change until the 5-NbN 

phase becomes more pronounced in the samples. The decrease in c/a ratio may be 

because of the transformation o f some XRD peaks o f the P-Nb2N phase into 8-NbN 

phase. Fig. VI.42 shows the mean crystallite sizes o f hexagonal phase (P-Nb2N) for
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samples heated at 0.66 Pa, calculated from the Scherrer equation. At a very short time (10 

min), the mean size o f the crystallite is about 4 nm; as time o f  the heating increases to 20 

min, the size o f crystallites increases to between 12-14  nm. There is not much change in 

crystallite size as heating time is increased to 60 min. The error bars shown in these 

figures represent standard deviations calculated from different peaks for same P-Nb2N  on 

each sample. NbNx synthesis by reactive diffusion produced at higher pressure than that 

used here showed phase transformations as processing time increased [22]. Increasing 

processing time causes increase in the nitrogen content in the samples. XRD results 

confirm phase transformation o f P-Nb2N to 8-NbN as heating time is increasing. Such 

phase transformations are in agreement with phase diagrams of the Nb-N system and 

reported work on reaction o f  niobium with nitrogen [11,91, 183].

1.622

1.620 -
c/a

1.618 -

1.616 -
o

1.614 -

1.612 -

1.610 -

1.608
10 20 30 40 50 60

Time, min

Fig. VIAl. The c/a ratio o f  hexagonal phase (p-Nb2N) for samples heated at 0.66 Pa.
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Fig. VI.42. Average crystallite size o f  hexagonal phase (p-Nb2N) for samples heated at 
0.66 Pa.

VIA. CONCLUSION

VI.4.1. DIFFERENT PROCESSING TIMES

NbNx have grown using thermal diffusion o f  nitrogen. Nitriding was carried out at 

a temperature o f 900 °C and occurred even for processing time as short as 5 min. Longer 

heating times resulted in larger grain size and higher N/Nb ratio in NbNx. Analyses based 

on XRD, EPMA, AFM and XPS indicate that the surface layers are hexagonal P-Nb2N. 

The NbNx surface layer thickness was observed to grow according to parabolic 

growth kinetics. XPS analyses confirm that the NbNx surface layer is reactive to oxygen 

contamination; especially when samples are exposed to air, a layer o f NbiOs is formed. 

UPS measurements and DOS calculations o f VB spectrum show a clear picture o f two 

distinctive separations near Ep. In addition, strong and weak p-d  hybridization is 

observed. Different heating times resulted in a thicker nitride layer with the increase of
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nitrogen content in the NbNx. However, longer processing times did not change the phase 

of the formed NbNx. The present results indicate that a single hexagonal phase P-Nb2N 

could be obtained by thermal diffusion at 900 °C in 133 Pa nitrogen atmospheres. Surface 

hardness was measured by nanoindentation. The hardness values ranged from 12 to 26 

GPa, increasing with the nitride thickness. The idea o f  strengthening the surface hardness 

o f Nb by growing NbNx coating is applicable beyond superconducting cavities and can 

be useful in superconducting wires and in non-superconducting applications needing 

surfaces that are relatively chemically inert and have high hardness.

VI.4.2. LOW PRESSURE

VI.4.2.1. THIN SAMPLES

Four sets o f  thermal diffusion experiments were done on an Nb (0.2 mm thick) 

sheet. All samples were heated for same heating time (180 min). From XRD for samples 

heated at different temperatures (1250 -  1500 °C) and 1.3xl0'3 Pa, formation o f some 

grains can be recognized as a-NbN phase. Then, they get smaller as indicated by full 

rings obtained at 1500 °C. These values are also consistent with crystallite size 

calculations using the Scherrer relation. Crystallite size decreases from 23 nm at 1250 °C 

to about 17 nm at 1500 °C. No other phase is recognized in this set at all temperatures.

The XRD o f Nb and the samples those heat-treated were presented. 2D-XRD 

images of samples processed at temperature range from 1250-1500 °C at low pressure of 

1.3xl0'3 Pa showed the formation of grains on Nb; this is due to alpha phase formation. 

The same thing was observed for samples processed at 1300 and 1400 °C. No changes 

were observed until nitrogen pressure reached 0.13 Pa, when P-Nb2N phase starts to 

appear as mixed with existing phase. As pressure increases to 0.13 Pa and higher, the
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samples have a-NbN phase mixed with (3-Nb2N phase. Lattice constants calculated from 

the three peaks with highest intensity showed transformation from decreasing to 

increasing manners as mixed phases appeared in samples

X-ray absorption near edge structure (XANES) measurements done at Nb M2,3 

edge showed Nb 3p peaks at 365 .5 and 380.5 eV. The peak at 365.5 eV is stronger than 

that at 380.5 eV. These two peaks have double peaks for these two positions due to the 

formation o f an oxide layer. From XANES done at Nb M2,3 and O K edges, an oxide 

layer is confirmed to be an M^Os layer on the surface of the samples. XRD and XANES 

measurements on thin samples confirm the formation of a-NbN phases for thin samples 

heated at high temperatures and low pressures. Increasing nitrogen pressure results in 

more alpha phase concentration, accompanied with an increase of other phase (p-Nb2N).

VI.4.2.1. THICK SAMPLES

Some o f the thick Nb substrates (0.7 mm) were heated in vacuum o f 2.6x1 O' 5 Pa 

at 1000 °C for different times. XRD showed not much change between unheated Nb 

substrate and the samples that were heated in vacuum at different times (1, 3, and 6 hrs). 

XRD of samples heated at 0.66 Pa nitrogen pressure and 1000 °C have mixed phases of 

(a-NbN) and (P-Nb2N) at lower heating time ( 1 0 - 2 0  min) and (a-NbN), (P-Nb2N) and 

(8 -NbN) as heating time was increased to 60 min. A transformation from (P-Nb2N) to (5- 

NbN) observed. The 5-NbN phases became more visible when heating time was 

increased to 60 min. Thick samples that were heated using a spiral filament heater were 

not well controlled. In the case o f thin samples done at that pressure, a clear reaction is 

seen in XRD images. Thin samples were treated at higher temperatures than these done 

for thick samples.



CHAPTER VII 

SUPERCONDUCTING NIOBIUM NITRIDE THIN FILMS ON Si (100) 

BY REACTIVE PULSED LASER DEPOSITION

VII. 1. INTRODUCTION

The superconducting nature o f niobium nitride (NbNx) thin films makes them 

potential candidates for use in superconducting electronics, such as tunnel junctions [146, 

167], coatings for superconductive cables [201], and single photon detectors [202-204], 

Moreover, good mechanical properties, such as their high hardness [160, 205] and 

corrosion resistance [8, 177], make NbNx suitable as a protective layer in active 

environments, such as in turbine engines and spaceships [11, 206]. The superconducting 

and mechanical properties of NbNx are strongly affected by the composition and the 

crystal structure o f the film. As the nitrogen content is changed in the Nb-N system, 

several types o f  crystallographic structures and phases are formed. NbNx usually is found 

in mixed phases.

The growth o f NbNx on Si(100) is o f  much interest for optoelectronic applications 

because it can allow for integration with devices. Superconducting NbNx films deposited 

on Si substrate can be used in hot electron bolometer (HEB) mixers [207, 208]. The 

preference for using Si substrate for these HEB mixers is because it shows low loss at 

operation frequencies o f  HEB mixers (few terahertz) [209]. Most studies on NbNx are 

dealing with its superconducting properties [137-141] because of the highest transition 

temperature (17.3 K) [210]. Because o f these extreme properties o f  NbNx, considerable 

efforts have been devoted to the characterization and description o f the physical, 

chemical, and mechanical properties o f NbNx.
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In this chapter, NbNx films were deposited on Si(100) substrate at 800° C in 

different nitrogen gas pressures using reactive PLD. The morphology, electronic, and 

mechanical properties o f the NbNx films were studied. The NbNx films showed different 

phase compositions and different Tc as the pressures of nitrogen were changing. NbN 

nanoparticles were grown on Cu-grids and tested using a high resolution TEM.

VII.2. EXPERIMENTAL PROCEDURE

NbNx films were grown on a Si(100) single-crystal substrate by ablating an 1-inch 

diameter Nb target (99.995% pure). The chamber was equipped with a turbo-molecular 

and ion pump, operated at a base pressure o f ~1.3xlO'7 Pa. A pulsed Nd: YAG laser 

beam (wavelength X = 1064 nm, repetition rate 10 Hz, pulse duration 40 ns) was focused 

with a 50 cm focal length lens at 45° onto a rotating (25 rpm) Nb target. The distance 

between the target and the substrate was fixed at 6 cm. The operating pressure o f the 

nitrogen gas pressure is achieved by filling the chamber with the correct amount o f gas 

and keeping it at the same pressure during deposition.

The Si(100) substrate was 3.0x12x0.5 mm3, p-type boron doped with resistivity 

ranging between 0.060 and 0.075 Qcm, and had a miscut angle 0.38°. The Si substrate 

was chemically etched using a modified Shiraki method [211] before being loaded into 

the chamber. In order to deposit cubic structure NbNx films, optimizations o f  the PLD 

parameters, such as the laser energy density, pulse repetition rate, and target-to-substrate 

distance, was done. The highly oriented crystalline structure o f NbNx films was obtained 

with 15 J/cm2 laser fluence and 800 °C substrate deposition temperature. The thickness of 

the deposited films is 25±5 nm, as measured by performing cross-sectional transmission 

electron microscopy measurements. The deposition rate was about 2-3 nm/min. The
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thickness o f  the films was -2 0  nm, as indicated by a high-resolution transmission 

electron microscopy (HRTEM) cross-sectional image.

Nb and NbN were grown on carbon-coated Cu grids using PLD. Laser fluence o f 8 

J/cm2 and deposition temperature 300 °C were used. For growth o f Nb pressure of 

~3.6><1 O'5 Pa was used. NbN nanoparticles were grown at 40 Pa.

X-ray diffraction (XRD) was done using graphite-monochromated CuKa radiation 

on a Bruker-AXS three-circle diffractometer, equipped with a SMART Apex II CCD 

detector. X-ray photoelectron spectroscopy (XPS) was performed by Drs. Y. Ufuktepe 

and S. Kimura at the UVSOR facility, Institute for Molecular Science, Japan, on 100-mm 

radius hemispherical photoelectron analyzer (VG Scienta SES-100) with Mg K a X-ray 

radiation (hv>= 1253.6 eV). The base pressure o f the photoemission chamber was

Q

<2.0x10' Pa. Surface cleaning of the samples was performed at room temperature by 

using Ar+ sputtering. The sputtering was carried out at 3 kV and 10 mA cm'2 beam 

current density, with an argon partial pressure o f 1.5x10"5 Pa. The energy scale o f  the X- 

ray photoemission spectrum was calibrated by the binding energy o f Au 4 f  level.

The morphology o f the films examined using a Digital Instruments Dimension 

3100 atomic force microscope (AFM). AFM images were taken in air using tapping 

mode. In addition, conventional four-point probe method measurements o f thin films 

with a temperature accuracy o f 0.01 K were used to obtain the superconducting transition 

temperature. The nanoindentation experiments probe the hardness and elastic modulus of 

the films, which is correlated to the structural, electronic, and superconducting properties 

of the thin films. Nanoindentation is an effective technique to investigate the mechanical 

properties o f thin films and nanomaterial. This technique is capable o f  measuring the



moduli and hardness o f thin films as a function o f depth [190, 212, 213]. Nanoindentation 

experiments were conducted by Md. Mamun and Dr A. Elmsutafa at the ODU Applied 

Research Center, using a Nano Indenter® XP in conjunction with a continuous stiffness 

measurement (CSM) equipped with a three-sided diamond Berkovich indenter tip. 

During the CSM indentation testing, a small and well-controlled oscillation is introduced 

into the normal loading sequence o f the nanoindenter, which enables the CSM to monitor 

the contact depth and the contact stiffness throughout the indentation loading. Hence, the 

CSM maintains the measurement o f material properties as a continuous function o f depth 

for a single indentation, as detailed elsewhere [184, 214], A G-Series CSM Standard 

Hardness, Modulus, and Tip Cal method was adopted for the indentation experiments in 

this study. The indenter penetrated the sample surface with a harmonic displacement 

oscillation target o f one nm at a frequency o f 45 Hz to a depth o f 500 nm with a strain 

rate o f 0.05 per second. Surface detection criterion was set at 160 N/m for these tests. Ten 

indents were performed on each sample at different locations.

VII.3. RESULTS AND DISCUSSION

VII.3.1. TEM RESULTS

Fig. VII. 1(a) shows the high-resolution TEM image for one o f the NbN* films 

grown at nitrogen background pressure o f 13.4 Pa and substrate temperature o f 800 °C. 

The TEM image o f Fig. VII. 1(a) depicts grains o f columnar shape with random 

orientation. The film is continuous with no evidence o f  voids forming during the 

deposition. The TEM image in Fig. VII. 1 (b) is for single grain enlarged from the image 

of Fig. VII. 1 (a). It is evident that the grain size is ~ 25 nm.
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NbN, NbN,

Fig. VII. 1. TEM micrographs (a) TEM cross-section o f NbNx thin film on Si(100) 
substrate. The film is deposited at 800 °C. (b) TEM images o f  NbNx films. The grains are 
columnar and randomly oriented with an average grain size o f  25 nm.

Nb and NbN nanoparticles were grown on Cu grids at laser fluence o f 8.0 J/cm2 

and substrate temperature o f 300 °C. Fig. VII.2 shows low magnification o f high- 

resolution TEM (HRTEM) images and the diffraction patterns for (a) Nb sample prepared 

in vacuum and (b) NbN nanoparticles done at nitrogen pressure of 40 Pa. The formation 

o f Nb is confirmed by the diffraction pattern of Fig. VII.2(a). NbN nanoparticles with 

varying sizes are formed as shown in Fig. VII.2(b). Diffraction patterns were obtained on 

one o f these nanoclusters. High-resolution transmission electron microscopy images of 

samples deposited at 40 Pa is shown in Fig. VII.2. The sample shows show nanoparticles 

with multi-grains in these nanoclusters, as shown in HRTEM images Fig. VII.3.
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Fig. VII.2. HRTEM images and the corresponding diffraction pattern of (a) Nb samples 
deposited at 2.3x1 O'5 Pa and (b) NbN deposited at 40 Pa, with laser fluence o f 8 J/cm2.

Fig. VII.3. HRTEM image of NbN sample deposited at nitrogen pressure of 40 Pa.



VII.3.2. STRUCTURE AND SURFACE MORPHOLOGY

The effect o f nitrogen background pressure on the crystallinity o f NbNx thin films 

was examined by XRD measurements. Fig. VII.4 shows the XRD patterns o f NbNx films 

prepared at different nitrogen background pressures. The substrate temperature and laser 

energy density remained constant and only the nitrogen pressure was varied from 13.4-

66.7 Pa. The influence of nitrogen pressure can be seen in Fig. VII.4. Two different 

crystalline structures were observed; the films were highly textured and were indexed 

with mainly the cubic phase o f the 8-NbN and the tetragonal y-Nb4N 3. Variations of 

N/Nb ratio in the films may have contributed to the changes in the crystal structure with 

the increase o f nitrogen pressure. Variations o f the N/Nb ratio in the films may have 

contributed to the changes in the crystal structure for different nitrogen pressures.

Fig. VII.5 shows the variation o f the lattice parameter and the crystallite size of 

the cubic phase calculated based on the (111) peak as a function o f nitrogen background 

pressure. The mean crystallite size o f  5-NbN was determined by the Sherrer formula 

[127]. The calculated values are in the range o f 8.46 to 9.31 nm. The cubic 8-NbN phase 

can form over a specific stoichiometric range o f 0.85< x <1.06 with the change o f lattice 

parameter a from 4.37 to 4.39 A. The calculated values are in the range o f 4.365 < a < 

4.395 and are consistent with the previous result [215]. Different lattice parameters were 

observed because crystal imperfections affect the lattice parameter; the higher the 

vacancies in NbNx films, the lower a values [215].
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Fig. VII.4. XRD patterns o f  NbNx thin films deposited onto Si(100) substrate at different 
nitrogen background pressures.

The size o f  the (111) crystallite size in the film decreases with increasing 

background nitrogen pressure. The nitrogen background pressure reduces the kinetic 

energy and flux o f the ablated materials. Therefore, for the lower deposition pressure, the 

surface mobility o f  adatoms is enhanced due to the high kinetic energy o f atoms in the 

PLD flux. These enhancements in surface mobility result in larger crystallite size. In Fig. 

VII.4, the integrated area o f the (111) peak for the sample grown at 26.7 Pa is higher than 

that for the other samples. Deposition at the lower pressures gives denser and highly 

(lll)-oriented NbNx film consisting o f larger crystallites. Higher background gas 

pressure not only lowers the kinetic energy o f the ablated Nb but also the confinement of 

the plasma plume. This results in an increase in the probability o f  multiple collisions 

between ablated materials that yield formation o f small crystallite size [216]. Therefore,
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higher molecular nitrogen pressure is causing lower deposition rate and resulting in less 

nitrogen ratio in the NbNx film.
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Fig. VII.5. Variation o f lattice parameter and crystallite size o f  (111) plane with nitrogen 
background pressure. The solid lines are drawn as a guide for the eye.

AFM images o f films prepared at different nitrogen background pressures are 

shown in Fig. VII.6. The scanning area was 2 x 2  pm2. The AFM image o f the film 

grown at 26.7 Pa consists o f triangular islands o f 100-200 nm sizes and heights o f 15 nm, 

as shown in Fig. VII.6(a). As the nitrogen pressure was increased to 53.3 Pa, the island 

size and morphologies became more irregular in shape and with an average height o f -2 0  

nm. For growth at a nitrogen pressure o f 66.7 Pa, the size o f the islands increases to 

submicron as shown in Fig. VII.6(c). However, the average height o f  grains is -21 nm, 

which about the same as for film deposited at 53.3 Pa. When 66.7 Pa nitrogen pressure 

was used, the island size increased significantly compared to lower pressures. At lower 

nitrogen pressures, the niobium and molecular nitrogen flux incident on the substrate
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surface are increased. The higher nucleation rate can cause smaller islands to grow. The 

reduced nitrogen content in the thin film with increased molecular nitrogen background 

could be due to reduced atomic nitrogen flux reaching the surface with pressure. As the 

nitrogen pressure is increased to 66.7 Pa, the diffusion length o f the atomic nitrogen, 

generated from electron collision in the plasma plume with the background molecular 

nitrogen, is reduced and the recombination rate is increased.

(c) (d)

Pressure (Pa)

Fig. VII.6. The 3D-AFM images of films grown at (a) 26.7 Pa, (b) 53.3 Pa, and (c) 66.7 
Pa and (d) Surface roughness RMS at different nitrogen pressures.

To check surface roughness, diagonal line scans on the AFM images were 

obtained. The root mean square surface roughness (RMS) was obtained from line scans
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of AFM images. The surface roughness as a function o f nitrogen background pressure is 

shown in Fig. VII.6(d). The surface roughness increases with increasing the nitrogen 

background pressure. The film grown at 26.7 Pa showed an RMS value o f 4.4 nm. 

Roughness increased to 9.8 and 11.2 nm as the nitrogen gas pressure increased to 53.3 

and 66.7 Pa, respectively. The increase in surface roughness is expected with increasing 

the background pressure. In PLD, the background pressure plays a crucial role in 

controlling the kinetic energy o f adatoms and their diffusion into the surface. Low 

ambient gas pressure contributes to higher adatoms kinetic energy and this provides low  

surface roughness for the NbNx films. The surface roughness results are consistent with 

that reported for (3-Nb2N films grown by PLD on Nb substrates for a similar range of 

nitrogen gas pressure [29].

VII.3.3. ELECTRONIC STRUCTURE

X-ray photoemission spectroscopy was used for electronic structure analyses. Fig. 

VII.7 shows XPS spectra o f Nb 3d  core levels for NbNx films deposited at various 

nitrogen background pressures. The spectra are normalized so that maximum peak 

intensities are equal in each spectrum. Binding energies are given with respect to the 

Fermi level. The XPS spectra o f the NbNx films show a strong pair o f  peaks due to Nb 

3dm and 3dm doublets. The corresponding peak positions are summarized in Table 

VII. 1. Comparing NbNx film spectra with that from pure Nb (205.5 and 202.3 eV), it 

appears that Nb 3dm and 3dsa peaks are shifted to higher binding energies as a result of 

Nb-N bonding, indicating the transfer o f  electrons from niobium to nitrogen. The peak at 

-210  eV corresponds to a niobium oxide, which suggests that the samples were 

contaminated by oxygen after deposition as they were exposed to air. The binding energy
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values o f Nb 3^3/2 and 2>d$n doublets were previously determined for NbNx, NbN(i.y)Oy 

and NbO [144, 217]. The results indicate that the 3d  level o f  all the deposited films is not 

supporting the structure o f a niobium oxide or oxynitride and the spectra are consistent 

with that o f  NbNx [218-221 ].

Table VII. 1. XPS binding energies o f  Nb 3d in NbNx films deposited at different N 2 
background pressures.

N2 pressure (Pa) Nb 3^5/2 (±0.05) 
(eV)

Nb3t/3/2 (± 0.05) 
(eV)

Nb-N bond (±0.05) 
(eV)

26.7 204.00 206.81 209. 83

53.3 204.09 206.92 209.64

66.7 204.08 206.90 209.72

Nb 3d

66.7 Pa

t/i
Co

53.3 Pa

c

26.7 Pa

210 205215 200

Binding Energy (eV)

Fig. VII.7. Nb 3d XPS spectra o f NbNx films deposited at various N 2 background 
pressures. Data were obtained and analyses were conducted by Drs. Y. Ufuktepe and S. 
Kimura at the UVSOR facility, Institute for Molecular Science, Japan.
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Fig. VII.8. XPS spectra o f Nb 3p core level for NbNx films deposited at different 
background pressures. Data were obtained and analyses were conducted by Drs. Y. 
Ufuktepe and S. Kimura at the UVSOR facility, Institute for Molecular Science, Japan.

Nb 3/7 core level spectra o f NbNx films are shown in Fig. VII.8. The spectra 

consist o f two 3pm and 3/?i/2 doublets and strong N Is peak. The corresponding binding 

energy values are given in Table VII.2, which are consistent with the previous NbNx 

studies [219, 220]. Note that the 3/7 binding energy doublets are shifted to the lower 

energy side as compared to the Nb 3/7 peak o f pure Nb. This shift is in agreement with 

electron donation to the nitrogen atoms and a clear indication o f the NbNx structure.

The intensity o f photoelectron peaks is directly related to the content o f  Nb and N 

in the NbNx film and can be used for determination of the chemical composition o f the 

surface. The relative concentration o f nitrogen in NbNx as a function o f background 

pressure was calculated by using the ratio o f  the background corrected integrated areas 

under the N Is and NbN 3d peaks in the XPS spectra and normalizing with atomic cross­
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section o f each level at Mg Ka radiation [222], The calculated x (x = N/Nb) values are 

0.90, 0.88, and 0.80 for 26.7, 53.3, and 66.7 Pa samples, respectively, which are in 

agreement with previously reported on cubic and tetragonal phases o f  the Nb-N system 

[3, 223]. The content o f N  in NbNx films is slightly decreasing as the tetragonal phase 

becomes visible with the increase o f nitrogen background pressure during deposition, y- 

Nb4N 3 has a distorted 8-NbN structure and the 5 to y phase transition was observed when 

x in NbN* changed [11, 148]. A N  h  spectrum showed that the peak position slightly 

shifted to lower binding energy (0.2 eV) when the nitrogen background pressure changed 

from 26.7 to 66.7 Pa. Broadening o f the N Is lines may be due to increasing the N/Nb 

ratio and is related to the greater number o f sites occupied by N atoms in NbNx films 

[37]. In Table VII.2, the energy separation between N Is and Nb 3d$/2 peaks (A) shows 

similar behavior. A decrease in (A) is due to an increase in charge transfer from Nb to N 

when higher nitrogen background pressure is used. It is reported in the literature that the 

binding energy value A associated with N \s  and NbN 3d indicates the covalence level of 

the NbNx film [206].

Table VII.2. The 3p doublet binding energies o f NbNx films deposited at different N 2 
background pressures.

N2 pressure NbN 3/75/2 NbN 3/71/2 N Is (±0.05) A=N I s -N b N  3dsa
(Pa) (±0.05) (eV) (±0.05) (eV) (eV) (± 0.05) eV

26.6 362.47 378.00 397.50 193.29

53.3 362.63 378.10 397.29 193.21

66.7 362.85 378.20 397.30 193.17
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Fig. VII.9(a) shows the UPS valence band (VB) spectra o f  the three different 

NbNx films. The valence band spectra were recorded using He II radiation (40.8 eV) from 

a discharge lamp. The VB spectra are mainly dominated by two peaks below the Fermi 

level. Strong and weak hybridization o f Nb 4d  and N  2p levels occur at about 1 and 6 eV, 

respectively. In the case o f  the sample grown at 26.7 Pa, the peak in the region o f 6 eV is 

narrowed and shifted to lower binding energy in comparison with the other two films, 

while the emission just below the Fermi edge is characterized by broad emission. In order 

to compare two different phases o f NbNx films, VB spectral subtraction o f  the samples 

grown at 26.7 and 66.7 Pa nitrogen is done as shown in Fig. VII.9(b). The difference 

between the spectra o f films grown at 26.7 and 66.7 Pa is exhibited positive and negative 

peaks at 3.5 and 8 eV, respectively. This is due to the difference in nitrogen content and 

NbNx phases o f these two films.

To better understand the valence band electronic structure o f  the NbNx system, 

the calculated density o f  states (DOS) o f  cubic and tetragonal NbNx is shown in Fig.

VII.9. Density Functional Theory (DFT) calculations were carried out using the Abinit 

code [188], based on DFT and the Many-Body Perturbation Theory. It is clear from the 

figure that the electronic structures o f  these two phases are quite similar and two 

distinctive regions are visible by the peak centered at -6 eV and the second region 

between 0 and 4 eV. The first region is between -4 to -8 eV and mainly arises from the 

degeneracy between N 2p  and NbN 4d states. The overlap o f  the nitrogen p  and niobium 

d a level is associated with the covalent bonding between metal and non-metal elements. 

The second region, just below and above the Fermi level, originates mainly from the NbN  

Ad state.
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Fig. VII.9. UPS spectra (a) Valence band spectra o f NbNx thin films, (b) In each 
spectrum, the UPS signal o f  the Fermi edge was set to the same point. The difference in 
the VB spectrum was obtained by subtracting 26.7 and 66.7 Pa spectra shown at the 
bottom.
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VII.3.4. SUPERCONDUCTOR PHASE TRANSITION TEMPERATURE

The superconductor measurements were performed to determine performances of 

the NbNx films. The temperature dependence o f the electrical resistivity for films at 

different nitrogen background pressures is shown in Fig. VII. 10. All three samples had 

the transition to the superconducting state in the range o f  7.66-15.07 K. Different 

transition temperatures related to the crystalline phases o f  the NbNx films. The highest 

superconducting transition temperature (Tc) o f  15.07 K is observed for NbNx film 

deposited at 66.7 Pa nitrogen background pressure. XPS analyses showed that all films 

are nearly stoichiometric in composition, with a very small change o f  x in NbNx observed 

with the increase o f nitrogen background pressure. Lowest superconducting transition 

temperature observed for the film that deposited at 26.7 Pa could be understood based on 

the rich cubic phase o f  the film, which has a large amount o f vacancies. Cubic 8-NbN 

phase has the highest superconducting transition temperature. It should be noted that one 

did not observe pure cubic phase at 26.7 Pa nitrogen pressure. The presence o f mixed 

phases affects the critical temperature. As the nitrogen background pressure is increased, 

the number o f vacancies in the film decreases, the lattice constant becomes larger, and the 

superconductor properties o f the NbNx film improve. The superconducting transition 

temperature (Tc) for each film increases from 7.66 to 15.07 K by varying the nitrogen 

background pressure from 26.7 to 66.7 Pa, as shown in Fig. VII. 10, while the resistivity 

measured at 20 K increases from 60 x 10'3 to 120 x 10'3 Ohm.cm. The experimental 

results can be understood based on the crystal and electronic structure o f  the NbNx films. 

The microstructure o f the NbNx films has great effect on the superconducting Tc, even 

when the stoichiometry is close. Changes in texture and granular structure o f the NbNx
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films influence the Tc of the films [176]. The lowest Tc was observed for the sample 

deposited at a pressure o f 26.7 Pa. This is mainly a consequence o f  the film structure 

being 8-NbN phase with a large number o f vacancies. For deposition at 66.7 Pa nitrogen 

background pressure, the film had a mixed phase structure o f  8-NbN and y-Nb4N3 with 

reduced vacancies. This film exhibited a higher Tc value. Moreover, for deposition at

66.7 Pa, the lattice parameter becomes very close to the bulk (4.393 A) o f  fee 8-NbN, 

which favors higher Tc. It was reported that metal and nonmetal vacancies are effective in 

reducing Tc in NbNx [224]. When a sufficient number o f vacancies are removed from 

NbNx, electron transfers to the conduction band and increases the lattice size. Because of 

the effect on the electron concentration, Tc increases. The slope of the resistivity curve is 

an indication o f film transport quality; a more negative slope indicates reduced electron 

scattering by grain boundaries and point defects such as vacancies. This slope is most 

negative for film deposited at 66.7 Pa, and this slope becomes less negative as the 

background nitrogen pressure is reduced.
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VII.3.5. HARDNESS USING NANOINDENTATION

The nanohardness o f NbNx thin films on Si substrate deposited at different 

ambient nitrogen pressures was determined. The Meyer hardness is defined as the 

maximum load (from the load-depth curve) over the projected area. The measured 

hardness has an average o f 12 GPa for deep indents, which represents the hardness o f  the 

Si substrate. At shallow depth o f indentation; i.e., a depth of 20 nm, the hardness 

increases to an average value o f 14, 16, and 18 GPa for the samples deposited with 

nitrogen pressures o f  26.7, 53.3, and 66.7 Pa, respectively. The average hardness o f  the Si 

substrate agrees well with literature-reported values [225].

The superconducting and mechanical properties o f  NbNx films are strongly 

affected by the Nb-N composition and the crystal structure. The hardness and elastic 

modulus correlate with the variation of the concentration o f  the hexagonal 8 '-NbN phase 

[8, 146]. The films with high concentration o f the hexagonal 8 '-NbN phase exhibit high 

hardness and high elastic modulus [33]. Since FCC 8-NbN possesses superior 

superconducting properties, it is therefore essential to control the biaxial compressive 

stress in the film that might produce phase transformation [78]. The correlation between 

the nanomechanical properties and Tc o f the NbNx films was previously attributed to 

number o f nonmetal vacancies found in the film. As the number o f vacancies increases, 

the number o f chemical bonds is reduced and this decreases the strength o f the material 

[221], Work done on group IVb nitrides (TiNx, ZrNx, and HfNx) related the deceases in 

hardness and elastic module to the increases in the numbers of nonmetal vacancies in 

these films [48]. The film deposited at 66.7 Pa, which had highest Tc, showed the highest 

hardness values compared to the other two samples. The increase in hardness is related to
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the reduced vacancy density and the increase in the y -Nb4N 3 phase mixed with 8-NbN 

for deposition at 66.7 Pa nitrogen. Fig. VII. 11, o f the resistivity curves for three films, 

shows a negative temperature coefficient o f resistivity measured above ~16 K.

VII.4. CONCLUSION

Niobium nitride thin films grown on Si(100) at different nitrogen background 

pressures by PLD were studied. The reactive PLD process yields stoichiometric NbNx 

films, with high Tc 15.07 K at 66.7 Pa, an ambient gas pressure, onto a silicon substrate 

held at 800 °C. Changing o f the background gas pressure during deposition shows 

significant effects on the phase orientations, morphologies, and superconducting 

transition temperature. The lowest Tc value o f 7.66 K can be attributed to the existence of 

vacancies in cubic NbNx. A systematic increase in lattice parameters with nitrogen 

background pressure and a decrease in the size o f  the crystallite are attributed to the 

second tetragonal NbNx phase. The shift in binding energy o f Nb core level is directly 

related to the occupied number o f electrons. Nevertheless, highly textured NbNx layers 

with good superconducting properties can be prepared on silicon using PLD. It is 

important to optimize all deposition parameters o f  PLD. The result reveals that 

controlling the nitrogen pressure in the deposition chamber at a suitable range could 

improve the crystalline quality to show better superconductivity. The formation o f NbN 

nanoparticles is confirmed by HRTEM results done on sample prepared by PLD at laser 

fluence and nitrogen pressure o f 8.0 J/cm2 and 40 Pa, respectively.



CHPATER VIII 

MICROSTRUCTURE AND ELECTRONIC PROPERTIES OF NbNx 

PREPARED BY LASER NITRIDATION

VIII. 1. INTRODUCTION

The superconductivity and mechanical properties o f  niobium nitride compounds 

(NbNx) are motivating the study o f methods to grow and characterize their properties. 

These properties make them attractive in a wide range o f applications such as in 

microelectronics, optoelectronics, and for hard and corrosion protective coatings. The 

superconducting microelectronic applications o f NbNx films include superconducting 

quantum interference devices (SQUIDs) [226], RF superconducting accelerator cavities 

[6] high resolution X-ray detectors, superconducting quantum mixers [209] and 

superconducting single-photon detectors (SSPDs) [227]. The properties o f  NbNx films 

are affected by the film’s crystal structures and composition. In addition, the attractive 

mechanical properties o f NbNx films such as, high hardness and wear resistance, make 

them promising in many surface coating applications. The NbNx films have high values 

of bulk modulus and Vickers hardness which make them attractive as a coating for 

superconducting cavities for particle acceleration.

NbNx has many different equilibrium phases such as: a-NbN solid solution of 

nitrogen in niobium, cubic 8-NbN, different hexagonal phases that include [3-Nb2N, 8'- 

NbN, e-NbN, and q-NbN; and the tetragonal phase y-Nb4N 3. The 8-NbN phase is the 

phase o f most interest for superconducting applications because o f its relatively high 

critical temperature (17 K) [8]. The reactivity o f Nb with nitrogen increases at high 

temperatures (>900 °C) [3]. One o f the techniques to obtain thin films o f NbNx is by
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heating o f the Nb substrate at high temperature under nitrogen gas environment [6]. Here 

the study is on the nitridation o f Nb by nanosecond and femtosecond laser heating in a 

nitrogen atmosphere.

The advantages o f  using pulsed laser heating to obtain nitrides over thermal 

nitriding include fast treatment, precise depth-profile control of the nitrogen content, 

adaptability to materials with different shapes, and applicability to materials that are 

sensitive to heat [7]. The basis o f  pulsed laser nitridation is the chemical-physical 

interaction of melted surface with plasma produced by laser in the background nitrogen 

[228]. The properties o f the new compounds that result as an outcome o f this reaction 

depend on the properties o f  the laser and also laser-substrate interactions. These reactions 

are complex since they depend on laser-plasma and substrate interactions. Conformal 

NbNx coatings on Nb are important for radio frequency cavities with very high quality 

factors. A new generation o f accelerators employs superconducting Nb radio frequency 

(RF) cavities to achieve the highest accelerating field. Hydrogen diffusion in Nb can 

adversely affect the performance o f the superconducting RF cavity. A high-quality NbNx 

coating on Nb increases hardness o f  the surface and also provides a barrier layer for 

hydrogen diffusion into Nb for potential application o f RF cavities. Nitriding the surface 

of Nb improves the mechanical properties o f the surface by increasing hardness and wear 

resistance [6 , 64, 229,230],

Pulsed laser nitriding was applied for many different materials including metals 

and their alloys [228, 231, 232]. A ruby laser (pulse duration o f 25 ns) was used for 

nitriding o f Nb in liquid nitrogen vessel [233]. Films in that work showed a mixture o f 8- 

NbN and (3-Nb2N phases as shown in their XRD patterns. Nitridation by laser heating of
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Nb using Nd: YAG (1064 nm) laser with pulse duration o f 15 ns showed that the 5-NbN 

phase is not present up to a fluence o f 3.9 J/cm2 at nitrogen pressure o f  7 .3xlO4 Pa [15]. 

Although the simulation predicted that the Nb surface reaches its boiling point leading to 

a reaction with nitrogen.

In the present work, a series o f experiments was performed to investigate 

formation o f NbNx on Nb using femtosecond and nanosecond laser heating. The goal is 

to study the nitride growth parameters, especially optimized laser fluence required to 

obtain high quality NbNx films. The formation o f different NbNx phases at various laser 

fluences and the resulting surface morphology were investigated.

VIII.2. EXPERIMENTAL SETUP

Nb substrates were cut by wire electro-discharge machining from niobium slice 

(CBMM Company, Brazil) to the dimensions o f 8.6  x 6 .6  x 0.7 mm3. The surface 

preparation o f the Nb was done in several steps. Before cutting the substrates, the surface 

of the Nb slice was mechanically polished with AI2O3 abrasive disks. The grain size of

■y
the Nb slice is o f  several cm ; and therefore, the samples were either single crystals or 

had a single grain boundary. Then, a buffered chemical polishing (BCP) method was 

used for etching the samples [156]. The BCP solutions (1:1:1 and 2:1:1 HP0 3 :HN0 3 : HF) 

were used at a temperature o f 10 °C during the cleaning process. Approximately a 50 

micron layer o f material was removed by BCP. The etched samples were rinsed in 

deionized water then dried under nitrogen flow. After uploading the Nb substrate into the 

vacuum chamber, the chamber was pumped down to a vacuum to ~8  x 10‘6 Pa. The laser 

heating o f the Nb substrates was done under nitrogen atmosphere. All samples were 

processed at room temperature. Two separate sets o f experiments were done at different
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laser fluences and nitrogen pressures. The laser fluence was measured just before 

entering to the camber and corrected for losses in the glass viewport on the chamber.

One laser used for nitridation was a Q-switched Nd: YAG laser operating at 1064 

nm wavelength with a pulse width o f 40 ns and repetition rate o f 10 Hz. The laser beam 

size on the Nb surface was 350±50 pm, as measured by the knife-edge method at target 

equivalent plane. The laser threshold fluence for nitride formation was about 1.9±0.1 

J/cm . During nitridation, the sample was moved in the x-direction with a speed of 

0.43±0.02 mm/s allowing the laser beam to raster the sample surface in the x-direction 

from one end to another followed by a step o f  0.05 mm in the y-direction until all the 

surface o f the sample was scanned by the laser. The samples were prepared at different 

laser fluences in the range 1.8 to 6.0 ± 0.1 J/cm2 at room temperature and the same 

nitrogen pressure o f 2.7x 104 Pa.

Another laser used for nitridation was a femtosecond (fs) Ti: sapphire laser 

operation at a wavelength o f 800 nm, pulse width o f 100 fs, and repetition rate o f  1.0 

kHz. All samples processed by the fs laser were done at room temperature under constant 

nitrogen pressure o f  4.0* 104 Pa. The laser energy density is in the range was 0 .11- 1.31 

mJ/cm2. Similar sample scanning was used as for the Nd: YAG laser.

Bruker-AXS three-circle diffractometer with graphite-monochromatic CuKa 

radiation and a SMART Apex II CCD detector were used for the X-ray diffraction (XRD) 

measurements. An XRD o f cleaned Nb substrate indicates that the Nb substrate exhibit 

crystallographic Nb with (110), (200), (211), and (310) orientations. The morphology of 

the samples was studied using a JEOL JSM-6060 LV scanning electron microscope 

(SEM). The SEM images were taken at an accelerating voltage o f 20 kV. The chemical



176

composition (N/Nb = x) o f  the NbNx samples was determined by electron probe micro 

analyzer (EPMA) point scan using a Cameca SX100.

X-ray absorption near edge structure (XANES) measurements were performed on 

beamline 8.2 at the Stanford Synchrotron Radiation Lightsource (SSRL) in SLAC 

National Accelerator Laboratory. The base pressure during the experiment was o f 2 .0x 10' 

7 Pa. The total electron yield (TEY) mode was used by measuring the sample current. The 

current measurements were done using a low noise preamplifier Stanford Research 

System Model SR570. The incoming synchrotron beam flux (70) signal from a gold grid 

was used to normalize the spectra.

VIII.3. RESULTS AND DISCUSSION

VIII.3.1. STRUCTURE AND PHASE FORMATION

Fig. VIII. 1 shows the XRD patterns for samples prepared at different laser 

fluences from 1.8 to 6.0 ± 0.1 J/cm2 at the same nitrogen background pressure o f 2.7><104 

Pa. Samples processed at laser fluences o f 1.8 J/cm or lower do not show any peak 

corresponding to NbNx and no laser effect is observed in XRD patterns. Samples 

processed at laser fluences above 1.8 J/cm show XRD peaks o f cubic 8 -NbN with (111), 

(200) and (220) orientations. The other two peaks at 33.43° and 43.68° may be attributed 

to a-NbN with (633) and (930) orientations [234], The cubic peaks showed slight 

increase in their intensities as the laser fluence was increased to 5.0 J/cm2. The 

appearance o f  5-NbN in the samples is consistent with previous work on laser nitridation 

of Nb by Nd: YAG laser [51]. Table VIII. 1 shows the texture coefficient calculated for 

the cubic 8 -NbN phase in samples prepared at different laser fluences. The texture



coefficient shows the change from predominantly (200 ) texture to (2 2 0 ) as the laser 

fluence is increased. XRD patterns in Fig. VIII. 1 show slight changes in the crystal 

structure o f samples prepared at different laser fluences. Small shifts in the peaks at (200) 

from 41.55° at 3.6 J/cm2 to 41.16° at 4.0 J/cm2 and also in the peak at (220) as it shifts 

from 60.33° to 59.73° with the increase in laser fluence. The mean crystallite size and 

lattice parameters for cubic phase o f  the samples prepared at different laser fluences are 

shown in Fig. VIII.2. The error bars in Fig. VIII.2 represent the standard deviations 

calculated from the data o f three cubic 5-NbN with (111), (200) and (220) orientations.
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Fig. VIII. 1. XRD for samples prepared at different laser fluences and all at same nitrogen 
pressure o f 2 .7x l04 Pa.
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Table VIII. 1. Textured coefficients o f  the cubic 8 -NbN phase in ns laser heated NbNx 
samples at different laser fluences.

Laser Fluence, (J/cm2) T C (lll) TC(200) TC(220)
5.0 0.93 1.01 1.06

4.6 0.92 1.01 1.07

4.0 1.12 0.55 1.33

3.6 0.79 1.00 1.21

3.0 0.99 1.00 1.00

2.4 1.05 1.44 0.51

1.8 0.89 1.38 0.73

The crystallite size was calculated form XRD peaks (Fig. VIII. 1) by using the 

Scherrer equation and is 4.5 -  7.5 nm. The overall behavior of crystallite size is that it 

increases with increasing laser fluence, as shown in Fig. VIII.2. Increasing the laser 

fluence also results in higher XRD peaks which are an indication o f  larger crystallites. 

The lattice parameter showed little dependence on the laser fluence except for the sample

'y
prepared at 3.6 J/cm which showed some decrease in lattice constant. This change in the 

lattice constant may be due to higher surface roughness o f  the Nb substrate. Changes in 

the lattice parameter o f NbNx was previously attributed to the formation o f nitrogen 

and/or niobium vacancies, which cause distortion o f  the crystal lattice [22]. The lattice 

parameter o f cubic phase was reported to decrease upon N/Nb ratio deviated from unity

[22], Fig. VIII.3 shows N/Nb ratio obtained from EPMA measurements o f samples 

prepared at different laser fluences. The nitrogen contents in the samples increase as laser 

fluence increases from 1.8 to 4.6 J/cm . Then, the N/Nb ratio decreases as the laser 

fluence increases to 5.0 J/cm2, as shown in Fig. VIII.3. The decrease in the N/Nb ratio at 

higher laser fluences could be due ablation o f the nitride with subsequent laser pulses.
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The error bars in Fig. VIII.3 represent the standard deviations calculated for 

measurements done at five different points on each sample.
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fluences.



The X-ray diffraction patterns corresponding to the NbNx films grown by 

femtosecond laser nitridation by different laser fluences at a constant nitrogen pressure 

(4 .0xl04 Pa) are shown in Fig. VIII.4. XRD peaks corresponding to Nb substrate are 

identified with (110), (200), and (211) orientations shown at the bottom. The NbNx films 

have mixed phases o f 8 , p, and a. The cubic 8-NbN structure starts to appear at an energy 

density o f 0.25 mJ/cm2 with the corresponding reflections o f (111), (200), and (220) 

planes. The intensities o f  these three peaks increase as laser density is increasing. The 

peaks o f 8-NbN are dominated over peaks o f other two phases. No nitriding occurs for 

sample done at 0.11 mJ/cm2. As laser fluence is increasing to 0.25 mJ/cm2 nitriding and 

the formation o f NbNx film appear. XRD diffraction peaks corresponding to a , p, and 8 

phases are visible when the fs laser fluence higher than 0.14 mJ/cm2. There are no shifts 

observed in the position o f the XRD peaks. However, there is a systematic increase in the 

intensity o f  the XRD peaks as the laser fluence is increased. The texture coefficient o f  8 

phases for fs laser annealed samples given in Table VIII.2. The cubic phases showed 

predominate in (111) direction over the range o f the laser fluences from 0.25 to 1.31 

mJ/cm2.

Fig. VIII.5 shows the EPMA results for the nitrogen-to-niobium ration (N/Nb) in 

the samples prepared by femtosecond laser nitridation at different laser fluences. The 

N/Nb increases as laser fluence is increased. The corresponding XRD patterns o f these 

samples show increased in the peaks o f NbNx with the increased laser fluence, which is 

consistent with the increased nitrogen content observed in the EPMA measurement. The 

error bars in the EPMA measure represent the standard deviation calculated from 

measurements at five different points on each sample.
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Table VIII.2. Textured coefficients o f  the cubic 8-N bN  phase in fs laser heated N b N x 
samples at different laser fluences.

Laser Fluence, mJ/cm T C (lll) TC(200) TC(220)

1.31 1.11 0.80 1.08

1.06 1.15 0.81 1.04

v  0.71 1.07 0.93 0.99

0.41 1.21 0.92 0.87

0.25 1.17 1.09 0.74
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In femtosecond laser nitridation the lattice is heated on a picosecond time scale as 

a result a direct solid to vapor transition resulting in plasma formation [101]. While in the 

case of nanosecond laser nitridation, the heating time is long enough to cause melting of 

the surface followed by evaporation from the liquid melt [101]. For the femtosecond 

laser, the ablation depth is strongly dependent on the laser fluence [101]. As the laser 

fluence is increased the ablation depth increases with an increase in plasma density which 

leads to the formation o f more phases than that observed in nanosecond laser nitridation. 

This could be the reason for the formation o f the p-Nb2N  phase, as seen in their XRD 

patterns.

For pulsed laser surface heating and considering a two-dimensional heat diffusion 

model, the heat diffusion length I = /̂Wt, where D  is the diffusion coefficient o f  the 

material and t  is the laser pulse width. For equal fluence and for strongly absorbing 

materials such metals, when the laser pulse is reduced the diffusion length is also 

reduced, resulting in increased surface temperature. The maximum surface temperature 

exceedingly increases for pulses below 1 ps [103]. As pulse duration decreases the energy 

is absorbed to form vapor or superheating o f the liquid rather than the formation o f  the 

liquid. For femtosecond laser (<100 fs), the pulse is short enough not to be absorbed by 

vapor. For longer pulses (>100 ps), more time is available for the heating to diffuse into 

the bulk before the vapor stage is achieved [103]. That makes significance effects on the 

type of nitride phases and their orientations on the surface.

Fig. VIII.6 shows that the mean crystallite size of the cubic phase increases from 

3 to 7 nm as the laser fluence is increased from 0.11 to 1.31 mJ/cm2. The error bars in 

both the crystallite size and lattice constant represent the standard deviations calculated
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from the XRD data o f the three cubic 8 -NbN peaks from the (111), (200) and (220) plans. 

The increase in the crystallite size is expected due to narrowing o f the XRD peaks with 

laser fluence increase. The lattice parameter o f  cubic phase did not show much change 

with laser fluence except for the sample done at 0.41 mJ/cm . The c/a ratio o f the 

hexagonal P-Nb2N phase increases with the laser fluence. The c/a ratios were calculated 

from the (100) and (102) and (103) peaks o f p-Nb2N. A similar trend was reported for 

NbNx films prepared at different laser fluences [31].

VIII.3.2. SURFACE MORPHOLOGY

Fig. VIII.7 shows SEM images o f untreated Nb sample with these grown NbNx 

surfaces in which the laser energy density was varied while the nitrogen background 

pressure was kept at 2.7><104 Pa. For laser fluence < 1.8 J/cm2 no surface melting is 

observed. Further increase o f the laser fluence results in an increase in surface roughness. 

At a laser fluence > 1.8, the formation o f melt splash is observed as the laser expels the 

melt resulting in increased surface roughness. Cracks are also observed on the surface of 

samples processed at 3.6 J/cm (Fig. VIII.7(d)). This may be due to the greater quench 

rate and development o f thermal stress [235],

Fig. VIII.8 shows SEM images o f fs laser annealed samples done at different laser 

fluences. The SEM images o f the samples show that the surface is uniformly covered 

with ripple periodic structure. The formation o f laser induced periodic surface structures 

have been wildly studied on different types o f  materials including metals, semiconductors 

and dielectrics using femtosecond laser [236].

These ripples result from the interference between the incident beam and a surface 

wave that are scattered by the surface roughness [237], The period o f the ripples A



depends on the laser wavelength X and beam polarization [238]. A spacing related to X 

and angle o f  incidence Bby 1/(1 ±sin0 ) results when the ripples are oriented perpendicular 

to the incident beam polarization. Another type pattern mainly occurs by p-polarized 

beam, as in this case, when patterns oriented parallel to the beam polarization with the 

spacing o f A./cos0 [237, 238]. From SEM images, the ripples are orientated vertically and 

parallel to the beam polarization. The spacing value calculated from last equation using X 

— 800 nm and 0 = 45° gives 1.13 pm which is very close to values measured from SEM 

images. Fig. VIII.9 shows increases in the periodicity as laser fluences increases. 

Increasing o f the ripple periodicity is predicted form decreases of the refractive index n 

due to increases o f  the electron density as the laser fluence is increased [239],The 

morphology o f the surface depends significantly on laser fluence. As the laser fluence is 

increased the density o f grains and surface roughness increase, as observed from Fig. 

VIII.8 . The decrease in periodicity as the laser fluences increase to 5.0 J/cm2 can be 

attributed to increase in the surface roughness. It was previously reported that as the 

surface roughness o f the samples gets larger the small or less change occurs in the ripple 

periodicity [239]. Laser heating o f the Nb substrates causes an increase in surface 

roughness for both samples prepared by ns and fs lasers. The error bars in Fig. VIII.9 

represent the standard deviations calculated from spacing measurements done at different 

locations on each SEM image.
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Fig. VIII.7. SEM images (X6,000) o f the NbNx films produced at ns laser fluences (a) 
untreated Nb, (b) 1.8 J/cm , (c) 2.4 J/cm2, (d) 3.0 J/cm , (e) 3.6 J/cm2, (f) 4.0 J/cm2, (g)
4.6 J/cm2, and (h) 5.0 J/cm2.



Fie VIII 8 SEM images (X6,000) o f the NbNx films produced at fs laser fluences (a) 
0.11 mJ/cm2, (b) 0.14 mJ/cm2, (c) 0.25 mJ/cm2, (d) 0.41 mJ/cm2, (e) 0.71 mJ/cm , (f)
1.06 mJ/cm2, and(g) 1.3 mJ/cm2.
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Fig. VIII.9. Dependence o f  the ripple periodicity on the laser fluence.

VIII.3.3. X-RAY ABSORPTION NEAR EDGE STRUCTURE (XANES) 

SPECTROSCOPY

XANES spectroscopy is one o f the most powerful tools available for electronic 

structure determination. In this technique, the number of absorbed X-rays is monitored as 

a function o f photon energy. Fig. VIII. 10 shows normalized X-ray absorption spectra of 

NbNx samples prepared at different laser fluences. The Nb-M3 and M2 edge spectra 

recorded at room temperature in total electron yield (TEY) mode by measuring the drain 

current o f  the sample as a function o f the photon energy. All TEY signals are normalized 

to I0 avoiding synchrotron dependent intensity variations. In addition, TEY spectra of 

NbNx films normalized by subtracting a straight line fitted to the region before the M3 

edge (below 365 eV) and adjusting the intensity o f the spectra to 1 at 395 eV.



The M2,3 edge is mainly attributed to the transition o f  electrons from Nb 3p  state 

to unoccupied 4d  and 5s states. The shape o f Nb M2,3 edges is quite the same for all the 

samples in Fig. VIII. 10 with two Nb 3p  peaks split by about 15 eV due to the spin-orbit 

coupling o f 4d  electrons. The peaks at 365.5 and 380.8 eV are assigned to 3p3/2 and 3pi/2, 

respectively. Due to degeneracy, the peak at 365.5 eV always has a higher intensity than 

that at 380.8 eV [240], Fig. VIII. 11 shows measured M2,3 intensity ratios as function 

laser fluence; was considered the integrated area under each M3 and M2 peak in Fig. 

VIII. 10. The branching ratio (BR); IM3 / 1 (M2 + M3) represents a high-spin-state which 

is sensitive to the spin-states o f 4d  electrons. The area o f  the M3 and M2 lines would be 

the correct measure o f their intensity, which is proportional to the oscillator strength of 

the 3p-Ad spin-orbit interaction. The peak intensity ratio should hence give information 

on the valence band spin-orbit interaction and the electrostatic interaction in the final 

state [240]. The BR in Fig. VIII. 11 changed significantly from 0.696 to 0.680. There 

must be the correlation between 4d  occupancy and the BR in Fig. VIII. 10. the branching 

ratio shows a small variation for all samples except that done at 3.6 J/cm2. It suggests that 

4d occupation is similar for most o f the samples. However it appears to be a decrease in 

BR intensity for the sample processed by 3.6 J/cm2 laser fluence. It has been shown that 

the high nitrogen ratio in the NbNx film results in weak N 2/?-Nb Ad hybridization which 

can explain the reduction o f BR intensity [35].
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Fig. VIII. 12 shows O K edge XANES spectra of samples done at different laser 

fluences. The spectra normalized by subtracting a straight line fitted to the region before 

the peaks (below 530 eV) and adjusting the intensity o f  the spectra to 1 at 555 eV. The 0  

K edge is attributed to a transition o f O \s  electrons to the unoccupied 2p  states. The O K 

edge is characterized by a double-peak structure (peaks labeled a and b in Fig. VIII. 12) 

[66 , 197], The relative height and energy splitting between these two peaks are 

determining the type o f oxidation in the sample. The measured splitting between peak a 

and b is about 4.4 eV which is very close to that reported for Nb2 0 s oxidation state, this 

splitting is around 2.8 eV for NbO [198].

The M2,3 edges for samples prepared by fs laser are shown in Fig. VIII. 13. The 

spectra were normalized to current yield from o f a standard gold mesh. In addition, the 

TEY spectra o f  NbNx films were normalized by subtracting a straight line fitted to the 

region before the M3 edge (below 365 eV) and adjusting the intensity o f  the spectra to 1 

at 395 eV. The Nb M2,3 edges is quite the same with two Nb 3p peaks split by about 15.5 

eV due to the spin-orbit coupling of 4d  electrons. The Nb 3p  peaks are observed at 

energies o f 365.5 and -3 8 1  eV corresponding to Nb 3pya and 3p\n, respectively. Nb M2, 

3 peaks at 365.5 and 380.8 eV having shoulders at —368 and -383 eV respectively. This 

shape indicates presence o f  double peaks at these positions. These kind o f double-peaks 

were reported for Nb-M3 and Nb-M2 lines when M^Os is formed in the samples not but 

for other oxide states [66 , 198]. Also, no shifts are observed in both Nb 3p  and N  Is 

peaks as the laser fluence is increased. If niobium oxidation state other than Nb2 0 s is 

found in the samples there will be shifts by 1.4 eV or more in position o f the peak at 

365.5 eV [66 ]. This confirms observations on formation o f Nb2 0 s in the samples.
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Fig. VIII. 14 shows intensity ratios o f M2,3 as function laser fluence. It is observed 

in v l3  that the BR shows small variation after 0.25 mJ/cm2 which is consistent with 

nitrogen-to-niobium ratio in the sample. No changes are seen in the intensities o f  the 

peaks, shape or positions for different laser fluences. This confirms the formation of 

stable nitrides. The shoulders o f the Nb 3/?i/2 and 3>p̂ a peaks indicate the presence of 

double peaks. The double-peaks for Nb-M3 and Nb-M2 lines were reported if  M^Os 

formed in the samples [6 6 , 198]. Also, no shifts in both Nb 3p  (M2,3) and N  Is peaks 

were observed as laser fluence increases.

The O K edge o f the XANES spectra o f  NbN samples prepared by using a fs laser 

is shown in Fig. VIII. 15. The O K edge is characterized by a double-peak structure (e and 

f  in Fig. VIII.15) [6 6 , 197]. The peaks labeled with e, f, g, and h located at energies of 

532.3, 536.6, 544.4, and 564.0 eV, respectively. The relative height and energy splitting 

between these peaks are determining the type o f oxidation in the sample. The splitting 

between peak e a n d /is  about 4.2 eV which is close to that reported for Nb^Os [66 ]. The 

source o f this oxide layer could be as a native layer on the Nb substrate since niobium is 

highly reactive to oxygen, or on surface o f  NbNx samples that forms when handling 

samples in air. Native oxide layer on Nb could be removed by thermal treatments o f  the 

substrate before processing.

VIII.4. CONCLUSION

In this work, NbNx coatings were obtained by laser nitridation o f niobium 

substrate in a nitrogen gas environment which was carried out with different laser 

fluencies. Detailed analyses o f the texture electronic and surface morphology of 

polycrystalline films were presented. Nd: YAG ns and Ti: sapphire fs lasers were used
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for laser nitriding o f Nb. The samples were prepared at different laser fluences using ns 

laser were in the range 1.8 to 6.0 ± 0.1 J/cm2 and constant nitrogen pressure o f 2.7*104 

Pa. The cubic peaks o f 8 -NbN with (111), (200) and (220) orientation showed slightly 

increases in their intensities as the laser fluence was increased up to 5.0 J/cm2. The lattice 

constant shows changes in its trend as the other phases start to appear along with the 

cubic phase. The SEM images for samples done at different laser fluences showed 

increase in surface roughness as the laser fluence is increased.

No nitriding occurs for sample processed with laser fluences o f  at 0.11 mJ/cm2 or 

below. XRD measurements confirm the formation o f  stable nitrides with mainly 8 -NbN 

phase. As the laser fluence are increased, NbNx samples with three mixed phases 

including a,p, and 8 phases were identified in XRD. The cubic 8 -NbN structure is 

dominated over other two phases. The intensity o f  XRD peaks corresponding to the 5- 

NbN phase increases as with the laser fluence. The formation of p-NbaN phase in case of 

fs laser is due to the dependence o f the ablation depth on the laser fluence o f the poles, 

that leads to denser plasma than that formed by ns laser led to the formation o f more 

phases. The samples processed by fs laser showed the common laser-induced periodic 

ripples surface structure with spacing that increases with the laser fluence.

X-ray absorption near edge structure (XANES) measurements done at Nb M2,3 

edges showed Nb 3p  peaks with two doublet peaks due to the formation o f the oxide 

layer. The formation o f oxides is also confirmed by XANES measurements at the O K 

edge. The oxide layer is found to be NbaOs layer on the surface o f the samples. Laser 

nitriding o f niobium offers an alternative to the conventional techniques and particularly 

stands out by controlling the phase and morphology o f NbNx.
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CHAPTER IX 

SUMMARY AND CONCLUSIONS

Niobium nitride samples grown by different preparation techniques were 

investigated. NbNx films were grown by pulsed laser deposition (PLD) on two types of 

substrates, namely, niobium (Nb) and Si(100). The thermal diffusion o f nitrogen on Nb 

was used to prepare NbNx samples at low and high pressures of nitrogen. Other samples 

were prepared by laser heating o f Nb substrate under nitrogen gas.

A focused laser beam Nd: YAG nanosecond pulsed laser was used to ablate Nb 

target in nitrogen gas pressure. The effects o f  changing PLD parameters on the structural, 

phase formations and compositions o f the films NbNx on Nb were studied. The 

importance of growing NbNx films on Nb substrate is to increase the efficiency of 

superconducting radio frequency (RF) cavities for particle accelerators. The enhancement 

in the hardness o f  NbNx films compared to that o f Nb metal is considered very attractive 

in parts o f the superconducting RF cavity applications.

The effects o f changing laser fluence, nitrogen gas pressure, and substrate 

temperature were studied for NbNx films grown on Nb by PLD. For studying the effect of 

changing the laser fluence, the nitrogen background pressure and substrate temperature 

were maintained constant at 20 Pa and 600 °C, respectively, while NbNx films were 

prepared at laser fluence in the range o f 8 -40  J/cm. The surface roughness, deposition 

rate, nitrogen content, and grain size increased as laser fluence was increased. These 

films show highly textured structure with a preferential orientation o f ( 110) parallel to the
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substrate. The NbNx layers were formed in mixed phase (cubic and hexagonal). The ratio 

o f hexagonal phase to cubic phase is strongly dependent on the laser fluence.

For the effect o f nitrogen background pressures on the properties o f  NbNx films 

nitrogen pressure in the range o f  10.7 to 66.7 Pa with constant laser fluence o f  15 J/cm2 

and substrate temperature 600 °C were used. It was found that the nitrogen pressure 

affected the ratio o f the cubic-to-hexagonal phase o f the NbNx film. At low nitrogen 

background pressures both hexagonal (P-Nb2N) and cubic (5-NbN) phases were formed. 

As the nitrogen pressure increased, NbNx films grew in single hexagonal (|3-Nb2N) phase.

NbNx films were grown at different substrate temperatures from RT to 950 °C to 

investigate the effect o f  changing the temperatures on the phase, morphologies, and 

crystal structures o f the films. The films were under constant values o f  nitrogen pressure 

and laser energy density o f  13.3 Pa and 15 J/cm , respectively. Increasing the substrate 

temperature to 650 °C enhanced the crystalline quality o f  the film and as substrate 

temperature increased to 650 -  850 °C, NbNx films with mixed phases, cubic (6-NbN), 

hexagonal (p-Nb2N), and 5 -NbN phases were obtained as revealed by X-ray diffraction. 

Film with a mainly hexagonal (P-Nb2N) phase was obtained, as the temperature was 

increased to 850 °C. A systematic increase in lattice parameters and size o f  the grains was 

observed as the substrate temperature increased.

The NbNx films grown on Si(100) substrates were investigated for their structure, 

electronic structure, and superconductivity nanomechanical properties. The films were 

deposited on Si(100) under different background nitrogen gas pressures (26.7-66.7 Pa) at 

constant substrate temperature o f 800 °C and 15 J/cm2 laser fluence. XRD revealed that 

highly textured NbNx films with cubic (8-NbN) were oriented in the (111) direction.



Increasing the nitrogen gas pressure during deposition affected the phase orientations, 

morphologies, and superconducting transition temperature. Residual resistance ratio 

(RRR) and superconducting transition temperature (Tc) increased as the nitrogen pressure 

o f the films was increased. The highest Tc value o f 15.07 K was achieved for NbNx film 

deposited at 66.7 Pa nitrogen background pressure and the lowest Tc value o f 7.66 K was 

achieved at 26.7 Pa. Different transition temperatures are related to the crystalline phases 

that appear in NbNx films. NbNx films grown on Si substrate showed mixed phase 

structures o f cubic 8-NbN and tetragonal y-Nb4N 3 phases. Increasing the nitrogen 

pressure causes decreases in the number o f vacancies in the film. The hardness increases 

with average values o f  14, 16, and 18 GPa for nitrogen pressures o f  26.7, 53.3, and 66.7 

Pa, respectively. A correlation between increases in hardness and Tc o f the NbNx films is 

attributed to the number o f  nonmetal vacancies found in the film. As nitrogen pressure 

increases, the number o f vacancies decreases and this increases the strength o f the 

material. X-ray photoemission spectroscopy XPS spectra o f  NbNx films show shifts in 

Nb 3o?3/2 and 3c/5/2 peaks to higher binding energies. These shifts indicate the transfer of 

electrons from niobium to nitrogen for Nb-N bonding. The calculated x = N/Nb in the 

NbNx film from intensity o f  photoelectron peaks shows deceases in x from 0.90, 0.88, to 

0.80 for 26.7, 53.3, and 66.7 Pa. HRTEM results done on sample prepared by PLD on Cu 

grids at laser fluence o f 8.0 J/cm and nitrogen pressure of 40 Pa, showed NbN 

nanoparticles.

The other method that was employed to prepare NbNx was a reactive thermal 

diffusion method. The formation o f NbNx on Nb causes strengthening o f the surface



199

hardness o f  Nb that can be useful in many applications that are needed for relatively 

chemically inert and high hardness coatings.

One part o f this work was done by heating Nb substrates in a nitrogen gas 

environment at high temperatures (900 °C and higher). The work was done on two folds 

of nitrogen gas pressure, high and low pressures. Samples prepared at high nitrogen 

pressure (133 Pa) and different heating times (5, 10, 20, 40, and 80 min) and heating 

temperatures o f 900 °C were 0.7 mm thick. The effect o f change in the heating time was 

investigated on structural, electronic, nanomechanical and surface properties o f  the NbNx 

layers. The niobium nitride obtained by thermal diffusion crystallized in single phase of 

hexagonal ((3-Nb2N) that is predominantly oriented in the (110) direction. N/Nb ratio in 

the NbNx increases as processing time increases. XPS of samples shows the third peak at 

-210  eV, corresponding to NbiOs beside the peaks appear at 205.5 and 202.3 eV for Nb 

3dy2 and 3dsn levels. An oxide layer o f NbaOs was formed as the sample was exposed to 

the ambient air. Both Nb 3p  and 3d levels show a strong interaction with nitrogen along 

with binding energy shift. Nitrogen diffusion in samples is governed by parabolic kinetics 

that occur when the mass gain, due to NbNx formation, is proportional to the square of 

the film thickness. Longer heating times resulted in layers with higher nitrogen-to- 

niobium ratios, with improvements in hardness and modulus o f the film. 

The hardness values ranged from 12 to 26 GPa.

Nb substrates that were processed at low nitrogen pressures (1.3x 10'3-  2.6 Pa), 

including samples heated in a high vacuum (1.3 x 10‘5 Pa), have two thicknesses (0.2 and 

0.7 mm). First, for samples o f 0.2 mm thickness, four sets o f thermal diffusion 

experiments were done for the same heating time (180 min). The set o f  samples were
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heated at 1.3xl0 ' 3 Pa of nitrogen pressure and different temperatures (1250-1500 °C). 

XRD and two-dimensional X-ray images (2D-XRD) confirmed that the formation of 

some grains can be ascribed to a-NbN phase. Then, they get smaller in size, as indicated 

by full spotty rings obtained at 1500 °C. These values are also consistent with crystallite 

size calculations using the Scherrer relation. Crystallite size decreased from 23 nm at 

1250 °C to about 17 nm at 1500 °C.

The other three sets were for samples heated at temperatures 1300, 1400, and 

1500 °C and each were done at different nitrogen pressures. For samples done at 1300 

and 1400 °C, XRD patterns showed clear interaction o f Nb with nitrogen at pressure of 

0.53 Pa, as the hexagonal p-Nb2N phase appeared as mixed phase with bcc a-NbN phase. 

2D-XRD images o f these two sets show changes in the diffraction spots o f  the Nb 

substrate to continuous rings at early pressures o f 2.6 x lO-4, 1.3xlO'3, and 1.3xl0's Pa for 

1300, 1400, and 1500 °C, respectively. The average lattice constant calculated for 

samples heated at 1.3 Pa and 1300 °C is 3.316 A  (Nb a = 3.298 A). Similar behaviors of 

increases in lattice constant were seen for samples done with isothermal conditions at 

1400 and 1500 °C with different nitrogen pressure.

NbNx samples done on 0.7 mm thick Nb substrates were heated in a vacuum of 

2.6xl0 ' 5 Pa at 1000 °C for different times (lhr, 3 and 6 hrs). XRD did not show much 

change between unheated Nb substrate and the samples that were heated in a vacuum for 

several hours. The other set o f thick samples heated at 1000 °C and 0.66 Pa show 

formations o f both (a-NbN) and (p-Nb2N) phases at lower heating time (up to 20 min). 

With increased heating time, transformation in XRD peak o f (P-Nb2N) at (110) to 5-NbN 

at (220) was observed. As heating time reached 60 min 5-NbN became more observable.
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NbNx samples were obtained by laser nitridation o f  niobium substrate under a 

nitrogen gas at different laser fluencies using Nd: YAG ns and Ti: sapphire fs lasers. The 

samples prepared by ns laser were at laser fluences in the range 1.8 to 6.0 ± 0.1 J/cm2 and 

nitrogen pressure o f 2.7x104 Pa. The samples showed cubic 8 -NbN phase slightly 

increased in XRD intensities as the laser fluence was increased up to 5.0 J/cm2. The 

lattice constant shows changes in its trend as the other phases start to appear along with 

the cubic phase.

For samples prepared with the fs laser, no nitriding occurs for laser fluences of 

0.11 mJ/cm2 or below. As the laser fluence is an increased, NbNx with three mixed phases 

includinga, P, and 8 phases were identified. The cubic 8-NbN structure is dominated over 

other two phases. The formation o f P-Nb2N  phase in case of fs laser is due to the 

dependence o f the ablation depth on the laser fluence of the poles, that leads to denser 

plasma than that formed by ns laser led to the formation o f more phases. The samples 

processed by fs laser showed the common laser-induced periodic ripples surface structure 

with spacing that increases with the laser fluence. X-ray absorption near edge structure 

(XANES) measurements done at Nb M2, 3 edges showed Nb 3p  peaks with two doublet 

peaks due to the formation o f the oxide layer. The formation o f oxides is also confirmed 

by XANES measurements at the O K edge. The oxide layer is found to be M^Os layer on 

the surface o f the samples.
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APPENDIX A 

PULSED LASER DEPOSITION SYSTEM

A.I. SYSTEM DESIGN AND COMPONENTS

The main components o f  the system are shown in Fig. A.I. Images for the rest o f

the components appears later in the operation description.

A.2. OPENING THE PLD SYSTEM

Before opening the PLD chamber, check to been sure that the ion gauge is off, all wires 

all wires are disconnected, and the electron gun is off; then proceed very carefully to 

the steps below.

1. Turn ON the mechanical pump; then turn ON the turbo pump; and let them run for 

about 20  min.

2. Turn OFF the ion pump; then slowly open UHV.

3. Wait 30 minutes for the system to be pumped by the turbo and the mechanical pumps.

4. Turn o ff the turbo and then the mechanical pump.

5. Fill in the chamber with dry nitrogen gas to reach atmospheric pressure using Venting 

valve shown in Fig. A.I.
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Fig. A .I. The main components o f  a PLD system.
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Fig. A. 2. Sample manipulator.

6 . Unscrew the screws flange which holds the sample manipulator (Fig. A.2) or any other 

part you need to take out. The chamber should not be left open for a long time. You 

need to cover the open ports. When handling or removing old copper gaskets avoid 

scratching the knife-edge o f the CF flange. Use a new copper gasket and clean the 

vacuum components with isopropyl alcohol (IPA).

A.3. CLEANING THE SUBSTRATE

You have to change the substrate after each run. It is recommended to have at 

least a few chemically cleaned samples. Sample cleaning is done by using a modified 

Shiraki method for Si sample and buffered chemical polishing (BCP) for Nb samples. 

Samples cleaning should be done under working fume hood. Be cautious when using HF 

to avoid direct exposure to the skin and do not inhale its fumes. Steps for cleaning are
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given below. A homemade sample heater made of ceramic beads and tungsten wire is 

shown in Fig. A.3.

m il l

Fig. A. 3. Substrate heater.

1. Clean the Si substrates by the modified Shiraki method. The samples are dipped

into a solution of H2SO4 (97 wt %): H2O2 (30 wt %) = 4:1 (by volume) for 10

min, rinsed with ultra-pure water for 10 min, then dipped into a solution of HF 

(50 wt %): H2O =1:10 (by volume) for 1 min. Unused clean samples are stored in 

ethanol.

2. Clean the Nb substrates, BCP: The BCP solutions (1:1:1 and 2:1:1

FIP0 3 :HN0 3 :HF) are cooled down to 10 °C during the cleaning process. 

Approximately a 50 micron layer of material was removed by BCP that resulted 

in Nb substrates The etched samples were rinsed in deionized water, dried under 

nitrogen flow, and then degassed for several hours at -800 °C in the UHV 

chamber under a base pressure o f -1.3 xIO-7 Pa before starting deposition.
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3. When installing a Si sample, put the thermocouple between the clips and the 

sample so that it firmly touches the sample’s surface. In the case o f Nb samples, 

W wire used to attach sample to the homemade heater.

4. Install the sample manipulator back to the system by fastened all screws.

A.4. CHANGING THE TARGET

1. Unscrew the 2 % ” flange holding the target holder.

2. Hold by unscrewing the screw set that is holding the shaft.

3. Place the target hold upside-down on a clean surface.

4. Use the heat gun to heat the target-holder interface for a few minutes by directing 

the heat gun to different areas. Remove the target when the target is completely 

detached from the holder; then, use a razor to remove the Torr Seal residuals.

5. Prepare the Torr Seal for 2:1 volume to stick the Nb sputtering target to the shaft.

6. Install the target holder base to its location; fasten the set screw o f  the shaft.

7. Install the 2 %” CF flange back and tighten all the screws.

A.5. PUMPING THE SYSTEM DOWN AND BAKE OUT THE SYSTEM

After fishing installing the sample and target to chamber you need to you start to

pump down. To do this, follow these steps:

1. Turn on the mechanical pump and then turn on the turbo pump. You need to make 

sure the UHV valve to turbo pump is closed and fan is working to cool down the 

turbo pump. Watch the speed and temperature o f the turbo pump during pumping 

down. Normally, the turbo pump should come to the maximum speed in a couple 

o f minutes. If not, check to determine if  there are any untightened screws.

2. When the turbo reaches its maximum pumping speed, turn on the ion gauge.
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3. In several hours, the base pressure should be low at 10-4 Pa. Then, you can start 

the bake-out procedure under turbo and mechanical pumps.

4. When pressure low 10'7 Pa, turn on ion pump.

5. Pressure should be low at 1 O'5 Pa. Then, start cooling down the chamber.

A.6. Nd: YAG LASER OPERATION

The Lumonics YAG Master 200 laser was used to ablate germanium and excite

silicon substrate, as shown in Fig. 4. Make sure that you have enough cooling water

inside the chiller located at the bottom of the power supply. Once every month, water 

level must be checked.

Fig. A. 4. Lumonics YAG Master (YM) 200 laser system.

A.6.1. TURN ON PROCEDURE 

1. Wear laser eye protection goggles.
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2. Turn on the external cooling water.

3. Rotate the “red” main switch to “on” position. That will start the cooler pump. Allow  

at least 30 minutes for the cooling to reach operating temperature.

4. To enable the power supply, turn ‘enable” key switch clockwise to horizontal position 

on the control unit.

5. After a few seconds, you will hear a sound and the “on” LED, next to the key switch 

will light up indicating the start o f  the flashlamp.

6. From the pockels cell divider, push the button to provide the desired frequency. 10 Hz 

is obtained by pushing + 5 dividing button to divide the default frequency 50 Hz by 5.

7. Use the flashlamp “oscillator selector” to change the laser power.

8. Press the oscillator “on” button, the flashlamp will begin to pulse.

9. Press the “open” button to open the shutter.

10. To temporarily stop the beam, without turning o ff the laser, press the “close” shutter 

button.

A.6.2. TURN OFF PROCEDURE

1. Press “close” button to close the shutter; then press the oscillator OFF button.

2. Turn the “enable” key to “o f f ’ vertical position.

3. Leave the cooler pump “on” for at least 30 minutes to cool down the system.

4. Switch “o f f ’ the cooler.
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APPENDIX B 

FEMTOSECOND LASER OPERATION AND MAINTENANCE

B .l. OPERATION OF THE LASER

The femtosecond laser system consists o f an oscillator and a ReGen amplifier. 

The ReGen amplifier consists o f stretcher, amplifier, and compressor. There are three 

chillers: one for the oscillator, one for the pump laser Darwin, and another big one to cool 

down the Darwin chiller. The Ti-light oscillator was modified by replacing the pump 

laser with Excel from Laser Quantum Company. One needs to follow the following 

procedure to turn on the oscillator and amplifier. The oscillator chiller, pumping 

controller and Ti-light laser are shown in Fig. B .l

• Make sure the chiller for the oscillator is “on” and the temperature is around 23 °C for 

oscillator stability and performance.

•  Use PuTTY software that controls and displays the operation o f pump laser.

• After turning on the laser system, wait around 20 min for Excel to warm-up. Normal 

operation is between 23-38 °C and is optimized at 26.9-27.1 °C.

• Excel power is set to 2200 mW. The Ti-light shutter is a push button located in the 

controller o f air purging (APS-100); push this round button to get output laser.

• Push modelocking button at the back o f the oscillator.

•  You can check the pulse train; you should see something like that shown in Fig. B.2. The 

pulse train should have straight pulses if  modelocking is obtained properly. Also, the 

spectrum from the oscillator when it is modelocking should look like that in Fig. B.3, 

with a FWHM o f 40-45 nm.
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Fig. B. 1. Ti-light laser system after modification.
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Fig. B. 2. (a) Spectra from oscillator shows modelocking. (b) Photodiode signal from 
oscillator shows modelocking.

Once you check the spectrometer, pulse train and power from the oscillator before 

you start the amplifier, make sure you connect the BNC cable back to the oscillator, 

since it is used for the external trigging of the amplifier 

Turn “on” the big chiller, which is dedicated to the amplifier in LAB 106.



Fig. B. 3. Front panel o f Darwin controller.

• Turn the key clockwise and a bit farther refer to Fig. B.4 for the front panel o f Darwin 

controller. Wait -10  minutes for the amplifier to warm up. You may see an error sign 

on the Darwin chiller display upon starting. That should go in a couple o f minutes.

• Push “menu” button and set the temperature to 17.5 °C; then press “select”.

• Go to “mode set” and select PRF source and change from “internal” to “external”.

• Once temperature is around ~17.5.0±0.1, open the “shutter” and increase the current 

value slowly to -28.0 A.

• Watch the pulse train from the amplifier. If necessary, touch two pump mirrors in the 

amplifier to have a better pulse train shape, as shown in Fig. B.5. To optimize power 

and shape, touch three mirrors in multipass while watching the power. Note that the 

most stable performance is obtained by adjusting the timing and Vb value, so that the 

pulse train includes the one pulse that is just past the maximum.



Fig. B. 4. Pulse train from cavity dumping amplifier with backup diode signal with 
yellow  color.

B.2. TI-LIGHT OSCILLATOR

B.2.1. TI-LIGHT OSCILLATOR M AINTENANCE

Do not re-optimize the power with the mirror position in ML-range.

Always, power optimization must be done at CW max position with at least 10 divisions 

away from modelocking position.

If  modelocking power drops in long-term operation, check to determine i f  the crystal 

needs to be cleaned. It is good to clean crystal only if necessary. You must exercise 

extreme caution when doing that. Block the pump laser and clean the crystal by folding a 

lens tissue carefully so that you can have a tip at the end. This should be smaller than the 

crystal surface size so that when you clean it, you don’t touch the indium foil.

. Normally, when you push prism, you should get modelocking again.

When touching any mirror you only use X  and Y, not one between X and Y.

Keeps air purging running all the time so no dust sticks on the crystal.

B.2.2. TI-LIGHT PERFORMANCE & SETTINGS

Ti-Light output: ~  340 mW at CW position and power before mode locked ~  200 mW 

when out o f  ML, -2 5 0  mW. Do not change position o f  pump lens: 6 .36 mm prism
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position: 2.55mm, slit fully open; only touch when spectrometer is used to see spectrum.

C2 CW-max position 10.25 mm. ML position: 10.05mm - + /- 5 divisions (+/- 0.05mm)

are possible and still in mode lock.

If modelocking gets worse and cleaning o f  the crystal and optics don’t do that much, you

have to optimize the power. Follow the steps below:

•  Write down all micrometer settings for reference

•  Move the second curved mirror to CW max position. This is generally around 20 

divisions from the ML position or it is written in the report sent from the company.

•  Optimize the CW-power by adjusting the output coupler (OC) mirror, then the high 

reflector (HR) mirror. U se the horizontal key first.

• Find the modelocking range by moving the second curved mirror closer to the crystal 

in small steps, from old ML position; and in each step, push the prism and watch to 

see if  it gets modelocking. The modelocking range normally has ~  10 divisions. ML 

power should always be higher than CW-power. I f  necessary to center the spectrum at 

800 nm wavelength, m ove the prism accordingly. The spectrum is roughly at 770-780  

nm. If this does not help, try the following:

•  Check the overlap between the green and LR spots with the IR-viewer on the first 

curved mirror C l (from the direction o f  the sapphire crystal). Both spots should have 

the same horizontal level and the IR has to be on the right side o f  the green. The 

green spot is weaker and smaller than the IR. To make it stand out, block and unblock 

the IR cavity as we talked about. It is not easy to judge how close together they 

should be, so try the following strategy.
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• At CW max position, use the alignment keys for both H R and OC at the horizontal 

screw (lower one).

• Then pick a direction for the HR, e.g., clockw ise, and go a small bit, like 5 min, turn 

on the clock.

•  As a result, the power will drop slightly; now max it back up with the other mirror, 

the OC. This way you walk the cavity and the overlap will change.

•  Repeat the above step, if  necessary, by moving the key in the HR the next tiny step 

and check overlap between the two spots.

•  Now, move the C2 to ML range.

B.3. REGEN MAINTENANCE

• After tune-up o f  the Ti-Light, the amplifier seed input mirrors may need to be tweaked 

(SI and SI to center the beam center on irises A T  and A2, as shown in Fig. B.6.)

•  If the beam is not centered on the irises, then use mirror SI to center beam on iris A T  

(added by us) and mirror S2 to center beam on iris A2.

•  Then, make sure the shape o f  the beam on each one o f  the stretcher components is as 

shown below in Fig. B .7 before you proceed to touch anything else.

•  After that, if  the beam is not going through the element F R #11, then you need to use 

mirror M #10 to move the beam into the center o f  it.

•  To make sure the seed beam is centered on the first crystal Ti: s #21, close the iris A3 and 

check to determine if  the beam is going through it or not. I f  not, you first need to touch 

mirror M #22, i f  it does not help, you also need to touch the other mirror, M# 18. You do 

all o f  this with pumping beam blocked.
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•  Once you see the envelope o f  pulse train on the oscilloscope you need to change the 

timing and/or Pockels cell voltages to get cavity dumping; then, after that refinement, 

optimizations o f  the power can be done as in the following points.

• Block the pumping beam to the second crystal (put the blocker before PM #5) and check 

the power by putting the power meter in front o f  mirror M #27. The power should be 

around 0.5-0.6 W or i f  you put it outside it should read about 0.3 W. If not, you need to 

touch mirror M #29 first and then mirror M#25.

•  To optimize the power coming from the pumping green on the 1st crystal (Ti: s#21), you 

need to touch pumping mirror PM#4 and on the 2nd crystal (Ti: s#26), you need to touch 

mirror PM#5 first and then, if  possible, touch mirror PM#7. You do this one by one until 

the power is optimized (output power 1.7 W).

•  You need to keep an eye on the power and pulse train shape.
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APPENDIX C 

LIST OF MANUFACTURER CONTACTS

Equipment Name & Address Phone Fax & E-mail

Vacuum components

Vacuum components & 
pump rebuild

Vacuum components

Surface science 
instruments 

(CCD camera, phosphor 
screens...)

Electron gun repair 
filaments supply

Sputtering target

Sputtering target

Optical components & 
assemblies

Optics components

MDC Vacuum 
Products, LLC

23842 Cabot 
Boulevard 

Hayward, CA 
94545. 

DUNIWAY 
Stockroom Corp. 
1305 Space Park 

Way 
Mountain View,

C A 94043 . 
Kurt J. Lesker 

Company 
3983 1st Street 
Livermore, CA 

94551. 
k-Space 

Associates, Inc. 
2182 Bishop Circle 

East
Dexter, MI 48130. 
Eurovac Sweden 

SE11859 
Stockholm, Sweden 

Kurt J. Lesker 
Company 

1515 Worthington 
Avenue 

Clairton, PA 15025.

ESP1 metals 
1050 Benson Way 

Ashland, OR 97520

Newport
Corporation

1791 Deere Avenue 
Irvine, CA 92606. 
Edmund Optics, 

Inc.
101 East Gloucester 

Pike 
Barrington, NJ

800-443-
8817

510-265-
3500

800-446-
8811

650-969-
8811

800-245-
1656

925-449-
0104

734-426-
7977

+46-8-
4299600

800-245-
1656

800-638-
2581

541-488-
8311

800-775 ■ 
5273

800-363-
1992

510-887-0626
webtechsales@mdcvacuum.com

650-965-0764
info@duniway.com

925-449-5227
salesus@lesker.com

734-426-7955
requestinfo@k-space.com

+46-8-4299604
sales@eurovac.se

412-233-9705
materials@lesker.com

541-488-8313 
sales@espi metal s .com

949-253-1680
sales@newport.com

856-573-6295
sales@edmundoptics.com

mailto:webtechsales@mdcvacuum.com
mailto:info@duniway.com
mailto:salesus@lesker.com
mailto:requestinfo@k-space.com
mailto:sales@eurovac.se
mailto:materials@lesker.com
mailto:sales@newport.com
mailto:sales@edmundoptics.com
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08007.

Chemicals & Materials 
(Ethanol, HF, H3Po4 and 

Hn03) -

Safety supplies 
(acid apron, coats & 

masks)

Thermocouples, electric 
heater, Ceramics & process 

control instruments

Electron microscopy 
supplies, tungsten wire & 

instruments

Gas cylinders

AFM tips

Tubing, fitting & tools

Tubing, fitting & tools

Laboratory supplies

Laboratory supplies

Alfa Aesar
26 Parkridge Road 

Ward Hill, MA 
01835.

Lab Safety 
Supply/Grainger 

PO Box 1368 
Janesville, W1 

53547.
OMEGA 

Engineering, Inc. 
One Omega Drive 

P.O. Box 4047 
Stamford, CT 

06907.
Ted Pella, Inc. 

P.O. Box 492477 
Redding, CA 

96049, 
Praxair 

GTS-WELCO 
1637 Commerce Rd 

Richmond, Va 
23224-. 

MikroMasch 
111 N. Market 

Street, 6th Floor 
San Jose, CA 

95113.
Small Parts, Inc. 
13980 N.W. 58™ 

Court 
P.O. Box 4650 

Miami Lakes, FL 
33014 

Dibert Valve & 
Fitting Co., Inc.
1174 Lance Rd 

Norfolk, VA 23502 
Fisher Scientific 
2000 Park Lane 

Drive 
Pittsburgh, PA 

15275.
LabSource 

1186 Arbor Dr 
Romeoville, IL 

60446.

800-343-
0660

978-521-
6300

800-356-
0783

800-848-
4286

203-359-
1660

800-237-
3526

530-243-
2200

800-932-
0624

908-252-
9300

866-776-
8477

919-636-
3463

800-220-
4242

757-461-
1441

800-766-
7000

800-545-
8823

800-322-4757
info@alfa.com

800-543-9910
LabSafety@cs.LabSafety.com

203-359-7700 
cservi ce@omega.com 

info@omega.com
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