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ABSTRACT

CHARACTERIZATION AND DECODING OF SPEECH 
REPRESENTATIONS FROM THE ELECTROCORTICOGRAM

Shreya Chakrabarti 
Old Dominion University, 2015 

Director: Dr. Dean J. Krusienski

Millions of people worldwide suffer from various neuromuscular disorders such as 

amyotrophic lateral sclerosis (ALS), brainstem stroke, muscular dystrophy, cerebral 
palsy, and others, which adversely affect the neural control of muscles or the muscles 

themselves. The patients who are the most severely affected lose all voluntary muscle 

control and are completely “locked-in,” i.e., they are unable to communicate with 

the outside world in any manner. In the direction of developing neuro-rehabilitation 

techniques for these patients, several studies have used brain signals related to mental 

imagery and attention in order to control an external device, a technology known as 
a brain-computer interface (BCI). Some recent studies have also attempted to decode 

various aspects of spoken language, imagined language, or perceived speech directly 

from brain signals. In order to extend research in this direction, this dissertation 

aims to characterize and decode various speech representations popularly used in 

speech recognition systems directly from brain activity, specifically the electrocor- 

ticogram (ECoG). The speech representations studied in this dissertation range from 

simple features such as the speech power and the fundamental frequency (pitch), to 

complex representations such as the linear prediction coding and mel frequency cep- 

stral coefficients. These decoded speech representations may eventually be used to 

enhance existing speech recognition systems or to reconstruct intended or imagined 

speech directly from brain activity. This research will ultimately pave the way for an 

ECoG-based neural speech prosthesis, which will offer a more natural communication 

channel for individuals who have lost the ability to speak normally.
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CHAPTER 1 

INTRODUCTION

Close to two million people in the United States, and far more all over the world, 

are affected by neuromuscular disorders such as amyotrophic lateral sclerosis (ALS), 

brainstem stroke, spinal cord injury, muscular dystrophy, multiple sclerosis, cerebral 

palsy, and others [1]. These disorders disrupt the neuromuscular pathways through 

which the brain communicates with and controls the muscles in the rest of the human 

body [2], The patients who are the most severely affected lose all voluntary muscle 

control, and are completely “locked-in” , i.e., they are unable to communicate with the 

outside world in any way. Modern day life-support and rehabilitation technologies 

allow patients of neuromuscular disorders, including those who are completely locked- 

in, to continue living for many years. However, such systems add greatly to the 

personal, social and financial burdens of patients and caregivers.

Another possible mechanism can help restore functionality to these patients, to a 

certain extent, by providing the brain with an alternative non-muscular pathway to 

communicate with and control the external environment - a technology known as a 

brain-computer interface (BCI). A BCI system can help restore, enhance, supplement 

or replace the brain’s natural communication with the outside world, in turn helping 

these patients lead a better life [2],
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1.1 BRAIN-COMPUTER INTERFACES

A BCI is a communication system in which the commands tha t the brain sends 

to the external world do not go through the natural pathways of nerves and muscles; 

instead, they are decoded by an external system, which then translates the commands 

and uses them to control an appropriate device. There are four main components 

of a BCI system: Signal Acquisition, Feature Extraction, Feature Translation and 

Device Control (see Figure 1).

Brain-computer interface

BCI Application

FIG. 1: An overview of the basic components of a BCI system. Electrical signals are 
acquired from the brain, after which they are analyzed to measure signal features that 
reflect the user’s intent. These features are translated into commands that operate 
external application devices that replace or enhance natural central nervous system 
outputs. Based on figure in [3].

The neural activity of the user can be acquired using a variety of modalities, 

some of which are shown in Figure 2. These neural data acquisition modalities 

are broadly classified as invasive or non-invasive. Non-invasive methods, such as 

electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and
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functional near infrared spectroscopy (fNIR), record brain activity without penetrat

ing the scalp and do not require surgery. However, these non-invasive techniques 

can suffer from issues such as comparatively low signal-to-noise ratio (SNR), spa

tial resolution, and/or temporal resolution. In contrast, invasive methods such as 

electrocorticography (ECoG) or stereotactic depth electrodes record electromagnetic 

potentials either from the surface of the cortex or from deeper layers within the brain, 

respectively. These techniques generally provide an amenable balance of SNR and 

spatial and temporal resolution compared to non-invasive techniques.

Scalp

Soft
tissue

— ECoG 
Spikes & LFPs7! M! ■ 1 ^

Cortex ( i | j I

I-------------- 1
5 mm

FIG. 2: Recording sites used by BCI systems. Adapted with permission from [3].

Once the neural signals have been acquired, they are analyzed and decoded in the 

feature extraction and translation modules. Usually, feature extraction is preceded 

by a pre-processing stage wherein artifacts that typically contaminate the acquired 

signals are removed in order to boost the SNR. Next, feature extraction is performed; 

this is the process of extracting certain characteristics from the acquired brain signals 

that reflect the user’s intent. Following feature extraction, feature translation is
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performed, which generally involves the application of a classification or modeling 

algorithm to predict the intention of the user. The results of this prediction are then 

translated into appropriate commands for the output device.

1.2 MOTIVATION

The primary aim of brain-computer interfaces is to help patients communicate 

with the external environment in a fast and intuitive manner [2]. Most BCI studies to 

date have focused on extracting intended movement, imagined movement or attentive 

selection in order to control a cursor [4], to type characters on a screen [5], or to control 

a prosthetic limb [6,7]. However, the existing fastest BCI for communication reports 

an information rate of 2.1 b its/ second [8], which is much lower than the average 

natural speech production rate of 25 b its/ second [9]. Hence, for a BCI to truly 

achieve real-time communication rates, it is desirable to have a BCI that approaches 

the rates of natural speech. Also, a BCI will only be truly intuitive if it can decode 

the meaning of, or the semantic information present in, the thoughts of the subject 

directly from cortical activity. A BCI which uses imagined speech in order to control 

external devices may thus be the gold standard for such an intuitive and practical 

BCI. In the direction of this ultimate aim, it is important to first understand the 

relationship between cortical activity and acoustic speech, the semantic information 

present in speech, and different representations of speech. After this, it would be 

useful to examine the possibility of predicting various components of articulated or 

imagined speech directly using brain signals [10]. This dissertation aims to address 

these two important research questions by exploring the use of ECoG to:
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a. Characterize the spatio-temporal relationships between cortical activity and 

various speech representations popularly used in speech recognition systems as 

the brain prepares, produces and perceives self-produced, continuous speech.

b. Decode these speech representations directly from the cortical activity using 

simple and optimized feature sets and modeling techniques.

1.3 PRIMARY CONTRIBUTIONS OF THIS DISSERTATION

A majority of earlier studies used relatively simple components of speech such as 

vowels, phonemes, words, spectrograms, etc. for ECoG-based speech decoding. The 

first contribution of this dissertation is that it provides a comprehensive summary 

and review of earlier ECoG-based speech studies, as described in Chapter 2 [11]. 

An important contribution of this dissertation is that it characterizes and decodes 

speech representations commonly used in automatic speech recognition systems di

rectly from ECoG activity. These representations are based on more fundamental 

acoustic features that can better facilitate generative models of speech from ECoG. 

Thus, this dissertation bridges the gap that currently exists between ECoG-based 

speech BCIs and speech recognition systems. This analysis is categorized based on 

the type of speech representation being studied as follows:

1. Characterization and decoding of production-based speech representations from 

ECoG activity: Various production-based speech representations such as the 

speech power envelope, the fundamental frequency (pitch), formants, and the 

linear prediction coefficients, which are all based on speech production models,



are characterized using spatial and temporal correlation metrics and decoded 

using ECoG activity.

2. Characterization and decoding of perception-based speech representations from 

ECoG activity: Various perception-based speech representations such as the 

mel frequency cepstral coefficients (MFCC) and the perceptual linear prediction 

(PLP) coefficients, which are both based on speech perception models, are 

characterized using spatial and temporal correlation metrics and decoded using 

ECoG activity.

These analyses uniquely highlight the spatiotemporal evolution as well as the 

common neural bases of speech in the brain at a high temporal resolution, which was 

previously not possible using other imaging modalities. Another unique aspect of this 

dissertation is the use of continuous speech for characterization and decoding, which 

differs from prior speech-based ECoG BCI research that evaluated discrete com

ponents such as words and phonemes. Continuous speech is more representative of 

natural daily communication; hence, it is more practical for creating generative mod

els of speech toward the development of a natural speech prosthesis. This research 

also bridges the gap between speech articulation-based and speech perception-based 

ECoG studies by studying the underlying neurophysiology for both these conditions 

in terms of speech characterization and prediction. Finally, while the majority of 

earlier studies primarily employ wide-band gamma frequencies for decoding various 

speech components from ECoG activity, this work introduces more optimized feature 

sets derived from narrower gamma sub-bands to improve upon existing ECoG-based



speech decoding models. These collective findings provide important insights toward 

the development of a real-time speech prosthesis using ECoG.

1.4 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 discusses 

the background for this study, primarily highlighting the state of the art in current 

ECoG-based speech decoding studies, and discussing popularly used speech recogni

tion techniques, since this dissertation attem pts to mainly bridge the gap between 

these two research areas. Chapter 3 covers the dataset analyzed in this disserta

tion including the experimental paradigm, data acquisition, and data analysis. The 

characterization and decoding of production-based and perception-based speech rep

resentations from ECoG are detailed in Chapters 4 and 5, respectively. Following this 

basic characterization and development of decoding models, the optimized charac

terization and decoding models for two fundamental speech components, power and 

fundamental frequency, are presented in Chapter 6. Chapter 7 concludes the disser

tation with a discussion of the main contributions and possible future directions of 

this research.
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CHAPTER 2 

BACKGROUND

This chapter provides a comprehensive and detailed review of existing ECoG- 

based speech characterization and decoding studies. A majority of the content in 

this chapter is derived from [11].

While the neural correlates of speech processing have been investigated for sev

eral decades, recent research has focused on investigating the possibility of decod

ing speech directly from neural activity. Communication impairments can originate 

from neuro-degenerative disorders that affect the motor production and articulation 

of speech, such as amyotrophic lateral sclerosis (ALS), as mentioned earlier, or from 

language disorders that affect the cognitive production or comprehension of language 

such as various forms of aphasia [12]. One goal of characterizing neural activity during 

speech production and comprehension is to develop neurotechnological applications 

to restore communication to those affected by speech and language disorders. The 

majority of neuroimaging studies of communication have used functional magnetic 

resonance imaging (fMRI) and positron emission tomography (PET) to localize the 

neuroanatomy involved in speech and language processing [13], while noninvasive 

electromagnetic techniques such as magnetoencephalography (MEG) and electroen

cephalography (EEG) have additionally provided information related to the temporal 

patterns of activation. In particular, fMRI and PET have greatly contributed to the 

understanding of speech processing in the human brain. However, such techniques
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that rely on measurements of hemodynamic responses (timescale of 4 - 6 seconds) 

are unable to capture the rapid temporal dynamics of natural speech (phoneme pro

ductions are often < 200 ms). ECoG, the measurement of electrical activity directly 

from the cortex, has become a highly promising neural signal acquisition modality 

for studying speech and language processing due to its capability to provide high 

spatial and temporal resolution [10]. Ultimately, the unique information offered by 

ECoG can be used to develop neuroprostheses that will decode intended speech for 

expressive communication or represent perceived language information directly using 

neural activity to augment receptive communication.

2.1 REVEALING THE NEURAL CORRELATES OF LANGUAGE

Prior to the development of functional neuroimaging techniques, identification of 

language areas in the human brain was based on studies of deficits in patients with 

damaged brains or patients undergoing electrical stimulation during neurosurgery 

[14]. The process of identifying parts of the brain involved in language processing 

began as early as 1861, when neurosurgeon Paul Broca studied the brains of nine 

patients with lesions and concluded that the expressive language centers present in 

most humans are located in the posterior frontal lobe of the left hemisphere, in an 

area now known as Broca’s area [15]. A decade later, another renowned neurologist, 

Carl Wernicke, discovered that the posterior part of the left temporal lobe is involved 

in the comprehension of language. This region is now known as Wernicke’s area [16]. 

Other researchers have also developed functional models of speech that describe the 

speech-related neural areas and their functional significance [17,18], These models



have identified the functional network consisting of the pre-motor cortex, primary 

motor cortex, Broca’s area, primary auditory cortex, Wernicke’s area, and superior 

temporal gyrus (STG) to be involved in the planning and production of speech and 

in the perception of speech (see Figure 3).

FIG. 3: The areas of the cortex involved in speech planning, articulation and produc
tion. shown on a generic brain using color maps demonstrating approximate locations 
of the different areas. The pre-motor area, primary motor area, and Broca’s area 
are involved in speech preparation and articulation while the posterior and middle 
superior temporal gyrus, the posterior middle temporal gyrus and Wernicke’s area 
are associated with speech perception and processing. Based on figure in [19].

Neuroimaging techniques such as PET or fMRI are also used to identify the neural 

correlates of speech processing by the human brain [13,20-24]. PET imaging involves 

the use of positron-emitting isotopes as tracers to detect changes in the cerebral blood 

flow and volume in response to a stimulus [25]. For speech processing, a stimulus 

might be the presentation of acoustic speech or the preparation and execution of 

a speech motor task. The spatial resolution in PET imaging is approximately 6 

mm, while the temporal resolution is between tens of seconds to several minutes.

In contrast, fMRI imaging results from changes in the blood oxygenation level due
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to the metabolic activity of neuronal tissue without the use of a radioactive tracer. 

The spatial resolution of fMRI ranges from 1-4 mm, and the temporal resolution is 

between hundreds of milliseconds to seconds.

Studies have investigated the neural bases of speech production as well as the 

perception of speech using electroencephalography (EEG) [26-28], Due to the com

paratively low signal-to-noise ratio of EEG, time-locked averages known as event- 

related potentials (ERPs) are needed to capture the relevant brain responses. ERPs 

have been successfully used to study the temporal evolution of the phonological and 

lexical processes in the human brain corresponding to speech production and per

ception [26-28], but not during active speech production due to contamination from 

myoelectrical artifacts. While noninvasive measures such as EEG and MEG can the

oretically offer adequate temporal resolution, factors such as spatial resolution on the 

order of centimeters, spectral bandwidth on the order of 80 Hz, and susceptibility to 

electrical artifacts severely limit the utility of these modalities for investigating the 

joint spatio-temporal dynamics of brain activity.

The excellent spatial resolution of fMRI and PET and the temporal resolution of 

EEG and MEG have provided theoretical and computational models that highlight 

the spatial topography and functional connectivity of the brain networks involved in 

speech production and comprehension [13,26-29]. The results of these studies high

light the interconnectedness of neural networks for speaking, of which the traditional 

Broca’s and Wernicke’s areas play a crucial role in production and perception, respec

tively [13,29]. Using intracranial electrophysiology, both the spatial and temporal
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neurological dynamics of speech and language can be assessed simultaneously, pro

viding a new opportunity to observe the entire speech network during production and 

perception tasks, which could not be done using standard noninvasive neuroimag

ing and electrophysiology. W ith the additional spatial and temporal detail available 

through ECoG recordings, it is now possible to develop a real-time neural prosthesis 

for speech and language.

2.2 THE ELECTROCORTICOGRAM

Signal Acquisition and Characteristics

ECoG measures the electrical activity of the brain recorded by electrodes placed 

directly on the surface of the cortex. ECoG was originally developed by neurosur

geons W. Penfield and H. Jasper in the 1930s as a technique for localization of epilep

tic seizure foci prior to surgical resection [30]. Modern ECoG typically uses platinum 

electrodes with a diameter of 4 mm that are implanted as either two-dimensional 

grids (e.g., 8x8 electrodes) or one-dimensional arrays (e.g., 4 or 6 electrodes) with 

an inter-electrode distance of 10 mm [31], as shown in Figure 4. In addition to stan

dard clinical ECoG arrays, micro-ECoG arrays (center-to-center distance of 4mm or 

less) have also been used in recent studies to improve spatial resolution [32-35]. An 

example of a microgrid array is also shown in Figure 4.
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10 mm.

75 micron electrode

5 mm.

A B C

FIG. 4: Macro and micro ECoG arrays. A: Standard clinical macrogrid. B: Surgical 
placement of macrogrid. C: Microgrid array (left), schematic of microgrid array 
(right). Based on figure in [31].

ECoG recordings are well-suited for basic neuroscience research as well as for 

neural decoding studies. The recording characteristics of ECoG include: (1) spatial 

resolution on the scale of millimeters (activity is related to the neural tissue directly 

beneath the electrode disk), (2) frequency bandwidth up to 200 Hz or higher, (3) an 

amplitude up to 100 pC  compared to near 20 fj,V for EEG, and (4) reduced sensitivity 

to movement and myoelectrical artifacts compared to EEG and MEG [31]. Due to 

higher signal amplitudes and lower sensitivity to artifacts, ECoG signals have higher 

signal-to-noise ratios (SNRs), which is highly desirable for any signal acquisition 

modality. Compared to penetrating electrodes, it is believed that ECoG does not 

suffer from adverse tissue reactions and electrode encapsulation issues [36] that can 

degrade signal quality over time because ECoG does not breach the cortex [37,38]. 

The superior bandwidth of ECoG is particularly important because brain activity in 

the 70-180 Hz gamma band range has been linked to perception, cognitive function, 

and motor tasks [4,39-42]; including learning, memory, and speech [19,43-64]. These
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studies demonstrate the promising real-time decoding potential of ECoG compared 

to other neuroimaging modalities.

Signal Processing and Feature Extraction

To date, the most relevant information or features of ECoG are based on its 

spectral dynamics. ECoG recordings typically require preprocessing to condition 

the signals for further analysis. A spatial common average reference (CAR) filter is 

commonly applied to remove any low-frequency fluctuations and artifacts that may be 

present on all channels over a region [43,44,50,53]; then signals are high-pass filtered 

starting between 0.5-2 Hz to further reduce low-frequency fluctuations and heartbeat 

artifacts [51,53]. The signals are also notch or comb filtered at harmonics of 60 Hz (or 

50 Hz as appropriate) to eliminate power line interference [47,49-53]. Furthermore, 

any trials or channels that show excessive fluctuations, presence of outliers, low SNR, 

or are overlying pathological tissue are generally removed to ensure that these trials 

or channels do not bias the analysis [47,51,53].

Following the pre-processing stage, more advanced signal processing techniques 

are used to extract the relevant spectro-temporal features for further analysis. The 

signals are typically transformed to the frequency domain using a Discrete Fourier 

Transform (DFT), auto-regressive model, or band-power filtering [43,44,50]. After 

this, the power of the signal is determined over the frequency bands of interest by 

some form of averaging of spectral amplitudes in the respective frequency ranges. 

To date, the gamma band, from approximately 30 Hz to 200 Hz, has provided the 

most informative description of the neural processes underlying speech. W ithin this
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frequency range, modulations of the high-gamma band, from approximately 60-80 

Hz to 150-200 Hz, have been identified as highly correlated with speech production 

and perception. This range of frequencies is of particular interest in ECoG because 

it is not detectable with the limited spectral ranges of other neural signal acquisition 

techniques such as scalp EEG [31]. Nevertheless, ECoG is also well suited to examine 

the delta (<4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta bands (12-30 Hz) in the 

context of speech production and perception in the human cortex [19,43] and often 

results in superior signal quality due to the reduction of electrical artifacts compared 

to EEG.

The extracted spectro-temporal ECoG features have been used to both study and 

decode neural activity during speech production and perception. For spatial char

acteristics studies investigating the speech network, recorded signals from electrodes 

at different locations over the cortex are compared against a reference signal (e.g., 

recorded speech) using statistical techniques such as correlation analysis and/or anal

ysis of variance (ANOVA) [19,43,44,47,50,52-55]. To obtain the temporal dynamics 

of these spatial networks, ECoG signals from each channel are compared to the ref

erence signal at different time latencies relative to the onset of speech articulation 

or the presentation of speech stimuli to quantify the neural processing involved in 

the production and perception of speech, respectively [50,52]. Decoding articulated 

or perceived speech from ECoG generally requires the application of additional ad

vanced signal processing and machine learning techniques to produce the desired 

speech outcome. Some recent attempts at speech decoding using these approaches
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are discussed in Section 2.4.

2.3 NEURAL DYNAMICS OF SPEECH AND LANGUAGE 

PROCESSING USING THE ELECTROCORTICOGRAM

Numerous studies have investigated cortical activity using ECoG during various 

speech tasks to identify the cortical areas and networks involved in speech production 

and perception, which create the groundwork for speech decoding. The following sec

tions summarize the studies focusing on the identification of the spatial and temporal 

dynamics of ECoG during speech production and perception.

Spatial Characterization of Speech Production

A recent study by Bouchard et al. (2013) examined modulations of the ECoG 

high gamma-band during production of consonant-vowel syllables to investigate the 

phonetic organization of the speech sensorimotor cortex [48]. Spatial patterns of 

cortical activity showed that the gamma band activity, recorded by electrodes over 

the sensorimotor cortex, demonstrated different spatial organizations for consonants 

versus vowels. The spatial patterns also confirmed prior neuroimaging findings that 

speech is produced through the coordination of a distinct set of articulatory repre

sentations in the ventral sensoriomotor cortex. In another study, Pei et al. (2011) 

analyzed the high-gamma power of ECoG signals recorded while subjects overtly 

or covertly repeated words presented acoustically or visually [44], Overt word pro

duction was associated with high-gamma power changes in the superior and middle 

parts of the temporal lobe, Wernicke’s area, Broca’s area, the pre-motor cortex and
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the primary motor cortex. Covert word production, in contrast, was associated with 

high-gamma changes in the superior temporal lobe and the supramarginal gyrus. 

This study provided corroborating evidence for an overt speech production network 

identified in prior neuroimaging studies [13], but conflicted with prior accounts of 

covert speech, which merely suggested that the speech network was reduced in size 

and strength for the covert condition as compared to the overt condition [13, 21]. 

This study also demonstrated weaker and less distributed cortical activations during 

the covert speech condition, but in certain areas, in particular, the superior temporal 

lobe, no significant difference in activation was found between the overt and covert 

conditions. This study, thus, highlights the important role played by the superior 

temporal lobe during covert speech production. The neural correlates of verb gener

ation and noun reading have also been investigated using an analysis of the ECoG 

high-gamma band [49]. The results of this study showed that activation was found in 

the primary mouth motor area, the superior temporal gyrus (STG), and Broca’s and 

Wernicke’s areas, which agrees with previously identified regions involved in speech 

production.

Spatial Characterization of Speech Perception

ECoG has also been used to explore the differences between the processing of 

speech and non-speech auditory stimuli, such as tones, in order to primarily high

light the importance of the human cortex in processing both the acoustic and the 

phonological aspects of speech. One of the early ECoG speech studies based on
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speech perception by Crone et al. (2001) explored the temporal and spatial activa

tions of the cortex in response to perception of speech (phonemes) and non-speech 

(tones) stimuli [43]. This study found that activations in the primary auditory cortex 

and STG occur in the gamma band, and to a higher extent in the high gamma band, 

during phoneme discrimination. For the tone stimuli, it was found that increases 

of the gamma power occurred in fewer electrodes, i.e., to a smaller spatial extent, 

and with lower magnitudes than for phoneme stimuli. This effect was particularly 

noticeable in the left STG, which highlights the importance of the left hemisphere’s 

auditory cortex in speech processing as compared to non-speech auditory processing, 

and confirms results from earlier lesion studies that investigated tone perception.

Additional studies have supported the claim that processing of incoming auditory 

stimuli results in an increase in high-gamma activations in the left STG [51], and have 

elucidated the importance of the speech envelope in speech comprehension [50,52]. 

The speech envelope is the rectified speech waveform that fluctuates with speech 

intensity, i.e., loudness, phonetic content, and rhythmic cadence that is vital for 

understanding fluent, conversational speech. ECoG has the requisite spatial and 

temporal resolution to study this quickly changing speech signal, and prior work 

has found that ECoG in the belt areas of the auditory cortex, i.e., the areas lying 

relatively early in the auditory pathway, tracks modulations in the speech envelope 

as well [50]. This provides evidence that cortical signals closely represent the acoustic 

features of speech, and paves the way for future studies to investigate finer temporal 

aspects of speech processing in the cortex. An important study by Canolty et al.
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(2007) showed that the high-gamma activity in the ECoG tracked the spatio-temporal 

dynamics of word processing while subjects listened to a stream of verbs associated 

with actions of the hand and the mouth [53]. From this study, it was found that the 

perception of verbs activates the posterior and middle STG as well as the superior 

temporal sulcus (STS), which supports previous studies tha t found evidence that the 

STG is largely involved in speech comprehension.

Other studies have attempted to investigate the cortical responses to altered 

speech feedback to identify the neural dynamics of sensory processing for error de

tection and correction. One particular study by Chang et al. (2013) recorded speech 

from subjects, and then later played back these recordings with slight perturbations 

in the pitch to the subjects while they were speaking [54]. It was found that the 

cortical responses in the posterior STG were suppressed while listening to unaltered 

feedback, but enhanced in response to the pitch-altered feedback, which corroborates 

results from a previous study which demonstrated the same effect in the EEG au

ditory response [65]. W ith ECoG it was possible to localize this change directly to 

the auditory cortex, while EEG only provides indirect evidence of auditory cortex in

volvement. The subjects were found to compensate for the altered pitch in the stimuli 

by changing the pitch of their speech. Furthermore, these vocal changes made by 

the subjects were predicted by their auditory cortical responses to the altered pitch 

stimuli. This neurological relationship provides evidence for the sensorimotor control 

of articulation in humans through the coordination of various cortical areas.
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Temporal Evolution of Speech: From Planning and Production to Per

ception

Recent studies have attempted to use language tasks that involve both speech 

production and perception to simultaneously analyze both expressive and receptive 

speech areas [55-57]. It can be concluded from the combination of all these studies 

that, broadly, different areas of the cortex are activated by motor speech production 

and speech perception, as illustrated in Figure 3 (Page 10). The areas involved in 

speech articulation are the pre-motor cortex, which is mainly involved in planning; 

the face-mouth-motor regions, involved in generating mouth movements necessary 

for speech articulation; and Broca’s area which is involved in speech planning and 

articulation. The areas of the cortex primarily involved in speech perception and 

comprehension are STG and Wernicke’s area. Analysis of the temporal dynamics of 

ECoG signals during speech perception shows that the posterior STG is activated 

first, followed by the middle STG, then STS [53]. The spatial characterization results 

found by these studies analyzing both speech production and perception simultane

ously, further support results from the studies investigating speech production and 

speech perception independently, discussed in the previous two sections, respectively.

2.4 ECOG-BASED DECODING

The aforementioned studies combined provide a framework for associating ECoG 

recordings (namely the high-gamma band power) with the behavioral tasks of speech 

production and perception. Figure 5 illustrates the concept of training a neural-based



21

Decoding
Model l i i  Hi vj

A: Decoding Model Training using Overt Speech

VvV^V'—

Decoding
Model

B: Decoding Model Operation using Imagined Speech

FIG. 5: A typical speech decoding model. (A) ECoG signals serve as the input 
to a neural-based decoding model that is trained using representations of recorded 
overt speech (e.g., time series, spectrogram, etc.) to ideally reconstruct the overt 
speech directly from the ECoG signals. (B) In principle, a version of the trained 
decoding model would be used to generate imagined speech directly from ECoG 
signals in real time. The model may be trained using overt speech or through some 
prior characterization of imagined speech, since there is no behavioral output during 
imagined speech.

decoding model using overt speech for reconstruction of imagined speech. This con

cept represents the basis of a speech neuroprosthetic device. The decoding model 

may perform a continuous reconstruction of the speech or a discrete classification and 

output of phonemes, words, etc., depending on the objective and constraints of the 

system. While it may be possible to decode individual words or phrases discretely, 

extending such models becomes highly dependent on the desired vocabulary and can
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lead to a combinatorial dilemma. Alternatively, the ability to decode formants or 

phonemes will enable the creation of generative models that are not limited to a 

fixed vocabulary. In terms of decoding perceptual information, one potential appli

cation lies in the development of a practical auditory neuroprosthesis. A practical 

auditory decoder should demonstrate the ability to segregate and process attended 

sound streams from irrelevant signals from more than one point in space in a com

plex acoustic environment, such as in a hospital setting or a restaurant. This ability 

would expand the active space of the signal, allowing for more natural communica

tion when competing multi-talker streams exist in the acoustic space. Additionally, 

perceptual decoding could be used to enhance the speech production decoder by ac

counting for the production-perception feedback loop [54,56]. The following sections 

discuss attempts to decode, or predict speech behavior directly from ECoG activ

ity. These studies represent the initial steps toward the development of real-time 

neuroprostheses for speech and language.

Decoding of Overt Speech Production

Speech production is a complex process that is initiated by linguistic processing 

and results in articulated speech, which can be further broken down into sentences, 

words, syllables, vowels, consonants, and phonemes. The following speech decoding 

studies have investigated the decoding of these various levels of speech production. 

A study by Wang et al. (2011) showed an increase in gamma power over Broca’s 

and Wernicke’s areas during picture naming and property identification [57] that was 

used to decode the semantic category associated with each stimulus. In this study,
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ECoG was recorded from four subjects as they participated in a picture naming 

task, where they were presented with pictures of objects from different semantic 

categories, such as food, tools, dwelling, and body parts, varying from subject to 

subject. Two popularly used machine learning techniques, the Gaussian Naive Bayes 

Classifier and the linear support vector machine (SVM), were then used to decode 

the semantic category that the subjects named from the ECoG activity, resulting in 

accuracies as high as 74% (chance level 33%).

A study by Kellis et al. (2010), which involved the use of micro-ECoG electrodes 

implanted over the facial motor cortex and Wernicke’s area, attempted to classify 45 

possible pairs among a set of 10 words that a subject was articulating. The power 

spectra of the ECoG data and principal component analysis (PCA) were used to max

imize the variance between the classes of words being identified [32]. The electrodes 

that led to the best classifier performance were selected to improve classification of 

word pairs, which demonstrated that electrodes implanted over the face-motor cortex 

resulted in better classification (40 of the 45 word pairs classified with an accuracy of 

80% or higher, chance level 50%) than did the electrodes implanted over Wernicke’s 

area (15 of the 45 word pairs classified with an accuracy of 80% or higher). This may 

be explained by the role of the face-motor cortex in the control of mouth movements 

required for speech articulation.

A study by Pei et al. (2011) examined ECoG signals to classify four vowels and 

nine pairs of consonants from a closed set of spoken whole words, and achieved 10-fold 

cross-validation classification accuracies up to 43% for vowel and 49% for consonant
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pairings, which were both significantly better than chance (chance level 25% for both) 

[58]. This study used the technique of maximum relevance and minimum redundancy 

(MRMR) to select the top 35 or 40 ECoG features for decoding consonant pairs or 

vowels, respectively, using the Naive Bayes Classifier. A recent study by Kanas et al. 

(2014) performed spatio-spectral feature clustering of ECoG recordings in order to 

detect speech activity from one subject during a syllable repetition task, achieving 

an accuracy of 98.8% [59]. This study used the method of k-means clustering to 

group the best power spectral density features for all the channels and frequencies 

into clusters. This grouping was followed by the classification of the ECoG features 

using different algorithms, among which the support vector machine was the most 

accurate in detecting speech activity from the related cortical signals. A study by 

Zhang et al. (2012) used a sentence-level approach to classify ECoG high gamma 

responses obtained from the posterior portion of the inferior frontal gyrus during 

the production of two eight-character Chinese sentences with a 77.5% accuracy of 

classification (chance level 50%) [60]. Dynamic time warping was used to align the 

ECoG responses with the onset of sentence articulation and identify temporal acti

vation patterns, or ECoG response templates, for the two sentences. Fisher’s linear 

discriminant analysis (LDA) was used for classification of the two sentences based 

on the time-warped ECoG responses, which was then evaluated using a leave-one- 

out cross validation technique. This study demonstrates the discriminability of high 

gamma activity recorded during speech at the sentence level, which is an important
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advance toward a neuroprosthesis for fluent, conversational speech. The studies dis

cussed up to this point have attempted to decode semantic categories, words, vowels, 

consonants, and sentences in articulated speech from ECoG activity, and have shown 

preliminary success in speech decoding. However, the success rates for these decod

ing techniques are still low for a speech prosthesis capable of operating in natural 

environments where both decoding speed and accuracy are of importance.

One possible way to improve the information rate of speech decoding may be to 

predict the smallest identifiable components of speech, called phonemes, which can 

be sequenced together to form more complex productions. A study by Blakely et 

al. (2008) used micro-ECoG grids to successfully classify a set of four phonemes, 

in a pair-wise fashion, using ECoG high-gamma power [33]. The ten best channels 

for classification of each of the phoneme pairs were found using a correlation-based 

feature selection technique, followed by a binary classification with a linear support 

vector machine, which was then validated using a 4-fold nested cross-validation. The 

study found that different locations on the cortex were specific to classification of 

particular phoneme pairs, thus demonstrating the spatial separation of phoneme rep

resentation in the human brain. Using the best set of electrodes for each phoneme 

pair, accuracies as high as 75% for classification of the “RA” versus “LA” pair and 

70% for the “BA” versus “WA” pair (chance level 50% for both), were achieved. Ex

tending these possibilities further, a recent study by Mugler et al. (2014) investigated 

a technique to decode the entire set of phonemes in American English using ECoG 

recordings from four subjects while they produced words from the modified rhyme



test. This test consists of 300 words with similar frequencies of phoneme occurrence 

as found in the English language [61]. ECoG feature selection was performed on the 

time-frequency features (short time Fourier Transform features in the mu, beta and 

high gamma frequency bands) using an ANOVA and selecting features as those with 

the lowest p-values. These features were then used to classify phonemes using the lin

ear discriminant analysis technique followed by a ten-fold cross-validation to evaluate 

the classification performance. For the subject with the best performance, 36.1% of 

all consonant phonemes (chance level 7.4%) and 23.9% of all vowel phonemes (chance 

level 12.9%) were correctly classified, with a classification rate as high as 63% for 

a single phoneme. Another study by Leuthardt et al. (2011) was able to success

fully classify the production of two phonemes based on the squared correlation of 

the ECoG high gamma power during overt [35]. This was an online study where two 

subjects produced two different phonemes to control a one-dimensional cursor on the 

computer screen. The cursor was controlled using a weighted summed value, based 

on the decoded phoneme (e.g., one phoneme moved the cursor right, the other left). 

Classification rates of 76% and 91% were achieved for the two subjects (chance level 

46.2%).

Decoding of Imagined Speech Production

Because the primary goal of a speech neuroprosthesis is to restore communication 

to those who are able to achieve little or no normal verbal communication, it is vital 

to demonstrate that imagined or attempted speech can be accurately decoded from 

brain activity. Pei et al. (2011) examined ECoG recordings to classify vowels and
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consonant pairings during covert word repetition, achieving classification accuracies 

as high as 43% for imagined vowel classification and 46% for consonant pairs (chance 

level 25% for both) in imagined speech [58]. This was done using the same technique 

for feature selection (MRMR), classification (Naive Bayes Classifier), and evaluation 

(10-fold cross-validation) as used for the decoding of overt vowels and consonant 

pairs. This was one of the first studies to demonstrate the possibility of classifying 

different vowels and consonants embedded in imagined words directly from brain 

signals. Furthermore, the decoding results were similar for both actual and imagined 

speech, which provides evidence that imagined speech can also be decoded from 

neural activity. Leuthardt et al. (2011) also investigated online control of a one

dimensional cursor using ECoG high-gamma power for an imagined phoneme versus 

rest task in two subjects (e.g., imagination of a phoneme moved the cursor right, 

rest moved it left) [35]. The feature selection and classification techniques used 

were consistent for the overt and covert phoneme pair identification (discussed in 

the previous section). This resulted in closed-loop classification accuracies above 

69% (chance level 42.6%) for both the overt and covert conditions, with the overt 

condition yielding a performance as high as 91%.

A recent study by Martin et al. (2014) explored the possibility of predicting 

spectro-temporal components of imagined speech from ECoG high gamma power, in 

a manner similar to overt speech [62]. In this study, subjects read aloud (overt con

dition) and imagined reading (covert condition) short stories that scrolled across the 

computer screen. Neural decoding models were then developed for the overt speech
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condition in order to predict two speech feature representations: (1) a spectrogram- 

based feature, which is a time-varying speech amplitude envelope at different acoustic 

frequencies, and (2) a modulation-based feature, which is a non-linear transformation 

of the spectrogram. Linear decoding models were developed in order to predict the 

two speech representations from ECoG high-gamma activity for the overt condition. 

These models were then applied to predict the speech representations during the 

covert condition. Dynamic time warping was used to align the reconstructed covert 

speech representations to the actual overt representations. The correlation coeffi

cients between the actual and predicted speech representations for the overt condi

tion, and between the time-warped actual and predicted speech representations for 

the covert condition, were used to evaluate the models. The reconstruction correla

tion was found to be statistically significant in all the subjects for the overt condition. 

For the covert condition, the predictions were statistically significant when compared 

to the baseline condition. This indicates that auditory representations of imagined 

speech can be reconstructed from models developed for actual speech, showing that 

both overt and covert conditions share a common neural basis.

Decoding of Speech Perception

Other studies have investigated the possibility of decoding perceived speech di

rectly from cortical recordings. A study by Zavaglia et al. (2012) analyzed auditory 

features to build a forward model of the ECoG responses corresponding to word and 

acoustically matched non-word stimuli presented to the subject [63]. This is done by 

using a weakly-coupled oscillator model of transient synchronization (WCO-TS). The
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WCO-TS uses the auditory stimulus being presented to the subject as the input and 

utilizes the serial nature of word processing in the human cortex, as demonstrated in 

[53], in order to predict the ECoG gamma activity corresponding to incoming audi

tory stimuli. Although this is inverse to the process of speech decoding, i.e., utilizing 

speech features to predict neural information, it provides useful information that 

may be analyzed to build a direct model for the prediction of speech features from 

ECoG. This study also identified a set of speech features called the “occurrence time” 

features which were found to outperform standard cepstral features typically used in 

speech recognition, especially in noisy recognition environments. These occurrence 

time features correspond to the occurrence of peaks in specific speech frequency bands 

and may be useful in future decoding efforts.

Chang et al. (2010) measured ECoG activity in the posterior STG using a high 

density micro-ECoG grid during the presentation of three consonant-vowel syllables 

[34]. The study found that an acoustically varying speech stimulus is transformed 

into distinct phoneme categories in the human cortex. Using this information, it was 

possible to classify three consonant-vowel syllables from the ECoG signals recorded 

across the posterior STG. The dissimilarities between the neuronal response pat

terns were determined using a multivariate pattern classifier which uses L-l norm 

regularized logistic regression, whose classification measures were used to construct a 

confusion matrix for each time interval. Multi-dimensional scaling of this confusion 

matrix and k-means were then used to classify the neuronal responses into three cate

gories that corresponded to the three phonemes. The results from this study indicate
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that the posterior STG performs a critical role in the phonological processing and 

categorization of perceived speech.

A significant contribution for perceived speech prediction was made by Pasley et 

al. (2012), which examined ECoG recordings from the superior temporal gyrus to 

reconstruct the speech spectrogram of aurally presented words and sentences [64], 

Two representations for the perceived speech were found, similar to those used in 

[62], i.e., a spectrogram-based representation and a non-linear modulation-based rep

resentation. Linear neural decoding models were then developed which used the 

ECoG high-gamma power to predict these two speech representations, leading to 

linear and non-linear models respectively. It was found that slow and moderate 

time modulations in the speech, such as syllable rate, were reconstructed well using 

the linear model, i.e., these modulations are well-represented with the spectrogram- 

based representation. Fast temporal modulations, such as syllable onsets and offsets, 

could be better predicted using the non-linear model, i.e., they are well-represented 

with the modulation-based representation. The fidelity of the reconstructions of the 

spectrogram were sufficiently accurate to identify individual words directly from the 

reconstructed spectrogram-based speech representations using a simple spectrogram 

matching algorithm, leading to a median word identification percentile rank of 0.89 

for 47 words (chance level 0.50).

2.5 LIMITATIONS OF EXISTING ECOG-BASED SPEECH 

STUDIES

These collections of studies have identified important neural correlates associated
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with speech production and perception. Decoding models have also been successfully 

developed that are capable of predicting the essential components of verbal commu

nication, namely the production and perception of speech and language directly from 

cortical activity. ECoG studies have been especially informative in their ability to 

provide a spatio-temporal characterization of the neural correlates of speech plan

ning, production, and perception in the human cortex. These studies have specifically 

focused on the ECoG gamma-band power recorded over language-related cortical ar

eas, which is significantly correlated with speech processing and is useful for speech 

decoding algorithms. However, the performance of ECoG-based speech decoders are 

not nearly as robust as needed for practical ECoG-based speech reconstruction, which 

is the ultimate aim of this type of research. One focus of future ECoG-based speech 

studies should include improving computational models of neurological speech pro

cessing for more accurate decoding. New models will benefit from continued research 

on the development of more advanced signal processing and ECoG electrode design 

to capture the recorded signals with higher fidelity. Most of the studies described in 

this review have implemented relatively simplistic linear approaches to characterize 

and predict speech components from cortical activity. However, in reality, it is likely 

that the relationship between ECoG activity and the various speech representations 

of interest are highly non-linear and dynamic. Therefore, more sophisticated models 

based on improved signal acquisition capable of capturing such non-linear relation

ships need to be developed to achieve a more transparent and practical ECoG based 

speech decoder.
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The majority of speech and language ECoG studies have been performed using 

relatively discontinuous speech production and listening tasks, such as cued word 

repetition tasks. These studies are critical for identifying baseline neurological acti

vation during speech, but are not fully representative of fluent, conversational speech. 

A characterization of the neural correlates associated with continuous and sponta

neous speech production and perception may provide the supplementary information 

needed to develop more advanced models. The ability to decode perceived speech 

and articulatory commands in continuous and fluent communication will represent a 

fundamental improvement in the potential impact of a neural prosthesis for speech. 

Natural verbal communication often takes place in the presence of background speech 

or environmental noise. The perception and comprehension of speech in background 

noise requires additional verbal working memory and attentional resources to pro

cess the target stream and segregate it from competing background noise [66-68]. 

In addition, the auditory-motor feedback loop which is active during vocalization, 

has been shown to affect speech production [54,56]. However, the potential inter

ference of background noise on the feedback loop during communication is not well 

understood, particularly at low signal-to-noise ratios, and certainly not included in 

current decoding algorithms. Future ECoG speech studies will need to determine the 

contribution and coordination of both specific speech and non-speech regions to the 

production and processing of speech in different levels of background noise.

Furthermore, most of the ECoG-based speech decoding studies have focused on
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decoding speech features such as the envelope, words, phonemes, vowels, and con

sonants from ECoG activity. However, modern real-time speech processors and au

tomatic speech recognition (ASR) systems employ many other speech features, such 

as the formant frequencies, linear predictive coding coefficients, and mel frequency 

cepstral coefficients, among others [69]. While some studies have used formants for 

ECoG-based speech decoding [34], most other speech representations used in ASR 

have not been investigated with regards to their relationship to cortical activity. The 

decoding of these speech representations directly from ECoG activity is a practical 

next step, and the results could then be used in speech synthesis and recognition 

systems. This research would develop a natural extension of ASR to neurological 

data, and provide a step toward neural speech prostheses.

2.6 SPEECH REPRESENTATIONS USED IN SPEECH ANALYSIS 

AND PROCESSING

Speech processing is an important area of research, where certain properties of 

speech signals are extracted through various processing pipelines and used for dif

ferent applications. This usually requires transforming the speech signal into a set 

of parameters, or a collection of signals, for the purpose of data reduction and pa

rameterization [69]. These reduced representations contain the relevant information 

in the speech signal in an efficient manner. Different representations are typically 

useful in different applications, such that the useful representation retains the rele

vant information for a particular application, while removing information which is 

irrelevant to it.
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Certain speech representations are based on understanding how speech is pro

duced in the human vocal system. Speech can be thought of as an electrical signal, 

which consists of an envelope, a periodicity, and a fine structure [70]. The envelope 

of speech has been found to be important for speech comprehension as the manip

ulation of the speech envelope has been found to affect the recognition of vowels, 

consonants and sentence comprehension[71]. It has also been observed that human 

listeners can understand speech with a preserved temporal envelope but degraded 

spectral information [72]. The periodicity in a speech signal is reflected in the funda

mental frequency, which is a time-varying frequency, evaluated over short windows 

of time and is qualitatively equivalent to the pitch. This fundamental frequency is 

an important speech feature which is vital for speech recognition and speaker recog

nition [70,73]. Other than the fundamental frequency, other harmonics exist in the 

speech signal, reflected as peaks in the speech spectrum which also coincide with the 

resonances in the vocal tract [74]. Formants are popularly used in speech recogni

tion because the information that humans require to distinguish between vowels is 

supposed to be contained purely in the frequency content of vowels, often charac

terized by the formants [75]. A slightly different line of research models the speech 

signal as a combination of a sound source and a vocal tract filter, commonly known 

as the source-filter model [69]. The sound source is assumed to produce an impulse 

train, with period equal to the pitch period or frequency equal to the fundamental 

frequency, for voiced sounds, and white noise for unvoiced sounds. The vocal-tract 

filter is approximated as an all-pole filter, whose coefficients are determined by linear
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prediction or autoregressive modeling, and are known as the linear prediction coeffi

cients (LPC) [69]. The LPC coefficients, in combination with the pitch, can be used 

to encode the important information in human speech, and are important for speech 

recognition and reconstruction [76].

Some other speech representations are based on the understanding or knowledge 

of how speech is perceived by the human auditory system. One of the most impor

tant speech representations in this direction is the mel frequency cepstral coefficients 

(MFCC). MFCC is a speech representation based on mapping the speech spectrum 

onto a non-linear mel scale of frequency by passing it through a bank of non-linearly 

spaced filters. The mel scale, or the melody scale, is a logarithmic scale based on how 

the human ear perceives pitch. MFCCs are commonly used for speech recognition, 

speaker recognition and speech reconstruction [77,78]. Another important speech 

representation, known as the Perceptual Linear Prediction Coefficients (PLP), is 

often used in speech recognition, either alone or in combination with other features 

[79,80]. The PLP coefficients are obtained by mapping the power spectrum of speech 

onto another non-linear scale, known as the Bark scale, which is a scale based on the 

perception of loudness by the human ear. Some other speech representations use fil

ter banks based on the human cochlear processing of speech, in order to filter speech 

prior to feeding it into a speech recognition system [81-83]. These cochlear filter 

banks are based on functional models of the cochlea and are supposed to preserve 

important information in both time and frequency domains. They are also supposed
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to be more robust for speech processing than some other representations [82], How

ever, the processing of speech based on the human cochlear filter-bank also requires 

more complex computation than some other techniques; thus, there is a trade-off 

between robustness and computational efficiency when using these features.
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CHAPTER 3 

EXPERIMENTAL METHODOLOGY

This chapter describes the methodology used for the experimental paradigm and 

data acquisition. The signal pre-processing as well as the primary techniques used 

for characterization and development of the decoding models are described.

3.1 DATA ACQUISITION

Data were collected from eight patients with medically intractable epilepsy who 

were undergoing treatment at the Albany Medical Center. The subjects underwent 

temporary placement of subdural electrode arrays to localize seizure foci prior to 

surgical resection of the epileptic tissue. All the eight subjects gave informed consent 

to participate in this study, which was approved by the Institutional Review Board 

of the hospital. All of the subjects were mentally, visually and physically capable of 

performing the task and had performance IQs of 85 or higher.

The implanted electrode grids, produced by Ad-Tech Medical Instrument Cor

poration (Racine, Wisconsin), consisted of platinum-iridium electrodes (4 mm in di

ameter, 2.3 mm exposed) that were embedded in silicone and had an inter-electrode 

distance of 1 cm. One subject (Subject H) had an electrode grid with an inter

electrode distance of 6 mm. Grid placement and duration of ECoG monitoring was 

based purely on the clinical requirements of the subjects without any consideration 

for this study.
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Each subject had postoperative anterior-posterior and lateral radiographs, as well 

as computed tomography (CT) scans to verify grid locations. Three-dimensional 

cortical models of individual subjects were generated using pre-operative structural 

magnetic resonance imaging (MRI). These MRI images were co-registered with the 

post-operative CT images using Curry software (Compumedics, Charlotte, NC) to 

identify electrode locations, as shown in Figure 6. Cortical locations were derived 

using Talairach’s Co-planar Stereotactic Atlas of the Human Brain [84] and a Ta- 

lairach transformation (http://www.talairach.org). Cortical activation maps were 

generated using custom Matlab software. Activation maps computed across subjects 

were projected on a three-dimensional cortical template provided by the Montreal 

Neurological Institute (MNI) (http://www.bic.mni.mcgill.ca).

FIG. 6: (Top Row) Placement of electrodes on all 8 subjects. (Bottom Row) Com
bined electrode placement over all 8 subjects. Electrode locations were identified in a 
post-operative CT, co-registered to pre-operative MRI, and transformed into a joint 
Talairach space for comparison across subjects.

http://www.talairach.org
http://www.bic.mni.mcgill.ca
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3.2 TASK AND DATA COLLECTION

In this study, each subject was seated in a semi-recumbent position in a hospital 

bed, about 1 m away from a computer screen. During the experiment, the text of a 

famous passage, either a political speech (The Gettysburg Address given by President 

Abraham Lincoln during the Civil War in 1863 or President John F. Kennedy’s 

inaugural address in 1961), a nursery rhyme (Humpty Dumpty), or a fictional story 

(Traitor Among Us: Charmed, an adventure/supernatural story written for the TV 

show Charmed), ranging from 109 to 411 words, scrolled from right to left across 

the screen at a constant rate between 20% and 35% per second, resulting in run 

durations between 129.87 and 590.10 seconds. For each subject, this rate was chosen 

to be a rate that the subject was comfortable with, based on his/her attentiveness 

and cognitive/verbal ability. Only one of three passages were visually presented, to 

each subject, during the experiment. For all the subjects, ECoG was recorded in two 

different conditions, one in which the subject was instructed to read the presented 

text out loud, and the other in which the subject had to read the presented text 

silently, i.e., overt and covert tasks, respectively. Each overt run was followed by a 

covert run with the same text scrolling across the screen at the same rate as for the 

overt task. In this dissertation, results from the overt task are presented.

The experimental paradigm is shown in Figure 7. ECoG signals were recorded at 

the bedside of the patients using eight 16-channel g.USBamp biosignal acquisition 

devices, designed by g.tec (Graz, Austria). ECoG signals and the speech signal 

recorded from the microphone, while the subjects were speaking, were simultaneously



digitized at a sampling rate of 9600 Hz. Electrode contacts which were distant from 

the epileptic foci and areas of interest were used as reference and ground electrodes. 

The recordings were visually inspected offline for environmental artifacts and inter- 

ictal activity. Channels which did not contain any ECoG activity were removed before 

the analysis, which resulted in 56-120 channels each for the eight subjects. Along 

with recording cortical activity, the subjects’ eye gaze was recorded using a monitor 

with a built-in eye tracker, designed by Tobii Technologies (Stockholm, Sweden). The 

eye tracker was calibrated in a subject-specific manner prior to the experiment using 

custom software. Data collection from the signal acquisition devices, microphone, 

eye tracker and the control of the experimental paradigm was done simultaneously 

using the BCI2000 software [85].

Monitor
FDA Approved 

Data Acquisition Computer

® C I 2 0 0 0FOUR S C OR E A

FIG. 7: The experimental paradigm: The subject was presented with scrolling text 
on a computer screen with a built-in eye tracker, which verified the location of eye 
gaze on the screen during data acquisition. The eye tracker and data acquisition 
devices were interfaced with a computer running BCI2000.
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3.3 DATA ANALYSIS 

Pre-processing

The raw ECoG signal from each electrode was first high-pass filtered with a 

cutoff frequency of 0.01 Hz, to remove low-frequency or dc components. After re

moving channels without any ECoG activity, the remaining channels were spatially 

re-referenced using a common average reference (CAR) montage, i.e., by subtract

ing from each channel the average of the ECoG signals over all the channels. The 

resulting signals were low-pass filtered and decimated to 400 Hz. A finite-impulse- 

response (FIR) notch filter in the range 116-124 Hz with zero-phase (forward and 

inverse) and -60 dB stop-band attenuation was used to remove the 120 Hz power line 

interference harmonic. This was done because the frequency range between 70 Hz 

and 170 Hz was used as the gamma band, and 120 Hz falls within this range. The 60 

Hz power line interference was not notched out because none of the frequency bands 

considered for ECoG activity included 60 Hz. Following this, three band-pass filters 

with zero-phase and -60 dB stop-band attenuations were computed as follows:

(a) Mu-band filter: 8 Hz-12 Hz

(b) Beta-band filter: 13 Hz-26 Hz

(c) High Gamma-band filter: 70 Hz-170 Hz

These band-pass filters were applied to the notch-filtered ECoG signals to extract 

ECoG activity in the mu band, the beta band, and the high gamma band respectively. 

Following this, the envelopes for the mu, beta, and gamma activities and the speech
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activity were computed as the squares of the magnitudes of the analytic signals 

obtained from the Hilbert Transform [86]. The Hilbert Transform is a linear operator 

used commonly in signal processing to derive the analytic representation of a signal. 

It is related to the Fourier Transform by the following equation:

F{H(u))(uj) = ( - i  sgn(uj))F(u)(uj) (1)

The Fourier Transform could also be used for power or envelope computation. How

ever, the ECoG signal is highly non-stationary, and since we are computing the 

instantaneous power envelope, the Hilbert transform gives a high temporal resolu

tion and captures the rapid changes in the amplitude of the signal. Furthermore, 

since the ECoG signal can be considered narrow-band for small time durations, the 

Hilbert Transform is useful for computing its power envelope. The data was then 

low-pass filtered using an eighth-order low-pass Chebyshev Type I filter with a cut-off 

frequency of 8 Hz, and decimated to 20 Hz.

Characterization

The primary measure used here for characterizing the relationship between the 

ECoG power at a particular location and the speech power was the Pearson’s cor

relation coefficient at six different latencies, between -300 ms to +300 ms, spaced 

by 100 ms, and the p-value or the statistical significance of the resulting correlation 

coefficients. The Pearson correlation coefficient between two signals, X and Y, of 

sample sizes n, is given by:
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.  Z j { X i - X ) ( Y i - Y )
y / E i ( X i - X ) 2( Y i - Y ) *

The statistical significance of the relationship between the neural signals and the 

auditory signals was assessed by calculating the correlation coefficient between these 

two signals in each cortical region, and finding out how far away this distribution 

of correlation coefficients is from zero. This was done using a bootstrapping ran

domization test in which the ECoG power samples for each channel were flipped and 

then circularly shifted by a random amount to preserve their statistical properties 

while destroying their temporal properties. For each channel, this was repeated 1000 

times, and the Pearson correlation coefficients were used to form a beta distribution. 

Then, the actual Pearson coefficient between the actual or unscrambled ECoG sig

nal and the auditory signal was fit to this distribution to find the p-value. In the 

spatio-temporal plots, the negative logarithm (base e) of this p-value was plotted 

across all the channels, for time lags ranging from -300 ms to 300 ms, in steps of 100 

ms. The p-values were then Bonferroni-corrected for the total number of electrodes 

pooled across subjects (N=691 electrodes). Thus, if we take a significance level of 

p=0.05, then the Bonferroni-corrected -log p value for significance would be 9.53. 

Thus, anything significant would correspond to p<7 x or’ "1°6 P > 9 - 5 3 ,

which may be approximated to 10, which corresponds to the lower limit of the color 

bars in the spatio-temporal plots. The activation indices for negative latencies cor

respond to ECoG power preceding speech onset that is correlated to speech output, 

while those for positive latencies correspond to ECoG power following speech onset
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that is correlated to speech output. Later, this analysis was extended to twenty-six 

time latencies, ranging from -300 ms to 200 ms, and fifty-one time latencies, ranging 

from -500 ms to 500 ms, in steps of 20 ms, as discussed in Chapter 6.

Decoding Models

Following the evaluation of the spatio-temporal relationship between ECoG activ

ity and a particular speech representation, modeling or prediction of that particular 

speech representation from ECoG activity was done in a subject-specific manner. 

For this procedure, usually ECoG activity from various time latencies are combined 

and used as features in the prediction model. Most of the previous studies that have 

tried to predict speech from ECoG activity have tried to base their predictions on 

either prediction of spoken language or perceived speech, but not both. One of the 

advantages of this dataset is the fact that it contains ECoG activity corresponding to 

both speech production and speech perception. Depending on what time latencies we 

use as the input in the prediction model, we can predict speech activity from speech 

production-based ECoG activity (non-positive time latencies) as well as from speech 

perception-based ECoG activity (non-negative time latencies). For modeling, we are 

interested in modeling detailed aspects of the speech activity itself, and not the in

term ittent periods of silence that exist in natural speech. If these silence periods 

are included while modeling speech, this will bias the model as the silence periods 

are much lower in amplitude than the speech periods. Thus, prior to modeling, the 

silence periods that exist in the speech activity were detected and removed. This 

was done by masking the speech signal by a mask that was set to 0 if speech activity
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fell below a certain threshold. This threshold varied from subject to subject and the 

mask was verified visually to ensure that it actually masked the silence periods in the 

speech activity of each subject efficiently. Following the masking, the silence periods 

were removed from the speech representation as well as from the ECoG activity.

From the data, 70% was randomly selected and used for training the model, and 

the remaining 30% was used for testing the model. In the training phase of the 

model, 10-fold feature selection was used for the model. The ECoG feature space 

consists of channels x time latencies (channels ~  56-120, time latencies used for 

each model were usually 3, giving us a total of 168-360 features, in a subject-specific 

manner). Some of the finer models developed, as discussed in Chapter 6, used eight 

ECoG gamma sub-bands as features instead of the entire ECoG gamma band, and 

this increased the feature space by a factor of 8 in these models. In each fold of 

the feature selection, features of the ECoG activity which correlated the best with 

the speech representation (top 25% of ECoG features, where features are ranked 

in terms of r 2, where r  is the correlation of a particular ECoG feature with the 

speech representation being modeled) were chosen. Following this 10-fold feature 

selection, features which were selected in at least 7 out of the 10 folds, were selected 

to be used in the final model. The model was then trained using the entire training 

data, using only the features selected, using the method of linear regression. The 

model was tested using 30% of the data that was set aside earlier for testing. The 

correlation coefficient between the predicted speech representation and the actual 

speech representation was used as a metric for testing the effectiveness of the model.
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The statistical significance of the model for that particular speech representation 

was found using a bootstrapping randomization test in which the ECoG activity 

samples for each channel were flipped and circularly shifted by a random amount to 

preserve their statistical properties while destroying their temporal properties. The 

features which were selected using the 10-fold feature selection method as described 

above were chosen from this scrambled ECoG data. Following this, a model was 

developed using linear regression from this scrambled data to predict the particular 

speech representation under purview. This random circular shifting of the training 

data and model development were repeated 1000 times, and the squares of the cor

relation coefficients between the actual testing data and the testing data predicted 

using the models were used to form a beta distribution. The square of the actual 

correlation coefficient between the testing data and the data predicted using the true 

model was fit to the above null distribution to obtain a p-value, which gives us the 

statistical significance of the modeling paradigm for this particular application.
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CHAPTER 4 

CHARACTERIZATION AND DECODING OF 

PRODUCTION-BASED SPEECH REPRESENTATIONS 

FROM THE ELECTROCORTICOGRAM

Previous studies support the hypothesis that a strong relationship exists between 

ECoG activity and speech, or various aspects of speech essential for speech recog

nition. This chapter discusses the spatio-temporal relationships between various 

production-based speech representations and ECoG, as well as attempts to decode 

these representations directly from cortical activity. In the next chapter, similar 

analyses are performed for the various perception-based speech representations.

4.1 THE SPEECH POWER ENVELOPE 

C har act er izat ion

As described in the preceding chapter, ECoG power was extracted in the mu, 

beta and the high gamma bands, to find the ECoG activity which best represents 

speech power in the human cortical regions corresponding to speech preparation and 

speech perception. Figure 8 shows the spatio-temporal correlations between ECoG 

high gamma power and speech power, shown for time latencies between -300 ms to 

300 ms, in steps of 100 ms. When comparing Figure 8 with Figure 3 (Page 10), we 

see that the ECoG high gamma band power well represents the time evolution of
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FIG. 8 : Spatiotemporal correlations between the speech power and the ECoG high 
gamma band power, across seven time latencies relative to the onset of speech.

speech processing from preparation to perception. Activation in the negative lags 

is found mostly in the pre-motor and primary motor areas, and the Broca’s area, 

which reduce in magnitude over the positive lags. Activation in the auditory areas, 

i.e., the superior temporal gyrus is found mostly at the positive lags, but start at 

about -200 ms, strengthening at -100 ms. These spatio-temporal activations were also 

tested with the mu and beta band powers. However, the mu and beta powers don’t 

represent significant activations in these speech areas. This reinforces the hypothesis 

that ECoG high gamma band power best represents the activation of the human 

cortex during speech production and processing, as was done in previous studies. 

Hence, we use ECoG activity in only the high gamma band for the rest of the study, 

and the term “ECoG high gamma band activity” is used interchangeably with the 

term “ECoG activity”.1

1 This analysis was repeated with the silence periods (between the spoken words and sentences
that the subjects were silent during) removed from both ECoG activity and the speech power. The
results from this analysis are shown in the Appendix.
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Decoding

Using the same modeling procedure as described in Section 3.3, two models were 

developed for predicting the speech power, one of which was a preparation-based 

model (using ECoG gamma activity from time latencies -200 ms, -100 ms, 0 ms as 

features) and the other a perception-based model (using ECoG gamma activity from 

time latencies 0 ms, 100 ms, 200 ms as features). The table below shows the testing 

correlations for these two models, between the actual and predicted speech power, 

for the eight subjects.

TABLE 1: Correlation coefficients (testing) of the correlation between the actual 
speech and the speech predicted from the preparation-based ECoG gamma signals 
(combination of ECoG gamma activity at -200 ms, -100 ms, 0ms) and from the 
perception-based ECoG gamma signals (combination of ECoG gamma activity at 0 
ms, 100 ms, 200ms). All the models were statistically significant, i.e., p-values<0.05, 
using the randomization test described in Section 3.3.

Sub. A B C D E F G H Avg.
Preparation 0.04 0.14 0.18 0.13 0.09 0.07 0.09 0.20 0.12

Perception 0.06 0.11 0.17 0.12 0.12 0.11 0.07 0.18 0.12
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FIG. 9: Comparison of the actual (blue) and predicted (red) speech envelopes for an 
identical example section of the signals, as predicted by the preparation-based model 
(a) and the perception-based model (b). The Pearson correlation coefficient for the 
actual versus predicted signals, for the entire signal duration, is 0.2 and 0.18 for the 
preparation-based and the perception-based models respectively.
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From Table 1, we can see that statistically significant models can be generated 

that can predict the speech power envelope moderately well from the ECoG gamma 

power, although the correlations are not very strong. Figure 9 depicts how the 

predicted speech envelopes follow the actual speech envelopes. It should also be 

noted that the preparatory ECoG gamma power and perceptive ECoG gamma power 

can almost equally well predict the speech envelope. This is a very useful revelation, 

because earlier studies have shown how speech can be predicted well using either 

preparation-based ECoG activity or perception-based ECoG activity, but not both. 

These results, thus, in some way, bridge the gap between preparation-based and 

perception-based ECoG speech studies. For the remaining speech representations in 

this dissertation, only preparation-based models were developed, which form the basis 

for an imagined speech prosthesis. However, as is shown above, both preparation- 

based and perception-based models can easily be developed and are almost equally 

good as far as predicting speech representations is concerned.

As a more in-depth analysis of the preparation-based and the perception-based 

models developed, the channels selected for each of the two models for each of the 

three time lags were studied, as shown in Figure 10. The number of features selected 

in each fold of the cross-validation was restricted to 20, for a more efficient visu

alization and interpretation. It may be observed from this figure that the channels 

selected for the different time latencies for the two models were varied and spread out 

over most of the recording areas, including the primary and secondary auditory areas 

which showed significant correlations with the speech power (see Figure 8). Other
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studies have also shown that there is generally not a consistent cortical pattern across 

or within subjects for the gamma features used in speech prediction models [61].

100 ms200 ms
Sub. A
Sub B
Sub C
Sub D
Sub E

Sub F

Sub G
Sub H

0 ms 100 ms 200 ms

FIG. 10: Channels selected for all the eight subjects shown on a generic head model, 
for the preparation-based decoding model (shown in (a)) and the perception-based 
decoding model (shown in (b)), for the time latencies -200 ms, -100 ms, 0 ms and 0 
ms, 100 ms, 200 ms respectively.

Prediction of the speech power envelope from ECoG gamma activity did not result 

in sufficiently high correlation coefficients for practical use. One reason for this could 

be the use of very simplistic feature selection and modeling techniques. Thus, in 

addition to using the straightforward feature selection and linear regression method as 

described in Section 3.3, stepwise linear regression was also implemented to determine 

if it can improve performance. Stepwise regression adds or removes features from a 

multi-linear model based on their statistical significance in a regression. Thus, it 

performs modeling and feature selection simultaneously to obtain the best fit in 

terms of the features selected and the model found over multiple iterations of the 

algorithm. However, it was found that the feature selection method described in
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Section 3.3 in combination with linear regression works as well as, or slightly better 

than, stepwise linear regression, as far as modeling the speech power from ECoG 

gamma activity is concerned. In addition, instead of using linear regression to solve 

for the model after feature selection, a basic neural network with one hidden layer 

was trained using the conjugate gradient method with back-propagation, to predict 

speech power from ECoG gamma activity. A more optimized set of features were also 

developed for predicting the speech power, which led to improved predictions. The 

results from this optimized feature set and improved decoding models are discussed 

in Chapter 6.

4.2 THE FUNDAMENTAL FREQUENCY AND FORMANTS

Acoustic speech waves demonstrate the sounds radiated as pressure modulations 

from the lips while articulating language. The amplitude as well as the frequency 

of this speech wave varies with time. A speech waveform typically consists of two 

parts: (a) a quasi-periodic part, which is repetitive or periodic over a brief period of 

time and (b) a noise-like part, of random amplitude and frequency. The frequency 

of the quasi-periodic part is called the fundamental frequency or the pitch frequency, 

denoted by FO. FO usually varies slowly over time for a speech signal. FO is one of the 

most important acoustic features for phoneme identification, and is used in low bit 

rate systems for reconstructing speech. FO can be 80 Hz or lower for male adults and 

above 300 Hz for female adults and children. Other than the fundamental frequency, 

spectral characterization of speech is also often performed using formants. Formants 

are the spectral peaks which occur in the speech spectrum [74] which also represent
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the resonances of the human vocal tract. Formants are often used for speech recog

nition because the information that humans require to distinguish between vowels 

is represented purely in the frequency content of the vowel sounds. The formant 

with the lowest frequency is called FI, the second F2, the third F3. Most often, the 

first two formants, FI and F2 are enough to distinguish between vowels. Using the 

overall frequency spectrum of speech, it was found that the speech power is mostly 

concentrated at the lower frequencies, i.e., over 80% of speech power lies below 1 

kHz. The normal range of the formant frequencies for adult males is Fl=T80-800 

Hz, F2=600-2500 Hz, F3=1200-3500 Hz. For adult females, the formant frequencies 

are about 20% higher than those for adult males [69]. Separate time and frequency 

analyses of speech sometimes do not reflect important properties of the speech signal, 

such as the frequency content of the speech signal varying continuously over time, 

which is why we need a joint time-frequency representation of speech. The speech 

spectrogram is a commonly used time-frequency representation of speech. It is a 

three-dimensional representation of speech, where the short-time Fourier transform 

is plotted with time units on the horizontal axis, frequency is plotted on the ver

tical axis, and power is represented in the third dimension, with different colors or 

levels of darkness showing the different power levels. Spectrogram reading, i.e., the 

manual process of using visual displays of the spectrogram to identify and decode 

semantic information, is often undertaken to understand spoken language from the 

simultaneous availability of temporal and spectral information in the spectrogram 

[69]. Formants can be measured as the amplitude peaks in the frequency spectrum
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of speech, using the speech spectrogram.

Using the original speech signals recorded for the eight subjects in this study, 

the fundamental frequency and the first two formants were extracted. This was 

done using the Praat software [87], a popularly used software for speech analysis and 

synthesis. This software uses spectral analysis to compute FO, F I and F2 at a rate 

of 100 Hz. Thus, 96 values for FO, FI and F2 were computed per second, since the 

original sampling rate of the speech signal was 9600. FO, FI and F2 vary almost 

instantaneously with time, as does the speech amplitude. The values for FO, FI and 

F2 computed are approximations of the actual values, although the computations are 

done at a high enough sampling rate for the approximations to be accurate enough.

Characterization

The spatio-temporal correlations between the fundamental frequency, first for

mant, second formant and the ECoG high gamma power was computed in the same 

manner as described in Section 3.3. For the first two formants, the spatio-temporal 

correlations achieved were not statistically signficant for any of the channels and 

hence are not shown here. The spatio-temporal correlations between the fundamen

tal frequency and the high gamma power are shown in Figure 11. When comparing 

this figure with Figure 3 (Page 10), we see that similar regions are activated for the 

fundamental frequency as were activated for the speech power, i.e., activation in the 

negative lags is found mostly in the pre-motor areas, the Broca’s area and the pri

mary motor areas, which reduce in magnitude over the positive lags. Activation in 

the superior temporal gyrus and the Wernicke’s area is found mostly at the positive
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lags, but start at about -200 ms, strengthening at -100 ms.2

-300 ms -200 ms -100 ms 0 ms 90

FIG. 11: Spatiotemporal correlations between ECoG high gamma power and the 
fundamental frequency, across seven time latencies relative to the onset of speech.

Decoding

Using the same modeling procedure as described in Section 3.3, preparation-based 

models (using ECoG gamma activity from time latencies -200 ms, -100 ms, and 0 

ms as features) were developed for predicting the fundamental frequency and the 

first two formants directly from ECoG gamma activity. The table below shows the 

testing correlations for these models, between the actual and predicted fundamental 

frequency and the first two formants, for the eight subjects.

2This analysis was repeated with the silence periods (between the spoken words and sentences
that the subjects were silent during) removed from both ECoG activity and the fundamental fre
quency. The results from this analysis are shown in the Appendix.
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TABLE 2: Correlation coefficients (testing) of the correlation between the actual and 
the predicted fundamental frequency or FO (first row), first formant or F I (second 
row), second formant or F2 (third row) from the preparation-based ECoG gamma 
power (combination of ECoG gamma activity at -200 ms, -100 ms, 0ms). Some of 
the models, marked by a superscript ’x’ were not statistically significant, i.e., p- 
values>0.05, using the randomization test described in Section 3.3. The rest of the 
models were statistically significant, i.e., p-value<0.05.

Sub. A B C D E F G H Avg.
F0 0.08 0.2 0.09 0.09 0.03* 0.12 0.08 0.34 0.13
FI 0.08 0.23 0.03* 0 .01* 0 .02* 0.11 0 .02* 0.14 0.08
F2 0.08 0.14 0.08 0.03* 0.06 0.1 0.13 0.12 0.09

From Table 2, it is observed that these models provide some degree of prediction of 

the fundamental frequency and the first two formants from the ECoG gamma power. 

The fundamental frequency and the second formant can be modeled relatively well 

for most of the subjects (statistically significant correlations for seven out of eight 

subjects), although the correlation coefficients are not as high as would be practically 

useful. The models used to predict the first formant are much worse in terms of 

statistical significance. In general, however, most of these models are not accurate 

enough to be used in practice. Thus, for practically useful predictions, the models 

need to be developed and optimized further to give better prediction performance. In 

this direction, a more optimized model was developed for predicting the fundamental 

frequency from ECoG gamma activity, using a more optimized set of features and 

a simple neural network, which led to improved predictions. The results from this 

optimized model are discussed in Chapter 6 .
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4.3 LINEAR PREDICTIVE CODING

Linear Predictive Coding (LPC) is another popular speech analysis method [88], 

in which linear prediction is used to linearly combine the past time-domain samples, 

s[n-l], s[n-2],..., s[n-M] to predict the present time-domain sample s[n], as follows:

M

s[n] ~  s[n] =  — ^^a;,s[n — 1] (3)
i=i

where ai: i —1, 2, ... M are called the LPC coefficients and s [n] is the predicted 

current time sample. The LPC coefficients can be taken directly from the speech 

signal s[n] by minimizing the square of the error signal,

M  M

e[n] =  s[n] — s[n] — s[n] + Ojs[n — 1] = a,s[n — 1] (4)
1 = 1  1 = 0

■> Speech

Gain

Vocal Tract Filter 
(» LPC Filter)

Unvoiced S o u n d s: 
W hite Noise

Voiced S o u n d s: 
ImpulseTrain 

(Frequency=F0)

FIG. 12: The source-filter model of speech production

This least squares optimization can be done using the autocorrelation method or 

the covariance method. One of the most important applications of LPC is in the
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source-filter model of speech production [69]. The source-filter model of speech pro

duction models speech as a combination of a sound source such as the vocal cords 

and the vocal tract filter. In the implementation of the source-filter model, the sound 

source is modeled as a periodic pulse train, the period being the inverse of the fun

damental frequency, FO, for voiced speech and as white noise for unvoiced speech. 

The time-varying vocal tract filter is modeled simplistically as an all-pole filter, the 

coefficients of which are the LPC coefficients. The order of, i.e., the number of poles 

in the all-pole LPC model, should be chosen so as to obtain the optimal trade-off 

between the level of detail (higher the order, higher the detail) that should be incor

porated and the complexity of computation (lower the order, lower the complexity). 

Using the original speech signals recorded in this study, the linear prediction coeffi

cients were estimated using MATLAB. This function determines the coefficients of 

a forward linear predictor by minimizing the prediction error using a least squares 

cost function. A 10th order linear predictor, i.e., FIR filter was used that predicts the 

current speech sample value based on 10 past samples, using autoregressive model

ing. This was done for every 100 samples of the speech signal, i.e., one set of LPC 

coefficients were found for every 96 ms of speech. Thus, the LPC coefficients were 

extracted at a sampling rate of 100 Hz.

Characterization

The spatio-temporal correlations between the LPC coefficients and the ECoG high 

gamma power was computed in the same manner as described in Section 3.3. The 

correlations obtained were not statistically significant for all of the LPC coefficients.
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The spatio-temporal correlations for the significant LPC coefficients are as shown in 

Figure 13.

For all the significant LPC coefficients, activations were found in the pre-motor 

and motor cortex areas prior to speech onset. The activations in the auditory areas, 

i.e., the superior temporal gyrus, Broca’s area and Wernicke’s area, started slightly 

before speech onset and continued until after speech onset. This means the LPC 

coefficients, which are also equivalent to, the vocal tract filter coefficients for speech, 

activates similar regions in the human cortex as does the speech power and the 

fundamental frequency or pitch of speech. It is also interesting to note that some 

filter coefficients significantly activate the speech areas, while other coefficients do 

not. Also, among the significant coefficients, some coefficients demonstrate stronger 

activations than others do. For example, coefficient numbers 2 and 4 demonstrate the 

strongest activations here. This may mean that even numbered past samples hold 

the most information as far as prediction of the current speech sample is concerned. 

This may have implications for predicting speech from LPC coefficients. It can be 

concluded that predicting the 2nd and 4th LPC coefficients accurately is vital for 

speech. 3

3This analysis was repeated with the silence periods (between the spoken words and sentences
that the subjects were silent during) removed from both ECoG activity and the LPC coefficients.
The results from this analysis are shown in the Appendix.
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FIG. 13: Spatiotemporal correlations between ECoG high gamma power and the 
significant LPC coefficients (shown in the five rows respectively) across seven time 
latencies relative to the onset of speech.
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Decoding

Using the same modeling procedure as described in Section 3.3, preparation-based 

models (using ECoG gamma activity from time latencies -200 ms, -100 ms, and 0 

ms as features) were developed for predicting the ten LPC coefficients directly from 

ECoG gamma activity. Table 3 shows the testing correlations between the actual 

and predicted 10 LPC coefficients, averaged over the eight subjects.

TABLE 3: Average of the correlation coefficients (testing) of the correlation be
tween the ten actual and the predicted LPC coefficients (shown in the ten columns, 
numbered 1-10, respectively)from the preparation-based ECoG gamma power (com
bination of ECoG gamma activity at -200 ms, -100 ms, 0ms). The number shown 
in parantheses is the number of subjects for which the correlations were statistically 
significant, i.e., p<0.05, for that particular LPC coefficient.

1 2 3 4 5 6 7 8 9 10
Avg. 0.13 0.12 0.1 0.08 0.08 0.07 0.07 0.06 0.06 0.08
Corr. (8) (8) (7) (7) (6) (8) (7) (6) (6) (8)

The first two LPC coefficients could be predicted the best among all the coeffi

cients. This makes sense because the LPC coefficients represent an auto-regressive 

modeling of the speech signal. Thus, the lower coefficients contain the most infor

mation as far as the present speech sample is concerned. However, the remaining 

coefficients are also important as the more the coefficients that can be predicted 

from ECoG activity, the better speech can be reconstructed. For this reason, it is 

important that the LPC coefficients be predicted to a better extent from ECoG high 

gamma activity than is obtained here. This will possibly require more sophisticated
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and optimized modeling procedures which will be able to better model the relation

ship between ECoG high gamma power and the LPC coefficients. This will be useful 

so that we can then use the ECoG-predicted LPC coefficients to reconstruct the 

speech activity directly.

4.4 CONCLUSION

The production-based speech representations discussed here, namely, the speech 

power, fundamental frequency, formants, and the linear predictive coefficients acti

vate similar regions of the human motor and auditory cortex as shown in previous 

studies. Some of these features can be predicted relatively well from ECoG high 

gamma power while others cannot be predicted significantly well. This can be at

tributed to a variety of factors including suboptimal electrode locations for given 

representations, the nature of a given speech representation in the cortex, etc. How

ever, these results show that the cortical activity does contain information relevant 

to these representations and that can be used for speech prediction. An area of 

prospective work would be to develop more optimized models which can predict 

these representations more accurately than the models discussed here. Another area 

of future research would be to use a combination of these predicted production-based 

speech reconstructions to attempt various speech recognition tasks, so as to develop 

an ECoG-based automatic speech recognition system, or to use these ECoG decoded 

production-based speech representations to reconstruct the speech signal itself.



63

CHAPTER 5 

CHARACTERIZATION AND DECODING OF 

PERCEPTION-BASED SPEECH REPRESENTATIONS 

FROM THE ELECTROCORTICOGRAM

The previous chapter shows that strong spatio-temporal relationships exist be

tween ECoG activity and various production-based speech representations such as 

speech power, fundamental frequency, formants and linear predictive coefficients of 

speech, and these speech representations can be decoded to some extent directly from 

ECoG activity. Here, the spatio-temporal relationships between various perception- 

based speech representations and ECoG are discussed, as well as approaches to decode 

these representations directly from cortical activity.

5.1 THE MEL FREQUENCY CEPSTRUM

The speech signal is generally considered as the convolution of an excitation 

waveform or a sound source waveform with the vocal-tract filter response [69]. Some 

speech applications require separate estimation of these two components, i.e., a de- 

convolution of the excitation and filter response components is beneficial. This is 

done by the method of cepstral analysis or cepstral de-convolution [89]. Cepstral 

de-convolution converts the product of two spectra into a sum of two signals, which 

may further be separated by linear filtering if they are different enough. If we assume



64

that the speech spectrum, S, is equal to the product of an excitation signal, E, and 

the vocal-tract spectrum, H, then cepstral de-convolution can be used to linearly 

separate these two components. This is typically done by taking the logarithm of 

the speech spectrum, which gives us the following relationship:

logS = log(EH) = log(E) 4- log{H) (5)

Since H consists of smooth formant transitions, i.e., a slowly varying frequency spec

trum, while E is more irregular, due to noise or impulse train excitation, these two 

components can be linearly separated with ease. Cepstral analysis is often combined 

with a non-linear weighting in the frequency domain of the speech spectrum. The 

mel-frequency cepstral coefficients (MFCCs) are obtained by mapping the speech 

spectrum onto the mel scale, which is a non-linear logarithmic scale, based on the 

perception of pitch by the human ear. The mel scale is related to the frequency scale 

as follows [90]:

m H  =  1127/n (l +  ^ - )  (6)

Following this, the logarithm of this warped power spectrum is taken, in accordance 

with the cepstral analysis methodology. Finally, the inverse Discrete Fourier Trans

form or the Discrete Cosine Transform is used to obtain the MFCCs. The first M 

coefficients (M ~  8-14), leaving aside the initial coefficient (the initial coefficient usu

ally just represents the average speech power) then represent the MFCCs. Using the 

original speech signals recorded in this study, the mel frequency cepstral coefficients 

were estimated using the RASTA-PLP toolbox in MATLAB. The speech signal was
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divided into overlapping frames of length 256 samples, each of which was then win

dowed by multiplying it with the Hamming window. The power of the obtained 

spectrum was mapped onto the mel scale, the transformation that accounts for non

linear pitch perception. The logarithm of the power was then computed from the 

spectrum, and the discrete cosine transform was taken from 12 mel frequency bands 

to obtain the twelve MFCCs.

Characterization

The spatio-temporal correlations between the MFC coefficients and the ECoG 

high gamma power was computed in the same manner as described in Section 3.3. 

The correlations obtained were statistically significant only for the first three MFC 

coefficients, as shown in Figure 14. For these MFC coefficients, activations in the 

pre-motor and motor cortex areas are found prior to speech onset. Activations in 

the auditory areas, i.e., the superior temporal gyrus, Broca’s area and Wernicke’s 

area, start slightly before speech onset and continue until after speech onset. Thus, 

the MFC coefficients, which represent a perceptual pitch-based transformation of 

speech, activate similar regions in the human cortex as do the speech power and the 

fundamental frequency (pitch) of speech. This is somewhat expected because the 

MFC coefficients are representative of a pitch-based warping of the original speech 

spectrum. Thus, the MFC coefficients essentially contain the power information and 

the pitch information of a speech signal. It is also interesting to note that only 

the lowest three MFC coefficients significantly activate the speech areas, while the 

other coefficients do not. The different MFCC coefficients correspond to different
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filters arranged in decreasing order of pitch perception. The coefficients with the 

significant activations correspond to mel filters with center frequencies which are the 

most important for the human perception of pitch .1

MFCC 1

MFCC 2

MFCC 3

MFCC 1

MFCC 2

MFCC 3

-300 ms 200 ms 100 ms

100 ms 200 ms 300 ms

FIG. 14: Spatiotemporal correlations between ECoG high gamma power and the 
significant MFC coefficients (shown in the three rows respectively) across seven time 
latencies relative to the onset of speech.

lrrhis analysis was repeated with the silence periods (between the spoken words and sentences
that the subjects were silent during) removed from both ECoG activity and the MFC coefficients.
The results from this analysis are shown in the Appendix.
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Decoding

Using the same modeling procedure as described in Section 3.3, preparation-based 

models (using ECoG gamma activity from time latencies -200 ms, -100 ms, and 0 

ms as features) were developed for predicting the twelve MFC coefficients directly 

from ECoG gamma activity. The RASTA-PLP toolbox which was used to extract 

the MFCCs may also be used to invert the extraction process, to get back the speech 

signal from the MFCCs. Thus, if the MFCCs can be predicted well enough from 

ECoG high gamma power, these decoded MFCCs can then be used to get back the 

original speech signal. Table 4 shows the testing correlations between the actual and 

predicted twelve MFC coefficients, averaged over the eight subjects.

TABLE 4: Average of the correlation coefficients (testing) of the correlation between 
the actual and the predicted 12 MFC coefficients (shown in the twelve columns, 
numbered 1-12, respectively) from the preparation-based ECoG gamma power (com
bination of ECoG gamma activity at -200 ms, -100 ms, 0ms). The number shown 
in parantheses is the number of subjects for which the correlations were statistically 
significant, i.e., p<0.05, for that particular MFC coefficient.

1 2 3 4 5 6 7 8 9 10 11 12
Avg. 0.12 0.16 0.16 0.13 0.13 0.12 0.08 0.08 0.1 0.1 0.09 0.1
Corr. (8) (8) (8) (8) (8) (7) (7) (7) (7) (7) (7) (7)

The first five MFC coefficients could be predicted the best among all the coeffi

cients. For some subjects, such as Subject B and Subject H, all the MFCCs could 

be predicted moderately well. For all the subjects except Subject E, the predictions 

of all the MFCCs were found to be statistically significant. In general, the MFCCs 

could be predicted better than the LPC coefficients. Thus, these decoded MFCCs
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could potentially be used to reconstruct the original speech signal. However, before 

doing so, it is important to further improve the prediction correlations. This will 

likely require more sophisticated and optimized modeling procedures tha t will be 

able to better model the relationship between ECoG high gamma power and the 

MFC coefficients.

5.2 PERCEPTUAL LINEAR PREDICTION

A variation of the basic linear prediction method is the Perceptual Linear Pre

diction (PLP), wherein the power spectrum of the speech signal is modified prior to 

its approximation by the autoregressive model. This modification is done by first 

mapping the power spectrum of speech onto the Bark scale, which is a scale based 

on the perception of loudness by the human ear. The Bark scale is related to the 

frequency scale as follows:

!i(w) =  6 ta (T 2 « k  +  V/ ( I 5 S )2 +  1) (7)
where u> is the angular frequency in rad/s [79]. This scale models the ear’s be

havior in perceiving loudness as a function of frequency. Following this mapping, the 

resulting power spectrum is convolved with the power spectrum of the critical-band
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masking curve i p ( Q ) . T h e  critical-band curve is a piece-wise function given by:

=0 i f  ft < 1.3

= 1 0 2.5(n+o.5) ij  _  1.3 <  n  <  _0.5

=1 i f  — 0.5 < 0  < 0.5 (8)

_ 10-i.o(n-o.5) ij  0 5 < n  < 2 5

=0 i f  > 2.5

This piece-wise function is a crude approximation to the shape of the human auditory 

filters. The convolution of with the Bark scale mapped power spectrum, P(f2) 

gives the samples of the critical-band power spectrum, as follows:

2.5

d ( Q i ) =  (9 )
n = - i . 3

The speech spectrum is then re-sampled at intervals of 1 Bark, followed by which an 

equal loudness curve is used to pre-emphasize it. The equal-loudness function is an 

approximation of the non-equal sensitivity of the human hearing system to different 

frequencies. A popular equal-loudness function curve is given by:

[ ( ^  +  56.8 .  1 0 V 1  
'  1 (u2 + 6.3 * 10«)2(u2 +  0.38 * 10°) '  '

adopted from Makhoul and Cosell [79]. The last operation prior to the autoregressive

modeling is where the cubic root of the above spectrum is taken. This is known as

the cubic-root amplitude compression, and is an approximation of the power law of

hearing and models the non-linear relationship between the amplitude of sound and

its perceived loudness [79]. In the final step, the spectrum resulting from all the

above steps is approximated by an all-pole model, as is done in LPC coding. The
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resulting coefficients are called the PLP coefficients. Using the original speech signals 

recorded in this study, the perceptual linear prediction coefficients were estimated 

using the RASTA-PLP toolbox in MATLAB. The power spectrum was computed and 

grouped into critical bands, the transformation that accounts for non-linear loudness 

perception. The logarithm of the power was then computed from the spectrum, 

followed by which auditory cubic compression was performed. Finally, the linear 

prediction analysis was done on this spectrum with an auto-regressive model order 

of 10 to obtain the 10 PLP coefficients, after ignoring the 0th coefficient as it is 

equivalent to the speech power.

Characterization

The spatio-temporal correlations between the PLP coefficients and the ECoG high 

gamma power was computed in the same manner as described in Section 3.3. These 

correlations were found to be statistically significant only for the first PLP coefficient, 

shown in Figure 15. For this PLP coefficient, activations in the pre-motor and motor 

cortex areas were found prior to speech onset and activations in the auditory areas, 

i.e., the superior temporal gyrus, Broca’s area and Wernicke’s area, were found to 

start slightly before speech onset, continuing until after speech onset. This means 

that PLP, which is derived from a loudness-based linear predictive coding representa

tion of speech, activates similar regions in the human cortex as do the speech power 

and the fundamental frequency of speech. The different PLP coefficients correspond 

to different filters arranged in decreasing order of loudness perception. Since only 

the first coefficient was found to have significant activations, this corresponds to the
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Bark filter with a center frequency most important for loudness perception, and to 

the autoregressive model coefficient which holds the most amount of information for 

predicting the current speech sample.2

-300 ms -200 ms -100 ms 0 ms

100 ms 200 ms 300 ms io

FIG. 15: Spatiotemporal correlations between ECoG high gamma power and the 
first PLP coefficient across seven time latencies relative to the onset of speech.

Decoding

Using the same modeling procedure as described in Section 3.3, preparation-based 

models (using ECoG gamma activity from time latencies -200 ms, -100 ms, and 0 

ms as features) were developed for predicting the ten PLP coefficients directly from 

ECoG gamma activity. The RASTA-PLP toolbox which was used to extract the PLP 

coefficients may also be used to invert the extraction process, in order to recover the 

speech signal from the coefficients. Thus, if the PLP coefficients can be predicted 

well enough from ECoG high gamma power, they can be used to reconstruct the

2This analysis was repeated with the silence periods (between the spoken words and sentences
that the subjects were silent during) removed from both ECoG activity and the PLP coefficients.
The results from this analysis are shown in the Appendix.
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original speech signal. Table 5 shows the testing correlations between the actual and 

predicted 10 PLP coefficients, averaged over the eight subjects.

TABLE 5: Average of the correlation coefficients (testing) of the correlation be
tween the ten actual and the predicted PLP coefficients (shown in the ten columns, 
numbered 1-10, respectively) from the preparation-based ECoG gamma power (com
bination of ECoG gamma activity at -200 ms, -100 ms, 0ms). The number shown 
in parantheses is the number of subjects for which the correlations were statistically 
significant, i.e., p<0.05, for that particular PLP coefficient.

1 2 3 4 5 6 7 8 9 10
Avg. 0.12 0.17 0.13 0.13 0.14 0.12 0.12 0.11 0.1 0.11
Corr. (7) (8) (8) (8) (8) (8) (8) (8) (8) (8)

All the PLP coefficients could be predicted relatively well, as compared to the 

MFCC and the LPC representations of speech. Thus, warping the speech spectrum 

onto the loudness-based Bark scale, improves the prediction of the linear prediction 

coefficients. These decoded PLP coefficients could potentially be used to reconstruct 

the original speech signal. This would, however, require further improvements in the 

prediction correlations. This will require more sophisticated modeling procedures 

which can better model PLP coefficients from ECoG high gamma power.

5.3 CONCLUSION

The perception-based speech representations discussed here activate similar re

gions of the human motor and auditory cortex as shown in previous studies. The 

models used to predict these speech features should be optimized to improve the 

prediction so it becomes practical for speech reconstruction, or for use in cortieally 

driven automatic speech recognition systems.
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CHAPTER 6 

OPTIMIZATION OF THE CHARACTERIZATION AND 

THE DECODING MODELS

The characterization and decoding models discussed in the previous two chapters, 

in particular, the decoding models, showed promise but were clearly suboptimal. This 

chapter discusses the development of more optimized spatio-temporal characteriza

tion models and improved decoding models, for the characterization of speech power 

and the decoding of speech power and the fundamental frequency (pitch information) 

from ECoG gamma activity.

6.1 OPTIMIZED CHARACTERIZATION

The characterization techniques used in the previous chapters for computing 

spatio-temporal correlations and their significance may be further optimized to de

termine finer details in the relationships between ECoG activity and speech and its 

representations. Two possible directions are discussed, which lead to more optimized 

characterization of speech activity in the human cortex.

6.1.1 HIGHER TEMPORAL RESOLUTION

The spatio-temporal correlations that were plotted for the previous chapters were 

at a time resolution of 100 ms. This is a relatively large time resolution, and it would
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be of interest to determine if smaller changes in cortical activity can be detected, rela

tive to speech progression. The advantage of using ECoG becomes evident with such 

an analysis as, fortunately, very high temporal resolutions are available with ECoG 

as compared to other hemodynamic signal acquisition techniques such as fMRI and 

PET. Thus, a time resolution of 20 ms was used to investigate the spatio-temporal 

correlations of ECoG high gamma activity relative to speech activity, starting from 

300 ms prior to speech onset, and continuing up to 200 ms post speech onset.

To further evaluate the contribution of the different speech areas of interest in 

the cortex, the electrode locations for all the subjects were classified into the seven 

areas of interest for the purpose of speech planning, production and articulation, and 

perception, namely the Broca’s area, the premotor cortex, motor cortex, the mSTG 

(middle Superior Temporal Gyrus), the pSTG (posterior Superior Temporal Gyrus), 

the MTG (Middle Temporal Gyrus) and the SMG (SupraMarginal Gyrus). These 

areas are shown in Figure 3 (Page 10). This classification was done in two steps. 

First, the electrode locations for all the subjects were labeled as the Brodman areas 

they belonged to [91]. Then, these regions were classified as either belonging to any 

of the seven cortical regions of interest, or belonging to none of the seven regions, 

using a combination of the knowledge of the Brodmann area they belonged to, as 

well as by a manual thresholding procedure primarily based on visualization. The 

resulting spatio-temporal correlations are shown in Figure 16.

As may be expected, a more gradual progression in activations are evident in 

this plot, as compared to Figure 8 (Page 48). It is also interesting to note that the
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Broca’s area, most involved in speech planning and articulation, starts to become 

activated at -300 ms, and remains strongly activated until about 20 ms (a small time 

lag after actual speech onset), and concludes after 80 ms. The activations of the 

pre-motor cortex, also involved in speech planning, also start at -300 ms and slowly 

reduce and evolve into activations of the motor cortex, which is involved in mouth 

movements related to speech articulation, around -40 ms (a small time lead prior 

to speech onset). The activations of the Wernicke’s area and the superior temporal 

gyrus, most involved in speech perception, begin to show significantly around -120 

ms and continue getting stronger until 100 ms, after which they start to reduce as 

shown in Figure 16. Although the advantage of using a smaller time resolution is not 

that evident in this particular figure, it may be useful for detecting small temporal 

changes in certain cortical regions in spatio-temporal activation plots, which can 

show drastic, sudden changes when using higher time resolutions such as 100 ms.

Figure 17 quantitatively summarizes the activation indices as averages over the 

significant electrodes in each of the seven regions, over different time latencies, while 

Figure 18 demonstrates the time progression of the average of the significant acti

vations in each of the seven cortical regions of interest. Each row in these figures 

correspond to one relevant cortical area, and the rows are topographically ordered, 

from the anterior (or frontal) areas to the posterior (or temporal) areas. Each column 

in Figure 17 and each time point in Figure 18 represents a time latency from -500 ms 

to 500 ms, with time steps of 20 ms. It should be noted that a larger time range was 

chosen for these two figures, as compared to the usual -300 to 300 ms chosen for most



of the earlier spatio-temporal activation figures. This is because in the earlier figures, 

some areas were significantly activated even at -300 ms or at 300 ms, which raises 

the question as to whether different speech areas are activated beyond this range of 

time latencies. It is observed from these figures that activations in some speech areas 

start as early as -500 ms, although the most significant activations for most regions 

are observed after -300 ms. Similarly, activations in certain speech regions continue 

until 400 ms, and gradually reduce. These quantitative analyses also demonstrate 

that the frontal regions show stronger and more significant (more red colors in Figure 

17 and higher values in Figure 18) activations at negative lags, while the temporal 

regions demonstrate more significant and stronger activations at positive time laten

cies. Activation indices for the supramarginal gyrus (which was primarily a control 

location for this analysis) are negligible for all the time latencies.



FIG. 16: Spatiotemporal correlations between ECoG high gamma power and the 
speech power envelope, across time latencies ranging from -300 ms to 200 ms, relative 
to the onset of speech, in steps of 20 ms [92].
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FIG. 17: Average activation indices for electrodes with statistically significant corre
lations in the seven cortical regions of interest, shown across time latencies from -500 
ms to 500 ms. The areas of interest include the three frontal areas (Broca’s area, 
premotor and primary motor cortex), three temporal areas (middle and posterior 
superior temporal gyrus [mSTG and pSTG respectively] and the middle temporal 
gyrus [MTG] ) and one parietal area [supramarginal gyrus]. The activation index is 
indicated by a color scale, where in areas with less statistically significant correlations 
with the speech power are represented with more blue colors while areas with larger 
statistical significance of correlations are represented with more red colors [92].
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FIG. 18: Time progression of the average activation indices of the seven cortical areas 
of interest, as a function of time. This is another representation of Figure 17, with 
a better demonstration of the temporal progression of the statistical significance of 
correlations of the seven different cortical regions of interest with the speech power
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6.1.2 HIGHER SPECTRAL RESOLUTION: THE GAMMA SUB

BANDS

Since the high gamma band is a very wide band of features, i.e., between 70 and 

170 Hz, it may be possible that this large feature space holds discriminative infor

mation for different components of speech production and perception in the human 

cortex. It has been shown in an earlier work that different ECoG gamma sub-bands 

can discriminate between different speech tasks such as reading, listening and speak

ing, in different cortical locations [93]. This suggests that the ECoG high gamma 

band should be investigated as a large non-uniform and heterogeneous band of fre

quencies, in order to utilize smaller spectral resolutions for characterizing different 

production-based and perception-based speech representations. Furthermore, cer

tain gamma sub-bands may be able to better predict certain speech representations, 

which would improve the decoding model by fine-tuning it to the specific speech rep

resentation being predicted. Hence, eight gamma sub-bands between 70 and 170 Hz, 

in bins of 10 Hz, were extracted, with the exception of 110-130 Hz for removing the 

influence of the 120 Hz power line interference. The spatio-temporal relationships 

between these eight sub-bands and the speech power were investigated, as shown in 

Figure 19.

It can be observed from this figure that certain gamma sub-bands show a better 

time evolution of cortical activations relative to speech progression than others. The 

gamma sub-bands between 90 Hz and 110 Hz show distinctly higher activations in 

the auditory cotex at a 100 ms time latency compared to other bands. The first four
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FIG. 19: Spatiotemporal correlations between the eight ECoG high gamma sub-band 
powers (sub-bands one through four in (a) and sub-bands five through eight in (b)) 
and the speech power, across seven time latencies relative to the onset of speech.
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gamma sub-bands, i.e., the gamma frequencies before 110 Hz, show higher activations 

in the auditory cortex, Wernicke’s area, and the superior temporal gyrus, following 

speech onset. This suggests that these lower sub-bands hold more information about 

speech perception than do the higher sub-bands, with the sub-bands between 90 

Hz to 110 Hz being the most informative for speech perception.1 In order to further 

investigate this discriminative power of the ECoG high gamma activity, these gamma 

sub-bands were used to re-develop regression models to predict the speech power and 

the fundamental frequency as discussed in Section 6.2.1.

6.2 OPTIMIZED DECODING MODELS

Optimized decoding models may be developed using more features as inputs in the 

models or using more optimized model solution techniques. Both these possibilities 

are explored here, with the use of the gamma sub-band features as a more optimized 

feature sub-set for the models, and investigating the use of artificial neural networks 

(ANNS) as a more optimized model solution technique.

6.2.1 OPTIMIZED FEATURES: THE GAMMA SUB-BANDS

Using the eight gamma sub-band powers as features and using the exact same 

feature selection and linear regression technique, the speech power and the funda

mental frequency were predicted, the results of which are shown in Table 6 . It should

be noted that the feature space, prior to feature selection, is increased 8-fold by this

lrrhis analysis was repeated with the silence periods (between the spoken words and sentences 
that the subjects were silent during) removed from both ECoG gamma sub-band activities and the 
speech power. The results from this analysis are shown in the Appendix.
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method. The results show a vast improvement in prediction of these two basic speech 

features from the results obtained using the earlier models. This means tha t using 

gamma sub-band features instead of the entire gamma band as one feature, in com

bination with feature selection, helps the model better predict speech power and FO, 

making the results more significant and with increasing feasibility for practical use. 

This indicates that certain gamma sub-bands may contain temporal features more 

suited to the prediction of certain speech representations and these sub-bands are 

chosen for inclusion in the model in the feature selection stage, which gives us a more 

optimized model than using temporal features from the whole gamma band. Simi

larly, these features could possibly be used to predict the other speech representations 

to improve the modeling results for those representations.

TABLE 6 : Correlation coefficients (testing) of the correlation between the actual and 
the predicted speech power and fundamental frequency from the preparation-based 
ECoG gamma sub-band powers (combination of ECoG gamma sub-band activities 
at -200 ms, -100 ms, 0ms). All the models developed were statistically significant, 
i.e., p<0.05 using the randomization test.

Sub. A B C D E F G H
Speech Power 

Fundamental Frequency
0.36
0.50

0.59
0.73

0.68
0.51

0.44
0.35

0.32
0.20

0.49
0.36

0.44
0.20

0.55
0.49

To further evaluate the differential contributions of the sub-bands in the predic

tion models, the number of features chosen for each of the eight sub-bands in the 

feature selection stages of the subject-specific models were evaluated for predicting 

the speech power. A similar evaluation can also be performed for the models for pre

dicting the fundamental frequency. It should be noted that the features chosen for
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each sub-band correspond to the gamma sub-band powers from three temporal lags: 

-200 ms, -100 ms, and 0 ms, with 0 ms corresponding to the speech onset. Figure 20 

shows this evaluation, summed over all the eight subjects. It is observed from this 

figure that the gamma sub-bands in the frequency range 90-100 Hz and 100-110 Hz 

contribute the most to the prediction models. The sub-bands in the range 140-150 

Hz contribute the third most to the prediction models, followed by the sub-bands 

in the range 150-160 Hz. Thus, based on this figure, it can be hypothesized that 

the gamma frequencies between 90-110 Hz hold the most information for predicting 

the speech power, followed by the gamma frequencies in the range 140-150 Hz, and 

150-160 Hz, respectively. This evaluation can also be performed in a subject-specific 

manner, which was not performed here because the aim is to find generalized trends 

in sub-band selection across patients.

490
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FIG. 20: The number of temporal features chosen for each of the eight gamma sub
bands in the feature selection stage, for modeling the speech power using the gamma 
sub-band powers, summed over all the eight subjects.
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As a more in-depth analysis of the channel selection for the gamma sub-band- 

based models, the channels selected for each of the eight sub-band for three time lags 

are shown in Figure 21. The number of features selected in each fold of the cross- 

validation was restricted to 100, for a more efficient visualization and interpretation. 

It is observed from this figure, similar to the prior analysis discussed in Chapter 4, 

that the channels selected were spread out over most of the recording areas, including 

the primary and secondary auditory areas the showed significant correlations between 

the different gamma sub-bands and the speech power (see Figure 19).

Based on the above evaluation, new models for predicting the speech power were 

developed by restricting the gamma sub-band features in the models to the best 2, 

3 or 4 sub-bands. The correlations between the actual and the predicted speech 

power obtained from these models are shown in Figure 22. It is observed from this 

figure that, in general, the r-values were much lower when using fewer sub-bands as 

compared to using all the eight sub-bands as inputs to the model. For all the eight 

subjects, the model with the best performance for predicting the speech power was 

that developed using all the eight sub-bands as features. Thus, it may be concluded 

that although the eight gamma sub-bands evaluated have differential contributions 

in the models for predicting the speech power, all the eight sub-bands combined are 

important features for the model. The model performance drops drastically when 

only specific sub-bands, albeit the most important ones, are used as input features 

in the model.



-200 ms -100 ms

Sub. A
Sub. B
Sub. C
Sub. D
Sub. E
Sub. F

Sub. G
Sub. H

FIG. 21: Channels selected for each of the eight gamma sub-bands, for all the eight 
subjects, shown on a generic head model, for the preparation-based decoding model, 
for the three time latencies -200 ms, -100 ms and 0 ms respectively.
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FIG. 22: Correlation between the actual speech power and that predicted by the 
model, using all the eight gamma sub-bands, the best 4 gamma sub-bands (i.e., 90- 
100 Hz, 100-110 Hz, 140-150 Hz, 150-160 Hz), the best 3 gamma sub-bands (90-100 
Hz, 100-110 Hz, 140-150 Hz) and the best 2 gamma sub-bands (90-100 Hz, 100-110 
Hz) respectively.
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6.2.2 ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is a type of machine learning model inspired 

by biological neural systems, particularly the brain. An ANN is typically an inter

connected web of units called neurons, that process and transfer information just as 

in the human nervous system. A typical ANN consists of an input layer with multiple 

inputs being fed to the ANN, one or more hidden layers each consisting of one or 

more neurons, and an output layer that represents one or more outputs of the ANN. 

Figure 23 shows an example of the simplest form of an ANN, with three inputs, one 

hidden layer consisting of four neurons and an output layer with two outputs. This 

is a three-layer feed-forward network, the type of ANN used in the dissertation.

Hidden Layer

Inputs O utputs

FIG. 23: Basic structure of a simple artificial neural network

This type of ANN tries to map the output (or outputs) based on a combination 

of weighted inputs and weighted outputs of activation functions acting on the inputs 

as shown in the equation below.

D

y = W  x< j> I^W 2{i)X{i)) + Wz x X  (11)
t= 0
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Here, W  are the weights from the hidden layer to the output layer, W2 are the 

weights from the input layer to the hidden layer, and W3 are the weights from the 

input layer directly to the output layer. Furthermore, 0 is the activation function that 

acts on the variables coming out of the hidden layer, before they are passed on to the 

output layer. A large number of activation functions are popularly used in ANNs, 

including the sigmoid function, which has been used in this study. The weights, 

W, W2 and W3 can be determined by either supervised or unsupervised learning 

methods. Here, supervised learning has been employed, where the output being 

predicted by the ANN, is used to train the ANN. Most of the supervised learning 

methods use some form of the gradient descent algorithm to compute the weights, 

using backpropagation to compute the gradients. This is done by minimizing the 

cost function with respect to to the network parameters, or the weights, by taking 

steps in a gradient related direction. In this particular study, the conjugate gradient 

descent with backpropagation is used for training the ANN, where in the optimum 

solution is searched for by taking consecutive steps in conjugate directions.

ANNs have been popularly used to decode numerous variables from ECoG activ

ity, ranging from motor and speech imagery to neural spikes [4,94]. This forms the 

basis for using the ANN for this particular data set. Furthermore, as compared to 

linear regression, the ANN incorporates some amount of non-linearity in the mod

els generated and, thus, may be able to better approximate the non-linearities which 

exist in the data, but are not being adequately captured by the linear regression tech

nique used in Chapters 4 and 5. The ANN is used to predict the speech power and
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the fundamental frequency, as described in the following two sections respectively, 

for the eight subjects using the ECoG gamma activity as the model input.

Prediction of the Speech Power Envelope using Artificial Neural Networks

Eight subject-specific ANNs were developed, for predicting the speech power from 

ECoG gamma power. The inputs to the ANN were ECoG gamma sub-band pow

ers from -200ms, -100ms and 0 ms (relative to speech onset) across all the chan

nels (50-120), after feature selection. The method used for feature selection was a 

correlation-based feature selection technique as described in Chapter 3. The per

formance of the ANN was tested using the Pearson correlation coefficient between 

predicted and actual speech power. The significance of the correlations were tested 

using a randomization test to determine the p-value of correlation, identical to that 

used for the other correlations in this dissertation. The number of hidden layers used 

in the ANNs was restricted to 1 for reduced complexity. The number of neurons in 

the hidden layer were varied between 20, 50, 100, 200 and 300 to build five different 

ANNs and compare the performance of the ANN for this varying number of neurons. 

A sigmoid transfer function for the hidden layer and a linear transfer function for the 

output layer were used. The method of conjugate gradient backpropagation was used 

for optimizing the ANN. 80% of the data was used to train the ANN, 10% to validate 

it and the remaining 10% to test its performance. Only the testing correlations are 

reported here. The results were averaged over 10 runs of the ANN to ensure stability.

Figure 24 shows the performance of the ANN for predicting the speech power, 

versus the number of neurons in the hidden layer. It is observed from this figure
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FIG. 24: Correlation between the actual and the speech power predicted by the ANN,
versus the number of neurons in the hidden layer of the ANN.

that for some subjects, such as Subjects A and D, the best performance is achieved 

for the largest number of neurons in the hidden layer, while for some others such 

as subjects F, G and H, the best performance is achieved for the lowest number 

of hidden neurons. For subjects C and E, the highest performance is achieved for 

an intermediate number of neurons, i.e., 100 and 50 respectively. On average, the 

performance of the ANN does not vary much with the number of hidden neurons. 

Hence, it may be sufficient to use a network with as little as 20 hidden neurons as the 

complexity of the network increases significantly with the size of the hidden layers. 

All the models developed using the ANN were statistically significant, and the r- 

values obtained for predicting the speech power are on par with the other models 

examined.

The prediction of the speech power using ANNs is compared to that using the 

linear regression technique, as shown in Figure 25. Here, the ANN with the optimum
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FIG. 25: Comparison of the performance of the best ANN and the linear regression 
method, for speech power predictions, for all the eight subjects and on an average.

number of hidden neurons is chosen for comparison to linear regression, for each 

subject. It can be observed from this figure that for most of the subjects (6 out of 8), 

the linear regression method performs marginally better than ANNs for the prediction 

of speech power from ECoG gamma power. This may be because the speech power 

is a relatively simple speech feature, and has been shown to be linearly represented 

in the human cortex [50]. Thus, linear techniques such as linear regression may be 

sufficient to encapsulate the complexities that exist in the speech power envelope, 

and predict it from cortical activity. More complex non-linear techniques may not 

be necessary for decoding speech envelope representations from cortical activity.

Prediction of the Fundamental Frequency using Artificial Neural Net

works

Eight subject-specific ANNs were developed, for predicting the fundamental fre

quency from ECoG gamma power. The identical feature selection, model selection,
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and training procedure was used as described in the previous section.
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FIG. 26: Correlation between the actual and the fundamental frequency predicted 
by the ANN, versus the number of neurons in the hidden layer of the ANN.

Figure 26 shows the performance of the ANN for predicting the fundamental 

frequency, versus the number of neurons in the hidden layer. It may be observed 

from this figure that, for most of the subjects, a relatively stable ANN performance 

was observed across the size of the hidden layer. Again, an ANN with as little as 

20 hidden neurons may be sufficient for predicting the fundamental frequency from 

ECoG gamma power. All the models developed using the ANN were statistically 

significant, and the r-values obtained for predicting the fundamental frequency, are 

on par with the other models examined.

A comparison of the ANN and linear regression techniques for the prediction of 

the fundamental frequency is shown in Figure 27. Here, the ANN with the optimum 

number of hidden neurons, for each subject, is chosen for comparison. It may be

20 50 100 200

Number of Neurons
300

-S u b je c t A 

-S u b je c t B 

-S u b je c t C 

-S u b je c t D 

-S u b je c t E 

-S u b jec tF

- Sub ject G

- Sub ject H 

-A verage



94

0.9

at 0.8 
3
*J5
> 0.7w
0  0.6 
+*

1 0-5 
£
g 0.4 u
I  03IS
u  0.2 
o
w 0.1 

0

FIG. 27: Comparison of the performance of the best ANN and the linear regression 
method, for the fundamental frequency predictions, for all the eight subjects and on 
an average.

observed from this figure that for most of the subjects (7 out of 8), the ANN per

forms better than linear regression for the prediction of the fundamental frequency 

from ECoG gamma power. On average, the ANN outperforms the linear regression 

technique, in the prediction of the fundamental frequency from ECoG gamma ac

tivity. This may be because the fundamental frequency of speech, or the pitch, is a 

slightly more complex speech feature than the speech power envelope. Thus, linear 

techniques may be insufficient to encapsulate the complexities that exist in the pitch, 

and predict it from cortical activity. Since the ANNs developed here are more com

plex non-linear techniques, they better decode pitch information from gamma band 

activity in the human cortex.

Sub, A Sub.B Sub.C Sub. D Sub. E Sub.F Sub. G Sub. H Average
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CHAPTER 7 

CONCLUSIONS

The focus of this dissertation was on developing methods used to characterize and 

decode various speech representations commonly used in modern speech recognition 

systems, directly from cortical activity. This chapter concludes this dissertation with 

a summary of the main contributions and several possible future directions of this 

research.

7.1 MAIN CONTRIBUTIONS

Previous studies on ECoG-based speech decoding have attempted to decode vow

els, phonemes, words, spectrograms, envelopes and other speech features from the 

ECoG activity. The primary contribution of this dissertation is that it attem pts 

to decode speech representations commonly used in automatic speech recognition 

systems, directly from ECoG activity. These speech representations are more com

plex speech features than those which were previously decoded using ECoG activity, 

which leads to a more in-depth understanding of speech representation in the human 

cortex. Thus, this work develops a natural extension of automatic speech recognition 

techniques to neurological data, and provides a step toward neural speech prostheses, 

with an automatic speech recognition system as an intermediate step. Because of the 

recent boom in the development of automatic speech recognition, the results from 

this dissertation can serve as input to a state-of-the-art speech recognition system in
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order to create technologies such as an ECoG-decoded speech synthesis system or an 

ECoG-based speech-to-text system.

Secondly, most existing ECoG speech and language studies use relatively discon

tinuous speech production and perception tasks, such as cued word repetition tasks, 

in order to understand speech representation in the human cortex. This work uses a 

more fluent and continuous speech production and listening task using familiar stim

uli, which is a better representation of natural verbal communication. This research 

represents a step towards a more practical speech neural prosthesis by allowing the 

interpretation of neurological activity that is similar to what is expected in normal 

conversation.

Thirdly, this study utilizes both speech production and speech perception tasks 

simultaneously, which were studied separately in the majority of earlier studies. This 

simultaneous study of speech production and perception provides a clearer idea of 

the areas activated in the cortex during the temporal progression of speech planning, 

production, articulation, and perception.

Furthermore, due to the recording technique and the experimental design used, 

it became possible to use a temporal resolution as high as 20 ms. This provides a de

tailed and precise understanding of the cortical time evolution of speech production 

and planning. The results of this dissertation provide a very detailed electrophys- 

iological representation of the continuous speech process. Additionally, the results 

highlight the common neural correlates of overt speech across different linear and 

non-linear representations of speech, both of which are unique contributions of this
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study.

Finally, most existing ECoG speech studies use a wide band of gamma frequencies 

for studying the cortical involvement in speech tasks as well as for decoding speech 

components from the cortex. While one earlier study showed that different gamma 

sub-bands can discriminate between different speech tasks [93], this dissertation ex

pands on this by using eight gamma sub-bands to spatio-temporally characterize 

the cortical areas involved in speech production and perception, as shown in Figure 

19 (Pages 80-81). It is well-demonstrated that unique gamma sub-bands contribute 

differently to temporal activations during speech production and perception. This 

led to the development of improved models for decoding the speech power and the 

fundamental frequency, as shown in Chapter 6 . These novel decoding models used 

the best gamma sub-bands for a particular time latency as the input features for the 

decoding model, as opposed to the traditional use of the entire wide band of gamma 

frequencies as model inputs for predicting speech. These novel ECoG features, when 

combined with either a linear regression or a neural network technique for model 

solution, led to improved ECoG-based decoding models for predicting the speech 

power and the fundamental frequency.

7.2 FUTURE DIRECTIONS

Although the research in this dissertation holds significant value as a step towards 

an ECoG-based speech neuroprosthesis, there are several possible future directions 

of this research, as discussed in this section.



7.2.1 MODEL IMPROVEMENT

The models that were used to predict the speech power, the fundamental fre

quency, formants, the LPC coefficients, the MFC coefficients, and the PLP coeffi

cients were very simple models using standard features and feature selection tech

niques to predict these representations from cortical activity. In practice, more so

phisticated models which give better prediction results may be required. There are 

three main areas of improvement for the models: the features used in the model, the 

feature selection method used and the modeling technique used.

Features used in the Models

In the models used in Chapters 4 and 5 to predict speech representations, only 

the ECoG gamma band powers from all the channels were used as features. However, 

other sets and subsets of features may be more useful for modeling these represen

tations. This is discussed to a certain extent in Chapter 6 where the gamma band 

is further divided into sub-bands in order to build more optimized models. It was 

observed from this analysis that the use of the gamma sub-band powers instead of 

the traditional whole gamma band power as the model inputs led to significant im

provement in the decoding models for the prediction of the speech power envelope 

and the fundamental frequency, the two most important components of the speech 

signal. Similarly, these sub-band features may also lead to more optimized models 

for the prediction of the other speech representations discussed in Chapters 4 and 

5. Other features may also be used for model improvement, such as various linear
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and non-linear transformations of the temporal or spectral ECoG power, which are 

better correlated with the speech representation being predicted.

Feature Selection Method

In the models developed in Chapters 4 and 5, only correlation-based feature se

lection was performed, which chose the ECoG features tha t were best correlated with 

the speech representation being predicted, i.e., the top 25% of the features. Stepwise 

selection was also attempted to be used for prediction of the speech power; however, 

this did not lead to any improvement in the prediction results. More feature selection 

methods may also be explored, such as mutual information-based feature selection, 

or the Maximum Relevance Minimum Redundancy (MRMR) technique, to see if 

the models can be further improved using other feature selection methods. In the 

mutual information-based feature selection, also known as the Maximum Relevance 

(MR) technique, the features which have the highest mutual information with the 

predictor variable, are selected to be included in the model. This is similar to the 

correlation-based feature selection, although mutual information is a more popular 

measure used in information theory to quantize the dependency between variables. 

The MRMR technique is an improvement over the MR technique in the sense that 

it uses a pre-filtering method to remove redundant features, so that features which 

are not only of maximum relevance but also of least redundancy are selected. Other 

techniques such as the Principal and Independent Component Analyses, Subspace 

Learning etc., can also be investigated as possible dimensionality reduction tech

niques.
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Model Solution Technique

The models developed for predicting the speech representations from ECoG ac

tivity were primarily solved using linear regression. Linear regression is a relatively 

simple method of solving for models by assuming a linear relationship between the 

model input and output, and minimizing the least squares error. However, in prac

tice, the relationship between ECoG and various speech representations may not be 

linear and may involve at least a certain degree of non-linearity. The use of artificial 

neural networks for predicting the speech power and the fundamental frequency was 

explored in Chapter 6. It was observed from this analysis that the use of artificial 

neural networks led to an improvement in the decoding models for the prediction of 

the fundamental frequency or the pitch of the speech signal, but did not provide an 

improvement for the prediction of the speech power envelope. This may primarily 

be attributed to the fact that the speech power envelope is a relatively simple linear 

speech feature, encoded linearly in the human cortex [50]. Hence, a linear regression, 

which leads to a linear model, is better for predicting this simple speech represen

tation. However, the fundamental frequency of speech is a slightly more complex 

speech feature, and cannot be expressed as effectively using a simple linear combi

nation of cortical features. Hence, a more non-linear and complex decoding model, 

as is solved for using the neural network, is better able to decode this speech rep

resentation. Similarly, the use of artificial neural networks may also be explored for 

predicting the other production-based and perception-based speech representations 

discussed in Chapters 4 and 5. Other modeling techniques such as Kalman filtering



or other types of non-linear regression may also be used to investigate if they im

prove the prediction of the speech representations. Kalman filtering is a recursive 

algorithm that uses a series of observations over time to produce estimates of the 

underlying model relating the input and output data. It is known to be more precise 

than other modeling techniques because it recursively improves the estimation of 

the model parameters by using multiple observations over time instead of a single 

observation. Non-linear regression is a form of regression analysis in which the out

put variable is assumed to be non-linearly related to the input variables, following a 

certain non-linear representation. The parameters of this non-linear representation 

are solved for using successive approximations.

7.2.2 SPEECH RECONSTRUCTION

An application of this research would be to include a method to close the loop, i.e., 

to use the ECoG-decoded speech representations to reconstruct the acoustic speech 

signal itself, or to be used as inputs to existing speech recognition systems for the de

velopment of an ECoG-based automatic speech recognition system. Existing speech 

recognition techniques may be applied on the ECoG-decoded speech representations, 

to lead to various ECoG-based speech recognition applications. The speech features 

and representations decoded from the ECoG activity may also be used to reconstruct 

speech, either by inverting the transformations used to obtain these representations, 

or by combining different decoded speech features and using existing models to re

cover the speech signal. Based on the different speech representations discussed in 

the previous chapters, alternative ways to reconstruct speech are discussed here.
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Using Production-based Representations

The speech power and the fundamental frequency decoded from the ECoG ac

tivity could be used to obtain an amplitude and frequency modulated sinusoidal 

waveform, which would represent the reconstructed waveform of the speech that was 

being spoken by the subjects. The waveform would be amplitude-modulated by the 

decoded speech power values, varying over time, and frequency modulated by the 

decoded fundamental frequency values, varying over time. Once this basic waveform 

is obtained, the formants can then be used to create additional sinusoidal waves with 

frequencies equal to the formant frequencies and these sinusoids can be integrated 

into the basic speech waveform to add further complexity to the reconstructed wave

form, so that it is a better approximation of the actual speech wave. Together, these 

sinusoids will replicate the estimated frequency and amplitude patterns of the reso

nance peaks of speech. However, this sine-wave speech may not be very intelligible, 

as it may be stripped of the acoustic components of speech. The decoded speech 

power, fundamental frequency and formants may have estimation errors which may 

lower the intelligibility of the speech as well. These are issues which have to be 

tackled if using this approach to reconstruct the speech waveform.

Speech may also be reconstructed using the linear prediction coding coefficients 

that were decoded from ECoG activity, using methods similar to those typically 

used to obtain speech from the regular linear predictive coding coefficients [95]. The 

10 LPC coefficients can be used to predict the current speech sample from the 10 

preceding speech samples, using Equation 3. The ECoG-decoded LPC coefficients
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can also be used in combination with the ECoG-decoded fundamental frequency, or, 

the pitch period and the speech power, to get a better estimate of the actual speech 

signal, as is shown in Figure 12 (Page 57). If this predicted speech sample is combined 

with an excitation signal, which is an impulse train with period equal to the pitch 

period (obtained from the decoded fundamental frequency) and amplitude equal to 

the speech power values for voiced speech and random noise for unvoiced speech, 

then a better prediction of the current speech sample is achieved. This predicted 

speech signal should then be low-pass filtered to obtain the continuous speech wave.

Using Perception-based Representations

The mel frequency cepstral coefficient vectors decoded from the ECoG activity 

can be inverted back to obtain a smoothed estimate of the speech wave, as has been 

shown in previous work [96]. A theorem known as the Wiener-Khintchine theorem 

and linear predictive analysis can transform the MFCC vectors into the vocal tract 

filter coefficients or the LPC coefficients. The same procedure which is used to 

transform the LPC coefficients into an estimate of the speech signal, as described 

in the previous section, may then be used to obtain the transformation of these 

coefficients into the speech signal. The RASTA-PLP toolbox which was used to 

obtain the MFCC coefficients from the original speech signal, for the purpose of this 

research, also contains an algorithm for MFCC inversion. This algorithm does a step- 

by-step inversion procedure in which the steps used to obtain the MFCC coefficients 

are reversed in an attem pt to reconstruct the speech signal from the MFCC vectors. 

However, since not all the steps used to obtain the MFCC coefficients are reversible,
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only an approximation of the speech signal is obtained, and there is an error of 

estimation. This error will only increase if we use ECoG-decoded MFCCs instead 

of the original MFCCs for speech reconstruction, as the error in prediction will also 

be propagated in this inversion process. The RASTA-PLP toolbox also contains 

a method for inverting the PLP computation to obtain the speech signal from the 

ECoG decoded PLP coefficient. This is similar to the one used for MFCC inversion, 

wherein a Bark scale inversion is used instead of a mel scale inversion. Additional 

steps to make up for the critical band filtering and power compression steps in the 

PLP computation are also performed. However, for both the MFCC and the PLP 

inversion techniques, the estimation errors and the problem of the propagation of 

the prediction errors will have to be resolved if speech reconstruction using these 

methods is pursued.

7.2.3 COVERT/IMAGINED SPEECH

As was mentioned in Section 3.2, during the time of data collection, ECoG data 

was also recorded during a covert speech task, in which the subjects imagined saying 

the same displayed text as was used for the overt speech task. The models developed 

here were developed for the overt speech task, using the overt speech data. Optimized 

versions of these models may also be applied to the ECoG data recorded during the 

covert task. This may be done by following the same pre-processing and filtering for 

the covert task ECoG signals as was used for the overt task ECoG signals. Some 

previous studies have attempted to predict components of imagined speech directly 

from ECoG activity [35,44,62]. However, these studies have used relatively simple
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speech components for decoding. The speech representation-based decoding models 

developed here would lead to novel models for decoding covert speech from ECoG 

activity. The ability to decode continuous segments of imagined or covert speech 

with a significant level of accuracy will be a monumental addition to the field of 

ECoG-based speech BCIs and is the ultimate goal of this research.

7.2.4 OTHER FUTURE DIRECTIONS

Some of the existing ECoG studies use micro-ECoG grids, i.e., ECoG grids with 

more densely spaced electrodes than regular ECoG grids, in order to decode speech 

[32-35]. These micro-ECoG grids offer higher spatial resolutions than regular ECoG 

grids and hence, can be beneficial for localization and decoding of speech components 

more effectively than standard clinical ECoG grid spacing. Other recent speech 

studies have analyzed intra-cortical electrode recordings that penetrate the cortex in 

order to decode various components of speech such as imagined vowels and phonemes, 

directly from cortical activity [97,98]. However, human research using micro-ECoG 

and intracortical electrodes has been limited due to the lack of clinical applicability 

of these electrodes. Nevertheless, it can be argued that the addition of micro-ECoG 

to standard clinical grids poses insignificant risk to the patient, and that it may even 

benefit seizure localization and cortical mapping. For these reasons, it is expected 

that micro-ECoG will continue to gain clinical acceptance, which will in turn benefit 

future language decoding and general neuroscience studies [11],

The ability to modulate pitch, intensity, speaking rate, syllabic stress, and rhythm



106

is an important part of communication. These variables can combine to convey emo

tional affect and linguistic information beyond standard speech production. Ideally, a 

practical neuroprosthesis for communication would decode the combination of speech 

output, intended emotion, motor plans for facial expressions, and intended patterns 

of intonation and stress together from acquired neural signals for natural speech 

output. In addition, a practical prosthesis should be able to distinguish between 

intended speech output and inner speech (e.g., differences between overt and covert 

speech) to allow potential users a way to monitor and filter their speech output. This 

description of a neural prosthesis for communication is far beyond the capabilities of 

any current speech decoding efforts. In addition, some intended users of speech and 

language neuroprosthetics may possess varying cognitive and motor abilities making 

it difficult for them to control such a complex neuroprosthetic device. However, a 

natural communication prosthesis with a direct link to the brain should possess these 

abilities to offer users the most complete communication experience possible [11].

Finally, while studies that analyze ECoG signal recordings provide invaluable 

information toward understanding the complex processes involved in speech pro

duction and auditory processing, the present study and other existing studies have 

examined recordings obtained over a short duration in a medical setting. Typically, 

recordings are obtained over the course of a few minutes to several days while the 

subjects are stationary, confined to a hospital bed, and interacting with one speaker. 

In contrast, natural speech communication occurs in the presence of many additional
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factors, including visual scene changes and additional motor movements during ac

tivities such as walking, nonverbal communication including gestures and eye gaze 

maintenance, interaction with multiple and varying communication partners, and 

conversation maintenance and repair after interruption or misunderstanding during 

lengthy communication exchanges. In order to develop a neural prosthesis for speech 

and language that successfully functions in natural settings, these factors must be 

examined in future studies. Chronically implanted electrodes would allow for ECoG 

recordings in natural communication environments and represent one way to investi

gate these factors in communication. Few studies have been conducted on the safety 

and efficacy of long-term electrode implantation in humans, or the long-term place

ment of ECoG grids. However, early evidence from recent studies of the stability of 

long-term impedance in chronic subdural electrodes concluded that impedance was 

stable up to one year after implantation [37,38]. In addition, these studies reported 

few adverse effects resulting from chronically implanted electrodes. This highlights 

the feasibility of the use of chronically placed subdural electrodes for a more natural 

and practical speech-based neuroprosthesis [11].

7.3 DISCUSSION

The results obtained in this research will pave for the way for future ECoG- 

based neural speech prosthesis systems, which will be immensely valuable in the 

neural engineering and communications disorders fields, as well as the healthcare 

industry. It will greatly benefit a large section of patients who are paralyzed, locked- 

in or semi locked-in, and have lost all means of communicating with the outside
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world. The novel spatio-temporal characterization results discussed in this disserta

tion provide detailed insights into how speech processing progresses in the human 

brain, starting from planning to production to perception of self-vocalizations. Al

though the decoding accuracies with which most of the speech representations are 

predicted from ECoG activity are not yet practical, the optimized models for predict

ing the speech power envelope and the fundamental frequency (pitch information) 

show great promise. These results represent a contribution not only to existing re

search in the field of brain-computer interfaces, but also to the expanding field of 

research in speech-based neural decoding. The results from this dissertation may also 

be extended to decoding covert speech from cortical activity, which is the ultimate 

objective in the development of a practical ECoG-based speech neuroprosthesis.
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APPENDIX

This section contains the spatio-temporal plots shown in the dissertation, re

done with the silence periods removed from both the ECoG activity and the various 

speech representations. This was done for a truer representation of speech progression 

in the human cortex. This dissertation used natural speech spoken by the subjects, 

which included periods of inactivity (or silence) between words and sentences that 

the subjects spoke aloud. The silence periods are much lower in amplitude than 

the speech periods are, and including the silence periods in the spatio-temporal 

characterization may bias the analysis, and not give us detailed information about 

the neural bases underlying speech production and perception occuring in the non

silence periods, which is of interest in this study.

First, we investigate spatio-temporal correlation between the ECoG high 

gamma power and the speech power, only during the periods of speech activity. Fig

ure 28 shows these spatio-temporal correlations between ECoG high gamma power 

and speech power, shown for time latencies between -300 ms to 300 ms, in steps 

of 100 ms. We see that the activations are much reduced, on comparison to those 

obtained in Figure 8 (Page 48). The negative lags show almost no significant acti

vations. Activation in the auditory areas, i.e., the superior temporal gyrus is found 

mostly at the positive lags, starting at 0 ms, strengthening at 100 ms, and reducing 

severely at and after 200 ms.

Second, we study the spatio-temporal correlation between the ECoG high
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FIG. 28: Spatiotemporal correlations between the speech power and the ECoG high
gamma band power, across seven time latencies relative to the onset of speech, with
silence periods removed from the analysis.

gamma power and the fundamental frequency, only during the periods of speech 

activity. Figure 29 shows these spatio-temporal correlations between ECoG high 

gamma power and speech power, shown for time latencies between -300 ms to 300 

ms, in steps of 100 ms. It may be observed that the activations are much reduced, 

on comparison to those obtained in Figure 11 (Page 55). The negative lags show 

very less significant activations. However, as compared to those obtained for the 

speech envelope in Figure 28, some activations are seen in the pre-motor and the 

motor areas, albeit much reduced. Activation in the auditory areas, i.e., the superior 

temporal gyrus is found mostly at the positive lags, starting at 0 ms, strengthening 

at 100 ms, and disappearing at and after 200 ms.

Next, the spatio-temporal correlation between the ECoG high gamma power 

and the LPC coefficients is investigated, only during the periods of speech activity. 

Figure 30 shows these spatio-temporal correlations between ECoG high gamma power
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FIG. 29: Spatiotemporal correlations between ECoG high gamma power and the
fundamental frequency, across seven time latencies relative to the onset of speech,
with silence periods removed from the analysis.

and LPC coefficients for which significant activations were achieved, shown for time 

latencies between -300 ms to 300 ms, in steps of 100 ms. It is seen that the activations 

are much reduced, on comparison to those obtained in Figure 13 (Page 60). Also, with 

the silence periods included in the analysis, the even coefficients (2, 4, 6, 8, 10) were 

found to be significant. However, with the silence periods removed from the analysis, 

the first few coefficients (1-4, 6) are found to be significant, which is closer to what 

we would expect, as the LPC coefficients are based on auto-regressive model with 

the coefficients arranged in decreasing order of importance. The negative lags show 

almost no significant activations. Activation in the auditory areas, i.e., the superior 

temporal gyrus is found mostly at the positive lags, starting at 0 ms, strengthening 

at 100 ms, and disappearing at and after 200 ms. The activation of the superior 

temporal gyrus is found to be the strongest for the second LPC coefficient, which 

was also found to the most significant in the analysis with silence periods included
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(see Figure 13, Page 60).

Further, we study the spatio-temporal correlation between the ECoG high 

gamma power and the MFC coefficients, only during the periods of speech activ

ity. Figure 31 shows these spatio-temporal correlations between ECoG high gamma 

power and MFC coefficients for which significant activations were achieved, shown 

for time latencies between -300 ms to 300 ms, in steps of 100 ms. It is observed 

that the activations are much reduced, on comparison to those obtained in Figure 14 

(Page 66). Also, the first three coefficients were found to be significant in both the 

analyses (with and without silence periods included). The negative lags show very 

less significant activations. However, as compared to those obtained for the speech 

envelope in Figure 28 and most of the LPC coefficients in Figure 30, some activations 

are seen in the pre-motor and the motor areas, albeit much reduced. Activation in 

the auditory areas, i.e., the superior temporal gyrus is found mostly at the positive 

lags, starting at 0 ms, strengthening at 100 ms, and disappearing at and after 200 ms. 

These activations are the strongest for the first MFC coefficient, which is the most 

important, as it corresponds to the Mel filter most important for pitch perception.

Furthermore, the spatio-temporal correlation between the ECoG high gamma 

power and the PLP coefficients is investigated, only during the periods of speech 

activity. Figure 32 shows these spatio-temporal correlations between ECoG high 

gamma power and PLP coefficients for which significant activations were achieved, 

shown for time latencies between -300 ms to 300 ms, in steps of 100 ms. The ac

tivations appear to be much reduced, on comparison to those obtained in Figure



15 (Page 71). Also, only the first coefficient was found to be significant in both 

the analyses (with and without silence periods included). The negative lags show 

some very reduced activations in the pre-motor and the motor areas. Activation in 

the auditory areas, i.e., the superior temporal gyrus is found mostly at the positive 

lags, starting at 0 ms, strengthening at 100 ms, and disappearing at and after 200 

ms. These activations are the significant for the first PLP coefficient, which is the 

most important, as it corresponds to the Bark filter most important for loudness 

perception.

Finally, the ECoG high gamma sub-band characterization was repeated, tak

ing into account only the periods of speech activity. Figure 33 shows these spatio- 

temporal correlations between ECoG high gamma sub-bands and the speech power, 

for time latencies between -300 ms to 300 ms, in steps of 100 ms. The activations are 

much reduced, on comparison to those obtained in Figure 19 (Page 80-81). A clear 

distinction between the involvement of the different gamma sub-bands for speech 

production and perception cannot be made from these low activations. The nega

tive lags show some very low activations in the pre-motor and the motor areas, for 

only the sub-bands 80-90 Hz and 150-160 Hz. Activation in the auditory areas, i.e., 

the superior temporal gyrus is found mostly at the positive lags, starting at 0 ms, 

strengthening at 100 ms, and disappearing at and after 200 ms. These activations 

are in general very low and do not lead to any conclusive interpretations.
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FIG. 30: Spatiotemporal correlations between ECoG high gamma power and the 
significant LPC coefficients (shown in the five rows respectively) across seven time 
latencies relative to the onset of speech, with silence periods removed from the anal
ysis.
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FIG. 31: Spatiotemporal correlations between ECoG high gamma power and the 
significant MFC coefficients (shown in the three rows respectively) across seven time 
latencies relative to the onset of speech, with silence periods removed from the anal
ysis.
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FIG. 32: Spatiotemporal correlations between ECoG high gamma power and the
first PLP coefficient across seven time latencies relative to the onset of speech, with
silence periods removed from the analysis.

80-90 Hi

100-110 Hi

FIG. 33: Spatiotemporal correlations between the eight ECoG high gamma sub
band powers and the speech power, across seven time latencies relative to the onset 
of speech, with silence periods removed from the analysis.
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