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ABSTRACT

HIGH EFFICIENCY ULTRATHIN CIGS SOLAR CELLS

Krishna Prasad Aryal 
Old Dominion University, 2015 
Director: Dr. Sylvain Marsillac

The global demand for renewable energy is growing rapidly. Increasing the global 

share o f alternative sources o f energy would not only bring environmental benefits, but 

also enhance overall energy security by diversifying energy supply. Many technology 

options exist nowadays to harvest the power o f the sun, a sustainable energy source, and 

generate electricity directly from this source via the photovoltaic effect. Among them, 

Cu(In,Ga)Se2 (CIGS) has gained significant momentum as a possible high efficiency and 

low cost thin film solar cell material. The capacity to scale up any photovoltaic technology 

is one o f the criteria that will determine its long term viability. In the case o f CIGS, many 

manufacturers are showing the way for GW-scale production capacity. However, as CIGS 

technology continues to increase its share o f the market, the scarcity and high price of 

indium will potentially affect its ability to compete with other technologies. One way to 

avoid this bottleneck is to reduce the importance of indium in the fabrication of the cell 

simply by reducing its thickness without significant efficiency loss. Reducing the thickness 

o f CIGS thin film will not only save the material but will also lower the production time 

and the power needed to produce the cell.



The material properties of Cu(In,Ga)Se2 thin films are different with deposition 

process. Many different methods to deposit Cu(In,Ga)Se2 thin film have been tried until 

now but Cu(In,Ga)Se2 thin films prepared by co-evaporation of elemental sources are the 

most successful due to the control over the sequence of evaporation o f individual material. 

However, the co-evaporation process is a complex process and, depending on the 

individual sources and substrate temperature, the thin films are grown with different 

characteristics. The characteristics o f these thin films changes with the change in the atomic 

percentage (at.%) of Cu, In. Ga and Se, which depends on the evaporation conditions. 

Among different co-evaporation techniques to grow Cu(In,Ga)Se2, 1-stage, 2-stage and 3- 

stage co-evaporation processes are the most successful processes

Co-evaporation process is the best technique for highly efficient CIGS solar cell 

but this process needs a precise control of the elemental composition in the vapor flux in 

order to achieve high quality material, which is not easy to obtain due to the low sticking 

coefficient o f Selenium. One of the major concerns in Cu(In,Ga)Se2 thin film solar cell 

fabrication that affect significantly the cell performance during deposition is stoichiometry. 

CIGS with low Se samples exhibited very low Cu content, additional chalcopyrite phases, 

very small grain size, and poor solar cell performance. So it is very important to find the 

minimal selenium flux to obtain high quality Cu(In,Ga)Se2 thin film.

During the deposition of ultrathin Cu(In,Ga)Se2 film with 1-stage, 2-stage and 3- 

stage co-evaporation processes, real time spectroscopic ellipsometry (RTSE) is 

implemented to study the material properties as well as to monitor the process. The 

deposition processed for individual layer o f CIGS device are optimized to enhance the 

efficiency of the CIGS solar cell.
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CHAPTER 1 

INTRODUCTION

1.1 Motivation and Background

Global Energy demand is expected to increase continuously every year due to 

population growth and economic development. In order to fulfill the energy demand with 

time, roughly 30 TWh of energy is required by the end of 2050. Today most o f these energy 

demands are produced by burning fossil fuels such as coal, petroleum and natural gas. The 

peak supply of these energy from conventional sources has already been achieved recently 

or is about to be achieved within the next 20- 30 years [ 1 ]. Beside this the greenhouse gases 

emitted from the burning of the fossil fuels significantly affect the environment and will 

threaten human existence in future. In order to fulfill these future energy requirements, we, 

as a society, are in need o f development and deployment o f renewable sources o f energy. 

Renewable energy sources such as hydroelectric, geothermal, biomass, wind and solar 

energy are not only abundant sources but they are also cleaner. The power of sunlight 

incident on the Earth is 125,000 TW, which is 10,000 times the existing annual demand of 

energy [2]. Energy from the sun would make life possible on this planet. At present, the 

typical electricity price generated from traditional sources cost ~ $0.10/kWh whereas 

electricity from PV plants costs around $0.27/kWh [3]. However, the electricity cost from 

traditional sources will continue to rise whereas the electricity from PV is decreasing due 

to advanced technology, improved efficiency and large scale utilities. The cross over 

between these prices, which is called “grid parity", will take place in the near future [4].
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Many technology options exist nowadays to harvest the power o f the sun, a 

sustainable energy source, and generate electricity directly from this source via the 

photovoltaic effect. Among them, Cu(In,Ga)Se2 has gained significant momentum as a 

possible high efficiency and low cost thin film solar cell material. With 21.7% efficiency, 

Cu(In,Ga)Se2 (CIGS) solar cells are the most efficient polycrystalline thin films solar cells 

today [5]. Besides high conversion efficiencies, CIGS cells have proved long term outdoor 

stability and radiation hardness [6-7]. The capacity to scale up any photovoltaic technology 

is one o f the criteria that will determine its long-term viability. In the case o f CIGS, many 

manufacturers such as Solar Frontier are showing the way for GW-scale production 

capacity. However, as CIGS technology continues to increase its share o f the market, the 

scarcity and high price o f indium will potentially affect its ability to compete with other 

technologies. One way to avoid this bottleneck is to reduce the importance o f indium in the 

fabrication of the cell simply by reducing its thickness [8]. Reducing the thickness will not 

only save the material but will also lower the production time and the power needed to 

produce the cell. All these factors will help to reduce the production cost significantly.

1.2 Solar Cell Background Basics

A solar cell is a semiconductor device, which converts sunlight into electric power 

by generating current and voltage. This conversion process always consists o f the 

following essential steps: a) generation of electron-hole pairs (e-h) in semiconductor 

materials by absorbing the incident photon with energy (Eph) greater than or equal to the 

band gap (Eg) of the absorbing materials, (b) separation o f these light generated e-h pairs
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(c) collection of these carriers by appropriate electrodes. A p-n junction is one o f the widely 

used structures in order to separate e-h pairs.

In order to convert incident sunlight to electrical power, photons o f a range of 

energies need to generate electron-hole pairs. An electron-hole pair is generated only if  the 

energy o f the incident photon is enough to overcome the band gap o f the materials. 

However, for solar cell application, photon energy greater than band gap is wasted in the 

form of thermalization. The current-density vs. voltage (J-V) characteristics o f the solar 

cells measured in dark condition resemble the exponential response of a diode with higher 

current in the forward bias and small current in reverse bias. Under illumination, there is 

also a photocurrent in the cell which is in the opposite direction of the dark current and the 

J-V characteristics are ideally the superposition o f the dark characteristics and the 

photocurrent. The Shockley diode equation under illumination [9] is 

r r (  I a k t  n  rJ  — JQ( e 1) J ph (11)

Where J is the current density, V is the applied voltage, Jo the reverse saturation current 

density of the diode, q is the elementary charge, A is the ideality factor, k is the Boltzmann 

constant, and T is the temperature.

Figure 1.1 shows the J-V characteristics o f a solar cell under illumination showing the 

most discussed performance parameters such as the open circuit voltage (Voc), the short 

circuit current density (Jsc) and the maximum power point with voltage and current density 

o f V mp and Jmp respectively. The equations relating the above parameters to conversion 

efficiency (r]) are also given.
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oc

"D _ _  VmpJmp _ ( Vmp!mp\ ( V q c J s c ] —  V V  V q c J s c  
M p i n  y v ocj s c ) \ p i n )  P i n

m p mp

sc

Voltage
Figure 1.1 J-V characteristics o f  solar cells under illum ination show ing the open circuit (V oc), the short circuit 

current density ( J sc)  and the maximum pow er point with voltage and current density o f  V m p  and J m p  

respectively.

1.2.1 Short-circuit Current Density

The short-circuit current density, Jsc, is the current through the solar cells when V 

= 0, which is a similar condition as the two electrodes o f the cell being short-circuited 

together. Because V= 0, and power is the product o f current and voltage, no power is 

generated at this point but Jsc marks the onset of power generation. Jsc o f a solar cell depends 

on the photon flux density incident on the cell, which is determined by the spectrum of the 

incident light. The optimum current that the solar cell can deliver strongly depends on the 

optical properties such as absorption in the absorber layer and total reflection o f the solar 

cell.



5

1.2.2 Open-circuit Voltage

The open-circuit voltage, Voc, is the voltage at which no current flows across the solar 

cell, which is the same as the device being open-circuited. This is the maximum voltage that a 

cell can deliver. Since J= 0 there is no power produced at this point but it marks the boundary 

for voltages at which power can be produced. The Voc corresponds to the amount of forward 

bias voltage at which the dark current compensates the photo-current in the solar cell. The Voc 

can be calculated from an equation given below by assuming that the net current is zero.

Where kT/q is the thermal voltage, JPh is the photocurrent density and Jo is the dark 

saturation current.

The above equation shows that Voc depends on the saturation current and light 

generated current in the solar cell. Since Jph has a small variation, the key effect on Voc is 

the saturation current, which may vary by orders of magnitude. The saturation current 

density, Jo, depends on the recombination in the solar cell so Voc is a good measure o f the 

amount o f recombination in the cell.

1.2.3 Fill Factor

The fill factor is defined as the ratio o f the maximum power (Pmax = Jmp x Vmp) 

generated by a solar cells to the product o f Voc and Jsc.

p p  _  Jm pV m p ( .  . .

JscVoc K ’

It is an indication o f how close JmP and VmP come to the boundaries of power generation o f 

Jsc and Voc. It is also an indication of the sharpness of the J -V  curve that connects Jsc and
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Voc. High FF is always desired since this is the indication o f higher maximum power but 

the diode-like behavior o f solar cells results in FF always being less than one.

1.2.4 Power Conversion Efficiency

The most commonly used parameters to compare the performance of a solar cell is 

the power conversion efficiency which is defined as the ratio o f energy output from the 

solar cells to input energy from the sun. The efficiency o f a solar cell is determined as

_  pm a x  _  Jmp  Vmp  _  V q c J s c  p p  . x
' p . p .  p.  V • /r  in M n r in

The above equation clearly shows that FF, Jsc, and Voc all have direct effects on r). Since 

the area used to calculate J will affect the efficiency o f the cell, the inactive areas such as 

grids, and interconnects should be included while calculating the efficiency for large area 

devices or modules. The efficiency o f the solar cells is also very dependent on the power 

and spectrum of the incident light source and the temperature o f the solar cell, since the 

solar cells do not absorb and convert photons to electrons at all wavelengths with the same 

efficiency. So all the conditions under which the conversion efficiency o f the cell is 

measured should be carefully controlled in order to compare various solar cells. Even 

though the solar spectrum at the earth’s surface varies with location, cloud coverage, and 

other factors, the AM 1.5 G spectrum as shown in Figure 1.2 is the most commonly used 

standard spectrum for measuring and comparing the performance o f photovoltaic devices. 

The term air mass intensity (AM) is usually used to denote the ratio of the optical path to 

a normal path at sea level on a cloudless day and the expression for it is given as

AM = ^ a  o.5)
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Where 0 is the angle o f the path Sun light travels with respect to the vertical. If  0 is 48.19 

0 then AM condition is called AM 1.5 (AM =l/Cos (48.19) = 1.5). So the AM 1.5 is 

equivalent to the sunlight passing through 1.5 times the air mass o f vertical illumination 

(AM 1).

AMO 
AM 1.5CM

2
0.5(0u

ts<no.
w 1000 1500 2000500

Wavelength (nm)

Figure 1.2: Comparison o f  spectral irradiation densities: AMO irradiation (blue), and AM 1.5 irradiation 

(red).

1.2.4 Practical Requirements from a Solar Cell Material

There are various materials, which exhibit the photovoltaic effect and can be 

considered for the solar cell production. However, materials for efficient solar cells needs 

to satisfy numerous requirements such as i) materials for practical PV application must 

have characteristics matched to the spectrum of the available light, ii) the materials needs 

to be inexpensive, non-toxic and available in large quantity, iii) the PV device production
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method should be fast, inexpensive and environmental friendly and iv) the PV device 

performance must be stable for outdoor application for extended periods o f time.

1.3 Overview of Progress in Photovoltaic (PV) Technology

1.3.1 Introduction

The history o f solar energy is not new. We started to utilize the sun’s energy to 

convert into electricity in the last two centuries. In 1839, Alexandre-Edmond Becquerel 

discovered the photovoltaic effect. He observed that he could produce an electric current 

by exposing two metal electrodes placed in conducting solution to light. In 1873, the photo

conductivity o f solid selenium was discovered by Willoughby Smith [12]. In the 1950s, a 

silicon photovoltaic cell with efficiency around 6 % was developed at Bell Laboratories by 

Calvin Fuller, Daryl Chapin, and Gerald Pearson [13]. Since then, due to advancement in 

the technology, semiconductor based devices are developed to make more efficient solar 

cells which are classified into three generations known as First generation, Second 

generation and Third generation photovoltaic technology.

1.3.2 First Generation PV

First generation photovoltaic cells are single junction solar cells based on silicon 

wafers, including single crystal (c-Si) and multi-crystalline silicon (mc-Si), as well as on 

GaAs. The silicon cells and modules are the dominant technology on the solar cell market, 

accounting for more than 86% of the solar cell production. But manufacturing cost is the 

major challenge because o f the high purity materials requirement to avoid recombination 

issues, even though much progress has been done in the last 5 years with module costs now
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reduced to below $0.8/W. These c-Si and mc-Si semiconductors, used in commercial 

production, allow power conversion efficiencies up to 25%, even though the fabrication 

technologies at present limit them to about 15 to 20% [14]. C-Si has an indirect band gap 

of ~ 1.17 eV, which has the following problems: it absorbs sunlight poorly and needs 

relatively thick layers in the order o f hundred micro-meters to absorb most o f the incident 

light. GaAs, on another hand, is a direct band gap material with zinc blende crystal 

structure. Its band gap can be tuned by varying the group III element or the group V 

element. GaAs based solar cells hold the highest conversion efficiencies (30 % for single

junction and 40% for multi-junction solar cell). However, the fabrication cost of these 

devices is very high because o f the high purity requirement. The GaAs solar cells are 

mainly fabricated using molecular beam epitaxy (MBE) or metal-organic chemical vapor 

deposition (MOCVD), which are very expensive deposition techniques. This is the main 

reason this technology is currently limited to space applications like satellite and space 

station solar cells. The second generation technology has the advantage because o f being 

more forgiving during the deposition process.

1.3.3 Second Generation PV

In order to fulfill the requirement o f lower cost and improved manufacturability at 

large scale, a second generation PV, also called thin films PV, has been developed. There 

are basically three types of solar cells that are considered in this generation: Cadmium 

Telluride (CdTe), Copper indium gallium diselenide (CIGS) and amorphous silicon (a-Si). 

These thin films absorb the solar spectrum much more efficiently than c-Si or mc-Si and 

use only a couple of microns of active materials. They also offer a way to increase the unit
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of manufacturing by 100 times from first generation PV i.e. Silicon wafer (~ 100 cm2) to a 

glass sheet (~ 1 m2) [15]. The recorded efficiency of CIGS (21.7%) [5] and CdTe (20.8 %) 

[14] have provided ample evidence of the potential of thin-film PV. Although the 

expansion o f 2nd generation of PV is getting slower than expected, it still has greater 

potential to bring down the production cost o f PV in large scale production by reducing 

material usage and production costs.

1.3.4 Third Generation PV

The primary approach of 3rd generation PV is to reduce the PV costs further below 

the level o f 2nd generation PV by increasing the efficiency while keeping the almost similar 

advantage o f thin film deposition technique. In order to achieve such efficiency 

improvements, PV technology is seeking to overcome the Shockley-Quesser limit of 31- 

41% efficiency for single-band gap devices [16]. The inability to absorb incident light with 

energy less than the band gap and thermal ization of light energies exceeding the band gap 

are the main important power-loss mechanism in single band gap cells. These two power 

loss mechanism can potentially be addressed by designing a series of new device structure 

based on innovative technologies. These new devices include multi-junction/tandem cells, 

quantum dot cells, intermediate band solar cells, hot-carrier cells and non-semiconductor 

cells such as organic photovoltaic, polymer solar cells, and dye-sensitized solar cells. A 

new concept in PV based on ‘inorganics-organics’ offers improved solar efficiency in 

comparison to third generation PV. The hybrid active materials which is the combination 

of the low cost and conducting polymers films (organic) and the life time stability o f novel 

nano-structure (inorganic) improves the harvesting cross-section, the charge dissociation
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and charge transport within the PV devices [10]. These new devices include mainly carbon 

nanostructures, mNPs, metal oxides and nano-hybrids.

1.4 Thesis Objectives and Organization

Many technology options exist nowadays to harvest the power of the sun, a sustainable 

energy source, and generate electricity directly from this source via the photovoltaic effect. 

Among them, Cu(In,Ga)Se2 has gained significant momentum as a possible high efficiency 

and low cost thin film solar cell material. With 21.7% efficiency, Cu(In,Ga)Se2 (CIGS) 

solar cells are the most efficient polycrystalline thin films solar cells today. The capacity 

to scale up any photovoltaic technology is one o f the criteria that will determine its long 

term viability. However, as CIGS technology continues to increase its share o f the market, 

the scarcity and high price of indium will potentially affect its ability to compete with other 

technologies. One way to avoid this bottleneck is to reduce the importance o f indium in the 

fabrication o f the cell simply by reducing its thickness without significant efficiency loss. 

Reducing the thickness of Cu(In,Ga)Se2 thin film will not only save the material but will 

also lower the production time and the power needed to produce the cell. Even though 

Cu(In,Ga)Se2 thin film solar cells are an excellent candidate for the renewable energy 

production with competitive prices, the knowledge of device physics especially in ultrathin 

devices is still incomplete. The main objective o f this work is to understand the optical and 

electrical properties of ultra-thin Cu(In,Ga)Se2 as a function o f process and composition, 

and to use that knowledge to enhance the efficiency of such devices. To better understand 

the optical properties o f ultra-thin Cu(In,Ga)Se2 as a function o f process and other 

deposition conditions, real time spectroscopic ellipsometry (RTSE) can be used as a
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suitable m-situ sensor to monitor the thickness, roughness, optical properties, and growth 

temperature.

Before starting the ultra-thin CIGS deposition, the following items are the critical 

parameters and problems to consider:

- Highly efficient ultra-thin Cu(In,Ga)Se2 devices are fabricated from slightly Cu- 

poor Cu(In,Ga)Se2 thin films with band gap around 1.15 eV.

- The efficiency of the cell reduces if the Cu at.% in the ultra-thin Cu(In,Ga)Se2 thin 

film is too low, while Cu-rich films result in shunted devices.

For optimum quality, ultrathin Cu(ln,Ga)Se2 films are deposited by 2-stage and 3- 

stage co-evaporation process, which involves Cu-rich to Cu-poor transitions. 

Reduce light absorption will reduce the photocurrent.

The impact o f back surface recombination can increase.

We will therefore perform in-situ monitoring of high quality ultra-thin Cu(In,Ga)Se2 film 

to understand the optical and electrical properties o f the films as a function process and 

thickness.

In Chapter 2, materials properties of Cu(In,Ga)Se2 thin films and characterization 

techniques used to explore the Cu(In,Ga)Se2 thin films and devices are presented.

In Chapter 3, the effect o f absorber thickness on ultra-thin CIGS films and devices 

are discussed. Chapter 3 also includes the numerical simulation results to analyze the 

experimental results for ultrathin CIGS solar cells.

In Chapter 4, characterization of ultra-thin CIGS films deposited by 1 -stage, 2-stage 

and 3-stage process are presented. Chapter 4 also provides an overview o f the effect of 

selenium pressure on ultrathin CIGS films and devices.
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In Chapter 5, characterizations o f ultra-thin CIGS films deposition using in-situ 

spectroscopic ellipsometry are discussed.

In Chapter 6, advances in CIGS fabrication processes are discussed.

In the final chapter, a summary and conclusion o f the work presented here will be 

given. This chapter also discusses future works and goals for further improvement o f the 

PV device quality.
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CHAPTER 2

Cu(In,Ga)Se2 SOLAR CELL: MATERIAL PROPERTIES AND 

CHARACTERIZATION METHODS

2.1 Cu(In,Ga)Se2 Material Properties

2.1.1 Introduction

The history of CuInSe2 (CIS) solar cells starts with the invention o f CIS solar cells 

in Bell Laboratories in the early 1970s. No real effort was given to these devices until 

Boeing demonstrated the first high efficiency (9.4%) device in 1981 [17]. At the same time, 

CuS2 was being explored as a thin film solar cell but had electrochemical instabilities 

problems. Since then, research on CuS2 has almost stopped but CIS progressed 

continuously. Now Cu(In,Ga)Se2 (CIGS) solar cells deposited by three-stage process have 

achieved above 20 % energy conversion efficiency, which is the highest record for thin 

film polycrystalline solar cells [5].

2.1.2 Structural and Compositional Properties

Cu(In,Ga)Se2 forms a quaternary compound when Gallium (Ga) atoms partially 

substitute Indium (In) atoms in CuInSe2 ternary system. The CIGS has a chalcopyrite 

tetragonal structure, which is similar to that o f the CuInSe2 structure as shown in Figure 

2.1. The tetragonal structure of the chalcopyrite compound can be considered as a super 

lattice Zinc Blende structure by elongating the unit cube along the z-axis twice the length 

that becomes the c-axis o f the chalcopyrite structure [18]. The ratio o f the tetragonal lattice
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parameters c/a, which is called tetragonal deformation, is close to 2 and varies due to the 

difference in bond strength in Cu-Se, In-Se or Cia-Se. So, the c/a ratio is a function of x = 

Ga/(In+Ga), where c/a>2 for x = 0 and c/a<2 for x -  1.

CIGS can be either p-type or n-type depending on the dominant defects. Usually, 

n-type CIGS is grown under Cu-rich and Se-deficient environment whereas p-type CIGS 

is grown under Cu-poor and Se-rich environment [19]. Thus Se vacancy (Vse) and Cu 

vacancy (Vcu) are believed to be the dominant defects in n- and p-type CIGS respectively 

[19]. P-type CIGS thin films are used as absorber layers in solar cell application.

Figure 2.2 (a) shows the ternary phase diagram with possible phases in the Cu-In- 

Se system. The pseudo-binary In2Se3-Cu2Se equilibrium phase diagram, which is derived 

from the Cu-In-Se ternary system, is shown in Figure 2.2 (b). In the phase diagram, a is 

the chalcopyrite CuInSe2 phase, 5 is a high-temperature phase and (3 is an ordered defect 

compound phase (ODC). The a phase is the most important phase in the Cu-In-Se system 

for high efficient CIGS solar cell. It can be clearly seen that the single phase field for 

CuInSe2 at low temperature is narrower than at higher temperature, and becomes 

maximum around 6000C. So the best suited growth temperature for CIGS thin film is 

around 600°C. The average copper (Cu) compositions of high quality CIGS films deposited 

at high temperature is 22-24 at%, which lie within the single phase region.

CIGS is formed by alloying CuInSe2 in any proportion with CuGaSe2 . In high 

performance CIGS cell, the Ga/(In+Ga) and the Cu/(In+Ga) ratios are typically 0.2-0.3 and 

0.7-1, respectively. There is the possibility o f high defect density in the Cu-poor film but 

these defect densities should be reasonably low and electronically inactive to avoid adverse 

effects on solar cells performance [20]. At the Cu-poor boundary, the a-phase coexists with
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the p-phase, which represents a number o f ODC like CuImSes, CuInsSes etc. The addition 

o f Ga or Na suppresses the formation o f ordered defect compounds [20] and thus widens 

the a-phase towards the Cu poor boundary. Thus, these provide slightly more freedom in 

terms o f deposition conditions.

Q  Copper 

0  Indium 

9  Selenium

Figure 2.1 C halcopyrite crystal structures o f  CIGS [after 21]
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Figure 2 .2  (a) Ternary phase diagram o f  Cu-In-Se system  [after 17] and (b) pseudo-binary phase diagram  
[after 21].

2.1.3 Optical Properties and Band Gap Grading

CIGS films have very high absorption coefficient, with values larger than 105 cm '1 

for 1.5 eV and higher energy photons [22]. So, only a few micrometer thick CIGS film is 

needed to absorb most of the incident light. The absorption coefficient, a , can be calculated 

from the transmission and reflection coefficients using the following expression [23]: 

2 1 n (l- f l) - ln (7 ’)a  = ---- v— ( 21)

Where d is the thickness of the thin film, R is the reflection and T is the transmission. Since 

CIGS is a direct gap semiconductor, the absorption coefficient in the region o f strong 

absorption obeys the following equation



Where h is the Planck constant, v is the radiation frequency, Eg is the band gap energy and 

A is a constant, which depends on the nature of the radiation. The extrapolation o f the linear 

portion o f the (ahv)2 versus hv graph at hv = 0 gives therefore the band gap value o f the 

material. Cu(In,Ga)Se2 has a tunable band gap that varies with x = Ga/(In+Ga). The 

relation between the Eg and x can be expressed by the following empirical formula [24]: 

Eg = (1 -  x) Eg (CIS) + xEg (CCS) -  bx( 1 -  x) (2.3)

Where Eg(CIS) is 1.04 eV, the band gap o f CuInSe2 ; Eg(CGS) is 1.68 eV, the band gap 

o f CuGaSe2; and b is the bowing parameter that depends on the growth. The most 

reproducible values of b are around 0.15-0.24 eV [24]. The Ga content in the Cu(In,Ga)Se2 

thin film affects the band-gap primarily in the conduction band. The band gap of 

Cu(In,Ga)Se2 increases with increasing Ga content by shifting the conduction band 

position [24]. So, with an appropriate spatial variation of Ga in the Cu(In,Ga)Se2, various 

band gap profiles can be achieved as shown in Figure 2.3. Introducing a higher Ga/(In+Ga) 

ratio near the front surface (Space charge region) and at the back surface region of 

Cu(In,Ga)Se2 film will increase the band gap locally. The increase in the band gap, AEg, 

creates an additional electric field, which is also called quasi electrical field [25]. The Ga- 

gradient in the space charge region (SRC) and at the back surface improves Jsc performance 

due to the additional force created that increases the carrier collection. The back surface 

recombination can be reduced significantly due to the back surface grading, which also 

enhances the voltage by reducing recombination. The SCR grading as an addition to the 

back surface grading also increases the device voltage since the voltage is also determined
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by the band gap in the space charge region. In general, a proper band-gap grading in the 

SCR and back surface are capable of significantly improving the device performance.

'(a)
-............

Uniform Eg

f F
4-----------------------------------------►

2 |im

•v

2 fim

2 \ i m
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Figure 2.3 Different types o f  absorber band gap profiles, (a) Uniform band gap (b) Front grading (Space  
charge region grading) (c) back surface grading (d) Double grading.

2.2 Materials and Devices Characterization

CIGS thin films and devices were analyzed in-situ, in real time or ex-situ via 

different types o f characterization techniques. The outcomes from these techniques were 

then corroborated to get a complete understanding of the materials and devices properties.
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2.2.1 X-ray Fluorescence (XRF)

X-ray fluorescence (XRF) is a non-destructive, powerful analytical technique to 

identify and determine the elemental composition of a material. This technique can be used 

to determine most o f the elements in the periodic table from boron (B) to uranium (Ur) in 

the range o f part per million (ppm) to 100%. The working principle consists of bombarding 

a sample with primary X-rays that causes the constituent atom to be energized, so that 

individual electrons move out of their normal positions and into orbitals further from the 

central nucleus. When the atom returns back to its stable state, the electrons drop back into 

their inner orbits and give off their excess energy in the form of characteristic secondary 

X-rays (fluorescence) whose energy is the difference between the two binding energies of 

the corresponding shells. By measuring the energies o f the characteristic secondary X- 

rays, and counting the number of X-rays of each energy, XRF allows identifying which 

elements are present in a sample and also determining the relative concentration o f these 

elements within the sample. In most cases, the innermost K and L shells are involved in 

XRF detection. A typical x-ray spectrum from an irradiated sample will display multiple 

peaks o f different intensities as shown in Figure 2.4 below. XRF can also be used for 

thickness measurement, for films that are not thicker than the penetration depth of 

radiation.

The composition and thickness of CIGS thin films were measured using XRF to 

make sure that no processing was done on cells that would not work, by checking the 

Cu/(In+Ga) ratio and the Ga/(ln+Ga) ratio.



Figure 2.4 XRF Spectrum taken using Solar Metrology System SMX with 2 mm beam and 60k HV

2.2.2 X-ray Diffraction (XRD)

X-ray diffraction is a rapid analytical technique used to probe the crystalline phases 

present in materials and to measure the structural properties such as grain size, preferred 

orientation and defect structure o f the phases. When a collimated beam of X-rays is 

directed at the sample surface, the material o f the sample causes the X-rays to be diffracted 

at various angles based on its crystal structure. The diffraction spectrum o f the samples is 

then plotted as a function of 20. When Bragg’s law (2d sin0 = nA.) is satisfied, diffraction 

peaks appear. The diffraction angle, the number of peaks and their intensity depend on the 

crystal structure, symmetry and lattice constant. Comparing the peaks with XRD database 

gives the phase, crystal orientation, lattice constants and other information. The inter- 

planar spacing, dhki, corresponding to each diffraction line, is calculated by the following 

equation:
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Where 0 is Bragg’s angle of diffraction and X is the wavelength o f the X-rays radiation. 

XRD data can also be used to predict the crystallites size using Scherrer formula [26].

L = (2.5)
P  cos#

Where L is the grain size, Ks is Scherrer constant (usually set at 0.9 for spherical particles), 

P is the full width at half maximum of the peak in radians, X is the wavelength o f the X-ray 

beam and 20 is the peak position.

The X-rays penetration depth can be varied by varying the angle of incidence of the 

x-rays beam. With a bigger angle it is possible to see the material composition deeper into 

the sample. For Cu(In,Ga)Se2 compounds, since the lattice parameters for different 

Ga/(In+Ga) are already known, XRD can also be used to find the Ga/(In+Ga) value in the 

film. Sometimes, it is not desired to probe deeply into the film or not possible to get a good 

signal if  the film is too thin. To counteract this, grazing incident XRD (GIXRD) can be 

used. This is basically a low angle XRD, which changes the penetration depth o f the X-ray 

by fixing the incident angle from 1 to 10 degrees while moving the detecting arm.

2.2.3 Atomic Force Microscopy (AFM)

AFM is one type o f scanning probe microscopes, which is used to obtain surface 

structures images (on an nm or even sub-nm scale) and other information. In AFM, a probe 

is maintained in close contact with the sample surface by a feedback mechanism as it scans 

over the surface, and the movement of the probe to stay at the same probe-sample distance



is taken to be the sample topography. Generally a cantilever made of Si or SiN is used to 

probe the surface o f the sample by adjusting the position via control implementations. The 

tip of the cantilever is kept in continuous or intermittent contact with the sample surface 

and the cantilever is translated over the sample using a piezocontroller. A laser is reflected 

on the back surface o f the cantilever as a scan is in progress. Whenever the laser changes 

its positions due to force on the cantilever, a voltage is applied to the piezoelectric to make 

the laser go back to its origin. The voltage corresponds to the height of surface features, 

since the force on the cantilever is caused by the features on the specimen. A precise 

calibration between the height and the voltage is accomplished by using a sample with 

known structure. AFM can be used in three main different modes o f imaging depending on 

the interaction o f the surface and the tip. In contact mode, the tip o f the AFM probe is 

always kept in contact with the surface whereas the tip never touches the sample in non- 

contact mode measurement. During contact with the sample, the probe predominately 

experiences repulsive Van der Waals forces. As the tip moves further away from the 

surface (non-contact mode) attractive Van der Waals forces are dominant. Contact mode 

AFM is good for rough samples but it damages soft surfaces whereas the non-contact mode 

has bad resolution and usually needs ultra-high vacuum (UHV) to have best imaging. In 

tapping mode, the imaging is similar to contact mode however in this mode, the cantilever 

is oscillated at its resonant frequency via the piezoelectric crystal attached to the tip holder. 

During the oscillation, the probe tip keeps moving towards the surface till it lightly taps on 

the surface. As soon as there is contact between the tip and the surface, there is loss in the 

oscillation amplitude, which is used to find the topographic changes. This technique allows 

high resolution and is good for soft surface.
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2.2.4 Mass Spectrometer

The mass spectrometer is a powerful analytical instrument which can be used to 

quantify known materials, to identify unknown compounds within a sample, and to 

elucidate the structure and chemical properties o f different molecules. This is essentially a 

technique for "weighing" molecules. It works on the principle that ions can be separated 

by mass while moving through a magnetic field. The first step in the mass spectrometric 

analysis o f compounds is the production of gas phase ions o f the compound, basically by 

electron ionization. The ions are separated in the mass spectrometer according to their 

mass-to-charge ratio, and are detected in proportion to their abundance. A mass spectrum 

of the molecule is thus produced. It displays the result in the form o f a plot o f ion abundance 

versus mass-to-charge ratio. Thus, the complete process involves the conversion o f the 

sample into gaseous ions, with or without fragmentation, which are then characterized by 

their mass to charge ratios (m/z) and relative abundances. The mass spectrometer consists 

of four major components i) a sample inlet ii) ion source iii) analyzer iv) detector system. 

Samples molecules are introduced into the instrument through a sample inlet and these 

molecules are converted to ions in the ionization source before being electrostatically 

propelled into the mass analyzer. Ions are then separated according to their m/z within the 

mass analyzer. The detector converts the ion energy into electrical signals, which are then 

transmitted to a computer. It provides a real time, in situ, no-contact, and non-intrusive 

process sensor for CIGS co-evaporation and is being used to monitor the evaporation rate 

o f multiple elements (Cu, In, Ga and Se) in the system as shown in Figure 2.5 below.
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Figure 2.5 Partial pressure o f  copper (Cu), indium (In), gallium  (G a) and Selenium  (Se) using mass 

spectrometer

2.2.5 Hall Effect Measurement

A Hall effect measurement system is used to measure electrical properties such as 

carrier concentration (n), carrier mobility (p), resistivity (p), conductivity type (n or p), 

Hall voltage (Vh), Hall coefficient (Rh). When a current carrying conductor or 

semiconductor is kept in a magnetic field, a force perpendicular to both current and 

magnetic field, known as the Lorentz force, is experienced by the charge carrier. The Hall 

effect is the result of using this force to determine the magnitude and sign (n-type or p- 

type) o f this force. When a magnetic field with a perpendicular component is applied, the 

paths o f the charge carriers are curved so that moving charges accumulate on one side of 

the material. Equal and opposite charges remain on the opposite side o f the material and a 

voltage can be measured from the charge density difference at equilibrium. During the
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measurement, a sample is mounted in the van der Pauw configuration where electrodes are 

attached (generally soldered for a good ohmic contact) at four opposite comers. In this 

configuration the sheet resistance can be found, and with a magnetic field applied the 

charge carrier density and sign can be found.

2.2.6 Secondary Ion Mass Spectroscopy (SIMS)

Secondary ion mass spectroscopy (SIMS) is a high sensitivity surface analysis 

technique used to determine the surface composition, elemental impurities and depth 

profile on the uppermost surface layers of a sample. SIMS uses a primary ion beam, such 

as an Ar or Cs ion, and sends it on the surface of the sample. Ions ejected from the material 

o f the sample are known as secondary ions. These secondary ions are then analyzed by a 

mass/charge analyzer using the atomic mass values. Depending upon the polarity o f the 

sample, positive or negative secondary ions will be extracted. SIMS is a highly sensitive 

surface scan analysis measuring atoms in the ppm or ppb range and capable o f monolayer 

analysis. The type of mass spectrometer employed by SIMS depends on the operating mode 

of the SIMS. Static and dynamic SIMS is being used in the field o f surface analysis. Static 

SIMS is capable o f analyzing the surface o f an atomic monolayer by using a pulsed ion 

beam and a time of flight mass spectrometer while dynamic mode sputters the material of 

the sample using a DC primary ion beam and measuring with a quadruple or magnetic 

sector mass spectrometer. In this study, a dynamic SIMS analysis was used to find the 

impurities in the solar cell stack as well as to find the composition of the absorber layers.
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2.2.7 Transmission and Reflection Measurements

The most common method o f determining the band gap of a semiconductor is by 

transmission and reflection measurement. The transmission and reflection coefficients of 

the semiconductors are normally measured in the wavelength range from 200-2500 nm. 

Then the absorption coefficient can be calculated from transmission and reflection 

coefficients using the relation [23]:

d

Where a  is the absorption coefficient, d is thickness o f the thin film, R is the reflection and 

T is the transmission. Once a is calculated, then the band gap o f any direct band gap 

semiconductors can be extracted by plotting (ahn)2 vs. ho and by extrapolating the linear 

portion o f the curve to the hi) axis. The intersection of this linear extrapolation with the ho 

axis gives the band gap.

2.2.8 Energy Dispersive X-ray Spectroscopy (EDS)

Energy dispersive X-ray spectroscopy (EDS) is an analytical technique used to find 

the elemental composition of materials down to a spot size o f a few microns. It relies on 

the emission of X-rays as a result of interaction o f the material with the high energy 

radiation at atomic level. An electron from the lower energy state is ejected due to the 

bombardment of high energetic beam from the electron source and the atom goes to an 

excited state. The electron from the excited state falls back to the vacant state by releasing
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energy in the form of X-rays. Since the atomic structure of an element distinguishes it from 

another element, this emitted X-ray is characteristic of the element. An energy-dispersive 

(EDS) detector is used to separate the characteristic x-rays of different elements into an 

energy spectrum, and EDS system software is used to analyze the energy spectrum in order 

to determine the abundance of specific elements in the sample.

2.2.9 Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) is an analytical technique used in the study o f 

surfaces o f composition analysis and can be used for depth profile o f the composite 

material in combination with a sputtering gun, where sputtering is used to remove the outer 

layers. The basic Auger process begins with removal of an inner shell atomic electron to 

form a vacancy by bombarding with an electron beam. The inner shell vacancy is filled by 

a second atomic electron from a higher shell by releasing the excess energy. A third 

electron, the Auger electron, escapes carrying the excess energy in a radiationless process. 

The process o f an excited ion decaying into a doubly charged ion by ejection o f an electron 

is called the Auger process. The kinetic energy o f the emitted electrons is measured and 

the signal is proportional to the number of atoms sampled. The kinetic energy of the Auger 

electron from an ABC transition can be estimated as [23]:

^ ahc ~ E A(Z) — E H(Z) — E r (Z + A) — q<f> (2.7)

where E a b c  is the kinetic energy of the finally ejected electron, Ej=A,B.c is the binding 

energy of electron in ith orbit, Z is the atomic number o f ionized state and A is the factor
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that take into account the binding energy of the C orbit due to the ionized atom. Auger 

electrons can only escape from the outer 5-50 A of a solid surface at their characteristic 

energy, which makes it an extremely surface sensitive technique.

2.2.10 Scanning Electron Microscopy (SEM)

Scanning electron microscopy utilizes high-energy electron beam in a raster-scan 

pattern to produce a highly magnified image or collect other signals from the three- 

dimensional surface o f a sample. An SEM consists o f an electron gun, an electron lens 

system, scanning coils, an electron collector, electron detectors, display and recording 

devices. In SEM, larger magnifications are possible over optical microscopes since 

electron wavelengths are much smaller than photon wavelength and a large field o f view 

is possible since the electron beam is small, which allows three-dimensional study o f a 

specimen’s surface. As an operation principle of a SEM, the focused electrons interact with 

the atoms in the specimen producing a number o f different types of signals, which contains 

data about the specimen’s surface morphology, composition, and other physical and 

chemical properties. The induced signals by an SEM include secondary electrons, back- 

scattered electrons (BSE), characteristic X-rays, photons as well as specimen current and 

transmitted electrons. Electron with energies 0-30 eV are detected and used to form the 

image in secondary electron mode. These electrons are knocked out from within a few 

nanometers o f the surface o f the specimen. Backscattered electrons are electrons from the 

electron beam that are elastically scattered back from the sample and provides the
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information about the bulk properties of the materials since such scattering takes place in 

a volume extending down to 0.5 pm below the surface of the specimen.

2.2.11 Spectroscopic Ellipsometry measurement

Spectroscopic Ellipsometry is an optical tool that uses polarized light for the 

investigation o f the dielectric properties o f specimens, from which more indirect 

parameters such as growth or structural parameters can be derived. It measures a change in 

polarization as light reflects or transmits from samples. Because it uses the polarization 

state as a probe rather than only the intensity o f the photon itself, it is a very sensitive 

measurement technique. It routinely generates information about layers that are thinner 

than the wavelength o f the probing light itself and theoretically down to a single atomic 

layer. The detail theory o f the Ellipsometry is explained in Chapter 5.

2.2.12 Current Density vs. Voltage

The standard J-V measurement is performed under a standardized “ 1-sun” (AM 

1.5) illumination at room temperature. The solar cell is placed under the light source, 

minimizing the distance to the center o f the light. Two electrical probes are placed on the 

p-type and n-type sides. Dark measurement is performed without light source while the 

illuminated measurement is performed with the light source on. The measurements results 

are collected by a highly sensitive and accurate multimeter and sent to a computer, where 

all the data is stored in current (I) and voltage (V) pairs. The current density (J) is calculated
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after knowing the illuminated area o f the sample. Thus J-V data will be obtained. This J-V 

measurement data helps not only in finding efficiency, fill factor, Jsc, Voc but also helps in 

finding the shunt resistance, series resistance and the voltage dependent current collection. 

The current density in a real solar cell is written as [27].

J  = J Q exp
AKT

(V - R SJ ) - J 0 +
V - R SJ

J, (2 .8)

where A is the ideality factor, Rs is the series resistance and RSh is the shunt resistance o f 

the solar cell. An equivalent circuit o f a solar cell with these parasitic resistances is shown 

in Figure 2.6 below.

■AAAAAAr
R.

(t) x R ,sh

i
Figure 2 .6  An equivalent circuit o f  a solar cell.

The series resistance Rs of a solar cell is not only due to the bulk resistance o f the 

individual thin film o f the cell stack but also to the resistance of the semiconductor- metal 

contacts and the bulk resistance o f the metal contact. The series resistance can be

dV AkT
determined from equation 2.8 by plotting —  = R, + ------ (J  + J , )"'  versus (J  + J,)~i

dJ q
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under the condition that RSh is infinitely high. This plot intercepts y axis at a value o f Rs 

and the slope o f the linear region allows identification of A. The effect of increase in the 

Rs is reflected by the decrease in the steepness of the I-V curve as shown in Figure 2.7. Isc 

and Voc remain almost the same but FF decreases for a small increment in Rs. However, 

large increase in Rs first affects the Isc and then Voc. The shunt resistance RSh is infinitely 

high for an ideal solar cell but this is not true for the real solar cells. A real solar cell always 

has a finite value of shunt resistance RSh and this value may decrease further for a solar cell 

due to the leakage path near the junction as well as due to the presence o f defects like 

pinhole in the absorber layer. The decrease in the RSh has adverse effect on the fill factor. 

A plot o f dJ/dV determines the shunt conductance. G = l/R Sh.

Due to a short minority carrier lifetimes, charged carriers can recombine before 

being swept across the junction by the in-build electric field. The magnitude o f the electric 

field can be increased by applying a reverse biased voltage across the terminal, which 

allows the electrons with small diffusion length to be collected. Such an increment in the 

current due to bias voltage is called voltage-dependent current collection Jl (V). The 

presence o f voltage-dependent current is observed as an increase in the slope in the reversed 

bias region of the light J-V curve. Such observation of the light J-V curve can be confusing 

since decrease in RSh also affects the J-V curve in the same pattern. But the decrease in RSh 

also affects the dark J-V curve as it does the light J-V curve. So if the dark J-V curve is 

well behaved but there is a slope in the light J-V curve, the voltage-dependent current 

collection can also be determined from the J-V measurement
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Figure 2 .7  Light and dark J-V curves for an ideal and non-ideal solar cells [after 28],

2.2.13 External Quantum Efficiency

External quantum efficiency is defined as the number of charge carriers generated 

by the solar cells per absorbed photon o f a particular energy and is a measure o f the fraction 

o f incident photons converted into current. When a photon arrives on the surface o f a solar 

cell, it can be absorbed by any of the layers deposited on the solar cell. However, photons 

with high energy tend to be absorbed toward the surface o f the cell facing the sun while 

photons with lower energy tend to be absorbed in the bulk of a solar cell. In a solar cell 

structure, different layers are designed to absorb different energies o f light, with the layers 

o f highest band gap toward the surface o f the cell. So, each layer between the top and the 

bottom of the cell acts as a window. A solar cell does not get 100% QE, and the region of
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the QE spectrum that have lower currents can provide insight to what layer in the solar cell 

is causing a problem within the cell. Therefore QE of a real solar cell may have less than a 

unity if either: i) the light is not absorbed or is reflected; ii) recombination occurs within 

the cell; or iii) there is a decrease in collection probability because of the mechanism that 

is being used for collection at a specific wavelength [29].

The total current density can be calculated by integrating the product o f the EQE 

and the photon flux density. For the standard AMI .5 G solar spectrum, the calculation for 

short-circuit current density [30] is

Isc = q C W W j z  (2.9)

Where e£ m1sg is the spectral irradiance o f the AMI .5 G spectrum, X is the wavelength, h 

is Planck’s constant, and c is the speed o f light.
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Figure 2.8: Typical C iG S quantum -efficiency curve and involved loss mechanism s.

The losses in the current are due to the optical properties o f the different layers in 

the cell as well as to the electrical defects in the absorber layer. The different losses in the 

QE are shown in Figure 2.8. The following are the losses in the solar cell:

(i) “Reflection” losses are introduced by partial coverage o f the front surface by the 

metal contact fingers or by reflection from the material interface. Such losses can 

be reduced by depositing a thin anti-reflecting coating.

(ii) “Window” absorption in the short-wavelength region is not significant due to 

the high band-gap energy o f ZnO/AZO. Free electron absorption in the AZO layer 

can lower the quantum efficiency in the high wavelength region. Such losses can
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be reduced by thinning the layers. If the thicknesses o f the window layers are 

reduced significantly there are chances of bad junction between CdS and CIGS, 

shunting through i-ZnO layer and reduction in current collection due to increase in 

sheet resistance in the AZO layer. So there must be a balance between the optical 

losses and the electrical losses.

(iii) “Buffer” absorption is one of the major losses in thin-film solar cells (CIGS). 

Reducing the thickness o f the CdS or replacing it with a higher band-gap material 

such as ZnS would be the possible alternatives.

(iv) “Recombination” losses are introduced due to traps or due to a low diffusion 

length o f the absorber layer in the cell. The longer the wavelength, the deeper the 

generation o f carriers and the higher the likelihood of recombination in the cell is. 

Such kind o f loss can be visualized by measuring the QE under negative biased 

voltage.

(v) “Deep penetration” o f carrier losses occurred for long wavelength photons due 

to incomplete absorption near the band gap of the absorber layer. These losses are 

inherent to most of the semiconductor since incident light with photon energy of 

ho<Eg is not absorbed. This loss can be addressed by increasing the thickness of 

the absorber layer or making high quality absorbing materials.
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CHAPTER 3

EFFECT OF ABSORBER THICKNESS ON ULTRATHIN CIGS

FILMS AND DEVICES

3.1 Introduction and motivation

With 21.7% efficiency, Cu(In,Ga)Se2 (CIGS) solar cells are the most efficient 

polycrystalline thin films solar cells today [5]. In addition to high efficiencies, CIGS thin 

film modules exhibit excellent outdoor stability [31-32] and radiation hardness [33-34], 

Therefore, the combination of high efficiency with outdoor stability and radiation hardness 

makes CIGS a promising material for low cost and high efficiency solar cells. The standard 

thickness of the CIGS layer in CIGS thin-film solar cells is 1.5-2 pm [35], If this thickness 

could be reduced, with only minor loss in performance, production costs could be lowered. 

A thinner CIGS layer would reduce the direct materials usage and so induce low materials 

costs. A reduction of materials usage is particularly important for indium and gallium since 

the supply of these metals might become an issue if CIGS thin-film solar cells are produced 

in very large volumes in the future [36]. The deposition time could also be reduced for 

thinner CIGS layers, which would directly lower production costs. However, a reduction 

o f the absorber thickness is related with a number of problems. Even though the absorption 

coefficient o f the CIGS material is very high, the amount o f light absorbed in the CIGS 

layer will decrease with a reduced absorber thickness. When researchers try to reduce the 

CIGS layer to around 0.5 pm, the devices became electrically shunted which was related 

to the roughness o f the film, which was o f the same order as the film thickness itself [37]. 

In another case, an increase in the shunt conductance was observed when the CIGS
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thickness was reduced [38]. Another potential problem for thinner CIGS layers is that the 

electrons will be generated closer to the back contact with higher probability for back 

contact recombination. These factors motivated us to study the effect of a reduced CIGS 

absorber thickness on device performance.

Fabricating CIGS solar cells with minimum thickness of the absorber layer has two 

key potential advantages over their thicker counterparts: it can reduce production cost by 

lowering material consumption and yielding higher throughput, and it can reduce 

recombination losses since the electron and holes generated by light do not need to travel 

so far. Optically, less than 0.5 pm absorber layer is needed to absorb more than 90% of the 

light with £ Ph > Eg, even without considering reflection o f the light at the back contact. 

However, the absorber thickness can influence the cell parameters in many ways such as i) 

Photocurrent density, Jsc reduced due to decrease in collection length ii) the effect o f back 

contact (BC) recombination can increase and iii) local generation rate may be increased in 

case of a highly reflecting back contact such as ZrN. thus increasing Voc. In ultrathin CIGS 

solar cell, light spectrum can either be absorbed within the BC layer or they can be reflected 

from it. The reflected light from BC again can be absorbed during the second light pass 

through the ultrathin CIGS layer or transmitted out from the device. So a reduced absorber 

thickness must be compensated by an improved BC reflectance and a reduced BC 

recombination since light absorption depends upon the reflectance and absorbance o f the 

BC layer.

In our case, solar cells with thick CIGS layer (~ 2 pm) were fabricated with the 

following standard structure: glass/Mo/CIGS/CdS/ZnO/ITO/grids by co-evaporation
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processes and the thickness of the absorber layer was then gradually reduced to observe its 

effect on the device parameters.

3.2 Ultrathin CIGS Review

The concept o f thinning the Cu(In,Ga)Se2 (CIGS) layer is o f great interest and has 

already been explored by several researchers [36-39]. The potential advantages o f this 

concept derive from the reduction o f cost and usage of materials (especially indium and 

gallium) and the increase in production throughput. In a standard CIGS device, the absorber 

thickness is typically 2 pm. Thickness o f the absorbing layer reduction down to 0.4 pm 

would save 75% of the semiconductor material by considering the same yield and the 

deposition time would be four times shorter by keeping the same deposition rate. The recent 

significant achievements for producing ultra-thin cells with good performance are shown 

in Figure 3.1. More recently, recorded best CIGS solar cell [5] (blue diamond in Figure 

3.1) have shown significant improvement in voltage and fill-factor. The thin films of the 

recent ultra-thin devices are smoother, making it possible to produce 0.5 pm or thinner 

devices. The thinnest device (0.15 pm) with remarkable performance [39] is 5 % efficient. 

The best 1 pm CIGS device [8] has achieved efficiency o f 17.1 %, which is only 4.6 % less 

than the record CIGS solar cell [5]. Even though the thin CIGS solar cells have shown 

remarkable improvement in open circuit voltage (Voc) and fill factor (FF), current reduction 

still remains which is the main cause for the thin film solar cells’ lower efficiency. So the 

challenge for thinning the absorber with minimal efficiency loss is still open and this 

challenge should be mainly directed towards the improvement of the current loss to 

improve the thin cells performance.
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Figure 3.1 R eview  o f  experim ental results o f  CIGS solar cells w ith thin absorbers layers (references 

m entioned next to the sym bols).

3.3 Effect of CIGS thickness

CIGS thin films with various thicknesses were deposited by 1 -stage co-evaporation 

process. The substrate temperature was maintained at 550°C while the targeted 

composition was a ratio of Cu/(In+Ga) = 0.85 and a ratio o f Ga/(Ga+In) = 0.25. The 

thickness range targeted was from 2.0 pm down to 0.5 pm. The results are summarized in 

Table 3.1 below.
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Table 3.1: Thickness and com position for the CIGS film s deposited with the 1-stage process

Thickness
(pm)

Cu
(at %)

In
(at %)

Ga
(at %)

Cu/(In+Ga)
(y)

Ga/(In+Ga)
(x)

1.95 13.6 19.8 7.2 0.87 0.27

1.55 21.9 22.5 5.2 0.79 0.19

1.30 22.6 21.5 4.8 0.86 0.19

0.75 20.5 20.2 7.1 0.75 0.26

0.50 20.1 19.2 6.8 0.77 0.26

As one can see from Table 3.1, the thicknesses targeted were achieved while the 

compositions were slightly off, with a Cu-poor and Ga-poor tendency. Figure 3.2(a) shows 

the XRD patterns of CIGS films with various thicknesses. It was observed that all the peaks 

can be indexed by chalcopyrite polycrystalline Cu(Ino 7,Gaoj)Se2 and molybdenum, which 

indicates that the CIGS films are single phase. Figure 3.2(b) and 3.2(c) are the XRD fine 

scans o f the chalcopyrite (112) and (220)/(204) peaks of CIGS films with different 

thickness respectively. As can be seen from Figure 3.2(a), all the films tend to be (112) 

oriented while the FWHM did not show any specific trend even for the thinner films. This 

is confirmed in Figure 3.3 by cross sectional SEM images, where the grain size seems to 

be quite large for all films regardless o f their thickness.
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Figure 3 .2(a) X R D  patterns against the CIGS film  thickness (b ) X R D  fine scans o f  (1 1 2 ) peaks o f  CIGS film s 

with different thickness (c )  X R D  fine scans o f  (220 )/(204 ) peaks o f  CIGS film s w ith different thickness

It is known that x-ray diffraction intensity mainly depends on the thickness and 

material properties o f the thin film. So the thickness o f each o f the layers must be taken 

into account in order to analyze the XRD spectra o f the different layers more accurately.
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The ratio o f diffraction intensities of a specimen with finite thickness x to material with 

infinite thickness is given by [42]

Gx  =  lxxz°ood/P =  [1  -  e -^ /s in a + l/s in f l ]  (3.1)
Jx= 0 dIo

For a flat specimen, a  = (3 = 0 and equation 3.1 reduces to

- 2  f l X \

G■x  =  - e s i n e j  (3 .2 )

Where a  is the absorption coefficient, x is the thickness of the material and 0 is 

angle of diffraction.

Since the mass absorption coefficient o f a compound is the weighted fraction of the 

mass absorption coefficients of its constituents, the expression for the mass absorption 

coefficients of Cu(Ino.7,Ino 3)Se2 is as follows [43],

d £ \ r „ ( t n rn  g>*+o.3M Ca(f)c« + 2M5e( g s e
Vpi  ̂ 07' 0 3 7  2 MCu + 0 .7 M ;n + 0 .3 M Ca + 2 M Se ’

Where ^ is the mass absorption coefficient of the Cu(Ino.7, Gao 3)Se2 film, p is the

material density and M is the molar mass. The mass absorption coefficients and molar mass 

values for Cu, In, Ga and Se are given in the table 3.2. Hence from equation 3.3, the value 

o f ^  for Cu(Ino 7,Gao.3)Se2 is 117.74 cm2/g. The density of Cu(Ino.7,Gaoj)Se2 film is 5.692

gem'3 [44]. The absorption coefficient p is obtained by multiplying with the density of 

Cu(Ino 7,Gao.3)Se2 to be 117.74*5.692 = 670.17 cm '1. Then, using equation 3.2 and the 

calculated values for the absorption coefficients o f Cu(Ino.7,Gaoj)Se2, the ratios o f 

diffraction intensities Gx for (112) and (220/204) peaks of CIGS films are obtained, as
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shown in table 3.3. It was observed that the values o f Gx decrease significantly as thickness 

reduces. The values of Gx for the CIGS film with thickness 0.5 (am are only about one-third 

o f those for the CIGS film with thickness 1.95 um. It clearly indicates that the diffraction 

intensity o f X-ray will decrease for ultrathin films.

Table 3.2 The Mass absorption coefficients (p/p) values and molar mass values for Cu, In, Ga and Se from 
[48].

Element Cu In Ga Se

H/p (cm2g-‘) 52.7 252.0 63.30 82.80

M (gmol'1) 63.54 114.8 69.72 78.96

Table 3.3 Calculated values o f  the ratio o f  the XRD peak intensities Gx for (112) and Gx (220/204) peaks o f  
CIGS films with different thickness

Thickness ((am) 1.95 1.55 1.3 0.75 0.5

Gx( 112) 0.675 0.591 0.528 0.351 0.251

Gx(220/204) 0.498 0.421 0.369 0.233 0.162

Gx( 112)/Gx(220/204) 1.357 1.402 1.432 1.508 1.547



Thickness: 1.95 pm Thickness: 1.55 pm

Thickness: 1.30 pm Thickness: 0.75 pm

Thickness: 0.5 pm

Figure 3.3: C ross-sectional im ages for CIGS film s with different thickness deposited by the 1-stage process.
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Transmission and Reflection measurements (Figure 3.4) correlate well with 

composition measurements, with a lower band gap for the 1.55 and 1.25 pm films, while 

one can observe above band gap transmission as expected for the ultrathin films (below 1 

pm). These transmission spectra also confirm that each of the film with different thickness 

has low sub-band gap absorption, which indicates that all these films have minimum 

allowed impurities states in the band gap,

100100
■1 96 am 
1.55 um 
1.25 um 
0.75 sUT) 
0 50 um

5  4 0

20 20

4 0 0  6 0 0  8 0 0  1 0 0 0  1 2 0 0  1 4 0 0 4 0 0  6 0 0  8 0 0  1 0 0 0  1 2 0 0  1 4 0 0

Wavelength (nm) Wavelength (nm)

Fig 3:4 (a) Transmission (T) and (b) reflection (R ) spectra CIGS film s with different thicknesses

CIGS solar cells were then fabricated for the 5 different thicknesses with the 

following standard structure: glass/Mo/CIGS/CdS/ZnO/ITO/grid. Cells with total area o f 

0.50 cm2 were defined by mechanical scribing. The efficiency of the completed device was 

extracted from J-V measurements under 100 mW/cm2, and the currents confirmed by QE 

measurements under white light bias. Results for the devices are reported Table 3.4 and 

Figure 3.5. One can observe that the current and voltage are roughly constant as thickness 

reduced from 2 pm to 1.3 pm, while decreasing for 0.75 pm and 0.5 pm as shown in Figure

3.5. Similar trend of reducing the solar cell parameters was observed for the solar cells with



47

CIGS thickness below 1 pm [40]. The decrease in absorbance in long wavelength with 

decreasing the CIGS thickness would be the main reason o f reducing Jsc [40]. As we can 

see in Figure 3.5 (right), there is the reduction in QE as thickness o f CIGS is reduced. It 

was found that the reduction o f QE is more than the reduction o f absorbance in the short 

wavelength, which would be due to the electrical loss mechanism such as enhancement of 

the series resistance and recombination o f photoelectrons in back contact [41]. The 

decrease in V 0c as absorber layer thinned down below 1 pm could be due to the increase in 

shunt conductance with reducing CIGS absorber layer thickness. The reduction in FF is 

also probably due to an increase in series and shunt conductance. These results will 

therefore be analyzed in the next section for enhanced understanding and to allow 

designing new experiments.

Table 3 .4  Solar cells parameters for CIGS solar cells deposited by 1-stage process with various thicknesses

Thickness
(pm)

Voc

(V )

Jsc
(mA/cm2)

Jsc from QE 
(mA/cm2)

FF
(%)

Efficiency
(%)

1.95 0.52 28.8 28.5 61.3 9.2
1.55 0.55 27.6 28.5 66.0 10.1

1.30 0.52 28.9 28.6 68.5 10.3

0.75 0.50 25.4 25.0 70.0 8.9

0.50 0.44 22.5 21.0 56.6 5.6
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Figure 3.5: J-V measurem ents and Quantum E fficiency (Q E) o f  devices fabricated by 1-stage process from  

Cu(In,G a)Se2 thin film s with different thicknesses

3.4 Numerical Analysis of Ultra-thin Cu(In,Ga)Se2 Solar Cell

3.4.1 Introduction and Motivation

A numerical modeling is a theoretical construct representing the real processes and 

parameters that influence them. Numerical models have become increasingly important 

tools to test the viability of proposed physical explanations and to predict the effect of 

changes in material properties and geometry on the solar cell performance. These models 

have become indispensable tools in order to design any kind of efficient solar cell. They 

can help the better understanding of cell operation and provide the manufacturers 

additional guidance to improve the product performance by optimizing their design. A 

good model, where only the most important parameters are considered, is a good 

representation of a real phenomenon and helps to enhance our understanding. As our 

understanding has increased, so has our increased need for complex models in order to 

provide the sufficient realistic descriptions o f their operations. This added complexity has
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exceeded our ability to solve the problems in analytical way. As a result, we need to have 

numerical solutions to avoid unrealistic assumptions to get the proper solutions. Carefully 

constructed models provide the need to push cell efficiency toward the absolute limit by 

optimizing the existing designs and compromising it with competing design proposals. A 

schematic of the numerical modeling for the best solar cells performance is shown in Figure

3.6. Once the cell is fabricated, complete characterization is needed to determine the losses. 

Careful analysis o f characterization curves leads to hypothesis o f where these losses come 

from. Numerical modeling tools can support the hypothesis and explain the physical 

mechanism behind these losses. In solar cells, numerical solution tools allow the inclusion 

of important materials characteristics such as mobility, life time and band-gaps which 

would predict the quantitative impact o f changes in material properties on solar cell device 

performance and suggest better way to change the optimized deposition process and 

improve overall cell performance. It is clear that numerical modeling is a valuable 

technique to improve the solar cells performance but interpretation o f modeling results 

needs to be done carefully.

The experimental results for ultrathin CIGS solar cells (as shown in Figure 3.5) 

indicates that the efficiency drops not only due to the decrease in Jsc, which is expected 

since the absorber layer gets thinner, but also due to decrease in Voc and FF. The 

degradation o f the overall performance of the ultrathin CIGS solar could be due therefore 

to the combination o f reduction in thickness o f the absorber layer as well as the presence 

of impurities in the absorber layer. It was found that the bulk defect in the CIGS absorber 

layer can affect the entire solar cell performance [32]. A deep defect, which lies in the 

upper part of the energy gap (0.8 eV from the valence band), was found to have a very
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significant influence on the CIGS solar cells performance [36]. One of the purposes o f this 

simulation is to help us increase the efficiency o f the ultrathin CIGS solar cells by 

understanding the influence we can have on the defects within the band gap o f the CIGS.

Loss analysis

Numerical modeling

Improvements

Deposition

Characterization

Physical description

Figure: 3.6: A schem atic o f  the numerical m odeling to improve solar cells performance

3.4.2 Effect of CIGS Thickness

There are several software programs that have been written with a specific purpose 

of modeling solar cells. All of them have different unique features and limitations but they 

have the same basic principles. In this work, wx-AMPS [45] and SCAPS [46] have been 

used for the solar cell simulation. One advantage o f SCAPS-ID over wxAMPS-lD is its 

capacity to simulate capacitance-voltage (C-V) and capacitance-frequency (C-F) 

characteristics. Inclusion of interfaces between layers is another advantage o f SCAPS in



comparison of wx-AMPS. On the other hand, wx-AMPS has better plotting options, and it 

can perform multiple simulations at the same time.

3.4.3 Basic Concepts

The main equations o f carrier transport in the semiconductors are Poisson’s 

equation and the carrier continuity equations. Poisson’s equation is mainly for the 

distribution o f the electrical field inside the device whereas continuity equations for 

electrons and holes are basically the conservation equation o f carrier currents. Wx-AMPS 

was mostly used in this work so its principles will be explained in details. In wx-AMPS, 

the steady state band diagram, recombination profile and carrier transport are estimated in 

one dimension based on the Poisson’s equation and the hole and electron continuity 

equations. The Poisson’s equation is [31]

£ ( ~ £0 0 S )  =  q[p(x) -  n (x ) +  A # 0 )  -  NXO ) +  pt (x ) -  n t O )] (3.1) 

where, is the electrostatic potential, n, p  are the concentrations o f free electrons and 

holes, nt and ptare the concentrations o f trapped electrons and holes, N£ and N ^  are the 

concentrations o f ionized donors and acceptors, e is the dielectric permittivity of 

semiconductor, and q is the electron charge.

The charge transport process of an electronic device is derived by the continuity 

equation for the holes and electrons. The continuity equations for holes and electrons are
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(3.3)

Where is the electric field, G is the generation rate, D is the diffusion coefficient. All 

these parameters are a function of the coordinate position x. In this work, only steady state 

solutions are considered and hence:

The light intensity decreases exponentially with penetration into the material. The 

generation rate, which gives the number o f electrons generated at each point in the cell, is

proportional to the remaining light intensity. So the generation rate G(x) equals:

Where I(x) is the light intensity at the point x, x0 is the point on the top o f the particular 

layer and a  is the absorption coefficient. The electrical potential (C>) and the carrier 

concentrations (n and p) or, alternatively, the potential (<D) and the quasi-Fermi levels for 

electrons and holes (EFn and E fp), are the unknown variables in the solar cell simulation.

3.4.4 Base Line Parameters for CIGS Solar Cells

Numerical modeling o f CIGS solar cells is an efficient way in order to verify the 

viability o f created hypothesis depending on the physical explanations and to predict the 

effects o f these physical changes on the solar cell performance. Well-known input 

parameters should not be changed in any case, whereas input parameters that have only 

marginal effect on the output tested are kept constant. The remaining parameters should be 

available for further fitting purposes. Important guidelines that should be considered while

(3.4)

highest at the surface of the material, where the majority o f the light is absorbed. It is

G ( x ) =  -  ^  =  a l(x0) e~a (3.5)
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assigning input parameters for numerical simulations are discussed below and then baseline 

parameters for CIGS solar cells are proposed.

3.4.5 Base Line Parameters for CIGS Soiar Cells

3.4.5.1 Front and Back Contact

The formation o f stable, low resistance and non-rectifying contacts is critical for 

the performance and reliability o f solar cell devices. The reflection at the back contact has 

noticeable influence on the achievable short-circuit current density (Jsc) for ultrathin CIGS 

solar cells. In general, simulation tools support a constant multiplicative reflection factor 

for the front surface (i.e. Rf = 0.1,10%  reflection) which decreases the quantum efficiency 

(QE) by this fraction. If interference effects are neglected, QE curves show a fairly flat 

response at intermediate wavelengths of ~ (1 - Rf). Surface recombination can have a major 

impact on Jsc as well as Voc in the solar cells. The surface recombination velocities at the 

top and rear contact are chosen to be equal to the thermal velocity.

3.4.5.2 Solar Cell Material Parameters

The minority carrier diffusion length is the average distance a carrier can diffuse 

from its point o f generation until it recombines with the majority carriers. The relation 

between diffusion length and carrier lifetime is given by:

L =  V D t  ( 3 .6 )
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Where L is the diffusion length, D is the diffusivity and t is the lifetime of the carrier. The

values used for standard CIGS (XX ns) since this work mainly deals with thinner cells, 

which may have higher defects density than the standard thickness (2 pm) [32].

The relation between diffusion constant D and carrier mobility (a is given by the 

Einstein equation:

Carrier mobilities for polycrystalline material should be chosen lower than the values 

reported for crystalline materials [2], Effective masses for direct band gap materials are m*e 

-  0.2mo for electrons and m*h -  0.8mo for holes. The ratio o f the carrier mobilities, \ij\iu 

should be approximately proportional to the ratio o f the effective masses, m*elm*h [2]. The 

reported values o f electron mobilities for single crystal CIGS is in the range o f 90 and 900 

V/cm2-s [33]. The value o f electron mobility used in this study is 100 V/cm2-s.

The effective densities o f states in the conduction and valence band can be 

calculated using the following equation:

If temperature dependent simulations are needed, the direct temperature dependence in Nc 

and Nv should be taken into account. Carrier concentrations can be determined by Hall 

effect measurement. The typical carrier concentration for CIGS is in the order of 1016 cm'3.

baseline value o f electron lifetime for CIGS is 1.6 ns, which is slightly lower than the

(3.7)

(3.8)
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3.4.5.3 Defect States

Schockley-Read-Hall (SRH) model is being used in most o f the numerical 

simulators to describe carrier recombination currents. It is recommended to assign 

recombination defect states in a narrow distribution close to the middle o f the band gap, 

since variations of the energetic defect distribution show negligible effects on the output. 

A defect state can change its state of charge only by one electronic unit o f charge in SRH 

formalism [34], So one can make the following distinctions: An acceptor-like (donor-like) 

defect state is able to accept (donate) one electron. The two possible charge states for 

acceptors (donors) are negative and neutral (positive and neutral). It always follow that free 

holes (electrons) will be coulomb-attracted to ionized acceptor-like (donor-like) defect 

states, whereas electrons (holes) will have no strong interaction with the acceptor-like 

(donor- like) defects giving very small electron (hole) cross-sections. An attractive cross- 

section is assigned corresponding to a radius at which the coulomb potential energy o f the 

carrier in the field o f the charged trap equals to kT [32].

=  I *  1 0 " 13 ~  10" 12^ ~ 2 (3-9)

Neutral cross-sections can range between 10‘18 and 10"15 cm2. Smaller values will be 

reasonable if transitions are unlikely or to compensate for strong field effects.
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3.4.5.4 TCO/CdS/Cu(In,Ga)Se2 solar cells

CIGS solar cell mainly consists o f three layers: n-ZnO Transparent contact, n-CdS 

window, and p-CIGS absorber. A single deep donor (acceptor) trap is used for the CIGS 

(CdS) layer. The high defect density in the CdS layer is responsible to generate the typical 

superposition failure in CIGS solar cells. Besides the band alignment, device performance 

is essentially independent of ZnO and only weakly dependent on CdS parameters. Most 

CIGS parameters have significant influence on solar cells performance. The mobilities for 

CIGS layer are assigned a factor of three below crystalline material values. For the effective 

masses in all layers, the default values o f 0.2mo/0.8mo were used. The optical reflection at 

the front surface o f the solar cell is taken to be 5% whereas the optical reflection from the 

back contact is set at 80%. The influence of the series resistance and shunt resistance are 

not taken into consideration for this simulation. The AM 1.5 solar spectrum is used during 

this simulation and the temperature is set at 300K. Base line case parameters are shown 

in Table 3.6.

Figure 3.7 shows a J-V curve o f experimental and simulated data for the ultrathin 

CIGS solar cell with thickness 0.75 pm for our baseline. The ultrathin CIGS solar cell (0.75 

pm CIGS) performance parameters such as open-circuit voltage (V0c), short-circuit current 

density (Jsc), fill factor (FF) and efficiency from simulation and experimental results are 

shown in Table 3.5. The agreement between experiment and simulation is good for the J- 

V curve and validates our set of parameters as a baseline for simulating the influence of 

thickness variation o f the absorber layer on the solar cell performance. In the simulation, 

the grain recombination boundaries have been taken into account by increasing the bulk 

defect density. The properties of the other layers in the solar cell are kept constant in order
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to obtain qualitative information on the effect of the absorber layer thickness on the solar 

cell electrical parameters. The band gap of the CIGS absorber layer is also kept constant at 

1.15 eV.
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Fig 3.7: Comparison between the J-V curves for the sim ulated and the experim ental result for 0.75 pm CIGS 

solar cell.

Table 3.5 Results from simulation compared with experim ental results for 0 .75 pm CIGS solar cell.

Voc Jsc F F Efficiency
(V) (mA/cm2) (%) (%)

Experimental 0 .5 0 2 5 .4 7 0 .0 8 .9

Simulation 0 .5 2 2 5 .7 6 9 .5 9 .2
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Table 3.6: CIGS baseline parameters taken for the simulations

General device properties Front Back

Ob(eV) ®bn = 0 Obp= 0.2

Se(cm/s) 107 107

Sh(cm/s) 107 107

Reflectivity 0.05 0.8

Layer properties AZO ZnO CdS CIGS

T (nm) 300 200 50 2000

E/Eo 9 9 10 13.6

pe (cm2/Vs) 100 100 100 100

ph (cm2/Vs) 25 25 25 25

N d/a (cm'3) Nd: 1018 Nd: 1018 N d:1018 N a:1016

Eg (eV) 3.3 3.3 2.4 1.15

Nc (cm'3) 2.2 1018 2.2 1018 2.2 1018 2.2 1018

Nv(cm '3) 1.8 1019 1.8 1019 1.8 1019 1.8 1019

Defect States AZO ZnO CdS CIGS

NDG,NAo(cm'3) D: 1017 D: 1017 A: 1018 D:10I4-1016

Ea, E d (eV) Mid gap Mid gap Mid gap Mid gap

Wc(eV) 0.1 0.1 0.1 0.1

CTe (cm2) 10'12 10'12 10'17 5 10'13

Oh (cm2) 10'15 10'15 10'12 10'15
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3.4.6 Parameters Affected by the Thickness of the CIGS Absorber

Various thicknesses o f the CIGS absorber layer were simulated to investigate their 

effect on CIGS based solar cells properties. The solar cell structure used was ZnO:Al/i- 

ZnO/CdS/CIGS. We studied how the absorber layer thickness, hole density and band gap 

influence the short~circuit current density (JscX open-circuit voltage (Voc), fill factor (FF) 

and efficiency of the solar cell.

3.4.6.1 Effect of CIGS Absorber Layer Thickness on the Solar Cell 

Parameters

The standard thickness o f the CIGS absorber layer is about 2 pm. CIGS absorber 

layer with various thicknesses, varying from 1.95 pm to 0.5 pm, were incorporated into 

the numerical simulation. The parameters o f the other layers were kept constant.

We observed that all of the electrical parameters (Jsc, Voc, FF and efficiency) 

decreased for thicknesses below 1 pm. The short circuit current density (Jsc) was the most 

affected due to the increasing transparency o f the thin CIGS layers and to the 

recombination at the interface between the absorber layer and the back contact [35]. For 

ultrathin absorber layer, short wavelength penetrates deeply into the absorber and generates 

electron-hole pair near the back contact, which is the critical area for the recombination, 

resulting in the decrease o f the current density. This recombination at the back contact also 

has a great effect on the Voc and the FF.

However, the reduction in thickness itself was not enough to obtain a good 

agreement between our experimental results and our simulations. We also had to introduce 

a variation o f the bulk defect density to allow for a better fit. As we mentioned earlier, in
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the simulation, the grain recombination boundaries have been considered as increased bulk 

defect density. Attempts were therefore made to compare the simulation results with our 

experimental results by introducing an intentional higher defect density into the absorber 

layers, as shown Table 3.7. The results are shown in Figure 3.8 where the solid red circles 

denote the experimental results. Very good agreement was obtained between the simulated 

solar cell parameters (V0c, Jsc, FF and efficiency) and the experimental results. The 

simulated current-voltage characteristics o f the ultrathin CIGS solar cells suggest that the 

deep states defects that lye in the upper part of the energy gap are responsible for the 

deterioration of the overall solar cell performance of the ultrathin CIGS solar cells.

0.60
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LL
LL

0.5 1.0 1.5 20.5 1.0 1.5 2.0
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Figure 3.8: Sim ulated results on the effect o f  absorber layer thickness on the short circuit current (Jsc), open- 

circuit voltage (Voc), fill factor (F F ) and the efficiency, where the defect density for each thickness is m odified  
(see  Table 3 .7)
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Table 3.7 Results from the simulation for CIGS solar cell with different thicknesses and with different 

defect density whereas experim ental results in parenthesis for comparison.

Thickness
(pm)

V oc,(V )
(exp.)

Jsc, (mA/cm2) 
(exp.)

FF (%) 
(exp.)

Eff.(%)
(exp.)

Defect
density
(cm'3)

1.95 0.54(0.52) 28.8 (28.8) 61.9 (61.3) 9.6 (9.2) 6.4 E+14

1.55 0.56(0.55) 27.9(27.6) 66.5(66.0) 10.3(10.1) 5.9 E+14

1.30 0.53(0.52) 29.3(28.9) 68.9(68.5) 10.7(10.3) 3.1 E+14

0.75 0.52(0.5) 25.7(25.4) 69.5(70) 9.2(8.9) 1.9 E+15

0.50 0.43(0.44) 22.5(21) 58.6(56.6) 5.9(5.6) 1.9E+16

Figure 3.9 shows the simulated quantum efficiency curves, which indicate that the 

absorption o f the incident light greatly decreases for thicknesses below 1 pm toward the 

wavelength greater than 500 nm. This could be due to the combined effect o f light 

transmission and high recombination of electrons at the CIGS/Mo interface. The decrease 

in Voc could be related to the degradation o f the junction in the case o f ultrathin thickness 

or back surface recombination. The overall cell performance for ultrathin CIGS is reduced 

due the decrease in Jsc, V oc and FF. The decrease o f the efficiency is more severe when the 

thickness o f the absorber layer reduced below 500 nm due to the simultaneous action of 

degradation of the absorption, presence o f defect density and electrons capture by the back 

contact.
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Figure 3.9: Sim ulated quantum efficiency o f  the cell with different CIGS absorber layer thickness.

3.4.6.2 Effect of Defect States on Ultrathin CIGS Solar Cell Parameters

The surface defect density and/or the bulk defect density are key factors limiting 

the overall performance of the CIGS solar cells [36]. A shallow defect with 0.3 eV was 

found to have little impact on the decrease of the solar cells performance [37], while a deep 

one lying in the upper part of the energy gap (0.8 eV from the valence band) was found to 

have a severe influence on the CIGS solar cell performance [38]. It was found that the 

defect states always harm the CIGS solar cells performance, but that when the defect state 

density is below 1014 cm'3, they have less effect on the CIGS solar cell performance [36].
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During the simulations, we fixed the thickness of the absorber at 0.75 pm to 

quantify the effect of the defect density on the solar cells parameters. The location o f the 

defect state was fixed in the middle o f the band gap. The defect state density was varied 

between 1013 cm'3 and 1016 cm'3. The change in short-circuit current (JSc) and fill factor 

(FF) with respect to defect density are shown in Figure 3.10. When the defect state is less 

than 1014 cm'3, Jsc and FF change only slightly. As the defect density increases from 1013 

to 1016 cm'3, Jsc decreases from 29.0 mA/cm2 to 22.3 mA/cm2 while FF decreases from 

77.5 % to 61.7 %, indicating a range where these two parameters are greatly affected by a 

change in the defect density.

The change in open circuit voltage ( V 0c) and photoelectric conversion efficiency 

with respect to defect density is shown in Figure 3.11. When the defect state is less than 

1014 cm'3, the defect state has also very little effect on V oc and hence on the efficiency of 

the ultrathin CIGS solar cell. When the defect state increases from 1013 cm'3 to 1016 cm'3, 

Voc decreases from 0.58 V  to 0.43 V , while the efficiency of the cell decreases from 

13.0% to 5.9%. Overall, it was therefore observed that the defect density always harm the 

performance o f the ultrathin CIGS solar cells but that it is less pronounced when the 

defect state density is less than 1014 cm'3. This is in good correlation with the results we 

obtained for varying thicknesses (Table 3.7) where we showed that the defect density 

increased with the reduced thickness, accelerating even more the decrease in efficiency. 

Finding the origin o f these defects and a way to passivate them is therefore a key to 

improve ultrathin CIGS solar cell efficiency.
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Fig 3.10: Jsc and fill factor (FF) with respect to defect density in the ultrathin (0 .75 pm ) CIGS solar cell.

0.6
★  Voc(expt.) . 
■  Eff. (expt.) '

0.5
10 o

>  0.4

0.3

D efect density (crrf^)

Fig 3.11: Voc and efficiency with respect to defect density in the ultrathin (0 .75  pm ) CIGS solar cell.
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3.5 Summary

CIGS thin films with various thicknesses from 1.95 jam down to 0.5 pm were 

deposited by co-evaporation. CIGS solar cells were then fabricated with the following 

standard structure: glass/Mo/CIGS/CdS/ZnO/ITO/grid. Cells with total area o f 0.50 cm2 

were defined by mechanical scribing. The efficiency of the completed device was extracted 

from J-V measurements under 100 mW/cm2, and the currents confirmed by QE 

measurements under white light bias. The current and voltage were roughly constant as 

thickness reduced from 1.95 pm to 1.3 pm, while decreasing for 0.75 pm and 0.5 pm. The 

reduction in Jsc is likely due to the reduction in absorbance in long wavelength. The 

observed decrease in V0c could be due to the increase in shunt conductance with reduction 

o f the CIGS absorber layer thickness. The experimental results for ultrathin CIGS solar 

cells indicate that the efficiency drops not only due to the decrease in Jsc, which is expected 

since the absorber layer gets thinner, but also due to decrease in Voc and FF. The 

degradation of the overall performance of the ultrathin CIGS solar could be due therefore 

to the combination of reduction in thickness o f the absorber layer as well as the presence 

o f impurities in the absorber layer. Numerical modeling of CIGS solar cells is an efficient 

way in order to verify the viability o f created hypothesis depending on the physical 

explanations and to predict the effects o f these physical changes on the solar cell 

performance. The simulated current-voltage characteristics of the ultrathin CIGS solar cells 

suggest that the deep states defects that lye in the upper part o f the energy gap are 

responsible for the deterioration o f the overall solar cell performance of the ultrathin CIGS 

solar cells.
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CHAPTER 4 

EFFECT OF DEPOSITION PROCESS ON ULTRATHIN CIGS 

FILMS AND DEVICES

4.1 Introduction and Motivation

With the highest small-area efficiency among the thin film photovoltaic (PV) 

technologies, Cu(In,Ga)Se2 (CIGS) based solar cells have shown the greatest potential for 

success. CIGS technology is rapidly increasing its market share with the establishment o f 

new CIGS solar cell companies. As this technology continues to expand, the scarcity and 

high price of indium can potentially hinder it from competing with other solar cell 

technologies. A potential solution to this problem is to decrease the amount of indium in 

the device by reducing the thickness o f the film during fabrication [8], as we saw in the 

previous chapter. But ultrathin Cu(In,Ga)Se2 films are grown by many different deposition 

techniques. The material properties o f ultrathin Cu(In,Ga)Se2 films are indeed different 

with different deposition processes. On a laboratory scale, the highest efficiency (21.7 %) 

[5] Cu(In,Ga)Se2 solar cells are prepared by co-evaporation process. However, the co

evaporation process is not a straightforward technique and the characteristics o f the grown 

films are different depending on the individual sources and substrate temperature. The 

properties o f the ultrathin Cu(In,Ga)Se2 film changes with the change in the atomic 

percentage (at.%) of Cu, In, Ga and Se, which depends itself on the evaporation conditions. 

Among the different co-evaporation techniques used to grow Cu(In,Ga)Se2 films, the so- 

called 1-stage, 2-stage and 3-stage co-evaporation processes are the most successful 

processes. The highly efficient Cu(In,Ga)Se2 solar cells are obtained with a particular
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Cu/(In+Ga) ratio (0.90) and a particular Ga/(In+Ga) ratio (0.3). In order to achieve the 

required Cu and Ga at.% at the end of the 2-stage and 3-stage processes, it requires a precise 

control over the course o f the deposition, the time of each sequence and the concentration 

of individual elements. Due to this complexity o f these processes, and to study the material 

properties of ultrathin Cu(In,Ga)Se2 , we decided to evaluate the properties o f ultrathin 

Cu(In,Ga)Se2 thin films fabricated by 1-stage, 2-stage and 3-stage processes.

4.2 Deposition Process of CIGS

The co-evaporation process is the most successful technique used to fabricate high 

efficiency CIGS solar cell. This deposition process involves simultaneous evaporation o f 

individual elements from multiple sources in a single or sequential process. The variation 

in Cu content strongly affects the film’s growth, while there is only a minor change in the 

growth kinetics due to the variation o f the Ga to In ratio during deposition process. So, 

many different co-evaporation growth techniques are categorized by their Cu evaporation 

profile. Ultrathin Cu(In,Ga)Se2 films were deposited by 1-stage, 2-stage and 3-stage 

processes and the deposition processes of these ultrathin Cu(In,Ga)Se2 films are explained 

in this section.

4.2.1 1-Stage Co-evaporation Process

This process is the simplest process in which all elementals flux as well as the 

substrate temperature is kept constant during the entire deposition process. During the 

deposition, the rate o f individual elements is maintained almost constant without changing
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the particular source temperature. In this process, ultrathin Cu(In,Ga)Se2 films with 

different thickness are deposited by evaporating Cu, In, Ga and Se together by varying the 

deposition time. Ultrathin Cu(In,Ga)Se2 films deposited by this process have uniform 

atomic percent for each o f the elements all across the film.

4.2.2 2-Stage Co-evaporation Process

In this process, a Cu-rich growth phase is realized by supplying higher rate o f Cu 

during the first stage. When the Cu(In,Ga)Se2 is Cu-rich, a semi-metallic Cu2-xSe phase 

exists along with the Cu(In,Ga)Se2 phase [47]. During the second stage, In and Ga are 

deposited at the same rate as in the first stage, without any Cu, to get a Cu-poor 

Cu(In,Ga)Se2 thin film. The Cu2-xSe acts as the Cu sources in growing Cu(In,Ga)Se2 during 

this stage and the film deposition is terminated whenever all the Cu from the Cu2-xSe is 

consumed. This process is the modified version of the Boeing process [48]. In the Boeing 

process, a Cu-rich Cu(In,Ga)Se2 thin film is deposited during the first stage, followed by a 

stage with higher In and Ga, which is maintained until a Cu-poor Cu(In,Ga)Se2 is obtained. 

So, only one transition occurs in this process. The End Point Detection (EPD) method is 

being used to identify the Cu-rich to Cu-poor phase’s transition by monitoring the change 

in the substrate output power [49].

4.2.3 3-Stage Co-evaporation Process

In the 3-stage process, In, Ga and Se sources are first evaporated to form a 

(In,Ga)Sex precursor. The Cu and Se sources are then used until a Cu-rich Cu(In,Ga)Se2
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film is obtained in a second stage. This Cu-rich Cu(In,Ga)Se2 film is converted to Cu-poor 

Cu(In,Ga)Se2 film in a third stage by evaporating In, Ga and Se. This process was first 

introduced by NREL and has been used to produce the highest-efficiency devices [49]. The 

Cu(In,Ga)Se2 films deposited by three-stage process show relatively larger grain size and 

smoother surface morphology compared to 1-stage process. The smooth surface reduces 

the junction area, which tends to decrease the number o f defects at the junction, yielding 

higher efficiency cells. The reaction pathway for the 3-stage co-evaporation is shown 

below [22]:

In (v) + Ga(v) + Sen(v) - » (Inx,Gai-x)2Se3(s)

Cu (v) + (Inx, Gai-X)2 Se3(s) + Sen(v) —> Cu(InxGai-x)Se2(s) + CuxSe(s)

Cu (InxGai-x) Se2(s) + Cu2-xSe(s) + In (v) + Ga(v) + Sen(v) —»Cu(InxGai.x)Se2(s)

A schematic o f this process is shown in Figure 4.1. During the first stage, In, Ga 

and Se are deposited at a substrate temperature of 400 °C. Cu and Se are then evaporated 

until a Cu-rich Cu(In,Ga)Se2 film is obtained in a second stage. The substrate temperature 

is raised to 570 °C for this second stage. Once the film becomes Cu-rich, the second stage 

is terminated. Then, in the absence of Cu flux, In and Ga along with Se are deposited at a 

substrate temperature o f 570 °C until the film becomes Cu-poor. The first stage deposition 

time is chosen in such a way that the amount of In and Ga in the third stage should be 

around 10% of the total In and Ga deposited in the first and third stage [50]. As shown in 

figure 4.1 below, the thickness o f the CIGS layer controlled by changing the duration of 

the first, second and third stages and the targeted composition leads to a ratio o f 

Cu/(In+Ga)=r0.90 and a ratio o f Ga/(Ga+In)=0.3.
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4.3 Characterization of Ultrathin CIGS Films and Devices Deposited by 
1-Stage, 2-Stage and 3-Stage Co-evaporation Processes

Ultrathin CIGS films with similar thicknesses (~ 0.37 pm) were deposited by 1- 

stage, 2-stage and 3-stage co-evaporation processes. In the 1-stage process, all Cu, In, Ga 

and Se sources are co-evaporated simultaneously at a fixed rate for each and at a fixed
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substrate temperature of Tss = 550°C. In the 2-stage process, a Cu-rich growth phase is 

obtained by supplying a higher rate o f Cu during the first stage. During the second stage, 

In, Ga and Se at the same rate as the first stage are deposited without any Cu to obtain a 

Cu-poor CIGS thin film. In the 3-stage process, In, Ga and Se are first co-evaporated to 

form a (In,Ga)xSey precursor film. Cu and Se are then co-evaporated until a Cu-rich CIGS 

film is obtained in a second stage. This Cu-rich CIGS film is converted to a Cu-poor CIGS 

film in the third stage by co-evaporating In, Ga and Se. The substrate temperature in first 

stage was kept at 400 °C and it was increased to 550 °C during the second and the third 

stages.

4.3.1 Studies of Ultrathin CIGS Films Deposited by 1-Stage, 2-Stage and 
3-Stage Co-evaporation Processes by Real Time Spectroscopic 
Ellipsometer (RTSE)

The real time spectroscopic ellipsometry (RTSE) measurements were carried out 

in-situ during film growth using a rotating compensator, multichannel instrument with an 

energy range o f 0.75 -  6.5 eV at an angle o f incidence o f 70°. Pairs of (vp, A) spectra were 

collected with a 3-s acquisition time. The optical model for RTSE data analysis includes 

a continuous layer of thickness db with a bulk-like dielectric function, and a surface 

roughness layer o f thickness ds whose dielectric function is determined from the 

Bruggeman effective medium theory as a 0.5/0.5 vol. fraction mixture of bulk material and 

void. The effective thickness or volume/area of film is defined as the bulk layer thickness 

plus one-half of the surface roughness layer thickness. The time evolution of (db, ds) for 

ultra-thin films deposited by 1-stage, 2-stage and 3-stage co-evaporation is plotted in Fig. 

4.2. For each process, film growth starts with the appearance of surface roughness in the
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absence o f  a bulk-like layer. This behavior is interpreted in terms o f nucleating clusters, 

associated with the Volmer-Weber growth mode. A comparison o f the films in the 

nucleation stage reveals that the height o f nuclei at the onset o f coalescence is the lowest 

for films deposited by 2-stage process, where the Cu-rich growth phase is realized by 

supplying higher rate o f Cu during the first stage. It is important to note that Cu-rich films 

are known to exhibit a semi-liquid Cu2-xSe phase at the substrate temperature used during 

deposition. The observed nucleation behavior therefore suggests that this semi-liquid phase 

increases the mass transport, enhancing the contact and coalescence o f the nuclei, leading 

to a decrease in their height, hence smoothening the early-stage film surface [51].
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Figure 4 .2  E volution o f  the surface roughness ds and the bulk layer db thicknesses w ith tim e obtained by  

RTSE for ultrathin C u(In,G a)Se2 film s deposited by 1-stage, 2-stage and 3-stage process.
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Ex-situ measurements by variable angle SE were performed to extract the dielectric 

functions (ei, £2) versus energy for films deposited by 1-stage, 2-stage and 3-stage co

evaporation processes. Figure 4.3 shows the real and imaginary parts o f the dielectric 

functions for Cu(In,Ga)Se2 films deposited by these 3 different processes. The observed 

features in (ei, £2) in Figure 4.3 are associated with interband transitions that appear at the 

van Hove singularities or critical points (CPs) o f the joint density o f states [52]. These 

features were fitted assuming parabolic bands (PBs), yielding CPPB oscillators given by:

C , - A / ‘ ( a - E I + / r , r ,  n = - l , - i , + i  

C, -  A e'*' ln( 0  -  E + iT,), n = 0

where Aj, <aP, Ej and Tj are the amplitude, phase, energy and broadening o f the j th oscillator 

The exponent n is -1, -1/2,0, +1/2 for excitonic, ID, 2D, and 3D critical points respectively. 

Here the fundamental transitions were fitted with excitonic CPs and the higher energy 

transition points were fitted with 2-dimensional CPs. The energy position o f the lowest 

energy Eo(AB) CP (n=l) corresponding to the fundamental band gap is ~1 .18 eV for CIGS 

films deposited by these processes (Table 4.1).
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Another important parameter extracted from the same analysis is the broadening 

parameter of the CPPB oscillator, which is influenced by excited carriers interacting with 

phonons and other scatters such as grain boundaries. Hence the temperature and grain size 

can influence the broadening term. At constant temperature, the following equation relates 

the broadening and the grain sizes (R) [53]

where T c  is the broadening of the oscillator corresponding to the fundamental band gap, Yg 

is the corresponding parameter for a single crystal, V is the average group speed of the 

excited electron associated with the fundamental band gap and R is the grain radius. The

extracted by fitting the CPPB oscillators for Cu(In,Ga)Se2 films prepared by 1-stage, 2- 

stage and 3-stage processes are shown in Table 4.1. The broadening values decreases from 

the 1-stage to the 3-stage process, which indicates that the grain size increases from the 1- 

stage to the 3-stage process. A large grain size is usually desirable for the best performance 

CIGS solar cells since grain boundaries are potential recombination centers for 

photogenerated electron-hole pairs.

Table 4.1 CP Energies, amplitude and broadening o f  CPs for Cu(In,Ga)Se2 thin films

(4.2)

values o f broadening parameters and amplitude associated with the Eo(AB) critical point

Processes E0(A,B)
(eV)

r
(eV)

Amplitude
(eV)

1 -stage

2-stage

3-stage

1.17

1.17

1.18

0.53

0.34

0.18

3.9

4.0

3.2
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4.3.2 X-ray Fluorescence (XRF)

The compositions and thickness o f each ultrathin CIGS films deposited by 1-stage, 

2-stage and 3-stage processes were determined by using X-ray fluorescence (XRF). As 

explained in the previous chapter, XRF is the preferred technique for compositional 

analysis o f CIGS thin films due to its ability to non-destructively measure the sample with 

excellent precision and less time requirement for the analysis. In addition to this 

compositional analysis, it can also be used to determine the thickness o f the layers in thin 

multi-layer sample. Cu at.% around but less than 25, (In+Ga) at.% around 25 and Se at.% 

around 50 are required for high quality Cu(In,Ga)Se2 films. Two main critical parameters 

extracted from these at.% are x = Ga/(In+Ga) and y = Cu/(In+Ga), where the x value 

determines the band gap o f the ultrathin Cu(In,Ga)Se2 films and the y value establishes the 

phase as well as the microstructure o f the ultrathin Cu(In,Ga)Se2 films. In Table 4.2 below, 

XRF measurements results for ultrathin Cu(In,Ga)Se2 films deposited by 1-stage, 2-stage 

and 3-stage are listed.

Table 4.2 Typical XRF results for C u(ln ,G a)Se2 thin films deposited by 1-stage, 2-stage and 3-stage processes

Process Cu(at
%)

In (at
%) Ga (at %) Se (at %)

x=Ga/(ln+Ga) y=Cu/(In+Ga
)

1-stage 22.2 17.4 7.3 52.1 0.33 0.90

2-stage 22.5 16.7 8.1 52.6 0.33 0.91

3-stage 22.8 17.5 7.8 51.8 0.31 0.90
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The band gap of the CIGS thin film is calculated by the following relation [54]

Eg =  1.04 +  0.65 x -  0 .2 6 x (l -  x) (4.3)

where the x values come from the XRF measurement as shown in Table 4.2, and where the 

band gap of CuInSe2 is 1.04 eV, the one o f CuGaSe2 is 1.69 eV and the bowing parameter 

is 0.26. The band gap calculated from above equation (eq. 4.3) for the CIGS thin film 

deposited by 1-stage, 2-satge and 3-satge processes are ~ 1.18 eV which is fairly consistent 

with the band gap obtained using the spectroscopic ellipsometer (SE) analysis.

4.3.3 X-ray Diffraction (XRD)

X-ray diffraction (XRD) technique is used to find the structural properties o f the 

films, the different phases present in the film, the crystallites orientation as well as the x 

values (x= Ga/(In+Ga)) in the films. X-ray diffraction in scanning mode of 0/20 with Cu 

Ka-radiation (>,=0.15418 nm) was used for each of the Cu(In,Ga)Se2 films deposited by 1- 

stage, 2-stage and 3-stage processes. Figure 4.4 compares the typical XRD spectra of 

Cu(In,Ga)Se2 films deposited by 1-stage, 2-stage and 3-stage processes. All the films, 

within the limits o f detection, were found to have a single phase tetragonal crystal structure.
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Figure 4 .4  X RD  pattern o f  ultrathin C u(ln,G a)Se2 film s deposited by l -stage, 2-stage, and 3-stage processes.

For tetragonal Cu(Ini-xGax)Se2 film, the lattice parameters a, c and their ratio c/a 

depend on the x=Ga/(In+Ga) values and follows the Vegard's rule [30]:

a(x )  =  (1 -  x )a (0 ) +  x a (  1) (4.4)

c(x) =  (1 -  * )c (0 ) +  x c ( l)  (4.5)

For the CuInSe2 (x = 0), the lattice constants are a (0) =5.781 A and c(0) = 11.619 A while 

a(l) = 5.596 A and c(l) = 11.003 A for the CuGaSe2 (x = 1). Since the lattice spacing d 

also changes with Ga concentration, a(x), c(x) and d(x) can be found for a given x and 

(h,k,l) values, whereas the experimental value o f the lattice spacing for a particular peak
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can be found by looking into the Joint Council for Powder Diffraction Studies (JCPDS) 

cards. So by matching the d values found from calculation for a given x to one found by 

matching the JCPDS card, we can correlate the x value to the XRD spectrum. The peak 

position, d-spacing and full width at half maximum (FWHM) for chalcopyrite (112) peaks 

are listed in Table 4.3.

The crystallites size can be predicted from XRD data using the Scherrer formula

[55]:

D = (4.6)
P  cos 9

where D is grain size, Ks is Scherrer constant, P is the full width at half maximum of the 

peak in radians, X is the wavelength of the X-ray beam and 20 is the peak position. One can 

see that the FWHM decreases from 0.18 degree for the 1-stage process to 0.12 degree for 

the 3-stage process. For this work, X is 1.54 A corresponding to the Cu Kai due to the use 

o f a Cu source for the X-ray beam. Using the values o f the FWHM from Table 4.3, the 

grain sizes calculated are 45 nm, 54 nm, and 58 nm respectively. This is in good correlation 

with the results obtained by RTSE (as shown in Figure 4.5). It was also observed that the 

Cu(In,Ga)Se2 films deposited by the 1 -stage process exhibited a preferred orientation along 

the (112) direction and that a slight (220)/(204) direction was observed for the films grown 

by the 2-stage or 3-stage processes. Researchers have found that the (220) preferred 

orientation can sometimes lead to higher efficiencies [56-57], which would explain in part 

why devices made with 2-stage and 3-stage are generally more efficient.
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Table 4.3 X R D  peak properties o f  chalcopyrite (112 ) for CIGS film s deposited by 1-stage, 2-stage and 3- 

stage processes

Sample
Peak Position 

[deg]
d- spacing 

[A*]
Peak Height 

[cps]
FWHM

[deg]

1- stage 27.04 3.2832 5634 0.18

2 -stage 27.07 3.2659 2295 0.15

3 -stage 27.08 3.2548 1985 0.12
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Figure 4.5 E0 (A , B) peak broadening from RTSE data analysis and grain size calculated from X R D  

measurement.

4.3.4 Current Density -Voltage (J-V) Measurement

The efficiency o f the completed solar cell device is extracted from the current and 

voltage measurement (J-V) measurement. The measurement is performed at room 

temperature and under a standardized “One Sun” illumination. Typical J-V results o f 

ultrathin devices fabricated from CIGS thin films deposited by 1-stage, 2-stage and 3-stage
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processes are plotted in Figure 4.6 and summarized in the Table 4.4 below. The device 

with ultrathin Cu(In,Ga)Se2 deposited by a 1-stage process has the lowest Voc. The lower 

Voc for the devices with ultrathin CIGS deposited by 1-stage process may be attributed to 

large grain boundaries (GB) per unit volume as well as degradation o f junction quality [31 ]. 

The decrease in fill factor and Voc for the devices with ultrathin CIGS deposited by 1-stage 

process could also be due to the smaller grain sizes, more and higher defect densities. The 

grain boundaries act as a recombination center which would reduce the Voc.
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Figure 4 .6  Typical light and dark J-V curve for device fabricated from ultrathin CIGS film  deposited by (a)

1-stage process, (b) 2-stage process, and (c ) 3-stage process. The thickness for all ultrathin CIGS layers is ~  

0.7  pm. There is no M gF2 anti-reflecting coating.
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Table 4 .4  Summarized device parameters o f  ultrathin CIGS solar cell deposited by I, 2 and 3-stage

processes

Processes Voc

(V )

Jsc
(mA/cm2)

Fill Factor 
(%)

Efficiency
(%)

1-stage 0.48 22.5 57.6 6.2

2-stage 0.64 21.8 54.2 7.6

3-stage 0.69 24.3 61.4 10.3

As one can see in Table 4.4, the solar cell fabricated from ultrathin Cu(In,Ga)Se2 

deposited by 3-stage process has better device performance. This improved device 

performance has been attributed to a band gap gradient due to Ga (the Ga/(In+Ga) grading, 

which is achieved by varying the deposition time of Cu, In and Ga fluxes. The effects of 

Ga/(In+Ga) on the band gap of CIGS thin film is given by the following relation [54]:

Er = 1.04 + 0.65jc-0.26x(1 -  x) (4.7)

Where x is Ga/(In+Ga). The band gap o f CuInSe2 is 1.04 eV, and CuGaSe2 is 1.68 eV and 

the bowing parameter is 0.26. The ultrathin CIGS deposited by 3-stage process has a wider 

band gap at the front and back interfaces. The increase in the band gap at the CIGS and Mo 

interface is due to the up lift o f the conduction band minima while the valance band maxima 

remain the same [24], Due to the increment in the band gap toward the back interface 

(dEg/dx), there is an increase in the electric force due to an extra electric field, which 

pushes the electrons towards the p-n junction o f the device. This in turns reduces the 

recombination towards the back interface and hence enhances the current collection and 

the Voc [50],
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The relation between Voc and the short circuit current is given by the following equation 

[58]:

r/ E k A k T . V,.,. = —  In
( JJ  00

v J *  J

(4.8)

Where Jsc is the short circuit current density, Joo is the diode saturation current density. The 

Voc in the above equation is correlated with the band gap in the space charge region. So an 

increment in the band gap near the junction is expected to enhance the Voc [59], but a 

reduction in current can also occurred due to the decrease in the absorption of the solar 

spectrum. However, there was no loss in the current in our work due to the increase in the 

band gap for the ultrathin CIGS device deposited by 3-stage process. Similar results were 

observed by numerical simulation studies on CIGS [60]. It has also been observed that the 

Jsc in the graded band gap is correlated to the minimum band gap [60]. The schematic 

energy-band diagrams for a typical ZnO/CdS/CIGS solar cell with a uniform and graded 

CIGS are shown in figure 4.8. In figure 4.7 (b), a quasi-electric field [61] can be established 

by the band-gap gradient with higher band gap towards the back contact (Mo) region by 

reducing the back surface recombination and increasing the effective minority-carrier 

diffusion length. This would help to enhance both Voc and Jsc. The front grading would 

increase the band gap in the space charge region (SCR) where the most of the 

recombination occurs. This would help to increase Voc. So the improvement in the device 

performance o f ultrathin CIGS deposited by 3-stage process would be due to the graded 

CIGS absorber layer.
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Figure 4.7: (a) The schem atic energy band-diagram o f  a CIGS solar cell with (a) ungraded CIGS and ( b) 

graded CIGS.

4.3.5 Quantum Efficiency (QE) Measurements

Through spectrally resolving the current yield o f a solar cell device, quantum 

efficiency provides a closer understanding o f the short circuit current and the loss 

mechanisms restricting it. The quantum efficiency of the standard CIGS solar cells is 

controlled by the band gap o f the CIGS absorber layer, the CdS buffer layer and ZnO 

window layer and a series o f loss mechanisms such as reflection, grid shading, incomplete 

collection, and incomplete generation. The light-generated current is the integral o f the 

product o f the quantum efficiency and the illumination spectrum, which is given below 

[27]:

J„=q\<S>Am.,WQEWM < « )

where Oami .5 is the photon flux at AMI .5 condition and QE is the ratio o f the number of 

electrons collected to the number o f photons incident. Real QE measurements are generally
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lower than the one we get from the above equation under ideal condition. In Figure 4.8 are 

shown QE measurements for solar cells deposited by 1,2 and 3-stage processes.
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Figure 4 .8  Quantum effic iency  curve for device fabricated from ultrathin CIGS film  deposited by (a) 1-stage 

process (b) 2-stage process, and (c) 3-stage process. Thicknesses o f  the ultrathin CIGS layers are ~  0.7 pm.

The losses in the current as shown in Figure 4.8 include the following [17]:

i) Front surface losses are introduced by partial coverage o f the front surface by the 

metal contact fingers or by reflection from the material interface. Such losses can
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be reduced by depositing a thin anti-reflecting coating or by thinning down the size 

o f the fingers.

ii) Absorption in the window layer (ZnO/AZO) region is not significant due to the 

high band-gap energy of ZnO/AZO. There is 1 -3% absorption through the visible 

wavelengths which increases in the near IR region (>900 nm) where free-carrier 

absorption becomes significant and for UV region (<400 nm) near the ZnO band 

gap. Such losses can be reduced by thinning the layers. If the thicknesses o f the 

window layers are reduced significantly there are chances o f damaging the junction 

between CdS and CIGS, shunting through i-ZnO layer and reduction in current 

collection due to increase in sheet resistance in the AZO layer. So there must be a 

balance between the optical losses and the electrical losses.

iii) Absorption in CdS is one o f the major losses in thin-film solar cells (CIGS). 

This loss becomes appreciable at wavelengths below ~ 520 nm which corresponds 

to the band gap of CdS (2.42 eV). The loss in QE for X < 500 nm is directly 

proportional to the thickness o f the CdS since electron-hole pairs generated in the 

CdS are not collected in the device. Figure 4.8 shows QE for the solar cell device 

with a CdS ~ 50 nm thick. Reducing the thickness o f the CdS or replacing it with a 

higher band-gap material such as ZnS would be the possible alternatives to reduce 

the loss in the device.

iv) Optical loss in the ultrathin CIGS is more pronounced than the standard CIGS 

device (~ 2 pm) due to the incomplete absorption near the band gap o f the CIGS. 

Long wavelength photons needs to penetrate deep into the CIGS thin film before 

being absorbed. This loss can be reduced in ultrathin CIGS by making high quality
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material since CIGS thickness should be reduced to lower the indium consumption 

as well as to the production cost. As shown in the Figure 4.8 (a), there is the 

significant loss in the current after 800 nm in the ultrathin CIGS device deposited 

by 1-stage process in comparison to the ultrathin CIGS device deposited by 3-stage 

process. This could be due the improvement in the material quality o f the ultrathin 

CIGS deposited by 3-stage process [40].

v) Electrical loss in the ultrathin CIGS layer is due to the incomplete collection of 

the charge carrier. This loss is also called the recombination loss since it is 

introduced due to traps or due to a low diffusion length of the absorber layer. QE 

in CIGS is given by [27]

QEext&'V) =  [1 — /?(A)][1 — AZn0 (A)][l — ACds(X)]QEint(A., V) (4.10)

Where R is the total reflection including the grid shading, Azno is the absorption in the ZnO 

layer, Acds is the absorption in the CdS layer, QEint, the internal quantum efficiency which 

is the ratio o f photo generated carriers collected to the photon flux that arrives at the 

absorber layer and can be approximated by assuming that all carriers generated in the space 

charge region are collected without recombination loss [17]:

QEin t(A,V) = l - e x p [ - a ( A ) ( ^ ( K )  +  Ld i / / )] (4.11)

Where a  is the CIGS absorption coefficient, W is the space charge width in the CIGS 

(which varies from 0.1- 0.5 pm for typical cells at 0V) and Ldifr is the minority-carrier
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diffusion length. If the effective collection length, Leff = W (V) + Ldiff is smaller than 1 

pm, carriers are not collected and the QE decreases at longer wavelength since a significant 

fraction o f electrons is generated deeper in the CIGS layer than the collection length due 

to the decreasing absorption coefficient [17]. As observed in Figure 4.8, the current loss 

due to incomplete absorption at long wavelength becomes significant for the ultrathin 

CIGS device with 0.7pm thick CIGS layer. With these ultrathin absorber layers, the back 

contact can significantly affect the device behavior. Using an alternative back contact with 

high reflection on the ultrathin CIGS would help to increase the current closer to the values 

for 2 pm thick films.

4.4 Effect of Selenium Pressure on Ultra-thin CIGS Solar Cell Thin Films

4.4.1 Introduction and Motivation

As explained in the previous chapter, many different methods for depositing CIGS 

thin films have been tried until now but co-evaporation of elemental sources is the most 

successful process for achieving high quality material for CIGS. This process requires a 

precise control o f the elemental compositions in the vapor flux. To achieve high quality in 

ultrathin CIGS films, this can be a challenge due to the low sticking coefficient o f selenium. 

The texture of CIGS thin films also depends on the selenium flux as well as on the Na 

supply during the deposition process [62]. CIGS thin film prepared with low selenium flux 

exhibited very low Cu content, small grain size and poor solar cell performance [63]. 

Stoichiometry is one o f the major concerns in ultrathin CIGS solar cell fabrication and can 

affect significantly the cell performance. It is therefore very important to find the minimal 

selenium flux for obtaining good quality CIGS thin films. CIGS films, with thicknesses o f
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2.1 pm and 0.3 pm, were deposited by a 2-stage co-evaporation process under various 

selenium/metal flux ratios, varying from 3 to 9. The elemental fluxes were calibrated before 

each deposition. The Se effusion flux was adjusted by changing the Se source temperature 

to obtain selenium/metal flux ratios (SMR) of 3, 5 and 9. The target composition ratios of 

Cu/(In+Ga) and Ga/(In+Ga) were kept near 0.9 and 0.3, respectively.

4.4.2 Selenium Flux Effect on Ultra-thin CIGS Solar Cell Thin Films 
analyzed by Real Time Spectroscopic Ellipsometry (RTSE)

The real time spectroscopic ellipsometry (RTSE) measurements were carried out 

in-situ during CIGS thin film growth under various selenium/metal flux ratios using a 

rotating compensator, multichannel instrument with an energy range of 0.75-6.5 eV at an 

angle of incidence o f 70°. Pairs of (\p, A) spectra were collected with a 3-s acquisition time. 

The optical model for RTSE data analysis includes a continuous layer o f thickness db with 

a bulk-like dielectric function, and a surface roughness layer o f thickness ds whose 

dielectric function is determined from the Bruggeman effective medium theory as a 0.5/0.5 

vol. fraction mixture of bulk material and void. The effective thickness or volume/area o f 

film is defined as the bulk layer thickness plus one-half o f the surface roughness layer 

thickness.

Ex-situ spectroscopic ellipsometry data were acquired after film growth using a 

rotating-compensator multichannel ellipsometer with a photon energy range o f 0.75 - 6.5 

eV at angles o f incidence o f 50°, 60° and 70°. Pairs of (v|j, A) spectra were collected with 

an acquisition time of 3 s. Analyses of the spectra involved numerical inversion and least- 

squares regression algorithms. The optical model for the film in this case also consisted o f
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a bulk layer whose dielectric function is determined in the analysis and a surface roughness 

layer whose dielectric function is determined from an effective medium theory as a 0.5/0.5 

volume fraction mixture o f the bulk layer and void.

The time evolution o f (db, ds) for ultra-thin films deposited by varying the Se/metal 

flux ratio from 3 to 9 is shown in Fig 4.9. Initial growth o f all films is in the form of islands 

and then these islands continue to grow until the beginning of coalescence, as indicated by 

a decrease in ds with a commensurate increase in db. Subsequently, the films continue to 

smoothen as db increases. During this process, film growth commences with the appearance 

o f surface roughness in the absence of a bulk-like layer. This behavior is interpreted in 

terms of nucleating clusters, associated with the Volmer-Weber growth mode. In figure 

4.9, it was observed that the growth rate decreases as the Se flux rate increases. This could 

be due to gas phase scattering during the growth o f CIGS with higher Se flux. As the Se 

flux rate increases, the Se atoms in the gas phase scatter the metal atoms before they are 

able to reach the surface, resulting in the observed decrease in the film growth rate [64].



91

300

.o
T5

3

JC
h-

{g 200
a)

Ec

100

2
Time (Min)

4

Figure 4.9: T im e evolution  o f  the surface roughness thickness, ds, and the bulk layer thickness, db, for 
Cu(In,G a)Se2 ultrathin film s deposited at different SM R.

The complex dielectric functions (ei, 82) for CIGS thin films deposited at SMR = 

3, 5 and 9 are shown in Figure 4.10. The observed features in (ei, 82) in Fig. 4.10 are 

associated with interband transitions that appear at the van Hove singularities or critical 

points (CPs) o f the joint density o f states [65]. These features were fitted assuming 

parabolic bands (PBs), yielding CPPB oscillators given by:

where Aj is the amplitude, Ej is the energy, Fcp is the broadening, and <j>j is the phase, all for 

the 7th critical point. The exponent n is —1, —1/2,0 (In), or +1/2 for excitonic, 1- 

dimensional, 2-dimensional, or 3-dimensional CPs, respectively. Here the fundamental 

transitions were fitted with excitonic CPs and the higher energy transition points were fitted

(4.12)
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with 2-dimensional CPs. In Fig. 4.10, it was observed that there is no significant shift in 

the Eo(A,B) or Eo(C) CP energies for the different Se fluxes. This is consistent with 

transmission and reflection measurements whereby no change was observed in the 

absorption onset for these films. The broadening parameter o f the CPPB oscillator, which 

is influenced by excited carriers interacting with phonons and other scatterers, such as grain 

boundaries was extracted. At constant temperature, the following equation relates the 

broadening and the grain sizes (R) [53]:

' l - ' J + T  (4 I 3 >

Where Tc is the broadening of the oscillator corresponding to the fundamental band gap, 

Tg is the corresponding parameter for a single crystal, V is the average group speed o f the 

excited electron associated with the fundamental band gap and R is the grain radius. The 

extracted values of broadening parameters and amplitudes associated with the Eo(A,B) 

critical point are shown in Table 4.5. These results were obtained by fitting the CPPB 

oscillators for Cu(In,Ga)Se2 films prepared by varying Se flux rate, The extracted values 

o f broadening parameters associated with the Eo(A,B) critical point for CIGS films 

prepared at SMR - 3 , 5  and 9 are 0.57 eV, 0.32 eV and 0.27 eV, respectively. These values 

indicate that the grain size increases with increasing Se flux. The same trend was also 

corroborated by inspection of both SEM cross-sectional images and the full width at half 

maximum (FWHM) of the diffraction peaks in XRD analysis.
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Figure 4 .10  Real and im aginary parts o f  the dielectric functions for ultra-thin C u(In,G a)Se2 film s deposited  
at different SMR.

Table 4 .5  CP energies, broadenings and am plitudes o f  CPs for C u(In,G a)Se2 ultrathin film s

Samples E0(A,B) (eV) r(e V ) Amplitude (eV)

SMR = 3 1.19 0.57 2.2

SMR = 5 1.18 0.32 1.5

SMR = 9 1.17 0.27 2.0
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4.4.3 Characteristics of CIGS thin films as a Function of SMR

The composition of each of the films was determined by XRF technique as 

described earlier. XRD measurements were also used to determine the x=Ga/(In+Ga) 

ratio in the films from the lattice parameters. Figure 4.11 shows the surface and cross- 

sectional SEM images of Cu(In,Ga)Se2 thick film (thickness -2 .1  pm) deposited by 

varying the Se/metal flux ratio from 3 to 9. In these surface images, the small crystallite 

size of the CIGS film deposited with low Se is apparent. The medium and high Se CIGS 

thin films have similar grain sizes even though the texture of the high Se is slightly 

rougher. From the cross-sectional images, ordered columnar grains were observed for the 

CIGS film deposited under higher Se flux. Grains are smaller in size for the film grown 

with low Se flux. The variation in grain size with Se flux can notably affect the electrical 

properties o f the CIGS film [66]
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Figure 4.11 Surface and cross-sectional SEM im ages o f  CIGS thin film s deposited with different SM R

Figure 4 .12  AFM  im ages o f  CIGS film s deposited with different SM R

Figure 4.12 shows the surface morphology measured by AFM of the CIGS thin 

films deposited by varying the Se/metal flux ratio from 3 to 9. The surface roughness 

thicknesses extracted from RTSE data were not the same as those measured by AFM but a 

linear correlation is observed. This is shown in Figure 4.13 and mathematically expressed 

as ds(SE) ~ 1.2 drms(AFM).
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Figure 4 .13 Surface roughness ds from RTSE plotted as a function o f  the root mean square roughness dmis 

measured by AFM

Figure 4.14 shows the XRD patterns o f CIGS thick films (thickness ~ 2.1 pm) 

deposited on glass substrates by 2-stage co-evaporation at SMR = 3, 5 and 9. The main 

peaks appearing correspond to the (112), (220)/(204) and (312/116) planes o f the 

chalcopyrite structure. The peak position, d-spacing and full width at half maxima 

(FWHM) for the chalcopyrite (112) peaks are listed in Table 4.6. The FWHM decreases 

from 0.31 degree to 0.18 degree when the SMR increases from 3 to 9. This indicates that 

the grain size increases as Se rate increases in CIGS thin film, as observed by SE. It was 

also observed that the preferred orientation was (220) for the film with higher Se flux while 

it tended to be (112) with lower Se flux. These results indicate that the Se flux rate 

significantly influences the crystal growth of CIGS.
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Figure 4 .14  Typical X R D  pattern for Cu(In,G a)Se2 thick film deposited under different selenium  metal 

flux ratios

Table 4.6: X RD  chalcopyrite (112 ) peak properties o f  CIGS film s deposited under different Se rate

Sample Peak Position 
Ideg)

d- spacing 
[A°]

Peak
Height

[cps]

FWHM
[deg]

SMR=3 27.09 3.24 5413 0.319

SMR=5 27.03 3.27 7243 0.205

SMR=9 26.68 3.31 2234 0.189

Figure 4.15 shows the electrical resistivity and carrier concentration o f CIGS films 

as functions o f SMR. All CIGS films showed p-type conductivity. It was observed that the 

hole concentration o f the CIGS film increased and resistivity decreased with increasing Se
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flux. It was reported that the anion vacancy, Vse, which acts as a donor, may be created in 

the CIGS film due to a Se deficiency [66]. Vse is therefore one o f the probable reasons for 

the decreasing hole concentration in the CIGS film grown with decreasing SMR. The 

higher SMR was found to be preferable in order to obtain better material properties to 

enhance the CIGS solar cell performance.
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Figure 4 . 15 R esistivity and hole concentration o f  CIGS thin film s as a function o f  SM R

4.5 Summary

The ultrathin CIGS films deposited by 1-stage, 2-stage and 3-stage co-evaporation 

processes were explored by in-situ spectroscopic ellipsometry via the real time monitoring 

o f the dielectric functions, the thickness, and the roughness. Ultrathin CIGS with thickness 

~ 0.7 pm were deposited by 1-stage, 2-stage and 3-stage co-evaporation processes and 

spectroscopic ellipsometry data were acquired with an energy range of 0.75-6.5 eV. 

Irrespective of the process, the initial nucleation stages of these ultrathin films show island 

growth or the Volmer-Weber (V-W) growth process. A comparison of the films in the
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nucleation stage reveals that the height o f nuclei at the onset of coalescence is the lowest 

for films deposited by 2-stage process, where the Cu-rich growth phase is realized by 

supplying higher rate of Cu during the first stage. The observed nucleation behavior 

therefore suggests that this semi-liquid phase increases the mass transport, enhancing the 

contact and coalescence o f the nuclei, leading to a decrease in their height, hence 

smoothening the early-stage film surface. Material properties o f these ultrathin 

Cu(In,Ga)Se2 films deposited by 1-stage, 2-stage and 3-stage co-evaporation processes 

were characterized and compared using different optical and electrical characterization 

techniques such as spectroscopic ellipsometry (SE), XRD and AFM. Out o f these three 

processes, the 3-stage process proved to be the best for growing device quality ultrathin 

Cu(In,Ga)Se2 films. The solar cells processed from these ultrathin CIGS films with 

thickness ~ 0.7 pm were also characterized to compare the efficiency, voltage and current. 

Current-voltage (J-V) and quantum efficiency (QE) measurements on these ultrathin CIGS 

solar cells helped us in understanding the reason for different efficiencies. Larger grain 

size, improved junction interface as well as Ga grading were some of the reasons for better 

efficiency of the solar cells processed from ultrathin CIGS deposited by 3-stage process. 

Ultrathin and thick CIGS films deposited under various Se effusion rates were also studied 

by real time spectroscopic ellipsometry (RTSE) and ex-situ measurement. The surface 

morphology of the CIGS film was affected by Se flux rate. The grain size increases as Se 

rate increases. It was observed that the preferred orientation became (220) for the film with 

higher Se flux while it tended to be (112) with lower Se flux. These indicate that the Se 

flux rate significantly influences the crystal growth of CIGS. It was also observed that the 

hole concentration o f the CIGS film increased and resistivity decreased with increasing Se
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flux. The higher SMR was found to be preferable in order to obtain better material 

properties to enhance the CIGS solar cell performance.
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CHAPTER 5

CHARACTERIZATION OF ULTRA-THIN CIGS DEPOSITION 

USING SPECTROSCOPIC ELLIPSOMETRY

5.1 Introduction and motivation

In order to achieve high efficiency ultrathin CIGS solar cells, the key materials 

characteristics that must be controlled are the band gap profile, the phase purity and Cu 

stoichiometry, and the grain size. Since the band gap of CIGS can be tuned from 1.02 to 

1.65 eV by increasing the atomic ratio x = Ga/(In+Ga) from 0 to 1, band gap engineering 

via variations in the deposition process has become one o f the key parameters for high 

efficiency ultrathin CIGS solar cells [33]. As explained in the previous chapter, ultrathin 

CIGS films for high performance solar cells can be grown at high temperature by a 1-stage, 

2-stage and 3-stage process. During 1-stage co-evaporation process, the deposited CIGS 

film is always Cu-poor whereas in the 2-stage and 3-stage co-evaporation processes, the 

CIGS film becomes Cu-poor only at the end o f the deposition. It has already been 

demonstrated that, in order to obtain high quality materials with large polycrystalline grains 

size, the thin film must transition through a Cu-rich growth stage consisting o f mixed 

phases o f CIGS and Cu2-xSe [67]. CIGS solar cells with CIGS absorber layer deposited by 

the 3-stage co-evaporation exhibit the highest small-area efficiency among several others 

low-cost thin film polycrystalline photovoltaic (PV) technologies. However, this 

deposition method requires greater efforts in process optimization, monitoring, and control, 

and significant challenges exist in scale-up of the process to large areas. In order to 

understand the overall growth mechanisms and hence optimize CIGS solar cell
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performance, real time analysis o f the variations in the structure and composition 

throughout each o f the three stages o f the CIGS deposition process is beneficial. Real time 

spectroscopic ellipsometry (RTSE) has been developed specifically for in-situ monitoring 

and potential control of each stage o f CIGS deposition by three-stage co-evaporation 

process. The fundamental optical transitions for the CIGS films do not vary with Cu 

content; however, sub-band gap absorption appears for the Cu-rich films due to the 

occurrence o f a semi-metallic phase. Because this absorption is also observed directly in 

the ellipsometric parameters (vp, A), one can use the RTSE to control the Cu threshold in a 

CIGS device in real time, a capability essential for avoiding shunted devices.

In this chapter, we will look at ultra-thin CIGS films deposited by 3-stage process 

and focus on the RTSE study for all three process stages in order to monitor and control 

the CIGS deposition process. In addition, the focus will be specifically on the transitions 

from Cu-poor to Cu-rich CIGS near the end of the second stage, and the transitions from 

Cu-rich to Cu-poor CIGS near the end of the third stage, by directly monitoring changes in 

the ellipsometric parameters (\|/, A) obtained by RTSE.

5.2 Fundamentals of Spectroscopic Ellipsometry (SE)

5.2.1 Introduction of Spectroscopic Ellipsometry (SE)

Spectroscopic Ellipsometry has emerged as a non-destructive, non-invasive optical 

technique for the characterization o f thin-film solar cell materials and devices [68-70]. 

Ellipsometry derives its name from the measurement of the output polarization ellipse 

which is generated after a beam of light with a known input polarization ellipse interacts 

specularly with the sample [71-72]. It measures a change in polarization as light reflects
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or transmits from samples. Because it uses the polarization state as a probe rather than only 

the intensity of the photon itself, it is a very sensitive measurement technique and is capable 

o f unmatched ability to measure thin film materials. The change in polarization is 

represented as an amplitude ratio (T) and the phase difference (A) between light waves 

known as p- and s-polarized light waves. (T , A) spectra are measured by changing 

wavelength of light in spectroscopic ellipsometry. It generates information about thin films 

that are thinner than the wavelength of the probing light itself, and theoretically down to a 

single atomic layer [69]. Ellipsometers have been designed to collect spectroscopic data, 

from the near infrared (NIR) to the deep ultraviolet (DUV) wavelengths, in time periods 

short enough to track sub monolayer changes in materials systems in-situ during dynamic 

processes. This approach is commonly referred to as real time spectroscopic ellipsometry 

(RTSE).

The main key feature o f ellipsometry is that it measures the change in polarized 

light upon light reflection on a sample (or light transmission by a sample). For the 

measurement, p and s- polarized light waves are directed onto a sample at Brewster angle 

and the optical constants and film thickness o f the sample is measured from the change in 

the polarization state by light reflection or transmission after measuring the two values (T, 

A) [73],
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S am p le

Figure 5.1 M easurement principle o f  ellipsom etry [73]

5.2.2 Interaction of Light with Matter

Light is an electromagnetic wave that is described by Maxwell’s equations for 

electromagnetic fields. In isotropic, homogeneous, and non-magnetic media, one solution 

of Maxwell’s equations for the electric field is the electromagnetic plane wave given by 

[74]:

E(r, t) = E0 exp
r q.f \

-  oA  
V c  J

(5.1)

where co is the angular frequency o f the wave, q is the complex wave vector along the 

propagation direction, and E0 is the complex electric field vector perpendicular to q , 

which defines the amplitude and polarization state of the wave. The complex wave vector 

q is defined as:

« 2 =
2

<4/r<x''— er + i
Vc J ,  0) )

(5.2)

In equation 5.2, the right hand side term can be equated to the complex index of 

refraction N by:
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N 2 = £.  +1
(  A n a '  

\  o) ,
(5.3)

where the complex index of refraction, N in Equation 5.3 is defined by N = n + ik. Thus 

equation 5.1 can be rewritten as [75]:

E (r,t) = E0 exp
k.r n.r

-to— exp/ to------ cot
c c

(5.4)

In equation 5.4, the exponential factor containing k outlines the amount o f photons 

absorbed in the material as light propagates through it and k is called the extinction 

coefficient. The term which describes the photons absorption is called the absorption 

coefficient (a). The relation between a  and k is given by:

2 o k  Ank
a  =

A

(5.5)

In equation 5.4, the second exponential factor term represents the traveling wave 

with phase velocity c/n, where c is the velocity o f light in vacuum and n is the refractive 

index of the material. The right hand side o f equation 5.3 is the complex dielectric function 

(e). The complex dielectric function, e , is also used to define the optical properties o f a 

material, similarly to N. Equation 5.3 in terms of n and k yields:

(n +  ik )2 =  (n 2 -  k 2) +  i(2nk)  =  s1 + i ( ^ )  =  £i +  i f 2 (5-6)

4;rcr
where the te rm   is the imaginary part o f the dielectric function (82). By equating real

1a

and imaginary parts separately gives the relationship between the real refractive index, the 

absorption coefficient, and the real and imaginary parts of the dielectric function:

£, = n 2 - k 2 (5.7)

s 2 = 2nk (5.8)
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n = (5.9)

k = • (5.10)

If the complex wave vector, q , is along the z axis then the complex electric field

where Sx,S y represents the absolute phase o f Ex. E y at z = 0 and t = 0 respectively. In 

order to describe the state of polarization, only the phase different 5X -  8y (o r5 v - 5 X) is

required but not the absolute values o f the initial phases. Figure 5.2 shows the various phase 

differences and the corresponding polarization states. In ellipsometry experiments, a 

coordinate system based on the plane o f incidence o f the obliquely reflecting light is used 

instead of using orthogonal x-y axis. In this coordinate system, the electric field is resolved 

into components parallel (p) and perpendicular (s) to the plane o f incidence. These p and s 

components o f the electric field o f the reflected wave are connected to the p and s 

components of the incident wave through reflection coefficients, which are called the 

Fresnel coefficients [76-77].

vector E0 o f equation 5.1 can be expressed as:

E0 = E0x exp(i£x )x + E0yexp(iJy )y (5.11)



Figure 5.2 Representation o f  the variation o f  the polarization state with the phase difference a) 8X- 8y=0 
represents the linearly polarized light and the orientation o f  the resultant vector o f  Ex and Ey is always
oriented at 45° in the x-y plane, b) 8X- 8y=7t/2 represents the circularly polarized light and the resultant vector 
o f  Ex and Ey rotates in the x-y plane as light propagates, c) 8X- 8y=tt/4 represents the elliptically polarized 
light and the resultant vector rotates in the x-y plane. As shown in the figure, if  the direction o f  rotation is 
clockwise for light traveling along the positive z axis, the polarization is called right circular/elliptical 
polarization. For each o f  the figure, Ex = Ey [73].

Here, "i" and "r" are used to indicate the incident wave and reflected wave 

respectively. The p-and s-polarizations undergo different changes both in amplitude and 

phase when the linearly polarized light is reflected from a surface. Ellipsometry always 

measures the amplitude ratio and phase difference between the p- and s-polarizations 

during the measurement. These two important quantities are represented by v|/ and A, 

respectively. These two quantities, v|/ and A are written as:

(5.12)

E r
rs = K |exp(/£v) = — 7 (5.13)

pr = tani//exp(/A) (5.14)

where the angles y  and A are defined as:
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tan ^  = -r̂ 7 (5.15)

A = Sp -S,  (5.16)

v|/ is confined between 0 and 90° since \|/ represents the angle determined from the 

absolute value o f the amplitude ratio. In the meantime, A is the phase difference and hence 

it ranges from 0° to 360°. When the sample structure is simple, vp is characterized by the 

refractive index n and A by the extinction coefficient k.

5.2.3 Data Collection and Analysis

The main tools to collect the ellipsometry data include the following: light source, 

polarization generator, sample, polarization analyzer, and detector. Polarizers, 

compensators and phase modulators are the optical components used to manipulate the 

polarization. Common ellipsometer configurations include rotating analyzer (RAE), 

rotating polarizer (RPE), rotating compensator (RCE) and phase modulator (PME). A light 

source produces unpolarized light, which is then sent through a polarizer to generate the 

linearly polarized beam of light over a desired spectral range. These linearly polarized 

photons then pass through a rotating compensator, which shifts the relative phase of 

orthogonal vector components resolved along the fast and slow axes o f the compensator. 

This in turn yields a phase shift between the p and s components o f the electric field vector 

incident on the compensator. This phase shift depends on the angle o f the fast axis o f the 

compensator with respect to the plane of incidence. The beam of light then reflects from 

the sample surface, thus inducing a change in the nature o f the polarization state 

modulation. Upon specular reflection, the beams then pass through a polarizer which
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functions as the analyzer and then are collected by the spectrograph. Within the 

spectrograph, a beam splitter directs the low energy photons to an InGaAs photodiode array 

and the high energy photons to a CCD detector. The detector converts light to electronic 

signal to determine the reflected polarization. This information is compared to the known 

input polarization to determine the polarization change caused by the sample reflection. 

This is the data collection in terms o f Psi (\|/) and Delta (A).

Ellipsometry does not directly provide information about the specimen; however, 

\j/ and A are functions o f the material properties such as thickness and dielectric function. 

Analyses of these (y, A) pairs are required to extract these characteristics. A simple 

schematic of the analysis procedure for data taken by real time spectroscopic ellipsometry 

is shown in Figure 5.3. In ellipsometry, developing an appropriate optical model for the 

sample is the starting point for the data analysis. When the component materials o f the 

sample structure and their dielectric functions are known, the first step in building an 

optical model is by placing the right sequence of different layers, including each layer’s 

thickness and optical properties as shown in Figure 5.4. If the dielectric functions of the 

composite material are not known then different dielectric function models should be used. 

There are many dielectric function models for ellipsometry analysis. For dielectric function 

modeling in a transparent region, the Cauchy or Sellmeier model is used. When there is 

free-carrier absorption, the Drude model is used. To express the electric polarization in the 

visible/UV region, various models such as Lorentz model, Tauc-Lorentz model, Critical- 

Point Parabolic-Band oscillators (CPPB), harmonic oscillator approximation (HOA) and 

model dielectric function (MDF) have been used [71]. Complexity can be added to the
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model during the sample analysis, such as intermix layers and voids fraction, to improve 

the fitting and can be correlated with other theoretical and experimental techniques.

M e a s u r e d  d a t a

Optical Model
I « y * r 2

fey *

G e n e r a t e d  d a t a  f r o m  
_ _ _ _ _ _ _ _ m o d e l _ _ _ _ _ _ _

C o m p a r e  m e a s r e d  a n d  
g e n e r a t e d  d a t a

El,E2, thickness, 
roughness

Figure 5.3 Sim plified algorithm for data analysis from data acquired during RTSE m easurement

Buft layer c1,k2

substrate e1, e2

Figure 5.4 A sim ple optical m odel for a sam ple [30].

After developing the optical model, (\p, A) are generated by assigning “first guess” 

values to the various energy-independent unknown parameters such as bulk layer
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thickness, surface roughness. These generated (v|/, A) are then fitted to the experimental 

data. A least square regression algorithm i.e. numerical algorithm is used to minimize the

variable parameters in the model. Similarly to any numerical fitting procedure, a figure of

used as a figure o f merit for ellipsometry data analysis is called unbiased estimator or the 

mean square error (MSE), which is written as:

where N is the number o f (i|/, A) pairs, M is the variable parameters in the model and a  is 

the standard deviation o f the experimental data. The fitting process is stopped whenever 

MSE is minimized. This process o f finding the lowest MSE is called least square 

regression.

If the dielectric function is unknown, the different dielectric function modeling can 

be used to extract the dielectric function o f unknown material. A complete modeling o f the 

dielectric function over a wide wavelength range is sometimes tedious due to the complex 

nature o f the layers. In order to mitigate such complexity, the data analysis can be 

performed within a short range o f wavelength, where the dielectric function is calculated 

with a reasonable fitting in that range for a specific value o f the thickness. Now, this 

thickness is fixed and the measured (\|/, A) of the layer is then converted into optical 

functions. As an example, consider the optical model o f thin film on semi-infinite substrate 

as "air(Nair)/film(Nf,im)/Substrate(Ns) ". The measured (v|/, A) are defined as:

differences between the generated spectra and the experimental data by adjusting the

merit is used to accept the fitted data from a set o f many fitted data. One of the two choices

(5.17)

tany/ exp(/A) = p (N air, N fllm, N :substrate* d,G) (5.18)
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where Ni represents the complex refractive index of i!h layer ( i.e. if  ith layer is air, Ni 

becomes Nair), d is thickness o f the film and 0 is the incidence angle in air/film interface. 

Let’s assume that Nair, Ns, and 0 are known and the Ntiim along with d is unknown. If the 

dielectric function of the film is expressed by Cauchy model parameters within a short 

range of wavelength and a good fitting is obtained by using specific ds, then Nf,im will be 

the only unknown parameter within the full range o f measured energy. Now if equation 

5.18 is solved, the measured (vp, A) will be converted into Nf,imby solving the equation 5.18 

[71]. This type of procedure is called mathematical inversion.

Ex-situ SE measurements can be performed at multiple angles o f incidence and the 

resulting spectra can be analyzed together. During the data acquisition at multiple angles, 

the number of unknown parameters is the same but the number o f measured quantities is 

1412 (706 values o f v|/, 706 values o f A) multiplied by the number o f angles of incidence. 

In this case, the total number o f measured quantities is larger than the total number o f 

unknown parameters to be determined and so more easily modeled by using the least square 

regression analysis. During the RTSE measurement, the angle o f incidence is fixed and this 

approach is not readily applicable; a least square regression is therefore combined with 

mathematical inversion. If the bulk layer is being deposited on an already fully 

characterized substrate, then RTSE analysis can be performed during the growth even if 

the dielectric function is unknown. To extract the dielectric function and analyze the 

growth of any bulk layer, an optical model similar to Figure 5.4 with a bulk layer and a 

surface roughness layer made up o f 50% bulk layer (film) / 50% Void can be used. At any 

particular time o f deposition, the thickness o f the growing film can be estimated from the 

growth rate and so the dielectric functions (ei, 82) can be obtained by mathematical
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inversion trial, as shown in Figure 5.5. Using these trial dielectric functions as a reference 

for the growing film, a least square regression analysis can now provide a good estimation 

of the thickness. This method enables therefore one to determine the dielectric functions 

and the structure o f the sample simultaneously [30].

5.3 RTSE Studies of Ultrathin CIGS Films Deposited by 3-stage Co
evaporation Processes

The optical technique of real-time spectroscopic ellipsometry (RTSE) is becoming 

popular as the interest in developing and optimizing thin-film photovoltaic materials and 

devices grows. RTSE allows one to study the properties o f thin film growth ranging from 

the initial nucleation and coalescence stage to the final film structural depth profile. Using 

a dielectric function database obtained from RTSE measurements, one can characterize 

completed solar devices ex-situ for relevant information such as component layer 

thicknesses and compositions. The precise control over deposition process is possible only

Fix db(t0) ,  dsft0)
Invert fo r versus E

RTSE:

db, d, vs. f

Fix (S p G j)^
Fit for db(t), ds(f) versus t

Figure 5.5  RTSE data analysis algorithm [30].
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if  the changes in the material properties during deposition process are monitored. There are 

different methods to monitor the deposition process in-situ. Most o f these in-situ product 

monitor can fulfill the minimum requirement of monitoring the composition and thickness 

but to achieve higher efficiency, in-situ monitoring o f electrical and optical properties are 

necessary. Once the optical properties o f Cu(In,Ga)Se2 (CIGS) as a function of the 

composition, temperature and other deposition conditions are known, RTSE can become 

one of the most suitable in-situ sensor to monitor the thickness, roughness, optical and 

electrical properties, and growth temperature. RTSE has also been used to study the effect 

of the copper content, a key compositional variable in CIGS PV technology, on the 

microstructural evolution and optical properties of CIGS thin films.

As we discussed in the previous chapter, 3-stage thermal co-evaporation process 

has proven to produce high quality CIGS materials for solar cells. This process provides a 

high level o f flexibility but also generates greater challenges in the process optimization, 

monitoring and control [17]. Available methods to control the three stage CIGS process 

involve measuring elemental fluxes using electron impact emission spectroscopy (EIES) 

and observing the emissivity using IR sensor (pyrometer) or indirectly using the heater 

power required to maintain the constant substrate temperature [17], Due to the limitation 

o f these existing process monitoring and control capabilities, which limits the real-time 

correction of process fluctuations from the targeted final layer composition, the industry 

has adopted readily controllable CIGS deposition process compared with multisource co

evaporation process [78-79]. In general, the potential device efficiency is traded for the 

process stability, even though improved control o f 3-stage CIGS process is sought so that 

high quality materials can be fabricated for industrial-scale process. In 3-stage CIGS
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deposition, three sequent deposition processes proceed to get the final CIGS film. A first 

stage is the deposition of In, Ga and Se at relatively low substrate temperature (-400 °C). 

The second stage includes deposition of Cu and Se at high substrate temperature (-550 °C). 

During this stage, the film composition changes from (Im.xGax)2Se3 to the Cu-rich 

Cu(In,Ga)Se2 composition through the stoichiometric Cu(In,Ga)Se2 composition. When 

the CIGS film becomes Cu-rich, a semi-liquid Cu2-xSe phase is believed to form on the 

bulk layer which consists o f mixed phases of Cu(ln,Ga)Se2 and Cu2-xSe. Due to the 

presence o f a semi-liquid Cu2-xSe phase, a large grain growth is known to occur [38]. At 

the third stage, the Cu-rich CIGS film is transformed into a Cu-poor film by the deposition 

of In, Ga and Se. Fabricating the high quality CIGS for photovoltaic application depends 

on manipulating the CIGS stoichiometric composition during the segregation o f Cu2-xSe. 

In order to control the stoichiometric composition o f CIGS, several methods are developed 

such as monitoring the substrate temperature under constant substrate heater power by a 

thermocouple [80], monitoring IR emissivity of a Cu2-xSe surface layer formed at the end 

of stage [81] and a spectroscopic light scattering method [82]. Unfortunately, these 

commonly used methods for monitoring the presence o f this phase are based on the 

observing changes on the emissivity o f the film and lack quantitative capabilities. 

Spectroscopic ellipsometry is a very interesting method because it measures the complex 

dielectric function based on the state o f the light polarization o f the reflected light. The 

measurements o f the ellipsometric parameters (i|/, A) during the deposition processes based 

on the change o f the dielectric function are useful to control the process [83], The second 

stage and third stage o f three stage CIGS deposition method are very interesting since the 

film changes from Cu-rich transition to Cu-poor transition during the deposition process.
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It is expected that the dielectric function changes according to the respective phases which 

enables to study the phase and the stoichiometric composition by means o f the in-situ, real 

time spectroscopic ellipsometry (RTSE) measurements.

Detailed studies were performed to describe (i) the use of RTSE for analysis o f (Im. 

xGax)2Se3 (IGS) formation during stage I o f the deposition process, (ii) the conversion of 

IGS into CIGS during stage II and the rapid development of bulk Cu2-xSe during the end 

of stage II and (iii) Cu-rich to Cu-poor CIGS thin film transition during stage III in order 

to maintain the stoichiometric composition o f the final CIGS thin film.

5.3.1 Experimental Details

Figure 5.6 shows the schematic o f the experimental setup used in this study for co

evaporation o f CIGS with optical monitoring by RTSE. A multichannel ellipsometer based 

on a single rotating compensator (model M2000-DI, J. A. Woollam Company, Lincoln, 

NE) was used to collect ellipsometric spectra in situ, during processing in ~3-s intervals. 

The angle o f incidence was 70° with respect to the normal to the sample surface. The start 

of the first stage (I) involves co-evaporation o f In, Ga, and Se at a substrate temperature of 

400 °C. Films were deposited having compositional values o f x = 0 (ImSe3), 0.25, 0.31, 

0.45, 0.56, 0.69, and 1 (Ga2Se3), as measured by energy-dispersive x-ray spectroscopy 

(EDS). The results are given in Table 1. For the stoichiometry (Im-xGax)2Se3, the Se 

composition should be x = 0.6. The lower values in some cases may be attributed to either 

an excess o f the group III elements or additional (Im.xGax)Se phases. After an IGS 

precursor film of intended thickness (~ 65% of the desired final absorber layer thickness) 

is deposited, the In and Ga source shutter were closed to stop In and Ga co-evaporation.
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The substrate temperature is then increased to 550°C and stage II is started. In this stage, 

Cu and Se are evaporated till the Cu-poor to Cu-rich transitions occurred. At the beginning 

o f stage III, the In, Ga and Se sources are evaporated at the same rate as in the first stage. 

At the end of stage III, as defined by the Cu-rich to Cu-poor transition, the In and Ga 

sources were closed to terminate co-evaporation and the substrate temperature was steadily 

decreased.

D e p o s i t i o n
c h a m b e r

S u b s t r a t e :  M o  c o a t e d  
s o d a  l i m e  g l a s s  o r  c - S i

V|#(E, \ ) ( ----------
A (E, t) Computer

F i x e d  
a n a l y z e r

I n G a A s  P h o t o d i o d e  a r r a y  
&  SI C C D  d e t e c t o r

H e a t i n g
e l e m e n t s

Computer
R o t a t i n g  < 
c o m p e n s a t o r

p o l a r i z e r

Figure 5.6. Schem atic diagram o f  experim ental setup for the deposition o f  CIGS thin-film  materials with 

optical m onitoring by RTSE.
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Table 5.1: Chemical com positions obtained from EDS for the IGS layers deposited in this study. For the 

stoichiom etry (Ini.xGax)2S e3, the Se com position should be x = 0.6.

In (%) Ga (%) Se (%) Ga/(In+Ga)
(x)

41.7 — 58.3 0.00

33.8 11.2 55.0 0.25

28.9 13.1 58.0 0.31

25.3 20.4 54.3 0.45

18.5 23.8 57.7 0.56

12.3 27.5 60.2 0.69

— 41.2 58.8 1.00

5.3.2 RTSE of the First Stage

About 65% of the final CIGS absorber layer thickness is generated in the first 

deposition stage that yields (Im.xGax)2Se3 (IGS). Thus, it is critical to study this stage and 

ensure the desired initial composition (x=Ga/In+Ga) and, thus, its ultimate profile 

throughout the absorber layer after all three stages, are complete. In order to study this 

stage and develop a dielectric function database for future characterization o f IGS materials 

- in real time, in situ and ex situ - films were deposited having compositions x = 0.00 

(ImSea), 0.25, 0.31, 0.45,0.56, 0.69, and 1.00 (Ga2Se3). All depositions were performed at 

the first-stage substrate temperature of400°C. The RTSE data for the growing IGS samples 

were analyzed using the three layers model shown in Figure 5.7. The layers consist o f (i) a 

Mo/IGS interface roughness layer, having a fixed thickness assumed equal to the roughness
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layer thickness determined for the Mo surface, (ii) an IGS bulk layer o f thickness db, and 

(iii) an IGS surface roughness layer of thickness ds, the latter two determined individually 

at each time point in the analysis. Considering (i) and (iii), the Bruggeman effective 

medium approximation (EMA) was applied to extract the real and imaginary parts o f the 

complex dielectric function for the roughness layers, given by e = £i + is2 . A multi-time 

analysis approach was used in this study to generate a smooth e for IGS using B-spline 

functions. These dielectric functions were then parameterized using critical point (CP) and 

Tauc-Lorentz (TL) oscillators representing the band gap and the higher energy regions, 

respectively. This parameterization provides information that can be interpreted in terms 

of compositional variations and grain size. The resulting dielectric functions are shown in 

Figure 5.8. The change in behavior o f these dielectric functions at x ~ 0.45 is consistent 

with a well-defined hexagonal crystal structure for x < 0.45 and a disordered structure for 

x > 0.5.

EMA: Layer 2 + Void (50% /50% )

Laye r  2: ( In j., G a t ) ,S e 3

EMA: Layer 1+ la y e r  2 (5056/50%) 
(60 80 A)

La y e r  1: M o  ( 5 0 0 0  A)

Figure 5.7 M ultilayer m odel used for the analysis o f  RTSE data acquired on IGS thin film s prepared in the 

first stage o f  CIGS co-evaporation.
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Figure 5.8 Parameterized dielectric functions o f  IGS film s m easured at 400°C  for (a) x  <  0 .45  and (b) x  >  

0.45. The dielectric function m odel includes a critical point oscillator near the fundam ental band gap and a 

Tauc-Lorentz oscillator w ith a resonance at high-energy.

Figure 5.9 shows the evolution o f stage I IGS with x = 0.31 obtained by RTSE. 

The ~ 50 vol.% voids o f the ~ 76 A thick roughness layer on the underlying Mo are filled 

in by IGS, leading to a rapid increase in the IGS vol.% in the layer from t = 0. 

Simultaneously, the surface roughness thickness ds on the IGS increases from ds = 0 as the 

Mo is covered by IGS. After the interface composition is stabilized, a bulk layer can be 

incorporated into the model. During initial bulk layer growth, the roughness thickness on 

the IGS decreases indicating suppression o f substrate-induced roughness and apparent 

wetting o f the Mo surface. Later, the IGS roughness increases due to enlarging crystallites 

protruding above the surface. In addition to the film’s structural evolution, its dielectric 

function can be obtained as a compositional fingerprint.
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Figure 5.9 Early stage structural evolution o f  IGS with x = 0.31 on M o-coated soda-lim e glass, (a) IGS vol.%  

filling the voids (assum ed 50 vol%  at t= 0) in the M o surface roughness layer (b) IGS surface roughness 
thickness, and (c ) IGS bulk layer thickness.

The intermediate stage surface roughness evolution, i.e. over the range from 1000 

to 2000 A, is presented in Fig. 5.10(a) for selected samples. The results for all samples 

including the later stage o f growth are shown in Fig. 5.10(b). The latter figure shows 

different behaviors for alloyed films with x ~ 0.2-0.4 and those with lower and higher x. 

In fact, the films with x = 0.25 and 0.31 are the only ones that show continued roughening 

throughout the growth process, all other films show stabilized or smoothening surfaces at 

the end o f deposition. For x = 0.25 and 0.31, continuous roughening suggests continuous 

crystallite growth which generates growing protrusions at the surface, whereas for lower 

and higher x, smoothening effects are observed, ultimately (in the limit o f thick IGS) 

yielding flatter surfaces characteristic o f the stabilization o f a finer grained structure. Figure 

5.11 shows the monotonic trend in roughness layer thickness at the end o f deposition —



near the bulk layer thickness o f 9000 A. The surface roughness thickness shows a rapid 

decrease when the x value increases above x ~ 0.31, which is likely to suggest a rapid 

reduction in the grain size, leading to smaller, stable protrusions above the surface.
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Figure 5 .10  (a) Surface roughness evolution for IGS film s o f  selected  Ga com position  x over the bulk layer 

thickness range o f  1000 - 2000 A; (b) expansion o f  the results o f  (a) to the full sam ple set and a w ider bulk  
layer thickness range.

0 .0  0 .2  0 .4  0 .6  0 .8  1 .0
Ga content (x)

Figure 5.11: Variation o f  surface roughness w ith Ga content x  at the bulk layer thickness (db) o f -  90 0 0  A.

Figure 5.12 shows the variations o f the band gap, amplitude, and broadening o f the 

bandgap critical point oscillator versus alloy composition. The In- and Ga- rich sides o f 

IGS have different properties as reflected in the Figure. For x < 0.5, the band gap critical

j  L J  i L
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point is clearly visible at E = 2.15 - 2.35 eV in (si, 62) and sharpens with increasing x up to 

x = 0.3. In contrast, for x > 0.5, the amplitude of this critical point drops to low values, 

indicating a suppression of the fundamental band gap structure. In its place, a very broad 

low energy absorption tail is observed that can be simulated with the onset o f the Tauc- 

Lorentz oscillator.
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Figure 5.12: Variation o f  the (top) critical point resonance energy Egi (x  <  0 .5 ) or Tauc-Lorentz band gap 

Eg2 (x >  0 .5 ), (center) critical point resonance broadening Ti and (bottom ) critical point resonance amplitude 

A i as functions o f  x.

Scanning electron micrographs o f the same set o f IGS films as was measured by 

RTSE are shown in Figure 5.13. These reveal trends that support the structural and optical 

behavior from RTSE. First, a strong reduction in grain size is observed between x=0.31
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and x=0.54, which is consistent with the reduction in surface roughness in Figures 5.11 and 

5.12. In addition, the finer grain structure of x = 0 relative to x = 0.31 is reflected in the 

stabilization of the roughness in Fig. 5.10(b) for x = 0, as compared to a continuous 

roughening effect consistent with continuing growth of large grains for x = 0.31.

x=0.00
if;

x=0.56 x=0.69

x=1.00

Figure 5.13: Scanning electron micrographs for IGS film s o f  different alloy com positions which were also 

measured by RTSE.
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5.3.3 RTSE of the Second Stage

In this initial analysis of stage II RTSE data, a bulk conversion model, in which the 

entire IGS layer is converted into CIGS uniformly throughout its thickness via an increase 

in CIGS volume fraction at the expense of IGS was used (Figure 5.14). In the bulk 

conversion model, CIGS nucleates uniformly with depth within the bulk IGS layer, and the 

grain size and the concentration o f grains increase with time at the expense o f the 

surrounding IGS material until the entire IGS layer is consumed. In this process, the bulk 

layer thickness increases as the Cu is incorporated. Thus, it is assumed that IGS, CIGS and 

Cu2-xSe components o f the bulk layer are resolvable at any time during Cu exposure, and 

as a result the film is modeled with a uniform bulk layer according to a three-component 

Bruggeman EMA.

Surface roughness (Bulk layer+Cu2.xSe+void)

Bulkfayer {lGS+CtGS+Cu2.J(Se}

Mo

Figure 5.14: Bulk conversion m odel for the analysis o f  stage II RTSE data

Fig. 5.15(a) shows bulk thickness evolution at the end of stage I and throughout 

stage II, obtained on the basis o f the bulk conversion model. The plot shows that there is a 

rapid increase in IGS thickness during stage I. The growth stops due to the cool down of 

In and Se sources at the beginning of stage II. When the evaporation of Cu starts, the bulk 

thickness starts to grow again due to the conversion of IGS into CIGS. In the bulk
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conversion model, the process starts as small inclusions o f CIGS in IGS and the volume 

fraction o f CIGS then increases with time until all the IGS material is converted into CIGS. 

A plot o f CIGS content vs. time is shown in Fig. 5.16 (b). The initial analysis o f stage II 

shows the presence o f some Cu2-xSe even during the Cu poor part o f stage II. Figure 5.16 

shows a plot o f  Cu2-xSe content vs. time derived from the bulk conversion model. The rapid 

increase in Cu2-xSe content towards the end is due to the Cu-poor to Cu-rich transition, and 

shows that our analysis yields the correct result.
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bulk conversion m odel
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Figure 5.16: A plot o f  Cu2.xSe content in vol. % within the bulk layer vs. time based on the bulk conversion 
model.

5.3.4 RTSE of the Third Stage

During the third stage, Cu-rich CIGS film is transformed into a Cu-poor film by the 

deposition o f In, Ga and Se, to provide a suitable absorber layer for the CIGS solar cell. 

An optical model o f two surface layers consisting o f CIGS surface roughness (consisting 

o f crystallites protruding above the surface), as well as an underlying layer consisting of 

Cu2-xSe, CIGS, and voids was used to monitor the Cu-rich to Cu-poor transition. Figure 

5.17 shows RTSE analysis results for a CIGS film near the end o f stage III, along with an 

optical model that provides quantification o f the effective thickness o f the Cu2-X Se phase, 

which is present near the surface when the film is Cu-rich. With this model, the Cu-rich to 

Cu-poor transition can be identified as the time at which the Cu2-xSe volume fraction (also 

its effective thickness) decreases to zero. Termination o f the deposition can then be 

determined by the additional effective thickness o f (Im.xGax)2Se3 deposition forming after 

the complete elimination of the Cu2-xSe phase. For this 0.7 pm film, the addition o f an extra 

~ 200 A of (Ini-xGax)2Se3 starting from the transition is estimated to lead to a Cu 

stoichiometry decreasing from 0.25 to ~0.22, as desired. Thus, the RTSE capability not
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only provides an indication o f the Cu-rich to Cu-poor transition, but it also enables one to 

identify and control the thickness increase after this transition in order to achieve the 

desired Cu-poor stoichiometry.
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Figure 5.17: Optical m odel for real tim e analysis o f  the third stage o f  three stage C IG S deposition. T w o  

surface layers describe the roughness as w ell as the Cu-rich phase at the surface o f  the film . The thicknesses 

o f  these tw o layers along w ith the bulk thickness, and the layer volum e fractions are g iven  in the three panels 

at the right.

5.4 Summary

Ultrathin CIGS films were deposited using a 3-stage process and detailed study was 

performed to describe (i) the use o f RTSE for analysis o f IGS during stage I o f the 

deposition process; (ii) the conversion of IGS into CIGS during stage II and the rapid 

development o f bulk Cu2-xSe during the end o f stage II; and (iii) Cu-rich to Cu-poor CIGS 

thin film transition during stage III in order to maintain the stoichiometric composition o f 

the final CIGS thin film. For x = 0, the initial roughness is very large but smoothening
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occurs via coalescence. In contrast, for x = 1, the initial surface is quite smooth and stable 

with time. Only for x ~ 0.25-0.3, does the roughness increase throughout deposition, 

indicating continuous growth of grains that protrude above the surface. A significant 

change in roughness evolution is observed for x > 0.5 as the final surface roughness 

thickness decreases rapidly with x. RTSE enables therefore analysis o f the structural 

evolution, grain growth processes, dielectric functions during CIGS fabrication. It also 

enables tracking of the IGS-to-CIGS conversion and the transitions between Cu-poor and 

Cu-rich films during CIGS growth. The RTSE method also proves to be a potentially 

important tool for end-point detection in each of the three stages o f the CIGS growth.
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CHAPTER 6 

ADVANCES IN CIGS FABRICATION PROCESS

6.1 Introduction

Impurities in the CIGS absorber layer can have a strong influence on the 

performance o f the CIGS solar cell [84-85], Impurities can be introduced unintentionally 

in many ways into the CIGS layer: using impure source material, impure liners for the 

deposition sources, and other non-appropriate supporting parts for the evaporation sources. 

Most o f the impurities in the absorber layer degrade the cell performance by introducing 

recombination centers. We therefore paid specific attentions to all the materials used in our 

chamber to enhance the solar cells efficiency.

The CIGS absorber layer is a compound made of Cu, In, Ga, and Se. In order to 

obtain high conversion efficiency CIGS solar cell, the compositional depth profile of each 

element in the CIGS absorber layer must be well-controlled. An in situ process monitor is 

therefore a very important tool that allows producing repeatable, high-quality CIGS 

coatings. The process monitor for a CIGS co-evaporation system should meet the following 

critical requirements: 1) The process monitor must work both in situ and in real time; 2) 

The process monitor must be operated at high temperatures (the surrounding temperature 

range from 350 °C to 550 °C); and 3) The process monitor must be able to sustain Se 

corrosion during evaporation. A novel non-contact method based on detection o f infrared 

(IR) emission by I-R sensor (pyrometer) has several advantages over the well-established 

contact thermocouple method and over other optical methods, and was implemented in our 

chamber.
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6.2 Modification of the co-evaporation system

The evaporation equipment that has been used for co-evaporation o f the CIGS 

absorber is shown in Figure 6.1. The deposition chamber is evacuated to the lower part of 

the high vacuum regime, 10'7 torr, by using a Pfeiffer turbo molecular pump, backed by an 

Edwards dry scroll pump. The system consists o f 6 individual sources. The system is 

equipped with several individual crystal monitors to monitor the rate o f individual source 

during the deposition. The substrate heater is a stainless steel box equipped with halogen 

lamps for IR heating. Between the evaporation sources and the substrate there is a substrate 

shutter. When the substrate shutter is closed it prevents the flux of all metal vapors to reach 

the substrate. Initially, the distance between the individual source and the substrate was 

very high (~ 30 inches). During the deposition process, it consumed a lot o f source 

materials such as copper (Cu), indium (In), gallium (Ga) and selenium (Se), which wasted 

a lot o f product during each deposition process. The system was then modified by raising 

each source in order to reduce the distance between the individual source and the substrate. 

After this modification, the consumption of each source was reduced significantly and led 

to better quality films as the rates were more constant over time.



Figure 6.1 Front v iew  o f  the co-evaporation chamber, with the controller unit for the system  on the left.
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6 .3 1-R sensor for end point detection

As we discussed earlier, co-evaporation o f CIGS via 2-stage and 3-stage processes 

has been used to fabricate small-area devices with efficiencies greater than 20 % [5]. 

Control o f the Cu/(In+Ga) ratio throughout film growth constitutes one of the most critical 

aspects during the co-evaporation process. A slightly Cu-rich growth period has been found 

to increase grain size and device quality [86]. The relative impact o f the Cu-rich growth 

period is a function o f deposition time and temperature, which can directly impact 

throughput and cost in manufacturing [86]. In addition, the final Cu/(In+Ga) ratio should 

also be within acceptable range, which is generally between 0.80 and 0.95 [87].

Currently available flux sensors are not suitable to control the Cu/III ratio within an 

acceptable degree since the requirements for flux control during CIGS co-evaporation are 

rigorous. The sensor should be able to distinguish between simultaneous rates of different 

species, and to operate reproducibly in a high-temperature environment with significant Se 

pressure. Even though a wide variety of methods for rate control have been utilized, 

including electron impact emission spectroscopy (EIES) [88], atomic absorption 

spectroscopy [89], effusion source temperature control [89] and mass spectroscopy [90], 

none o f these tools is sufficient to independently control the Cu ratio within the desired 

accuracy.

On the other hand, the increase in emissivity which occurs when the CIGS 

transitions into a Cu-rich regime [91-92] has been utilized as an endpoint indicator, 

successfully showing precise control o f the Cu/III ratio. Such emissivity increase can be 

detected as a drop in the substrate temperature measured by contact thermocouple [93] or 

as an increase in heater power required to keep the substrate at a constant temperature [94],
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The contact thermocouple method of sensing the Cu-rich transition is problematic from a 

manufacturing perspective for several reasons. First the thermal contact between 

thermocouples and the substrate is unreliable for continuous processing o f moving 

substrate. Furthermore, the expected temperature change may be only a fraction of a degree 

Celsius depending on system thermal and control parameters. Finally, this method cannot 

be used for flexible substrate that allow low-cost, roll-to-roll processing due to low thermal 

mass and inability to sustain the mechanical pressure o f a thermocouple. So non-contact, 

optical methods o f probing the growing CIGS thin film emissivity have become of 

increasing interest. Such methods include in situ measurement of reflected [95], transmitted 

[92] and emitted light [96]. Each of these optical techniques shows some advantages. 

Measurements of specularly reflected light produce a large signal, but require precise 

sample-to-optics alignment in each deposition period. Transmitted light measurements 

offer a very high sensitivity, which is very good for low-emissivity films, but require 

deposition of the film onto a transparent substrate. Emission measurements are appealing, 

since no light source is required which simplifying the sensor apparatus.

A novel non-contact method based on detection o f infrared (IR) emission by I-R 

sensor (pyrometer) has several advantages over the well-established contact thermocouple 

method and over other optical methods. Compared with the thermocouple method, it is 

more applicable to moving and lightweight substrates.

We installed such a pyrometer in our chamber. We used it as a guide for maximum 

and final Cu/III ratio, as a large signal change occurs at the Cu-poor to Cu-rich transition, 

as well as at the Cu-rich to Cu-poor transition. Figure 6.2 shows the typical growth plot 

depicting the development o f the substrate temperature as measured by pyrometer (Tpyro)
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with respect to deposition time. During the first stage, only In, Ga and Se were deposited 

at approximately 400 °C, forming a (In,Ga)2Se3 (IGS) precursor film. At the beginning o f 

the second stage, the substrate temperature was ramped up slowly to around 555 °C, the 

PID temperature controller was cut out and a constant heating power was supplied. Only 

Cu and Se were deposited and the overall cation ratio [Cu]/[In+Ga] o f the growing CIGS 

film was continuously increasing. At the process point, tstio.i, the temperature o f the 

substrate drops, which is an indication of the surface segregation of Cu2-xSe. The Cu2-xSe 

phase has a higher emissivity towards the IR region than the Cu-poor CIGS and the 

increased emission o f heat radiation leads to a lower substrate temperature [93]. The 

relative incorporation rate of Cu and (In+Ga), rrinc is deduced after assuming that (i) the 

growth rate or incorporation rate o f In, Ga and Se into the thin film are constant during the 

process and (ii) the substrate temperature drop corresponds to the overall stoichiometric 

composition [Cu]/[In+Ga] = 1, giving:

r r  — r inc( C u ) _  t stoi, 1
inC r incU n )+ r inc(Ga) t ,  ^ ‘ }

where ti is the duration o f first stage.

After tstio, i, the entire film composition becomes more and more Cu-rich, leading

to a [Cu]/[In+Ga] -1.1 at the end of stage 2. The purpose of this high ratio is that the Cu-

rich film is beneficial for the film morphological and electronics properties [85]. The

presence o f Cu2-xSe in the Cu-rich film would help in the better intermixing of Ga and In

due to their high diffusivity and also provide extra nucleation and growth site for CIGS

[97]. Then, Cu2-xSe provides the transportation medium for these grains towards the solid 

liquid interface which help in the growth of larger CIGS grains normal to the substrate

[98]. In stage 3, only In, Ga and Se evaporate until the target composition [Cu]/[In + Ga]
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~ 0.9 is reached. During this stage, at tstio.2. the stoichiometry is passed starting from Cu- 

rich to Cu-poor side as the indication o f the increase in the substrate temperature. Thus I- 

R sensor has been used to track the transitions between the Cu- rich and Cu-poor 

surfaces during CIGS deposition process in order to obtain high quality CIGS absorber 

layer.
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Figure 6 .2  Typical substrate temperature profiles, Tpyr0 during the three-stage-growth o f  C u(ln ,G a)Se2
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6.4 Advances in CIGS solar cell fabrication

6.4.1 CIGS solar cell structure

CIGS cell structure as shown in Figure 6.3 consists of the following layers: n- 

ZnO:Al as a window layer, i-ZnO, CdS as a buffer layer, p-CIGS as a absorber, Mo as the 

metal contact and glass as the substrate. A molybdenum layer deposited by magnetron 

sputtering serves as the back contact and reflects most unabsorbed light back into the 

absorber. Following molybdenum deposition a p-type CIGS absorber layer is grown by co

evaporation process. The co-evaporation process is the most successful technique used to 

fabricate high efficiency CIGS solar cell. This deposition process involves simultaneous 

evaporation o f individual elements from multiple sources in a single or sequential process. 

A thin cadmium sulfide (CdS) deposited by chemical bath deposition (CBD) is added on 

top of the absorber. CdS thin films (~ 50 nm) deposited by CBD process yield the most 

efficient Cu(In,Ga)Se2 thin film based devices since this process is conformal for very thin 

films. This process also helps in cleaning the CIGS layer and in intermixing the Cd by 

chemically driven ion-exchange mechanism [99-100]. However, there is the loss of current 

in the solar cell due to the absorption in the CdS layer at and below -520 nm. So CdS 

thickness optimization is very crucial in CIGS solar cell. A thin, intrinsic zinc oxide layer 

(i-ZnO) and aluminum-doped zinc oxide (AZO) are deposited on top of the CdS. The i- 

ZnO layer is used to protect the CdS and the absorber layer from sputtering damage while 

depositing the ZnO:Al window layer. The AZO serves as a transparent conducting oxide 

to collect and move electrons out of the cell. It is therefore crucial to optimize each layer 

of the CIGS solar cell structure to produce the best performance CIGS solar cells. The 

optimization process for each layer is described below.
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Figure 6.3: CIOS solar cell structure

6.4.2 Molybdenum back contact deposition

Molybdenum back contacts were deposited on soda lime glass (SLG) by DC 

magnetron sputtering with base pressure o f ~ 2 x 10'6 Torr. Molybdenum targets with 2 

inches diameter, lA inch thickness, and 99.95% purity were used. Uniform film thickness 

(±5% error) was achieved using a rotatable substrate holder. The argon pressure was varied 

between 3 and 16 mTorr while keeping a constant sputtering power o f 150 W. The 

resistivity of the films was found to increase with increasing working pressure (Figure 6.4). 

At higher working pressure in the system, the kinetic energy of Mo ions is decreased due 

to the increased particle scattering. The deposited film tends then to be less dense with 

some porous column boundaries, and cannot be crystallized well. As a result, the resistivity 

o f the film increases. The sputtering DC power was also optimized and it was found that 

the resistivity o f Mo film was inversely proportional to the sputtering power. So, the
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pressure and power during the deposition was kept at optimized value to obtain the better 

quality back contact Mo layer. However, in order to obtain an optimal Mo film, with a 

lower resistivity and good adhesion, a new process was needed and the Mo layer film was 

deposited using a sequentially changing working pressure. We observed, as had been 

previously reported [101], that films deposited at high pressure leaded to high resistivity 

while films deposited at low pressure leaded to poor adhesion. In order to ensure optimum 

properties for the Mo bilayer, the 1st layer was deposited at 10 mTorr (with a thickness 

-100 nm), and the 2nd layer was deposited at 3 mTorr (with a thickness -600  nm), which 

ensures good adhesion, low resistivity and high reflectance. The power used was 150 W. 

The thickness o f  the Mo layer was proportional to the sputtering time with an observed 

deposition rate of 7nm/min. The thickness for all depositions was kept constant at -  0.7 

pm. Adhesive tape test was performed on each film by using scotch tape to determine the 

adhesion strength o f the films.
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Figure 6 .4  Norm alized resistivity as a function o f  pressure for M o thin film
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6.4.3 CdS buffer layer deposition

Cadmium sulfide (CdS) was deposited by chemical bath deposition (CBD) process 

as a buffer layer and heterojunction partner for CIGS. The chemical used in the CBD 

process consists o f Cadmium Acetate (Cd(CH3COO)2) as a Cadmium source, thiourea 

(CS(NH2)2) as a Sulphur source and Ammonium Hydroxide (NH4OH) as a complexing 

agent. The deposition process consists of an external bath with a heater attached to it. 

Different recipes were implemented to optimize the CdS layer to achieve the best 

performance CIGS solar cells.

In the first recipe, 22 ml o f 7.63 g/1 aqueous solution o f Cadmium Acetate was 

mixed with 17 ml o f NH4OH (30%); then, 22 ml of 77.85 g/1 o f aqueous solution of 

Thiourea was poured into the beaker containing 164 ml of water. The sample, which was 

first soaked in DI water for 5 minutes, was immerged into the water bath heated at 60°C. 

Every minute, the samples were shaken up and down few times which help remove any 

precipitates on the surface. The PH of the solution was typically around 11. The deposition 

was continued for 9 minutes. After the deposition, samples were rinsed with DI water and 

dried in a nitrogen environment.

In the second recipe, 15 ml o f 6.74 g/1 aqueous solution o f Cadmium Acetate and 

35 ml o f NH4OH (28%) were first mixed into a beaker containing 185 ml o f DI water. The 

beaker was then placed into the water bath. After 1 minute, 15 ml of 28.48 g/1 aqueous 

solution of Thiourea was poured into the beaker. The deposition was started when the water 

bath was heated at 70°C. The sample was then dipped into the solution and the deposition 

was completed in 22 minutes. Every 2 minutes, the samples were shaken up and down few 

times which helped remove any precipitates on the surface. After the deposition, samples
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are rinsed with DI water and dried in a nitrogen environment. The thickness o f the CdS 

layer for both process was around 50 nm.

SIMS analysis (not shown here) on the finished CdS films showed considerable 

amounts o f carbon, oxygen, nitrogen and hydrogen when we started the process. Extra 

precautions on the chemical purity and process were taken while performing CBD process 

to reduce the extra contamination in the films. For each CBD process, a fresh solution was 

prepared for individual chemical sources which enhanced the fabrication process.

6.4.4 Window layer deposition

The window layer in the CIGS solar cell structure contains two parts: a 100 nm 

thick intrinsic ZnO and a 350 nm thick 2% aluminum-doped ZnO. Both films were 

deposited by RF magnetron sputtering at 13.56 MHz with a base pressure o f ~5 x 10"6 Torr. 

The power used for the deposition of i-ZnO and Al:ZnO targets were 60 W and 130 W, 

respectively. The substrate temperature was kept at room temperature, while the pressure 

was kept constant at 4 mTorr. Uniformity o f the film thickness was achieved by using a 

rotatable substrate holder moving at a speed of -2 0  rpm. The ambient humidity affected 

transparency and conductivity of the aluminum doped zinc oxide during deposition 

process, since the sputtering system does not have a load lock system. A strong dependence 

o f the deposited layer properties on the ambient humidity was observed. As can be seen 

from the layer transmission curve (AZO at high humidity condition) presented in Figure 

6.5, sputtering from the AZO target after a long exposure of the chamber in the high 

humidity day resulted in the deposition o f resistive layers with low transparency. The 

conditions were improved by performing depositions after backing out the chamber for an
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hour at 250 °C. Sputtering from the AZO target in low humidity condition (called dry 

environment) allows the layer transparency to be kept at a high level (85-90%) as shown 

in Figure 6.5 (AZO at low humidity condition) with a low sheet resistance o f 30-35 Q/sq. 

The detailed mechanism of electrical conductivity and transparency on these AZO layers 

is not clear yet and needs further investigation.
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Figure 6.5  Transmission spectra o f  A ZO layers deposited at very high and low  humidity condition

6.4.5 Metal contact deposition

After the deposition of the window layers, metal grids were deposited on top o f the 

AZO layer to facilitate the current collection and provide a contact pad for J-V  

characterization o f the cells. The tapered finger grids in a 50/3000/50 nm thick Ni/Al/Ni 

sandwich were deposited by e-beam evaporation through a shadow mask and covered 

approximately 4% of the total cell area. The metal evaporation rate and film thickness were 

monitored with a quartz-crystal microbalance (QCM). The function o f the two thin nickel 

layers is to protect the aluminum to react with oxygen from the front contact layer and from
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air, respectively. The top nickel layer also facilitates an Ohmic contact between the grid 

and the I-V measuring probes. Figure 6.6 shows the CIGS complete cells with area 0.5 cm2 

defined by mechanical scribing.

Figure 6 .6  CIGS com plete cells with area 0.5 cm 2 defined m y mechanical scribing

6.4.6 Effect of impurities during the film growth on the performance of

CIGS thin film solar cells

Impurities in the CIGS absorber layer can have strong influence on the performance 

of the CIGS solar cell [84]. Impurities can be introduced unintentionally in many ways into 

the CIGS layer as mentioned previously. Most o f the impurities in the absorber layer 

degrade the cell performance by introducing recombination centers. Other impurities such 

as Sb and Bi were found to improve the performance of CIGS solar cells [102]. It is well 

known also that a small amount of alkaline material such as Na and K is required in the 

CIGS absorber layer to improve solar cell efficiency [103-104]. Despite the positive 

effects, it was also found that the presence of excess alkali elements during the growth 

process can lead to a deterioration of the solar cell performance [104]. It was also reported
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for devices at high temperature (-600 °C) that the efficiency o f the solar cell starts to 

decrease at high Na concentration [104]. In order to understand the electronic properties in 

CIGS solar cells, it is very useful to know the elemental distribution in the film with 

nanometer-scale resolution. Secondary Ion Mass Spectroscopy (SIMS) is capable of 

detecting elements with concentration as low as parts per billion (ppb) and is therefore an 

ideal tool for impurities analysis. In SIMS measurement, a primary ion impinges on the 

material and depending on the primary ion's charge, positively or negatively charged ions 

are ejected out of the material.

When we started fabricated solar cells, we observed that a maximum efficiency of 

10% was achieved for solar cells grown by 3-stage process, with even lower efficiencies 

for the other processes. Based on the J-V and QE measurements, a thorough device analysis 

was done on each o f these devices to understand the reason behind the inability to 

overcome the barrier o f 10% efficiency. All these analysis were indicating that, even if 2 

pm thick Cu(In,Ga)Se2 was grown for each device, the actual active area was much thinner 

(~ 500 nm). Solar cells devices were therefore analyzed by SIMS in positive secondary 

mode and negative secondary mode to find if there was any type of impurities present in 

the device.

The positive SIMS spectra analysis on a CIGS thin film deposited by 3-stage co

evaporation process on a Si wafer confirmed the presence of impurities like oxygen, 

hydrocarbon, magnesium, potassium, and calcium as shown in Figure 6.7. The potential 

source o f these impurities could be the liners which were used as evaporation containers 

for different sources and other supporting parts in the deposition chamber. It needs to be 

noted that most o f the sources were heated above 1000°C during the deposition process.
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These contaminations could be the potential sources for higher defects density in CIGS 

thin film, which we observed while simulating ultrathin CIGS devices as explained in 

chapter 3. Several parts were covered by high purity molybdenum sheet, which can easily 

withstand the high temperature outside the sources (~ 500-600 °C). The positive SIMS 

depth profile spectra o f CIGS films deposited on c-Si wafer after covering the parts with 

molybdenum sheet did not contain any calcium, magnesium and other peaks as can be seen 

in Figure 6.8. Figure 6.9 shows the elemental depth profiles o f the CIGS thin films 

deposited on the soda lime glass (SLG) after using high purity sources and covering the 

parts. There were no foreign impurities observed, which could cause defects in the CIGS 

thin film. Na and K are from the SLG at high temperature, which are generally beneficial 

for the cell [103]. We were able to fabricate the CIGS solar cell with efficiencies 17.1% 

after using these improvements.
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Figure 6 .7  The positive ion SIM S spectra o f  CIGS thin film  deposited on c-S i wafer before impurities removal
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6.4.7 Improved solar cell performance

As mentioned earlier, impurities in the CIGS absorber layer can have a strong 

influence on the performance of the CIGS solar cell [84]. Most o f the impurities in the 

absorber layer degrade the cell performance by introducing recombination centers. After 

modification and enhancement o f several o f our processes, we were able to fabricate CIGS 

solar cells with efficiency as high as 17.1%.

Current density-voltage (J-V) measurements o f the completed devices were 

performed under standard test conditions (AM 1.5 global spectrum at 25°C, 100 mW/cm2). 

We observed uniform cell performance, with efficiencies greater than 16 % without MgF2, 

on a 1 inch by 3 inches substrate incorporating 18 small area devices (0.50 cm2). The best 

cell exhibited an efficiency of 17.1% after coating with MgF2, with critical cell parameters 

as shown in Table 6.1. J-V curve for the best device with and without 100 nm o f MgF2 

anti-reflecting coating is shown in Figure 6.10. Quantum efficiency (QE) measurements 

were also performed on the best cell with and without 100 nm of MgF2 anti-reflecting 

coating (Figure 6.11). The calculation o f the current from the QE curve by integrating the 

data over the entire spectrum leads to value identical to the ones obtained via the J-V curves 

and confirmed the proper calibration o f our system and correct area o f the cells. The QE 

onset in the near infrared (— 1195 nm) is consistent with the energy band-gap obtained from 

the XRF, EPMA, XRD, and optical measurements. As can be seen in Figure 6.11 (b), the 

QE was improved after ARC coating due to the reduction of the reflection from the material 

interface. There was no significant absorption in the window layer (ZnO/AZO) region since 

the ZnO/AZO layers have high band-gap energy. Absorption in CdS is one o f the major 

losses in this device. The loss in QE for X < 500 nm is directly proportional to the thickness
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of the CdS, since electron-hole pairs generated in the CdS are not collected in the device. 

This loss could be reduced by reducing the thickness of the CdS layer.

Table 6.1 Best solar cells fabricated from CIGS thin film  deposited by 3-stage process

Processes Jsc
Voc

(V )
Fill Factor Efficiency

(mA/cm2) (%) (% )
3-stage 34.3 0.64 73.8 16.3

3-stage with ARC 35.6 0.65 73.9 17.1
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Figure 6 .10  (a) Typical light and dark J-V curve for device fabricated from CIGS film  deposited by 3-stage  

process without ARC and (b) typical light and dark J-V curve for device fabricated from CIGS film  deposited  

by 3-stage process with ARC. T hicknesses o f  the CIGS layers are ~  2.5 pm.
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Figure 6.11 (a) Quantum  efficiency curve for device fabricated from CIGS film deposited by 3-stage process w ithout 

ARC and (b) Quantum  efficiency curve for device fabricated from CIG S film  deposited by 3-stage process with ARC. 

T hicknesses o f  the C IG S layers are ~ 2.5 pm.

The J-V data were analyzed using a standard diode equation considering the 

forward diode current limited by Shockley-Read-Hall (SRH) recombination through the 

states within the Space Charge Region (SCR) of the Cu(In,Ga)Se2.The diode equation is 

given by

J  = J 0 exp - J 0 - J L +GV (6.2)
AkT

where Jo is the forward current, A the diode quality factor, Rs the series resistance, J l  the 

light generated current, and G the shunt conductance. The shunt conductance, calculated 

from the J-V characteristics in the dark was found to be small for these devices and is, 

therefore, neglected in the device analysis. Differentiation of (6.2) with Jl = Jsc leads to

dV AkT |- R s+ (J + J x ) (6.3)
dJ q
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The series resistance (Rs) was around 1.1 Q-cm2 and A was around 1.7 for these devices. 

These data were derived from the slope and intercept, respectively, in a linear fit to dV/dJ 

plotted versus (J+Jsc)'1. Classically, the value of A is between 1 and 2. The higher value for 

the diode quality factor indicates that the main recombination mechanism is more closely 

related to space charge region recombination than to bulk recombination.

6.5 Summary

The co-evaporation system has been used to fabricate the CIGS absorber layer 

using co-evaporation process. Initially, the distance between the individual source and the 

substrate was very high ( - 3 0  inches). During the deposition process, it consumed a lot o f 

source materials such as copper (Cu), indium (In), gallium (Ga) and selenium (Se), which 

wasted a lot o f product during each deposition process. The system was then modified by 

raising each source in order to reduce the distance between the individual source and the 

substrate. After this modification, the consumption of each source was reduced 

significantly and led to better quality films as the rates were more constant over time. I-R 

sensor has been used to track the transitions between the Cu- rich and Cu-poor surfaces 

during CIGS deposition process. Each layer o f CIGS solar structure was optimized to 

maintain the quality of each layer in order to fabricate the high efficient CIGS solar cells. 

Impurities in the CIGS absorber layer can have strong influence on the performance o f the 

CIGS solar cell. The positive SIMS spectra analysis on a CIGS thin film deposited by 3- 

stage co-evaporation process on a Si wafer confirmed the presence o f impurities like 

oxygen, hydrocarbon, magnesium, potassium, and calcium. The potential source o f these 

impurities could be the liners which were used as evaporation containers for different
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sources and other supporting parts in the deposition chamber. Several parts were covered 

by high purity molybdenum sheet, which can easily withstand the high temperature outside 

the sources (~ 500-600 °C). The positive SIMS depth profile spectra o f CIGS films 

deposited on c-Si wafer after covering the parts with molybdenum sheet did not contain 

any calcium, magnesium and other peaks. After modification and enhancement o f several 

o f our processes, we were able to fabricate CIGS solar cells with efficiency as high as 

17.1%.
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CHAPTER 7 

CONCLUSIONS

CIGS is a nearly perfect absorber layer for polycrystalline solar cells due to its close 

match o f band gap with the solar spectrum, a relatively high absorption coefficient and 

good opto-electronic properties in the polycrystalline phase. The capacity to scale up any 

photovoltaic technology is one of the criteria that will determine its long-term viability. In 

the case o f CIGS, many manufacturers such as Solar Frontier are showing the way for GW- 

scale production capacity. However, as CIGS technology continues to increase its share o f 

the market, the scarcity and high price o f indium will potentially affect its ability to 

compete with other technologies. One way to avoid this bottleneck is to reduce the 

importance o f indium in the fabrication o f the cell simply by reducing its thickness. 

Reducing the thickness will not only save the material but will also lower the production 

time and the power needed to produce the cell.

In Chapter 1, an introduction o f solar cell technology and an outline o f the 

dissertation objectives were given.

In Chapter 2, materials properties o f Cu(In,Ga)Se2 thin films and characterization 

techniques used to explore the Cu(In,Ga)Se2 thin films and devices were presented. 

Characterization technique ranging in measurement settings from in-situ, real time growth 

monitoring to the characterization o f the final solar cell have been discussed. It is always 

encouraged to use more than one characterization tool for the same material if  possible in
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order to develop a holistic idea o f what is happening with the particular material or final 

device.

In Chapter 3, a brief review of the ultrathin CIGS solar cells and the effect o f the 

absorber thickness on ultrathin CIGS films and devices were discussed. CIGS thin films 

with various thicknesses from 1.95 pm down to 0.5 pm were deposited by co-evaporation. 

CIGS solar cells were then fabricated with the following standard structure: 

glass/Mo/CIGS/CdS/ZnO/ITO/grid. Cells with total area o f 0.50 cm2 were defined by 

mechanical scribing. The efficiency o f the completed device was extracted from J-V 

measurements under 100 mW/cm2, and the currents confirmed by QE measurements under 

white light bias. The current and voltage were roughly constant as thickness reduced from 

1.95 pm to 1.3 pm, while decreasing for 0.75 pm and 0.5 pm. The reduction in Jsc is likely 

due to the reduction in absorbance in long wavelength. The observed decrease in Voc could 

be due to the increase in shunt conductance with reduction o f the CIGS absorber layer 

thickness. The experimental results for ultrathin CIGS solar cells indicate that the 

efficiency drops not only due to the decrease in Jsc, which is expected since the absorber 

layer gets thinner, but also due to decrease in Voc and FF. The degradation of the overall 

performance o f the ultrathin CIGS solar could be due therefore to the combination of 

reduction in thickness o f the absorber layer as well as the presence o f impurities in the 

absorber layer. Numerical modeling o f CIGS solar cells is an efficient way in order to 

verify the viability o f created hypothesis depending on the physical explanations and to 

predict the effects o f these physical changes on the solar cell performance. The simulated 

current-voltage characteristics of the ultrathin CIGS solar cells suggest that the deep states
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defects that lye in the upper part o f the energy gap are responsible for the deterioration of 

the overall solar cell performance o f the ultrathin CIGS solar cells

In Chapter 4, characterization of ultra-thin CIGS films deposited by 1 -stage, 2-stage 

and 3-stage process were discussed and the effect of selenium pressure on ultrathin CIGS 

films and devices were also are presented. The ultrathin CIGS films deposited by 1-stage,

2-stage and 3-stage co-evaporation processes were explored by in-situ spectroscopic 

ellipsometry via the real time monitoring of the dielectric functions, the thickness, and the 

roughness. Ultrathin CIGS with thickness -  0.7 pm were deposited by 1 -stage, 2-stage and

3-stage co-evaporation processes and spectroscopic ellipsometry data were acquired with 

an energy range of 0.75-6.5 eV. Irrespective o f the process, the initial nucleation stages of 

these ultrathin films show island growth or the Volmer-Weber (V-W) growth process. A 

comparison of the films in the nucleation stage reveals that the height of nuclei at the onset 

o f coalescence is the lowest for films deposited by 2-stage process, where the Cu-rich 

growth phase is realized by supplying higher rate of Cu during the first stage. The observed 

nucleation behavior therefore suggests that this semi-liquid phase increases the mass 

transport, enhancing the contact and coalescence of the nuclei, leading to a decrease in their 

height, hence smoothening the early-stage film surface. Material properties o f these 

ultrathin Cu(In,Ga)Se2 films deposited by 1-stage, 2-stage and 3-stage co-evaporation 

processes were characterized and compared using different optical and electrical 

characterization techniques such as spectroscopic ellipsometry (SE), XRD and AFM. Out 

of these three processes, the 3-stage process proved to be the best for growing device 

quality ultrathin Cu(In,Ga)Se2 films. The solar cells processed from these ultrathin CIGS 

films with thickness - 0 .7  pm were also characterized to compare the efficiency, voltage
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and current. Current-voltage (J-V) and quantum efficiency (QE) measurements on these 

ultrathin CIGS solar cells helped us in understanding the reason for different efficiencies. 

Larger grain size, improved junction interface as well as Ga grading were some of the 

reasons for better efficiency of the solar cells processed from ultrathin CIGS deposited by

3-stage process.

Ultrathin and thick CIGS films deposited under various Se effusion rates were also 

studied by real time spectroscopic ellipsometry (RI SE) and ex-situ measurement. The 

surface morphology o f the CIGS film was affected by Se flux rate. The grain size increases 

as Se rate increases. It was observed that the preferred orientation became (220) for the 

film with higher Se flux while it tended to be (112) with lower Se flux. These indicate that 

the Se flux rate significantly influences the crystal growth o f CIGS. It was also observed 

that the hole concentration o f the CIGS film increased and resistivity decreased with 

increasing Se flux. The higher SMR was found to be preferable in order to obtain better 

material properties to enhance the CIGS solar cell performance.

In Chapter 5, ultrathin CIGS films were deposited using a 3-stage process and 

detailed study was performed to describe (i) the use of RTSE for analysis o f IGS during 

stage I o f the deposition process; (ii) the conversion o f IGS into CIGS during stage II and 

the rapid development o f bulk Cu2-xSe during the end of stage II; and (iii) Cu-rich to Cu- 

poor CIGS thin film transition during stage III in order to maintain the stoichiometric 

composition o f the final CIGS thin film. For x = 0, the initial roughness is very large but 

smoothening occurs via coalescence. In contrast, for x = 1, the initial surface is quite 

smooth and stable with time. Only for x ~ 0.25-0.3, does the roughness increase throughout 

deposition, indicating continuous growth of grains that protrude above the surface. A
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significant change in roughness evolution is observed for x > 0.5 as the final surface 

roughness thickness decreases rapidly with x. RTSE enables therefore analysis o f the 

structural evolution, grain growth processes, dielectric functions during CIGS fabrication. 

It also enables tracking o f the IGS-to-CIGS conversion and the transitions between Cu- 

poor and Cu-rich films during CIGS growth. The RTSE method also proves to be a 

potentially important tool for end-point detection in each of the three stages o f the CIGS 

growth.

In Chapter 6, the technique to advance the CIGS solar cell fabrication processes are 

discussed. The co-evaporation system has been used to fabricate the CIGS absorber layer 

using co-evaporation process. Initially, the distance between the individual source and the 

substrate was very high (~ 30 inches). During the deposition process, it consumed a lot of 

source materials such as copper (Cu), indium (In), gallium (Ga) and selenium (Se), which 

wasted a lot o f product during each deposition process. The system was then modified by 

raising each source in order to reduce the distance between the individual source and the 

substrate. After this modification, the consumption of each source was reduced 

significantly and led to better quality films as the rates were more constant over time. I-R 

sensor has been used to track the transitions between the Cu- rich and Cu-poor surfaces 

during CIGS deposition process. Each layer o f CIGS solar structure was optimized to 

maintain the quality o f each layer in order to fabricate the high efficient CIGS solar cells. 

Impurities in the CIGS absorber layer can have strong influence on the performance o f the 

CIGS solar cell. The positive SIMS spectra analysis on a CIGS thin film deposited by 3- 

stage co-evaporation process on a Si wafer confirmed the presence of impurities like 

oxygen, hydrocarbon, magnesium, potassium, and calcium. The potential source o f these
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impurities could be the liners which were used as evaporation containers for different 

sources and other supporting parts in the deposition chamber. Several parts were covered 

by high purity molybdenum sheet, which can easily withstand the high temperature outside 

the sources (~ 500-600 °C). The positive SIMS depth profile spectra o f CIGS films 

deposited on c-Si wafer after covering the parts with molybdenum sheet did not contain 

any calcium, magnesium and other peaks. After modification and enhancement o f several 

o f our processes, we were able to fabricate CIGS solar cells with efficiency as high as 

17.1%.

FUTURE CONSIDERATIONS

Tandem devices, as well as optimized ultra-thin CIGS devices with alternative back 

contact may be the next generation of photovoltaics devices. Reducing the thickness will 

not only save the material but will also lower the production time and the power needed to 

produce the cell. All these factors will help to reduce the production cost significantly. 

However, reduce light absorption will reduce the photocurrent. In order to optimize the 

photocurrent, multi-layer air coating and the alternative back contact will be the future 

solution for it.

By studying different aspects o f ultrathin CIGS cells such as optimizing the 

different deposition techniques, first time use o f real time insitu spectroscopic ellipsometer 

to study the effect of selenium in ultrathin CIGS thin films and devices, study of effect o f 

impurities in ultrathin CIGS solar cells, the author o f this thesis hopes to make a small 

contribution towards better understanding of the ultrathin devices. Better understanding 

should lead to get the world class efficient ultrathin CIGS solar cells.
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