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ABSTRACT

SYNERGISTIC EFFECT OF SUBNANOSECOND PULSED ELECTRIC FIELDS AND
TEMPERATURE ON THE VIABILITY OF BIOLOGICAL CELLS

James Thomas Camp
Old Dominion University, 2012
Director: Pr. Karl H. Schoenbach

Pulsed electric fields have been used to induce a biological response in cells, and at
sufficient energy, can cause cell death. By reducing the pulse duration from presently used
nanosecond to subnanosecond ranges, the electric field can be delivered to biological tissue non-
invasively by the use of an antenna instead of electrodes, such as needles. Studies have
previously been completed in which the aim was to determine the energy density (electric field
strength, number of pulses) required to induce cell death with 800 ps pulses. Based on this data,
it was concluded that for pulse durations of 200 ps, with electric field strengths below 100 kV/cm,
pulse numbers on the order of 10° would be needed to achieve similar effects. In this dissertation,
it was shown that the energy density required for cell death can be reduced considerably if the
temperature of the sample is increased to values above physiological temperature (37°C).

In order to perform the experiments, a solution of biological sample (growth medium and
Hepa 1-6 cells) was exposed to 200 ps pulses in which the electric field strength ranged from 60
kV/ecm to 100 kV/cm and the pulse number ranged between 100 and 3,300 pulses. The
temperature of the sample was controlled externally by placing the exposure chamber in a
controlled temperature environment, and was varied between room temperature and 47°C. In
order to reduce the thermal effects due to chmic heating from the pulses, the repetition rate of the
pulses was kept below 10 Hz. The effect, cell death, was determined by trypan blue uptake of the

cells 4 hours after experimental exposure.



The pulse generator used was an 8 stage Marx bank in which the output pulse was formed
with a peaking and tailcut switch. The peaking switch was used to decrease the risetime of the
output pulse to less than 200 ps, and the tailcut switch was used to cut off the decaying portion of
the pulse. The eight spark gap switches of the Marx bank were pressurized with Nitrogen, while
both the peaking and tailcut switch operated in air at atmospheric pressure. The output voltage of
the pulse generator ranged from 10 kV to 20 kV and the pulse width could be varied between 140
ps and 230 ps. A conical exposure chamber was designed to expose the biological sample to the
pulsed voltages, such that the electric field across the gap was homogeneous. The voltage was
measured with a capacitive voltage divider, which was incorporated into the cable leading to the
load.

The results indicate that an increase in temperature above 37°C caused the cells to be
more susceptible to the pulsed electric fields. The lethality increased to over 25% (trypan blue
uptake} when the cells were exposed to 2,000 pulses with an electric field strength of 78 kV/cm at
47°C. For temperatures at and below 37°C, there was no indication of cell death, when compared
to the controls, for the same pulsing conditions.

In order to determine the reason for this increase in cell lethality due to the pulsed electric
fields with an increase in temperature, the electrical properties of HELA 1-6 cells were measured
by means of time domain reflective spectroscopy. The conductivity of the growth medium,
plasma membrane, and cytoplasm increased with temperature. The permittivity of the medium
and membrane increased, while the permittivity of the cytoplasm decreased with temperature.
Using this data and comparing the results of the trypan blue studies, it seems to be likely that the
subanosecond pulse induced cell death can be considered a dose effect with respect to the energy
deposited in the cell membrane. Assuming that subcellular membranes show a similar
temperature dependence in their electrical properties, the possibility that the cell lethality is
triggered through permeabilization of inner membranes (in addition to that of the plasma

membrane) cannot be excluded.



The threshold voltage across the membrane required for electropermeabilization was
shown to decrease with an increase in temperature, which likely due to the increase in the
membrane fluidity with temperature. This argument is supported by molecular dynamics
simulations which show an increased probability for pore formation with temperature. Based on
a three layer (medium, membrane, cytoplasm) cell model and using the dielectric spectroscopy
results it was concluded that the induced membrane voltage also decreases with an increase in
temperature. Consequently, the threshold voltage needed to induce electropermeabilization must

decrease at a faster rate than the induced membrane voltage from the electric field.
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Simulation ran with the same conditions as done in Fig. 8.2, except the pulse width was
decreased from 1 ns to 200 ps. The amplitude of the pulse is decreased across the load
since the pulse width is comparable to the charging time constant of the load, T = R-C

The solid black traces are averages of 100 shots, and the gray is an envelope of 100
shots. (a) Average of 100 pulses of the incoming pulse determined by adding the
pulse shapes of an open and shorted load, and dividing by two as done in (5.5). (b)
The traces measured in front of the load at 25°C and 47°C showing the effects of

temperatures on the reflected portion of the pulse.....o.oovviiiciiii,

The voltage across the load determined by superimposing the reflected pulse to the
incoming pulse, in which the reflected pulse was shified to the left by 0.95 ns. The
gray trace represents the voltage across the load for a sample temperature of 25°C, and

the DIACK LFACE 18 TOF B7%C ..o oiiieiieeiiieiieeiiraeiareerasessssssanesssssansssstnntenssennaenssenntenssannennssensesnnnans

Reflected pulse determined by separating the input voltage from the voltage measured
across the load. The capacitance, determined from the decay time of the pulse, was
foundtobe 3.2 pF ..o

Comparison of the simulated voltage (gray trace) and the measured voltage (black
trace) in front of the load (a) and at the load (b} for a sample temperature of 25°C and
BTOC ettt ettt ettt b et

Concept of the leveling temperature {Tv) of a sample due to pulsed electric fields.
The temperature of the sample will be increased by dT for each pulse. As the
temperature of the sample is increased, the decay of the temperature increases until the
loss of temperature between pulses is equal to the change in temperature due to one
PUISE .o

The measured temperature decay of the sample chamber (black) compared to the
calculated temperature decay (ray} -.occooeeeeeeeeeccvrernvrrnennns

At t = 0, the temperature of the sample is at Ty, and the temperature of the electrodes is
at T,, which creates a large temperature gradient at the electrode-sample interface.
Past 2 seconds, the temperature gradient in the electrodes as decreased, leaving a

larger gradient in the SAMPLE......coivvvvveeirrcrrerrre .

Calculated temperature diagram for cells within the exposure chamber exposed to a
voltage of 30 kV, 200 ps, at a pulse repetition rate of 10 Hz. The diagram suggests the

temperature increase due to pulsing will not be raised by more than 1°C...............ccccevin.

Conceptual layout of the experimental setup. The sample chamber was placed in a
box made of plexiglass, which was heated to the desired temperature with a heat gun
and a fan. The temperature of the sample was measured indirectly by placing the

temperature probe in a hole of the cap 1| mm above the sample.............................

. Trypan blue exclusion versus exposure time of cells placed in a water bath of 42°C,

A7%C 1A 52%C ...t s b sttt b st bbb n bt nenenans

11.2. Trypan blue exclusion 4 hours after experimental exposure to 1,000 and 2,000, 200

ps long pulses, dependent on temperature. The measured electric field at room
temperature was kept constant at 84 kV/cm, but decreased to 78 kV/cm at 47°C. The
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11.3. Tryplan blue exclusion results 4 hours after pulsing conditions in terms of the energy
density of the medium. The red lines represent same experimental conditions (applied
field and number of PulSES). ............occoiiiiiiii e

11.4. Trypan blue exclusion 4 hours after experimental exposure at 47°C. The electrical
energy density, W, was kept constant by decreasing the pulse number for an increase
in electric field strength. The dashed lines show the range of the sham results.................

12.1. Trypan blue exclusion 4 hours after experimental conditions (Esppica = 90 kV/cm, 200
ps pulse width, N = 100, 1000, 2000) in terms of the scaling parameter, The red line
represents same pulsing conditions (applied electric field and number of pulses). The
blue represents a different scaling parameter for 42°C and 47°C.........ccoooeiiiieeceeciecnnns

12.2. Energy density of the membrane with respect to the temperature for cells exposed to
an applied electric field of 90 kV/cm and pulse numbers of 100 (left) 1000 (middle)
and 2000 (right). The red line connects the data points for cells exposed to the same
pulse number. Temperatures at and below 37°C create a negligible effect on the cells.
For temperatures at and above 42°C, a linear relation between the trypan blue
exclusion and the energy denmsity of the membrane exists, as shown by the blue
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12.3. Evolution of a pore formation due to an external electric field. At t,, the heads of the
lipids are in random motion. At t;, an external electric field is applied and the lipid
heads facing the cathode will align with the electric field. The heads of the lipids
facing the anode will rotate to try and align, causing repulsion between them, This
repulsion may cause an opening to allow the aqueous solution through the membrane
as depicted at time G 48] ...ooovvrmeeeiieee et ee e s

12.4. Molecular dynamic simulations of a lipid bilayer exposed to a constant electric field
strength of 0.5 V/nm for 1 ns at 25%C and 47°C [48]...movo e
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CHAPTER 1

INTRODUCTION
LI INTRODUCTION TO SUBNANOSECOND PULSES

The combined and/or synergistic effect of subnanosecond pulsed electric fields and
temperature increase on cells is a new study within the field of Bioelectrics. The effects of
temperature on cells, in the absence of pulsed electric fields, is well known (hyperthermia),
whereas the effects of subnanosecond pulsed electric fields have just recently been explored
experimentally [1, 2] and theoretically [3-7}. Experimental results suggest the outer membrane of
the cell becomes permeabilized immediately after subnanosecond pulsed conditions above a
certain energy density threshold {0.8 k¥/cm® for B16 cells with pulse widths equal to 800 ps).
One theory is the permeabilization is caused by electroporation or electropermeabilization, which
is dependent on the voltage across the membrane induced by the applied ¢lectric field {1, 4, 5, 8-
10].

Elecropermeabilization is defined as an increase in ionic and molecular transport across a
plasma membrane due to an external electric field [4]. This type of permeabilization may be a
biological effect in which the cell increases the flow of ions in and out of the cell, or a physical
effect in which molecules are able to push through the membrane due to a concentration gradient
of the molecules. Electroporation describes the effect in which holes, or pores, are created in the
membrane allowing for flow of ions through the membrane [4). The voltage across the
membrane induced from an external electric field is superimposed to an already existing voltage
(resting potential) across the membrane due to an imbalance of ion concentration on the interior
and exterior of the cell. The magnitude of the resting potential has been shown to increase with
an increase in temperature [11-13], which would result in an increase in the voltage induced
across the membrane by an external electric field facing the anode, and a decrease in the voltage

across the membrane facing the cathode {14]. The viscosity of the membrane also decreases with



an increase in temperature [15], which decreases the energy needed to induce pore formation,
and/or permeabilization [16, 17]. It is therefore believed that an increase in temperature will
decrease the threshold needed to induce electropermeabilization by pulsed electric fields. This
effect has theoretically been studied [7] and has been shown experimentally on bacteria with

microsecond pulses [18, 19].

LII MOTIVATION

The effect of high-intensity nanosecond electrical pulses on biological cells and tissue has
received considerable attention by the scientific community, particularly in the past ten years, and
has led to the establishment of the research field: Bioelectrics [20-23]. In this time domain, the
rise time of the pulse is faster than the charging time of the plasma membrane of most
mammalian cells, meaning that the field will pass through the membrane and into the cytoplasm.
This effect can be understood qualitatively by considering the cell as an electrical circuit (Fig.
1.1), describing the various cell membranes by their capacitances and the cytoplasm which they
enclose, by its resistance. Fig. 1.1{(a) shows the cross section of a mammalian cell, with the only
membrane-bound substructure shown being the nucleus. The cytoplasm, which fills much of the
cell, contains dissolved proteins, electrolytes, and glucose and is moderately conductive, as are
the nucleoplasm and the cytoplasm in organelles. The membranes that surround the cell and
subcellular structures have low conductivity due to the oily nature of the phospholipids which
make up the membrane. A cell can therefore be thought of as a conductor surrounded by an
ideally insulating envelope, containing substructures with similar properties. The equivalent
circuit of such a cell (which is considered as spherical for modeling purposes) with one

substructure, the nucleus, is shown in Fig. 1.1(b).
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Fig. 1.1. (a) Basic structure of a mammalian cell. A cell membrane (aka plasma membrane)
surrounds the cell and the intraceliular components (nucleus shown here). A separate membrane
surrounds the nucleoplasm which makes up the nucleus. (b) The double cell model with the
circuit components [1].

If dc electric fields or pulses of long duration (compared to the charging time of the
membrane) are applied, eventually, only the outer membrane will be charged. The electric field
generated across subcellular membranes during charging will be zero for an ideal, fully insulating
outer membrane. However, during the charging time of the outer membrane, potential
differences are expected to be generated across subcellular membranes, an effect that will be
stronger if the pulse rise time is shorter. Such charging times are in the submicrosecond range for
human cells [1].

If the electric field is sufficiently large, it can have pronounced effects on intracellular
organelles. High-voltage pulses that are nanoseconds to hundreds of nanoseconds long have been
shown to penetrate into living cells to permeabilize intracellular organelles [22, 23] and release

Ca’" from the endoplasmic reticulum [24-26]. These short pulses provide a new approach for



physically targeting intracellular organelles with many applications including activation of
platelets and release of growth factors for accelerated wound healing [27] and precise control of
apoptosis {28- 31]. It has also been shown by Nuccitelli et al. that such pulsed electric fields
cause shrinkage and even complete elimination of melanoma tumors [32]. Such tumors have
successfully been eradicated in mice with pulsed electric fields with pulse widths of 300 ns with a
30 ns rise time and electric field strengths reaching 50 kV/cm [32, 33]. The penetrating electric
field caused the tumor cell nuclei to shrink, while stopping the flow of blood to the tumor, which
led to the tumor’s death. Two separate treatments of 100 to 300 pulses were needed for complete
remission [32, 33]. The electric field was, in these studies, applied with needle or clamp

electrodes as shown in Fig. 1.2.

(a) (®)
Clamp Electrodes Surface Electrodes

(© (d)
Coaxial Electrode Needle Electrodes

Fig. 1.2. Different types of electrodes for exposing cancerous tissue (dark gray) with electric
fields.



The disadvantage of such electrodes is they can only apply electric fields on the surface of the
skin. Needle electrodes may penetrate a small distance under the skin, but in order to move the
electric field location, the needle must be removed and penetrate the new position. Deeper lying
tissue, such as the liver or pancreas cannot be accessed with needle or clamp electrodes, unless
surgical methods are used.

Another possibility is to use a catheter to deliver the electric field [34], but even this
requires minimal surgery. By transitioning from the nanosecond to the subnanosecond regime,
the electric field can be applied non-invasively by a reflector which focuses the electric field into
the tissue, as shown in Fig. 1.3 [1]. The impulse at the second focal point of the IRA (within the
tissue) is the differentiated signal of the input function fed into the reflector. The pulse width of
the impulse {(equal to the input of the risetime of the input function) determines the spatial
resolution of the focal point, in that a shorter pulse width allows for a higher spatial resolution
{35]. In order to achieve a spatial resolution on the order of 1 cm, pulses with rise times on the

order of 100 ps are required [1].

Fig. 1.3. A prolate spheroidal reflector, or irradiating antenna, can be used to focus
electromagnetic energy at the second focal point within the tissue. The input magnetic wave is
launched from the first focal point.



Schoenbach et al. have shown that sufficiently large electric field strengths (100°s
kV/cm) are needed to induce cell death with subnanosecond pulses (800 ps) [1]. The amplitude
of the impulse is proportional to the amplitude of the input function multiplied by the reciprocal
of the risetime of the input function [35]. Consequently, impulse voltages with subnanosecond
rise times will account for higher electric field strengths at the second focal point than fields
produced with nanosecond impulse rise times. The maximum attainable electric field with the
antenna setup with current and near future technology at the focal point is no more than 50
kV/em, which is due to attenuation of the signal within the tissue {36]. Therefore, we can expect
the tissue to be exposed to monopolar electric field pulses with durations ranging from 100 ps to
200 ps, with electric fields of 100 kV/cm and less (ramp function input). This has been modeled,
using MAGIC software [37], in which a ramp function with a 200 ps risetime is fed into the input
and the impulse is simulated at the second, or output focal point (Fig. 1.4). The medium in the

simulation was chosen to be water, which has a dielectric constant of 81.
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Fig. 1.4. A step function with a risetime of 200 ps is fed into the first focal point leads to an
inverted pulse with a pulse width equal to 200 ps at the second focal point. The functions were
determined by using MAGIC software [37].



The placement of the electric field can be moved easily by changing the position of the
reflector.  Such a system would not need surgical methods to reach deeper lying tissue.
Subnanosecond pulses will ultimately allow medical applications for delivery of pulsed electric
fields without invasive electrodes, using antennas instead. This same setup can also be used for
medical imaging in which the reflected waves from a lower input power signal are determined by
the electrical properties of the tissue [38]. It has been shown by Fear et al. that cancerous tissue

has different dielectric properties than healthy tissue [39].

LI PREVIOUS SUBNANOSECOND RESEARCH

In an effort to study the effects of subnanosecond pulses on cells, experiments were
conducted on B16 mouse melanoma cells and the energy densities required for trypan blue
uptake, considered a measure for cell death, have been determined [1]. For durations of 800 ps,
electric fields varying from 150 kV/cm to almost 1 MV/cm, and pulse numbers up to 20,000, it
was determined that the threshold in energy density required to induce cell death was
approximately 0.8 k)/cm®. At an energy density of 5 kJ/cm® 90% of the cells died [1, 2). In these
studies the initial temperature of the suspension was room temperature (22°C to 25°C) and,
because of the relatively low repetition rate of approximately 10 Hz, the temperature increase due
to pulsing was less than 10°C, and thermal effects were therefore considered to be negligible.

In follow-up studies where the pulse width was decreased to 200 ps at a constant electric
field intensity of 25 kV/cm [2], using the same cell line as in the 800 ps studies, the results with
respect to energy density were quite similar to those obtained with 800 ps pulses. Due to the low
value of the electric field, the number of pulses needed to be increased by two orders of
magnitude, resulting in 2.4-10° pulses being applied for 90% cell death. However, in this case, it
was found that the sample temperature played a major role in inducing cell death. In the 200 ps
studies the temperature of the sample was measured with an optical temperature probe (TE C-

11000 A, Neoptix, Canada) during pulsing. The temperature of the sample reached values as



high as 47°C after a 10 minute exposure, due to Joule heating caused by the high repetition rate
of the pulsed electric fields (10 kHz, in a burst mode with 40 pulses per burst), This temperature
increase contributed much to the measured cell death, which was confirmed by measuring the
effect of the temperature alone on the celis by heating the sample in a water bath to similar
temperatures as obtained with Joule heating. For exposures at 47 °C the survival rate, which was
not affected by the high temperature for at least the first two minutes, decreased to approximately
80% at 5 minutes, and decreased to 10% for a 10 minute exposure. The effects of the pulsed
electric fields and temperature could not be separated since the heating of the sample was due to

the applied pulses. More on these studies are discussed in Chapter 1.

LIV TOPICS OF THE DISSERTATION

The focus of this dissertation is to study the effects of subnanosecond pulses on
mammalian cells (liver cancer cells) in suspenston at different temperatures. Expectations are
that an increase in temperature will cause the cells to be more susceptible to the pulsed electric
fields whether by increasing the fluidity of the membrane (Chapter IV), or changing the electrical
properties of the cell (Chapter III). The results may be helpful in designing future non-invasive
techniques in delivering the applied electric field to a cancerous target within the tissue. If
heating the cells does make the cells more susceptible to the pulsed electric fields, then the
question of how to heat the target within the tissue while applying electric fields will need to be
addressed in future designs. The results can also be used to determine a threshold effect of cell
death in that medical imaging would need to be completed at electric fields below this threshold
to keep from harming the cells.

The effects of the pulsed electric fields and temperature of the cell suspension needed to
be studied separately and combined. This has been accomplished by applying low energy pulses
at a slow repetition rate (< 10 Hz) to a sample to minimize the temperature increase from ohmic

heating. The cells were pulsed at room temperature (25°C), physiological temperature (37°C),



42°C, and 47°C in which the cell suspension was heated externally (Chapter IX). In order to
apply the pulses, a subnanosecond pulse generator was designed and built based on the concept in
reference [40] (Chapter Vi). The pulse generator is capable of delivering a pulse with a width of
200 ps (FWHM), and an amplitude up to 20 kV. The pulse width was kept constant at 200 ps,
and the electric field was varied from 52 kV/cm to 95 kV/ecm. In order to expose the cells to the
electric fields, a coaxial chamber was designed and built which provided a uniform electric field
across the sample with less than 10% deviation (Chapter VII). A capacitive voltage divider was
used to measure the incoming voltage to the load, which was superimposed with the reflected
voltage from the sample, in which both were used to determine the voltage at the load (Chapter
VIID).

Cell death has been determined by using trypan blue assay four hours after exposure, and
membrane permeabilization was determined by using trypan blue immediately after pulsing.
Trypan blue is normally impermeant to healthy cells. When cell membrane integrity is
compromised, the dye is able to enter the cell and bind to protein, making the cell appear blue.
Cells that take up this dye several hours after exposure to electrical pulses are usually considered
dead or dying. In order to determine the temperature effect on permittivity and conductivity,
which results in changing the electric field distribution across the cell membrane and energy
transfer into the cell, particularly into the cell membrane, the electrical characteristics of the cell
were measured using dielectric spectroscopy (Appendix B). The effect of increased temperature
on pore formation in the cell membrane was modeled by means of molecular dynamic

simulations (Appendix C).
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CHAPTER 11

BACKGROUND

Only in the past few years has the effect of subnanosecond pulses been explored on cells
[1-3, 41]. In these experiments, the temperature increase due to pulsing was an unavoidable and
sometimes undesired effect. The cells were exposed to a waterbath in order to distinguish
between the effects of the pulsed electric fields, and increase in temperature. There are several
references on the effect of temperature on cells, but very few that explore the effect of pulsing at
different temperatures [42, 43]. However, these experiments involved pulses of durations much
greater than 1 ns and were explored on bacteria. The next few sections will discuss what has
already been studied in the field of applying subnanosecond pulses to cells, as well as pulsing

cells (bacteria) at different temperatures.

11.1 800 PICOSECOND, > 100 kV/em CONDITIONS

In an effort to study the effects of these short pulses on cells, 800 ps pulsing experiments
were conducted on B16 mouse melanoma tumor cells; trypan blue exclusion was plotted four
hours after pulsing, which was considered a measure for cell death, in relation to the electrical

energy density {1]. The electrical energy density, W, for N square wave pulses is
W=og-N-E2-1 2.1

in which E, is the applied electric field, ¢ is the conductivity of the medium (100 Q-cm), and t is
the pulse width (800 ps). The experiments were conducted with a subnanosecond pulse generator
{40] which generated 800 ps pulses, with electric field strengths varying between 100 kV/cm and
1 MV/cm. The gap of the exposure chamber varied between 3.15 mm and 10.67 mm in order to
achieve the wide range of electric field strengths, and the pulse number ranged from 100 to
20,000. The electrical energy density ranged between 0.5 kJ/cm® and 5.5 kJ/em®. In these

studies, the initial temperature of the suspension was room temperature (22°C to 25°C) and,
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because of the relatively low repetition rate of approximately 10 Hz, the temperature increase due
to pulsing was less than 10°C. This was confirmed by measuring the sample temperature for a
data point at 3.6 k¥/cm® (150 kV/cm, 20,000 pulses) during pulsing with an optical probe (FOT M
fiber optic temperature sensor). In this case the temperature increase was 6°C, raising the sample
temperature to a value approximately 7°C below the physiological temperature of 37°C. Thermal

effects were therefore assumed to be negligible. The results are shown in Fig. 2.1.
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Fig. 2.1. Trypan blue exclusion of B16 cells exposed to 800 ps pulses of varying electric field
strength and puise number. The results were plotted in terms of energy density in which the
conductivity was chosen to be that of the medium (100 Q-cm). The threshold of trypan blue
uptake is approximately 0.8 kJ/em?®.

The threshold in energy density, required to induce cell death was found to be 0.8 kJ/cm®.
At an energy density of approximately 5 kJ/cm’, 90% of the cells died [1]. The results seem to
indicate that trypan blue uptake is a dose effect, scaling with the electrical energy density;
however, this dependency on energy density does not hold true when the pulse duration is

increased.
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Fig. 2.2. Data from the 800 ps experiments are compared with B16 cells exposed to 10 ns pulses
with less energy density. The data does not align in terms of energy density, but does when
plotted verses the empirical scaling parameter. The scaling parameter was derived from two
separate experiments in which data was plotted in terms of electrical impact (E-t) and a dose

effect (E*N) [4].
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This is shown when the 800-ps data (Fig. 2.1} is compared with trypan blue uptake data obtained
with pulses 10 ns long (Fig. 2.2(a)). In Fig. 2.2(a) experimental results on trypan blue exclusion
reported in [45} were complemented by results of a recent experimental study where the
procedures were kept exactly the same as described in [45] (which are identical to those described
in {1]). The results show clearly that the observed biological effect is not an energy density-
dependent effect, but follows a different scaling law. Such a scaling law for biological effects of
puises with durations short compared to the plasma membrane charging time constant, but longer
than the dielectric relaxation time of the cytoplasm, was discussed in [1]. The law is based on the
hypothesis that in this pulse duration range (which covers both 800 ps as well as 10 ns pulses),
any bioelectric effect is due to membrane charging, whether it is at the plasma membrane or
subcellular membranes. It postulates that identical effects can be expected if the product of
applied electric field intensity £, pulse duration r, and the square root of the number of pulses ¥
is kept constant. By replacing the energy density in the ordinate of Fig. 2.2(a), by an empirical
scaling parameter (2.2), the trypan blue data for 800 ps and 10 ns can be described by the same

parameter, shown in Fig. 2.2(b).
S=E, VN 1 2.2

Equation 2.2 combines the effects of energy density and the electrical impact factor, E,t [4]. The
intensity of the observed effect (scaling factor) is represented by S. The threshold scaling factor
needed for cell death for the 800 ps experiments is approximately 0.75 V-s/m. In order to achieve
at least 80% cell death, a scaling factor of at least 1.8 V-s/m was needed, which equates to 20,000
pulses at 160 kV/cm for a 800 ps pulses. It indicates that the observed effect of trypan blue
uptake is a primary effect caused by membrane charging (and subsequent poration) and is not a
secondary bioelectric effect, such as an effect caused by the disintegration of the membrane after

apoptosis has set in.
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ILII 200 PECOSECOND, < 100 kV/em CONDITIONS

In reference {2], 200 ps pulsing experiments were conducted on B16 mouse melanoma
tumor cells (same cell hne used in reference [1]) in which cell viability was determined 18 hours
after pulsing by trypan blue exclusion and a water soluble tetrazolium (WST) assay. In order to
determine the effects of such short pulses at a more reasonable electric field, which could be
expected with the use of an antenna, the electric field strength was reduced and kept constant at
25 kV/em. The pulse generator used was an FPG 5-P, capable of delivering 5 kV, 200 ps pulses
with a pulse repetition rate up to 10 kHz. An open sample chamber was designed such that the
sample could be exposed to a uniform electric field of strength 25 kV/cm, while measuring the
temperature with a Neoptix temperature sensor {T1 C-11000 A, Neoptix, Canada) during the
applied pulses. In this case, the sample temperature played a major role in inducing cell death.

Initial experiments conducted at a pulse repetition rate of 300 Hz, with a pulse number
equal to 1,000 and 10,000 pulses resulted in no increase in the temperature of the sample as a
result of the pulsing and no indication of cell death. In order to obtain cell death, based on the
experiments shown in Fig. 2.1, an electrical energy density greater than 0.8 kJ/cm® would be
needed (scaling factor greater than 0.75 V-s/m). With an electric field strength of 25 kV/cm, and
a pulse width of 200 ps, more than 0.6 million pulses are needed to obtain values within the
needed range for cell death. In order to decrease the amount of time during pulsing, the pulse
repetition rate was increased to 10 kHz. However, the increase in frequency caused the
temperature {due to Chmic heating) of the sample to reach values greater than 60°C. In order to
limit the increase in temperature, the pulses were applied in bursts, in which the bursts were
repeated every 10 ms. The number of pulses per bursts was chosen such that the total time of
pulsing was kept constant (10 min.). The temperature of the sample (starting temperature of
23°C) with respect to the number of pulses was equal to 37°C, 42°C, and 47°C for 1.2 M, 1.8 M,
and 2.4 M pulses, respectively. The M stands for million. In each case, after 150 s into pulsing,

the temperature of the sample leveled off (leveling temperature, Chapter IX). The results of the
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200 ps experiments are compared to the 800 ps experiments in terms of the energy density in Fig,

2.3.

L 4
i [ 1 I { t

=800ps ¢ I MViem

10 & |¥ A 870kViem
a :;b + 550kV/em
O 330kVicm
O 150kViem
+ © 1=200ps
< ® 25kv/iem[2]

n
<

Trypan Blue Exclusion [%]

Energy Density [kJ/cm"3]

Fig. 2.3: The experimental results from {2] (200 ps, 25 kV/cm) compared with the 800 ps
experiments [1] in terms of energy density.

The data point at 0 kJ/cm® represents the sham control. For a 10 minute exposure of 1.2 M pulses
(1.9 k/cm’), the temperature increased and leveled off at 37°C after 2 minutes, and there was no
indication of cell death. The viability decreased to 80% for a ten minute exposure of 1.8 M
pulses (2.9 kJ/cm’) in which the temperature increased to 42°C after 2 minutes and leveled off.
For 2.4 M pulses (3.9 k¥/cm’), the temperature of the sample reached 47°C after 2 minutes of the
10 minute exposure (10 kHz, in a burst mode with 40 pulses per burst), and the viability
decreased to 20%.

In order to distinguish between the effects of temperature and pulsing, the cells were
exposed to the respected leveling temperature obtained with Joule heating (37°C, 42°C, 47°C) in

a waterbath for 10 minutes. For exposure temperatures equal to 37°C and 42°C, there was no
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indication of cell death after 10 minutes, suggesting that the cell death for an N of 1.8 M was
attributed to the pulsed electric fields. For exposures at 47°C the survival rate, which was not
affected by the high temperature for at least the first 2 minutes, decreased to approximately 80%
at 5 minutes, and to 10% for a 10 minute exposure. This would suggest that the cell death for an
N of 2.4 M pulses was attributed to the heating of the sample. However, there was an indication
of cell death at 1.8 M pulses which was not attributed to the temperature alone, suggesting that,
the pulsed electric field as well as the temperature had an effect on the cells for an N of 2.4 M

pulses.

ILIII EFFECT OF PULSED ELECTRIC FIELDS (PEF}) AND TEMPERATURE ON
BACTERIA

To my knowledge, studies of the temperature dependence of pulsed electric field exposed
cells, independent of Joule heating have only been performed on bacteria [42, 43]. The pulse
durations in these cases were on the order of microseconds. There was a clear indication of a
synergistic effect for bacteria pulsed at 60°C compared to those pulsed at 30°C [42]. The initial
live cell count was 10° cells/cm” at 30°C, which decreased to 107 cells/cm® when the temperature
was increased from 24°C to 60°C for 10 seconds. When exposed to 60 pulses, of amplitude 30
kV/cm, the survivability decreased to 10* cells/cm at 30°C, and was immeasurably small at 60°C.

The cause of cell death of bacteria due to the applied electric fields was assumed to be
due to electroporation. The increase in temperature causes an increase in the conductivity of the
medium and cytoplasm of the cell, as well as a decrease in the viscosity of the membrane. Based
on the increase in membrane and cytoplasm conductivity, it was concluded that the observed
increase in cell death at higher temperature is due to a more rapid increase in membrane potential,
leading to an earlier breakdown of the membrane [42). Similar results were obtained with E. coli

[43] in which an increase in bacteria death was observed when pulses at elevated temperatures
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were applied. Here, it was also assumed that this effect is due to a decrease in membrane

viscosity.

ILIV CONCLUSIONS FROM PREVIOUS RESEARCH RESULTS

The results of the 200 ps experiments fit in with the trypan blue exclusion versus the
energy density of the 800 ps experiments, suggesting the energy density relationship follows not
only for pulses of 800 ps, but for 200 ps pulses as well. However, such a statement may be
misleading since the 800 ps experiments were performed under conditions where the temperature
of the sample never reached values above physiological temperature (37°C) and the temperature
of the two data points for the 200 ps experiments were above 37°C.

A change in temperature of the cell sample will cause a change in the electrical properties
of the cell membrane and cytoplasm such that the ratio of the electric field across the membrane
and cytoplasm will change (Chapter XI). A change in temperature will also change the fluidity of
the membrane in that a higher fluidity decreases the threshold needed for electroporation or
permeabilization (Chapter XII). The cell death for the 200 ps experiments conducted at 2.9
kJ/em® occurred at a temperature of 42°C and cannot be directly compared to the 800 ps
experiments, which were performed at temperatures less than 37°C. The same can be said for the
3.9 kJ/cm’ data point, except the temperature of the 200 ps experiments was at 47°C which
clearly was the major cause of cell death. If the 200 ps experiments are compared to the 800 ps

experiments in terms of the scaling factor (Eq. 2.2), then the results do not line up, as shown in

Fig. 2.4.
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Fig. 2.4. The data from reference [2] plotted in terms of the empirical scaling parameter does not
show the same effect due to cell death being attributed to heating rather than the pulse electric
fields.

The data points for the 1.2 M and 1.4 M pulse number line up with the 800 ps and 10 ns data.
However, the 2.4 M pulse number data is clearly outside the trend. Under the assumption that the
results due to pulsing should follow the same scaling law, the effects at 2.4 M shots are not
caused by pulsing, but by the temperature. The scaling law predicts that at 200 ps and 25 kV/cm,
at least 12 M pulses are needed to induce 90% cell death. This would also suggest that a higher
energy density is needed to induce cell death for a shorter pulse width, which is the trend as
shown in Fig. 2.2(a). The 800 ps pulses required a higher energy density for the same effect as
the 10 ns experiments. Stronger conclusions of this experiment can be made if the temperature
effects and pulsing effects can be separated.

Based on the results given in [42, 43] for the bacteria, an increase in temperature from the

cultured temperature of the cells make them more susceptible to pulsed electric fields by
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decreasing the fluidity of the plasma membrane. Alithough the bacteria contains a cell wall
(mammalian cells do not), the wall is more conductive than the membrane (2.5 mS/m)}, and
porous such that it does not disturb the flow of small molecules [46]. Similar results can be
expected, in that pulsed electric fields will have a greater effect on mammalian cells at
temperatures above the physiological temperature of the cell (37°C). This effect may have been
observed in the 200 ps experiments for the pulse number of 1.8 M pulses. The scaling law {based
on the 800 ps and 10 ns experiments) predicts a higher scaling factor of approximately 1.25 Vs/m
for 20% cell death. Yet, less than 1 Vs/m was needed when the cells were exposed to a
temperature of 42°C during the applied pulses.

The experiments conducted in [1, 2] were conducted on mammalian cancer cells
cultivated at 37°C and pulsed at an initial temperature between 22°C and 25°C. Already, this
would suggest that the cells would be more resistive to the effects of the pulsed electric fields due
to a decrease in the fluidity of the membrane as a result of the decrease in temperature. In order

to see an effect, the temperature would need to be raised, as was done for this dissertation.
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CHAPTER 111

TEMPERATURE DEPENDENCE ON THE ELECTRICAL PROPERTIES OF THE

CELL

The analytical approach used in this chapter to determine the membrane voltage is linear
in that temporary changes in the electrical parameters of the cell, such as changes caused by
electroporation, are not considered. Such an approach is sufficient for determining the electrical
effects of the cell up to the threshold effect in which nonlinearities of the cell occur. Models

which include the nonlinear effects have been presented elsewhere [47].

IIL.1 TDR ANALYSIS OF THE CELLS AND GROWTH MEDIUM
The measured conductivity and permittivity of the cytoplasm, plasma membrane, and the

medium derived by TDR analysis with respect to temperature are shown in Table 3.1 (Appendix

B).
Relative Permittivity

| Membrane Cytoplasm Medium
Temperature Avg. Std. Avg, Std. Avg. Std.
25°C 13.9 0.19 76.3 2.6 79.3 34
37°C 15.1 0.31 100 1.5 72.7 28
42°C 16.5 0.64 115 49 67.6 25
47°C I8 017 146 4.8 64.1 3.1

Conductivity
Membrane Cytoplasm Medium
[10° $/m) 1107 S/m] {S/m]

Temperature Avg. Std. Avg. Std. Avg. Std.
25°C 2.44 0.28 379 0.08 1,37 0.09
37°C 4.05 0.13 4.53 0.07 1.74 0.17
42°C 5.13 0.24 4.73 0.27 1.88 0.13
47°C 9.21 0.21 5.1 0.23 2.03 0.16

Table 3.1. Permittivity (a) and conductivity (b) of cytoplasm, plasma membranes of Hepa 1-6
cells, and the growth medium at 25°C, 37°C, 42°C and 47°C [48).
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The conductivities and permittivities of the cytoplasm and cell membrane will vary between
different cell lines {49, 50]. For example, in reference [49], the membrane permittivity ranged
between 7 and 13 for six different lines of B cells, and the membrane conductivity ranged
between 14 pS/m and 27 puS/m for three different lines of T cells. The measured electrical values
of both the cytoplasm and membrane at room temperature are within reasonable range of those
within the literature [6, 49, 50-53]. The temperature dependence of the electrical properties of a
cell has not been extensively explored. In fact, the only publications in which the temperature
dependence is considered (1o my knowledge) rely on theoretical considerations rather than
experimental results [50, 54]. Sudsiri et al. assumed a linear relationship between the temperature
of the cell and the permittivity and conductivity of the cell cytoplasm, as well as the conductivity
of the membrane [50]. The permittivity of the membrane, however, is assumed to remain
constant which is inconsistent with the measurements reported in Table 3.1. According to the
measurements, a linear relation is plausible for values at and below 42°C, but such assumptions
cannot be made for higher temperatures.

Sudsiri et al assume that the permittivity of the cytoplasm decreases with increasing
temperature [S0], while the measurements in Table 3.1 show just the opposite. This discrepancy
between assumptions and experimental results is also prevalent in reference {54] in which the
temperature dependence of the permittivity is based on the Curie Law: Ae = C/T, where the
permittivity of the cytoplasm also decreases with temperature. These assumptions are generally
based on the thermoelectric properties of polar liquids [54, 56]. The cytoplasm is a complex
system of biological material which reacts with a change in temperature to keep the cell
functioning normally. Considering such a system just as a polar liquid is an oversimplification.
That may explain why the permittivity of the cytoplasm does not behave the same as the medium
for which the cells are grown in, in which the permittivity does decrease with an increase in
temperature. A study of the reason for the observed increase in permittivity of cell membranes

and cytoplasm is beyond the scope of this dissertation.
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A simplified circuit model of a biological cell, which takes only the cell membrane of a

homogeneous cytoplasm into account, can be used to determine the electrical characteristics of a

cell due to an applied subnanosecond pulse with different temperatures.

+
N

E-Field in medium, E,= V,/d, l

Celi
Membrane

Fig. 3.1. Single shell cell model with the circuit diagram.
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The diameter of the cell and the thickness of the membrane are approximately 10 pm, and 7 nm,

respectively. The volume of the cell, assuming a spherical shape, is approximately 524 um®. For

a cell concentration of 6-10° cells/mL, the percentage of the total volume of the cells in the

medium is only 0.314%. For a uniform distribution of the cells within the medium, the distance

between each cell is approximately 55um. This distance can be used to approximate the

capacitance of the medium between the cells.
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The impedance of the medium, membrane and the cytoplasm can be described as
resistive or capacitive, depending on their relaxation time. The impedance of each layer is equal

to its resistive component, R, in parallel with its capacitive component, C:

. R R i wR%C 21
T1+joRC (WROZ+1 /(wROE+1 ‘
The absolute value of the impedance is equal to:
R
(VA e 3.2

~ J@WROZ+1

If (»-R-C)” >> 1, then the impedance of the layer is capacitive, whereas the impedance is resistive
for (@'R-C)* << 1. The relaxation time (z,) is equal to R-C and can be expressed in terms of the

conductivity and permittivity of each respected layer through the following derivation.

@ R-C)+1= [m-(a%A)-(E"'f'A)]:1=[m-(6°;6)]2+1=m2-r3+1 3.3

In (3.3), L and 4 are the length and area of the portion of the cell of interest, respectively.
However, the dimensions cancel out, leaving the relaxation time to be defined in terms of the
conductivity and permittivity only. If the pulse width is much greater than the relaxation time,

the impedance is resistive while if is capacitive of the pulse width is less than the relaxation time.

t K 1, = Capacitive t > 1, — Resistive

The relaxation time of the membrane is on the order of a microsecond, and on the order
of a nanosecond for the cytoplasm. The membrane charging model (Fig. 3.2) can be used for
nanosecond pulses, but for pulses in the subnanosecond range, the dielectric model should be
used. From the values in Table 3.1, the relaxation time of the cytoplasm increases from 1.8 ns to

2.5 ns with a temperature increase from 25°C to 47°C. For a pulse width of 200 ps (and less), the
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electric fields in the various parts of the cell are then defined by their permittivity, rather than
their conductivity. The electric field then acts directly on membrane proteins, rather than causing
charging of the membrane, and, if sufficiently strong, can cause direct and instant conformational
changes, such as voltage gating. Not only do these changes occur on the plasma membrane, but
on intracellular membranes as well. Therefore, it is likely that these subnanosecond pulses will

affect the plasma membrane in ways that nanosecond pulses are unable to do.

Cytoplasm Membrane

C
- ...Ee
—
1: Pulse Duration Membrane Charging Modei Dielectric Model
efo. <t1<gfo, gjo. > T

Fig. 3.2. Cell exposed to pulse durations greater than the relaxation time of the cytoplasm, and
less than the relaxation time of the membrane can be expressed by the membrane charging model.
Cells exposed to pulses less than the relaxation time of the cytoplasm can be expressed by the
dielectric model in which the permittivity plays a higher role than the conductivity [47].

I1L.III VOLTAGE INDUCED ACROSS THE MEMBRANE

The voltage across the membrane, Vy, in relationship to the applied voltage across the

sample, V,, is calculated as follows:

Y _ Zm 3.4
Voo Zm+Zc+2mea '
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The impedance of the medium, membrane and cytoplasm are represented by Z g, Zn, and Z,,
respectively (Fig. 3.1). As stated above, the impedance of each portion can be determined by
their respected relaxation time constants. From Table 3.1, the relaxation time for the membrane
decreases from 5 ps to 1.7 ps for a temperature increase from 25°C to 47°C. Since the relaxation
time for the temperature range is orders of magnitude larger than the pulse width (200 ps) the
resistive component of the membrane can be neglected. The relaxation time of the cytoplasm
increases from 1.8 ns to 2.5 ns for a temperature increase from 25°C to 47°C. Since the
relaxation time is an order of magnitude larger than the pulse width, the resistive component of
the cytoplasm can also be neglected. For the medium, the relaxation time decreases from 500 ps
to 280 ps with an increase in temperature from 25°C to 47°C. The relaxation time of the medium
is on the same order as the pulse. In this case, both resistive and capacitive components of the

medium must be accounted for. Equation 3.4, with some algebraic manipulation, can now be

expressed as
Vﬂ: 5 Ryeq  Cineg +1 25
ooos Rmed * (Cmea + Cn) + 1+ %f" +5 Rmea * C_m,______________ea' Cm

The capacitance per unit area for the membrane and medium are approximately 2 pF-cm? and 1
nF-cm?, respectively (using the permittivity values for room temperature in Table 3.1 and a
thickness of 7 nm for the membrane, and 55 pm for the medium). Therefore, the medium
capacitance (Cn.q) can be neglected in the first term of the denominator. The cytoplasm
capacitance per unit area is approximately 25 nF-cm™. Therefore, the 1 in the denominator can be

neglected since C,,/C. >> 1. Equation 3.5 reduces to

Vﬂ_ S Rmeq * Cpea +1 36
v, .. o Cmed |, Cm )
5 S Rmea G (1+ e )+Cc
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The ratio of the medium capacitance to the cytoplasm capacitance (Cpes/C,.) is much less than 1,

in which case, (3.6) can be reduced further:

Kgl_=s'Rmed'Cmed+1 3.7
Voo s R+ G + 8
¢

The 200 ps (FWHM) pulses can be approximated by a triangular pulse, with a rise and fall time
of 200 ps. In order to determine the voltage across the membrane at the peak of the pulse at 200
ps, only the rising portion of the pulse needs to be considered. The rise time of the triangular
pulse can be expressed as a ramp function, V(t} = V,t/1, in which 1 is the risetime of the pulse
(200 ps) and V, is the amplitude of the pulse. After performing an Inverse Laplace Transform
and expressing the resistive and capacitive terms in terms of their conductivities, permittivities
and characteristic dimensions, respectively, we obtain an expression for the temporal

development of the voltage across the membrane:

dm € 2-V, e84 d ~¢-Zmeddc
Vn(t) = .....’I‘...E.C_.%(t).,. .2 < m'(z'fc'aﬂ“fmed)'(e t2»8,,@;':!9—1) 3.8
(5

de &m T Omed * &m " 4.

By setting t = 1, V{1)/d, = V,/d, = E,, and expanding the exponential function by Taylor’s series

to the second order {the value in the exponent is very small compared to one}, {3.8) becomes:

E,-dn
V =
m(®) 285 Ey £ dy
de
'(T'do'Ec'amed+2'£o'Ec'Smed'do_r'?'amed'gmed) 3.9

By neglecting the last term in the bracket, which is very small compared to the first two terms, the

peak membrane voltage is given as:

d
Vn(7) = E, - ﬁ (T Omea +2° € * Emea) 3.10
0" €m
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Equation 3.10 is in 99.99% agreement with the voltage across the membrane in which the
full analytical solution was determined using Mathcad [57]. The membrane and medium, at
25°C, have a relative dielectric constant of 13.9 and 79, respectively. The electric field in the
membrane is 5.6 times higher than the electric field in the adjacent cytoplasm at 25°C whereas
this ratio is decreased to 3.5 for a temperature of 47°C. The conductivity of the medium increases
from 1.37 S/m to 2.03 S/m with a temperature increase from 25°C to 47°C. For an applied
electric field of 83 kV/cm, the voltage across the membrane, with a thickness of 7 nm, is 396 mV
at a temperature of 25°C and decreases to 281 mV for 47°C. The induced membrane voltage, due
to a constant applied electric field, decreases with an increase in temperature. This voltage will

be superimposed to the resting potential of the membrane.

LIV TEMPERATURE EFFECT ON RESTING POTENTIAL

The temperature has a direct effect on the membrane potential [11 - 13]. The magnitude
of the resting potential increases with an increase in temperature, most likely due to the change in
the passive permeability ratio of the ions [12, 13]. It has been shown that the effects on the
resting potential due to a change in temperature are immediate in muscle fibers and can drop 15
mV with a 10°C decrease in the temperature [12]. The voltage of the membrane with relation to

the temperature can be expressed with the Nertz equation [5, 12, 13]:

Vin

RTin [(PK+PNa)mrra:g_gm:ar] 311
F (Px+Pnadintraceltular ’

Where R, T, and F are the gas constant, temperature, and faraday constant. The permeability
constant of potassium and sodium are denoted Py and Py, respectively. A linear trend consists
between the temperature and the resting potential of the membrane. An increase in temperature
will cause an increase in the resting potential, which is superimposed on the voltage across the

membrane induced by an external electric field (Fig. 3.3(a)). Therefore, less electric field
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strength is needed to reach the threshold voltage at a higher temperature. For cells exposed to
exiernal electric fields in which the imposed voltage across the membrane is much greater than
the resting potential, the effects of the resting potential becomes negligible [58]. This effect may
only be applicable to membranes exposed to pulses with rise times/durations less than the
charging time of the membrane. For cells exposed to short durations, the external electric field
will be superimposed to the electric field across the membrane caused by the resting potential.
Gehl has shown that the area of poration is greater on the side of the cell facing the anode while
the degree of poration is greater on the cathode side [14]. However, if the risetime and/or pulse
duration is long compared to the charging time, ions will line up across the membrane as depicted
in Fig. 3.3(b) in which case, the effects of the membrane potential would be negligible.

The external field will be superimposed on the natural potential across the membrane
which will cause depolarization on the cathode side and hyperpolarization on the side of the cell
facing the anode (for v, < 1,) {8, 58). As a result of the increased electric field on the side of the

cell facing the anode, cells will be permeabilized on the anode side first, as depicted in Fig.

1.3(a).
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Fig. 3.3. The external electric field will be superimposed on the electric field across the
membrane due to the resting potential. As a result, the field across the membrane facing the
anode will be higher than the side facing the cathode. Therefore, electroporation begins on the
anode side of the cell for cells exposed to pulsed electric fields with rise times less than the
charging time of the membrane. For slow rise times, the cell membrane will be charged such that
the resting potential can be neglected.
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CHAPTER IV

TEMPERATURE EFFECTS ON PLASMA MEMBRANE

The temperature not only has an effect on the electrical properties of the cell (as
discussed in Chapter 1il), but also on the mechanical properties of the cell, mainly the fluidity of
the cell membrane. When the cell is exposed to an external electric field, the fluidity determines
the ease at which electroporation or permeabilization can occur [42, 15-18]. A less viscous
membrane will require a reduced voltage across the membrane to induce pore formation or
electropermeabilization. This chapter is divided into four sections; The first section contains the
basic structure of the plasma membrane, and its method to maintain viscosity with a temperature
change, which is known as homeoviscious adaptation. The second section is an overview of
experiments studying homeoviscious adaptation, and in the third section, the effect of temperature
during electroporation is discussed. The last section discusses the effect of temperature on the

resting potential of the membrane.

IVISTRUCTURE OF THE PLASMA MEMBRANE

The plasma membrane for almost every living cell has the same basic structure and can
be described by the fluid mosaic model [59-62]. The membrane is a fluid like structure
composed mostly of lipids, and proteins in which most of membrane’s interactions among its
components are noncovalent, leaving individual lipid and protein molecules to move about freely
in the lateral plane of the membrane. This model is not only suited for the plasma membrane, but
for intracellular membranes as well [59]. A majority of the lipids are phospholipids, which are
lipids containing a hydrophilic polar head connected to two hydrophobic fatty acid chains. The
chains of the phospholipids, also referred to as leaflets, are either saturated or unsaturated.
Saturated fatty acids provide relatively straight chains while unsaturated fatty acids have kinks in

the acid chain. The straight line of saturated chain allows for tight packing into a paracrystalline
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array while the kink in the unsaturated chain hinders the formation of a crystalline state. Another
major group of lipids in the plasma membrane are the sterol lipids, also known as cholesterol.
The tail of the sterol is a rigid rod shape consisting of four fused rings composed of carbon which
prevents the tight packing of the acid chains, thus keeping the membrane from crystallizing at low
temperatures. At higher temperatures, the rigid composition of the sterol makes it difficult for
neighboring fatty acid chains to rotate around the sterol, which keeps the viscosity of the
membrane from increasing to the point in which it can no longer maintain its structure,

The fluidity of the membrane depends on the lipid composition and the temperature.
Below a certain temperature (fransition temperature), there is very little lipid motion and the
membrane exists as a crystalline array. Above the transition temperature, the membrane acts as a
fluid, in that the lipids undergo rapid motion. The transition temperature of bacteria and
mammalian cells is approximately 10°C below the ambient growth temperature, 37°C [43, 63-
65]. If the temperature is well above the growth temperature for a certain period of time, the
membrane may increase fluidity beyond a certain point which causes cell blebbing, which can
lead to cell death {66, 67].

The cell membrane uses several mechanisms to maintain its fluidity over a wide range of
temperature (around ambient body temperature). The first mechanism involves changing the
ratio of the saturated and unsaturated fatty acid chains. The transition temperature of the
membrane decreases as the ratio of unsaturated to saturated acid chains increases. Several
references which focus on the ratio of unsaturated to saturated acids in the membrane versus
temperature show that cells will produce more saturated acids than unsaturated in order to
maintain fluidity {18, 19, 68, 69]. The second mechanism that helps maintain the fluidity of the
membrane is the sterol content within the membrane. The concentration of sterols also helps
maintain fluidity in a wide range of temperatures around the physiological temperature in that a

higher concentration will decrease the fluidity of the membrane, while a lower concentration
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increases the fluidity [70]. The process of matntaining fluidity over a certain temperature range is

known has homeoviscious adaptation.

IV.II HEAT SHOCK VERSUS HOMEOVISCIOUS ADAPTATION

Heat shock is defined as a short period of exposure in which the cell is above its
physiological temperature, and the cell responds with heat shock genes. Heat adaptation is when
the cell is exposed to elevated temperature for a long period of time, such that the cell adapts to
the higher temperature, which involves alterations in the cell membrane to maintain fluidity {18,
19, 69, 71]. This adaptation is known as homeoviscious adaptation and mainly involves adjusting
the ratio of saturated to unsaturated fatty acid chains.

There are two main methods in determining the degree of viscosity with respect to
temperature: electron spin resonance (ESP) and permeabilization. In ESP, a lipophilic spin probe,
which is a molecule containing one or more unpaired electrons, dissolves into the plasma
membrane. Cell pellets containing the spin probes are exposed to magnetic fields on the order of
0.1 T followed by exposure to microwave radiation in the range of 9 GHz to 10 GHz [72].
Changes in the viscosity of the membrane will result in changes in the EPR line width and shape
[64, 72, 73]. A spin probe in a low viscosity membrane is said to have higher activity than if in a
membrane of higher viscosity [64]. Typically, the EPR line shape, which contains all the
information in regards to the probes environment are computationally analyzed in order to
determine the fluidity of the membrane {72, 73]. A more detailed description of the ESP method
can be given in {64, 73]. For the permeabilization method, the cells are exposed to dyes, in which
the cells are normally impermeant to {florescent or bleomycin uptake). Electric field pulses on
the order of 100 ps with fields between 400 V/em and 900 V/cm are applied to effectively cause
electroporation [15].

Sinensky used EPR to show the change in membrane fluidity for E. coli for different

growth temperatures [64]. There was a negligible change in the activity of the spin probe for
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bacteria grown at temperatures ranging from 15°C to 43°C, in which it was concluded the fluidity
of the membranes were equal. However, the activity of the spin probe was immediately reduced
when bacteria grown at 43°C were exposed to a temperature of 15°C, which meant there was an
immediate decrease in the membrane fluidity. An increase in the spin probe activity was
observed when Sinensky exposed bacteria, grown at 23°C, to a temperature of 37°C. He
concluded that bacteria cultured for 24 hours at their respected growth temperatures experienced
homeoviscious adaptation by varying the fatty-acid composition of the phospholipids {64].

Yuk and Marshall compared the ratio of lipid concentration for heat shock with that for
heat adaptation for bacteria exposed to temperatures of 42°C and 45°C, and were compared to
bacteria which remained at 37°C {18]. Cells exposed to the elevated temperatures for 15 minutes
were described as heat shocked, while those exposed to the ¢levated temperatures for 18 hours
were considered head adapted. The cells exposed to the temperatures for 18 hours showed a
much higher change in lipid concentration than those exposed to the same temperatures for 15
minutes, which showed the cells had adapted to the higher temperatures by increasing the lipid
concentration in the membrane.

Kanduser et al., conducted membrane fluidity and permeabilization experiments on two
different cell lines (V-79 and BI16F-1) at 4°C and 37°C by EPR mecthod and
electropermeabilization [15, 72]. Cells were exposed to a waterbath at 37°C or to ice water at
4°C for 5 minutes before measurements. The EPR experiments for both cell lines showed a
decrease in activity of the spin probe at a lower temperature, suggesting a decrease in the
membrane fluidity. However, the effects for the V-79 cell line greatly outweighed the effects of
the B16F-1 cell line suggesting the B16 cell line was able to maintain its fluidity more effectively
than the V-79 cell line. As concluded, cells can change the composition of their membranes to
maintain fluidity, but this process must occur over time (> 18 hours). The experiments discussed

in this dissertation would be classified as heat shock experiments. Therefore, it is possible the
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cells will not have enough time to adjust their membrane viscosity with the increase in
temperature. As a result, the fluidity of the membrane will most likely increase with an increase
in temperature, making the cells more susceptible to the pulsed electric fields.

The electropermeabilization method, in reference [15] gave a similar conclusion as the
EPR method. At 900 V/cm (100 us, 1 Hz) 80% of both cell lines were permeabilized
(determined by bleomycin uptake) at 37°C. At 4°C, 40% of the B16 cells were permeabilized,
while only 20% of the V79 cells were. This data also suggested the B16 cells are more adaptive
to the change in temperature [15, 72]. This method shows the importance of the effect of
temperature on electropermeabilization. A higher temperature increased the fluidity of the
membrane which caused a higher degree of permeabilization of the cell. The increase in fluidity
may have decreased the threshold energy needed for electropermeabilization, such that, for the
same pulse conditions, a higher degree of permeabilization occurs for a higher temperature. This

effect should hold true for pulses of shorter duration as well.

IV.HHI TEMPERATURE EFFECTS ON ELECTROPORATION

The energy needed for the reorientation of the lipid molecules forming the pore is lower
if the fluidity of the membrane is higher [15, 42]. There are several models and simulations that
show that an increase in temperature is favorable for pore formation on a cell membrane exposed
to electric fields {7, 16, 17, 74). In references [16, 17] a patch model type of analysis was used to
derive the critical potential across a membrane to induce electroporation. Two models based on
the law of conservation of energy and in terms of the impulse-momentum principle, were used to

derive the minimum voltage needed for electroporation [16, 17].

~1{2mi?
AV = — + eAE/RT ¢ 4.1
q\ 12 v
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In (4.1), q, m, and L are the charge, mass and thickness of the patch of membrane, respectively.
The electric field critical pulse width needed for electroporation is denoted by 1, The
temperature of sample is represented by T, and AE is the thermodynamic energy of the molecules
in the membrane of the cell. The amount of energy needed to overcome the dragging force, f(x),

is defined as {16, 17}:

L
P, = f flx)dx 42
1]

The dragging force, which is dependent on temperature, is the combination of the dipole-dipole
electric attraction force of the lipids and other frictional forces, and is proportional to the viscosity
of the membrane. A decrease in the energy is needed for the patch to overcome the dragging
force if the viscosity is decreased, which is associated with an increase in temperature. The
exponential function can be expressed as a Boltzmann factor, which gives the required portion of
molecules with enough energy needed to break away from the dragging energy bond [16]. The
correlation of their equation and experimental data was equal to 0.93 for pulses with pulse widths
on the order of microseconds.

This observation is evident in the simulation of a lipid layer to an electric field at two
different temperatures [7]. Song et al. simulated the effects of a three degree change in
temperature on a biological membrane exposed to an external electric field in order to investigate
the possibility of local temperature effects on the membrane caused by the pulsed electric fields.
In this simulation, a constant eiectric field was applied to a membrane containing dipalmitoyl-
phosphatidyl-choline (DPPC) lipids with an electric field equal to 0.5 V/nm across the membrane.
At a time of 1 ns, no pore formation occurred at 40°C. However, at 43°C, pore formation was
observed at 1 ns which consisted of water nanowires connecting the extra and intra-cellular

regions through the membrane.
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CHAPTER V

SUBNANOSECOND PULSE GENERATORS

High voltage subnanosecond pulse generators date back to the 1980°s [75], and pulses
with subnanosecond risetimes, and amplitudes in the 100°s kV date back to 1965 [76]. Typically,
amplitudes ranging into the 100’s kilovolt range are created by transmission line with spark gaps
[40, 76, 77}, while those using semiconductor switches typically range in the low kV to V range
[78, 79]. Recently, semiconductor switches (SOS, photoconductive, transistors, ¢tc.) have been
used to create voltages in the 100’s of kV range with subnanosecond rise times [80-83]. The
main advantages of semiconductor switches are the higher repetition rate (kHz — MHz), increased
lifetime and lower jitter (< ns). The main advantages of spark gap switches are the simple design
and wide range of transferable energy (J - MJ). In the following four sections, subnanosecond
pulse generators using avalanche transistors, SOS diodes, photoconductive switches, and spark

gap switches will be discussed.

V.ISUB NS PULSE GENERATORS WITH AVALANCHE TRANSISTORS AS
SWITCHES

A common method of creating high voltage pulses with fast nsetimes (on the order of 1

ns) is to use a string of avalanche transistors, as depicted in Fig. 1 [75, 78].
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Fig. 5.1. Schematic of an avalanche transistor subnanosecond pulse generator. Each transistor
has an inductance associated with it, which gives the circuit a transmission line type of setup. By
decreasing the capacitance of each stage (C,<C,<C;<C4<Cs), the impedance of each stage is
increased, which sharpens the risetime of the pulse. The fall time of the pulse depends on the RC
time constant of the load and C.
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Avalanche transistors with nonlinear, high gain characteristics are currently able to switch in the
100 ps regime, which makes them ideal for creating subnanosecond pulses [78]. By placing the
chain of transistors in a tapered transmission line configuration, the rise of the pulse sharpens
progressively from stage to stage [78]. Each transistor has an associated inductance with it,
which gives an impedance of each stage equal t0 (Lygne./Cn)™* in which N represents the stage
number. The tapering of the impedance of the transmission line from low to high causes the
avalanche process of each stage to occur faster than the preceding stage. The reason is as
follows.

Because the transistors are in series, the current through each stage is approximately the
same. Therefore, each stage is designed to have a higher impedance than the previous stage,
which increases the voltage across that stage (V = I'R where [ is constant). A higher over voltage
will create a faster avalanche process, effectively sharpening the risetime of the pulse. The
change in impedance from stage to stage causes reflections between each stage. These reflections

are reduced by placing a resistor of equal impedance to the first load between the emitter of the
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first transistor and ground (Rya in Fig. 5.1), which absorbs the reflected signals. The final stage
should have an impedance equal to the load impedance. As a result, reflections are absorbed
from both sides of the transmission line. Krishnaswamy et al. were able to create a pulse with a
800 ps rise time, 1.3 ns pulse width with an amplitude up to 1.1 kV into a 50 Q load with a
repetition rate of 200 kHz [78]. This pulse generator was used to study the effects of the pulses

on cells between electrodes under a microscope.

V.II SUB NS PULSE GENERATORS WITH SOS SWITCHES

The silicon or semiconductor opening switch (SOS), introduced in 1992 by Kotov et al.
[84], 1s comprised of a diode, or chain of diodes, capable of interrupting current densities up to 10
kA/cm’ in time frames less than 10 ns [85]. This specific type of diode has a p -p-n-n" structure
and is based on two different modes of operation: The junction recovery (JR) and the silicon
opening switch {(SOS) mode. The JR mode occurs in any rectifying diode during polarity
inversion, and is the process by which the diode stops conducting due to the recovery of the PN
Junction. This mode is used for decreasing the turn off time and is capable of dissipating less
energy during the switching process as opposed to the SOS mode [86].

In the SOS mode, the junction does not recover, but the switching is caused by a dramatic
increase in the resistance of the low doped part of the p-layer [86]. The SOS mode is capable of
switching higher energies than the JR mode. The main purpose of the diode is to fanction as an
opening switch that commutes the current from an inductor to a resistive load [86]. The diode
alone is not an opening switch. It must be activated by a forward current because it can only
interrupt current (open) during the reverse bias operation. Therefore, the diode is coupled with an
oscillatory circuit in order to cause the diode to behave as an opening switch [85, 86]. The basic

setup of an SOS type pulse generator is shown in Fig. 5.2.



38

3

=v, i S, g L, SO ng
l .
i

Fig. 5.2. Simple scht‘:matic layout of a pulse generator incorporating a single SOS switch,
represented by the SOS diode. Typically, C, will equal C; and L, will equal L..

With 8, open, C, is charged up to V, while C, prevents any DC currents flowing to the load.
When S; closes, C, discharges and the SOS diode acts as a short, causing the circuit creates an
oscillating effect, as shown in Fig 5.3 (dashed black trace). When the current reverses polarity
across the diode, a charge is still left over in the depletion region, and the diode is able to conduct
in the reverse bias mode. However, once the charge is depleted, the resistance of the diode
quickly increases (essentially opens), and the current is redirected into the load. This is designed
to occur when most of the energy has been transferred from C, to L,. The voltage across the load
is then equal to the current across the load (solid black trace) multiplied by the load resistance.
The risetime of the pulse depends on the speed of the opening switch while the fall time depends
on the time constant of L; and Ryq.a.

Two main aspects are to be considered when designing such a system. The first is that
the diode needs to break down when the reverse current across the diode is at its peak, as shown
in Fig. 5.3. This is achieved by matching the time difference between the negative and positive
peak of the oscillating signal across the diode at a value twice as much as the reverse recovery
time of the diode.

The second aspect is to insure that the majority of the energy stored in C, as been
transferred into L,. This is to avoid having resonating signals across the load. In Fig. 5.3, the

reverse current should be at maximum by the time the diode opens. The peak of the reverse
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current should be twice the peak of the forward current, which is achieved by choosing optimal
values of L. and C. Such relations have been conducted in reference [86] and their values have
been taken and simulated in PSpice, and the results are shown 1n Fig. 5.3. Both capacitors and
inductors have values equal to 33 nF and 70 nH, respectively. The load resistance is 50 €2, and
the input voltage is 100 V. The output voltage across the load is equal to 2.25 kV (45 A x 50 Q2).
The switches used in this circuit (S,) are typically solid state switches with voltage and
current ratings in the 100°s — 1000 V range, and 10’s A range, respectively. These switches are
primarily used for pulse amplitudes in the low kV range [86, 87]. In order to achieve voltages in

the high kV range, typically magnetic switches are used [80, 85, 88].
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Fig. 5.3. The current through a shorted diode, when S1 closes, shows the oscillation of the circuit.
In order for the SOS switch to open, the time between the negative and positive peak of the
current across the diode needs to be twice that of the reverse recovery time of the diode. The
voltage across the load is equal to the current across the load (solid black) multiplied by the
resistance.
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The major advantage of SOS switches is the lifetime of the switch (10" pulses) and repetition
rate (kHz) [85]. By stacking SOS switches, they are capable of holding off voltages in the 100’s
kV range, and even into the MV range [81].

SOS type pulse generators can be incorporated into a variety of ways ¢ither by simply
stacking them or combining them with other pulse compression circuits to achieve a desired pulse
across a given load. Engelko and Bluhm proposed a circuit consisting of three SOS switches to
charge up inductors in series and discharging them in parallel which allows for a threefold
increase in the current across a given load {85]. With magnetic switching, they were able to
model a 235 kV pulse with a pulse width of 5 ns, and a risetime less than 1 ns across a 100 Q
load. Teramoto et al. were able to create a 20 ns pulse with an amplitude of 50 kV across a 300 Q
load by using an SOS generator [88]. The pulse generator consisted of three stages: charging,
pulse compression, and puise sharpening. The charging stage consisted of a capacitor charging a
saturable inductor, which when saturated, transferred the stored energy to the second stage. The
second stage used magnetic pulse compression to decrease the duration of the pulse from the ms
time frame to the ps time frame. The third and final stage comprised of the SOS switch in a
layout similar to one shown in Fig. 5.1. Voltages as high as 150 kV with pulse durations equal to
60 ns were achievable with a 300 €2 load.

Sanders et al. used air coils for the inductance in their pulse generator design, similar to
the one shown in Fig. 5.1 [86]). In this case, they were able to achieve a 5 kV pulse with a pulse
width of 2.5 ns into a 50 ohm load with using a sold state switch (APT37M100L MOSFET)
opposed to a magnetic switch. In order to handle the high current, five chains of five stacked
diodes were used, as is done in many SOS generator systems [86]. Yalandin et al. combined an
SOS pulse generator with a pulse compression stage comprised of two hydrogen spark gaps {82].
They were able to achieve a 200 kV pulse with a risetime of 180 ps, pulse width of 420 ps at a

repetition rate of 3.5 kHz.
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V.HI SUB NS PULSE GENERATORS WITH PHOTOCONDUCTIVE SWITCHES
Photoconductive switches are semiconductor devices (most commonly GaAs), commonly
used in high power microwave generation [89] and wideband radar applications {90]. The
photoconductive switch is triggered optically with a laser (mJ range} which has the characteristic
of optical isolation. Due to the finite leakage current of the semiconductor material, the switch

requires pulsed charging opposed to DC charging.

Laser

Electrode

Pulsed Charge
_/_\; Semiconductor { Load
Linear Mode Non-linear Mode

Laser Intensity

Load Voltage
Charee Vollage

Fig. 5.4. Concept of a pulse generator incorporating a photoconductive switch. A pulsed power
source is used to charge the electrodes. The mode depends on the magnitude of the electric field
across the switch prior to triggering. In the linear mode, a high energy laser source is needed
(mJ) to close the switch whereas the nonlinear mode requires less energy from the laser (uJ).
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The concept of the photoconductive switch is shown in Fig. 5.4. When illuminated with
a laser, the switch goes from a nonconductive state to a conductive state by photoionization
and/or collisional ionization depending on the magnitude of the applied voltage across the switch
[91]. There are two modes of operation for the GaAs: linear and nonlinear [91]. In the linear
mode, the number of charge carriers is determined by the laser intensity, and the shape of the
pulse across the load is largely determined by the shape of the laser pulse. In the nonlinear mode,
the switch only partially recovers such that the field across the switch will decrease to a sustained
field, which is known as the lock on field.

Due to the short generation time of GaAs (10 s), the closing time of GaAs switch in
linear mode is theoretically limited by the risetime of the laser pulse [92]. Since relatively fast
laser sources exists today (ps range), the risetime of the pulse generated with a photoconductive
switch can be in the picosecond range. The opening time of the switch is limited by the
recombination rate of the free carriers and the circuit parameters of the switch [83]. In the linear
mode, the recombination rate is approximately the same as with no field applied. For GaAs, the
recombination rate is on the order of 1 ns, whereas for Si, it is on the order of us. Pocha et al.
designed a switch, when charged to 12 kV and irradiated with a 1.32 mJ laser, created a 12 kV
pulse with a risetime and fall time of 200 ps and 1.06 ns, respectively [83]. The disadvantage of
the linear mode is the energy needed by the laser to induce the closing of the switch (without
neutron irradiation) is on the order of mJ [90]. The closing time can be decreased by doping or
by using neutron irradiation. Druce et al. were able to achieve a 3.5 kV pulse with a risetime and
fall time of 176 ps and 306 ps, respectively, with a 227 pJ) neutron irradiated source [92]. An
electric field threshold in which the mode goes from linear to nonlinear exists. This threshold
limits the power in which the photoconductive switch can be used as a fast opening and closing
switch (10’s kV/cm). Beyond this threshold, the switch behaves as just a closing switch.

As the electric field across the semiconductor is increased above this threshold, the

number of charge carriers in the switch is increased by collisional ionization, in which the
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increase is exponential, as with a gas switch [91]. This nonlinear mode is also referred to as the
avalanche or lock on mode [83, 92]. In GaAs, the threshold is approximately 20 to 25 kV/cm
[83]. For GaAs, the lock on field is between 3.5 kV/cm and 8.5 kV/cm, depending on the
impurities in the material. For InP, the lock on field is approximately 14.4 kV/cm [90]. The
energy needed from the laser to induce the nonlinear mode is in the pl, which is a distinct
advantage over the linear mode {90]. However, the fall time of the voltage across the switch is
longer since it depends on the voltage across the switch, unless using a high power laser. This
mode is typically used for closing switches in high power microwave generation [92]. Pocha et
al. demonstrated a switch in lock on mode charged to 30 kV, with a gap of 5 mm which produced
a pulse with a risetime of 302 ps. The risetime is comparable to a switch operating in the liner
mode since they used a high energy laser, 2.1 mJ [83]. Zutavern et al. experimentally determined
the lock on field to be independent of the charging voltage [90). A 1.5 cm long GaAs PCSS was
triggered with a 150 W laser in which the charge voltage ranged from 6.1 kV to 11.3 kV.

The lock on mode occurs at fields lower than what is needed to induce avalanche
breakdown, which is approximately 200 kV/cm in GaAs, The mechanism which leads to this
mode is not well understood, but the most widely accepted theory is the combination of impact
tonization of impurity or defect levels in the semiconductor, the Gunn effect, thermal runaway
and double injection through the contacts [90, 93].

The most common material used is GaAs which has a bandgap energy of 1.43 eV. The
maximum wavelength needed to create an electron hole pair in a perfect crystal of GaAs is 860
nm, which has an absorption depth of approximately 10 pm at this wavelength {92]. Due to
impurities, a large concentration of mid gaps appear which lead to extrinsic generation, which
allow the wavelength of the light needed to create excitation to increase to values above 1 pm.
For wavelengths above 0.9 um, the absorption depth of GaAs increases to approximately 1000
pm, effectively decreasing the resistance of the channel {83, 92]. The Nd:YAG laser has a

wavelength of 1.06 pm which makes it suitable for triggering the GaAs semiconductor switch.
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Laser intensities need to induce charge carriers is on the order of MW/ecm® [92]. Other
semiconductor materials used are InP and Silicon [90]. The semiconductor material for the

switch can be characterized by the photoconductive gain [94],
G=1(py+up)E/L 5.1

in which the carrier lifetime, electron mobility and hole mobility are represented by t, p, and p,,
respectively. The electric field across the switch of length L is denoted E. GaAs has a mobility
of approximately 0.85 m’/V-s, which is higher than both InP (0.65 m%V-s) and Si (0.13 m%/V-s).
In order to have a fast response, the carrier lifetime must be on order of ns; however a short
carrier lifetime decreases the gain. In order to compensate for the decrease in gain, it is desirable
to have material with a strong hold off voltage . The hold off field of GaAs is approximately 200
kV/cm. The surface breakdown of GaAs occurs at approximately 40 kV/em [94]. To
compensate, measures are taken to increase the breakdown strength which include coating,
pressurizing the switch in SF,, and shaping the electric field away from the switch [92). Another
way to compensate is to create a vertical switch in which the electrodes are placed on opposite
sides of the material. Therefore, breakdown is determined by the bulk property of the
semiconductor. The disadvantage of the electrodes placed on opposite sides of the material is a
decrease in efficiency since the entire gap cannot be illuminated {§9].

Because such a short gap distance is needed, the resistivity of the semiconductor material
with no illumination (dark resistivity) needs to be high. GaAs and InP both have a resistivity of
200 MQ-cm, whereas Si has a resistivity of 200 kQ-cm. Each material has its advantages over
the other. The advantage of Si is a much higher gain, and requires less laser power to trigger than
GaAs or InP. However, GaAs has a much shorter carrier lifetime which allows for
subnanosecond rise and fall times, while Si has a decay time in the ps range.

The lifetime of the switch depends on which mode it operates in. In linear mode (< 20

kV/cm) the switch has an almost infinite lifetime, while in the nonlinear mode (100 kV/cm), it
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has had lifetimes as short as 10 pulses [83]. In the nonlinear mode, the filamentary discharge
causes localized heating which can decrease the lifetime of the switch [95]. By using a
Rogowskii profile for the electrode, the filamentary discharge is random, as in a gas switch, and
local heating i1s reduced, effectively increasing the lifetime of the switch [89].

The advantages of photoconductive switches are low trigger jitter (< 10’s ps), optical
isolation of the trigger from the switch, high repetition rate (kHz), and relatively simple circuit
setup [83, 92]. The disadvantages are a limited hold off voltage (100 kV), requirement of a
pulsed charging circuit opposed to DC charging due to finite leakage current of the
semiconductor material, and requires a high power laser source for triggering {83, 90, 91].
However, since the trigger is isolated and the jitter is low, the switches can be stacked in series to
achieve higher hold off voltages, and in parallel for higher current capabilities [92, 94]. With this

technique, current densities as high has 2-10° A/em” have been reached [83].

V.IV SUB NS PULSE GENERATORS WITH SPARK GAP SWITCHES

Probably the most familiar types of high power subnanosecond pulse generators are those
that incorporate spark gap switches {40, 76, 77]. Spark gap switches are most commonly used as
capacitive discharge circnits, transmission line and Blumlein line pulse generators, and Marx
Banks. They are also used to sharpen the risetime of an already existing pulse, which is dated
back to 1965 [76]. McDonald and Benning used a high voltage power supply to charge a
capacitor which was then discharged through a 3.8 cm { atm air gap through a high voltage
coaxial cable, A second spark gap was pressurized with hydrogen gas at a | cm gap to decrease
the risetime of the pulse to 100 ps at amplitudes up to 100 kV [76]. This type of switch is known
as a peaking switch and is used to sharpen the risetime of pulses to values in the subnanosecond
range [40, 77). Another spark gap switch has also been incorporated to cut off the tail portion, or

decaying portion of the pulse, to decrease the pulse width to subnanosecond values and is known
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as a crowbar switch, or tailcut switch [40, 77]. The layout of a pulse generating system

incorporating both switches is shown in Fig. 5.5.

A 5

l

Fig. 5.5. Quantitative description of the development of a high voltage, subnanosecond pulse
from a pulse generator layout incorporating a peaking and tailcut switch. The pulse generator
(second stage) in this dissertation is an 8 stage (N) Marx Bank, A peaking switch decreases the
risetime of the pulse by effectively reducing the inductance of the pulse generator [40]. A tailcut
switch is used to ground the decaying portion of the pulse.

The pulse generator is generally a voltage multiplier, such as a Marx Bank, pulsed transformer, or
a transistor or SOS pulse generator. It can also be an energy storage component as simple as a
high voltage capacitor as in [76].

The peaking switch is incorporated in a peaking circuit, which consists of a peaking
capacitor. This circuit (Fig. 5.6) effectively reduces the effect of the inductance of pulse
generator {L;) by charging the peaking capacitor (C,) and discharging it into the load through a

path with a much lower inductance than that of the pulse generator.
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Fig. 5.6. Concept of the peaking circuit incorporating both the peaking switch (S;) and peaking
capacitor (Cp). The first graph is the voltage across Ryq with (dotted black) and without (dashed
gray) the peaking capacitor while the peaking switch remains open. The second graph compares
the voltage across the load with the closing of the peaking switch.



48

The peaking capacitor is generally at ieast an order of magnitude less than the total capacitance of
the pulse generator {C,) if the pulse generator is based on the capacitive discharge concept, as
with the Marx Bank. The series inductance of the pulse generator (L,) will create a resonance
charging circuit with the capacitance of the pulse generator and the peaking capacitor, effectively
doubling the input voltage across the peaking capacitor (when fully charged). If the peaking
switch closes (S;) when the peaking capacitor is fully charged, then both the capacitance of the
pulse generator and the peaking capacitor will discharge into the load, resulting in a sharp pulse
from the discharge of C; into Ri.., followed by the characteristic pulse of the Ri.gl;C; circuit
{96].

The fast risetime of the peaking pulse is due to a small inductance between the peaking
capacitor and load. The risetime and amplitude of the peaking pulse depends on the breakdown
speed of the peaking switch, while the decay time depends on the Ry,.4C, time constant. Without
the peaking capacitor, the pulse will only follow the trace of an Ry,,qL.iC, circuit even with the
peaking switch since there is not a second capacitor to discharge into the load. The peaking
capacitor can be physically placed as part of the system, or as shown in Chapter VI, can come
from the stray capacitance of the switches in the pulse generator (switches of the Marx Bank).

A transmission line, usually a few meters in length, is placed between the load and the
peaking circuit to separate reflections. The tailcut switch, also called a crowbar switch, is placed
within the cable to break down to ground, effectively cutting off the tail portion of the pulse, as
depicted in Fig. 1.9. In [40], this concept was used with a 20 stage Marx Bank and pulses with
duration of 800 ps and amplitude of 200 kV were produced. In [77], pulse widths on the order of
500 ps were generated with voltage amplitudes up to 160 kV by using a high pressured hydrogen
spark gap.

In order for this concept to be effective, the switches must be able to break down in the

picosecond range. This fast breakdown is achieved by increasing the E/n ratio to values above 40
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Td by means of pressuring and over voltaging the spark gap. A more detailed discussion of spark
gap switches is covered in Appendix A.

Another approach to create subnanosecond pulses without a tailcut switch is to
superimpose two pulses of opposite, but equal amplitudes, such that the pulse width is defined by

the time difference between the two pulses {79, 97]. This concept is shown in Fig. 5.7.

Voltage

Time

Fig. 5.7. Concept of a differential subnanosecond pulse. Two pulses of equal magnitude but
opposite polarity (gray traces) are superimposed with one another with a time difference, which
will define the pulse width of the resulting pulse (black trace).

Two pulses of equal magnitude but opposite polarity are superimposed with one another with a
time difference which will be equal to the pulse width of the resulting pulse (black trace). A sub
nanosecond pulse will only be generated if the risetime of the two superimposed pulses is less
than 1 ns. One way to achieve this is with two separate Marx Banks with opposite polarity under
the condition the risetime of the Marx Bank pulse is below 1 ns {79]. A 6 stage, duel Marx Bank
generator was used to generate a 1.5 kV pulse whose pulse width could be varied between 4 ns

and 65 ns with rise and fall times on the order of 1 ns [79].
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The advantage of spark gap switches is the simplicity of the design, ease of adjustment,
variety of design choices, and most importantly, the ability to switch a high range of energies
from uJ to MJ. The disadvantage of spark gap switches is the repetition rate limited by the
recovery time of the gas (100’s of Hz), high jitter, and short lifetime due to erosion of the
electrodes. There are, however, several techniques used to improve these issues (Appendix A).
The advantage of a spark gap based pulse generator over those incorporating semiconductor
switches is the simplicity of the design, low cost, and ability to withstand high currents and

voltages in the 10° A and 107 V range, respectively.



51

CHAPTER VI

DESIGN AND SETUP OF PULSE GENERATOR

In order to expose the biological sample to high electric fields, a high voltage pulse
generator was designed and built to deliver a pulse with an amplitude within the tens of kilovolt
range into a load, in which the impedance is determined by the electrical properties of the
biological sample. A peaking switch and tailcut switch were incorporated into the design to
decrease the pulse width to 200 ps. This chapter will focus on the design of the pulse generator.
In order to characterize the pulse generator, the resistive load of 50 Q was chosen (low
inductance carbon based resistor), and connected at the end of a 14 cm 50 Q coaxial cable. In
order to measure the pulse delivered to the load, a capacitive voltage divider {Chapter VIII} was
incorporated into the coaxial cable 1.7 mm in front of the load. The overall design of the pulse
generator is discussed in section VLI, followed by a detailed discussion on the Marx Bank (V1.II),

peaking switch (VLIII) and tailcut switch (VLIV).

VLI DESIGN OF SUB NS PULSE GENERATOR

The pulse generator used for this dissertation is based on the design used in [40], which
follows the model shown in Fig. 4.4. The entire design is based off the concept discussed in
Chapter V, in which a peaking switch and tailcut switch are used to shape the pulse. A negative
DC mput voltage between 5 kV and 15 kV in amplitude is fed into an 8 stage Marx Bank as

depicted in Fig. 6.1a.
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Fig. 6.1. (a) Conceptual layout of the subnanosecond pulse generator. An 8 stage Marx Bank
feeds into a 50 Q cable through a peaking switch. A tailcut switch is placed within the cable.
The load is a conical exposure chamber. The voltage is measured with a capacitive voltage
divider placed in front of the exposure chamber. (b) Photograph of the Marx Bank and peaking
switch. {c) Photograph of the peaking switch and tailcut switch. The electrodes of the peaking
switch are labeled “A™ and “B” for discussion purposes.
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A peaking switch is placed at the output of the Marx Bank which causes a sharpening of the
output pulse. A tailcut switch is placed within the cable to cut off the decaying portion of the
pulse, thus decreasing the width and amplitude of the pulse. A voltage pulse varying from 10 kV
to 20 kV, with a pulse width on the order of 200 ps is a result of the system. The pulse width and
amplitude are adjusted by adjusting the gap distance of the peaking and tailcut switch. The pulse

repetition rate is limited to 25 pps due to the charging time of the Marx Bank.

VLII MARX BANK

The Marx Bank consists of 8 stages (N), each with a capacitance (Cyp) and charging
resistance (Ryp) of 2.3 nF (2 nf measured) and 100 k€2, respectively. The capacitors used are
ceramic door knob capacitors with a hold off voltage of 40 kV (RF Parts, San Marcos,
Californta). The Marx Bank is triggered by applying a DC voltage across the first switch causing
breakdown, which triggers the following switches. The switches are composed of brass
electrodes with a semi-spherical shape and are placed in a tube and pressurized with nitrogen
between 1 and 3 atm.

The first set of electrodes is placed 1.5 mm apart while the remaining 7 are placed 2.5
~mm apart. This placement is to insure self breakdown at the first electrode at all times. The time
between closing of the first and second switch was measured to be 10 ns, while the time between
the remaining switches was I ns. The decrease in delay may be a result of the increase in voltage
across the remaining switches, which results in a shorter delay in breakdown. After all the
switches close (= 16 ns time span), the Marx Bank is erected, and its equivalent circuit is a
capacitor (Cus/N) charged up to N-Vj, in series with an inductor (which is determined by the
circuit components and wiring of the stages) and the load. The simplified schematic of the Marx

Bank (neglecting capacitance of Marx Bank switches) is shown in Fig. 6.2.
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Fig. 6.2. Equivalent circuit of erected Marx Bank. The individual stage capacitance and
inductance is represented by Cug and L, respectively. The charging resistor of each stage is
denoted Ryp and N is the number of stages.

The load resistor is denoted Ry, and the inductance of each stage is denoted L,,, which is largely
determined by the wire conductor which connects the capacitors, switches, and resistors. The
connections between each stage have approximately a circular shape. Accordingly, the

inductance of a single loop, Ly, can be calculated as:
L, =u-R,[In(8R,/R,) — 1.75] 6.1

with p being the permittivity of free space [98]. With the radius of the loop, R,, being 40 mm,
and the radius of the wire, Ry, being 1.5 mm, the inductance is approximately 182 nH. The total
inductance of the erected Marx Bank, with 8 stages is consequently 1.45 pH.

The shape of the voltage pulse across the resistive load (without the peaking or tailcut
switch) is determined by the properties of a series RLC circuit. The pulse is critically damped

when the load is equal to

Rioaq = 2NJ1,,/Cuz = 150 0 6.2

for an N of 8, and a stage capacitance and inductance of 2 nF and 182 nH, respectively. A load of

50 €2 will give an underdamped pulse as shown in Fig. 6.3.
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Fig. 6.3. The comparison of the measured voltage (solid) to the simulated voltage (dashed) for an
8 stage Marx Bank with a 50 {2 load. The black traces represent the voltage measured and
simulated with a resistive voltage divider, and the gray traces are those measured and simulated
with a capacitive voltage divider whose time constant is 8.3 ns (Chapter VIII).

Figure 6.3 is a comparison of the output voltage of a Marx Bank across a 50 Q2 load (8 kV
input) between the simulated (dashed lines) and experimentally measured (solid lines) voltage.
The gray line represents the voltage measured with a capacitive voltage divider (Chapter VIII)
displayed on a 4 GHz oscilloscope (TDS-7404), and the black lines represent the measurements
obtained with a voltage divider probe (Tektronix P6015A, 75 MHz) displayed on a 100 MHz
oscilloscope (TDS-3012B). The rise time (10%- 90%) of the voltage pulse was measured to be
17 ns. The results in Fig. 6.3 suggest that the RLC series circuit with the calculated value of L,
accurately characterizes the temporal development of the erected Marx Bank voltage. The time

constant of the capacitive divider probe is 8.3 ns (Chapter VIII) and is therefore differentiating
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the voltage. However, when incorporating the peaking switch, the capacitive probe will be able
to accurately measure the voltage whereas the voltage divider probe will not due to its limited
bandwidth of 75 MHz.

The frequency of the oscillations superimposed on the pulse is approximately 200 MHz.
Although this frequency is larger than the bandwidth of the resistive probe, it is also measured
with the capacitive probe which would suggest it is not due to either probe. This effect decreases
with a decreasing number of stages, as shown in Fig, 6.4 in which the voltage was measured
(capacitive divider) for a 1, 2, and 8 stage Marx Bank. When the | stage Marx Bank switch
closes, the voltage across the load follows that of an Rj.lmeCus circuit. However, when a
second stage is added, there is a slight oscillation at a frequency of 143 MHz in the front of the
pulse, which is not characteristic of the Ry,.2' LmaCump/2 circuit. For an 8§ stage Marx Bank, the
effect is very evident. It is unclear on the exact reason behind the oscillations, but it is evident
that they only occur when more than one Marx Bank stage is used. It was believed the effect is
due to a delay in the closing of the Marx Bank switches. However, this effect cannot be
simulated in PSpice. The switches were modeled as an ideal step function switch in series with
the respected inductance of the switch and in parallel with the capacitance of the switch. The
delay between the closing of the first and second switch was 10 ns and 1 ns between the
remaining switches. Other variations in delay were also simulated. It may be possible the
oscillations come from the temporal development of the switch which PSpice cannot model, such
as plasma oscillations of the switch, stray capacitance, and/or nonlinear changes in the inductance

and resistance of the switch during breakdown formation.
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Fig. 6.4. Voltage measured with a capacitive voltage divider across a 50 €2 load for a 1, 2, and 8
stage Marx Bank without a peaking switch. The 1 stage Marx Bank does not have oscillations in

the pulse whereas the 2 and 8 stage do.

The inductance at each stage of the Marx Bank limits the ratio of the output voltage to the

input voltage. This ratio, dependent on the number of stages, is equal to

Vout /Vin = (2 Rigaa /Ly - B) - exp(—(Rioaq * tmax/2 - Ly, - N)) - sin(0.5 - tmax 5) 6.3.a

g = J(4/Lw <Cyg) *'VR!aaa/N Loy 6.3.b

tmax = 2 tan" (= < Ly, * N/Rioaa)/ B 6.3.c

The time at which the voltage reaches is maximum value (dV/dt = 0) is denoted ty,. Equation
{6.3) was derived by solving for the response of an RLC circuit with L being N-L,, and C being

Cus/N. With an input of 8 kV, the maximum output determined from (6.3) with 8 stages is 27
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kV, which is within 1 kV of the measured output shown in Fig. 6.3 (26 kV). In order to achieve
an output voltage of 35 kV (with an input of 8 kV), a minimum of 22 stages is required. As the

oumber of stages is increased to infinity, the overall limit of the system is defined as:

Vout/{Vin = Rloadv‘ CMB /Lw 6.4

The ratio for the Marx Bank used for this pulse generator is equal to 5.2 with a load of 50 2. In
other words, with an 8 kV input, the maximum output voltage attainable with an infinite number

of stages is 42 kV.
V1111 PEAKING SWITCH
VLIILI Peaking Switch Geometry

Peaking switches are commonly used with Marx Banks, generaily in combination with a
shunt capacitor (or peaking capacitor) in front of the switch [40, 96]. If the peaking capacttor is
on the order of a magnitude less than the total capacitance of the erected Marx Bank, then the
maximum voltage across the switch (prior to breakdown) is twice that of an erected Marx Bank
with an infinite load (2'Vir'N). However, due to the small gap distance of the peaking switch in
this system (< 5 mm) and without pressurizing the air, the voltage will not reach this maximum
attainable value before breakdown of the peaking switch occurs.

The peaking switch in this system consists of two spherical electrodes made of brass with
a diameter of 1.9 cm. The capacitance between the electrodes was calculated to be between 0.74
pF and 0.4 pF for a gap distance between 0.5 mm and 8 mm, respectively. The inductance of the
peaking switch depends on the radius of the spark gap channel, which can be approximated by the
Braginskii Model (Appendix A) and is approximately 1 nH for a gap distance of 2 mm. The first
electrode (electrode A, Fig. 6.1(c)) is connected to the output of the Marx Bank, and the second

electrode (electrode B) is connected directly to the inner conductor of a 50 Q output cable (R-
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217/U). The gap distance can be varied from 0 mm to 10 mm, and operates at atmospheric

pressure in air,

VLIILII Peaking Circuit

The peaking capacitance in this system comes from the capacitance between the
electrodes of the spark gap in the last stage of the Marx Bank, Therefore, the placement of an
external peaking capacitor is not required. The circuitry of the peaking circuit is shown in Fig,

6.5 for a one stage Marx Bank.
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Fig. 6.5. The circuit diagram of the peaking circuit connected to the output of a 1 stage Marx
Bank. Both the peaking switch and Marx Bank switch are represented by their respected
capacitance and inductance. The capacitance of the Marx Bank switch makes up the peaking
capacitor. The arrow points to the equivalent circuit, which is similar to Fig. 4.5.

The capacitance and inductance between the electrodes of the peaking switch are denoted C,, and

Ly, respectively. In order to create a short risetime, L, should be at least an order of magnitude
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smaller than the inductance of the single stage of the Marx Bank, Lys. The peaking capacitor is
the capacitance between the electrodes of the single stage Marx Bank switch, Sy, and is
calculated to be approximately 0.5 pF for a gap distance of 2 mm. Typically, due to the small
surface area of the electrodes, the peaking capacitance is orders of magnitude less than the
capacitance of the single stage charging capacitance of the Marx Bank, Cys.

If sufficiently large, the capacitance and inductance of the peaking switch will introduce
oscillations at the front of the pulse once the peaking switch closes. The frequency and decay

constant of the oscillations can be approximated by

f= ’:_,,J[Lpsz -4 Rload2 "Ly 'Cps]/[R "Lps Cps]Z 6.5.a

72 27 [Lps - Cos]/[Rivaa * Cpc] 6.5.b

respectively. These equations are valid for L, < 4-R|2'Cps. In order to determine an expression
for the frequency and decay constant, the circuit in Fig. 6.5(b) was solved by removing the
electrical components of the Marx Bank and solving only for the peaking circuit. This circuit
resulted in a 3" order differential equation in which the condition Ly, < 4-R*-C,, was invoked in
order to determine an analytical solution. If L, > 4-R>C,, the system is overdamped, in which
case no oscillations will occur. For a peaking switch gap distance of 2 mm, the frequency and
decay time constant are 6 GHz and 0.18 ns, respectively. A decrease in the gap distance will
cause an increase in the oscillation frequency, while an increase in the gap distance has the
opposite effect.

As the number of Marx Bank stages increases, the peaking capacitance will theoretically
decrease by C,/N which will not have an effect on the frequency, but will increase the decay time
constant for a constant peaking switch gap distance. However, this assumption is based on the

Marx Bank switches closing at the same time. Realistically, there is a delay between the closing
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of the switches in the Marx Bank, which may cause only the last stage of the Marx Bank to act as
the peaking capacitor. This explanation is validated by the fact that the fall time of the peaking
puilse, (VLIILIV) is approximately the same for a 1 stage and an 8 stage Marx Bank. The decay
time of the peaking pulse is defined by the R,,,g'C,. time constant (Chapter IV) and is 25 ps for a
50 €2 load and a peaking capacitance of 0.5 pF. A peaking capacitance of 0.063 pF (0.5/8) would
result in a decay constant of 3 ps, which cannot be recorded due to the limited bandwidth of the

voltage probe and the oscilloscope (4 GHz).

VLHLIV The Effect of the Number of Stages on the Peaking Pulse

Voltage measurements of a single and 8 stage Marx Bank with and without the peaking
switch across a 50 £2 load with an input voltage of 13 kV are shown in Fig. 6.6. Fig. 6.6(a) is for
1 stage and Fig. 6.6(b) is for an 8 stage Marx Bank. The voltage measurements were made with
the capacitive voltage divider. The gray traces represent a closed peaking switch, and the black
traces are an open peaking switch with a gap distance of 0.5 mm for the 1 stage and 2 mm for the
8 stage. For the one stage Marx Bank, the risetime in the voltage from 0 to 5 kV (amplitude of
the first peak) decreased from 4.5 ns to 150 ps. The pulse width of the peaking pulse is
approximately 450 ps. For the 8 stage Marx Barnk, the risetime in the voltage from 0 to 18 kV for
the closed switch is approximately 3.3 ns. With the peaking switch gap at 2 mm, the risetime in
voltage from 0 to 24 kV (amplitude of the first peak) decreased to 160 ps, which is also the pulse
width of the peaking pulse (FWHM). As will be shown in the next section, there is an optimum
gap distance to achieve the highest voltage. However, there is a consistence increase in the pulse

width with an increase in gap distance.
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Fig. 6.6. {(a) Voltage measured across a 50 ohm resistor with a capacitive voltage divider for a 1
stage Marx Bank whose input voltage 15 13 kV. The gray trace is with a closed peaking switch,
and the black trace represents an open peaking switch with a gap distance of 2 mm. (b) Same
conditions as in (a) except with an 8 stage Marx Bank.
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VLIILV Varying the Gap Distance

For the 8 stage Marx Bank with an input voltage of 8 kV and 12 kV, the gap distance of
the peaking switch was varied between 0 mm and 8 mm. The voltage across the load, measured

with the capacitive voltage divider, is shown in Fig. 6.7 for both the 8§ kV and 12 kV input

conditions.
«, T 1 i T T
30 omm ! 04mm ' 1mm @ 2mm : 3mm ' 4mm | 8mm |
8kV | | :
— mput :
-3 20 ! ! -
= : :
[ ] 1 |
£0 ! !
S : :
o 1 1
- iop | | .
or t 4
0 5 35
'
307 omm ! 04mm 8mm |
13kV
input
S 200 : 4
)
(V] “
Q0
2
8
> 10 .
0 =
0 35

Time [ns]

Fig. 6.7. Voltage measured across the load for an 8 stage Marx Bank with an input voltage of 8
kV in which the peaking switch gap distance is varied between 0 mm and 8 mm. The optimized
gap distance occurs at approximately 2 mm for the 8 kV and 3 mm for the 12 kV input.
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The optimization of the peaking switch occurs when the amplitude of the peaking pulse voltage is
at its highest, which occurs at approximately 2 mm for the 8 kV input and 3 mm for the 12 kV
input. As the input voltage is increased, the optimized distance of the spark gap is increased. As
the gap distance is increased beyond the optimization distance, the amplitude of the voltage is
decreased until the effect of the peaking capacitance is no longer observed. This effect is due to
the breakdown properties of the peaking switch; a larger gap distance not only increases the
inductance of the switch, but also increases the time required for the switch to go from a
conductive state from a nonconductive state. The condition for fast breakdown occurs when the
ratio of the electric field and the gas density reaches values greater than 40 Td (Appendix A).
The breakdown voltage of the peaking switch was measured with the Tektronix voltage divider.
The Townsend value (V,¢/d'n) of each condition of Fig. 6.7 is shown in Table 6.1, along with the

breakdown voltage and pulse width (FWHM) of the peaking pulse created by the peaking

capacitor.

Gap Distance [mm)]
0.5 1 2 3 4 1 8
14 23 38 39 43 46
77 55

Table 6.1. The breakdown voltage and E/n ratio of the peaking switch, along with the pulse width
of the peaking pulse for an 8 kV and 12 kV input voltage to an 8 stage Marx Bank.

The pulse width is indirectly proportional to the Townsend coefficient in that a decrease in Td
causes an increase in the pulse width. As the amplitude of the breakdown voltage across the gap

increases, the amplitude of the peaking pulse increases until the Townsend coefficient reaches a



65

value of approximately 55 Td for both the 8 kV input and 12 kV input condition. At this point,
the time it takes for the peaking switch to reach a conductive state once breakdown is initiated
may be increased. A slower decrease in the resistance of the channel may cause the peaking
capacitor to discharge its voltage across the resistance of the switch rather than the load. By the
time the resistance of the switch decreases below the load resistance, a less amount of voltage
from the peaking switch is discharged into the load. Once the value of the Townsend coefficient
reaches values below 40 Td, which is an approximate requirement for subnanosecond

breakdowns, the peaking pulse is no longer observed.

VLIV TAILCUT SWITCH

In this section, the 14 ¢m cable was replaced with the 3 meter 50 Q cable used in the
experimental setup. The load continued to be the 50 € low inductance, carbon based resistor.
The tailcut switch in this system was integrated into the cable. The pulse front traveling along the
cable to the load causes the voltage at the inner conductor to break down to the outer conductor of
the cable by the use of a needle electrode I mm in diameter. The 50 €2 cable with polyethylene
insulator is connected to a 1 cm long 50 Q cable with air insulator and back to the RG-217/U
cable. The needle electrode is placed within the air insulated portion of the cable. This setup
allows the signal to travel with negligible disturbance through the tailcut switch. This
arrangement decreases the jitter of pulses by having the breakdown occur strictly between the two
eclectrodes rather than the wall of the hole of the insulator (surface breakdown). The pulse
duration in this system is determined by the delay time from the application of the pulse across
the switch to its full breakdown. By varying the gap distance of the tailcut switch, it is possible to
vary this delay time [40], and consequently determine the pulse width and amplitude across the

load. A larger pulse width is associated with a higher amplitude.
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Figure 6.8 compares the voltage across the load with and without the tailcut switch for an
input of 8 kV into the 8 stage Marx Bank. The gap of the peaking switch was set to 2 mm, which

was the optimum gap distance for an 8 kV input, as shown in the previous section.
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Fig. 6.8. Voltage measured in front of the load with varying tailcut switch gap distances. The

input voltage to the 8 stage Marx Bank was 8 kV, and the peaking switch gap distance was set to
2 mm.
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Figure 6.8(a) is the voltage across the 50 Q load with the tailcut switch gap distance varying from
3.5 mm to ] mm. The pulse width of the peaking pulse is equal to 140 ps, and is eventually the
final output pulse of the system once the tailcut switch shorts out the remainder of the pulse, The

pulse for the 2 mm tailcut switch gap distance is shown in a higher resolution in Fig. 6.8(b).
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CHAPTER VII

DESIGN AND SETUP OF EXPOSURE CHAMBER

The load consists of a biological sample which was placed in an exposure chamber
between disc-shaped electrodes made of stainless steel. The exposure chamber was designed to
provide a uniform electric field between 50 kV/cm and 120 kV/cm across the biological sample at
puise amplitudes ranging from 10 kV to 20 kV. The electrode separation in the chamber was,
consequently, 1.8 mm. In order to provide a sample volume of 30 uL, a minimum volume
required for the biological analysis, the radius of the electrodes must exceed 2.3 mm. A radius of
2.4 mm was chosen, which resulted in a sample volume of 32.5 pL.

The conductivity and the permittivity of the medium in which the biological cells were
placed (complete medium containing Dulbecco’s Modification of Eagle’s Medium (Celigro,
Fisher Scientific cat# 10-013-CV) supplemented with 10% FBS (Cellgro, Fisher Scientific
cat#35-015-CV)), which was used for the cell suspension, was measured by means of Time
Domain Dielectric Spectroscopy [51] at frequencies of 100 MHz and 1 MHz for varying
temperatures (Table 7.1). Assuming that the electrical parameters of the medium are identical to
the cell suspension, a reasonable assumption considering the relatively small concentration of
cells in the medium {0.314%), these values were used to calculate the resistance and capacitance
of the sample. With a conductivity of 1.37 S/m and a relative permittivity of 79.3 at room
temperature (25°C), the sample resistance and capacitance was calculated as 72.6 Q, and 7 pF,
respectively. However, since the gap distance is comparable to the electrode radius, the standard
equation for parallel-plate capacitors, which was used in the calculation, needs to be modified in
order to take the fringe fields into account. This could result in a smaller value of the

capacitance, as will be shown at the end of the chapter.
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Electrical Parameters of the Medium in the Chamber
T |  Permitivity Conductivity C R
(°C) [S/m] [pF] Q]
25 79.3 1.37 7 72.6
37 72,7 1.74 6.7 57.2
42 67.6 [.88 6 53
47 64.1 2.03 5.7 49

Table 7.1: Permittivity and conductivity of the medium used for the cell suspension depending on
temperature. Also listed is the resulting capacitance and resistance of the sample.

Since the radius of the sample (2.4 mm) is larger than the radius of the inner conductor
(1.34 mm) of the 50 Q cable which connects to the chamber, a coaxial waveguide was designed
and built (Fig. 7.1(a)) which expanded the inner conductor to the electrode diameter of the
exposure chamber, while maintaining the 50 {2 impedance over the entire length from the cable to
the chamber. The dielectric between the inner and outer conductor was polypropylene with a
permittivity of 2.38, the same as that of the cable. The shape of the waveguide, with its conical
shape at the chamber, is such that it allows a rather smooth transition from the transverse electric
fields in the cable to the axial electric field in the sampie [36].

In order to determine the distrtbution of the electric field within the sample, a three—
dimensional, time dependent electromagnetic field solver (MAGIC) was used {37]. A voltage
pulse of 200 ps with an amplitude of 10 kV was used in the simulation. The values of
conductivity and permittivity of the sample were taken from Table 7.1 for room temperature. The
axial electric field was calculated from the high voltage electrode to the ground electrode (0 mm -
1.8 mm) and from the inner radius to the outer radius (0 mm - 2.4 mm). The results are shown in
Fig. 7.2. The insert in Fig. 7.2 is the enlarged exposure chamber (shown in white) between the
two electrodes (shown in black). The letters (w, X, y, z) represent the axial positions at which

three lateral positions at D = 0.1 mm, 0.9 mm, and 1.78 mm between the electrodes, the electric
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field values shown in Fig. 7.2 were obtained. The results show a good homogeneity in the axial
direction with less than a 1.5% deviation. The electric field is less homogeneous in radial

direction. It decreases from the center to the outer radius of the sample by 9.4%.

Insuafator

Inner

conductor -‘T}j conductor

Fig. 7.1. (a) Dimensions of the exposure chamber created with MAGIC. (b) Photograph of the
exposure chamber and voltage probe. (¢) Photograph of the interior of the exposure chamber.



71

Normalized Electric Field

0.9r 7
0.8
O 7 | | 1
-2 0 2
Radius [mm]

Fig. 7.2. Results of the electric field distribution within the sample using MAGIC. The insert

LC, 1Y

shows the electrodes in dark gray and the sample in light gray. The letters “w” — “z” represent
where in the sample the electric field was simulated. The highest electric field occurs in the
center of the sample, and deviates less than 10% at the edges.

The non-uniform electric field may account for a decrease in the capacitance for the following
simple qualitative reason. The capacitance of a parallel plate (neglecting fringe effects) is defined
as C = g-:A/d in which A is the surface area of the electrode and d is the gap distance. The electric
field between two plates is defined as E = V/d. By substituting in for d, we can express the
capacitance in terms of the electric field: C = g A-E/V. If the assumption is made that V is
constant across the total surface area of the electrode, and E is a function of the radius of the

electrode, as shown in Fig, 7.2, then the total capacitance of the chamber can be expressed as:

_*__2‘5__"1'. Touter o
C== L TE@Y rdr 7.1
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For a constant electric field, (7.1) reduces to the familiar equation associated with a parallel plate

capacitor. From Fig. 7.2, we can approximate the electric field as a function of the radius with,

E(r) = E,-[1—7-(0.1/2.4 mm)] 7.2

in which E, = V/d. The value of the capacitance at room temperature, based on the electric field

distribution in Fig. 7.2, is 6.5 pF, which is approximately 7% less than the calculated capacitance.
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CHAPTER VIII

VOLTAGE MEASUREMENTS

Due to its encapsulation (Fig. 7.1), the voltage across the sample cannot be measured
directly. Instead, a capacitive voltage divider measures the incoming voltage pulse from the
Marx Bank towards the sample, which is superimposed with any reflected signal from the load.
The placement of the probe is 9.23 cm in front of the load, resulting in a 0.95 ns time difference
between the voltage towards the load and the reflected voltage. The reflected signal can be used
to obtain the electrical characteristics of the load (capacitive, resistive, and inductive). As shown
in Table 7.1, the load, which consists of the biological sample, has a capacitive and resistive
component, which changes with a change in temperature. Therefore, with a constant input
voltage, the voltage across the load is dependent on the temperature of the sample.

This chapter is divided into three sections; the first section covers the voltage diagnostics
used to measure the voltage. The second section discusses the properties of a reflected signal for
a capacitive and resistive load opposed to just a resistive load. The third section shows the steps
and derivations needed to obtain the actual voltage across the load based on the measured voltage

in front of the load. The measured voltage is then compared to simulations using P-Spice.

VIILI VOLTAGE DIAGNOSTICS

The voltage is measured with a capacitive voltage divider 9.23 cm in front of the load

(4.5 cm from end of cable) within the cable as shown in Fig, 8.1.
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Fig. 8.1. Schematic layout of the capacitive voltage divider probe. The capacitance between the
inner conductor and metal tape is denoted C, and C, is the capacitance between the metal tape
and outer conductor, Milar tape (medium gray) was used as the insulating material for C,.

Figure 8.1 also shows the electrical schematic of the probe (neglecting inductance). The
capacitance between the inner conductor and the thin metal tape is denoted C,, and C; is the
capacitance between the outer conductor and the metal tape. They are 0.1 pF and 6 pF,
respectively. The voltage measured on the oscilloscope (V) is the voltage measured across R,,
which is the impedance of the diagnostic cable (50 ), and termination impedance of the
oscilloscope. The damping resistor of the probe is denoted R;,. The ratio of the input voltage to

the output voltage is equal to
VL:H = {Zx/(zx +Z,)] [Rc/(Rc + Rp)] 3.1

where Z, is the total impedance of R, and R, in parallel with C,, and Z, is the impedance of C,.
In order to obtain an accurate voltage measurement, the time constant of the probe (R,-C,) must

be very large compared to the pulse width (200 ps), where C, is the series capacitance of C, and
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C,. To satisfy this condition, the resistive value of R, was chosen to be 2.3 kQQ, which gives a
time constant of 8.3 ns. The voltage divider ratio of the probe, using (8.1), was calculated to be
2873 (Vi/ Vo).

With R, being much greater than R, and Z, (impedance of C,), Zx can be approximated
by Z,. The frequency component of (8.1) would then cancel out, making the probe linear for
frequencies above 360 MHz (3/{8.3 ns], ¢ = 0.05). The upper frequency limit of the probe is

dependent upon the inductance and stray capacitance of the probe, shown in red in Fig. 8.2.

Fig. 8.2. The inductance and stray capacitance of the capacitive voltage divider probe (L, and C,
respectively) limit the maximum frequency at which the probe exhibits linearity. The frequency
of the oscillations is defined by L, and C;, and the decay time of the oscillations is defined by R,
and C,. The values of L, and C, were calculated using transmission line geometries.

The frequency of the oscillations is defined as:
fi=1/(2 n JLs Cs 8.2

In which L and C, are the inductance and stray capacitance of the probe, respectively. The
inductance and capacitance comes from the conductor connecting R, to the metal tape on the high
voltage conductor. This conductor makes up a transmission line with the outer conductor of the

probe. The decay constant of the oscillations is defined by:

Tdecay = Rp ‘ Cs 8.3
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If the rise and/or fall time of the pulse is greater than the decay time of the oscillations, the
oscillations wili have a negligible impact on the voltage trace. If the rise and/or fall time is on the

order of the decay time or shorter, the oscillations will be superimposed to the pulse, as shown in

Fig. 8.3.
40 T 7 ¥ T
_;.5/f=3.57GHz
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Fig. 8.3, Peaking pulse (Chapter Vi) measured with a capacitive voltage divider probe in which
the value of d changed from 9 mm to 2 mm, thus decreasing the decay time and increasing the
frequency of the oscillation beyond the resolution of the oscilloscope (4 GHz).

The peaking pulse (see Chapter VI} has a pulse width of 150 ps, and for a connector distance of 9
mm (d)}, the inductance and capacitance were high enough (0.63 pF, 3.3 nH) to induce oscillations
on the pulse. The calculated frequency of 3.5 GHz is approximately the same as the measured
frequency of the pulse (3.57 GHz). When the connector distance was decreased to 2 mm, the
calculated decay constant decreased to 139 ps, and the oscillations increased to 24 GHz.
However, the oscillations are essentially filtered out by the limited bandwidth of the oscilloscope
(4 GHz).

Two techniques were used to calibrate the voltage probe. The first technique used a
known pulse from a low voltage (< 1 kV) FID pulse generator FPG 5-P (FID GmbH, Germany).

The voltage ratio was found to be 3220, which is about 12% higher than the calculated value.
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The second technique, as described in reference [40], is based on discharging a 10 cm cable at a
defined voltage into a matched load. The voltage was measured with a voltage probe (Tektronix
P6015A), and the result was compared to that obtained with the capacitive voltage divider probe.
This method provided a value of 3170 as the voltage divider ratio, which is close to the
theoretical value. This value was used to determine the voltage.

The capacitive probe is connected to the oscilloscope by a 3 meter 50 {2 cable (RG58),
and a 20 dB, SMA attenuator (PE7045-20). The frequency response of the cable and the
attenuator was measured using an 8753E 3 GHz network analyzer. As the frequency was
increased to 3 GHz, the change in the impedance of the system was found to be negligible.

The probe was placed as close to the load as possible, but at a distance which still
allowed the incoming pulse to be separated from the reflected pulse. With the probe placed 4.5
cm from the end of the cable at the connector to the exposure chamber, and the length of the
connector being 4.7 cm, at a relative permittivity of the dielectric of 2.38, the roundtrip time of
the pulse from probe to exposure chamber and back is equal to 0.95 ns. This time corresponds to

the temporal separation of incoming to reflected pulse.

VIILII REFLECTION CONCEPT OF CAPACITIVE AND RESISTIVE LOAD
The impedance of a capacitive and resistive load, which is characteristic of the sample

within the exposure chamber, is given as

R JrarR2C
ZLoad = -
1+(wRC)2 1+{wRC)?

8.4

where R and C are the resistive and capacitive components of the load, respectively. Using P-
Spice (a circuit solver), a simulation of a square wave pulse with a rise and fall time of 200 ps,
and a pulse width of 1 ns into a load consisting of a resistance of 80 Q and capacitance of 5 pF is
used to show the concept of a reflected pulse from a capacitive and resistive load compared to

just a resistive load. The simulation result is shown in Fig. 8.4.
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Fig. 8.4. Simulation of a pulse {t,w = | 18, Tue = Tr = 200 ps) into a resistive (80 ohm) and
capacitive {5 pF) load. The black trace represents the measured incoming pulse superimposed
with the reflected pulse with a time difference defined by the length of the transmission line
between the measured point and the load (50 cm = 5 ns). The gray traces represent the voltage
measured directly at the load. The solid traces are those of a capacitive (5 pF) and resistive load,
while the dotted trace is the voltage neglecting the capacitance.

The black traces represent the voltage measured in front of the load in which the length of the 50
{2 transmission line was set to be 50 cm, which equates to a 5 ns time difference between the
incoming pulse and reflected pulse. The gray traces represent the voltage simulated directly at
the load. The solid traces are the simulated voltage for a capacitive (5 pF) and resistive (80 2)

load while the dotted traces are for a purely resistive load of 80 Q. There is a clear difference in
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the reflected pulse for a load consisting of a capacitive component opposed to a purely resistive
load. At the time the voltage reaches the load, the capacitor acts as a short circuit due to the high
frequency component of the rise time of the pulse, w. Therefore, the phase is changed by 180°,
resulting in a negative voltage. Once the voltage levels out, the impedance of the capacitance
reaches 0 in which case Z),,4 = R, and the voltage rises to that of a purely resistive load. Once the
fall time of the pulse reaches the load, the capacitance once again acts a short, again changing the
polarity of the pulse {99]. The reflected pulse added to the incoming pulse will result in a pulse
across the load, shown in gray.

The decaying portion of the reflected pulse is characterized by the time constant, T, which

is determined by the parallel impedance of the load resistance and the impedance of the cable.

= RZ .
T= ez, ¢ 8.5

The difference in the absolute value of the reflected signal for the complex load (X — Y) is equal
10 the magnitude of the reflected signal for the resistive load (Z). Using (8.6), the resistive value

of the load can be determined.

. Vinax +(A—8)

R=2o by

8.6

From these two equations, the resistive and capacitive component of the load can be determined.
It should be noted that (8.4} is valid for pulse durations greater than the risetime of the pulse. If
the pulse duration is equal to the risetime, as is for the pulses in this dissertation, the difference in
X — Y may be decreased, suggesting a lower load voltage. This decrease is shown in Fig. 8.5 in

which the simulation was repeated, but with a pulse width equal to 200 ps.
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Fig. 8.5. Simulation ran with the same conditions as done in Fig. 8.2, except the pulse width was

decreased from 1 ns to 200 ps. The amplitude of the pulse is decreased across the load since the
pulse width is comparable to the charging time constant of the load, t=R-C = 400 ps.

Although the ampliitude of the incoming pulse is the same, the magnitude of X — Y is decreased,
in which case (8.4) cannot be used to accurately determine the resistance of the load, R.
However, the resistive value of the sample can be easily calculated based on the geometry of the
chamber and the measured conductivity of the sample, given in Table 7.1. Equation 8.5 can still
be used to calculate the capacitance of the load, which will be slightly less (few percent) than the

capacitance values in Table 7.1 due to the fringing effects, which is discussed in the next section.
VIILIII DETERMINING THE VOLTAGE ACROSS THE LOAD
VIILIILI Measurements

Although the resistance of the sample at room temperature (72.6 Q) exceeds the
impedance of the cable and wavegnide (50 2), the relatively large capacitance of the exposure

chamber, determined by the high permittivity of the medium, results in a reduction of the voltage
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across the load, V{t). The incoming signal, Vi,(t), that is seen by the load can be determined by

recording the signals for the case of the load being infinite, Vp..(t), and zero, Vinen(t). With

Vopen (8) = Vin (1) + u(2) - Vin(t) 8.7.a
and

Vsnort (£) = Via (¢) = u(1) - Vin (8 8.7.b

where 1 is the roundtrip time of the pulse from voltage probe to foad and back, and u(t) s a step

function at the time t. The voltage of the incoming pulse can then be calculated as:

l".:)pen (t) + Vchnrt (t)
2 g.8

Vin (8) =

The voltage measurements are shown in Fig. 8.6. The solid black trace in Fig. 8.6(a) is
the derived voltage trace (Vix(t)) determined from (8.8). It shows a voltage pulse with a FWHM
of 200 ps and amplitude of 15 kV, followed by 2 series of pulses with decreasing amplitude. The
gray represents an envelope of 100 pulses. From the spread in voltage, the deviation from an
average value is estimated to be approximately = 9%. The reflected voltage pulse, V,{t), can
then be determined by subtracting the calculated incoming pulse voltage, Vi(t), from the
measured voltage, Vi(t), with the load being the biological sample. The measured voltage 9.23
¢m in front of the load, recorded at sample temperatures of 25°C and 47°C, is shown in Fig.
8.6(b). The reflected pulse, which is superimposed to the incoming pulse, is delayed by 0.95 ns
with respect to the incoming pulse, in accordance with the roundtrip time of the pulse. By
shifting the reflected pulse by the measured delay time toward the incoming pulse and

superimposing the two pulses, the voltage across the load can be determined.
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Fig. 8.6. The solid black traces are averages of 100 shots, and the gray is an envelope of 100
shots. (a) Average of 100 pulses of the incoming pulse determined by adding the pulse shapes of
an open and shorted load, and dividing by two as done in (5.5). (b) The traces measured in front
of the load at 25°C and 47°C showing the effects of temperatures on the reflected portion of the
pulse.
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The voltage across the load is shown in Fig. 8.7 for two temperatures, 25°C and 47°C.
For 25°C, the amplitude of the voltage across the load is 7% lower than the amplitude of the pulse
measured with the capacitive voltage divider. With increasing temperature, the difference
between measured voltage and actual voltage across the load increases to 11% for 37°C. For
42°C and 47°C, the difference in amplitudes increased to 12% and 13%, respectively. The
decrease in amplitude with an increase in temperature is a result of the decrease in the overall
impedance of the load with increasing temperature. As the temperature of the sample increases,
the conductivity increases more strongly compared to the inverse of the permittivity, causing a
larger reduction in resistance which more than compensates for the increase in reactance.

During experiments, the voltage used to determine the voltage across the load will be the
voltage measured in front of the load, as shown in Fig. 8.6(b), which consists of both the
incoming pulse (Fig. 8.6(a)) and the reflected signal (Fig. 8.8). The values in Table 8.1 will be
used to determine the magnitude of the pulse across the load in relationship to the measured puise

in front of the load.
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Fig. 8.7. The voltage across the load determined by superimposing the reflected pulse to the
incoming pulse, in which the reflected pulse was shifted to the left by 0.95 ns. The gray trace
represents the voltage across the load for a sample temperature of 25°C, and the black trace is for

47°C.

Temperature [°C] Decrease in Amplitude {%]
25 7
37 11
42 12
47 13

Table 8.1. The amplitude of the voltage across the load will be determined by decreasing the
amplitude of the voltage measured with the voltage probe in front of the load by the percentage

given at its respected temperature.
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VIILIILI Voltage Simulations Using PSpice

The validity of the resistive and capacitive values of the load obtained through TDR
measurements (values taken from Table 7.1) was tested through modeling of the circuit with P-
Spice. The circuit was the same as the circuit used in Fig. 8.2, except the length of the
transmission line, T2, between the load and the voltage probe was 9.23 cm, equating to a delay of
0.95 ns. The measured incoming pulse in Fig. 8.6(a) was used as the incoming pulse, V1, in the
simulation. The resistive and capacitive values of the load, with respect to temperature, were
taken from Table 7.1. The simulated voltages were not in agreement with the measured voltage.
The magnitude of the simulated reflected voltage was 3 kV higher than the measured reflected
voltage, and the simulated voltage across the load was 3 kV lower than the experimentally
determined voltage across the load. However, as stated in Chapter VII, due to the fringing fields
of the gap, the actual capacitance of the load is 7% lower than those listed in Table 7.1.
Therefore, rather than using the TDR values, the capacitance was determined by measuring the

decay constant of the reflected pulse (Fig. 8.8), and solving for C using (8.5).

10 ' tc (b ' R=726a g, . RZ0
: ’ Z =
: Zo =500 R+Zo

1 = (tb —tc)-ns = 95-ps

T

C=—=32pF
Rz P

Voltage {kV]

Time [ns]

Fig. 8.8. Reflected pulse determined by separating the input voltage from the voltage measured
across the load. The capacitance, determined from the decay time of the pulse, was found to be
3.2 pF.
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At 25°C, the measured decay time is approximately 95 ps, and with a resistance of 72.6 Q
(Table 7.1), the calculated capacitance is 3.2 pF compared to 7 pF (calculated capacitance
ignoring fringing effects using permittivity value in Table 7.1). The same technique used for a
temperature of 47°C gave a capacitance of 2.6 pF, compared to calculated capacitance of 5.7 pF.
The ratio of the capacitance at 47°C and 25°C is equal to the ratio of the permittivity measured at
47°C and 25°C, which confirms the validity of the ratio of the measured permittivities in Table
7.1. The values of the capacitance, obtained from the reflected pulse, are 45% of calculated
capacitance. The decrease in capacitance due to the fringing effect (see Chapter VII) only
accounted for a 7%. If the decrease in capacitance was attributed to an error in the TDR analysis
of the medium, the permittivity of the medium at room temperature, to account for a 3.2 pF value,
would be approximately 35. Such an error is very unlikely since there are no references which
state the permittivity of growth medium of cells in this range at room temperature. The decrease
in capacitance may come from other effects such as ferroelectric losses, dielectric conduction,
and/or leakage current [100].

The comparison of the measured voltage traces to the simulated traces at 25°C and 47°C,
using the capacitance determined from the reflected signal, are shown in Fig. 8.9. The measured
and simulated traces are shown in black and gray, respectively. In Fig. 8.9(a) the voltage
measured in front of the load is compared to the simulated voltage in front of the load. As with
the measured traces, the simulation shows a decrease in the positive amplitude of the reflected
pulse with an increase in temperature. Fig. 8.9(b} compares the simulated voltage at the load
compared to the determined voltage at the load from the measured traces in the previous section.
The simulation is in agreement with the measured traces, which confirms the validity of the
measured resistive values of the load determined from TDR, and the capacitive values determined

from the reflected signal.
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Fig. 8.9. Comparison of the simulated voitage (gray trace) and the measured voltage (black trace)
in front of the load (a) and at the load (b) for a sample temperature of 25°C and 47°C.
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CHAPTER IX

TEMPERATURE MEASUREMENTS

The temperature of the sample could not be measured directly, but indirectly by
measuring the temperature of the electrode directly over the sample. It is imperative for these
experiments that the temperature of the sample is well recorded and remains constant during
pulsing conditions. Therefore it is important to know the increase in temperature of the sample
due to applied pulsed electric fields, which have been known to increase the temperature from a
few degrees to over 20 degrees in previous experiments [2, 45, 101]. The increase in temperature
due to pulsing, depending on the application, may be a desired or an undesired effect owing to the
fact the temperature alone has an effect on the cells. The effect that the duration and the change
in temperature above the physiological temperature (37°C) has on cells is known as
hyperthermia, and has been studied rigorously [102-106].

This chapter is divided into three sections; in the first section, the effects of pulsed
electric fields on the sample temperature are discussed. This section will also introduce the
concept of the leveling temperature which is the maximum attainable temperature as a result of
pulsed electric fields, which is independent on the number of pulses. The second section will
cover the temperature increase of the sample for the conditions used in this dissertation, as well as
the length of time needed for the sample temperature to equilibrium with the exposure chamber.
The third section describes the setup for externally controlling and measuring the temperature of

the sample.

EX.I TEMPERATURE INCREASE DUE TO PULSING
Appling pulsed electric fields to a liquid solution of biological cells will cause the sample

temperature to increase by dT with each pulse.

VZ
Zmc

dT =

9.1
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In (9.1), the voltage and duration of the pulsed are represented by V and 1, respectively. The
mass, specific heat, and impedance of the sample is represented by m, ¢, and Z, respectively. A
majority of the heat created from the pulses will be dissipated into the surface of the electrodes in
contact with the sample, while a negligible amount will be dissipated into the dielectric walls
surrounding the sample due to the large difference in the thermal conductivities. The duration of
the pulse defines the time it takes the temperature to increase by dT, while the thermal properties
of the sample determine the decay constant in which the temperature decreases. Since the
risetime of the pulse is less than 1 ns, and the thermal decay constant is on the order of seconds, it
is assumed the increase in temperature due to pulsing occurs instantly compared to the decay
time.

In order to separate the effects of temperature and pulsing on cells, the additive effect of
dT must be kept to a minimum for multiple pulses. The temperature response of a sample
exposed to one pulse, under the assumptions that 100% of the heat is conducted through the
electrodes, can be determined with Newton’s Law of Cooling. This assumption is valid since a
majority of the surface area of the sample is exposed to the electrode opposed to the insulator (36
mm® vs 27 mm?), and the thermal conductivity of stainless steel (16 W/m'K) is approximately
two orders of magnitude higher than the thermal conductivity of polyethylene (0.2 W/m-K).

Newton’s Law of Cooling is calculated as [107]}:
T(t) = Tyina + (dT + Ty = Tyingt) - €709/€™ 92

The mass, specific heat, and thermal conductance of the sample is represented by m, ¢, and o,
respectively. The thermal conductance is the thermal conductivity of the sample (value for water)
multiplied by the cross sectional area of the electrode, divided by half the gap distance (sampie is
being heated by both electrodes). The specific heat was chosen to be that of water. These values
make up a thermal decay constant (7, = c'm/c), which was calculated to be 4.75 s for the

exposure chamber used in this dissertation. The temperature of the exposure chamber, which is



90

externally controlled, is denoted T,, and the change in temperature as a result of one pulse is
denoted dT. The final temperature of the sample depends on the geometry and specific heat of

the material within the sample chamber and is approximated by

Cos To+Csampre (To+dT)

Tfina! = 9.3

Css+csamp1e

in which Cy and Cympe are the specific heats of the conducting material of the electrodes
(stainless steel = ss) and the sample, respectively. Due to the bulkiness of the exposure chamber
(Cs >> Caample), it can be assumed that the final temperature is equal to the initial temperature of
the chamber, T,, which simplifies (9.2). The increase in temperature as a result of a pulse is
assumed instantaneous while the drop in temperature depends on thermal decay constant, .

With multiple pulses, the increase in temperature of the sample is proportional to the
frequency of the applied pulses and the thermal decay time of the temperature of the sample
within the chamber. The temperature of the sample will increase as a result of the pulsed electric
fields until Joule heating and thermal losses (mainly due to heat conduction) balance out. This
equilibrium temperature is known as the leveling temperature, which is derived from Newton’s

law of cooling:

dar

Py 94

Tiever = Tp +

The number of pulses per second (pulse rate) is represented by £, and the thermal decay constant
is represented by 1. The concept of the leveling temperature is shown in Fig. 9.1, which shows

the temperature profile of a sample exposed to 20 pulses.
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Fig. 9.1. Concept of the leveling temperature (Ti.v) of 3 sample due to pulsed electric fields.
The temperature of the sample will be increased by dT for each pulse. As the temperature of the
sample is increased, the decay of the temperature increases until the loss of temperature between
pulses is equal to the change in temperature due to one pulse.

The gray dotted line is the leveling temperature. Once the temperature of the sample reaches the
leveling temperature, the temperature will not increase with continned pulsing. Therefore, the
leveling temperature is independent of the number of pulses, and hence, independent of the total
electrical energy density. Equation {9.4) can be used to determine the maximum repetition

frequency to keep the leveling temperature below a desired value.

IX.J1 THERMAL DECAY MEASUREMENT

In order to determine the leveling temperature for the experimental conditions in this
dissertation, the thermal decay constant was measured with an optical temperature sensor, with a
diameter of 30 pm (FISO: FOT-HERQ). This measurement was achieved by placing a sample,
heated to 50°C, into the chamber (T, = 23°C) and placing the top electrode which held the sensor
{as depicted in Fig. 9.2) over the sample to measure the temperature decay. The constant is the
same whether the temperature is increasing or decreasing. By the time the probe was placed into

the sample, the temperature had already dropped to 40°C. From the measured thermal decay, it
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was determined that 1 minute was sufficient time between the placement of the sample in the
chamber and the start of the pulsing to allow the temperature of the sample to reach the ambient

temperature.

100 1 T I T T

s€nsor

AT[C]

Time [s]

Fig. 9.2. The measured temperature decay of the sample chamber (black) compared to the
calculated temperature decay (gray).

The initial temperature decay has a thermal constant of 3 s, while the thermal decay time,
constant after 2 seconds, is equal to 4.85 seconds, which is in reasonable agreement with the
calculated value, 4.75 seconds. The initial fast decay, prior to 2 seconds, is determined by the
initial rapid decay of the temperature at the electrodes, which causes the build-up of a temperature
gradient from the center of the sample to the electrodes, as shown in Fig. 9.3. As the temperature
at the edge of the electrode facing the sample quickly decreases, the temperature gradient
decreases within the electrode and increases within the sample. The sample has a lower thermal

conductance, which accounts for a slower decay. Newton’s Law of Cooling does not take into
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account the thermal properties of the electrodes in that it assumes the electrodes are a perfect heat
sink. The conditions for Newton’s Law of cooling are observed in Fig. 9.2 after 2 seconds in
which the temperature decay within the sample is mainly a function of the temperature gradient

within the sample, as illustrated in Fig. 9.3 fort>2s.

40°C

Temperature

-

(=]
T —\.__""—“-‘*_—_.———"?'—'\—T':r_.“_'—)

Electrode Sample Electrode

Fig. 9.3. At t = 0, the temperature of the sample is at T}, and the témperature of the electrodes is
at T,, which creates a large temperature gradient at the electrode-sample interface. Past 2
seconds, the temperature gradient in the electrodes as decreased, leaving a larger gradient in the
sample.

The thermal decay time constant, 1, for pulses with repetition rates exceeding f= 0.5 pps
(1/2s), is determined by the initial, rapid decay in temperature. With a pulse repetition rate of
10 pps, the relevant time constant is 3 s. The energy of a single, 200 ps pulse of amplitude 30 kV
into a 72 Q2 load is equal to 2.5 mJ, which equates to a temperature increase of 0.018°C per pulse
(dT). The leveling temperature (T,..1) was calculated to be 23.55°C, with an initial temperature
(Ty) of 23°C, which equates to a temperature increase of 0.55°C. It is therefore safe to assume
that Joule heating under the conditions of our experiment can be neglected compared to heating
with the external source. The calculated temperature trace for a dT of 0.018°C, thermal constant

of 3 5, 900 pulses, and 10 pps is shown in Fig. 9.4.
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Fig. 9.4. Calculated temperature diagram for cells within the exposure chamber exposed to a
voltage of 30 kV, 200 ps, at a puise repetition rate of 10 Hz. The diagram suggests the
temperature increase due to pulsing will not be raised by more than 1°C.

The leveling temperature (gray dotted line) is reached after approximately 250 pulses. The insert
of Fig. 9.4 shows a higher temporal resolution of the temperature with respect to each pulse. The
actual experimental conditions (20 kV, 200 ps, 7 pps) would result in even less increase in

temperature with applied pulses.

IX.III TEMPERATURE CONTROL
In order to heat the sample externally, the exposure chamber was placed into an insulated

box (1 m x 0.5 m x 0.5 m) whose interior was heated with a heat gun, as depicted in Fig. 9.5.
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Fig. 9.5. Conceptual layout of the experimental setup. The sample chamber was placed in a box
made of plexilass, which was heated to the desired temperature with a heat gun and a fan. The
temperature of the sample was measured indirectly by placing the temperature probe in a hole of
the cap 1 mm above the sample.

Once the interior of the box reached the desired temperature, the power of the heat gun was
decreased in order to maintain the temperature. The sample was then placed within the chamber
and given 1 minute to reach the ambient temperature. Based on the temperature studies described
in the previous section, this time is more than sufficient for the sample to achieve temperature
equilibrium with its environment.

Due to the fact that there was no access through the ground electrode, the temperature of
the sample was not measured directly, but indirectly, by measuring the temperature of the

conductive cap placed over the sample with a fiber optic temperature sensor (Neoptix, T18S-

11854A).
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CHAPTER X

BIOLOGICAL PROTOCOLS AND PROCEDURES

X.I CELL CULTURE AND TRYPAN BLUE EXCLUSION ASSAY

The mouse hepatoma epithelial cell line (Hepa 1-6) was obtained from American Type
Culture Collection (ATCC, Manassas, VA) and cultured in complete medium containing
Dulbecco’s Modification of Eagle’s Medium (Cellgro, Fisher Scientific cat#10-013-CV)
supplemented with 10% FBS (Cellgro, Fisher Scientific cat#35-015-CV). The passage number of
the cell line used in the experiments did not exceed 20.

To prepare for the experiment, Hepa 1-6 cells at 80-90% confluency in tissue culture
flasks were washed with PBS (Cellgro, Fisher Scientific cat#21-040-CV) at room temperature
and treated with trypsin-EDTA (Cellgro, Fisher Scientific cat#25-053-C1) at 37°C for 5 minutes.
The trypsinized cell suspension was neutralized with a 4 times equivalent volume of complete
medium and centrifuged at 100 g for 10 minutes, followed by the removal of the supernatant.
The cells were resuspended in complete medium and counted by trypan blue exclusion assay on
the hemocytometer (Fisher Scientific cat#02-671-54) under the microscope with the final
concentration of 0.2% trypan blue. The use of a proper volume of resuspension medium ensures
that every 16-square area on the hemocytometer contains 50-100 cells (200-400 cells in 4 areas).
Cell viability, which equals the percentage of live cells among the total number of cells, was
calculated. Then the required number of cells was transferred to a new tube, centrifuged and
resuspended in an appropriate volume of complete medium to make a final concentration of 6
million cells per ml for downstream experiments.

The trypan blue exclusion assay was used as an indicator of plasma membrane integrity

and of cell viability after pulse exposure. The cell solution was mixed with trypan blue at a 1:1
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ratio and was left for 1 minute to allow enough time for dead or dying cells to absorb the dye.

The cells were hand counted and the cell count ranged between 300 -500 cells for each data point.
Xl EXPERIMENTAL PROTOCOL

Before experiments, a heat gun was used to raise the temperature of the chamber for
approximately 30 minutes to the desired temperature (37°C, 42°C or 47°C). Once the
temperature was reached, the power of the heat gun was reduced to maintain the temperature.
Thirty-five pL of the sample was placed into the chamber for 1 minute to allow the temperature
of the sample to equilibrate to the ambient temperature of the chamber. Pulses were applied at a
rate of 7 - 8 pps, and 30 uL. of the sample was removed from the chamber and placed into a vial
with 40 pL of the growth media (same medium used for culturing), thus decreasing the cell
concentration to 2.57-10° cells/ml. The control sample underwent the same procedure, but
without applying the pulsed electric fields (sham). The vials containing the samples were
covered with mylar tape, and placed in an incubator for 4 hours at 37°C. After 4 hours, the vials
were removed from the incubator, and the samples were examined by trypan blue uptake at a 1:1
ratio.

For the membrane permeability experiments, 17 uL of trypan blue were mixed with 18
il of sample and placed into the exposure chamber to undergo the experimental conditions.
After exposure, 30 pul of the mixed sample was placed in 40 pL of solution containing 20 pL of
trypan blue and 20 pL of culture medium. Cells were examined for trypan blue uptake

immediately afterwards (< 3 minutes).

X.III MEASUREMENT OF TEMPERATURE DEPENDENCE ON TRYPAN BLUE

UPTAKE

In order to determine the effect of temperature alone, without pulsing, experiments were

performed using a waterbath which could be heated quickly, i.e., in about one minute. One
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hundred fifteen microliters of Hepa 1-6 cells at a concentration of 6 million cells/ml were placed
at the bottom of 1.5 ml polypropylene centrifuge tubes, which were dipped in a water bath (GCA
Precision, model #Thelco 183) for 1, 2, 5, 10, 15, 30 and 105 minutes at 42°C, 47°C or 52°C.
The temperature of the water bath was measured using a standard mercury thermometer. The
temperature in the centrifuge tubes was monitored using an optical temperature probe. The time it
took for the temperature to reach 47°C was approximately 1 minute, longer than for the heating
method described above. After water bath incubation, the cell tubes were immediately
transferred to a 37°C tissue culture incubator (NUAIRE, model #NU-8700) and incubated or
“recovered” for 4 more hours. The cells were then assessed by the trypan blue exclusion assay as

described earlier, except the cells were diluted in 0.4% trypan blue solution at a 1:8 ratio.
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CHAPTER XI

EXPERIMENTAL RESULTS

XLIEFFECT OF TEMPERATURE WITHOUT PULSE APPLICATION

In order to determine the effect of temperature alone, i.e., without pulsing, experiments
were performed using a waterbath, The cells in the waterbath were heated within times similar to
those used in the heating system where a heat gun was used to increase the ambient temperature
(about 1 minute for the temperature of the sample to reach 47°C)). Three independent
experiments were conducted for temperatures of 42°C, 47°C and 52°C, and the results are shown

in Fig. 11.1.

100 |
LR
5 iy :
E ¢
2 6ot % Ld :
= T
8 4]
2 P
m 4 @ 42°C 7
é ® 47°C
= 20 O s52°C .
0 ] 1 o
0.1 1 10 100 1x10°
Time [min]

Fig. 11.1. Trypan blue exclusion versus exposure time of cells placed in a water bath of 42°C,
47°C and 52°C.
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Cells exposed to temperatures of 42°C experience negligible cell death up to 105 minutes. Cells
exposed to temperatures of 47°C begin to die rapidly after 15 minutes, which is almost three
times as long as the time to which the cells were exposed for the pulse experiments. Cells
exposed to 52°C show a 10% decrease in viability after 2 minutes. In the pulse experiments, the
longest period of time that the cells encountered the highest temperature used, 47°C, was less
than 10 minutes (one minute to heat the sample plus slightly more than 8 minutes to be exposed
to 4,500 pulses at a repetition rate of 9 pps at 52 kV/cm). Based on the results in Fig. 11.1, the
increase in temperature alone does not affect the viability of the cells for the temperatures and

durations used in the pulsing experiments.

XLH TRYPAN BLUE EXCLUSION FOUR HOURS AFTER EXPOSURE TO PEF

In order to determine the effects of temperature in conjunction with pulsing, experiments
were performed where 1,000 and 2,000 200-ps long pulses were applied to the sample at various
temperatures. The temperatures of the sample during pulsing and without pulsing (sham) were
25°C, 37°C, 42°C and 47°C. Two types of controls were taken: an unpulsed sample at room
temperature (25°C) and an unpulsed sample at each elevated temperature. Based on the results in
Fig. 11.1, there should be a negligible difference in the two types of controls.

Four hours after experimental conditions were applied, the trypan blue assay was
performed, the uptake of which is a marker for cell death [1]. The applied electric field was 90+7
kV/cm. Due to the unmatched impedance at the load, the electric field across the sample was
decreased to 847 kV/cm (room temperature). Due to the changes in the electrical properties of
the load with temperature, the actual electric field strength for higher temperatures was less than
&84 kV/cm (Chapter VIII). For 25°C the electric field value was 84 kV/em, 80 kV/em for 37°C,

79 kV/cm for 42°C and 78 kV/em for 47°C. The results are shown in Fig, 11.2.
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Fig. 11.2. Trypan blue exclusion 4 hours after experimental exposure to 1,000 and 2,000, 200 ps
long pulses, dependent on temperature. The measured electric field at room temperature was kept
constant at 84 kV/cm, but decreased to 78 kV/ecm at 47°C. The data is based on 3 to 5
experiments each (n=3-5).
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The sham is the combination of all the controls performed through the experiment. In
each case, no distinguishable difference was evident in the exclusion of trypan blue for cells
exposed to 25°C up to 47°C without applying pulsed electric fields, as expected from the studies
where the temperature effect without pulsing was explored (Fig. 11.1). For both 1,000 and 2,000
pulses, there is a negligible difference in the exclusion of trypan blue from the sham and cells
exposed to 25°C and 37°C during pulsing. In Fig. 13.2(a), the cell concentration which shows
trypan blue exclusion decreases to 87.7% and 82.8% when the temperature of the sample is
increased to 42°C and 47°C, respectively. The same trend is seen when 2,000 pulses are applied,

but to a higher degree (83% for 42°C and 75% for 47°C).

XLIII TRYPAN BLUE EXCLUSION IN TERMS OF ENERGY DENSITY

The shape of the voitage pulse (Chapter VIII} can be approximated by a Guassian
function, in which the standard deviation (¢) is approximately one half of the pulse width, and V,

is the amplitude of the pulse.
V(t) = e~ tw*/2¢? 11.1

The electrical energy density (W), with respect to the conductivity of the medium {op.q), number

of pulses (N), and the applied ¢lectric field (E(t)) is expressed as:

¢ o] oo

W = N-amedf E(t)?-dt = (Emed)z-N-amed[ e~ E-*/9* . gy 11.2
o 0

The amplitude of the applied electric field across the medium is represented by Eneq (Emea = Vo/d,
d = gap distance). The trypan blue results are presented in terms of the electrical energy density
(Fig. 11.3), in which both the electric field and the conductivity are dependent on the temperature.
A separate experiment was added in which the pulse number was 100 for an applied electric field

of 90 kV/cm at each temperature. The red lines represent same pulsing conditions (applied
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electric field and pulse number). The electrical energy density for 100, 1,000 and 2,000 pulses (at
room temperature) is 1.7 Jem’, 17 J/em® and 34 Jem', respectively. The electrical energy
density increases with temperature as a result of a larger increase in conductivity of the medium
than a decrease in the electric field strength across the sample. At 47°C, the energy density for a

pulse number of 100, 1,000 and 2,000 pulses was 2.2 J/em®, 22 J/em® and 44 J/em’, respectively.
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Fig. 11.3. Tryplan blue exclusion results 4 hours after pulsing conditions in terms of the energy
density of the medium. The red lines represent same experimental conditions (applied field and
number of pulses).

For temperatures at and below 37°C, no distinguishable difference in the amount of
trypan blue uptake is evident between the control and pulsed. Trypan blue uptake for cells
exposed to 42°C and 47°C occurs at and above energy densities of 20 J/cm®’. The ratio of the

energy density at 47°C to the energy density at 42°C is equal to 1.05 and is independent on the
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number of pulses. At an energy density of 22 J/em®, the trypan blue exclusion at 47°C is equal to
83%, which is equal to the trypan blue exclusion at 42°C at an energy density of 42 J/em®. The
ratio of the two energy densities is 1.9, which is much greater than the ratio of the energy density
occurring at 1,000 pulses. As the temperature is increased above 37°C, the slope of the energy
density also increases, resulting in a larger amount of cell death. The results indicate that the
increase in cell death due to an increase in temperature is not caused by the increase in the energy
density associated with a temperature increase. Such a decrease in the slope indicates the

threshold for electropermeabilization is decreased.

X1IV ELECTRIC FIELD THRESHOLD

The dependence of trypan blue uptake (cell death) on the electric field intensity has been
explored by varying the electric field strength across the sample between 52 kV/cm and 95
kV/cm, keeping the electrical energy density constant at 44 J/cm®. The study was performed for a
temperature of 47°C, where the strongest effect on the cells was observed. The results in terms of
trypan blue exclusion, with n=3, are shown in Fig. 11.4. The results were taken 4 hours after
exposure to the 200 ps pulses. At 52 kV/cm, there is no indication of trypan blue uptake, and/or
cell death, beyond that observed in the sham studies. The sham control (average + standard
deviation) is represented by the dashed gray lines. The concentration of cells which show trypan
blue uptake increases strongly above 70 kV/cm but seem to level off for electric field values
exceeding 80 kV/em. Obviously a minimum electric field need to be applied to cause

considerable membrane permeabilization for the given electrical energy density.
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Fig. 11.4. Trypan blue exclusion 4 hours after experimental exposure at 47°C. The electrical
energy density, W, was kept constant by decreasing the pulse number for an increase in electric
field strength. The dashed lines show the range of the sham results.

XLV CELL DEATH: IMMEDIATE MEMBRANE PERMEABILIZATION OR
APOPTOSIS

In order to determine whether or not the cells were permeabilized by the electric fields or
if the cell death is a result of a defayed biological process {apoptosis), trypan blue was added to
the sample prior to pulsing in a separate set of experiments. One minute after exposure, the cells

were examined for membrane integrity for the following conditions:

{a) 47°C, 78 kV/cm, N = 2000, 1000, 100
(b) 47°C, 61 kV/em, N = 3306.

{c) 25°C, 84 kV/cm, N = 2000
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Condition (b) is such that the electrical energy density (44 J/em®) is equivalent to condition (a) for

an N of 2,000. The results are compared to the 4 hour results in Table 11.1.

Temperature = 47°C
Time Point Sham 78 kV/em 61 kV/cm
N = 1,000 N = 2,000 N =3306
Ohr (Avg.) 99.13% 84.4% 75.8% 97.3%
0 hr (Std.) 0.65% 24% 4% 1.7%
4hr{Avg.) 96.2% 82.8% 74.8% 94%
4hr (Std) 1.6% 2.9% 5.9% 0.58%

Table 11.1. Trypan blue exclusion of cells immediately after pulsing and 4 hours later (Avg.;
average value, Std: standard deviation). There was no difference between the sham at 47°C and
results of measurements at 25°C (not shown). The measurements at 61 kV/cm and at 84 kV/cm
were conducted at the same electrical energy density.

A slight decrease in trypan blue exclusion exists in cell death for the sham, from 99%
when examined immediately after pulsing to approximately 96% when measured 4 hours after
pulsing. This slight decrease is a result of the cells being incubated for 4 hours in microfuge
tubes. However, this decrease is negligible when compared to the cell death caused by the pulsed
electric fields at 78 kV/cm. For exposure of the cells to these electric fields, it is obvious that cell
death occurs immediately after the experimental procedure, likely due to membrane
permeabilization. Apoptosis can be excluded as the cause for cell death under these conditions.

No statistical difference is evident in the amount of trypan blue exclusion for the sham
and for the case that the electric field is reduced to 61 kV/cm (condition b), aithough the energy
density has not been reduced. This lack of cell death indicates that the electric field needs to
exceed a threshold value for the membrane permeabilization, as shown in Fig. 11.4. A negligible
amount of trypan blue uptake is evident condition (¢) in comparison to the control (not shown in

the table).
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CHAPTER XII

DISCUSSION OF RESULTS

The effect of cell death is clearly dependent on the temperature at which the cells are
pulsed, as shown in Fig, 11.2. Cell death also depends on whether or not the electric field reaches
a critical value as shown in Fig. 11.4. The critical value depends on the voltage across the
membrane, in that a critical voltage is needed for the onset of electropermeabilization or
electroporation. The fact that the uptake of trypan blue immediately follows pulsing indicates
that membrane permeabilization is caused by the electric field acting directly on the plasma
membrane, rather than on secondary effects such as those caused by apoptosis [140].

This chapter will discuss the possible reasons of why the temperature causes the cells to
be more susceptible to pulsed electric fields, as well as eliminating any explanations which may
seem plausible. In the first section, the induced membrane voltage and its dependence on the
temperature is discussed. In the second section, the results are compared in terms of the amount
of charge in the membrane during pulsing (scaling parameter) and the dose effect on the
membrane opposed to the medium. The last section discusses the effects of membrane viscosity

and compares molecular dynamic simulations with the experimental results.

XILI MEMBRANE VOLTAGE
The voltage induced across the cell membrane as a result of an external electric field, E,,

was derived in Chapter III and is given in (12.1).

dm
2" &y

Vm(T) = Emed . 4 (T " Tmed +2- emed) 12.1

The temperature dependent electric field across the sample is denoted E.q. The relative
permittivity of the membrane and medium are represented by €, and &ne, respectively. The

thickness of the membrane is represented by d,, and was chosen to be 7 nm to be consistent with
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the TDR analysis {Appendix B). The conductivity of the medium is represented by &,,eq and the
pulse width, 200 ps, is represented by t. The permittivity and conductivity values were taken
from Table 3.1. The values of the induced membrane voltage, with an applied electric field of 90

kV/cm, for temperatures at 25°C, 37°C, 42°C, and 47°C are shown in Table 12.1.

E, [kV/cm] Ened [kV/icm] Temperature [C] Vi [mV]
90 83 25 400
80 37 343
79 42 298
78 47 265

Table 12.1. Relationship between the voltage across the membrane and temperature of the
medium. The applied electric field is 90 kV/cm. The electric field across the sample, Eneq, 18
reduced as a result of impedance of the sample, which is temperature dependent.

The voltage across the membrane decreases with an increase in temperature, which is a direct
effect of the decrease in the electric field across the medium as well as a decrease in the
permittivity of the medium and an increase in the membrane permittivity. The calculated
membrane voltages in Table 12.1 indicate that a temperature increase causes a decrease in the
threshold voltage needed to induce electroporation and/or electropermeabilization. It is not
possible for the threshold voltage to remain constant, yet have electropermeabilization with an
induced voltage of 265 mV, but not at 400 mV.,

The membrane voltage in Table 12.1 does not include the resting potential, which will
add to the membrane voltage on the side of the cell facing the anode and subtract from the
membrane voltage on the side of the cell facing the cathode. The resting potential is
approximately 70 mV to 80 mV [141, 142]. As stated in References [11-13], the resting potential
increases linearly with the temperature. However, this linearity is based on the temperature in

Kelvin, in which case, there would only be a 5 mV increase in the resting potential from 25°C to
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47°C assuming a 70 mV resting potential at 25°C. Based on the assumption that the resting
potential increases linearly with temperature, it is concluded that the increase in the resting
potential superimposed with the induced membrane voltage does not make up for the decrease in
the induced membrane voltage.

Table 12.2 shows the induced membrane voltages for the experiments shown in Fig. 11.4

(membrane permeabilization threshold at an energy density of 44 J/cm’ at a temperature of 47°C).

E, [kV/cm] Eped [KV/em] Temperature [C] Vin [mV]
110 95 47 324
90 78 47 265
80 69 47 235
70 61 47 206
60 52 47 177

Table 12.2. Membrane voltage for threshold electric field experiments (Fig. 11.4).

The resuits from Fig. 11.4 indicate that at 47°C and at an energy density of 44 J/cm®, the
threshold electric field, in order to achieve trypan blue uptake, is approximately 70 kV/cm, which
equates to a membrane voltage of 235 mV. With the same energy density at 25°C, the membrane
voltage is almost double (400 mV, Table 12.1), yet there is no distinguishable difference in the
amount of trypan blue uptake from the control.

The threshold voltage for electroporation across a mammalian cell varies but is generally
assumed tobe 1 V [8, 9, 14]. However, measurements of the membrane voltage when 60 ns long
pulses were applied to Jurkat cells showed that the position of the cell with respect to the
direction of the electric field played a role in determining the threshold valie for
electropermeabilization or electroporation [144]. Voltages of up to 1.6 V could be reached at the

anodic pole on a time scale of less than the temporal resolution of the measurements (5 ns) before
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the membrane voltage leveled off. The membrane voltage at the cathodic pole increased slower,
over a time of 15 ns to only 0.6 V, a value which indicates the threshold for
electropermeabilization at this pole.

The calculated membrane voltages in Table 12.1 and 12.2 are even less than the required
voltage for cathodic pole. In addition, since the pulses in this study are applied for less than 200
ps, a much shorter duration than in the experiments described in reference [144), even if the
membrane voltages would reach and exceed 0.6 V, it would be unlikely that pore formation can
be achieved within this time frame. As reported from molecular dynamics simulations [6], it takes
a few hundred picoseconds for the electric fields to re-orient the polar lipid head groups and the
water to intrude into the membrane molecular structure. This re-orienting of the polar heads is an
important initiating step in the formation of localized water nanowires, followed by pore
development. Only the effect of muitiple pulses, according to the resuits of the 200 ps pulses,

enables the permeabilization of the plasma membrane and consequently the influx of trypan blue.

XI11.lHE MEMBRANE CHARGES VERSUS MEMBRANE DOSE EFFECT
XILILI Membrane Charges In Relation to the Temperature

In the previous chapter, it was shown that the increase in cell death due to an increase in
temperature was not a dose effect (Fig. 11.3). Rather, it was shown that the energy dose needed
to induce cell death decreased with an increase in temperature. The reduction in the energy
density from the 800 ps experiments in [1] to the experiments performed in this dissertation is all
the more surprising since a scaling law for membrane permeabilization [4] predicts that, for
shorter pulses, a higher energy density is required to obtain identical results. This scaling law,
which provides a scaling or similarity parameter, S, is based on the assumption that the intensity
of an observed bioelectric effect depends on the amount of electrical charges passing through the
membrane when a pulse is applied [4]. The effect of pulse number, N, is determined by a

statistical (thermal) motion of the cells between pulses:
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S = $(Emeq - T+ VN) 12.2

where E,..q is the electric field intensity across the sample and 1 the pulse duration. Bursts of
pulses with the product of these three quantities being the same should produce 1dentical resuits.
The results of the 200 ps experiments in this dissertation, in terms of the scaling law, are
shown in Fig. 12.1. The applied electric field for each data point is 90 kV/em. The only variation
in the pulsing conditions for the data in Fig. 12.1 was the number of pulses. The red lines connect
the data points of the same pulse number (left: 100 pulses; middle: 1000 pulses; right: 2000
puises). Due to the decrease in the electric field across the sample with increasing temperature,
the scaling parameter also decreases (for constant pulsing conditions) with an increase in

temperature; however, this decrease is negligible.

100

90

Trypan Blue Exclusion [%o]

e 25°C
i TN 37°C
m42°C
 47°C
70+ == Control Range -

15 28 41 54 67 80

Scaling Parameter [mV *s/m]

Fig. 12.1. Trypan blue exclusion 4 hours after experimental conditions (Eappiiea = 90 kV/cm, 200
ps pulse width, N = 100, 1000, 2000) in terms of the scaling parameter. The red line represents
same pulsing conditions (applied electric field and number of pulses). The blue represents a
different scaling parameter for 42°C and 47°C.
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For temperatures at and above 42°C, the scaling parameter, needed to induce cell death,
decreases with an increase in temperature. The blue highlights indicate the effect of membrane
charging is different for exposure temperatures of 42°C and 47°C. The increase in cell death due
to an increase in temperature for the same pulsing conditions does not scale with the amount of
charge passing through the membrane. Rather, the amount of charge passing through the
membrane needed to induce cell death from puised electric fields decreases with increasing
temperature for temperatures at and above 42°C.

According to this scaling law for temperatures at and below 37°C, pulses shorter by about
a factor of 4, as is the case for 800 and 200 ps pulses, would require a four times higher electric
field, or a four times higher energy density (which scales with E’t). In these results, the opposite
is observed: the energy density, required for a given uptake of trypan blue decreases by a factor
45 when the pulse duration is reduced from 800 ps to 200 ps. This counterintuitive effect could
be due in part to the differences in cells used in the two studies, but more likely it is caused by the

differences in temperature in the two experiments.

XILILII Membrane Dose Effect In Relation to the Temperature

Up until now, the energy density measured the amount of energy delivered to the sample,
which contained approximately 98% medium and 2% cells. Schoenbach et al. have shown the
cffects, expressed in terms of the energy density, do not scale with pulse duration [1], and it has
been shown in Chapter XI that the effects in terms of the energy density does not scale with
temperature. Rather than expressing the results in terms of the energy density of the sample, this
section aims to express the results in terms of the energy density of the cell membrane.

The conductivity of the membrane increases by more than a factor of 4 with a
temperature increase from 25°C to 47°C whereas the conductivity of the medium increased by

less than 2. Since the energy density is dependent on the conductivity, the change in the energy
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density of the membrane with increasing temperature will be more pronounced than the change in
the energy density of the medium for the same increase in temperature.

The results of the experiments conducted at an applied electric field of 90 kV/cm (pulse
numbers of 100, 1000, and 2000), expressed in terms of the membrane energy density, are shown
in Fig. 12.2. The red lines connect the data points of the same pulse number. A slight decrease in
the membrane energy density from 37°C to 42°C exists, followed by much stronger increase in
the energy density from 42°C to 47°C. This trend was not evident for the energy density of the

medium.
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Fig. 12.2. Energy density of the membrane with respect to the temperature for cells exposed to an
applied electric field of 90 kV/cm and pulse numbers of 100 (left) 1000 (middle) and 2000
(right). The red line connects the data points for cells exposed to the same pulse number.
Temperatures at and below 37°C create a negligible effect on the cells. For temperatures at and
above 42°C, a linear relation between the trypan blue exclusion and the energy density of the
membrane exists, as shown by the blue highlight.
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The energy density of the membrane ranges from 1.4 mJ/em’ to 47 ml/em’, which is
approximately 3 orders of magnitude less than the energy density of the medium. For
temperatures at and below 37°C, a negligible difference exists in the amount of trypan blue
uptake between the control and pulsed cells. For temperatures at 42°C and above, a linear trend
is evident in the amount of trypan blue uptake and the energy density of the membrane, which is
defined by the range highlighted in blue. The results in Fig. 12.2 indicate that for temperatures at
and above 42°C, the cell death can be attributed to a dose effect in terms of the energy delivered
to the cell membrane, rather than the entire sample.

Although the dose effect in terms of the membrane may be able to predict the effects of
pulsing for temperatures at and above 42°C, it still cannot account for the difference in effect for
temperatures above and below 37°C. It is likely that an increase in temperature above the
physiological temperature of the cell (37°C) decreases the threshold membrane energy density
needed to induce cell death. Rather than a continuous decrease in the threshold with an increase
in temperature (as observed with the scaling parameter and energy density of the medium), the
increase in temperature directly increases the energy density of the membrane, which effectively
increases the cell death.

Due to the short duration of the pulsed electric fields, the observed effects on the outer
membrane may have also occurred on intracellular membranes as well, since the structure and
composition of the outer membrane and intracellular membranes are similar. Irreversible damage
to intracellular membranes is not distinguishable with trypan blue, which is strictly used to
measure the permeabilization of the outer membrane. Therefore, any effects to intracellular
membranes would not have been detected with trypan blue. It is possible that irreversible damage
to intracellular membranes may have occurred, which would have lead to further cell death
caused by apoptosis in a time frame longer than 4 hours. Such effects are most likely to occur on
membranes surrounding the mitochondria opposed to the nucleus, since the nuclear membrane is

already porous in nature,
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XILHI MEMBRANE VISCOSITY

Another aspect that must be taken into consideration for membrane permeabilization with
ultrashort pulses is the temperature effect on the membrane viscosity or fluidity {Chapter XII)
[62, 69] and pore formation enthalpy [145]. The formation of a pore in a lipid bilayer plasma
membrane in depicted in Fig. 12.2. The dipole heads of the lipids are in random thermal motion
when no electric field is applied. The positive charge is toward the aqueous solution, leaving the
negative charge toward the interior of the membrane. With the application of an external electric
field, the dipoles facing the cathode will align with the electric field, and the bonds may lengthen
somewhat [6, 137]. However, the force on the lipids facing the anode will cause the polar heads
to swing around as shown in Fig. 12.3 for time t;. This motion will cause the positive side of the
polar heads to repel one another leaving space for the aqueous solution to enter the membrane as

depicted with the dark blue arrows.
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Fig. 12.3. Evolution of a pore formation due to an external electric field. At t;, the heads of the
lipids are in random motion. At t;, an external electric field is applied and the lipid heads facing
the cathode will align with the electric field. The heads of the lipids facing the anode will rotate
to try and align, causing repulsion between them. This repulsion may cause an opening to allow
the aqueous solution through the membrane as depicted at time t, [48].
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Thus water intrusion into the lipid structure can commence and would be the start of a poration
process. Eventually, a water-wire (or bridge) through the lipid bilayer would form. The intrusion
of water molecules would simultaneously push the hydrophobic leaflets causing them to rotate as
depicted in Fig. 12.3 at time t,. These water intrusions are expected to initiate at random sites
based on instantancous local potentials and zig-zag along into the lipid bilayer, much like
“lightening streamers”. These streamers can lead to the formation of a pore. This process
depends on the viscosity and thermal motion of the membrane, because a less viscous membrane
requires less energy to create a pore.

This observation is evident in the molecular dynamic simulations of a lipid layer with
constant electric field strength of 0.5 V/nm at 25°C and 47°C (Appendix C). A similar trend
toward a synergism involving both thermal and electrically driven bio-phenomena has recently
been reported [7). The simulation results of Fig. 12.4 are in agreement with the experimental
trends in that no pore formation occurs at 25°C. However, at 47°C, a clear indication of pore
formation at 0.75 ns exists which increases at 1 ns. The results underscore the role of temperature
in facilitating and accelerating the poration process. The MD results, by showing snapshots of
membrane poration at two specific temperatures, point to the possibility that relatively modest
variations in temperature can result in different degrees of electrically stimulated bio-effects. The
effects of the decrease in viscosity with temperature which, in my opinion, is the main cause of
the lowering of the threshold for electroporation or electropermeabilization, lead to a considerable
reduction of electrical energy density required to achieve cell death, compared to pulsed electric
field effects at {or less than) physiological temperature. This is obvious when the required energy
densities for trypan blue uptake after 800 ps pulse exposure, in experiments where the
temperature was kept below the physiological temperature, are compared with those used in this

study.
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T=47°C: 0.5nssnapshot T=47°C: 0.75nssnapshot T=47°C: 1 ns snapshot

Fig. 12.4. Molecular dynamic simulations of a lipid bilayer exposed to a constant electric field
strength of 0.5 V/nm for 1 ns at 25°C and 47°C [48).

Although different cell types were used - melanoma cells in the 800 ps pulse studies [ ] compared
to Hepa 1-6 cells in this study, the strong reduction in energy density is obvious. In the 800 ps
studies at temperatures below 37°C the medium energy density required to achieve a 25%
reduction in viability was 2 kJ/em’. It was reduced to 44 J/cm® for the 200 ps pulses at elevated
temperatures of 47°C, a reduction by a factor of 45. Although it is known that Hepa cells require
less energy to induce cell death compared to melanoma cells, by increasing the temperature above
the physiological value, the reduction in energy density, or the gain in efficiency, likely exceeds

one order of magnitude.
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CHAPTER XII1
SUMMARY

The use of subnanosecond pulsed electric fields may lead to non-invasive delivery
systems for introducing an electric field within biological tissue. Two applications of such an
approach is medical imaging and cancer treatment. In the case of cancer treatment, the
subnanosecond pulsed electric fields would be required to induce cell death. Previous
experiments suggests that energy densities on the order of 10 kJ/cm’® are needed to induce cell
death, in vitro, for 200 ps pulses for electric fields strengths less than 100 kV/cm, which equates
to a pulse number in the millions. The purpose of this dissertation was to show the energy
density required for cell death can be reduced by at least 3 orders of magnitude by increasing the
temperature of the sample above physiological temperature (37°C), which consequently decreases
the number of pulses to the thousands.

The temperature experiments were conducted by controlling the temperature of the
biological sample externally during the application of the pulsed electric fields, while minimizing
temperature effects due to ohmic heating. It was shown by measuring the thermal decay constant
of the chamber and calculating the leveling temperature that the temperature increase due to
pulsing did not reach values above 1°C. It was also shown that the electric field across the
sample decreased with an increase in temperature due to the temperature dependence of the
permittivity and conductivity of the sample solution. An applied electric field of 90 kV/cm
resulted in an electric field strength of 83 kV/cm across the sample at room temperature, and
decreased to 78 kV/cm for a temperature at 47°C.

Trypan blue uptake by liver cancer cells, indicating cell death, was found to increase
strongly with increasing temperature above the physiological temperature when pulses of 200 ps
duration were applied to cells in vitro. With 2,000 pulses at 78 kV/cm and a temperature of the

biological sample of 47°C, approximately 25% of the cells took up trypan blue. Experiments at
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this elevated temperature without pulsing revealed that the cells can survive at these temperatures
for 10 minutes before any fatalities were experienced. Since the time required for fatality is long
compared to the time the cells were kept at this temperature under pulsed conditions (< 6
minutes}), cell death due solely to elevated temperatures can be excluded. No indication of cell
death was evident when the cells were pulsed at 83 kV/cm with the same number of pulses at
25°C. The observed cell death at the elevated temperature can therefore not be attributed to
temperature alone, but must be a synergistic effect of temperature and pulsed electric fields.

At an energy density of 44 J/cm’, the peak electric field intensity of the subnanosecond
pulses needed to exceed 70 kV/cm to enable trypan blue uptake of the cells. Increasing the
electric fields beyond this value caused a steep increase in the numbers of cells dying, but seems
to level off at electric fields exceeding 80 kV/em. The energy density in this study was kept
below 60 J/em®. This is more than an order of magnitude less than recorded for experiments on
B16 cells with 800 ps pulses. The results indicated that a continuous increase in temperature
above 37°C caused a continuous decrease in the threshold needed to induce cell death for both the
energy density and the scaling parameter. As a result, the resulting cell death with an increase in
temperature is neither a dose effect nor a membrane charging effect.

A new approach was introduced in this dissertation in which cell death was presented in
terms of the energy density of the membrane, rather than the medium. The energy density of the
membrane is three orders of magnitude less than the energy density of the medium, but increases
by a factor of 1.3 for a temperature increase from 42°C to 47°C, whereas the increase in the
energy density of the medium is only 1.05. This large increase indicates a linear trend between
the cell death and the energy density of the membrane, independent on temperature for
temperatures at and above 42°C. In other words, the increase in temperature caused an increase
in the energy density of the membrane, which resulted in more cell death. However, this effect is

only evident of the temperature is above 37°C, suggesting that the threshold energy across the
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membrane needed to induce permeabilization falls below the induced membrane energy due to an
applied electric field when the temperature reaches a value between 37°C and 42°C.

The cause of cell death was due to instant (relative to the time it took to measure the
effect after pulsing) membrane permeabilization, rather than apoptosis, demonstrated through
experiments where trypan blue was added to the suspension before pulsing. The increased
sensitivity of cells to pulsed electric fields with temperature is assumed to be due to reduced
viscosity of the plasma membrane at elevated temperatures. Water intrusions into the membrane
are expected to be initiated at random sites based on the instantaneous local potentials, leading to
pore formation. This process depends on the viscosity and thermal motion of the membrane, in
that a less viscous membrane requires less energy to create a pore at higher temperatures.
Molecular dynamics simulations have demonstrated the increased probability of pore formation at
elevated temperatures.

The effects studied in this dissertation were strictly on the outer membrane of the cell:
membrane permeabilization and cell death due to membrane permeabilization. However, due to
the short duration of the pulsed electric fields, the effects on the pulses on the intracellular
membranes cannot be excluded. The increase in susceptibility of the cell to pulsed electric fields
due to an increase in temperature not only shows promising results for subnanosecond pulses, but
may have similar effects on any pulses which affect the outer membrane of a cell. A non lethal
application is using pulsed electric fields to deliver genes or drugs into the cell such that an
increase in temperature may reduce the energy needed for gene/drug delivery. In the case of non-
mvasive cancer treatment, narrowband sources are readily available which can be used to locally
heat the tissue to non-lethal temperatures using the same antenna setup in Fig. 1.2, Before the
temperature of the exposed sample decays to a value below a specified temperature (above 37°C),
a subnanosecond pulse generator based on semicorductor switches (Chapter V) can be used to

deliver thousands of pulses to the tissue in less than a second due to the high repetition rate (10 ‘s

kHz).
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APPENDIX A

NANO AND SUBNANOSECOND SPARK GAP SWITCHES

The switch is of critical importance in any pulsed power device, in that energy needs to
be transferred from the pulse forming network to the load with high efficiency and
reproducibility. The spark gap switch possesses many characteristics that are well suited for high
pulsed power applications. These characteristics include a wide voltage range and large current
handling capabilities (into the MV and MA range), wide range of energy transferring capabilities
{mJ — MJ), simple design/construction, closing times reaching into the picosecond range, and ease
of adjustment of the parameters of the switch (gas pressure, gap spacing, trigger timing, etc.).
The disadvantages are the limited number of pulses (10° - 10°) due to erosion of the electrodes,
low repetition rate due to the slow recovery of the ionized gas, and high jitter (100’s ns)
associated with spontaneous breakdowns. Jitter is defined in the variation of time (runtime)
between the triggering of the switch and the breakdown of the switch. This appendix is an
overview of the criteria needed to design spark gap switches capable of creating breakdowns in

the subnanosecond regime.

A1 INITIATION OF SUBNANOSECOND BREAKDOWN

The initiation of breakdown (gas transformation from insulating to conducting stage) for
a spark gap begins with an applied voltage across the gap so that the electric field across the gap
reaches a threshold needed to induce ionization of the gas within the gap. The ionization causes
an electron avalanche to begin at the cathode, which is followed by the formation of a streamer
towards the anode which eventually leads to breakdown. From Paschen’s Law, the DC

breakdown voltage in air can be approximated by
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in which A is equal to 15.2 (cm-torr)” and B is equal to 370 V-(cm-torr)* {96]). The condition of
the gap prior to breakdown can be characterized by the ratio of the electric field across the gap to
the density of the gas within the gap, E/n. The E/n ratio is known as the Townsend coefficient,
and is given in units of Td where 1 Td = 10" Vem®. For air, the DC breakdown voltage is
approximately 31 kV/cm, which equates to a Townsend coefficient of 13 Td.

The time lag, which is the time it takes for a gap to break down once it reaches the DC
breakdown voltage, is inversely proportional to the risetime of the pulse. A faster risetime across
the gap will allow for a higher voltage across the gap before breakdown is initiated. This
overvoltage allows the electric field between the electrodes of the switch to reach to a high
enough E/n value to create the conditions for runaway electrons, which are necessary for
subnanosecond breakdown times. Runaway electrons are a small percentage of electrons which
acquire enough energy (> 3 x’s Ionization energy) to surpass the ionization energy of its
respective gas to move past the head of the avalanche, which eventually lead to the creation of
new electron avalanches {108, 109].

Streamers are mainly created by photoionization in DC breakdown conditions, but can
additionally be created by runaway electrons at breakdown strengths above DC conditions.
Through numerical simulations based on electron kinetics, Kunhardt et al. determined the
minimum voltage needed to create conditions for runaway electrons is at least 20% of the DC
breakdown voltage [108, 110], which would equate to a Townsend coefficient of 15 Td for air.
To create such conditions, the voltage across the switch must increase at a high enough rate so
that the delay time between the time the voltage reaches the DC breakdown voltage and the time
the switch breaks down is long enough to allow the voltage at which the switch breaks down to
reach values at least 20% higher than the DC breakdown voltage (108]. Electrons existing in the
injection region (Fig. A.1) acquire the energy needed to surpass the maximum cross section value

for ionization. The injection region is the region with the avalanche in which the electric field,
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due to space charges, is increasing. This energy is greater than 3 € to 5 ¢ where ¢; is the

ionization energy {108, 109].

|Emd

Injection
Region

Ed

Effective Retarding Force

(b) Eiectron Energy

Fig. A.l. (a) Electric field distribution in an electron avalanche, The external electric field across
the gap is represented by the dashed line, E,. The space charge between the positive ions in the
avalanche and the electrons at the head of the avalanche create a high electric field within the
head of the avalanche, which decreases exponentially at the head. The injection region is the
space in which the electric field increases up to E,. Electrons in this region acquire enough
energy to surpass the ionization energy such that the electron passes ahead of the avalanche in
which the electric field decreases.

These electrons will move ahead of the head of the avalanche, in which, depending on their
energy, they may get trapped [108]. The trapped region exists where the electric field begins to
decrease from the maximum value achieved with the local space charge [108]. Trapping occurs

when the energy gained by the electrons is less than the energy lost due to collisions with other



140

particles (retarding forces). The retarding force increases with increasing gap pressure.
Therefore, the electric field must alsc increase to allow the electrons to gain sufficient energy to
overcome the retarding force. Trapped electrons begin a new avalanche in front of the existing
avalanche. The field in the center of the head is the strongest, which suggests most of the
runaway electrons will be centered in the avalanche causing newer avalanches to be created in the
center {108, 110]. In effect, this centering narrows the head of the avalanche and enhances the
field even more which creates more runaway electrons. The process then repeats itself and is
much faster than a normal avalanche formation.

A breakdown voltage of 20% greater than DC breakdown is still not sufficient for
subnanosecond breakdown conditions [108, 111]. Subnanosecond breakdown requires a
percentage of electrons to avoid becoming trapped for reasons which will be discussed shortly.
Kunhardt et al. determined that in order for a percentage of the runaway electrons to acquire
enough energy to avoid becoming trapped, the breakdown voltage needs to be greater than three
times the DC breakdown voltage [108]. A 300% increase in the DC breakdown voltage would
put the Townsend coefficient, for air, at 38 Td at a pressure of 1 atm. Un-trapped Electrons are
able to move even farther away from the main avalanche chain, until they lose enough energy to
start their own avalanches away from the main column, resulting in a multichannel and/or
diffused discharge {108, 112, 113].

An avalanche chain is known as a streamer. Photoionization is also taking place and
avalanches can form outside the center of the primary avalanche cone. In high enough electric
fields, photoionization of atoms can lead to new avalanches outside the primary streamer, and
these avalanches also undergo the runmaway electron process, which also contributes to the
diffused discharge [108]. A diffused and/or multichannel discharge has a faster decrease in
resistance of the channel than a single filamentary discharge. This acts as a channel with a radius
that grows larger at a faster rate than a normal streamer breakdown. As a result, the rise time in

the current is decreased, leading to a faster switch.
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In order to create runaway electrons, the ratio must be on the order of 40 Td or greater in
gases including air, nitrogen, helium, hydrogen and SF, [108-111, 114]. The ratio is proportional
to the risetime in that a higher ratio leads to a faster rise time (or breakdown time). A smaller gap
distance gives larger values of E/n which results in shorter risetime with an increase in amplitude.
As the gap distance of the electrode decreases further (< 0.5 mm), the time lag decreases, which
decreases the breakdown voltage across the gap, thus decreasing E/n.  Therefore, there is an

optimum gap distance of a spark gap switch depending on the voltage across the switch.

A2 BREAKDOWN

The formation of the streamer is not the breakdown of a spark gap switch. Whether the
streamer is formed from photoionization or runaway elecirons, the breakdown mechanism is the
same in each case. The streamer is made of free electrons and ions, in which the electrons move
towards the head of the avalanche while the positive ions remain behind due to their low
mobilities. When the head of the streamer reaches the anode, it creates a conductive channel
having the same potential as the anode [115]. This creates a high electric field strength between
the tail of the streamer and the cathode. As the streamer grows toward the cathode, the electric
field between the tip of the streamer and the cathode increases. Eventually, the electric field is
strong enough to pull electrons off the cathode, at which point, the streamer makes contact with
the cathode, and the potential of the gap drops at a speed related to the change of the inductance
and resistance of the plasma channel [116].

Once the streamer is connected to both electrodes, a highly resistive conduction channel,
also known as a filament, (k§2 range) with radius on the order of 107 mm exists between the
cathode and anode. The increase of electrons from the cathode cause the channel to heat up,
which in turn expands the channel, decreasing the resistance. This change in resistance is the

defined breakdown of the switch in which the current rises, and the voltage across the switch
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drops. The change in the radius of the plasma causes a pressure gradient within the gas, which
leads to a popping noise associated with all electrical breakdowns {113]. The change in the radius
was experimentally determined by Martin et al., for five different gases: Hydrogen, Helium, Air,

Nitrogen, and SF, [113].

3
:(:)Zz[ 4 J AP a
mopso + 1Oy A2

I is the current, p is the density of gas, and Zeta is a given constant (4.5 for hydrogen), and r(0) is
the radius of the channel before expansion [113]. At time 0, the radius of the channel can be

approximated by the avalanche head size as given in (A.3) [117].

3.:q 1 ad 4.3
= ()3 ¢ @3 .
7a (4-7r-s-Eo) ¢

The number of ions per cm created by electrons is denoted a. By increasing the pressure
(effectively increasing n), breakdown channels will have smaller radii, resulting in a more
filamentary type of discharge. However, if the switch is overvoltaged, the electric field, E, will
also increase, resulting in a constant or increased E/n value. Such an increase may lead to
multichannel discharges, or diffused discharges, For a multichannel discharge, the radius is
estimated by (A.2) multiplied by the number of channels {112, 113]. The number of channels, N,
can be approximated by determining the resistance of a single channel and decreasing the
resistance by N until the resistance is less than [ Q.

Assuming that the breakdown occurs in a single filament, the temporal development of
the resistance and inductance can be obtained using the Braginskii model of the spark channel, In
this model, the conductivity of the plasma is assumed to remain constant while joule heating
causes pressure, which increases the radius of the gap. As the radius increases, the resistance of

the channel decreases. The current during the rise of the pulse can be expressed as:
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where K is equal to the slope of the current rise, A/s. The conductivity can be calculated with:
c=p-q-u A5

in which q is the charge of an electron and p is the mobility of the electron in the plasma. The
conductivity of air is 200 mho*cm™ [113]. The resistance of this single channel can be calculated

by:
R(ty=d/m a-r(t)? A6

where d is the gap distance of the switch, and the time dependent radius of the gap can be
expressed with (A.2). In order to meet the criteria for breakdown, the resistance of the gap should
be much lower than the load resistance (typically 50 2). A good approximation to determine the
radius of the channel is to assume R(t) < i Q and solve for r{t). The number of channels can then
be approximated by R(t = 0)/1 Q.

A faster decrease in the resistance of the plasma channel accounts for a fast risetime of
the switch. Martin et al. compared the energy delivered to the switch to the time it takes the

switch to go from an infinite load to zero [113]:

1

E= 1 Vpeak ’ l’peak iy AT

For air, Hy, SF, and He, Martin et al. experimentally determined the risetime of the switch to be

equal to:
tr =88 /p/(Z-EN/3 A8

where p is the ratio of the density of the gas and the density of the gas under normal conditions (1
atm, 300 K), Z is the matched impedance of the load, and E is the electric field between the

switch before breakdown [113, 118]. According to (A.5), a decrease in the gas density will result
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in a faster risetime. This was confirmed by Liu et al., by comparing the risetime of a spark gap
with H,, N,, and SF, [118]). The electrode gap spacing was 27.4 mm, and the breakdown voltage
was equal to 400 kV. The pressures of the gases were adjusted to match the same breakdown
voltage. The risetime of Hp, N,, and SFy were 8, 11.2, and 12.8 ns respectfully. After
pressurization, the density of the corresponding gases were in increasing order {118]. The
decrease in risetime is most likely due to an increase in the radius of the channel as expected in

(A.2), in which the radius is proportional to (1/a)"".

A.6 CIRCUIT PARAMETERS

The ideal switch has a voltage fall time of zero, with zero resistance, inductance, and
capacitance. The capacitance of the non-ideal switch can be calculated by the geometry of the
switch (gap distance, electrode surface area, electrode shape). The inductance is proportional to
the length of the spark (distance between electrodes, d) multiplied by the log of the ratio of the

length and radius of the spark [119].
wd d
L= T ln(—(t)) A9

The resistance of the channel is proportional to the length of the spark (d) and the reciprocal of
the square of the radius of the channel, and is described by {A.6). The conductivity (&) is
assumed to be constant, and for air, helium and nitrogen at 1 atm has values of 200, 140, and 300
mho-cm respectively [113]. The circuit components make up a series RLC circuit as shown in

Fig. A.2 [112, 120].

n—

Anode Cathode

K Rvar N'!:/'Y\_

Ideal Switch
Fig. A.2. Circuit model of a spark gap
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The change in resistance depends on the speed at which the plasma channel increases during the
breakdown process. Figure A.3 shows the voltage across a load connected to a DC voltage
source with an ideal and non-ideal switch. The light gray trace represents an ideal switch, and the
‘overdamped and underdamped switch are in black and dark gary, respectively. Overdamped or

underdamped switches occur when the resistance of the channel is larger than or smaller than

2/L/C, respectively. A critically damped switch will provide the fastest risetime without

oscillation. For a critically damped switch, the resistance equals 2,/L/C, and the risetime can be

approximated by vLC /2.
ﬂ

a0 f\ A A

(0
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>O ' —— deal
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Fig, A.3. Electrical characteristic of a spark gap. The gray trace represents an ideal switch, while
the dark gray represents an inductive switch, and the black trace a capacitive switch,

As shown with the circuit analysis, a spark gap switch with a long gap would create an oscillation
due to the large inductance and small capacitance. A switch with a large electrode surface area
and a small gap would create a damping effect due to a small inductance and large capacitance.
To create a fast switch, a small gap distance as well as electrodes with a small surface area are

needed to minimize both the capacitance and inductance. The inductance is also reduced as a
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result of a multiple channel discharge, which occurs for high electric fields and is also a direct
result of a small gap distance at high voliages.
Oscillations can also be dampened for a given switch by decreasing the pressure [120].

The conductivity of an ideal plasma is given by [119]:

A10
In (A.10) g is the electron charge, m is the electron mass, v is the collision frequency, and n is the
gas density, which is decreased by decreasing the pressure. A decrease in the gas density causes
an increase in the resistance of the plasma, (5.5), which effectively dampens the oscillations.
This dampening in the oscillations by decreasing the pressure of the gas was experimentally
shown for nitrogen at pressures of 5, 3, and 1 atm [120]. The voltage was adjusted to allow for

the same amplitude (2 kV, 20 ns FWHM, < 5 ns rise time).

A5 ELECTRODE SHAPE AND MATERIAL

Flat electrodes create higher electric fields at the edges, while pin electrodes create high
electric fields at the tips. Such field enhancing geometries may cause a high enough electric field
to decrease the time lag, causing the voltage of the gap to break down at or before the DC
breakdown voltage [121]. The ideal electrode shape is designed to create a uniform electric field
within the gap while minimizing edge effects which can lead breakdown below the desired level
by corona discharges. Two common electrode shapes which are derived from the equipotential
lines from two finite parallel planes are the Rogowski and Borda profile {122, 123]. Rogowski
performed the experiments for such a profile and found that setting v = /2 (equipotential line)
resulted in the maximum field being homogenous in the center and decreasing monotonically
within the curvature of the potential line. This allows for repetitive breakdown with minimal

erosion and no unwanted breakdown around the edges. This geometry also has the most compact
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shape [122, 123]}. The Borda profile has less of a flat surface and more of a curvature on the
corners. This reduces the side electric field compared to Rogowski profile {122].

The durability of the switch is mainly governed by the electrode material. Electrodes
with higher thermal and electrical conductivities, higher melting temperatures (or temperatures in
which there is a significant reduction in thermal strength), and higher densities will be more
durable to erosion caused by local heating at the electrode due to the plasma channel [124].
Koutsoubis and MacGregor performed several durability tests on brass, stainless steel, aluminum
and elkonite by comparing the lifetime of the switch at two repetition rates of the pulses (10 Hz
vs. | kHz) [125]. At 10 Hz, the amount of erosion, in increasing order, was elekonite, brass, ss,
and Al. The lifetime of the switch with different material at 10 Hz in decreasing order was
elkonite (0.7 million), followed by brass (0.5 million), stainless steel (0.3 million), and aluminum
(0.2 million). At 1 kHz, the amount of erosion in increasing order was brass, Al, ss, and
elekonite. In fact, the erosion at a higher frequency decreased for the brass and aluminum. The
decreased erosion was due to the formation of a thin layer of oxides on the surface of the
electrodes (AlO; on the aluminum and ZnO on the brass), which have much higher melting
temperatures than brass and aluminum. The lifetime of each material increased: brass (2.1
million}, aluminum (1.8 million), stainless steel (1.6 million) and elkonite (1.3 million). The
formation of the oxides is temperature dependent in that a higher temperature on the surface of
the electrode will result in more of a build up of the oxide layer. At low repetition rates, the
amount of erosion and/or lifetime of the switch was determined by the electrical and thermal
properties of the metal; whereas the lifetime i1s determined by the thermal properties of the
metallic oxides formed on the electrodes [125]. A higher temperature is associated with a higher
repetition rate. Stainless steel performed poorly at a higher repetition rate mainly due to the
lower electrical and thermal conductivities than the other metals. Brass exhibited a better overall

performance while stainless steel exhibited the poorest performance.
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A.7 OPTIMIZATION OF SPARK GAP FOR SUB-NS BREAKDOWN

In order for a spark gap switch to achieve a breakdown time in the subnanosecond
regime, the resistance and inductance of the plasma channel during the breakdown process need
to decrease at a rate which leads to a subnanosecond current risetime across the switch.
Subnanosecond breakdown is accomplished by creating conditions which allow for a diffused or
multichannel discharge, which is characteristic for multiple avalanches created by runaway
electrons as well as photoionization. To create such conditions, high E/n ratios, on the order of
40 Td, are required.

In order to avoid heavy damping, or oscillations, the geometry of the spark gap must be
designed to reduce both the capacitance of the gap and the inductance of the channel. The
reduction of the capacitance and inductance is accomplished by using a small gap distance
(decreases inductance) and reducing the electrode surface area (reduces capacitance).

Decreasing the gap distance will decrease the breakdown voltage which leads to a
decrease in E/n. Three techniques are used together to increase the breakdown voltage, which
increases E/n. The first technique is to pressurize the spark gap which will increase the DC
breakdown voltage. The second technique is to use a charging circuit (Marx Bank, square wave
pulse generator, etc.} in order to increase the voltage rate across the switch which allows the
breakdown voltage to reach values above the DC breakdown voltage. A third approach to
increase E/n is to pressurize the spark gap with a gas of lower density than air, such as hydrogen.
This approach will also decrease the resistance of the single filaments by increasing the radius
according to (A.2). The electrodes need a Rogowski type profile to prevent premature breakdown
which is characteristic of sharp electrodes.

The following design criteria were used by Frost et al., and were able to create a spark
gap switch capable of switching a 120 kV pulse in which the risetime of the current through the
switch was less than 100 ps [112]. The gap distance was 0.7 mm, and the switch was pressurized

at 120 psi with Hydrogen. The charging circuit supplied a pulse with a risetime of 2 ns. The
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resulting E/n ratio before breakdown was 86 Td. With an E/n ratio between 30 Td and 60 Td,

other groups were able to achieve risetimes between 900 ps and 400 ps [108-111, 114, 126].

A.5 COMPARISON TO OTHER SUBNANOSECOND SWITCHES

Pulsed power applications have increasing demands for switches with low jitter (< ns),
fast repetition rate (kHz ~ MHz) and long life times (> 10° pulses). Due to the disadvantages of
the spark gap listed in the introduction to this appendix, spark gaps are unable to compete with
semiconductor high power switches such as the SOS switch, photoconductive switches and
avalanche transistors for pulsed power applications requiring such conditions [75, 81, 92].

Avalanche transistors are capable of switching in the 100 ps regime and can hold off
voltages in the 10’s of kV. Voltages in the 100’s of kV can be achieved if the transistors are
placed in series [75, 78]. The repetition rate of a pulse generator using avalanche transistors has
reached up to 200 kHz [78].

Pulse generators incorporating SOS switches have been developed capable of delivering
pulses with amplitudes in the 100°s of kV range with sub 200 ps rise times, and repetition rates in
the 10s of kHz [75, 81, 82]. The life time of SOS switches has been reported to be in the 10"
range [85].

Photoconductive switches are capable of delivering 10°s of kV with sub 200 ps rise times
at a frequency rate in the 10’°s of kHz [83, 92]. The jitter of the photoconductive switch is less
than 10 ps, which is the distinct advantage over the other semiconductor switches in which the
jitter is in the 10’s to 100’s of ps. However, the repetition rate may be limited by the repetition
rate of the laser trigger which can be in the 10’s of Hz [92]). The life time of photoconductive
switches can reach up to 10' pulses [83]. Photoconductive switches have one advantage over the
other semiconductor switches: the use of optical triggering rather than electrical triggering. The

optical isolation of the trigger source does not require protective circuitry.
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The distinct advantage of spark gaps over semiconductor switches is the ability of the
spark gap to deliver repetitive pulses with energies ranging from the pJ to the MJ. The basic
design of the spark gap is very simple and can be manipulated in a number of different ways to
operate for a specific application (size, gas type and pressure, gap distance, electrode shape and
material, etc.). Such adjustments for semiconductor switches (SOS and avalanche transistors)
would require a change in the circuitry.

Several mechanisms have also been incorporated with spark gaps in order to reduce the
runtime and jitter of the switch, the repetition rate, and the lifetime. Both the jitter and runtime of
the switch can be decreased by triggering the spark gap, electrically and/or optically, at or below
the DC breakdown voltage. Laser triggering has been used to decrease the runtime and jitter of
the spark gap to values on the order of 10 ns and 1 ns, respectively [127, 128)]. By triggering a
spark gap at voltages of 80% of the DC breakdown voltage, jitter under | ns has been achieved
[128, 129]. The energy required from the laser to breakdown the spark gap (mJ) is on the same
order needed to induce breakdown of the photoconductive switch in linear mode. However,
much higher voltages with the spark gap can be achieved (100°s kV) opposed to the
photoconductive switch (10’s kV). Rotary arc switches are used to increase the lifetime of the
switch, as well as to deliver energies up to 500 kJ [130-132]. The repetition rate of the spark gap
can be increased by pressurizing the gas, and using a gas with a high thermal diffusivity, such as
hydrogen [117, 133, 134]. Repetition rates in the 100’s kHz range have been achieved by

pressuring the switch with 1,000 psi of Hydrogen [133, 134].
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APPENDIX B

MEASUREMENTS OF THE ELECTRICAL PROPERTIES OF CELLS BY MEANS OF

DIELECTRIC SPECTROSCOPY

In order to measure the conductivity and permittivity of the Hepa 1-6 cell and the growth
medium, and their dependence on temperature, Time Domain Reflectometry (TDR) Dielectric
Spectroscopy analysis was used [49, 51, 135, 136]. TDR gives the dispersion relation for both
the conductivity and permittivity of a sample from the reflected signal of a known transmitted

signal. The diagram of TDR is shown in Fig. B.1.

vo(ir“ ) Sample

Step Function ( _ (] | 0 O
Pulse Generator Z,=508 o O O

—ro
TV

TDR Oscilloscope

Fig. B.1. Diagram of the TDR dielectric spectroscopy system. A step function, V(t), is fed into
the transmission line, which is terminated with a sensor containing the sample. The reflected
signal, R.(t), is used to determine the complex permittivity of the sample. Not shown in the
figure is a sampling head before the oscilloscope which digitizes the reflected signal before
storing into the oscilloscope [51].

A pulse generator sends a voltage pulse, of known risetime and amplitude, into a transmission
line of impedance Z, (50 ) in which the end of the line is terminated with a coaxial sensor
containing the sample. The dimensions of the sample can be obtained from [51]. The reflection
coefficient, p, is based upon the reflected signal of an open sensor and is used to determine the

complex permittivity of the sample {51],

e =[1+p/(s-Zy-CH/[1+p 5 Z, Cp] B.1
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The capacitance, C,, is the capacitance of the empty chamber, and s = jo. The reflection

coefficient is defined as [51]:

p= (Ur - vx)/(vr + Ux) B.2

in which v, and v, are the Fourier transform of the empty sensor reflection and load sensor
reflection, respectively. This technique is used since it is easier to distinguish, in time, the
reflected signal from the sample to the reflected signal of an empty sensor [18]. The relative
permittivity (€} and conductivity (6) of the sample can then be determined from the complex
permittivity [49]:

«

=g —j a/(g, w) B.3

The complex permittivity of the suspension (e¥*,,,) and of the cells (e*..;) is determined by using

the Maxwell-Wagner model {49]:

St = f* . 2'(1_p)'5;llp+(l+2'p)'5:-eu
Sup (2+D)‘€;up+(1*13)'8;9”

B.4

in which p is the volume fraction of cells in the suspension. Once the complex permittivity of the
cell is determined, the cell can be broken down further in order to determine the complex

permittivities of the cell cytoplasm (g* ;) and membrane {e*,,) [49].

T 2(1-v)epm+(1429) ey
cell m (2+v)epm+(1-v)-egy

B.5

The thickness of the membrane (d} and radius of the cell (R) is accounted for in v, in which v =
(1-d/RY’. Similarly, in order to find the relative permittivity and conductivity of the different
parts of the cell, (B.3) is used.

An Agilent 86100C TDR oscilloscope together with a 54754A differential plug-in was

used. A cutoff type termination-sensor with gold-plated stainless steel electrodes was used to hold
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cell suspensions with a 10% volume fraction. In order to minimize the effect of electrode
polarization, the cells were suspended in a low conductivity buffer as suggested by previous
studies [135]. The incident voltage pulse is generated by the differential plug-in with 35-ps rise
time and 200-mV amplitude. The same module also receives the reflected signal with an 18-GHz
detection bandwidth. The temperature was controlled by immersing the sensor in a water bath
with a thermostat (Julabo, San Diego, CA). The complex permittivity of the sample was
calculated by running a Laplace transform of the incident and reflected signals as suggested by
Hager [136]. The relative permittivity and conductivity of the sample was further determined
from the complex permittivity. After correction for electrode polarization [51], the permittivity
and conductivity spectra of the cell suspension were fitted in a combination of the Maxwell-
Wagner mixture model and a single-shell cell dielectric model with the knowledge of the cell.
The dielectric properties of each cellular structure can be derived as fitting parameters when the
cell geometry values are known (cell radius and membrane thickness).

The measured conductivity and permittivity of the cytoplasm and plasma membrane
derived by TDR analysis with respect to temperature are shown in Table B.1. It is worth noting
that the buffer (medium} used in dielectric spectroscopy to determine the electrical properties of

the cell has a much lower conductivity than the cell culture medium.
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Relative Permittivity

| Membrane Cytoplasm
Temperature Avg. Std. Avg. Std.
25°C 13.9 0.19 76.3 2.6
37°C 15.1 0.31 100 15
42°C 16.5 0.64 115 49
47°C 18 0.17 146 4.8

Conductivity

Membrane Cytoplasm

[107% S/m) [107 S/m]
Temperature Avg, Std. Avg. Std.
25°C 244 0.28 3.79 0.08
37°C 4.05 0.13 4.53 0.07
42°C 5.13 0.24 473 0.27
47°C 9.21 0.21 5.1 023

Table B.1. Permittivity {a} and conductivity (b) of cytoplasm and plasma membranes of Hepa 1-
6 cells at 25°C, 37°C, 42°C and 47°C [48].

The change in conductivity of the cytoplasm for the same temperature rise is 34%. However, the
temperature effect on the plasma membrane conductivity is much more pronounced: it increases
by 270% when the temperature is increased from 25°C to 47°C. The permittivity of the cytoplasm
and plasma membrane of Hepa 1-6 cells increases by approximately 90%, and 30%, when the

temperature is raised from 25°C to 47°C, respectively.
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APPENDIX C

MOLECULAR DYNAMICS SIMULATION APPROACH

Simulation studies of membrane electroporation under a constant applied voltage were
carried out as an example of a bio-process affected by both the electric field and temperature [48].
The poration process was modeled through atomistic Molecular Dynamic (MD) simulations.
The MD technique allows for the inclusion and collection of particles and their respected
potentials at the nanoscale level, allowing for natural fluctuations, self consistent calculations
without fitting parameters, and ease of allowing complex geometries [137). With MD
simulations, the use of mean-field approximation is not required. The MD simulations use
classical Newtonian mechanics to simulate the dynamical movement of neutral atoms and ions
taking account for the many body interactions between them [137]. The realistic molecular
representation of the molecules is also constructed into the simulation. A more detailed
discussion on MD simulations can be found in [6, 137].

This MD technique allows for the simulation of a membrane patch from which one can
ascertain whether pore formation can occur within a certain time at a chosen value of external
field and fixed temperature. The GROMACS package [138, 139] was used for the MD
simulations of membrane effects at different temperatures. The GROMACS tool provides the
force fields for the lipid membrane, which was assumed to comprise dipalmitoyl-phosphatidyl-
choline (DPPC) molecules. The Simple Point Charge (SPC) water model mimicked the aqueous
environment surrounding the membrane. Velocities of water and membrane molecules were
generated randomly at each simulation run according to a Maxwellian distribution. For statistical
significance, a total of eight MD simulations were carried out with different starting molecular

velocities for each case. A 4 fs time step was used.
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