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A B S T R A C T

HIGH DIMENSIONAL DATA SET ANALYSIS USING A 
LARGE-SCALE MANIFOLD LEARNING APPROACH

Loc Tran 
Old Dominion University, 2014 

Director: Dr. Jiang Li

Because of technological advances, a trend occurs for data sets increasing in size 
and dimensionality. Processing these large scale data sets is challenging for con
ventional computers due to computational limitations. A framework for nonlinear 
dimensionality reduction on large databases is presented that alleviates the issue of 
large data sets through sampling, graph construction, manifold learning, and embed
ding. Neighborhood selection is a key step in this framework and a potential area 
of improvement. The standard approach to  neighborhood selection is setting a fixed 
neighborhood. This could be a fixed number of neighbors or a fixed neighborhood 
size. Each of these has its limitations due to variations in data density. A novel 
adaptive neighbor-selection algorithm is presented to enhance performance by incor
porating sparse £i-norm based optimization. These enhancements are applied to the 
graph construction and embedding modules of the original framework. As validation 
of the proposed ^-based enhancement, experiments are conducted on these modules 
using publicly available benchmark data sets. The two approaches are then applied 
to a large scale magnetic resonance imaging (MRI) data set for brain tumor pro
gression prediction. Results showed that the proposed approach outperformed linear 
methods and other traditional manifold learning algorithms.
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C hapter 1

1

IN T R O D U C T IO N

It can be argued that human progression has always been linked to our ability to 
understand data. With the advancement of technology for data acquisition and data 
storage, the size of data sets are increasing exponentially [2]. In general, the hope is 
that if large-scale data could be exploited effectively, science would extend its reach, 
and technology would become more advanced and robust. Thus, there is a growing 
need for algorithms that are able to scale to larger and larger data sets. While there 
is great potential in deciphering large data sets, the challenge of processing large- 
scale data sets exists. The amount of data a single user c‘an process is often limited 
to the power offered by a personal computer. In this dissertation, we focus on the 
nonlinear dimensionality reduction of a large data set using conventional hardware.

Nonlinear dimensionality reduction has become a popular topic in pattern recog
nition literature. For high dimensional data  sets with continuous variables, it is often 
the case that the data points are arranged close to a manifold of much lower dimen
sionality than the original data set. This manifold is the intrinsic structure of the 
data. Thus, dimensionality reduction can also be referred to as manifold learning. 
Conventional methods such as principal component analysis are effective in finding 
linear manifolds such as a linear line or a flat hyper-plane. However, it is often 
the case that the manifold is nonlinear and have some sort of intrinsic curvature or 
irregular shape. For example, this occurs in applications for face pose recognition, 
handwriting recognition, and speech signals. The goal for nonlinear manifold learning 
methods is to identify the intrinsic shape of low dimensional data  structures embed
ded in high dimensional data and to represent these nonlinear structures with a low 
dimensional linear model. Obviously, the nonlinear manifolds are much harder to 
compute than the linear manifolds. For many nonlinear methods, the local neighbor
hood of each data sample needs to be computed and a connectivity/similarity graph 
needs to be calculated which is difficult for large-scale data  sets. Generally, manifold 
learning approaches require a spectral decomposition of the similarity matrix. This 
step is also computationally expensive.
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Besides the computational complexity problem, another problem of traditional 
manifold learning methods is that the neighborhood selection is often rigid. Since 
local geometry is a large part of manifold learning, neighborhood selection is a critical 
part of many nonlinear dimensionality reduction techniques. Traditional methods 
use simple Ar-nearest neighbors as the neighborhood selection method. This would 
connect each point to a fixed number k of its nearest neighbors. An optimal value for 
k is oftentimes different at various parts of the manifold. An incorrect selection of k 
could cause the resulting manifold to  incorrectly represent the intrinsic structure of 
the data.

In this dissertation, we address the challenge of applying manifold learning on 
a large data set. First, we present the Incremental Landmark approach which re
duces the data set size through sampling and embedding. Sampling allows for exact 
eigen-decomposition of nonlinear manifold techniques on the smaller sampled set. 
We present an adaptive sampling method based upon local curvature information. 
Remaining points are reintroduced into the manifold using a neighborhood based em
bedding step. Also, since many nonlinear manifold approaches require neighborhood 
selection, we present an adaptive neighborhood selection method that is applied to 
the graph construction and embedding steps of the Incremental Landmark approach. 
The proposed neighborhood selection is based on sparse optimization of the ^i-norm. 
The A'x-norm based approaches replace the graph construction and embedding mod
ules of the Incremental Landmark approach to  give the final proposed method.

This dissertation is arranged as follows. Related work is discussed in Chapter 2. 
The related work will focus first on linear dimensionality reduction techniques be
fore reviewing modern nonlinear dimensionality reduction approaches. This chapter 
contains a literature review on some techniques to address dimensionality reduc
tion on large data sets and also the application of sparse learning on dimensionality 
reduction. In Chapter 3, the proposed approach for large scale nonlinear dimension
ality reduction is introduced. The basic structure is presented as the Incremental 
Landmark method. A novel approach in neighborhood selection using the ^j-norm 
is introduced to enhance the Incremental Landmark method. An analysis on the 
benefits of using the ^i-based optimization is also discussed. The ^-norm  enhanced 
method is validated on benchmark data sets in Chapter 4. Here, two components 
of the original proposed method are modified using -based neighbor selection and 
are tested individually with quantitative data sets from the UCI data set repository
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and the results are compared with the standard Incremental Landmark method. The 
two modifications are combined to form the final proposed method and is also tested 
with benchmark image data sets used for face and object recognition. In Chapter 
5, the Incremental Landmark method is applied to an MRI brain tumor data set 
for tumor identification and progression prediction. In Chapter 6, the ^i-norm en
hanced proposed method is applied to  the same data MRI data set. An analysis of 
using the proposed approach versus using randomized singular value decomposition 
for large scale manifold learning is presented in Chapter 7. Finally, conclusions are 
summarized in Chapter 8.

1.1 CO NTR IBU TIO NS

The contributions of this work includes a novel, adaptive, neighbor-selection al
gorithm using the ^i-norm. Also, the Isomap method is enhanced using the £i-based 
neighbor selection for graph construction. Likewise, local linear embedding is en
hanced using the £i-based method. Local curvature variation sampling is introduced 
to adaptively sample data sets. Another contribution is an identification of a bridge 
between abnormal tumor tissue and normal tissue in MRI brain scans as discussed 
in Chapter 5.
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RELATED W O R K

2.1 M ANIFO LD LEARNING

The focus of this dissertation is on large-scale manifold learning. Before getting 
into large-scale application, it is important to talk about what is manifold learning. 
To go by the formal definition, manifold learning is an approach to non-linear dimen
sionality reduction that takes advantage of a geometric structure formed in a data 
set that exists in a lower dimensional space than the original data  set. This lower 
dimensional structure is referred to as a manifold, thus the name manifold learning. 
Conceptually, this concept may be difficult to realize. For one, we live in a three di
mensional world. Spaces greater than three or four dimensions is difficult to imagine 
physically. Here, two example manifolds are discussed to get a better understanding 
of what manifolds are.

First, imagine two towns, Town A and Town B, separated by a river. Now consider 
the distance by car between the two towns. Going in a straight line across the river 
would only be one mile but cars can’t  drive on water. The true driving distance is the 
length of roads between the two towns. Consider a bridge one mile away from both 
towns. The distance would be one mile to the bridge, one mile crossing the bridge, 
and one mile from the bridge to the opposite town resulting in a three mile driving 
distance. In this example, the setting is a two dimensional roadway. But the road is 
one dimensional since cars can only go back and forth. Thus, the manifold would be 
the one-dimensional road between the two towns in a two dimensional setting.

The second example is a set of face pose images of a single person shown in 
Figure 1. Now consider, the distance between the top left image and the bottom 
right image. These two images are shown side by side in Figure 2. In a computer 
vision standpoint, the two images are very dissimilar from each other. A difference 
image of these two would show that these images are very different. In this data 
set, however, a manifold exists between these two images. The manifold relates 
the images through rotation from a frontal face image to  a profile view. Following



Figure 1: Example nonlinear face pose data set

the images in Figure 1 from left to right and top to bottom, each successive image is 
similar to the previous. Using this manifold, a connection could be made between the 
two images. The example shows a non-linear one-dimensional manifold embedded in 
a data set of 640x480 pixel images. The original data set was a 307,200 dimensional 
data set that was reduced to one. This example shows that large data sets could be 
reduced greatly if the manifold of the data could be found.

The goal of manifold learning is to produce a low dimensionality mapping of the 
data set while still retaining the relevant information found within the data. These 
techniques can be divided into two categories, linear and nonlinear. Linear techniques 
are much easier to compute but will fail if the data has a nonlinear manifold. On 
the other hand, nonlinear techniques are much more difficult to compute but will 
not always correctly unfold a nonlinear data set. As noted in the literature, there is
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Figure 2: Example nonlinear data set

not one method that will outperform other methods in all cases [3]. In this section, 
various linear and nonlinear dimensionality reduction techniques will be reviewed.

2.1.1 LINEAR D IM EN SIO N A LITY  R E D U C T IO N

Principle Com ponent Analysis (PC A )

Principal component analysis (PCA) is a popular unsupervised linear dimension
ality reduction technique [4, 5]. The method creates a low-dimensionality represen
tation of the data that minimizes the variance in the data. In other words, PCA 
finds d orthogonal vectors that encompass the most variance in the data. Consider 
X  is a mXn data matrix containing the m  samples in n dimensions and M  is an 
m x d  matrix mapping that maximizes M Tcov (X) M  where d < n. Finding M  can 
be done by solving the eigen-mapping problem shown below.

cov (X)  M  = XM

The resultant M  contains d orthogonal basis vectors spanning the data. These vec
tors are referred to in PCA as principal components, each with a corresponding 
eigenvalue A T h e  first principal component will correspond to the largest eigen
value. Similarly the second principal component will correspond to the second largest 
eigenvalue and so on such that A] > A2 > • • • > Â . In this way, each successive 
principal component will cover less variance in the data set than the principal com
ponents before it. Dimensionality reduction can be achieved by keeping the first d 
principal components. The following principal components would have a less mean
ingful contribution to variations in the data and may be discarded. As this is a linear 
technique, it is unable to recognize a nonlinear structure.
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2.1.2 N O N LIN EA R  D IM EN SIO N A LITY  R ED U C TIO N  

Kernel PC A

Kernal PCA (KPCA), is an extension to traditional linear PCA that allows it to 
compute non-linear manifolds [6]. Kernel PCA computes the principal eigenvectors 
of a kernel matrix rather than the covariance matrix.

Kernel PCA computes the kernel matrix K  of the data points x*. The entries in 
the kernel matrix are defined by:

ki j  =  — — K (Xj, Xj )

where k is a  kernel function, which may be any function tha t gives rise to a 
positive-semidefinite kernel K  [7]. Subsequently, the kernel matrix K  is double
centered using the following modification of the entries

The centering operation corresponds to subtracting the mean of the features in 
traditional PCA. As a result, the data in the feature space defined by the kernel func
tion is zero-mean. Thus, the principal d eigenvectors Vi of the centered kernel matrix 
are computed. Now similar to traditional PCA, the eigenvectors of the covariance 
matrix a* can now be computed. These eigenvectors are related to the eigenvectors 
of the kernel matrix through the following relation [8]

1
di = —r=Vi

V

In order to obtain the low-dimensional data representation, the data is projected 
onto the eigenvectors of the covariance matrix a,. The result of the projection is the 
low-dimensional data representation Y  given by:

V i  =  < K { x j , X i ) , . . .  S

Ij= i j = i J

A disadvantage of kernal PCA is that a suitable kernel is difficult to determine, 
especially for high dimensional data sets. Kernel PCA has been successfully applied 
to  face recognition [9], speech recognition [10], and novelty detection [11].



8

Isomap

The Isomap method reduces a high dimensional data  set while preserving the 
geodesic distance between data points [12]. If the d-dimensional original input space 
is defined as X  and the d'-dimensional Euclidean space Y  as the lower dimensional 
manifold, then the problem can be summarized as finding a mapping of /  : X  Y.  
Ideally, geodesic distance pairs in X  will be equivalent to Euclidean distance pairs in 
Y.  The Isomap method is a widely used nonlinear dimensionality reduction technique 
in many applications including wood inspection [13], visualization of biomedical data 
[14], and head pose estimation [15].

Isomap first constructs an fc-nearest neighborhood graph Gnxn by connecting xt 
to its k-nearest neighbors in X , where n  is the number of data points in X .  Based on 
G, Isomap then computes a similarity graph DG =  {dG(i,j)},  where dG( i , j ) is the 
geodesic distance between data points i and j  computed from G. Geodesic distance 
can be obtained efficiently by using the Dijkstra’s algorithm [3]. Once the similarity 
matrix DG is established, the Isomap utilizes the traditional multidimensional scaling 
(MDS) technique to reduce dimensionality by minimizing the following cost function:

E = \ \ t { D g ) - t { D y )\\12

Here, Dy  represents a matrix of Euclidean distances {dY (i , j ) =  \\yi — 11} and 
||A||<2 represents the 1% matrix norm Also, r  (•) is the second-order vari
ation of the geodesic distances that converts the geodesic distance into an inner 
product.

r  =  - \ h t S H  
£

where

S ( i , j )  =  (d ( i , j ) )2 

n
-S’ is a matrix of squared distances, H  is a centering matrix and 5 is the identity matrix. 
The minimum of the cost function E  can be found by setting the first d! eigenvectors 
of the matrix r  (DG) as the coordinates for y%. The residual variance of the data  is 
decreased with each successive eigenvector. Once the number of eigenvectors reaches 
the intrinsic dimensionality of the manifold, the residual variance that is reduced from
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successive addition of eigenvectors bottoms out. The result of performing nonlinear 
dimensionality reduction is a d'-dimensional representation of the sampled points 
where d! < d. In other words, a mapping is made such that Xsamp —> Vsamp and 
2/samp =  [2/1 , 2/2 , • • •, 2//] where the distances between points in Y  follow the manifold 
geometry.

Local linear em bedding (LLE)

Another popular technique is local linear embedding (LLE) [16]. Similar to 
Isomap, it constructs a graphical representation of the data samples. But unlike 
Isomap, the method takes into account only the local neighborhood properties while 
Isomap preserves geodesic distance. In LLE, local properties of the data are repre
sented as a linear combination of their nearest neighbors. The reconstruction weights, 
Wi to minimize the following cost function:

E ( W )  = J 2 30 i /  *10ij 30 j
3

The second summation represents the reconstruction of Xj from the k nearest 
neighbors of x,. Thus, the norm can be seen as the reconstruction error of all points 
in A . In order to exclude the trivial solution, a constraint is put on the weights so 
that they are non-zero and also standardized to one.

X X  =  1

It has been shown by [16] that a low dimensional representation could be found by 
computing the eigenvectors corresponding to the smallest d non-zero eigenvalues of 
the inproduct ( /  — W )T {I — W).  Here, W  is the n x n  reconstruction weight matrix 
where values are 0 if i and j  are not neighbors and I  is an n  x n  identity matrix. 
Compared to Isomap, the neighborhood features in LLE are less susceptible to short 
circuiting. A disadvantage of LLE is that it tends to collapse large distances to small 
distances in the low dimensional space. This occurs frequently when a manifold 
contains holes. LLE has been successfully applied to super-resolution [17] and sound 
source localization [18].
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Local Tangent Space Analysis (LTSA)

Local tangent space analysis is a technique that maps data points to a low dimen
sional space by aligning neighboring tangent space information. The local tangent 
space ©i of data points x x are found by applying PCA on the k nearest neighbors of 
data points A mapping Mx can thus be be made of each neighborhood to the local 
tangent space space ©i. A linear mapping Li exists between the tangent space ©; 
to the low-dimensional representation yx from the properties of local tangent space. 
Thus LTSA aims to minimize the following cost function:

%

where «/* =  /* — | l  • 1T is the centering matrix of size k. The minimization of this 
cost function was shown by Zhang and Zha [19] to be the eigenvectors corresponding 
to the smallest non-zero eigenvalues of an alignment matrix B. The elements of the 
alignment matrix B  are obtained by iterative summations (for all matrices Vx and 
starting from bxj =  0) for Vij

B n xn x =  B n xn x +  J k  ( I  —  J k

where JV* is a selection matrix that contains the indices of the nearest neighbors 
of data point x t. The low-dimensional representation Y  is obtained by computa
tion of the eigenvectors corresponding to the d smallest non-zero eigenvectors of the 
symmetric matrix |  (B  +  jBt ) .

LTSA has been successfully applied to microarray data  [20] and anomaly detection 
[21].

Diffusion M aps

Diffusion maps takes a probabilistic approach to nonlinear dimensionality reduc
tion [22]. First, a graph G — (D, W )  is defined that contains n  nodes. The weight 
matrix for this graph is defined as W  = {w (x , y)}Xiyen and must satisfy two condi
tions. The weight matrix must be symmetric: W  =  W T. This would mean tha t the 
graph is bidirectional where the edge from nodes x  to y would equal the edge from 
nodes y to x. The second condition is that the  graph must have point-wise positiv- 
ity: w (x ,y )  > 0 for all x ,y  6 fb This would just ensure that the weight matrix is
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positive semidefinite. The actual weight matrix should be chosen dependent upon 
the application. A weight matrix could be something like a Gaussian kernel but the 
only requirement for an adequate weight matrix is that it must represent a similarity 
of x and y. The Gaussian kernel is defined as wt = exp (— ||x — y||2 /e) which can be 
applied when the data is defined by a  set of discrete data points.

The graph G with weights W  represent the known local geometry of the set. Now, 
a Markov random walk is defined on the graph. A degree d (a:) is defined for each 
node x as

d (x ) == ' Y l w (x i z )
zeQ

The degree can be seen as the sum of all the weights from x  to all other nodes in the 
graph. Next, an n x n  matrix P  is defined whose elements are given by:

w ( x , y )
p ' (x ’y) = ^ W

Here, pi (x, y) can be seen as the probability of transitioning from x  to y in 1 time step. 
Thus the matrix P  can be interpreted as a transition matrix containing probabilities 
for transitioning from any one node to  all other nodes. Since this matrix represents 
one transition, the values reflect the first-order neighborhood of the graph. This 
local information is extended to other points in the graph by taking powers of the 
matrix P. This is equivalent to running the random walk for additional iterations. 
In other words, if P l is the power of P , then the value pt (x, y) represents the 
probability of moving from node x  to  y in t time steps. In diffusion maps, t is a 
free parameter that can be adjusted for each manifold. Increasing the value for t 
can be seen as extending the local information of the point to neighbors tha t are 
further away. Therefore, P 4 reflects the connectivity of the graph while preserving 
the intrinsic geometry of the data set that is present in the local interconnections.

If the graph is connected, this is, if all the nodes in the graph can be visited by 
traveling along edges in the graph, we can assert that:

lim pt (x, y) = (j>0 (y)
t->+oo
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where <po is the unique stationary distribution given by:

d ( x )
4>o {x) =

J 2 z e n d (z )

This value is proportional to the relative degree of x in the graph. The value is the 
degree of the node x relative to the sum of the degrees of all nodes in graph. This 
can be seen as a way to measure the density of points. A node with many neighbors 
will have a high degree and thus also a high unique stationary distribution signifying 
that the node is located in a dense area. Also, since the graph was defined to be 
bidirectional, the Markov chain is reversible. This would mean tha t the following 
balance condition holds true:

<!>0 (x)pi (x, y ) =  <t>o {y)pi (y , x)

A distance metric between points in Q can be extracted which will follow the 
manifold’s intrinsic geometry. Two points x and z are considered close if their condi
tional probabilities pt (x, •) and pt (z, •) are close. This notion was used in a previous 
paper [23] to define distances on a Markov random walk. The advantage of using this 
scheme is that distances in a random walk can be evaluated with existing spectral 
techniques. This will later allow parametrization of the data using eigen-maps and 
eventually a method for reducing dimensionality. Thus, the “diffusion distance” Dt 
between x and y is defined as the weighted i-i distance:

\ n , \ / mi2 V ' ( P t ( x , y ) ~ P t ( z , y ) ) 2Dt (x,z) = ||Pt (x, •) -  pt (z, -)||1M) =  2 ^ ---------------------------

where the “weights” penalize points of low density more than those with high 
density.

Points that are in high density areas will have many short paths connecting 
each other in the graph resulting in a small diffusion distance. One way to picture 
this phenomenon is that one short path connecting two points is “evidence” that 
the points are close. If the points are indeed close, other short paths also exist, 
especially if the points are located in a high density area. Since all paths in the 
graph are considered, the diffusion distance is more robust to noise than if only the 
shortest path available is used, which can be prone to short circuiting.
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Finally, the data set can be reduced to a lower dimensional manifold space. Since 
the definition of diffusion distances is connected to the spectral theory of random 
walk, eigen-map decomposition can be applied to the data. From spectral theory, 
the transition matrix P  has a set of left and right eigenvectors and a corresponding 
set of eigenvalues |Ao| > |Ai| > • • • > |An_i| >  0:

left eigenvector and a right eigenvector corresponding to the same eigenvector will 
equal 1 and all other combinations will equal 0. Also, since the matrix is a transition 
matrix, it can be shown that A0 =  1 and tp0 = 1. This occurs because each row of 
a transition matrix should sum to 1. Thus, the vector V>o =  1 right hand multiplied

and is not considered in the final calculations. The two sets of eigenvectors can be 
related according to the following function.

rj)i (x) =  ^ for all x  G Q
<Po (?)

Thus, each set of eigenvectors can be normalized for ease of notation. The left 
eigenvectors of P  are normalized with respect to l/0<y

and

It can be shown that (ffi'ipi =  5kl, or in other words, the product of a transposed

with P  will always result in another vector of l ’s. Therefore this eigenvector is trivial

The right eigenvectors are normalized with respect to 4>0\

x

Next, consider pt (x, y) which is the kernel of the iterate of the transition matrix 
P. The biorthogonal spectral decomposition will thus become:

Pt (ar, y) = Yl h  (y)
j >  0
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This is analogous to performing a weighted principal component analysis on the ma
trix P l since the process reduces the matrix into essentially a diagonalized covariance 
matrix. Following from properties of principal component analysis, the first k terms 
provide the best rank-A: approximation of P l that would minimize the variance of the 
data set. The metric for this minimization is shown below:

WAW2 = 'Yl^Z<t)oi.x)a (x-, vY <t>o (y)

Finally, by inserting the spectral decomposition from pt (x , y) into the diffusion dis
tance Dj (x. z ), we can come to the following representation for distance in diffusion 
maps:

Dt (x . Z) = Y 1 A? ~ ^
i=i

Once again, the trivial eigenvector ip0 = I does not provide useful information and
is excluded from this calculation. In summary, the diffusion distance Df  (x, z ) can
now be represented by its eigenvectors and eigenvalues. Now, because of the decay 
of the eigenvalues, the diffusion distance can be approximated to  a certain degree 
of accuracy using only the first few eigenvectors similar to  how principal component 
analysis reduces linear matrices. To represent this as a formula, let q (t ) be the largest 
index j  such that |Ajf > 6 |Ai|*. The approximation for diffusion distance can thus 
be represented as the first q (t) non-trivial eigenvectors and eigenvalues as follows:

9(0

D l (x i z ) - ^ Z  XT  -  ^  W )2
j=i

The above formulation can be seen as representing the manifold as a Euclidean 
distance in . The right eigenvectors ijjj weighted with their corresponding eigen
values Aj are the coordinates of the data in the lower dimensional embedding. This 
can be represented as the following mapping:

^  : x

^ A i^i(x) \
A ^2 (*)
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We can then apply this to the diffusion distance calculation.

Dt {x,z) ^  Xf  (^i (x ) ~  (2))2 =  H** (2)H2
i = i

The mapping 'I' : fl *->■ R9(*) can be seen as parametrization of the original feature 
space into a lower-dimensional space WLq̂ \  where the weighted eigenvectors are the 
coordinates. In doing so, the data from G  can be projected along a cloud of points 
in the lower dimensional manifold. The final equation D\  (x, z) can be interpreted 
as a Euclidean distance approximation for the diffusion distance.

Diffusion maps has been used in applications such as image completion [24] and 
multiscale anomaly detection [25].

Discrim inative orthogonal neighborhood-preserving projections

Discriminative orthogonal neighborhood-preserving projections (DONPP) is an 
extension to orthogonal neighborhood preserving projections that takes into account 
the labeled information of data [26, 27]. The general idea of this supervised manifold 
learning method is to use labeled information to cluster together same-class labels 
and separate different-class labels.

Consider a data set, X ,  DONPP assumes each data  sample Xj can be recon
structed by the other same-class samples:

Here, the subscript denotes the class label, e refers to the reconstruction error, 
and c are the reconstruction weights. To explain the subscript in x p , j  refers to the 
class label while i refers to an arbitrary sample with class label j .  As with other 
reconstruction methods, the goal is to minimize the error:

There are two parts to the solution. DONPP minimizes the reconstruction error 
of same-class samples:

=  (c;)! X p  +  (Ci)2 X p - \  f- (5)ni_i +  €i

arg mm p*
<5

arg mm x*
Si
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arg min
Vi

Tlj-l

y* ~ Y 1  y#
j=i

where $  is the low dimensional representation of x r. Secondly, the algorithm 
maximizes the distance of different-class samples in the lower dimensional space.

arg min
Vi

Tij-l
Vi ($)j Vv

j'= i

The two functions can be combined as follows:

arg mm
Vi

m- 1  

j=l
P ^ W V i

p= i

yipir  I = a rg n h n tr(y ;Z ,iFiT)

where

u  =
1 -  0 k  - c f  - f i e k 

-c l  Cic[ zni- \ z £
- p e k Z k ^ - x  ~ P h

Here, (3 is a trade-off parameter between the inter- and intra-class functions and 
z represents a vector the same length of x  whose entries are all 0. The solution is an 
eigen-decomposition problem:

X L X t u =  A u

[27] shows that DONPP is an improvement on orthogonal neighborhood- 
preserving projection which doesn’t take into account the label information. The 
intra- and inter-class dynamics of this algorithm are taken into account when creat
ing the supervised learning model in the proposed method.

2.2 LARGE-SCALE M ANIFO LD LEA R N IN G

A natural extension to linear and nonlinear algorithms is the application on very 
large databases. This can be attributed to the explosion of data in recent years [2]. 
Notably, this is because of the advances in the acquisition of data along with the 
increase in storage capacity. For example, conventional digital camera resolutions
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have increased dramatically over the past couple decades. The cost per gigabyte of 
memory storage has also dropped dramatically thus allowing data sets to grow. Many 
conventional algorithms are inept at scaling to very large data sets due to constraints 
such as memory and computational strength. The problem that occurs in particular 
with nonlinear dimensionality reduction is the complexity of eigen-decomposition of 
a large matrix along with calculating the similarity matrix. In this section, some 
of the approaches to  tackle the problem of large scale dimensionality reduction are 
discussed.

2.2.1 COLUM N SAM PLING  A PPR O A C H

A current method to handle a large data set is to approximate large matrices with 
column sampling [28, 29]. The column sampling approach considers a large matrix, 
G, where the number of rows, n, represent a sample and the number of columns n

This method approximates the singular value decomposition of a large m atrix by 
calculating a simpler matrix comprised of columns sampled from the original. The 
original spectral decomposition is as G = UY,VT where U and V  are the left and right 
singular vectors respectively and E are the eigenvalues. Columns of G are sampled 
to produce a smaller matrix C  using various techniques including random sampling 
or an adaptive approach. In [28], a probabilistic model is used to adaptively sample 
columns. The probability of a column to be sampled is:

where Ex =  G and Ej — G — ttsiu -uSj-AG)- Here, pis(G) denote the matrix 
whose rows axe projections of G to the span of S. In other words, TTsju-uSj.! are the 
projection of G onto the space of columns already sampled. Thus, the columns of G 
that are orthogonal to columns already selected have a probability of being selected in 
this approach. Let C  be the matrix formed from k sampled rows, C  =  7T5lU...usfc(C7), 
the spectral decomposition of this matrix is computed directly.

C  =  UcScVg’

where C  € IRrrixn. Uc and Vc are the left and right singular vectors respectively 
and Ec  are the eigenvalues. The equation can be rearranged so tha t the left hand



18

singular vectors can be given by:

U = UC = CVc E+

where 7 represents an approximation. The approximated eigenvalues are propor
tional to the original eigenvalues according to:

Thus, the original eigen-decomposition can be replaced with the decomposition

error is bounded and is inversely proportional to the number of sampled columns.

2.2.2 N Y S T R O M  A P P R O X IM A T IO N  A P P R O A C H

Another method that attempts to  overcome the problems of a large data  set by 
approximating the spectral decomposition is presented. This method uses a Nystrom 
approximation of spectral decomposition to approximate a manifold [31, 32, 33, 34].

Consider a n  x n  similarity matrix, G, which is symmetric positive and semi- 
definite. The spectral decomposition of this matrix is G = UEUT where E is the set 
of eigenvalues and U are the corresponding eigen-vectors. As is the case for dimen
sionality reduction, I columns are randomly sampled from G without replacement 
such that I «  n. Because G is symmetric positive and semi-definite, it can be 
rearranged as follows:

Since G =  UYXJT, the approximation of the original large matrix, G, can be
shown:

A benefit of this approach is that it has been shown by [30] that the approximation

where W  is the I x I matrix consisting of the intersection of the I sampled rows 
and columns, G21 corresponds to an intersection of sampled and unsampled rows, 
and G22 corresponds to the cross-intersection of the unsampled rows. The set of
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sampled columns is identified as C:

The authors of [31] used the Nystrom method to approximate the spectral decom
position. The Nystrom method is a common technique to speed up kernel machines. 
According to the Nystrom method, the similarity matrix can be approximated as:

where W + is the pseudo-inverse of W.  By substitution, the Nystrom method

It was shown that the Nystrom method outperforms column-sampling approxi
mations for large face databases. The approximated eigenvalues and eigenvectors are 
related to the originals as follows:

where W  =  Uw^wUw-
The column sampling method generally generates more accurate singular values 

and low-rank matrix projections while the Nystrom method constructs better low- 
rank approximations [35],

2.2.3 LAN DM ARK  M ULTIDIM ENSIO NAL SCALING

Another approach to implement a  scalable dimensionality reduction method is 
Landmark Multidimensional Scaling (Landmark MDS or LMDS) [36, 37, 38]. Es
sentially, this algorithm extends the classical MDS by sampling the large data set 
into a smaller, more manageable one. Classical MDS is performed to extract low 
dimensional projections and the remaining data  points are embedded into the low

G  «  G = C W +CT

approximates G-n in G using W  and C  such that:

G = W
c „  a.n w*Gi;,
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dimensional space.
This algorithm is split into a few steps. First, a set of landmarks is sampled 

from the entire large data set. The particular method is used arbitrary. The authors 
suggest that either random sampling or min-max sampling may be used.

Next, classical MDS is performed on the landmarks to  find a k x n  matrix L.

Bn = - X- H nk nHn

where Hn is the mean-centering matrix such tha t [Hn]X] =  aXj — A
A  distance-based triangularization method is then used to embed the out-of- 

sample points to the lower dimensional representation. The new coordinates of a 
point a are obtained by an affine linear transformation of the vector aa of its squared 
distances to the landmarks.

where Lk =  [a/AT, • • •, \/A7]r  is the embedding vector. Here, A and v are eigen
values and eigenvectors found from the classical MDS step.

It was shown in [33] that this algorithm falls in the category of an application to 
the Nystrom approximation. This procedure was influential to the development of 
the algorithm presented in this dissertation. A difference is tha t this dissertation’s 
algorithm is applied onto Isomap and incorporates a general sparse neighbor selection 
method along with an adaptive sampling approach.

2.3 SPARSE LEA R N IN G

In the literature, it has been shown that sparse representation has applications 
in a wide range of computer vision and pattern recognition including face and object 
recognition [39], compressive sensing [40, 41], subspace learning [1], medical image 
analysis [42], and dictionary learning [43]. This dissertation’s method to alleviat
ing the problems associated with large data sets revolves around finding a sparse 
representation of the data set. By reducing the sample size of the data  set, a full 
eigen-decomposition could be performed. In this section, methods th a t exploit spar
sity for manifold learning are explored.
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2.3.1 SPARSITY PRESERVING  PR O JEC TIO N S

Sparsity preserving projections (SPP) performs dimensionality reduction by fo
cusing on preserving a sparse representation rather than preserving neighborhoods 

[44].
Consider, a data set X  with n samples with m  dimensions. The problem is 

formally expressed as finding a set of sparse weights s* that can reconstruct a data 
point with the rest of the data set. This becomes a minimization problem:

min ||Si || xSi
where ||-||a represents an ^-norm . The minimization is constrained with the 

reconstruction error of each point.

l lxj -AsiH < e

1 =  l TSi

Here, e represents an error tolerance. The second equation is a normalization 
constraint. In order to project these weights to  a lower dimensionality, [44] proposes 
the following objective function:

n

min ||u>T:Zi —W * ^ 11 ''
1 = 1

where w E Km is a projecting direction vector. This minimization can be repre
sented as a maximization problem:

wT X S p X Tw 
wTX X Tw

where Sp =  S  + S? — S^S. Here, wTX X Tw =  1 to  prevent degenerate solutions. 
As the case with many previous manifold learning approaches discussed, spectral 
decomposition is used to find the lower dimensional projections. The optimal solution 
to the objective function correspond to the largest eigenvalues of the following eigen- 
decomposition problem:

XSpX Tw =  A X X Tw
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This method was shown to be an improvement to linear approaches such as local 
preserving projection and neighborhood preserving embedding for face data sets. A 
problem that occurs with this method is the calculation of the sparse weights. This 
is a computationally expensive step since it is performed over all data  points. T his 
problem is addressed in the proposed method of this dissertation by limiting sparse 
weight calculations to a neighborhood.

SPP has been applied to face recognition [44] and eyebrow recognition [45].

2.3.2 SA M PL E -D E PE N D E N T  LOCALITY PRESER V IN G  PR O JE C 
TIO N

Sample-dependent locality preserving projection (SLPP) is a dimensionality re
duction approach that employs sparse graph construction [1].

For a data set, X ,  the adjacency matrix, W?,  is a matrix that gives a similarity 
metric between all points in the data set.

W 5 = ( ex p{ ~ ^ } '  exP { - ^ } > i E L 1e x p { - ^ }
I 0, otherw ise

where d(x i ,x j)  = ||xj — Xj\\2/Ylk=i ll^i — f̂cll2 can be seen as a distance metric 
between two points x* and Xj. A similarity parameter, t, is used to control the 
selection of neighbors. This particular adjacency matrix is an adaptation of the 
adjacency matrix of classical locality preserving projection (LPP) [46]. The difference 
is the inclusion of sparse neighbor selection. Conventional LPP generally connect 
neighbors using a /c-nearest neighbor or e-neighborhood approach. SLPP on the 
other hand considers x* and Xj neighbors only if their similarity is greater than the 
mean of similarities between x* and all other points.

With the adjacency matrix, W s , a cost function could be created as below:

IIVi ~  V j\\2 W iSj  =  w t X L s X t w

where yi and yj are the lower dimensional representations of x { and Xj. Also, 
Ls =  Y2i W ij5 +  Yli W i j s — W s  is the Laplacian matrix. The optimization then 
becomes a minimization problem:
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min wTX  Ls X TwW
s.t. wTX L SX Tw =  1

Once again, the minimization is an eigen-decomposition of the similarity matrix.
SLPP uses an adaptation of the adjacency matrix from LPP to achieve a adaptive 

and sparse graph. In this dissertation, this sparse graph idea is extended to be used 
with existing manifold learning approaches using an ^i-based optimization.

2.3.3 SELECTING LA N D M A R K  PO IN T S FO R  SPARSE M ANIFO LD  
LEARNING

A method that applies sparse learning to landmark selection for dimensionality 
reduction is described in [47]. The algorithm uses the sparseness property of the least 
absolute value subset selection operator (LASSO) [48, 49] and least angle regression 
stagewise (LARS) methods [50].

The sparsity is based on an estimate W  that minimizes the cost function, E, 
below:

E  = \ \ Y - K W f  + 7 II Wlli

where 7  is a tuning parameter tha t controls the amount of regularization. K  
is a square symmetric semidefinite positive matrix which is generally a similarity 
metric and Y  is the response. The first term is the reconstruction error seen with 
many optimization functions. The second term is the regularization that promotes 
sparsity. The inclusion of this term makes the solution more difficult to find. LASSO 
and LARS are employed to solve functions of this form. Essentially, landmarks with 
non-zero values in W  are selected as landmarks. A sparse sample set of a large data 
set could created.

While this algorithm is useful in reducing the size of a data  set, it may not 
be scalable to very large data sets since it requires the LASSO computation to be 
conducted on the entire data set. In this dissertation’s proposed method, large scale 
LASSO operations are avoided using a bounded neighborhood approach. Another 
difference is that this algorithm focuses on landmark selection while our approach 
focuses on neighborhood selection as discussed in Chapter 3.
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P R O P O SE D  M E T H O D

In this chapter, a method for large scale manifold learning is presented. First, an 
incremental method is described that employs sampling to reduce the size of a large 
data set to something that is manageable for traditional manifold learning algorithms 
calculated on conventional computers. A linear embedding approach is used to re
combine the unsampled points into the manifold. Next, the algorithm is enhanced 
using the ^i-norm to automatically select sparse neighbors. Since neighborhood se
lection is often used in manifold learning, especially the graph based methods, this 
novel neighborhood selection can be applied to  many manifold learning methods. 
One such application is on the Isomap algorithm which is normally very sensitive to 
neighborhood selection due to possible short circuiting and leaking. The overall goal 
of this manifold learning algorithm is not only to be scalable to large data sets, but 
also be adaptable to various neighborhoods.

3.1 INCREM ENTAL LARGE-SCALE M ANIFO LD LEA R N IN G

3.1.1 SAM PLING

In this step, the number of data points used for processing will be reduced using 
sampling. Ideally, landmarks sampled should be the smallest subset that can pre
serve the geometry in the original data. The next step performed after sampling is 
dimensionality reduction. To keep a faithful representation of the original manifold, 
landmarks used for the manifold skeleton learning should be carefully selected from 
the original data. Thus, to preserve the overall geometric structure of an underly
ing manifold, efficient sampling is essential in the system. Here, a sampling method 
is proposed that samples data points based upon the local curvature variation of 
each data point. Min-max sampling and random sampling are also introduced as 
alternatives.
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Local Curvature Variation Sampling

In local curvature variation (LCV) sampling, landmarks are chosen depending 
upon the level of curvature of a data  point’s local neighborhood. It is based on 
the assumption that areas of high curvature provide a greater insight on manifold 
geometry than relatively flat areas. Figure 3 shows a toy data set to  illustrate the 
basic idea of LCV. Heuristically, to preserve the data  structure after sampling, more 
data points should be kept near area ‘A’ rather than area ‘B ’ in Figure 3 because data 
structures near ‘A ’ change more abruptly. Based on this observation, an importance 
value was assigned for each of the points by computing the local curvature for it. For 
each data point in the data set, its fcCurv-nearest neighbors were found and the local 
curvature c* of each point x* was found [51]:

where <rmjn (•) represents the smallest singular value. Qi is an orthonormal basis 
of the tangent space of fccurv neighbors. Normalization was performed by scaling 
of the magnitude of the tangent space projection 9i = QT (xit — Xj), where x is the 
mean of the points in the neighborhood. A probability density function, p(x),  was 
obtained by normalizing the curvature values such that they sum to one.

Samples were then selected from the probability density function using impor
tance sampling. It can be seen from the probability function p (xj) tha t the proba
bility value for each point x* is directly correlated to  its curvature value c*. Thus, 
points with higher curvature have higher possibilities of being selected. A small set

M in-m ax Sam pling

Another sampling method is min-max sampling. The general goal of this method 
is to maximize the distance between sampled points. The result is a set of samples 
that are evenly distributed in the spatial domain. In this algorithm, a seed is selected 
to become the first sample or landmark. Next, the point with the largest distance

min
curv

fccurv

P (^i) v-'n

of n  representative points were selected yielding Asamp =  [x^ \ . . . ,  x^n^]T.



26

•  *— B

Figure 3: Local curvature variations

away from the sampled point is chosen as the second landmark.
The subsequent points are calculated based upon distances from previously se

lected landmarks using an iterative two step process. First, the distance, D , between 
all non-landmarks to every selected landmark is calculated. Thus, D  is an i x n — i 
matrix where i is the number of currently selected landmarks and n is the total 
number of sample points. The minimum distance D1,1111 of each row is then selected.

D f D = min A

Essentially, the distance to the closest landmark of each remaining point is found. 
This is the “min” portion of this algorithm. Finally, the point with the largest 
distance in Z)min is chosen as the next landmark in the “max” phase of the algorithm.

arg max Dmin

The process is then iterated until the desired number of landmarks k is reached. 
This particular algorithm generally results in a relatively uniform distribution of 
landmarks. It is important to note that after the initial point is selected, the rest of 
the algorithm is deterministic.

While this method will guarantee that the samples are distributed, it is not 
without its drawbacks. For example, outliers in a data set will have a large impact 
since they have a relatively larger distance than data  samples that are grouped in 
clusters. Additionally, densely grouped clusters will be sampled sparsely which in 
result may not represent the data accurately.

u
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Random Sampling

A very simple sampling method and the de facto standard sampling method is 
random sampling. Here, samples are chosen using a simple random draw without 
replacement from the set of all data points. The results from this will provide a 
baseline for other sampling approaches. In some applications, complex sampling 
algorithms may not be necessary for successful manifold learning, but rather costs 
additional computations. One such situation is when a large portion of the data  set 
is to be sampled thus not requiring sampling to be efficient.

3.1.2 M ANIFOLD SKELETON LEA R N IN G

The main constraints of manifold learning algorithms on large data  sets are the 
memory and computational costs of having a  very large number of samples. W ith 
almost all nonlinear manifold learning techniques, there is an eigen-decomposition of 
an n x n  similarity matrix which becomes a problem for large n. Additionally, the 
computation of this similarity matrix can also become a bottleneck. For example, 
Isomap requires calculating geodesic distance between every single point and diffusion 
maps requires a diffusion weight between every single point. Sampling the large data 
set alleviates these problems.

A manifold learned from a sampled data set could be seen as an approximation 
of the manifold learned from the entire data set. In particular, the manifold learned 
from this approach can be viewed as a Nystrom approximation of the manifold if it 
were trained upon the original large data set. The small data set size after sampling 
allow the direct application of a manifold learning algorithm. We refer to the manifold 
found using the sampled data points as the manifold skeleton.

The sampled data set may be used with a variety of conventional nonlinear di
mensionality reduction techniques. In this dissertation, we mainly focus on using 
the Isomap approach for manifold learning because of its intuitiveness and straight
forward step by step procedure. The Isomap algorithm is explained in detail in 
Section 2.1.2, but as a reminder, the algorithm is broken down into three steps. 
First, a neighborhood graph is computed using a neighborhood selection approach. 
Then, pair-wise geodesic distances are calculated. And then, MDS is performed for 
dimensionality reduction. A novel neighborhood selection method will be discussed 
in Section 3.2 tha t will address the leaking issues with the algorithm.
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The result after this step will be a low dimensional representation of the data  using 
the sampled points. The notion behind using the sampled points instead of using 
the entire data set is that nonlinear dimensionality reduction techniques typically 
require an eigen-decomposition step of an n x n  similarity matrix. When dealing 
with large scale data, this step will be prohibitive in terms of both computation 
time and memory. In the next step, the remaining data will be inserted into the 
low dimensional space using an embedding algorithm. Thus, the low dimensional 
representation found in this step will be referred to as the manifold skeleton.

3.1.3 EM BED D IN G  BY  LLE:

An important step in the large scale application of manifold learning is incorpo
rating the non-sampled points with the manifold skeleton. In a very large data set 
where only a small sample is processed, the majority of data points will fall into the 
category of an out-of-sample point. Thus, an effective embedding algorithm is es
sential to successful manifold learning. In this section, local linear embedding (LLE) 
is introduced as an embedding technique th a t is often used in the literature [36]. 
Later in Section 3.2.4, a novel embedding technique using £i-norm optimization is 
discussed.

Once the manifold skeleton is learned, the remaining data points are inserted into 
it using the LLE algorithm [16, 52].

First, each out-of-sample point X T is connected to  its ^-nearest landmarks X k in 
the original high-dimensional space. A linear model was then computed to recon
struct X T by minimizing the following function:

£ (W0  =  Z X r - J 2 W r t X t
r  k

To embed the data point X r into the lower-dimensional manifold, we recon
structed it in the low-dimensional space as Zr using the weights Wrk derived above. 
The manifold space reconstruction can be summarized as follows:

Zr = J 2 WrkZk
k

where Zk are the low-dimensional representations of the landmarks X k. An ex
ample of the LLE application is shown in Figure 4, where the red dots are landmarks
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Figure 4: Illustration of local linear embedding

comprising the manifold skeleton, and the yellow square is a data point to be em
bedded into the skeleton. After this step, all the original data points are converted 
to the low dimensional nonlinearly reduced manifold space.

Essentially, this algorithm is calculating the reconstruction weights of a data 
point using the sampled landmarks and then using those landmarks and weights to 
reconstruct the data point in manifold space.

3.2 SPA R SITY  E N H A N C EM EN TS TO LARGE SCALE M ANIFO LD  
LEARNING

In this section, the general method discussed in Section 3.1 is modified to incor
porate the id-norm. A novel neighborhood selection algorithm is introduced that will 
adaptively select sparse neighbors in the graph construction and embedding steps. 
The algorithm takes advantage of the sparsity property of the td-norm optimization. 
In this section, the differences between the i\- and £2-norms are discussed. In partic
ular, we focus on the reason that C\ optimization has a tendency to produce sparse 
weights. Next, the changes to the graph construction and embedding module are 
presented. Then, each module is individually tested to see if the £i-norm makes an 
improvement over the baseline method. Finally, the new proposed method is tested 
against benchmark data sets.

3.2.1 D IFFEREN CE B E T W E E N  i x- A N D  £2-N O R M

The main purpose of using an t\ based optimization rather than the more ubiqui
tously used £2-norm is that a sparse optimization can be achieved under the td-norm.
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This is useful in neighborhood selection since it is usually more preferable to connect 
a point with only a few neighbors. In order to explain why the ^-norm  has the 
sparsity property, it is useful to discuss the background of these norms.

Both of these methods produce a metric that is used to represent the relative 
distance or size of a vector. They also have the same properties tha t all norms 
possess. From conventional mathematics, these properties include:

Because of these encompassing properties, the various kinds of norms may theo
retically be interchanged with one another.

The most obvious difference between the two norms is in the way each is calcu
lated. Consider a simple vector x  € R” . The ubiquitous ^2-norm is calculated as 
follows: ______

In other words, the ^2-norm is the square root of the sum of each element squared 
while the £i-norm is the sum of the absolute value of each element.

The difference between the calculations are easy to see but the reason that an 
li-norm produces a sparser representation is more difficult to realize. The expla
nation may best be clarified graphically. In Figure 5, a 2-dimensional example of 
optimization using the two methods is compared. In both plots, a minimization is 
desired. The plot on the left demonstrates £ 2  minimization while the right plot min
imizes the same problem using £\. The concentric shapes give a sense of distance for 
both norms. For the i 2 case, distances are calculated using the square root of a sum 
of squares which geometrically represents a circle centered around the origin. Thus,

||x|| >  0 when x  ^  0

x\\p = 0 iff x  =  0

||ifcx|| =  \k\ 11J'|] for any scalar k

Wx  +  y \ \ P <= IMI + ||y||

n

The ^i-norm on the other hand is defined as:

n

x \ \ i :=
1 = 0
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Figure 5: A 2 dimensional example of optimization using t i  minimization (left) and 
£\ minimization (right)

each point on the circles represent the same distance away from the origin. Similarly, 
the diamond represents the same distance away from the origin using the ^j-norm.

The optimal solution for each case in Figure 5 occurs when the line intersects 
one of the concentric shapes. The minimum for the 12 case occurs at A while the 
minimum for the l\  case occurs at B. Here, point A will have a horizontal and vertical 
component resulting in two non-zero values to represent it. On the other hand, the 
pointed tip of the diamond at point B is the minimum distance for the £\ case. 
This point will only have one non-zero value since the horizontal component is zero. 
Thus, £\ optimization generally produces a sparser representation compared to £ 2  

optimization because of the shape of the distance calculations.

3.2.2 SOLVING i 2- A N D  ^-O PTIM IZA TIO N

As discussed in the previous section, calculating an ^i-norm and ^2-norm from a 
vector is relatively simple. Optimization of the ^-norm , on the other hand, is not 
trivial. This is because a typical £2-norm optimization problem is differentiable while 
the £i~norm is not. For the £ 2  case, consider a  common least squares problem that 
reconstructs a target t with N  samples:

N

E iU) =  i tn ~  wT^(X")}2
n = l
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where 4>(x) is a basis function and w are weights. Since the ^-norm  is differen
tiable, the minimum can be found by solving for the roots of the first derivative.

N
0 = Y .  { t n  -  WT <f)(xn ) }  (p(xn )T  

n=  1

N  /  N \
o =  y  tn(f)(xn)T -  wT I y  <;t>(xn)<f>(xn)T )

n = l V n = l  /

The optimal solution for the weights W s can be solved using the Moore-Penrose 
pseudo-inverse.

Ws = ( $ t $ )~ 1$ t

Note that the minimization can thus be found using simple matrix operations. 
Since the least squares method using the £2-norm is so straightforward, it has become 
the ubiquitous standard for these types of problems.

While l 2 optimization is straightforward, the absolute value operation of ^-norm  
optimization is non-differentiable thus making the calculation more difficult. In this 
implementation, we used a toolbox known as Sparse Learning with Efficient Projec
tions (SLEP) to solve the optimization [53]. SLEP is a gradient based approach that 
is efficient and thus suitable for large data  sets.

In this section, we discuss a brief outline of the SLEP method. A more detailed 
description can be found in [54]. SLEP is based on an adaptive line search method 
known as Nesterov’s method. A line search method is an iterative approach to find
ing a local minimum. Essentially, these minimization techniques find a descending 
direction and compute a step size along the direction of the descent. The process 
is iterated until a local minimum is found. Common line search techniques include 
gradient descent and Newton’s method.

The first obstacle in line search methods is to  calculate a gradient. Let b  =  
[bi,b2, .. -, bm]T, 1 be a vector of all ones, c is a vector with all entries being c and 
A  =  [&iai, b2a2, , bmam\. The gradient f '(w, c) can be calculated as below:

f '{w,c) = [Vwf(w ,c )T, 'Vcf(w,c)]T

V cf(w ,c)  = - -  b T( l - p )  
m



33

V wf(w ,c )  =  ~ — A t ( 1  -  p) 
m

p =  1./(1 4- exp (—Aw  — b O  c))

where © denotes component-wise multiplication.
Now, consider the problem to be a smooth convex minimization problem where 

the weights are constrained to an ^i-ball:

min g (w , c)
XUyC

subject to < 2 :

Nesterov’s method is an optimal first-order line search method for smooth convex 
optimization. As with other line search methods, there are two sequences: {x*,} and 
{«*}. Here, {x*,} is the sequence of approximate solutions and {s*} is the searching 
sequence.

Sk =  Xfc + /?fc(Xfc -  x k- x)

Xk+ 1  =  Sfc -  -j-g'(sk)
X>k

where (3k is a tuning parameter. L is called the Lipschitz gradient. Thus 1/Ljt can 
be seen as a step size where:

L = max ~ < +oc
x^y ||x -  y II

An illustration of Nesterov’s method is shown in Figure 6. Here, the search point 
Sk is the affine combination of Xk-i and x*. Each successive x* is dependent on the 
gradient at Sk and the step size. The values are computed recursively until they 
arrive at the optimal solution x*.

The global convergence rate of this method is 0 ( l / k 2) while gradient descent, a 
popular line search method, is 0 ( 1 / k).

3.2.3 G R A PH  C O N STR U C TIO N

In the previous sections, the background of the ^i-norm is discussed. In partic
ular, the differences between the ^j-norm and the ^2~norm are identified along with 
the sparsity property of the ^j-norm. Also, a brief overview in solving an £\ opti
mization problem was discussed. The next few sections focus on the application of
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\ \
sk=xk+ p k(xk-xk.1)
xkn = sk+ g '(sk)/Lk

\

Figure 6: Example of Nesterov’s method

£\ minimization to manifold learning.
In this section, the graph construction of Isomap is modified using a sparse l\ 

optimization. Recall from Section 2.1.2, the Isomap algorithm consists of three steps. 
First, a neighborhood is created to form a neighborhood graph. Next, a geodesic 
distance matrix is calculated from the neighborhood graph. This matrix will consist 
of pairwise distances between every sample of the data  set where the distances are 
calculated by paths from the neighborhood graph. Finally, dimensionality reduction 
is performed on the distance matrix to form the lower dimensionality space while 
preserving the geodesic distances found in the second step. A successful manifold 
using Isomap depends largely on the formation of the neighborhood graph. In some 
cases, it has been found that a good graph construction is more important than 
selecting a good manifold learning algorithm [55].

One of the major drawbacks of the Isomap algorithm is that it is susceptible to 
leaking or short circuiting. This can happen if neighbors are selected such tha t a 
short cut is created between two areas that do not follow the intrinsic structure of the 
manifold. As a result, large geodesic distances are misrepresented as short distances 
because of a poorly formed graph. As an example, refer to Figure 7. The intrinsic 
distance between the two points along the intrinsic structure is large. However if there 
were neighbors directly between the two points, the distance calculated will adhere 
more with the dotted line producing an erroneous geodesic distance calculation. The 
leaking problem is especially prevalent in noisy data sets. The graph construction is 
thus a very critical step for the Isomap method to create a successful manifold.
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Figure 7: Swiss roll leak example. Blue solid line shows geodesic distance while 
dotted blue line shows Euclidean distance between the same points.

Because of the short circuiting problem, it is undesirable to have a large neighbor
hood. In the original graph construction method, the nearest neighbors are chosen 
from £>nearest neighbors using Euclidean distance. The selection of k is critical in 
creating a good graph. If k is too large the risk of short circuiting is higher. On 
the other hand, if k is too small, the graph may not be fully connected. Another 
problem that occurs is that a good k value for one location may be inappropriate 
for another location. In this section, these problems are addressed with an adaptive 
neighbor selection method implemented with the £i-norm.

Consider an n x m  high dimensional data set X  that we want to connect via a 
graph. Now consider a target sample Xi which will need to be connected to a few 
neighbors. A reconstruction cost function is used such that:

1 2
min -  \\Xui -  x t \L -f A ||cu>*|LWi>0 z

with the constraint,

Wi|| > 0
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The first term is the reconstruction error while the second term enforces the i\ 
sparsity. Here, the tuning parameter A controls the contribution of the sparsity term. 
The additional constraint is added so that there is at least one non-zero weight. Any 
sample, Xj, from X  that has a non-zero weight, ujzj, will be considered a neighbor.

In this optimization, every point in X  is a potential neighbor for Xi. Since the 
number of samples will generally be high, the computational expense could also be a 
problem. It is safe to assert that the neighborhood should also be close with respect 
to the ^2 -norm. Therefore, the computational problem can be avoided by limiting 
the number of samples that could be potential neighbors. The neighborhood is first 
confined to the k nearest neighbors. This will guarantee that neighbors will not be 
selected far away from the target point and also speeds up the l \  optimization. Thus, 
the final optimization becomes:

j g g i l l x w ^ - ^ H j  +  A l W i  ( l )

where are the k nearest neighbors of x t . The entire graph is found by find
ing neighbors for all samples in the data set X .  The optimal value for k will vary 
depending upon the application but a good starting value may be the dimension
ality of the original dataset m. This is because the reconstruction term is a linear 
combination of neighbors. If the number of neighbors selected is above the original 
dimensionality k > m, the solution may be linearly dependent and result in an infi
nite number of solutions for the reconstruction term. After the graph is constructed 
using the proposed ^i-norm approach, the remaining steps of the Isomap algorithm 
follow normally.

3.2.4 EM BED D IN G

The method for embedding as described in Section 3.1.3 was modified. The 
goal of this effort is to more effectively recombine points that are not used in the 
dimensionality reduction step into the manifold skeleton. The basic LLE algorithm 
requires one parameter k for the number of neighbors to use as weights. By using the 
^i-norm, the neighbors can be chosen automatically among all n  data  points. The 
non-zero weights of Wrk correspond to the neighbors selected to make a reconstruction 
of the point in manifold space. This adaptive approach is expected to be more robust 
since the value for k is not fixed for each data point. The LLE equation from Section
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3.1.3 is thus modified as follows:

E ( W )  = J 2 +  A ^ | t V r l |,
fc=l

x T ~ Y , w r k x k

fc=1

The £j-norm in the second term promotes sparsity of the solution. This is because 
most weights calculated from the ^i-norm will be zero. The few neighbors with a 
non-zero weight, WTk, will be chosen as the landmarks to reconstruct the data  in the 
low dimensional manifold. The tuning parameter A controls the trade-off between 
reconstruction error and sparsity of the solution.

One drawback to this is that the localization of neighbors in Euclidean space is 
not guaranteed. This is because each point in the data  set is considered to be a 
potential neighbor. Another consequence of the large number of potential neighbors 
is that the number of non-zero weights could potentially be very high.

In a sense, the f^-norm has the benefit of having an adaptive number of neighbors 
while the original method guarantees localization and a maximum number of neigh
bors. In order to incorporate all of these properties, the i \  optimization function was 
then modified to only select neighbors from within the /c-nearest neighbors:

E ( W )  = Y1 x r - J 2 w rtx k
k=1

2

fc=l

The neighbors in this formula are restricted to the k' nearest neighbors of each 
point. In the implementation, k' can be a larger number than typically used in the 
original method since the sparsity term will reduce the number of neighbors. As with 
the f’l-norm based graph construction approach, a starting value for the number of 
nearest neighbors k' may be the number of dimensions in the original data  set. Using 
the weights found from this new cost function, the embedding can still be performed 
following the same procedure as LLE.

3.2.5 SUPERVISED G R A PH  M ETH O D

In this section, a change to the proposed method is introduced to alter it for 
supervised learning. The graphing technique presented in Section 3.2.3 is an unsu
pervised approach. In other words, the method will try  to find the manifold only 
using unlabeled data. In many data sets, the class label of the training information
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is prior information. To fully utilize the information available, an adaptation is in
corporated into the proposed general procedure to account for labeled information. 
Intuitively, samples should be connected to other samples that are the similar to 
itself. The ^i-norm in Section 3.2.3 selects only a few neighbors tha t can reconstruct 
the target point. The goal is to have neighbors that are similar to the target point or 
are of the same class as the target point. In the supervised method where training 
labels are known, the set of potential neighbors can be selected such that only same 
class labels are selected as neighbors.

In this case, the set of potential neighbors only contains the k  nearest neighbors 
belonging to the same class as x*.

A problem arises when this approach is used. If samples are only connected to 
its same class neighbors, then the graph will not be fully connected. There will be 
no path through the graph to connect any inter-class points. While this separation 
may seem beneficial, it poses a problem when making comparisons between multiple 
classes. For example, it is not possible to conclude whether an unlabeled data  point 
is closer to one class or another.

Thus, a modification to the supervised approach is necessary. In particular, it 
is necessary to create an additional connection, edge weight, or branch in the graph 
to join disjoint clusters. But the core of the problem is is how to do so. Here, we 
propose two different methods to connect interclass clusters.

The first method is to create a branch in the graph connecting the closest two 
neighbors of two class clusters. Consider two clusters from classes A  and B  whose 
samples are x ^  and x(S) respectively. The selection of the two closest points can be 
written as below:

arg mm x.( A )

Thus, a connection is added in the graph between points x \A  ̂ and XjB\  This 
example showed a two class data set but the process is easily repeated for multiple 
classes.

The second method we propose is to connect the centroids, or geometric center, 
of class clusters. This is inspired by the A;-means clustering method. Consider a 
data set X  with m classes such that the clusters for each class is represented as 
XW, X ^ \  . . . ,  X(mK The centroid, C, is calculated as follows:
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1

C<,) =  7^ > S > <0«
i=i

where is the number of samples in class i. Since the actual centroid generally 
does not correspond to a point that exists in the sample set. The closest sample point 
is instead selected

arg mm x f  -  a®

The centroids for each class cluster is found and are connected to one another in 
the manifold graph.

During our experiments with these two schemes, it was found tha t the second 
approach was more robust and stable. This may be due to the first approach being 
susceptible errors caused by dense data sets and outliers. Class clusters are often 
overlapping. So by connecting the two closest points of two class clusters, there 
would not be much separation between the classes. Even if the clusters are generally 
well separated, one outlier falling near the center of an interclass cluster will result 
in manifold distances that are skewed to be shorter than expected.

Also, the second approach was found to be less computationally intensive than 
the first. This can be explained in the two class problem. Consider two class clusters 
with N\ and N2 samples. Since the first problem requires a distance calculation be
tween every sample of both class, the computations required is O (N\ * N2). On the 
other hand, the second method’s centroid calculation requires O (Nx + N2) calcula
tions. This trend compounds further when more classes are considered. Because of 
these reasons, the second inter-class connection approach is used in the experiments 
presented in Chapter 4.
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C hapter 4  

VALIDATIO N O N  B E N C H M A R K  DATA SETS

In this chapter, experiments were conducted using the methodology described 
in Chapter 3. The goal is to first validate the sparsity enhancements of the graph 
construction and embedding steps. A variety of benchmark data sets are used to test 
the two modules. Next, experiments were conducted on the full proposed approach 
with the combination of the graph construction and embedding alterations. In this 
case, popular image data sets were used. In further chapters, the proposed system is 
applied to a MRI brain tumor classification and progression prediction data set.

4.1 UCI DATA SETS

The first set of benchmark data used are from University of California Irvine’s 
(UCI) machine repository [56]. Since multiple data  sets are used from this repository, 
it is useful to describe each data set all at once. The UCI repository consists of 
many data sets suitable mainly for classification. Of the 188 classification data sets 
offered in the repository, five were chosen due to their use of quantitative data versus 
qualitative values and their prolific use in the literature.

wine: The wine data set has 13 variables. Essentially, this is a classification prob
lem to identify three kinds of wine cultivars using the provided data. These attributes 
include alcohol, malic acid, ash, alcalinity of ash, magnesium, total phenols, fla- 
vanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 
of diluted wines, and proline. This data set contains 178 samples. Chemical analysis 
were performed on the wines grown in the same region in Italy but derived from 
three different cultivars. The classification is to  identify the cultivar from the wine 
it produced.

w dbc: The Wisconsin diagnostic breast cancer (wdbc) data set is a classification
data set with two classes, malignant and nonmalignant. The data set includes 569 
cell samples with each sample represented by 30 variables. Of which, ten variables 
are real-valued features computed from each cell nucleus. The class distribution of



41

this data set is 357 benign and 212 malignant samples. The data set was created 
by University of Wisconsin’s Dr. William H. Wolberg and include patients seen by 
Dr. Wolberg since 1984. The data was taken from patients exhibiting invasive breast 
cancer but with no evidence of distant metastases at the time of diagnosis.

ionosphere: The ionosphere data set was collected by a radar system in Goose
Bay, Labrador of Canada. Recall th a t the ionosphere is the term for a region of 
the upper atmosphere from 53-370 miles in altitude. The goal of this data  set is 
to determine if the radar signals return a signal of structures in the ionosphere. A 
“Good” labeled instance represents a radar signal with evidence of some type of 
structure while “Bad” labeled instances do not and have a signal th a t pass through 
the ionosphere. This data set contains 351 samples with 34 variables. The radar 
system consists of 16 high-frequency antennas that uses a total of 6.4 kilowatts of 
power.

m usk: The musk data set is another classification data  set. This time, the classifi
cation is to separate molecules as musks and non-musks. The data set started with 
92 molecules that were judged by human olfactory experts to belong to  each class. 
Of the original 92 molecules, 47 were determined to be musks while the remaining 45 
were non-musks. To represent the molecule, 166 variables that describe the molecules 
shape, conformation, and size are selected thus resulting in 166 dimensions. Since 
molecular bonds can rotate, a single molecule can be represented in many different 
shapes. By considering the rotations, 476 molecule combinations are generated. So 
in summary, this binary classification data set contains 476 samples each with 166 
features.

sonar: The sonar data set is interested in classifying sonar signals bounced off
a metal cylinder versus those bounced off a roughly cylindrical rock. The data 
set contains 208 samples, of which 111 are of a metal cylinder at various angles 
and under various conditions while 97 are from rocks under similar variations. A 
frequency-modulated chirp was transmitted to the object while incrementally raising 
the chirp frequency. In total, each sample is represented by 60 features ranging from 
0 to 1.0. The feature represents the energy of a particular frequency band over a 
period of time.
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4.1.1 h  G R A PH  C O N STR U C TIO N  E X PE R IM E N T

First, the graph construction module of the proposed t\ method is tested using 
data sets from the UCI repository. In each experiment, |  of the samples axe used 
for training. The remaining |  of the samples are used for testing. The goal of 
this experiment is to compare the graph construction of Isomap using the standard 
approach versus the proposed adaptive neighborhood selection. As this experiment 
focuses only on the graph construction and not other modules such as sampling or 
embedding, the separate modules are avoided by applying manifold learning on the 
entire data set. In this way, no sampling occurs and since there are no out-of-sample 
points, there is no embedding that needs to be done.

Classification was performed on the learned manifold using fc-nearest neighbor 
classification with k =  5. The number of nearest neighbors for graph construction 
is varied from 5 to 15 with each data set. In the case of the proposed l \  neighbor 
selection approach, the number of nearest neighbors represents the size of the maxi
mum size of the neighborhood selected. Due to  the sparsity property of the proposed 
graph construction, the actual number of nearest neighbors may be smaller. The pa
rameter controlling the sparsity, A of the i \  term  from Equation 1 was set to A =  0.1. 
Each experiment was conducted 10 times and the average classification accuracy was 
recorded.

Figures 8-12 show the results from data sets in the UCI repository. In each of 
the figures, the vertical axis represents the average classification accuracy over 10 
trials. The horizontal axis is the number of nearest neighbors used for the graph 
construction step. The blue solid line represents the standard Isomap approach with 
nearest neighbor graph construction. The red line with “o” markers represents the 
proposed l\  enhanced graph construction method.

The results proved to be promising. The proposed graph construction method 
showed improvement compared with standard Isomap. In Figures 9, 10, and 12 were 
consistently improved. Figures 8 and 11 showed a comparable result between the 
two methods. Thus, the proposed method either performs better or comparable to 
the original. Also from the figures, it can be seen that the proposed method is more 
robust to the number of nearest neighbors selected. For example in Figure 10, the 
classification accuracy for classical Isomap degrades after 8 nearest neighbors while 
the accuracy of the proposed remains relatively stable. The performance drop of the 
standard Isomap approach may be due to the manifold leakage. This suggests that
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Figure 8: Classification accuracy for ionosphere data set. The red line with "o” line 
markers denotes proposed method. Blue line represents Isomap.
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markers denotes proposed method. Blue line represents Isomap.
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markers denotes proposed method. Blue line represents Isomap.
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Figure 12: Classification accuracy for sonar data set. The red line with “o” line 
markers denotes proposed method. Blue line represents Isomap.

the C-based approach is effective in overcoming the leaking problem.

4 . 1 . 2  £ i  G R A P H  C O N S T R U C T I O N  R E S U L T S  V E R S U S  S L P P

Another experiment was conducted testing the efficacy of the proposed graph 
construction versus another sparse projection approach. Recall, sample-dependent 
locality preserving projection (SLPP) described in Section 2.3.2. Like the proposed 
method, this dimensionality reduction technique is also focused on preserving sparse 
neighborhood relationships.

This experiment was conducted matching the same specifications as presented 
in the SLPP literature [1]. The wine data set was reduced to a two dimensional 
projection using various dimensionality reduction techniques. As the methods being 
compared were all unsupervised, the unsupervised version of the proposed method is 
used in this experiment. Figure 13 shows the results. Going from left to right and top 
to bottom, the methods used in this test were the proposed approach, SLPP, locality 
preserving projection (LPP) [46], unsupervised discriminant projection (UDP) [57], 
neighborhood preserving embedding (NPE) [58], and PC A. The plots for all methods 
except the proposed approach were generated by [1]. A reuse license for this figure
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Table 1 : Wine results

Method Accuracy (Std Dev)
Raw 82.6 (.23)

Isomap 91.6 (.21)
^i-Isomap 97.8 (.41)

Supervised Isomap 96.6 (.14)
Supervised -graph 97.8 (.25)

is given in the Appendix. The paper left no quantitative results but rather empha
sized the separation between classes. Judging from this metric, it is apparent that 
the proposed method provides a better separation between the three classes when 
compared to the other five methods.

Classification was applied on the data set to produce numeric results. The 
graph construction method was tested against Isomap and variations of the pro
posed method. k-n.n classification with k — 5 was implemented as the classification 
algorithm. The sparsity parameter A was set to  0.1.

Table 1 shows the average results over the 100 trials between the tested meth
ods. Here, Raw represents the results with no manifold learning. The classification 
was applied directly on the 13-dimensional original data  set. This gives a baseline 
for comparison. Basic Isomap showed an improvement over the baseline suggesting 
that the data set is indeed nonlinear in nature. The proposed ^-enhanced Isomap 
shows an improvement on the regular Isomap approach with 0.987 versus 0.916 accu
racy. Next, the supervised graph construction method described in Section 3.2.5 was 
employed. Recall this method only connects same-class neighbors during the graph 
construction step. This improves the classification accuracy of Isomap to 0.966 while 
the supervised ^i-graph construction showed no difference. This is likely because the 
proposed unsupervised f^-graph construction already tends to select same class neigh
bors. The separation of classes seen in Figure 13 also support this claim. Figure 14 
shows the first two principle dimensions using the proposed unsupervised i \  method, 
the supervised version of Isomap, and the supervised version of the method. The 
separation of classes in each case is evident. Again, it is clear tha t the unsupervised 
i\  graph construction creates a similar manifold as the supervised approaches.
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4.1.3 t x EM BEDDING  E X PE R IM E N T S

Next, experiments on the t\  embedding portion of the proposed method are tested 
using the UCI data sets described in Section 4.1. The goal of this experiment is to 
compare embedding using LLE versus the proposed ^-based sparse approach. In 
contrast with the graph construction test, a subset of the samples are randomly se
lected for manifold learning. In each experiment, |  of the data set is used by standard 
Isomap to compute a manifold. The remaining |  of the samples are embedded into 
the manifold using the tested method.

Classification was performed on the learned manifold using fc-nearest neighbor 
classification with k =  5. The number of nearest neighbors for embedding is varied 
from 5 to 15 with each data set. In the case of the proposed £i neighbor selection 
approach, the number of nearest neighbors represents the size of the maximum size of 
the neighborhood selected for reconstruction into manifold space. Due to the sparsity 
property of the proposed embedding approach, the actual number of nearest neigh
bors may be smaller. The sparsity parameter from Equation 2 for these experiments 
were set to A =  0.01. Each experiment was conducted 10 times and the average 
classification accuracy was recorded.

Figure 15-19 show the results from data sets in the UCI repository. In each of the 
figures, the vertical axis represents the average classification accuracy over 1 0  trials. 
The horizontal axis is the number of nearest neighbors used for the embedding step. 
The blue solid line represents the standard LLE approach. The red line with “o” 
markers represents the proposed l \  enhanced embedding.

Figures 15, 16, and 17 show that the proposed embedding performed better than 
the standard embedding. But in Figures 18 and 19, the two approaches have com
parable results. Note that the classification accuracy for these two data sets are 
lower than the others. This may be due to a problem in creating the manifold. 
Since these data sets are small, the 1  /3  of samples used to  create the manifold may 
not be enough to achieve a successful manifold skeleton. A conclusion that can be 
pulled from these experiments is that the proposed i \  based neighborhood selection 
for embedding generally performed better than standard LLE for embedding after 
Isomap.
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Figure 15: Classification accuracy for ionosphere data set versus the number of near
est neighbors for embedding. The red line with “o” line markers denotes embedding 
with fj-embedding. Blue line represents embedding with LLE.
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Figure 16: Classification accuracy for wdbc data set versus the number of nearest
neighbors for embedding. The red line with “o” line markers denotes embedding
with fy-embedding. Blue line represents embedding with LLE.
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Figure 17: Classification accuracy for wine data set versus the number of nearest 
neighbors for embedding. The red line with “o” line markers denotes embedding 
with ^-embedding. Blue line represents embedding with LLE.
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Figure 18: Classification accuracy for musk data set versus the number of nearest
neighbors for embedding. The red line with “o” line markers denotes embedding
with ^-embedding. Blue line represents embedding with LLE.
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Figure 19: Classification accuracy for sonar data set versus the number of nearest 
neighbors for embedding. The red line with “o” line markers denotes embedding 
with -embedding. Blue line represents embedding with LLE.

4.1.4 EM BED D IN G  RESULTS W IT H  HELIX

Along with the UCI experiments on the embedding module, another data set 
was tested to provide additional results. A 5000-sample synthetic helix data set was 
generated. The helix is a one dimensional line embedded into a spiral shape in three 
dimensional space. Figure 20 shows an example of a helix used in this experiment. 
The data set is comprised of two classes, shown as blue and red in the figure.

In this experiment, 1500 of the 5000 samples are used to create the manifold using 
LTSA. Recall LTSA is described in Section 2.1.2. This method was used over Isomap 
because it offered a faster computational time. The remaining 3500 are embedded 
into the manifold skeleton. A;-nearest neighbor classification is used to determine the 
class of the embedded samples where k = 1. The experiment was repeated over 30 
trials. Table 2 shows the results of this experiment in terms of average classification 
accuracy. The number in parenthesis is the standard deviation. Figure 21 shows an 
example unfolded manifold for LLE and C-enhanced embedding.

Figure 21 shows an example result from each of the two methods. On the left of 
the figure shows the manifold found with £j-embedding that is correctly unfolded.
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(left) and the intrinsic 1 -dimensional representation (right)
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On the right is an incorrectly unfolded manifold using the original method. The 
results show that l\ embedding performed marginally better than LLE.

4.2 RESULTS OF NEW  P R O PO SE D  M ETH O D  ON IM A G E DATA  
SETS

In the previous section, numerical data from the UCI machine learning repository 
are used to individually test the sparse -enhanced graph construction and embed
ding steps. Next, the full proposed manifold learning system is applied to three image 
data sets; the University of Manchester Institute of Science and Technology (UMIST)
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Table 2: Helix data set classification accuracy for embedding experiment. Standard 
deviation is shown in parenthesis.

Experiment Accuracy
LLE .878 (.082)

i i  embedding, A =  0.01 .907 (.084)
i i  embedding, A =  0.03 .930 (.060)
£i embedding, A =  0.05 .898 (.073)
t \  embedding, A =  0.07 .915 (.068)

face database, the Columbia University Image Library object database (COIL-20), 
and the Yale University face database (Yale). These image data sets were selected 
because of their non-linearity and prevalence in manifold learning literature.

4.2.1 UM IST

The UMIST face data set [59] is a common benchmark data set used in machine 
vision testing. The data set contains 564 face images of 20 subjects. The subjects 
vary in race, gender, and appearance. The subjects are photographed while varying 
the pose angle. Figure 22 shows sample images from one individual of the data 
set. The files are originally approximately 220x220 pixels with 256-bit grey-scale. 
To make the images more uniform, each image was down-sampled to 40x40 pixels. 
This was then converted into a vector by stacking the columns. Thus, each sample 
contains 1600 dimensions.

This experiment was modeled after an experiment conducted in the literary work 
presenting DONPP [27]. For this data set, a small number of samples are randomly 
selected from each subject. Separate experiments are taken with 5, 7, and 9 training 
samples for each subject. Since there are 20 subjects/classes in this data set, the 
number of training samples are 100, 140, and 180 respectively. Isomap is used to 
find the manifold from the training samples using the l x graph construction method 
described in the proposed method. The remaining data samples are embedded into 
the manifold skeleton using the t\  embedding technique. Classification is performed 
using k-nn nearest neighbor classification with k = 1. Each experiment is repeated 
10 times. The average classification accuracy and standard deviation is recorded.

Table 3 shows the results. We calculated the results for PCA, LTSA, standard



Figure 22: Sample images of one subject in the UMIST face database
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Table 3: IJM[1ST results
Method 5 Training 

Samples
7 Training 
Samples

9 Training 
Samples

PCA 83.68 (1.34) 89.89 (2.42) 93.19 (1.95)
LTSA 81.66 (2.79) 88.90 (2.28) 91.72 (2.51)
Isomap 79.69 (2.87) 86.67 (3.17) 88.80 (1.52)
LLE 78.75 (7.33) 85.66 (2.17) 95.95 (3.83)
LDA* 88.51 93.31 95.14
LPP* 86.06 91.36 93.44
NPE* 86.53 91.52 94.30
MFA* 92.61 94.28 96.20
ONPP* 92.34 95.89 97.52
DONPP* 93.27 96.85 98.17
Proposed l\ 92.11 (1.81) 96.41 (1.25) 98.00 (0.95)

Isomap, LLE, and the Proposed approach. The methods labeled with an asterisk 
were performed by [27] and are presented as reference. These values are presented 
without a standard deviation. Figure 23 shows the first two dimensions for the 
manifold of the proposed approach. Each color represents a different class. The 
separation of clusters suggest tha t manifold is unfolded correctly.

From Table 3, the proposed approach showed a marked improvement over classical 
Isomap, LTSA, along with the linear methods. It showed a comparable result to 
DONPP.

4.2.2 COIL-20 DATABASE

The COIL-20 [60] image database consists of objects placed on a motorized 
turntable against a black background. Images were taken while the object was ro
tated 360 degrees. Thus, the object’s pose is altered. A total of 72 images were taken 
of each object with an rotation interval of 5 degrees. Figure 24 shows sample images 
of the 20 objects in the COIL-20 database. To normalize the images in this data set, 
each image is down-sampled to 40x40 pixels.

This experiment was modeled after an experiment conducted in the literary work 
presenting DONPP [27]. For this data set, a small number of samples are selected 
for each subject. Separate experiments are taken with 5, 10, and 15 training samples 
for each subject. Since there are 2 0  objects/classes in this data set, the number



Figure 24: Sample images of 20 objects in COIL-20

of training samples are 100, 200, and 300 respectively. Isomap is used to find the 
manifold from the training samples using the £\ graph construction method described 
in the proposed method. The remaining data samples are embedded into the manifold 
skeleton using the £\ embedding technique. Classification is performed using fc-nn 
nearest neighbor classification with k = 1. Each experiment is repeated 10 times. 
The average classification accuracy and standard deviation is recorded.

Table 4 shows the results. We calculated the results for PCA, LTSA, standard 
Isomap, LLE, and the Proposed approach. The methods labeled with an asterisk 
were performed by [27] and are presented as reference. These values are presented 
without a standard deviation. Figure 25 shows the first two dimensions for the 
manifold of the proposed approach. Each color represents a different class. The 
separation of clusters suggest that manifold is unfolded correctly.

From Table 4, the proposed approach again showed a marked improvement over 
classical Isomap. The results show that the proposed approach is better than all 
methods tested except for DONPP, which produced a comparable result. Compared 
to other methods in each test, the proposed approach’s classification accuracy is at 
least one standard deviation higher. For 5 training samples per class, DONPP is 
marginally better while the proposed approach is marginally better for 1 0  training 
samples per class. The classification accuracy of these two methods are the same for 
15 training samples.
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Figure 25: First 2 dimensions of manifold space for COIL-20

Table 4: CO]L-20 results
Method 5 Training 

Samples
10 Training 
Samples

15 Training 
Samples

PCA 81.88 (2.39) 89.14 (1.00) 93.43 (0.73)
LTSA 53.99 (3.09) 55.86 (2.68) 55.45 (3.79)
Isomap 75.11 (3.19) 83.29 (2.76) 88.87 (1.35)
LLE 72.06 (4.07) 84.40 (7.04) 91.73 (0.98)
LDA* 80.82 87.24 91.76
LPP* 80.08 86.82 91.32
NPE* 80.43 87.15 91.45
MFA* 81.94 88.25 90.70
ONPP* 85.82 91.83 94.81
DONPP* 87.36 94.11 97.04
Proposed i\ 87.17 (1.30) 94.37

(1.32)
97.04
(0.57)



Figure 26: Sample images of one subject in the Yale face database

4.2.3 YALE DATABASE

The Yale database [61] is comprised of 15 subjects. The samples within each 
subject vary with facial expression and lighting. There are 11 images for each subject 
for a total of 166 sample images. For each subject, there is one image per different 
facial expression or configuration: center-light, w/glasses, happy, left-light, w/no 
glasses, normal, right-light, sad, sleepy, surprised, and wink. A sample set of sample 
images for one subject of the Yale database is displayed in Figure 26. As with the 
UMIST and COIL-20, the Yale database is also down-sampled to 40x40 pixels.

This experiment was modeled after an experiment conducted in the literary work 
presenting DONPP [27]. For this data  set, a small number of samples are selected 
for each subject. Separate experiments are taken with 3, 5, and 7 training samples 
for each subject. Since there are 15 objects/classes in this data set, the number of 
training samples are 45, 75, and 105 respectively. Isomap is used to find the manifold 
from the training samples using the graph construction method described in the 
Proposed method. The remaining data samples are embedded into the manifold 
skeleton using the l \  embedding technique. Classification is performed using fc-nn 
nearest neighbor classification with k = 1. Each experiment is repeated 10 times. 
The average classification accuracy and standard deviation is recorded.

Table 5 shows the results. We calculated the results for PC A, LTSA, standard 
Isomap, LLE, and the Proposed approach. The methods labeled with an asterisk 
were performed by [27] and are presented as reference. These values are presented 
without a standard deviation. Figure 27 shows the first two dimensions for the 
manifold of the proposed approach. Each color represents a different class. The 
separation of clusters suggest that manifold is unfolded correctly.
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Ta ole 5: Yale face database resu ts
Method 3 Training 

Samples
5 Training 
Samples

7 Training 
Samples

PCA 74.74 (2.65) 79.01 (3.49) 82.46 (3.37)
LTSA 69.67 (5.40) 72.2 (5.60) 80.98 (2.81)
Isomap 68.43 (3.44) 73.63 (3.70) 76.07 (4.18)
LLE 69.32 (7.06) 71.98 (4.49) 76.90 (6.81)
LDA* 64.08 72.78 80.83
LPP* 67.00 73.44 82.33
NPE* 68.40 74.33 81.17
MFA* 64.33 73.44 82.67
ONPP* 67.90 77.00 82.83
DONPP* 68.75 77.44 84.33
Proposed l\ 81.07

(2.11)
85.05
(2.50)

88.03
(2.45)
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Figure 27: First 2  dimensions of manifold space for yale
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For this final image data set, the proposed approach produces a higher classifica
tion accuracy than the other methods in each of the tests.

4.3 BENC H M AR K  RESULTS SU M M A R Y

In summary, the proposed l \-enhanced manifold learning shows a considerable 
improvement to the standard Isomap approach in the benchmarks. The proposed 
system also has comparable results to DONPP for two image data sets while per
forming considerable better in one of the tested image data sets.
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A P P L IC A T IO N  TO M R I DATA SET

In this chapter, the process of reducing a large-scale high-dimensional data set 
into a low-dimensional manifold is discussed with a focus on MRI data. The incre
mental approach from Section 3.1 is used. The adaptive based enhancements are 
applied to this data set in Chapter 6 . This application incorporates multiple signal 
processing methods including standardization, sampling, dimensionality reduction, 
feature selection and classification [62],

5.1 M RI EX PER IM EN T IN T R O D U C T IO N

W ith the rapid advancement of diagnostic imaging technology, multi-dimensional, 
large-scale, and heterogeneous medical data sets are generated routinely in clinical 
imaging exams. For instance, magnetic resonance (MR) diffusion tensor imaging 
(DTI) has become a routine component of the brain MR imaging exams in many in
stitutions. Together with the traditional T l, T2 or fluid attenuated inversion recovery 
(FLAIR) weighted MRI scans, this new imaging modality has provided additional 
information and has shown potential for better brain tumor diagnosis. However, in
terpreting these large-scale, high-dimensional data  sets simultaneously is challenging 
[63, 64]. For example, quantitative maps of apparent diffusion coefficients (ADC) 
derived from DTI imaging have been reported as useful indicators in distinguishing 
tumor tissue from surrounding edema by Sinha et al [65]. But other researchers 
found that the differentiation has not always been successful [6 6 , 67, 6 8 ]. Lam et. 
al reported tha t ADC values were not useful in identifying tumor types [69]. These 
claims have been challenged by a number of researchers whose results have shown 
that high-grade gliomas have lower ADC values while low-grade ones are opposite 
[67, 70, 6 8 , 71]. Analysis performed on fractional anisotropy (FA) values also showed 
contradictory results in FA’s ability for differentiation of enhancing tumor from ede
matous brain cancer [65]. Similar situations can also be found in meningiomas diag
nosis. A significant difference in peritumoral ADC and FA values between low-grade 
meningiomas and high-grade gliomas has been reported by Bastin et al. [72]. This
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possibly reflects the presence of tumor-infiltrated edema in gliomas. On the other 
hand, Lu et al. showed that there is no statistically significant difference of ADC 
and FA values between intra- and extra-axle lesions [73]. No significant difference 
was found for ADC values between peritumoral hyperintense regions or peritumoral 
normal-appearing white matter and high-grade gliomas [74].

The above contradictory results may be due to methodological variations which 
include, for example, mismatch of ADC values with the biopsy examination results 
[63], the use of diffusion gradients applied in a single direction instead of along 
three orthogonal directions, heterogeneous study group, differently categorized tumor 
types, patients having previous surgeries, adjuvant therapy, or use of steroids [64]. A 
single MRI scan may not provide enough discriminating power to reliably differentiate 
various tissues. Experiments using large-scale high-dimensional data sets from our 
recent studies [75, 76] have shown that one can efficiently differentiate brain tumor 
tissue from tissues in progressed and normal regions. In the previous study, we 
integrate all available MRI scans into a high-dimensional data set and perform a 
classification task in the high-dimensional space. Our results [75, 76, 77] indicated 
that an individual MRI scan is probably insufficient to reliably distinguish different 
tissue types. But taking advantage of multiple MRI images may lead to a successful 
classification because those different tissue types are located in different regions with 
possible overlaps in the constructed high-dimensional space.

Due to the fact that significant correlations exist among these multi-dimensional 
images, a hypothesis is made that low-dimensional geometry data structures (mani
folds) are embedded in the high-dimensional space. Those manifolds might be hidden 
from human viewers because it is challenging for human viewers to interpret high
dimensional data. When correctly extracted from the high-dimensional space, the 
hidden manifolds may provide particularly useful information for brain cancer stud
ies. For example, one may investigate the residence of cancer and normal tissues 
on the manifolds to derive rules to  accurately classify cancer regions. Moreover, the 
bridge manifolds connecting the cancer and normal tissue manifolds may provide 
hints for identifying cancer progression trajectory. This knowledge can be used for 
predicting future tumor growth and allow for better patient management. For exam
ple, tumor treatment can be adapted depending on the aggressiveness of the tumor 
growth.

Many manifold learning algorithms essentially perform an eigenvector analysis
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on a data similarity matrix whose size is N  x N,  where N  is the number of data 
samples. The memory complexity of the analysis is at least 0(iV2). This is not 
feasible for very large data sets in terms of both computational and storage require
ments for a regular computer. To solve this problem, statistical sampling methods 
are typically used to sample a subset of data points as landmarks. A skeleton of the 
manifold is then identified based on the landmarks. The remaining data  points can 
be inserted into the skeleton by a number of methods such as Nystrom approxima
tion, column-sampling, and Local Linear Embedding (LLE) [28, 78, 52]. To keep a 
faithful representation of the original manifold, effective sampling should be consid
ered. Under-sampling will distort true embedded geometry structures and thus lead 
to subsequent manifold learning failure. Oversampling may introduce unnecessary 
noise. For example, landmark multidimensional scaling (MDS) performs poorly for 
randomly chosen landmarks if the data is noisy (contains outliers) [79]. Also, data 
may sometimes collapse to a central point in the low-dimensional space if certain 
“important” samples are missing [52, 80].

In this chapter, we present a large-scale manifold learning schema for brain tu
mor study. First, a set of landmarks from a large data set was selected based on an 
importance function learned from the data. Next, a manifold skeleton was learned 
using the Isomap algorithm [19]. The remaining data points were then inserted into 
the skeleton using the LLE method [16]. There were several parameters to be opti
mized including the number of landmarks needed and the number of neighbors in the 
Isomap algorithm. Two cost functions were designed for optimizing the parameters. 
The method was applied to MRI data  sets from several brain tumor patients aiming 
to identify normal, tumor and progressed tissues on the manifold.

The contribution of this chapter consists of two parts: 1) the integration of exist
ing methods toward a novel application and 2 ) a new sampling approach for large- 
scale manifold learning.

5.2 PRO PO SED SYSTEM

Many current nonlinear dimensionality reduction techniques in the literature re
quire an eigen-decomposition of an N  x N  matrix. There are roughly 65k (each 
slice contains 256x256 pixels) high-dimensional data points in one MRI slice. Even 
segmenting just the brain region can usually yield over 30k points. Thus, applying a 
nonlinear dimensionality reduction technique directly on the data  is computationally
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prohibitive. Therefore, an advanced sampling technique was developed to select a 
set of landmarks based on local curvature variations. A manifold was learned from 
the set of landmarks to produce a manifold skeleton. The remaining data  points 
were then inserted into the skeleton using the Local Linear Embedding (LLE) al
gorithm [16]. After that, a Gaussian Mixture Model (GMM) classifier was trained 
using sampled points from the tumor and normal regions defined at visit 1. Using 
the model, a posterior probability map was found for the entire brain region. By 
adjusting the threshold of this probability map, a tumor region and a progressed 
tumor region can be predicted. Other classification methods an? also reviewed and 
are proposed for this research effort’s remaining work. The system diagram of the 
proposed framework is shown in Figure 28. In this section, each of these steps are 
described.

5.3 DATA PREPARA TIO N

The MRI data of brain tumor patients were collected using various MRI scans 
including FLAIR, Tl-weighted, post-contrast Tl-weighted, T2-weighted, and DTI.
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Figure 29: Examples of registered images from the ten MRI series: right to left) 
ADC, DTI, FA, FLAIR, Max-, Middle-, Min eigenvalues, Post-contrast Tl-weighted, 
Tl-weighted and T2-weighted.

Five scalar volumes were also computed from the DTI volume including apparent dif
fusion coefficient (ADC), fractional anisotropy (FA), max-, min-, and middle- eigen
values, yielding a total of ten image volumes for each visit of every patient. Each 
patient went through a series of scans with an interval of one or two months, and 
a rigid registration was utilized to align all volumes to the DTI volume of the first 
visit using the vtkCISG toolkit [81]. After registration, each pixel location can be 
represented by a ten-dimensional feature vector corresponding to the ten MRI vol
umes. Figure 29 shows images from the ten registered MRI volumes. Two visits were 
selected in this study and denoted as “visit 1 ” and “visit 2 ” where visit 2  showed an 
expanded tumor region. Hyper-intensity regions were defined on the FLAIR scans as 
tumors. A similarly sized region far away from the abnormal regions was also defined 
as a highly confident normal region for training purposes. Figure 30 shows example 
MRI slices overlaid on the defined tumor and normal regions.

5.3.1 IN T E N SIT Y  STA ND ARDIZATIO N

Different MRI scans do not follow a standard scale. Intensity values in MRI 
images can vary greatly between separate acquisitions [82]. This is the case even for 
imagery taken from the same patient, using the same machine, and with the same 
technician. Intensity scaling was performed as a preprocessing step for MRI images 
to ensure tha t the intensity ranges for similar structures are consistent between MRI
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/

Figure 30: Tumor and normal regions defined for Subject 1 where the red polygon 
defines abnormal regions and the yellow dotted polygon denotes normal regions, 
(left) FLAIR image at visit 1. (right) FLAIR image at visit 2 showing a larger 
tumor region.

acquisitions [83]. This step is essential if direct data comparisons are to be made 
between data acquisitions. In this study, the g-scale standardization was employed 
for its robustness to abnormal structures [83]. The presence of abnormal structures 
such as lesions can create problems for other techniques that scale images using 
the global histogram [84], The hyper-intensity region of the abnormal structure 
can cause an unpredicted increase in the overall intensity of the image histogram 
and skew standardization values. In contrast, the g-scale standardization finds the 
largest g-scale region which avoids including abnormal structures. A g-scale region 
is essentially a large fuzzy connected region. Intensity markers are found within 
the largest g-scale region to perform a linear transformation to a standard scale. 
These markers are features derived from the intensity histogram such as the mean, 
highest intensity, and lowest intensity. The largest g-scale regions of MRI data tend 
to exclude abnormal structures thus reducing its impact on the standardization. 
The transformation performed is a piece-wise linear histogram transformation based 
upon markers found in the largest g-scale region. Figure 32 shows the g-scale transfer 
function.

The main challenge in the g-scale standardization is to find a consistent structure 
in MRI images that can give reliable intensity markers in the presence of abnor
mal structures. The largest g-scale region of a typical MRI scan is a large white 
matter region [83]. To segment this region, [83] uses a fuzzy selector approach that 
separates the image into a multitude of fuzzy connected regions. Each of these
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regions are referred to as g-scale regions. More specifically, a g-scale region is essen
tially a fuzzy connected region where adjacent points satisfy a homogeneity condi
tion | / (c )  — / ( d )  | < 0g. Here, c and d are arbitrary neighboring points, 9g is the 
homogeneity threshold, /  (•) is the feature vector at a point, and |-| represents a dis
similarity metric. As shown in Figure 31, the largest g-scale region selected a large 
white matter region while avoiding abnormal structures since the transition to these 
areas do not satisfy the homogeneity condition.

Once the largest g-scale region was found, a transformation to a standard scale 
was made by assigning three marker values to the g-scale region, Pi, pi, and p2, 
where fa denotes the mean intensity value, and pi and p 2  represent the upper and 
lower bound pixel values in the g-scale region. In order to exclude outliers in the 
g-scale region, a percentage p of the data points with pixel values smaller than the 
lower bound or larger than the upper bound were trimmed. Assuming tha t values 
for a standard scale were obtained, each intensity value x  can be transformed to the 
standard scale through the following equations:

S2 +  ( x  -  S2) x  >  S2

f a + ( x -  P i )  P i < X < S 2 ^

p s + ( x -  P i )  Si <  X  < P i

where p a is the standard g-scale mean, s \  is the standard g-scale lower bound, and s 2  

is the standard g-scale upper bound. Those standard values were found by training 
as described below.

The standard g-scale intensity markers were found in the training phase by averag
ing marker values over a set of MRI images. In this study, 60 training samples having 
abnormal regions were selected. It is important to note that the derived sequences 
have absolute values and thus, the standardization algorithm was only applied to the 
acquired scans, FLAIR, Tl-weighted, post-contrast Tl-weighted, T2-weighted, and 
DTI. In our study, the largest g-scale region was found from the FLAIR sequence 
and used as a reference for all sequences. This is because the largest g-scale region in 
the FLAIR modality is more consistent in selecting similar structures than the other 
sequences. For each training sample, the mean intensity value p \ ,  lower bound p \ ,

x' =
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Figure 31: Standardization example, (left) Original image, (right) Contour shows 
g-scale region. A large white matter region is selected while avoiding the tumor.

5

Pi image scale
Figure 32: Standardization piece-wise transformation.

and upper bound pl2 were computed. The average of the mean values were calcu
lated for the entire training set to produce p s = ^  1 fA- Similarly, si and s2 can
be derived. This was repeated for the other acquired sequences to produce standard 
values for each sequence using the g-scale region found in the FLAIR sequence. The 
transformation function in Equation (3) was then used to transform each sequence 
to standard values. Ideally, all images will have the same scale after standardization.

5.3.2 A PPLY  INCREM ENTAL A PPR O A C H

The incremental approach described in Chapter 3 is applied to this data set. For 
sampling, the LCV method as described in 3.1.1 was used. The set of data that are 
sampled are considered training data while the remaining data points are considered 
the testing data. Isomap is applied on the sampled data to  produce a manifold. Since



Figure 33: Example set of sampled points. The sampled points are collected using 
LCV within the selected normal and abnormal regions. The dotted yellow contour 
denotes the marked normal region while the solid red contour denotes the marked 
abnormal region, (left) Original Image, (right) Sampled Points using LCV.

the manifold learned is only a subset of the entire data set, the manifold is referred 
to as the manifold skeleton.

The number of sampled points are varied between 1000, 1500, 2000, and 2500. 
Also, the number of nearest neighbors used for Isomap’s graph construction is varied 
between 9, 11, and 13. This results in 12 different combinations of parameters. 
To select the best combination, a validation method is applied to each manifold to 
produce a metric for comparison as described in the next section. The parameters 
that produce the best value for the validation metric will be used on the testing data. 
Thus, only one manifold will be selected while the others are discarded. Note that 
the validation is performed only on the sampled data points before embedding. The 
samples that were not selected to become landmarks during the sampling step are 
embedded into the manifold skeleton. Embedding into the manifold skeleton was 
implemented using local linear embedding.

5.3.3 VALIDATION OF THE L EA R N ED  M ANIFOLD SKELETON:

Successful manifold learning depends on many factors such as parameter choices 
for the learning algorithm and numerical stability of the algorithm. In this study, the 
need arises to determine the number of landmarks to be selected and the number of 
neighbors to be used by the dimensionality reduction algorithm. Two cost functions 
below are proposed,
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S F  =

and

_  No. of correctly classified training data 
Total no. of training data

where S F  is the stress function and Acc represents the training accuracy after man
ifold learning. Intuitively, if the nonlinear manifold in high-dimensional space is 
successfully unfolded, the Euclidean distance between points i and j  in the low
dimensional space will be the same as that of the geodesic distance in the high
dimensional space. If a set of labeled training data is provided, which is the case in 
our study, the Acc value is a good criterion to  verify the manifold learning. Other
wise, the stress function can be used in an unsupervised manner requiring no label 
information.

5.3.4 DIM EN SIO N  SELECTION:

After the manifold was learned, the intrinsic dimensionality of the data was found 
to be around four or five. However, the learned manifold dimensions are usually not 
equally important for the subsequent classification. In this step, a feature selection 
method was performed to identify important dimensions. The post-manifold dimen
sions were ranked by the Fisher score [85], which is a widely used supervised feature 
selection method and is defined for a two-class problem as,

F( j )  =  ^Zjl ~  Zj2^KJ) ~  s2 , „2

where Sji and sj 2  are the standard deviations of class 1  and class 2  for the feature 
and Zji and Zj2 are the means of class 1  and class 2  for the j ^ 1 feature respectively.

In the experiments, the Fisher scores for features beyond the third highest were 
found to be two orders of magnitude smaller than  the highest score. The lower scores 
were discarded in the subsequent classification step. After this step, the data set was 
reduced to three dimensions which can be easily visualized.
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5.3.5 CLASSIFIER T R A IN IN G

The last step is to classify the training data. In this section, various classification 
algorithms axe discussed. For the completed work, a GMM was used to  classify pixels 
in the MRI image to normal and abnormal regions. The GMM was chosen for this 
step since it results in a posterior probability map instead of a binary classification. 
Other algorithms presented here will be used in this framework’s future work.

GM M  Classifier

The data set was applied to a Gaussian mixture model (GMM) for classification. 
A benefit of using GMM is that a posterior probability mapping can be generated. 
Here, the landmarks chosen in the landmark selection step were used for training the 
parameters of the GMM using the Expectation Maximization (EM) algorithm [4]: 
Step 1: Initialize the means fa,  covariance <rfc, and mixing coefficients irk for the A;-th 
component in the GMM.
Step 2: Expectation step. Evaluate the responsibilities using the current parameters

where K  is the total number of components in the GMM. The responsibilities, 7 (unk), 
at each point can be viewed as the posterior probability of each Gaussian function. 
Step 3: Maximization step. Compute new parameter values using the current re
sponsibilities

TTfĉ V {zn\fa, (Tk)

n e w

n e w n e w

k N
where

N

N k  —  ^  ]  7  (/^ nfc)
n —1
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and N  is the total number of data samples for training. Here, the means, covariance, 
and mixing coefficients are re-estimated to maximize the responsibilities or posterior 
probabilities in Step 2.
Step 4: Evaluate the log likelihood

lnp(Z\n,a,Tr) = KkAf M t * k , 0 k ) \  (4)
n = 1 lf c = l J

If the values do not converge, then the process is reiterated at step 2. W ith each
iteration of the Expectation and Maximization step, the log likelihood function in
Equation (4) will always increase and is guaranteed to  converge to a local optimum.

After training, each point in the MRI data set can be classified into the class that 
has the highest probability p{Zc\n, E, 7r). Each pixel will then have a probability 
that the pixel belongs to the abnormal class and a probability map can be produced 
for the MRI data set. The final classification can be computed by thresholding the 
GMM classification probability.

SVM  classifier

Support vector machines (SVM) can also be used as a classifier. SVM separates 
class clusters with high dimensional hyperplanes such th a t the distance between data 
points and the hyperplane is maximized [8 6 ]. This can be conceptualized using the 
concept of a margin, which is defined as the smallest distance between any sample 
and the decision boundary. The SVM will thus find a decision boundary such that 
the margin from any sample to the decision boundary is maximized [4]. Considering 
the case of a two-class linearly separable data set, a decision boundary can be made 
such that all data points will satisfy the constraint

tn (wT<f>{xn) +  b) > 1, n — 1 , . . .  ,N  (5)

where N  is the number of input vectors, tn 6  {-1,1} signifies the target classifi
cation, w is a normal vector to the hyperplane, 4> (x) denotes a fixed feature-space 
transformation, and b is the bias parameter. In high dimensional space, this is the 
representation for the decision hyperplane. Maximizing the margin to the hyperplane 
can be represented by maximizing ||w | | - 1  or equivalently minimizing ||iu||2. Thus the
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optimization problem becomes

argm in^  ||u/||2 .
Wyb Z

In order to expand SVM to classes with overlapping class distributions, which 
are much more prevalent in real data sets than linearly separable data, a relaxation 
term must be included in the constraint in Equation 5. A slack variable > 0 is 
introduced for each data point x i . . .  x n and is defined as £ =  \tn — y  (xn)| where y  (x) 
is the predicted classification from the SVM. Conceptually, the slack variable will be 
zero if the point is inside the correct margin boundary and positive otherwise. The 
constraint is therefore modified to:

tnV (-̂ n) 71 =  1, . . . , iV.

The slack variables now allow the SVM to softly penalize points that are on the 
wrong side of the decision boundary. The minimization of this model then becomes

c 2 >  +  5 IN I2
71=1

where C > 0 is an adjustable parameter controlling the trade-off between the slack 
variable and the margin.

While SVM is popular for many machine learning applications, a drawback of 
SVM is that it is a non-probabilistic binary linear classifier. Thus, a posterior prob
ability is not found like the GMM classifier.

5.3.6 REG IO N SELECTION

After classification, a pruning step is used to reduce noise. Small regions of false 
positives may occur far away from the known tumor region. Since these isolated 
regions are unlikely to be tumor regions, small clusters marked positive were con
sidered as noise and discarded. This step was performed on the binary classification 
of the GMM classifier. A morphological close operation was applied to smooth the 
boundary of the predicted regions. The number of pixels contained in each disjoint 
cluster was found and only the largest region was defined as the final predicted tumor 
region.
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Figure 34: Manifold learning results for swiss roll data  sets. A) Original data set. 
B) Manifold from random sampling. C) Manifold from LCV sampling. D) Manifold 
result for a very large Swiss Roll data  set having 20k data  points using LCV sampling.

5.4 PRELIM INARY E X PE R IM E N T S A N D  RESULTS

5.4.1 RESULTS FOR A SIM ULATED DATA SE T  - TH E SW ISS ROLL

Figure 34A-D) show results for the “Swiss roll” data  set. Figure 34A) is the 
original data set having 2000 data points. Figure 34B) shows the learned results 
based on 900 randomly selected landmarks (SF =  0.4527). Figure 34C) is the result 
based on 900 landmarks selected based on the LCV concept (SF =  0.4293). Figure 
34D) illustrates the result for a very large Swiss Roll da ta  set having 20k data points. 
A direct manifold learning for this data set is computationally expensive, so we 
utilized the manifold skeleton learned in Figure 34C) and inserted all the 20k data 
points into the skeleton based on the LLE algorithm. Results in B) is slightly worse 
than that in C) as expected.

5.4.2 TESTING  M ETHODS

Along with the proposed method, five other testing methods were implemented 
for comparison in the previously completed work [87].

M ethod 1: Proposed The system diagram of the proposed method is shown in 
Figure 28. First, MRI data sets were standardized using the g-scale standardization 
method. Second, the LCV sampling strategy was employed to randomly select a 
set of landmarks inside the defined tumor and normal regions for manifold skeleton 
learning. Third, the remaining data  points were then inserted into the skeleton 
using the LLE algorithm. Fourth, three dimensions were selected by the Fisher
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score based on the selected landmarks and a GMM model was trained using the 
selected dimensions. Note that only those selected landmarks from LCV sampling 
were utilized for GMM training. And lastly, the trained GMM model was applied 
to the whole MRI scan to produce a probability map for abnormal tissue. A crisp 
classification was also generated based on the probability map by thresholding.

M ethod  2: P C A  The second method is a variation of the proposed method, 
where the principle component analysis (PCA) method was used instead of Isomap 
for dimensionality reduction. This will allow for a comparison between a nonlinear 
and a conventional linear dimensionality reduction method. The sampling and em
bedding steps were performed the same way as we did in Method 1. While PCA 
is less computationally intensive and does not require these steps, the sampling and 
embedding processes will allow us to directly compare the proposed method with 
PCA.

M ethod  3: R A W  In the RAW method, everything was the same as the proposed 
method except that we did not perform dimensionality reduction. LCV was used 
to select landmarks for training the GMM classifier using all ten features of the 
data set. This will give a comparison between methods employing dimensionality 
reduction versus raw data.

M ethod  4: R A W  w ith  F isher score  This method is a variation of Method 3. 
We directly utilized the Fisher score to reduce the dimensionality from ten to  three 
without prior dimensionality reduction methods.

M ethod  5: P C A  w ith o u t F ish er score Method 5 is the same as Method 2 
except that we did not use the Fisher score to select dimensions. Instead, we just 
kept the first three principle components corresponding to the first three largest 
eigenvalues. Thus, the effect of the Fisher score on the classification accuracy can be 
evaluated.

M ethod  6 : P ro p o sed  w ith o u t F ish e r score  Method 6  is the same as the pro
posed method except that we just kept the first three coordinates resulting from the 
Isomap algorithm. Again, this method will provide some insight on how important 
the Fisher score step is.
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A) B)

Figure 35: Original FLAIR images for Subject 1 with marked abnormal and normal 
regions. Red polygon defines abnormal regions and the yellow dotted polygon denotes 
normal regions. A) Visit 1. B) Visit 2 with the progressed tumor.

5.4.3 PRELIM INARY RESULTS

We applied the six methods described above to four patients’ MRI scans. Figures 
35, 38, 41 and 44 show each patients’ marked abnormal region with a red polygon and 
also the marked normal region with a yellow dotted polygon overlaid in the FLAIR 
series. The results are shown in Figures 36, 37, 39, 40, 42, 43, 45, and 46. Column A) 
in Figures 36, 39, 42, and 45 presents the GMM probability map for abnormal tissue. 
Column B) shows corresponding binary versions by thresholding the probability maps 
from column A) with a threshold value of 0.5. The images in column B) also show 
the marked abnormal regions at visit 1  with a red solid-line polygon along with the 
marked normal regions with a yellow dotted-line polygon. In column C), the same 
binary classification images are overlaid with the tumor contours defined at visit 
2. The scatter plots in columns D) and E) in Figures 37, 40, 43, and 46 illustrate a 
three-dimensional representation of the data. In these figures, the red dots denote the 
abnormal tissue samples, the blue dots are the normal tissue samples and the green 
dots represent progressed tissue samples, i.e., those tissue samples outside the tumor 
contours defined at visit 1. These green dots can be interpreted as tumor growth. 
More specifically, the green dots of column D) show points that are predicted as 
abnormal but lie outside of the contour of visit 1 . Alternatively, the green dots of 
column E) show points that are marked as abnormal at visit 2 but were not marked 
as such at visit 1. The difference between column D) and column E) lies in that 
column D) shows the predicted results while column E) demonstrates the ground 
truth.



Figure 36: Subject 1 results. Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) 
Fisher score only. Row 5) PCA w/o Fisher. Row 6 ) Proposed w/o Fisher.
Column A) GMM probability. Column B) Visit 1 classification. Column C) Visit 2 
classification.
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D) E)

Figure 37: Subject 1  results showing 3D feature space of sampled points and pro
gressed tumor points.
Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) Fisher score only. Row 5) 
PCA w/o Fisher. Row 6 ) Proposed w/o Fisher.
Col D) Red points show abnormal sampled points. Blue points show normal sampled 
points. Green points show predicted progressed tumor points. Points predicted as 
abnormal outside of Visit l ’s abnormal contour. Col E) Green points show actual 
progressed tumor points. Points in set of abnormal points in Visit 2 while not in set 
of points of Visit 1.
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Table 6: Method comparison: Subject 1
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Method 1: 
Proposed

0.987 1 0.860 0.566 0.853

Method 2:
PCA w / Fisher

0.978 1 0.769 0.647 0.849

Method 3: 
Raw data

0.752 1 0.562 0.801 0.779

Method 4:
Fisher score only

0.965 1 0.691 0.856 0.878

Method 5:
PCA w/o Fisher

0.994 1 0.784 0.722 0.888

Method 6:
Proposed w/o Fisher

0.972 1 0.702 0.812 0.871

/ " ...
/

B)

Figure 38: Original FLAIR images for Subject 2 with marked abnormal and normal
regions. Red polygon defines abnormal regions and the yellow dotted polygon denotes
normal regions. A) Visit 1. B) Visit 2 with the progressed tumor.

/

A)



Figure 39: Subject 2 results. Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) 
Fisher score only. Row 5) PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column A) GMM probability. Column B) Visit 1 classification. Column C) Visit 2 
classification.
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D) E)

Figure 40: Subject 2 results showing 3D feature space of sampled points and pro
gressed tumor points.
Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) Fisher score only. Row 5) 
PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column D) Red points show abnormal sampled points. Blue points show normal 
sampled points. Green points show predicted progressed tumor points. Points pre
dicted as abnormal outside of Visit l ’s abnormal contour. Column E) Green points 
show actual progressed tumor points. Points in set of abnormal points in Visit 2 
while not in set of points of Visit 1.
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Table 7: Method comparison: Subject 2
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Method 1: 
Proposed

0.943 1 0.626 0.822 0.839

Method 2: 
PCA

0.970 1 0.627 0.297 0.723

Method 3: 
Raw data

0.991 1 0.718 0.564 0.818

Method 4:
Fisher score only

0.991 1 0.668 0.376 0.759

Method 5:
PCA w/o Fisher

0.989 1 0.676 0.561 0.807

Method 6:
Proposed w/o Fisher

0.968 1 0.631 0.556 0.789

/ /
\

A) B)

Figure 41: Original FLAIR images for Subject 3 with marked abnormal and normal
regions. Red polygon defines abnormal regions and the yellow dotted polygon denotes
normal regions. A) Visit 1. B) Visit 2 with the progressed tumor.
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A) B) C)

Figure 42: Subject 3 results. Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) 
Fisher score only. Row 5) PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column A) GMM probability. Column B) Visit 1 classification. Column C) Visit 2 
classification.
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D) E)

Figure 43: Subject 3 results showing 3D feature space of sampled points and pro
gressed tumor points.
Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) Fisher score only. Row 5) 
PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column D) Red points show abnormal sampled points. Blue points show normal 
sampled points. Green points show predicted progressed tumor points. Points pre
dicted as abnormal outside of Visit l ’s abnormal contour. Column E) Green points 
show actual progressed tumor points. Points in set of abnormal points in Visit 2 
while not in set of points of Visit 1.
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Ta ale 8: Method comparison: Subject 3
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Method 1: 
Proposed

0.921 1 0.591 0.971 0.871

Method 2: 
PCA

0.950 0.995 0.625 0.590 0.790

Method 3: 
Raw data

0.944 1 0.656 0.863 0.866

Method 4:
Fisher score only

0.921 1 0.637 0.845 0.851

Method 5:
PCA w/o Fisher

0.950 1 0.606 0.872 0.857

Method 6:
Proposed w/o Fisher

0.919 1 0.589 0.969 0.869

A) B)

Figure 44: Original FLAIR images for Subject 4 with marked abnormal and normal
regions. Red polygon defines abnormal regions and the yellow dotted polygon denotes
normal regions. A) Visit 1. B) Visit 2 with the progressed tumor.



Figure 45: Subject 4 results. Row 1) Proposed. Row 2) PCA. Row 3) RAW. Row 4) 
Fisher score only. Row 5) PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column A) GMM probability. Column B) Visit 1 classification. Column C) Visit 2 
classification.
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D) E)

Figure 46: Subject 4 results showing 3D feature space of sampled points and pro
gressed tumor points.
Row 1) Proposed. Row 2) PC A. Row 3) RAW. Row 4) Fisher score only. Row 5) 
PCA w/o Fisher. Row 6) Proposed w/o Fisher.
Column D) Red points show abnormal sampled points. Blue points show normal 
sampled points. Green points show predicted progressed tumor points. Points pre
dicted as abnormal outside of Visit l ’s abnormal contour. Column E) Green points 
show actual progressed tumor points. Points in set of abnormal points in Visit 2 
while not in set of points of Visit 1.
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Ta >le 9: Method comparison: Subject 4
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Method 1: 
Proposed

0.952 1 0.609 0.766 0.832

Method 2: 
PCA

0.883 1 0.575 0.357 0.704

Method 3: 
Raw data

0.982 0.487 0.885 0.239 0.648

Method 4:
Fisher score only

0.899 0.943 0.632 0.312 0.696

Method 5:
PCA w/o Fisher

0.887 1 0.584 0.343 0.704

Method 6:
Proposed w/o Fisher

0.962 1 0.712 0.310 0.746

Table 10: VIethod comparison: Average over L. data sets
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Method 1: 
Proposed

0.951 1 0.663 0.781 0.849

Method 2: 
PCA

0.945 0.999 0.649 0.473 0.766

Method 3: 
Raw data

0.917 0.872 0.705 0.617 0.778

Method 4:
Fisher score only

0.944 0.986 0.657 0.597 0.796

Method 5:
PCA w/o Fisher

0.955 1 0.663 0.697 0.814

Method 6:
Proposed w/o Fisher

0.955 1 0.659 0.662 0.819
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Tables 6, 7, 8, and 9 show quantitative performance metrics calculated for each 
subject. The sensitivity measures the number of pixels correctly predicted as ab
normal divided by the total number of marked abnormal pixels. This measure was 
calculated for both visit 1 and visit 2. Specificity is the ratio of the correctly pre
dicted normal tissue samples inside the normal contours. The precision is the number 
of correctly predicted abnormal pixels divided by the total number of predicted ab
normal points. The precision will be 1 if every pixel predicted as abnormal is within 
the marked abnormal region and conversely, the metric will be low for methods that 
have an over-estimated tumor region. The precision was calculated only at visit 2 
because the abnormal region was expected to  expand between visit 1 and visit 2. 
The average metrics across those four subjects are summarized in Table 10.

5.5 PRELIM INARY D ISC USSIO N

It is noted that the proposed method achieved the best overall performance 
(0.849) among the six methods compared as shown in Table 10 followed by the sec
ond best method, Proposed w/o Fisher score (0.819). Method 5 (PCA w /o Fisher) 
obtained a similar result (0.814) as th a t by Method 6 (Proposed w /o Fisher). The 
other three methods performed much worse. In terms of sensitivity a t visit 1, all 
methods performed similarly except Method 3 (Raw data). This is also the case for 
the specificity at visit 1 where Method 3 obtained a significantly lower accuracy of
0.872. However, Method 3 achieved the best sensitivity a t visit 2 compared to other 
methods. Finally, the proposed method performed the best in terms of precision at 
visit 2.

If the system is aimed for tumor growth prediction, the sensitivity at visit 2 seems 
to be the most important performance metric and Method 3 (Raw data) is the best 
among the compared methods. However, as shown in Figures 39 and 45, the tumor 
regions predicted by Method 3, and others, are largely over-estimated, thus making 
the tumor prediction not useful. On the other hand, the proposed method has well 
confined prediction regions with a much higher precision, leading to the best overall 
performance.

The predicted tumor regions are usually not well matched to the tumor contours 
defined at either visit 1 or visit 2. This is because those tumor contours were defined 
by referring to the FLAIR scans only. The proposed method took into account 
information from all available series and analyzed the data in the high-dimensional
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space that is beyond the capability of human viewers. The posterior probability map 
shown in column A) of Figures 36, 39, 42, and 45 might provide extra information 
to radiologists for brain tumor diagnosis. By incorporating radiologists’ domain 
knowledge, the proposed method might help improve their ability to predict tumor 
growth.

In addition, the predicted tumor regions usually go beyond tumor contours de
fined at visit 1, implying that the proposed method does have prediction capability. 
However, for some cases, i.e. in Figures 39, 42 and 45, some portions of the tumors 
a t visit 2 were missed. Possible reasons for this failure include registration errors 
between visit 1 and visit 2, efficiency of the manifold learning, human error, etc. 
In this study, we should pay more attention to regions at visit 1, especially of those 
outside the tumor contours defined at visit 1. We are currently investigating if signif
icant differences exist in the MRI series between the two regions inside the predicted 
tumor contours: those inside and those outside the tumor contours defined at visit
1. Results from this work might provide evidence if the predicted tumor contours 
are better tissue characterizations than those defined on FLAIR only.

It is not clear if the Fisher score component can improve the classification. In the 
proposed method, the Fisher score improved the overall performance from 0.819 to 
0.849 (Method 6 vs. Method 1). Similar results can be observed for Method 3 and 
Method 4. However, adding the Fisher score component to Method 5 (effectively 
Method 2) degraded the overall performance from 0.819 to 0.766.

In columns D) and E) of Figures 37, 40, 43, and 46 for the proposed method, 
we note that normal and tumor manifolds are well separated in the low-dimensional 
space and the progressed manifold is found to lie roughly between them but closer 
to the tumor manifold. It is also noted that without the manifold learning method, 
those dimensions are largely overlapped, i.e., the third row in columns D) and E). 
Other methods also achieved better low-dimensional representations than Method 
3, implying that a manifold learning method is helpful for interpreting the high
dimensional MRI data sets.

5.6 CLINICAL IM PACT

Monitoring and predicting the progression of a tumor is clinically important. One 
of the most challenging issues in cross-patient tumor prediction is its heterogeneity 
among patients and with each tumor. Predicting long-term progression sites is and
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will remain difficult. In this study, a near-term individual model is constructed using 
data from one time point while validating using a second time point. Although a 
universal long-term predictive model that can be applied to all patients would be 
ideal, a patient specific model based on each patient's prior imaging studies and 
can predict individual patient’s near future progression is still very valuable today. 
Knowing where a tumor would most likely progress is very useful and can potentially 
lead to local treatment (e.g. radiation) to prevent (or delay) such from happening. 
Also, producing a prediction model with just one time point will allow for tumor 
predictions to be made with limited data such as on the first clinical visit. Therefore, 
even a near-term prediction can provide some clinical benefits to patients.

5.7 CONCLUSION OF IN C R EM EN TA L A PPR O A C H  O N M RI 
DATA

A large-scale nonlinear manifold learning method was developed for analyzing 
high-dimensional MRI data sets. Using landmark sampling, the sample size of the 
MRI data set was reduced so tha t conventional nonlinear dimensionality reduction 
techniques can be performed. It was shown that there is a distinct separation between 
normal and tumor tissues in the low-dimensional space. The points belonging to the 
tumor progression tend to accumulate between abnormal and tumor tissues, showing 
a nonlinear transition between the two types of tissues. The proposed algorithm is 
shown to have more well confined prediction regions than other methods that tended 
to  over-estimate the prediction region. This research may be able to help neurologists 
in making decisions on treatment of brain tumor patients depending upon the area 
and rate of tumor progression.
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A P P L IC A T IO N  OF i x D IM E N SIO N A L IT Y  R E D U C T IO N

O N  M R I D ATA SET

6.1 M RI EX PER IM EN T W ITH  l x EN H A N C EM EN TS  
IN TR O D U C TIO N

The second experiment on the MRI data set uses the ^-based manifold learn
ing algorithm described in Section 3.2 [88]. Recent advances in technology make 
data  acquisition a much cheaper process and data  sizes are increasing exponentially. 
Nowadays, data  sets usually contain many samples in a very high-dimensional space, 
making data “big” in both sample size and data dimension. Big data is difficult 
to store, transmit, visualize and analyze. Dimensionality reduction thus becomes 
key in reducing a high-dimensional data  sets to a low-dimensional space while pre
serving the inherent structure of the data  set. Manifold learning performs dimen
sionality reduction by identifying low-dimensional structures (manifolds) embedded 
in a high-dimensional space. Many algorithms involve an eigenvector or singular 
value decomposition (SVD) procedure on a similarity matrix of size n x n, where 
n  denotes the number of data samples, making them not scalable to  big data. As 
an alternative, low-rank matrix approximation based incremental manifold learning 
strategies prove to be effective for obtaining near-optimal solutions to the problems 
[89, 90, 91]. In those algorithms, sampling methods are typically used to select a 
subset of data  points as landmarks. A manifold skeleton is then learned using the 
landmarks. Finally, out-of-bag (remaining) points are inserted into the skeleton by 
various methods such as the Nystrom method, the column-sampling technique or the 
local embedding scheme [28, 31, 87]. However, high-dimensional data is known to 
be sparse and highly structured. Current available algorithms do not consider the 
structured sparse property of data, which may significantly influence the performance 
of the low-rank methods. We present a novel adaptive neighbor selection approach 
using the sparseness property of t\  optimization and aim to create a brain tumor 
progression model from MRI data.
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6.2 M ETHOD

6.2.1 PR O PO SED  SYSTEM

In this study, we focus on multi-dimensional MRI scans of brain tumor patients 
with a progressed tumor over two time points. In our data set, ten MRI image 
volumes are obtained for each patient. Thus, each pixel location can be represented 
as a 10-dimensional feature vector. By considering each pixel of the 256x256 MRI 
scans as a data point, the total number of data  points is roughly 65k. The problem 
with having a high number of data points is that conventional manifold learning 
approaches require an n x n eigen-decomposition of a distance matrix. For large 
values of n, this will become highly computation and memory intensive. An approach 
to alleviate this issue is to sample points from the large set of features and create 
a manifold using a smaller subset of features thus resulting in a manifold skeleton. 
Then the unsampled data points are embedding into the low dimensional space by 
embedding with local linear embedding (LLE) [16]. Neighborhood selection occurs 
many times in this approach. Both LLE and many manifold learning approaches 
require a neighborhood selection step. We introduce an adaptively sparse method of 
neighbor selection that can be applied directly to  current large-scale manifold learning 
approaches. The system diagram for this method is shown in Figure 47. In the 
proposed method, a link between abnormal points and the tumor progression region 
is found from manifold learning of the multi-dimensional MRI scans. A prediction on 
tumor growth is then made by selecting regions close to abnormal points in manifold 
space.

6.2.2 SAM PLING

To keep a faithful representation of the original manifold, landmarks should be 
carefully selected from the original data. Ideally, landmarks should be the smallest 
subset that can preserve the geometry in the original data. Local curvature variation 
(LCV) is a sampling method that selects points depending on the curvature level at 
each point. Intuitively, a manifold’s data  structure can be preserved effectively by 
sampling more points from high curvature regions. We assigned an importance value 
for each of the points by computing the local tangent space variation for it. For each 
data point in the data set, we found its fc-nearest neighbors and performed a local



95

Prediction M aps for 
Tumor Progression

Testing Data after 
Embedding

Figure 47: System diagram

principle component analysis on the A;-nearest neighbors including itself. We then 
identified the eigenvector (spans the tangent space) corresponding to the largest 
eigenvalue. For each data point, it has k such eigenvectors and we computed the 
mean value of angles between its eigenvector and the eigenvectors of all of its k- 
nearest neighbors. We then normalized the importance values across all data  points 
such that they sum to one. We then sampled the data set to obtain a set of landmarks 
based on the importance values.

6.2.3 DIM ENSIO NALITY R E D U C T IO N

The Isomap method for manifold learning consists of three steps [12]. First, 
a neighborhood graph is constructed. Second, pairwise distances are calculated 
through shortest paths from the neighborhood graph. And lastly, Multidimensional 
Scaling (MDS) converts the pairwise adjacency matrix to  a lower dimensional space 
preserving pairwise geodesic distance. In conventional Isomap, the neighborhood se
lection is performed with either a e-neighborhood or a /c-nearest neighbors approach.

High-Dimensional 
MRI Data

Out-of-BagLandmarks

Manifold
Skeleton

Manifold
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The former method will select all points around an e sized neighborhood to be neigh
bors. The drawback of this approach is that size of e is difficult to determine. Also, 
some points may not have neighbors within the specified neighborhood and will thus 
be unconnected in a neighborhood graph. The A;-nearest neighbors will choose the 
closest k points as neighbors of a data point. An adequate value for k  varies within 
the data set depending on the geometry of the manifold. A point with a k  value 
that is too high may result in “leaking” . Likewise, a value that is too low will fail to 
encompass the underlying manifold.

6.2.4 N EIG H BO R  SELECTION W ITH  £r N O R M

We propose an adaptive neighbor selection approach using the ^i-norm. A recon
structive cost function is used such that:

where X ni is the A;-nearest neighborhood around Xi and k is the dimension of £*. 
a; represents the reconstruction weights. Here, A controls the sparsity of the solution. 
The neighbors are selected such tha t they correspond to the non-zero weights from 
the equation above. The remaining steps of the Isomap algorithm follow normally.

6.2.5 EM BED D IN G  W ITH  f r N O R M

The goal of this effort is to more effectively insert points that are not used in the 
dimensionality reduction step into the manifold skeleton. The basic LLE algorithm 
requires one parameter k for the number of neighbors to use as weights [16]. By 
using the ^i-norm, the neighbors can be chosen automatically among all n  da ta  
points. Reconstruction weights are found by solving the following optimization:

S(W 0 =  E
k=l

Xi-Y,WikXk
k= 1

where Xi  is the high-dimensional data point. The non-zero weights of W ik cor
respond to the neighbors selected to make a reconstruction of the point in manifold 
space. This adaptive approach is expected to  be more robust since the number of 
neighbors is not fixed for each data  point. The ^i-norm in the second term promotes 
sparsity of the solution. This is because most weights calculated from the /i-norm
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will be zero. The few neighbors with a non-zero weight, Wik, will be chosen as the 
landmarks to reconstruct the data in the low dimensional manifold. The A parameter 
controls the trade-off between reconstruction error and sparsity of the solution.

One drawback to this is that the localization of neighbors in Euclidean space 
is not guaranteed. This is because each point in the data set is considered to be 
a potential neighbor. Another consequence in having a large number of potential 
neighbors is that the number of non-zero weights could potentially be very high.

In a sense, the ^j-norm has the benefit of having an adaptive number of neighbors 
while the original method guarantees localization and a maximum number of neigh
bors. In order to incorporate all of these properties, the t i  optimization function was 
then modified to the following:

i ^ u

The neighbors in this formula are restricted to the k' nearest neighbors of each 
point. In the implementation, a good value for k' is a few values larger than the 
expected dimensionality of the manifold. To embed the data point X* into the lower
dimensional manifold, we reconstructed it in the low-dimensional space as Z* using 
the weights Wrk derived above

Zi = J 2 wikZk
k

6.2.6 CLASSIFICATION

Next, we classify abnormal regions and normal regions using Gaussian Mixture 
Models (GMM) with Expectation Maximization optimization. Here, we select the 
landmarks found in the manifold learning step that fall within the known abnormal 
and normal regions as the training data. The testing data included all other points 
within those regions. The advantage of using GMM as the classifier is that a prob
ability map can be created where the probability is the likelihood of a sample to 
be abnormal. The classification can thus be adjusted by a simple thresholding of 
the probability map to form a growth prediction. Morphological filtering is applied 
to the classification to extract the largest contiguous block as the final classification 
region.

E ( W)  = Y1
k>

k= 1

k’

fc=i



Figure 48: Original ground truths for Subject 1 where the red region is the labeled 
abnormal region and the yellow is the normal region. (Left) Visit 1. (Right) Visit 2 
showing a progressed abnormal region

6.3 EXPERIM ENTAL SE T U P

The MRI data of brain tumor patients were collected using various MRI scans 
including FLAIR, Tl-weighted, post-contrast Tl-weighted, T2-weighted, and DTI. 
Five scalar volumes were also computed from the DTI volume including apparent dif
fusion coefficient (ADC), fractional anisotropy (FA), max-, inin-, and middle- eigen
values, yielding a total of ten image volumes for each visit of every patient. Each 
patient went through a series of scans with an interval of one or two months, and 
a rigid registration was utilized to align all volumes to the DTI volume of the first 
visit using the vtkCISG toolkit [81]. After registration, each pixel location can be 
represented by a ten-dimensional data point corresponding to the ten MRI volumes. 
Two visits were selected in this study and denoted as “Visit 1” and “Visit 2” where 
Visit 2 showed an expanded tumor region. Hyper-intensity regions were defined on 
the FLAIR scans as abnormal regions. A similarly sized region far away from the 
abnormal regions was also defined as a highly confident normal region for training 
purposes. Figure 48 shows example MRI slices overlaid on the defined tumor and 
normal regions. In [87], Tran et al. showed progressed tumor regions lie close to 
abnormal regions in manifold space. We aim to  predict the progression of the tumor 
in Visit 2 from the manifold learned from Visit 1.

6.4 RESULTS

Figure 49 shows the results of four subjects. Column A denotes the output of 
the GMM classifier. Column B shows the final classification region after threshold
ing and filtering the GMM probability map. Here, the solid red polygon are the



99

Table 11: Results for each subject
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Subject 1 0.985 1 0.704 0.832 0.880
Subject 2 0.972 1 0.587 0.931 0.872
Subject 3 0.981 1 0.725 0.864 0.893
Subject 4 0.946 1 0.623 0.900 0.867

marked abnormal regions while the dotted yellow polygon denotes the marked nor
mal regions from Visit 1. Column C show the classification region on the progressed 
hyperintensive region of Visit 2.

Table 11 show quantitative performance metrics calculated for each subject. The 
sensitivity measures the ratio between the number of pixels correctly predicted as 
abnormal versus the total number of marked abnormal pixels. This measure was cal
culated for both Visit 1 and Visit 2. Specificity is the ratio of the correctly predicted 
normal tissue samples inside the normal contours. The precision is the number of 
correctly predicted abnormal pixels divided by the total number of predicted abnor
mal points. The precision will be 1 if every pixel predicted as abnormal is within 
the marked abnormal region and conversely, the metric will be low for methods that 
have an over-estimated tumor region. The precision was calculated only at Visit 
2 because the abnormal region was expected to expand between Visit 1 and Visit
2. The average metrics across those four subjects are summarized in Table 12 and 
compared to three other methods. The results for Raw are found by directly apply
ing the GMM classifier in the high dimensional space. For PCA, the dimensionality 
reduction is performed using principal component analysis. Lastly, [87] follows the 
same procedure as the proposed method while using £2-norm optimization.

From Table 12, the proposed method outperforms the other methods in terms 
of average sensitivity, specificity, and precision. This suggests that the l\  neighbor
hood selection creates a more robust manifold. While the proposed approach does 
not have the best Visit 2 sensitivity, this may be attributed to the other methods 
over-predicting abnormal regions. This results in the other methods having a low 
precision.



Figure 49: Results for four subjects. Column A shows the output from the GMM. 
Column B shows the final classification after thresholding and filtering. Column C 
shows the classification on the second time point



101

Table 12: Average results over all subjects compared to other methods
Sensitivity 
Visit 1

Specificity 
Visit 1

Sensitivity 
Visit 2

Precision 
Visit 2

Average

Proposed 0.971 1 0.659 0.882 0.878
[87] 0.951 1 0.663 0.781 0.849
PCA 0.945 0.999 0.649 0.473 0.766
Raw data 0.917 0.872 0.705 0.617 0.778

6.5 CONCLUSION OF ^-E N H A N C E D  A PPR O A C H  O N  M RI DATA

We show that a more robust manifold can be achieved using an adaptive neigh
borhood selection algorithm for large scale manifold learning. The proposed method 
improves the average classification accuracy of four MRI brain tumor data sets. While 
we have applied the approach to a specific da ta  set, the general procedure may be 
easily applied to other nonlinear manifold learning data  sets.

6.6 FU T U R E  W ORK

For the remaining work for the MRI data set, LCV and min-max sampling will 
be applied to the data set. The work completed has been performed using just the 
random sampling approach. It is expected that LCV sampling will be very beneficial 
to the nonlinear dimensionality reduction methods especially LTSA since the sampled 
points using local curvature variation will allow for accurate computation of the local 
tangent space in LTSA. Also, the LLE embedding algorithm using the l \  norm will 
be implemented to adaptively chose the neighbors used in the embedding step. This 
is the first research effort using dimensionality reduction of a high dimensional MRI 
data set for brain tumor progression prediction. Also, the future work includes testing 
the proposed methods on more patient data sets.
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C O M PU TA TIO N A L C O M P L E X IT Y  OF TH E P R O P O S E D  

M E T H O D  V E R S U S  R A N D O M IZ E D  S V D

One of main focuses of this work has been to avoid an eigen-decomposition of a 
large similarity matrix. In the proposed algorithm, sampling is used to  reduce the 
size of a large data set and thus allowing for an exact decomposition of the smaller 
data set. This can be seen as an approximation of the spectral decomposition of the 
original large data set. Another approach is to approximate the decomposition of 
the large similarity matrix directly using randomized singular value decomposition 
(SVD). In this chapter, an experiment is conducted to  compare the two approaches.

7.1 EXACT EIG EN -D EC O M PO SITIO N

Eigen-decomposition or spectral decomposition refers to the process of break
ing down a matrix into a standard form represented by vectors and weights, called 
respectively, eigenvectors and eigenvalues. Any m x n  matrix A  can be expressed as:

A  = ^ 2  atu ^ v w r
t=l

such that r  is the rank of A, E  Rm, v ^  E  Kn. Here, and are the left 
and right eigenvectors of A respectively and crt are the corresponding eigenvalues. 
Generally, the complexity of directly computing the spectral decomposition of an 
m x n  matrix is O (m n2 +  m 2n ); or O (n3) for a n x n  square matrix.

7.2 RANDO M IZED SV D

While the eigen-decomposition gets exponentially harder to calculate as n or m 
increases, it is not impossible to approximate. Singular value decomposition (SVD) 
can be approximated using row sampling approaches such as randomized SVD.

While the exact calculation of the SVD cannot be calculated easily for a large 
data set, an approximation can be calculated using the method proposed by [92].
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Instead of performing an SVD on the entire matrix, a randomized subset of rows or 
columns are picked to form a smaller matrix. Hence, the approach is referred to as 
randomized SVD or fast SVD. Theoretically, the SVD of the smaller matrix will give 
a good approximation to the SVD of the initial large matrix using only a  fraction of 
the computations.

The randomized SVD algorithm approximates the top k right eigenvalues and 
eigenvectors given an m x n  matrix A. The algorithm samples s rows from A  to form 
an s x n  matrix. The probability to choose any of the m  rows is p i , . . .  ,pm such that

Random ized SVD Algorithm
Input: m x n  matrix A, integers s < m, k <  s.
Output: m x  k matrix H, A i,. . . ,  A* e  K.

1. Row sampling:
for t =  1 to s
- Pick an integer from {1. . .  7n}, where Prob (pick i) = Pi
- Include A (i)/y/sp l as a row of S.

2. Decom position:
Compute S  ■ S T and its singular value decomposition such that

3. A pprox im ate  e igenvectors o f A:
Compute /  \STw ^ \ ,  t  — 1 . . . k .  Return H, a matrix whose
columns are the h ^ \  and the estimated eigenvalues X i , . . . ,X k

other’s transpose, and w ^ T. In practice, the sampled m atrix 5  is a much 
smaller matrix than the original matrix A. The original matrix A  is no longer used 
after step 1 and can be discarded from memory during implementation. The amount

7.2.1 M E T H O D : R A N D O M IZ E D  SV D

3

In step 2, S S T is symmetric and thus the left and right eigenvectors are each
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of ram required to store this matrix S  • S 7̂  is only O (sn) rather than O (ran) for A. 
Step 2 can be performed in O (n) time as proved in [30].

The major advantage of this algorithm is its improvement in speed. The com
putations required for randomized SVD include the sampling step which can be 
performed in 0  (s log m) computations and the normalization of the rows which 
requires O (sn) operations in step 1. For step 2, the computation of S  ■ SF is a 
straightforward problem of 0  (s2n ) and the computation of the full SVD of this sam
pled matrix is O (s3). Including the matrix operations to compute the approximated 
decomposition H  in step 3, the overall computational time of randomized SVD is 
0  (s log m  -f s2n  +  s3 +  nsk).

Since s is a constant that is generally the size of k and in many cases s <C n, the 
computations required are theoretically reduced from O (n3) for a symmetric matrix 
size n  x n to only O (n). Experimental results have shown that a good approximation 
can be achieved with less samples than theoretically needed [30].

The drawback of this method is that it is not an exact calculation but is rather 
an approximation.

7.3 RANDO M IZED SVD V E R SU S PR O PO SE D  SYSTEM

An experiment was conducted to test the effectiveness of using the randomized 
SVD method and the proposed method for nonlinear dimensionality reduction. In 
this experiment, a 5000-point swiss roll is created with two classes in a checkerboard 
pattern with 5% of Gaussian noise. Figure 50 shows both the 3 dimensional swiss roll 
along with the 2 dimensional manifold ground truths. The classification accuracy was 
calculated using a simple fc-nearest neighbor classifier with k =  1. The randomized 
SVD experiment follows the procedure of Isomap except for the eigen-decomposition, 
which is performed using randomized SVD. The number of sampled rows is varied in 
this approach. The proposed method follows the procedure highlighted in Chapter 
3 with a varying number of sampled points. As a baseline, an exact singular value 
decomposition is performed using all sample points. It is expected tha t the exact 
calculation will serve as a maximum for the classification accuracy since both tested 
methods are approximations. The computer used in this experiment has an Intel 
Xeon X5460 CPU at 3.16 GHz with 8GB of RAM.
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7.4 RESULTS VER SU S R A N D O M IZED  SVD

Accuracy and time plots of the randomized SVD approach and the proposed 
method are shown in Figure 51. The top plot is the 1-nearest neighbor classifica
tion accuracy. The blue line represents the baseline method using an exact SVD 
calculation. The bottom plot shows the value of the Matlab routine cputime. This 
can be interpreted as the number of seconds required to perform each approach. 
As expected, the baseline accuracy is higher than both methods. For the proposed 
approach, the classification accuracy rises sharply to around 0.90 before leveling off 
after 1500 landmarks. The randomized SVD approach has a high accuracy even for 
a low number of sampled rows. An above 90 percent accuracy is achieved with 10 
rows. This may be due to  the swiss roll having a low intrinsic dimensionality of 2. 
However, the classification accuracy is erratic and lower accuracies were seen when 
a larger number of rows were sampled. On the other hand, the proposed approach is 
more stable with the classification accuracy rising as more samples are introduced.

In terms of computational time, the randomized SVD approach surprisingly has a 
slightly longer computational time than the exact approach. This can be attributed 
to the way the Isomap method is calculated. From Section 2.1.2, Isomap calculates 
a pairwise distance matrix that is used to calculate the low dimensional space. The 
randomized SVD approach is applied directly to the pairwise distance matrix. The 
majority of time in the overall algorithm is spent calculating the pairwise distance 
matrix. For future work, an extension to the direct application of randomized SVD 
may be to only calculate rows in the pairwise distance matrix tha t correspond to 
sampled rows from randomized SVD.

For the proposed approach, the computational time grows exponentially. A clas
sification accuracy of over 90% is achieved for 1500 samples. The computational time 
at this number of landmarks is one order of magnitude lower than for exact SVD 
and randomized SVD. It is important to note that the number of total points in 
this experiment was set to  5000 such that an exact SVD calculation and comparison 
could be made. The proposed approach could be scaled to a larger data set where 
the other methods would be impractical due to the computational time. In summary, 
while randomized SVD may provide higher accuracies at a lower number of samples, 
the proposed approach is more stable and has a lower computational time than using 
randomized SVD for dimensionality reduction.
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Figure 50: Left, 5000 sample swiss roll da ta  set. Right, 2D unfolded manifold
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Figure 51: Randomized SVD vs Proposed method for swiss roll data  set. Blue dotted 
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method.
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C O N C L U SIO N S

In this dissertation, we developed a new nonlinear dimensionality reduction al
gorithm to find manifolds embedded in large-scale high-dimensional data sets. A 
framework for large-scale dimensionality reduction was introduced as the Incremen
tal Landmark approach. Under this framework* the manifold for a large data set that 
cannot be processed using a conventional computer may be approximated. The steps 
of the framework are to first sample the large data set to a size that is manageable 
for a conventional computer. Next, the manifold for the sampled set is computed 
to form the manifold skeleton. Finally, the unsampled points are embedded into the 
manifold skeleton using LLE. This framework is applied to an MRI tumor identifi
cation and progression prediction data set in Chapter 5. A novel sampling method 
based upon local curvature variation was also introduced and applied to the MRI 
data set. The results from this experiment showed that the Incremental Landmark 
approach preformed better than linear methods and also better than using the raw 
data set for classification.

The main contribution of this dissertation was the introduction of a novel £\- 
based neighbor selection algorithm. Two modules form the Incremental Landmark 
approach axe modified to incorporate the adaptively neighbor selection algorithm, the 
graph construction of Isomap and the LLE embedding step. Each of these methods 
were tested against the standard methods from the Incremental Landmark approach 
using benchmark data sets from UCI’s data set repository. From these experiments, 
the adaptive l \  neighborhood selection showed improvement over the standard meth
ods. For the case of the graph construction module, the adaptive neighbor selection 
may alleviate issues of leaking from standard Isomap. The two modules were com
bined to form the final large scale manifold learning algorithm. This final proposed 
approach was tested versus manifold learning algorithms from the literature using 
three image data sets; Yale face data set, UMIST face data set, and COIL-20 object 
recognition data set. The proposed approach showed improvement over the linear 
methods and sparse projection approaches. Compared with DONPP, the proposed
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approach achieved comparable results with the UMIST and COIL-20 data  set while 
achieving a better average classification accuracy with the Yale data set.

Finally, the proposed £\ based proposed method is applied on the large-scale 
MRI brain tumor data set. The proposed approach showed an improvement over the 
Incremental Landmark approach.
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