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ABSTRACT

A VIRTUAL INFRASTRUCTURE FOR MITIGATING
TYPICAL CHALLENGES IN SENSOR NETWORKS

Ilady S. Abdel Salam
Old Dominion University, 2010
Dircctor: Dr. Stephan Olariu

Sensor networks have their own distinguishing characteristics that set them apart
from: other types of networks. Typically, the scnsors are deployed in large numbers
and in random fashion and the resulting sensor network is expected to sclf-organize in
support of the mission for which it was deployed. Becausc of the random deployment
of sensors that are often scattered from an overflying aircraft, the resulting network is
not casy to manage since the sensors do not know their location, do not know how to
aggregate their sensory data and where and how to route the aggregated data. The
limited energy budget available to sensors makes things much worse. To save their
energy, scnsors have to sleep and wake up asynchronously. However, while promoting
energy awareness, these actions continually change the nnderlying network topology
and make the basic network protocols morc complex.

Several technigues have been proposed in different areas of sensor networks. Most
of these technigues attempt to solve one problem in isolation from the others, hence
protocol designers have to face the same common challenges again and again. This, in
turn, has a direct impact on the complexity of the proposed protocols and on energy
consumption. Instead of using this approach we propose to construct a lightweight
backbone that can help mitigate many of the typical challenges in sensor networks
and allow the development of simpler network protocols.

Our backbone constriction protocol starts by tiling the arca around each sink using
identical regular hexagons. After that, the closest sensor to the center of each of these
hexagons is determined — we refer to these sensors as backbone sensors. We deline
a ternary coordinate system to refer to hexagons. The resulting system provides a
complcte set of communication paths that can be used by any geographic routing
technique to simplify data communication across the network.

We show how the constructed backbone can help mitigate many of the typical chal-

lenges inherent to sensor networks. In addition to scnsor localization, the network



backbone provides an implicit clustering mechanism in which each hexagon repre-
sents a cluster and the backbone sensor around its center represents the cluster head.
As cluster heads, backbone sensors can be used to coordinate task assignment, work-
force selection, and data aggregation for different sensing tasks. They also can he
used to locally synchronize and adjust the duty cycle of non-backbone sensors in
their neighborhood.

Finally, we propose “Backbone Switching”, a technique that creates alternative back-
bones and pericdically switches between them in order to balance energy consump-
tion among sensors by distributing the additional load of being part of the backbone

over larger number of scnsors.
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CHAPTER 1
INTRODUCTION

Electro-mechanical sensors have been used for relatively long time in dillerent, control
systems. In a typical such system, a small number of scnsors are deployed in prede-
termined positions in order to provide readings about important system parameters.
Through wired-based networking of scnsors, sensory data are transmitted to a cen-
tral processing unit which analyzes received data and take decisions that control the
functionality of the system.

Advances in nano-technology and wireless communications have enabled the de-
velopment of a new generation of scnsor-based networks. In particnlar, technology
allowed the massive production of low-cost low-power multi-functional sensors. Al-
though, these sensors usually have limited sensing, computational and communica-
tion capabilities, they can be networked to provide services for a vast spectrum of
applications. The past decade has witnessed a phenomenal proliferation of sensor
network applications ranging from battlefield surveillance [1], to border monitoring
[2], to fire detection and habital monitoring [3], to home automation [4], to traffic

control [5], to health-care [6], and to body sensor networks [7], among many others.

1.1 DESIGN CHALLENGES

Designing a reliable and energy aware sensor network has been always challenging
duc to many factors inherent to the modest sensor resources and to the nature of the
sensor network itself. A considerable amount of research has been conducted, and is
still ongoing, on the topic of developing protocols and solutions to overcome these
challenges. We now highlight some of the main challenges specific to the design of

cflicient protocols for sensor networks:

e Ad hoc nature: sensor networks are ad hoc in nature with no underlying infras-
tructure. It is the responsibility of individual sensors to identify their connec-
tivity to other sensors and to decide what routing mechanism should be used
to forward information to their infended destination. Moreover, traditional
routing schermes may not be useful herc becanse of the dynamic topology and

energy considerations;

This disscriation [ollows the stylc of The Physical Review



e Limited energy budget: the sensors are powered by a modest, non-renewable
on-hoard energy source. Once its energy is depleted, a sensor becomes totally
non-functional. Hence, sensor energy must be treated as a precious resource

that has to be used wisely, if network longevily is to be promoted;

e Energy hole problem: sensory data collected from different parts of the network
need to be routed towards one of the network sinks for processing/aggregation.
The additional routing load imposed on network sensors around sinks, would
result in the depletion of their encrgy much faster than other sensors. Once
the energy of these sensors is totally depleted, the sinks are disconnected from
the rest of the network by holes that contain only non-functional sensors. In

time, sensory data can not be routed to the sinks and the network fails;

e Location unawarcness: the sensors are usually deployed in regions that have
no infrastructure at all. A typical way of deployment is to scatter the sensors
from airplanes. This kind of deployment does not allow sensors to be aware of
their positions. Moreover, assuming that the sensors can be equipped with a
relatively expensive and energy-hungry GPS chips does not scem to be a feasible

or, indeed, an acceptable assnmption for these low-cost low-power devices;

& The sensors must work unattended: due to the massive deployment of sensors, it
is entirely impractical to devote attention to individual sensors. Once deployed,

the sensors must work unattended with no external intervention;

¢ Limited compnting power: the sensors are designed to be low-cost, low-power
devices. Thus, the computing capabilities of scnsors are very limited in terms
of the processing speed and available memory. This imposes additional restric-

tions on the type of protocols that can be run by scnsors;

e Small transmission range: wireless communication are known to consume a
large portion of sensor energy; indeed, running the radio interface causes the
largest energy expenditure incurred by individual sensors. Supporting sensors
with long-range transmission capability can excessively consume their energy
which it turn reduces their lifctime dramatically. To promote the functional
longevity of the network, the sensors should perform their tasks with the min-

imum possible sensor-to-sensor or sensor-to-sink communication;



o Dynamic topology: to save their energy, the sensors alternatc between sicep
and awake periods. Due to clock drift and lack of communication, the sleep
and awake cycles (duty cycles) of different. sensors are assumed to occur asyn-
chronously. When a sensor wakes up, it might find many of its neighboring
sensors still sleeping. This behavior continuously changes the connectivity of
the network creating a dynamic topology that complicates many of the network

tasks, including routing and coverage;

e Unlike classical networks, where the main target is to maximize channel
throughput or link utilization, the main target in sensor networks is to extend
the network lifetime without sacrificing coverage, connectivity, and reliability

of the network.

1.2 MOTIVATION

Several techniques have been proposed to address cach of the challenges mentioned
earliet (i.e. localization, clustering, routing, data aggregation, etc). The main goal
of these techniques was to make the network more tractable by solving one of the
inhcrent network challenges. A major problem when using this approach, each of
these techniques tries to solve one problem separately from other problems. Protocol
designers have to face the same common challenges every time they solve any of
these problems. This in turn has its direct impact on the complexity of the proposed
protocols and encrgy consumption.

Instead of solving cach of these problems individually facing the same common
challenges with each problem, we propose to construct what we call a network skele-
ton that is constructed immediately after nctwork deployment and provides some
kind of an infrastructure that makes the network more tractable. The skeleton pro-
vides sensors with coarse localization information that enables them to associate their
sensory data with the geographic location in which the data was measured. Moreover,
it. promotes a geographic routing scheme that simplifies data communication across
the network throngh skeleton scnsors. By hypothetically tiling the deployment area
using identical hexagons, the construction algorithm clusters sensors based on their
locations into hexagons(clusters). Skeleton sensors which are chosen to be the closcst
sensors to the centers of these hexagons represent cluster heads and can play a crucial

rle in coordinating task assignment, workforce selection, and data aggregation.



1.3 SENSOR NETWORK MODEL

We assume a typical sensor network which includes a massive deployment of tiny
scnsors cach perhaps no larger than a dime. These scnsors are deployed uniformly at
random across the deployment area. In addition to the tiny sensors, we assumc the
existence of more powerful devices, referred to as sinks. While the tiny sensors are
static, the sinks may be be able to move in support of the mission at hand. Fuarther.
while the sensors have a modest non-renewable energy budget, the sinks are assumed
to be energetically self-sufficient and/or to have rechargeable batteries. Finally, while
the number of sensors is large, perhaps in the tens of thousands, the number of sinks
is many orders of magnitude smaller.

For precise reference, we now list our assumptions about the capabilities of sensors
and sinks.

I- Sensors:

¢ The sensors arc tiny, inexpensive devices with very limited sensing, computa-

tional and communication capabilities;

» The scnsors are powered by a non-renewable on-board energy source; when
the energy budget is exhausted the sensor becomes in-operational. Hence, the
sensors sleep and wake up alternatively to save their energy. Sleep and wake-up

cycles for different sensors are assumed to oceur asynchronously;

e Once deployed, the sensors must work wnattended. Although, the sensors may
have fabrication-time identities, they should be treated as if they werc anony-
mous as it is either impractical or infeasible to devote attention to individual

SELSOLS)

e The sensors are agsumed to be static (immobile) and, at least initially, unaware

of their location;

e Each sensor has a maximum transmission range, denoted by {z, assumed to be
much smaller than the widsh or the length of the deployment area. ' This
implies that messages transmitted by a sensor can only reach recipicnts in its

proximity;

LOf course, t, depends on the particular type of sensors deployed. Under technology available
at the time of this writing, £, is about 30m for micro-sensors.
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e The reception circuitry of sensors is able to determine the strength of received
signals (RSS). This feature allows each sensor to estimate its distance to the
transmitter. Unfortunately, this estimate is often inaccurate due to the irregu-
Jarity of signal propagation resulting from surrounding noise, signal reflection
and refraction, and multi-path [ading. This limitation is inherent to all RSSI-
based distance measurements as mentioned in [8]. However, in our protocol,

we try to get around this inaccuracy by:

(a) Making distance estimates based on the average valuc of the received
signal strength of several transmissions,

(b) Avoiding any RSSl-based distance measurements for long-range transmis-
gions in order to reduce the probability of being affected by surrounding

noise.
H- Sinks:

e In addition to the tiny sensors, the network contains a small number of sinks.
These sinks are responsible for tasking the sensors and for collecting the aggre-

pated results;

e The sinks are much more powerful than the tiny sensors. They have no energy
constraints either by being connected to a steady energy supply or by being

powered by rechargeable batterics;

o As they do not have energy constraints, the sinks are assumed to be awake all

the time;

o The sinks may be static or mobile, however they are always aware of their
positions (i.e they might be equipped with GFS devices or their positions can

be entered manually);

« Each sink is equipped with ftwo transceivers with transmission range T, that
exceeds the maximum transmission range f, of a sensor. The first transceiver is
omnidirectional while the second is unidirectional with a narrow bcam width.
The sink nodes are aware of their orientation, and can rotate their unidirectional

transmitter to any angle [0,27] to transmit in any direction.



1.4 ROADMAP

The remainder of this dissertation is organized as follows, in Chapter 11, we briefly
summarize related work pertaining to research to solve challenges in sensor networks.
Then in Chapter III, we present the details of our backbone construction protocol.
Starting from section 111.5, more emphasis is given to show how the proposed back-
bone can help mitigate many of the typical challenges in sensor networks including
sensor localization, data clustering, data aggregation, and geographic routing. Chap-
ter [V is dedicated for backbone-based task assignment and workforce sclection. We
propose one centralized and another distributed protocols that can be implemented
on top of the proposed backhone. The chapter is concluded by a family of data aggre-
gation protocols that can be integrated with the proposed task management process.
In Chapter V, we present a backbone guided slecp scheduling scheme that can be
uscd to balance sensor energy consumption. Finally, in Chapter V1, we conclude our

work and highlight on futurc research directions.



CHAPTER I1

STATE OF THE ART

Although, advances in technology enable the massive production of inexpensive sen-
sors that can be deploved in large geographical areas, it raises numerous challenges
on the protocols needed to interact with these sensors efficiently. In this chapter, we
provide an overview of the work that has been reported in the literature and that
is related to the construction of backbones in sensor networks. We also highlight
on the state of the art techniques which were proposed to solve the most important

challenges in sensor networks including localization, scheduling and routing.

I1.1 SENSOR BACKBONES AND INFRASTRUCTURES

Wadaa et al. [9) proposed a virtual infrastructure for a massively-deployed collection
of anonymous sensor nodes. They defined a coordinate system thal, provides an intor-
esting clustering scheme for anonymous sensors, and referred to the process in which
sensors learn their coordinales as sensor traiming. Sensor training can be repcated
in a scheduled or ad-hoc basis to provide robustness and dynamic reorganization.
During the training process, the deployment area around cach sink is divided using
a number of equiangular sectors (wedges) and concentric circles (coronas) centered
at that particular sink. Olariu and Stojmenovié [10] have shown that the radii ol the
coronas can he determined to optimize the efficiency of sensors-lo-sink transmission.
The group of sensors which reside in the region determined by the intersection of a
specific corona and a specific wedge maps into one cluster. Although sensor training
can simplify many of nctwork management tasks like routing and data fusion, it has
an inherent scalability shortcoming. In particular, as we move from the sink node
outward, the cluster sizes increase from one corona to the next. After certain point,
sensors within the same cluster may not be within the communication range of each
other, hence more complex data fusion and leader election protocols are needed to
handle these clusters.

More recently, Bertossi et al. [11] have enhanced the training protocol presented
in [9]. The new approach outperforms the original approach in terms of the overall
time for training by lowering it from linear to a square-root function of the size of

the coordinate system used for location awareness.



Srinivas et al. [12] presented a novel hicrarchical wireless networking approach
in which some of the nodes are more capable than others. In their model, the more
capable nodes serve as mobile backbone nodes and provide a backbone over which
end-to-end communication can take place. In their approach they try to control the
mobility of the backbone nodes in order to maintain connectivity. They formulate the
problem of minimizing the number of backbone nodes and refer to it as the Connected
Disk Cover problem. They show that it can be decompuscd into the geomctric
disk cover {GDC) problem and the steiner tree problem with minimum number of
Steiner points (STP-MSP). They provide approximation solutions to both problems.
Although, mobile backbones can solve many of network management problems, they
assume the existence of nodes with more advanced capabilities which may not be
available in many sensor network deployment scenarios.

Frey ef al [13] showed that any sensor network graph can be transformed into
an aggregated form which is a virtual overlay graph (e.g. an infinite mesh ol regular
hexagons) whose nodes arc the centers of all nonempty clusters (hexagons). Two
nodes 4 and 4 of that overlay graph are connected by an edge if there exists at
least one connected pair of network nodes with one node located in | and the other
located in (5. In their work, Frey ef al. show that nctwork connectivity does not
suffer from generalizing the concept of sensing coverage to arbitrary clusters. [lence,

geographic routing can be used on cluster-base and not on node-base.

I1.2 SENSOR LOCALIZATION

Most WSN applications require in a way or the other to associate sensor readings
with the geographic location in which the readings were taken. Getting location
information through recording positions manually or through an expensive GPS chip
arc not valid options for scnsor networks. To address the localization problem and to
cstimate a good approximation of the position of each sensor node, many techniques
have been developed, each of them has its merits and demerits. Up to the time of
writing these lines, there is no specific algorithm on top of others. Hence, we briefly
summarize the technical foundations of the most important localization techniques
proposcd in the literature.

In general, localization techniques can be classilicd into two main categories:
Range-based and Range-free. Range-based techniques depend on range estima-

tion between nodes that know their positions and nodes that do not. Ranges are



usually estimated based on measurements of received signal strength (RSS), time of
arrival (TOA), time difference of arrival (TDOA) and angle of arrival (AOA)). Al-
though Range-based technigues are more accurate than Range-free techniques, they
sharc a common drawback, they require additional hardware to be available with
each node to be able to take the required measures. Range-free techniques have been
proposed to overcome the stringent hardware requirements of range-based techniques.
The main idea behind these techniques is to cxploit radio connectivity information
among neighboring nodes to infer rough estimates of their positions without taking
aily range measurements. This way range-free techniques eliminate the need to equip
each node with any specialized hardware allowing the mannfacturing cost of these
nodes to be low.

In the Centroid method [14], a sensor node estimates its position as the centroid
of the polygon whose vertices are positioned at the anchors it could receive messages
from. Anchors arc location aware nodes with a transmission range that is usually
longer than the transmission range of regular nodes. If anchors were positioned uni-
formly, localization error can be reduced however this can not be guaranteed in ad
hoc or non static deployments. An obvious problem of this technique it localizes all
the nodes that receive messages from the same subsct of anchors (which is typically
large number of nodes) to the same position which increases average localization
error of nodes. An enhanced however range based variation of this technigue eval-
nates node position as the centroid of anchor positions weighted by the strength of
signals received from thesc anchors. Another similar approach for complex shapes
was proposed in [15].

The APIT method [16] divides the deployment area into triangular scctions using
anchor nodes. Each sensor applies an approximate PIT test to decide whether it
is inside cach possible triangle or not. After that it nses a grid scan algorithm to
estimate the maximum likelihood area within which it resides. In fact, APIT could
achieve good localization accuracy, however it has two major drawbacks. The grid
scan algorithm is very time and resource consuming especially if the grid size is
small. Also, APIT does not localize nodes outside the convex hull of the anchor
nodes accurately.

The Ad-hoc Positioning System (APS) [17] was proposed to allow non-GPS en-
abled nodes to cstimate their localions in a hop by hop fashion. Three different

methods were investigated, and the DV-Hop algorithm was the best to perform in
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most cases. In the DV-hop algorithm, each anchor sends a message that contains its
location information to all the sensors around it. Sensors that receive these messages
forward them to their neighbors and so the messages are flooded through the whole
network. Within each message, there is a field that indicates number of hops this
message has been forwarded. Basically, this field is initialized to 1 at the anchor
node, and incremented at each hop. This way, sensors can determine how far they
are (in terms of number of hops) from different anchors. The average distance per
hop is calculated and each sensor can estimate its distance to different anchors. After
that, a sensor node can usc the estimated distances between itself and three or more
different anchors to localize itself. Although DV-HOD is known to be one of the
best known range free protocols, it has several drawbacks: first, the flooding nature
of the protocol consumes much of sensor energy, second, it is not always casy and
sometimes infoasible to use trilateration to estimate node position using approximate
distances to anchors. The Amorphous {18] localization protocol depends on a similar
idea. The loeation coordinates of the anchor are flooded throughout the network
with the number of hops to the source anchor tracked in each message. This enables
cach node to maintain a list of hop-count to each anchor along with the location of
that anchor. Each node that does not know its location can use this list to estimate
its location. Unfortunately, Amorphous still has the same issues of DV-HOP.

Cricket [19], an indoor location support system proposed by MIT, allows nodes
to learn their physical location by using listeners that hear and analyze information
from anchors. Anchors concurrently use radio and ultrasonic signals to send their
location information. The listener inference modules on the node overcome multipath
and interference and improve localization accuracy. AHLoS [20] is similar fo Cricket
and uses RF and ultrasound for indeor localization. TDOA techniques like these
techniques rely on extensive hardware that might be expensive and energy consuming,
making it less suitable for sensor networks. Another drawback of TDOA techniques
that usc ultrasound, they require dense deployment as ultrasound signals propagafe
for a limited distance only.

The lighthouse system [21] uses a rotating anchor that produces a parallel light
beam of fixed width. A sensor node detects Lhe light beam for a period of time that
depends on the distance between the anchor and the sensor. If the rotation speed
and the width of the beam are known to the scnsors, then each sensor can measure

the time it detects the light beam and estimates the distance and the angle to the



anchor.

Acoustic-hased ranging techniques like BeepBeep [22] was proposed to localize
sensors hased on the two-way time of flight of the beeps between two communicating
devices. Other special purpose localization technigues have also been proposed. Un-
derwater 2D and 3D localization was proposed in [23], [24]. APIL was suggested in
[25] to address localization in Road Networks wherc most Range based localization
techniques fail due to the sparse nature of deployment. APL uses binary vehicle-
detection timestamps to obtain distance estimates between any pair of sensors on

roadways.

I1.3 SLEEPING SCHEDULE

To save their energy, sensors spend its whole life switching between two modes, sleep-
ing mode (power consumption is minimum) and wake up mode (power consumption
is relatively high). Different deterministic and probabilistic schemes can be used to
determine the schedule based on which sensors sleep and wake up. Next, we sum-
marize the technical foundations of the most important approaches we found in the
literature.

In [26], a new scheduling protocol was proposed to maximize network lifetime
for rare cevent target surveillance systems. The protocol provides a schedule that
guarantees thal cach point in the environment is sensed within some maximum in-
terval of time, called the detection delay. However the protocol does not handle QoS
requirements that might require each point to be monitored hy k sensors (k > 1) for
more reliable readings.

Another sleep scheduling protocol was proposed in [27], however it requires syn-
chronization between nodes which is hard to achieve in sensor networks. Analytical
analysis of the maximum achicved upper bound on network lifetime was presented
in [28].

‘The authors of [29] proposed a balanced-enctgy scheduling scheme for clustered
sensor networks. Their scheme aims to evenly distribute the energy load of the sensing
and communication tasks among all the nodes in the cluster, thereby extending the
network lifetime. However, their scheme does not provide any guarantees on QoS
requirements expressed in terms of the number of sensors participating in each task.

Another algorithm was proposed in {30] for large-scale wireless sensor networks.

The algorithm allows each sensor to probabilistically schedule its own activity based
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on its node degree to guarantce a minimum level of connectivity. Unfortunately,
k-connectivity does not imply k-coverage, and so their algorithm does not provide

any guarantees that k-coverage based QoS requirements are satisfied.
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CHAPTER II1

BACKBONE CONSTRUCTION PROTOCOL

The main goal of this chapter is to describe our approach for coustructing a network
backbone that can be used to simplify many of the problems inherent to sensor
networks. In Section I11.5 and in the following chapters, we show how the proposed
backbone can provide solutions to many of the typical challenging problems in sensor
networks including localization, clustering, data aggregation, routing, scheduling,

workforce selection among others.

III.1 COMMUNICATION BACKBONES

The concept of “network backbone” can be broadly gencralized in sensor networks
to include any subnetwork of sensors. Referring to any of these backbones, it is
straightforward to realizc that the network can be easily clustcred by associating each
non-backbone sensor to its closest backbone sensor. Figure 1, shows the different
clusters constructed when using randomly sclected backbone sensors. The reader
should note that the clusters arc BOlln(Ied by the Voronoi diagram whose vertices are

the selected backbone sensors.

# Backbone Sensor « Non-backbone Sensor

FIG. 1: Clusters constructed from randomly selected backbone sensors

Due to the generality of the definition, one would expect a typical sensor network
to have a large number of backbones, although most of these backbones would have

po practical value. Apparently, in order to be practically useful, a network backbone
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has to satisfy certain conditions. Our purpose is to highlight on the minimum condi-
tions a backbone needs to satisfy in order to be practically useful for communication
purposes. This would definitely give us more insight about the best strategy to follow
in order to construct such backbones.

A network backbone would be practically useful for communication purposes if

it satisfied the following conditions:

1. The backbone subnctwork is connected so it can be used to forward messages
between different parts of the network. Moreover, to reduce the number of
hops, the distance between any two backbone sensors should be as close as

possible to sensor maximum transmission range, t,.

2. Backbone sensors are well distributed across the deployment area. Any non-
backbone sensor is within the transmission range of at least one backbone
sensor. Furthermore, non-backbone sensors should be evenly distributed across
different backbone clusters. For uniform sensor deployments, this implies that

the areas of backbone clusters are equal.

3. The number of backbone neighbors for each backbone sensor is maximized in
order to maximize the number of different communication paths between any

two nodcs.

FIG. 2: Hezagonal clusters mazimize the number of backbone neighbors

Assuming extremely dense network, where it is possible to find at least one sensor
as close as possible to any point in the deployment area, we are interested to find
the geometric shape of backbone clusters which will satisfy the conditions mentioned
above. We start by placing our first backbone sensor a around the center of the

deployment area (see Figure 2). From condition (1), since the distance between
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any two backhone sensors is t;, the triangle Aqbe must be equilateral. Moreover, to
satisfy condition (3), we need to maxirmize the number of backbone neighbors around
sensor ¢ which can be done by replicating the triangle Aabe as shown in Figure 2
confirming that each backbone sensot can have up to six neighbor backbone sensors.
Furthermore, Figure 2 shows that the backbone cluster around sensor g is in fact a

regular hexagon with side length equals "'—\;3

I11.2 THE BACKBONE CONSTRUCTION PROTOCOL

Since, in our proposced protocol, the network backbone is constructed starting from
the sink nodes outwards, we find it more appropriate to start by showing how the
protocol works around a single sink node. It will then become clear that each sink
performs the same backbone construction in a disk of radius Rp around itsclf.
Consider an arbitrary sink; we are interested in setting up a backbone in a disk
D of radius Rp. (Rp <T,), around this particular sink. We note that, as a rule, the
arca covered by the disk is a small fraction of the deployment arca. Nonetheless, to
simplify the presentation, we shall refer to the sensor network built on the sensors in

this disk as the network.
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Sector 2 - Hector 1

FIG. 3: Partitioning the area around the sink into sectors

We summarize the main steps of our construction protocol [31, 32] in the following

phases:

e Tiling phase: in this phasc the disk D around the sink is tiled using a set of
identical regular hexagons which makes the area around the sink look like a

beehive (sec Figure 3);

o Backbone selection phase: in this phase the closest sensor to the center of each

hexagon is determined. These sensors are referred to as backbone sensors;

e Non-backbone sensor classification phase: after being selected, backbone sen-
sors announce themselves as well as the hexagon they represent to other nodes.
Non-backbone sensors use the received signal strength to determine the hexagon

to which they belong.

Tiling the disk D starts at the sink outwards. The first hexagon is positioned
snch that the center of the hexagon coincides with the sink. The side length of the

tiling hexagons is taken to bhe %, where {. 1s scnsor maximum transmission range.
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In practice, we replace ¢, by ty = (1 — §)t;, where § = 0.1. The reason behind this is
to allow the selection of backbone sensors which are very closc to the target hexagon
center however they reside on the other side of the center and may not be reached if
we used 1,.

Referring to Figure 3, the tiling continues by placing hexagons side by side In
six different directions (ie. I, &, 52 1% 97 and ). We refer to these angles
as “orientation angles”. As shown in Figure 3, the area is divided into six sectors.
In each sector, the hexagons are stacked in rows. In the first row there is only one
hexagon (column), in the second row there are two hexagons, in the third row there
arc three hexagons, and so on.

We propose a ternary coordinate system to uniquely identify the various hexagons
in the tiling above. Specifically, the hexagon in column ¢ of row r in scctor s s
uniquely identified using the tuple {s, r,c}. It is worthwhile to mention that although
several addressing schemes for hexagonal networks [33, 34] have been proposed, our
courdinate system seems to be more appropriate for our coustruction protocol.

The remainder of this section is divided into the following subsections: in Sub-
section 111.2.1 we describe how the necessary angles and associated trigonometric
functions are theorctically computed and practically measured; in Subsection I11.2.2
we specify the order in which backbone sensors are selected; finally, in Subsection

I11.2.3 we present the tcchnical details of the backbone selection process.

I11.2.1 Computing and Measuring Angles

FIG. 4: Estimation of the position of hexagon centers
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For a given sector 8, the tangent of the angle 8 . subtended by the positive
#-axis and the line connecting the sink to the center Sy, ..y of the hexagon (s,7,¢) is
'r\/?:tan?—i- (2 —r —2)
rV3+ (r —2c+2)tan %’

To justify (1), we begin by evaluating the coordinates (z,y) of the center S, .y of

(1)

tan 0 =

the hexagon (s,7,c), where the sink is assumed to be located at (0,0). Referring to
Figure 4, the distance between Sy, 1y and the sink is r¢;, and the distance between
Sty and S,y is (¢ —1)E,, where 2, is the distance between the centers of any two
adjacent hexagons. Moreover, the angle ¢ between the line connecting Sis1y to the
sink and the positive z-axis is the orientation angle of sector ¢, and the angle v can
be evaluated geometrically to be a -+ Qf With this preamnble out of the way, we can

cvaluate 2 and y as follows

xr = rigeosa+ (e— 1)t cosy
25 -1 2 3
= ?‘txcosuj—i- (¢ —1)t, cos(—s——k—)"IE (2)
ancl
y = rtysina+{¢c— 1)t siny
25 —1 25+ 3
= 7i,sin LQT)?T + {¢— 1)t;sin u (3)
However, recalling that
. (2s— 17 : (sw ?r)
sin ———— = sin{— — =
6 3 6
= sin 2 cos T — cos — sin —
376 376
V3 s 1 s

6 3 6
= LoS EcoqE4—sin-?EsinE
T3 6 3 6

= \/500‘3 s + lsin s

T2 T3 27y
ﬁin(25+3)ﬁ L (?TS+?T)
1 6 = 5l 3 2

T T i T T8

= sin —cos — + cos ~——sin — = cos —, and
3 2 3772 37
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28+ 3)m (sr ?T)
€os 6 = cos 3 + 5
= co ik €Os T sin e sin T sin °
= §-— 0S8 — — 81N — 81Nl — = — 51 ——
3 2 3 2 37
we can rewritc equations (2) and (3) as
iy w8 . WS
r = -—'[‘r‘\/{;cos‘—+(r—2c+2}sm—] (4)
2 3 3
te . TS g
y = 5 [r 3511'1%34-(2(:—2—?)(:05 %} , (5)
Using (4) and (5), combined, we can writc
Jsin (2(‘—— - )(’cnsE
tan 9(5 Tk
3cos 24 (r —2¢c+ 2)sin

r‘\/_ta:u” (2¢ —r —2)
T\/_+(:f—2(,+2)ta.nT'

confirming that {1) holds.

We wish to point out that if for all 5, (1 < & < 6), the values sin(%), and
cos( %) arc tabulated, then cach sensor cau readily evaluate the coordinates (%, y)
of the center of hexagon < s,7,¢ > as well as tanf, .., without evaluating any
trigonometric functions. This is very important as it reduccs the energy expended
by individual sensors.

Practical measuring of the angle between the positive z-axis and the line con-
necting the sink to any sensor is more challenging. As mentioned in the network
model, we assume that the sink is capable of both ommidirectional and directional
transmission. The directional antenna at the sink has a small beam-width and can
be rotated toward any dircction. Recall that antenna physics states that the trans-
mission pattern of directional antenna consists of a major lobe which is oriented in
the direction of the transmission and several smaller (back and side) lobes [35]. The
received transmission power is maximum at the center of the major lobe and reduces
as we go far from the center. For the purpose this work, we can simplify the antenna
transmission pattern by rcpresenting it as a narrow sector with a small angle that is
divided in half by the transmission direction beam (see Figure 5).

Initially, the sink uses its omnidirectional antenna to send a sequence of WAKEUP
messages to wake up slecping sensors so they can measurc their angle to the sink.
Obviously, the number of WAKEUP messages should be sufficicntly large so that

each sensor within the disk D will receive at lcast one copy of the message. Morcover
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FIG. 5: Radiation lobes and beamwidths of directional antenna pattern

to save sensors energy, we suggest that the number of remaining WAKEUP messages
be specified within each message, so when a sensor receives a WAKEUP message in
an early stage and realizes that there will be more WAKEUP messages to follow, it
can save energy by turning off its sensory and reception circuitry, switching to the
sleep mode after adjusting its internal timer to wake up on time.

In addition to waking up sensors, the last WAKEUP message should also provide
some level of synchronization among sensors. Although this kind of synchronization
may not be accurate due to different. transmission, propagation and processing delays
at each node, the achieved level of synchronization (within a fow milliseconds) is more
than sufficient for our purpose especially in the existence of the large delays due to
the mechanical rotation of the directional antenna.

After the last WAKFEUP message, each sensor turns on its reception circuitry and
waits. At the same time, the sink uses its directional antenna to start transmitfing
angle estimation messages starting from an initial angle &, After transmifting a
message, the sink rotates its antenna by a small angle Af, then it transmits the
next message and so on. Although angle cstimation messages are very short, they
convey useful pieces of information to sensors. The most important among these
pieces is the current angle of transmission . When a sensor receives a recognizable
angle estimation message (i.e reccived signal strength p, is larger than some threshold
valne pyp), it stores the angle 6 along with the power of received signal p.. When the

antenna of the sink returns back to the initial angle #y, it can cither stop, or start
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anolher cycle using a different value for the rotation angle Af in order to enhance the
acceuracy of the estimated angles. Obviously, there is a trade-ofl between the accuracy
of the estimated angles and the number of cycles needed which will definitely aftect
the time and encrgy consumption. After the last angle estimation cycle, each sensor
estimates its angle as the average of the received angles weighted by their received

signal strength p,.. Mathematically, this can be written as

p = sl "
> et Prm
where n is the total number of received messages, 6, is the angle transmitted in
message 7, and p., is the received signal strength of mossage m. Recall that the
power of radio signals decays proportionally with the inverse of the traveled distance
raised to the path loss exponent (> 2). I'ypically, refllected signals travel a distance
that is longer than the distance traveled by direct LOS signals. Hence, if the initial
transmission power py remains the same, then the received power of reflected signals
should be smaller than the received power of direct LOS signals. Consequently, when
angle 0, is weighted by the received power py,,, we reduce the impact of reflected

signals on the accuracy of estimated angle.

Algorithm 1 Evaluate sin & and cos 8
Input: Angle @
Qutput: sind and ¢os 8

l: 8229‘9;

__ 1 1 -1 -1 1 1 =1 -1 1 1
2 F[] T {aﬁﬂﬁﬁvﬁaﬁrghﬁyﬁaﬂ;ﬁ
3: sin == F[9] ;

1: cos 1= F[8] ;
for (i=7;4 > 0;) do
sin := #% - sin + Fli——] ;
cos 1= 62 - cos + Fli—-]
end for
sint := sin - @ ;
10: return sin, cos ;

e R

After evaluating its angle to the sink using equation (6}, each sensor evaluates
the sine and the cosine of its angle using the well known MacLaurin expansion. By
adding the first 5 terms of the MacLaurin expansion ol the sine and the cosine, we
obtain an accuracy of up to 4 decimal places which is more than sufficient for our

purposc. Moreover, we can rewrite the approximated expansions of the sine and the
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cosine functions using Horner’s rule [36] to reduce the number of multiplications as

follows

03 95 ‘97 99

sinf) = 9_54_5_?7_—'"@
g2 1 L 1Y, 1 .
~ ((G-w)r=5)r-5)7+)0
A A A
cosf = 1_§+E_§+§

2 1N, 1\, 1\,
(5-a)Frm)e-5)e+

Furthermore, we can combine the evaluation of the two series and reduce required
nimber of multiplication to 10 operations only as shown in Algorithm 1.

By implementing Algorithm 1, and through 10 multiplications only, each sensor
can evaluate the sine and the cosine of its angle to the sink node. We draw the
attention of the rcader that using this cvaluation method is more appropriate and

consistent with the limited computational power available to these tiny devices.

I111.2.2 Order of Selection of Backbone Sensors

The selection process of backbonc sensors starts when the sink selects the six back-
bone sensors in the first row. Aller that, the process continues recursively where
the sensors in any row select sensors in the next row. This continues for a sufficient
number of rows necessary to cover the desired disk £. In practice, we expect the
maximum number of rows to be typically around 5 rows.

Backbone sensors can be selecled in many ways and in different order. However, to
avoid redundant sclections, minimize collisions, and save sensors energy, we proposc
a set of rules that determine the order and the selection responsibility of backbone

sensors, these rules are:

1. Only the sensors with odd column coordinate are allowed to select.

(i.c. sensor S, is allowed to select <= ¢ =1 (mod 2).

2. If [(e=1) and (r =0 (mod 2))] Then
S(s,:‘,i} selects S{s,‘r-l 1,1 Sl:.'j,)'+1‘2} and S(e. -lLrdl,r+1)
Else

S(s,r,zc--l) selects S(s,r+1,2c---1) and S{s,r+1,2u>-
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3. Assurmning, that the selection of a single backbone sensor takes one time epoch,
then to reduce collisions and interfcrence hetween transmissions, selection in
odd sectors (i.e. s = 1,3,5) occurs in different time cpochs than selection in

cven sectors (i.e. s = 2,4,6).

Figure 3 shows sclection order and responsibilities for sector 5.

Relative to the above rules for backbone sclection we note the following:

e Backhone sensors with even column coordinate do not select other backbone

SENSOrs;

e Selection in odd rows in any sector requires 2 time epochs, however selection

in even rows requires 3 time epochs;

e The total number of time epochs needed to search in all the six sectors is 4

time cpochs for odd rows and 6 time epochs for even rows.

I111.2.3 The Details of Backbone Selection

In Subsection I11.2.2, we specified the order and the selection responsibilities accord-
ing to which backbone sensors arc selected. In this section, we give the technical
details of the backbone selection process.

The protocol starts when the searching entity (i.e. the sink or some sensor) uses
equation (1) to compute tan @, ., the tangent of the angle subtended by the positive
r-axis and the line connecting the sink to the center of the target hexagon identified
by the tuple {s,7,¢). After that, it broadcasts a message to all the sensors in its
neighborhood asking for the closest sensor to the center of the target hexagon to
declare itself, Recall that sensors at this point are aware of their angle to the sink
node #, as described in Subsection II1.2.1. The sensors that reccive the message,
check il the difference | tan 8, — tan 6, | is within acceptablc range (i.e less than
certain threshold). The sensors within the range usc RSS to estimate their distance
to the searching sensor S. They also use additional information within the message
transmitted by & to estimate €2, the square of their distance to the center of the
target hexagon (caleulation of €2 is presented in detail later). After that, each sensor
timer of any of these sensors e}cpif.es= the sensor realizes that it is the closcst sensor

initializes a countdown timer to units and waits till its timer expircs. When the

to the center of the target hexagon. Consequently, it broadcasts a message to all
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FIG. 6: Case 1. estimation of €,°

its neighbors declaring itself as the backbone sensor representing the new hexagon.
The sensors that receive the message stop their timers and use this message along
with messages they receive from other backbone sensors to determine the hexagon to
which they belong. Sensors which evaluate e to he larger than some threshold value
(i.e. €%) do not initialize their internal timers. This provides the stopping criterion
upon which the boundaries of deployment area is reached.

Although collisions might well occur, they do not represent a big problem as tics
between colliding sensors can always be broken by any contention-based mechanism.
One way of doing this is to let colliding scnsors wait a random amount of time before
transmitting again. The first sensor to transmit is selected to be the backbone sensor.

As we mentioned earlier, during the selection of backbone sensors, each candidate
sensor needs to estimate €2, the square of the distance between the sensor and the
center of the target hexagon. To evaluate this value, we distinguish between two
cases. The first case handles the evaluation fot the six backbone sensors arcund the
sink (i.e. in row 1), while the second case handles the evalnation for backbone sensors
in other rows.

Case 1: for each sector 7, the sink has to select backbone sensor s to represent the
hexagon (4,1, 1). The sclectioun error of sensor s is e, and it represents the distance
between s and the center of the hexagon {Z, 1, 1). Basically, the criterion to select s

is to keep €, minimum. Using Figure 6, it can be readily verified that the position
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FIG. 7: Case 2: estimation of e,°

(X,, Y,) of sensor s 1clative to the sink and €2 can be evaluated as

X, = d-cosf (M
Y, = d-sinf (8)
e = t,2+d*— 2 dcos(¢p — )

= 1,2 +d* — 2t.d (cos pcos @ + sin psin i)
2t.d (cos 8 + tan ¢ sin §)

7/1+tan? ¢

where d is the distance between the sink and the sensor and is estimated using RSSI.

= t.2+d°— (9)

Case 2: as shown in Figure 7, we assume the existence of backbone sensor a that
was previously selected by the protocol to represent the hexagon (s,,7,,¢,). The
selection error of sensor a is denoted by €, and represents the distance between o
and the center of the hexagon ($,,7q,¢Ce). We recall that ¢ was selected such that

? is minimum. Now it is sensor a’s turn to sclect another backbeone sensor & to

€a
represent the hexagon {s, 7y, ¢;). Again, b should be selected such that the selection
error €2 is minimum (e, is the distance between b and the center of the hexagon
(56,75, Cs))-

Qur goal is to provide an expression for €2 that can be cvaluated by each scnsor
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independently. The evaluation process starts at the searching sensor, a, when 1t
broadcasts a message asking for the closest sensor to the center of the target hexagon

to declare itself. Within this message, scnsor a includes:
1. Z, = /X% + Y2, the Euclidean distance between the sink node and sensor u;

2. sind, and cos @,, the sine and the cosine of the angle between the positive z-axis

and the line connecting the sink to sensor a;

3. In addition to this, sensor « cvaluates and sends £ and tan ¢, where £ is the
Euclidean distance between the center of the target hexagon and the sink,
while ¢ is the tangent of the angle subtended by the positive z-axis and the
line connecting the sink to the center of the target hexagon. Clearly, £ and

tan ¢y can be evaluated using

¢ = VX1 V2

rpV/ 3 tan % +(2¢—v =2}

V3 + (1 — 2¢, + 2) tan %’

tan ¢y

where X and Y are given by the cquations (4), and (5) respectively.

After receiving the message transmitted by sensor «, each sensor continues the cval-

uation of e, on its own. Given that

e 7, sinf,, cos 8, £ and tan ¢, are known from the message received from sensor
@;

e d is estimated through the strength of the signal received from sensor a;

o sin 8, and cos 8, (the sine and the cosine of the angle subtended by the positive

z-axis and the line connecting the sensor b to the sink) were estimated at

protocol initialization through WAKEUP messages,
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a generic sensor § can estimate the distance Z, betwecen itself and the sink by ele-
mentary trigonometry as follows:
L d
sin{m — (0, — 6 + 1)) sin(fy — 0}
Zy - sin(f, — 8,)

sin(f, — 0, + ) =

d
- sin Z,
COs Y _—— =
YT (6 — 8, d
1+ 2Atany + A%tan’y 2]
1+ tan? ¢ @
z: 7
1+ 2Atany 4+ A% tan’ ¢ = E‘;— + ?j tan? 1, (10)
where
A4 1 _ cos{fy — 0,)

tan(f, — 0,)  sin(8, —8,)
cosfycos ), + sinfysin f,

= (11)

sin &y, cos B, — cos By sind,

Because in our protocol we always assume that sensors in any row seclect sensors in the
next row, the value of the angle ¥ is larger than 2. For the case, when tan #, = tan 6.,
which implies for our scenario that 8, = 8,. Heuce, ¢ = 7, and Z, = Z, + d. For the

general case, we solve the quadratic equation (10) for tan ¢,

(A% — Z2) tan® ¢ + 2AP tan g +d* — Z) = 0
~2Ad & \/INdS — A(APF — 22\ (& — 72F)
2(A2d? — Z2)

= tan

After a bit of algebra,

AP + 2,/ B + A — 22

tan ¢ = 72 A2

(12)

Here, we chose the negative root to guarantee that tan i is negative since A > %

Now, we can evaluate 7, as,

Zy d
siny  sinf(d, — 8,)
7 = d - sinip

sin &, cos 8, — cos By sin B,

d-tany
(sin 0y, cos 8, — cos B, sin 8, )/ 1 + tan?(y)
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Finally, after evaluating 7, each sensor can apply the frigonometric law of cosines

to evaluate e} as

Bg = 62 —+ Z{? -— 24€ij COS((}% - ab)

0>+ Z2 — 207, (cos ¢y cos 0y + sin ¢y sin )
207, (cos By + sin b, tan ;)

/14 tan? @y

. : s s . . Kel .
After evaluating ef. each sensor initializes its internal timer using —;A as described

2+ 72— (14)
b

earlicr. The winning sensor, i.e. the sensor whose timer expires first, declares itself as
the selected backbone sensor by broadcasting a message to other candidate sensors.

The selected backhone sensor estimates its position relative to the sink node using

Xy = Zy-cosfh (15)
o= Zy-sind,. (16)

I11.3 BACKBONE SWITCHING

One of the major advantages of our proposed backbone is that it provides an implicit
clustering mechanism wherc hexagons can be viewed as clusters and backbone sen-
sors arc cluster heads. Although this can simplify many network management tasks
including data aggregation, leader election and routing, it usnally results in uneven
energy consumption among sensors. In particular, it imposes higher tasking load on
backbone sensors much more than it does on other sensors which results in depleting
their energy much faster.

One way to overcome this problem is through changing the cluster head period-
ically in order to distribute the additional load on different sensors. In this section,
we propose backbone switching as a solution to the energy balancing problem.

The main idea behind backbone switching is to construct disjoint backbones and
to periodically switch between thesc backbones to balance their energy consumption.
Initially, using the approach described in Section 1112, each sink constructs its first
backbone. For lack of a better term, we refer to this as the main backbone. As
described earlier, the main backbone is constructed by selecting sensors in six different
directions (i.e. I, %‘T—, 5—675, r%—’r, %“ , and 1}—)’") Now, whal happens if the sink node
rotated its positive z direction by some angle # such that 0 < ¢ < T7 Theorctically,

and as shown in Figure 8, the rotation should result in selecting a completely different
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FIG. 8: Dalancing energy consumption using backbone switching

set of sensors (i.e an alternative backbone). While theoretically correct, this view may
not be entirely correct from a practical perspective, Recall that backbone sensors
are selected to be the closcst sensors to the hexagon centers they represent. So it is
possible that even after rotation, the same sensor may still be the closest sensor to the
new hexagon center, hence it can be selected to be part of the alternative backbone.
Fortunately, our sclection protocol only selects sensors that nominate themselves to
be part of the network backbone (by participating in the countdown process). Hence,
if sensors which are alrcady part of another backbone do not nominate themsclves,
they will not be selected as part of the new backbone giving chance to other sensors
to join the new backbone. This trick provides a simple solution to guarantee that
alternative backbones are disjoint.

After constructing the main backbone, each sink constructs a set of alternative
backbones using appropriately selected angles 8;. Each backbone is associated with
an ID assigned by its sink node. At any point of time, only one backbone should
be active. It is the responsibility of the sink to periodically broadcast messages to
change the current active backbone giving a chauce to sensors in other backbones to

save their cnergy.
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III.4 RECOVERING FROM SENSOR VOIDS

In certain applications the sensors are deployed in rough environments in which there
exist some spots in the deployment area where sensors can not be deployed. We refer
to these spots as woids. Voids can be created naturally by physical obstacles (e.g.
lakes, streams, large rocks, deep holes, steep slopes, ctc.). Voids can be created as
well when all the sensors within a certain spot expire due to cnergy depletion.

The main goal of this section is to discuss how our proposed construction protocol
would perform in the presence of such voids. Initially, we point out to the problems
that might arise due fo the existence of these voids. After that, we show how the
proposed protocol can overcome these problems.

Figure 9 shows how voids can prevent the propagation of the backbone scleetion
process. If no backbone sensors can be sclected in the void region and, consequently,
the selection process stops and no backbone scnsors are selected in the shadow of the
void region. To get arcund this problem, we propose the “Even Neighbor Replace-

ment” rulc and enhance it later by adding “Backward Selection”.
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I11.4.1 Even-Neighbor Replacement — the Details

Recall that in our basic backbone selection rules, in any row, only sensors with odd
column coordinate are allowed to select backbone sensors in the next row. More-
over, as shown in Figure 10-(a), every even neighbor can receive sclection messages
transmitted from its two immediate odd neighbors. If the initial selection rules failed
to select an odd backbone sensor due to the existence of a void, then all backbone
sensors belonging to the trec rooted at the missing sensor are pruned out. This kind
of behavior blocks the propagation of backbone selection in the shadow area behind
the void.

The idea behind the even neighbor replacement rule is to allow the immediate
even neighbor sensors to replace any missing odd sensors in order to continue the
selection chain. Figure 11, shows an example of how our construction protocol would
work when applying the even ncighbor replacement rule. Although, the protocol can
recover from the void region, its recovery rate is relatively slow which leaves a large
region of the deployment area uncovered by backbone sensors. This motivates for
our next sclection rule that we add to our protocol rules in order to expedite the rate

by which voids are recovered.

I11.4.2 Backward Selection — the Details

The idea behind this rule is simple. If the selection of a backbone scnsor was ini-
tiated by a sensor other than the onc determined by the basic rules (i.e. through
even-neighbor replacement or another backward selection), then the selection respon-
sibility is reversed and the newly selected sensor carries the responsibility of selecting

the odd sensor that was supposcd to select it. Figure 12 shows how the rule is applicd.

Initially, sensor Sy;., transmits a message calling for the closest sensor to the
center of hexagon Hj to announce itself. As expected, sensor Sy, receives the mes-
sage transmitted by sensor Sy, however, it does not receive a similar message from
sensor Syieq. This motivates scnsor Sa; to apply the even neighbor replacement rule
and transmits a message calling for the closest sensor to the center of the hexagon
(H,) to announce itself. Sensor A reccives the message and announces itself to
other sensors. Moreover, from the information embedded within the message that

triggered its selection, sensor As realizes that the message was transmitted by sensor
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Sy:vy and 1ot sensor Sy; as determined by the basic selection rules. This motivates
sensor A, to apply backward sclection rule and transmits a backward message calling
for the closest sensor to the center of the hexagon (Hs) to announce itsclf. Sensor
Sh.1 receives the message and announces itself to other sensors. Following the ba-
sic sclection rules, sensor Sy, transmits a message calling for he closest scnsor to
hexagon H| to announce itself. Sensor A; responds to this message announcing it-
self to other sensors. After fulfilling its forward selection obligations, and because it
was not selected according to basic forward selection rules, sensor Su;,1 continues its
hackward selection toward the vold region.

Figure 13, illustrates an example of how our proposed construction protocol works
when applying the even-neighbor replacement rule with backward selection. Obvi-

ously, the protocol can recover from void region cfliciently.

III.5 MITIGATING NETWORK CHALLENGES

Sensor networks have their own distinguishing characteristics that set them apart
from other types of networks. The ad-hoc nature of deployment, location unaware-
ness, modest non-renewable encrgy budget, limited computing and coromunication
capabilities, along with the dynamically changing topology induced by the sleep-

awake cycles are only few examples of the typical challenges faced by WSN protocol
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FIG. 13: Voids recovery using even neighbor replacement/backward selection

designers. Instead of solving each of the aforementioned problems individnally, fac-
ing the same common challenges with each problem, we show how our propuscd
backbone can be very useful in collectively simplifying solutions for these problems.

Our network backbone provides some form of virtual infrastructure that allows
the sensors to acquire coarse-grain location awareness and promotes dynamic clus-
tering. Thus, on the one hand, the infrastructure provides the sensors with necessary
information that enables them to associate their sensory data with the geographic
location in which the data was measured and, on the other hand, it simplifies the
task of clustering the semsors in support of various network tasks. Once such an
infrastructure is in place, entire protocol suites can leverage the infrastructure, re-
sulting in easc of programming and energy savings. In particular, by tiling the area
around sinks using identical hexagons, the construction algorithm clusters sensors
hased on their locations into hexagons (clusters). Backbone sensors represent clus-
ter heads and can play a crucial rule in data aggregation, workforce selection, task
management, leader clection, duty cycle scheduling, and local synchronization.

In the following subsections, we show how our proposed backbone can simplify
sensor localization [37], local data aggregation, geographic routing, and clustering.
We also point to how using mobile sinks on top of our backbone can reduce the cnergy
holes growth rate within the network. We dedicate Chapter IV for backbone-based

task management and workforce selection. We start Chapter V by a rigorous analysis
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on awake sensor density and its relation to different scheduling schemes. Afler that,
we propose a backbone guided energy-aware scheduling scheme for halancing sensor

energy consumption.

I11.5.1 Sensor Localization

As the exact position of a sink { Xk, Ysint) can be broadcast to all the sensors in a
disk I of inlerest, as an additional field in WAKEUP messages, we assume without
loss of gencrality that (Xgink, Yeink) 18 known to all the sensors in /). Moreover, we
have shown earlier in Subsection I11.2.3 that the sensors can estimate their position
relative to the sink through equations (7),(8), (15}, and (16}. Using the available

information, each sensor can estimate its absolute position (X,Y) as:

X =

Xoink +d -cosf) for case 1
Xgnk + Zy -cos 8y, for case 2

vy { Yaine + d - sin{} for case 1

Yok + Zp-sin@y,  for case 2

As expected and confirmed by simulation in Section IIL6, the localization ac-
cnracy decrcases almost lincarly with the distance between a sensor and the sink.
When the sinks are mobile or in the case of a relatively large numiber of sinks, we can
nse these sinks to enhance the achicved level of accuracy as follows: the sensors that
reside close to one of the network sinks will typically belong to a hexagon that has
a small row coordinate, hence these sensors should be localized accurately. On the
other hand, scnsors that reside far from the network sinks and close to the bound-
aries of the localization regions of different sinks will typically receive localization
messages triggered by each of these sinks. From the received messages, boundary
sensors can localize themselves relative to each of these sinks. These scnsors shonld
estimate their final position as the weighted average of the positions estimated from
each sink individually. The weight of each position is evaluated based on the row co-
ordinate of the hexagon that contains the sensor relative to the sink used to evaluate
this position. The positions associated with small row coordinates are cxpected to

be more accurate, hence they are assigned higher weights than positions associated



with large row coordinates. Mathematically, this can be expressed as follows,
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where
¢ S is the number of sink nodes used to localize the sensor,
e (X;,Y,) is the position of the sensor as estimated through sink 7,
e 7 is the maximum number of rows allowed within the disk centered at the sink,

e 7. is the row coordinate of the hexagon that contains the sensor when localized

through the sink 3.

111.5.2 Clustering and Leader Election

Qur hackbone implicitly clusters the sensors based on their geographic location. Each
hexagon reprosents a cluster and the backbone sensor around the center ol cach
hexagon is the cluster head which can be always clected as the leader to coordinate
between sensors in its hexagon for any centralized protocol. For instance, hbackbone
sensots can play an important rule in workforce selection and task management
for all sensing tasks issued in the hexagons they represent. Morc details about this
approach are presented in Chapter 1V, Furthermore, backbone sensors can be treated
as elected coordinators for any centralized synchronization or schieduling protocols
for sensors within their hexagons. This is discussed in more details in Chapter V. We
note here that when it comes to selecting the backbone sensor in a given hexagon,
nothing prevents us from extending the selection pretocol in the obvious way to select
a comnmittee of several possible backbone scnsors that may collectively act as cluster

leaders or, indeed, may take turns serving any assigned tasks.

111.5.3 Geographic Routing

Given the coordinates of the hexagon that contains the source sensor in the ternary

system defined by our backbone protocol, it is straightforward (o find a path from
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the source hexagon to the sink by hopping through backbone sensors representing
the hexagons in between (see Figure 14). The details behind the selection of the
route through which data flows toward the sink are presented in the nex( subsection.
Here, it is worthwhile to mention that by controlling the mobility of sink nodes, we

can tremendously reduce the growth rate of energy holes within the network.

I111.5.4 Data Aggregation:

Non-backbone sensors within any hexagon can report their scnsory data to the back-
bone sensor in their hexagon which can locally aggregate the data before forwarding
the aggregated Tesult to the next backbone toward the sink node.

Using backbone hexagons, sensory data aggregation and routing aggregated re-
sults toward sink nodes can be straightforward. In particular, when a sensor par-
ticipates in any task, it transmits its results to the nearest backbone sensor where
sensory data can be locally aggregated. After that, backbone sensors in row 7 for-
ward their aggregated results to backbone sensors in row v — 1 and so on toward
the sink node. Backbone sensors in row r use a reversed version of the same rules
they followed during backbone selection in order to determine which backbone sen-
sor in row r — 1 to forward their data to. Figure 14 illustrates an cxample of data
aggregation and routing toward the sink node.

The reader should note that our backbone does not impose any restrictions on
the order or the type of local data aggregation inside the hexagons. The aggregation
process runs completely under the supervision of the backbone sensor within the
hexagon. Furthermore, routing aggregated results toward the sink node by reverscly
following the path determined during backbone selection automatically provides a
workaround for routing problems that might arise due to the existence of energy

holes or void regions.

I1I1.6 SIMULATION RESULTS

In order to evaluate the performance of our proposed backbone, we have built a
simulator that implements our backbone construction protocol. In our simulation, we
have run several experiments using different network parameters and configurations.

In general, we assumed a rectangular deployment area wherc a number of sinks were
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F1G. 14: Data aggregation and routing through our backbone

placed uniformly across the deployment area. We used a standard uniform pseudo-
random generator to distribute sensors with required density in the deployment area.

We estimated the backbone selection error as the average Fuclidean distance
between the position of the selected sensor and the position of the center of the

hexagon it represents. Mathematically,

1 T
E :._E T — E0, 0%+ (Ys, — Yn,)?,
ITor "2 \/(.;;w L)+ (Ys, — Yni)?s

where (%, ,,) is the position of backbone sensor representing hexagon ¢ = {(a,s,7,¢)
and (%, ys,) is the position of center of the hexagon .

To verify the correctness of our simulation implementation, we initially run our
sirnilation assuming exact distance and angle measurcments. Basically, in the ab-
sence of distance and angle measurement errors, there should be no errors in sensor
localization (except for minor truncation errors), also the closest sensor to the con-
ter of each hexagon shonld be always selected to be the backbone representative of
this hexagon (we intentionally put sensors at these positions and verified that they
are appropriately selected}. Figure 15 shows a plot of average localization error for

different rows and verifies the correctness of our implementation.
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FIG. 15: Average localization error of backbone sensors vs. row number for different
network densities using o single sink in the absence of measurements errors

After verifying the correctness of our implementation, we conducted several cx-
periments to test the performance of our proposed backbone in the existence of errors
in distance estimations and angle measurements. To account for crrors in distance
measurcments due to the irregularity of signal propagation, we represented estimated
distance between the transmitter and the receiver as a random variable that follows
the Claussian distribution with mean equals the cxact distance and standard devia-
tion equals 0.1 of the maximum transmission range (around 3m when ¢, = 30m). In
a similar féshion, we represented mcasured angle between a sensor and the sink node
as a Gaussian random variable with mean equals the exact angle and a standard
deviation equals 3 radian degrees.

In our first experiment, we were interested to know what the actual hexagons
produced by our protocol look like. Figure 16 shows the actual hexagons produced
by our simulation when the deployment area was set to a (200 x 2001} squarc, a
single sink node is placed at (0, 0), network density was set to p = 0.3 sensors/m?,
and sensor maximum transmission range t, = 30m. Althongh the boundaries of the
hexagons are completely distorted as they do not look like hexagons, we are still able
to distinguish the spots they oceupy. For the same experiment, Figure 17 shows the
positions of hexagon centers and the positions of the corresponding backbone sensors

representing them.
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FIG. 16: Actual hevagons produced by simulation

After that, we conducted several experiments to measure the impact of dis-
tance/angle measurement crrors on the localization accuracy. Figure 18-(a) shows
the average localization error under different network densities (0.05, 0.10, 0.15,
and 0.20) assuming only distance measurement errors. The figure shows that the
backhone selection crror increases almost linearly with the row number. When we
repeated the same experiment under the same simulation paramcters in the existence
of angle measurement crrors. Figure 18-(b) shows that the average localization error
still increases linearly with the row number, however the slope of the curve nearly
doubles its value in the distance-noise case. This can be explained by the fact that
an angle measurement error of A for a sensor that is away from the sink node by
distance d, will result in a selection error proportional to d - A8. So for the same
angle error, localization error increases as the valuc of d increases (i.¢ the row num-
ber increases). We repeated the same experiment a third time, however this time we
considered hoth distance and angle measurement errors. As expected, Figure 18-(c)
shows a similar linear relationship but with a larger slope.

We also conducted another experiment to compare the localization accuracy
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FIG. 17: Actual vs estimated pusitions of backbone sensors.

achicved when using our backbone against other localization techniques known in
the literature. In particular, we compare the performance of our protocol to other
RSSI based localization techniques like weighted centroid and APIT. . We also
compare our technique to two range-free protocols: the centroid and DV-HOP.
Figure 19 shows a quantitative comparison between average localization error for
different localization protocols. The figure confirms that backbone-hased localization

has a better accuracy compared to other protecols.

TAPIT uses RSSI to approximate the PIT test
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FIG. 18: Average localization error in the presence of errors in distance and/or angle
measurements for different network densities.
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CHAPTER IV

BACKBONE-BASED TASK MANAGEMENT

Sensors can perform their sensing tasks in (wo different modes: Proactive Mode
and Reactive Mode. In the proactive mode, sensors periodically report their sen-
sory data to one of the sink nodes that are distributed across the deployment area.
The periodic reporting behavior of sensors makes the proactive mode more appropri-
ate for surveillance and monitoring applications. On the other hand, in the reactive
mode, sensors provide information only in response to queries or tasks assigned to
them by task issuing entitics (T1Es)(e.g sink nodes). This makes the reactive mode
more appropriatc for gquery based applications (e.g clderly aid navigation systems).

In networks adopting the reactive mode, the firs, step to perform a task is to
recruit a workforce of sensors in the area of inferest, these sensors will be responsible
for the actnal execution of the task. The workforce size is usually determined ac-
cording to QoS requirements expressed in terms of the minimum nurmber of sensors
participating in cach task. Although, some network designers may decide to skip
workforce selection by allowing all the scnsors in the task ncighborhood to partici-
pate in the task execution, such decision would be completely inefficient from energy
point of view especially for tasks whose QoS requirements can be satisfied by only a
few number of sensors. Dhe to the modest and non-rencwable energy budget avail-
able to sensors, it is highly not recommended to skip workforce selection in reactive
sensor network applications. In general, task assignment and workforce selection can
be challenging and handling it improperly may eventually result in many problems
as shown in the following example.

Assume that sensors were deployed as shown in Figure 20-{a). Tasks T, and T
are issucd in the indicated locations, each task is assumed to consume one unit of
energy of cach recruiied sensor and requires the cooperation of at least three sensors
(in order to increase the reliability of the readings). Furthermore, we assume that
the sensing range for sensors is A, so sensors withiv range K from the task location
are allowed to participate in the task. Other sensors can not participate becausc the
monitored phenomenon is outside their sensing range. The chart in Figure 20-(b)
shows the remaining energy of sensors ) through Sy. For illustration purposcs, we
assume that sensors Sy through Sy will be awake during sensor recruiting for tasks

17 and T5.
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FIG. 20: An example of tmproper task assignment

Now, assume that the recruiting protocol for task 7' selected sensors Sy, S5, and
Ss. Although the recruited sensors still have enough cnergy to complete task 1y, the
energy of sensors S; and S5 will be totally depleted after the task completion, hence
they will not be able to participate in any upcoming task. Moreover, there is no way
to recruit three sensors for task Th. On the other hand, if the recruiting protocol
for task T had selected sensors Sy, Sz, and Sy, then sensors S and S5 would have
saved their energy to participate in task 7. A more clever protocol would not recruit
sensors Sy and S5 together for task T, instcad it would recruit sensors S5, Sy and
either Sy or S5. Should there be a third task Ty at the same location of task T,
enough sensors will still be available to execute the task.

In spite of its simplicity, the previous cxample shows that task assignment can be
very tricky and doing it improperly can canse many problems starting from reducing
network density in different areas of the network and ending with the creation of
energy holes that can eventually partition the network into disconnected islands.
This in turn has its impact on network reliability and durability through increasing
task failure rate and being unable to satisfy QoS requirements. The example also
shows the importance of taking the difference in sensor cnergy into consideration
while selecting the required workforce for any task.

Next, we propose two different techniques that can be used throughout our pro-
posed hackbone to efficiently recruit sensors for different network tasks. Both tech-
niques consider sensor remaining energy in the workforce selection process giving

priority to sensors with high energy over other sensors. While the first technique is
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centralized [38, 39, 40, 41] and depends on backbone sensors to coordinate workforce
selection, the second technique is fully distributed and does not require a central
entity for coordination [42, 43]. In the following sections, we present the details of

both techniques highlighting the merits and the demerits of each of them.

IV.1 CENTRALIZED TASK MANAGEMENT

In this approach, workforce selection occurs in a centralized fashion coordinated by
the nearest backbone sensor to the task position. We refer to this scnsor as “Task
Coordinator”. Tasks are issued to sensors by TILs (i.e sink nodes) according to the

following tasking model.

IV.1.1 Centralized Tasking Model

Each sensing task is associated with a certain position that is chosen to be at the
center of the area of inferest. Using the localization protocol described earlier in
subsection I11.5.1, sensors should be awarc of their positions. Based on the position
of the task center, sensor position, sensor remaining cnergy, and sensing range, each
sensor can determine whether it can participate in a given task or nof. We assume
that each task requires the cooperation of a workforce of w sensors and consumes
one unit of energy of each participating sensor.

The sensors have a maximum transmission range dencted by t,, and a maximum
sensing range denoted by £. The communication and sensing ranges of sensors are
governed by the inequality (£, > 2R). This incquality gnarantees that whenever two
sensors are within the same sensing range (i.e. they can cooperate in the same task),
they will be able to communicate with each other during the workforce selection
process.

Tf the distance between the conters of two tasks is less than 2(t,+ 2}, then they are
not allowed to run concurrently to avoid interference between messages transmitted
during workforce selection (see Figure 21). This constraint can be partially removed
if the T1Es can communicate between themselves through a separatc channel. If
this communication channel is available and if the distances between the centers of
the tasks to be performed concurrently are relatively small, then thesc tasks can be
combined into one single task. The QoS requirements of the combined task is chosen

to be the maximum of the QoS requirements of the comprising subtasks. Only one
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FIG. 21: Minimum distance between two concurrent tasks
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FIG. 22: Tasking model for the centralized approach

TIE should be responsible for running the combined task. Once the TIE gets the

aggregated result, it can forward the result directly to other TIEs through their

scparate communication channel.

Under the assumptions described above, T1Es issuc tasks for sensors and later

they receive the aggregated results for taking decisions. Figurc 22 shows the dif-

ferent stages of running a task under the centralized model. A task starts, when

the TIE sends a sequence of Call To Work (CTW) messages to get the attention of

a sufficiently large number of sensors that we will refer to as “candidate scnsors”.

After thatl, a contention-based workforce selection mechanism is used to recruit re-

quired workforce based on sensors remaining cnergy. The workforce selection process
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involves one or more bidding rounds to be coordinated by the nearest backbone sen-
sor. After collecting the required workforce, task execution starts immediately by the
recrnited sensors. Task execution time might vary based on the type of the sensing
task and the sensor itself. When the sensors complete the exccution of their tasks,
they start sending their sensory data back to the nearest backbone sensor in the same
order they joined the workforce. Tn the next few sections, we provide the techmnical

details of each of these steps.

IV.1.2 CTW Messages

Recall that in our tasking model, we assume that the TIE sends a sequence of
CTW messages to atlract the attention of a sufficient number of sensors for the next
task. An important parameter that the TIE has to evaluate is the parameter k.
Assuming that the network density is p sensors/m?, the scnsing area of any task
is 7R?, and so the expected number of sensors in the sensing arca of a given task
is given by N = wpR?. Furthermore, assuming that the probability that a sensor is
awake to receive a CTW message is p, it is easy 10 see that the expected number
of awake sensgors collected by the first CTW message is Np. On the second CTW
message, the probability that a sensor is awake remains p, however the number of
remaining sensors becomes (N — Np), hence the expected number of sensors collected

by the second CTW message is
(N —Np)p=(1-p)Np
Similarly, on the third CTW message, the expected number of collected sensors 1s
(N—Np—(1-p)Np)p=(1-p)°Np

An easy inductive argnment shows that on the & CTW message, the expected

number of collected sensors is given by
(1-p)*'Np

Consequently, the expected value of the total number of collected sensors at the end
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of k& CTW messages is

k—1
Collected Sensors = Z(l — p)'Np
i=0
k1
R
i=0
_ 2, (1—p)—1
= g% [1 = (1 —p)f] (17)

The TIE can use equation (17) to estimatc k, the number of CTW messages needed

to attract the attention of ¢ candidate sensors as follows

¢ > prl? [1—(1-p)f]

1-pf =2 1- MZQ
L log(l — .07(7)
log(1 — p) .
ko [L(l - ’”’T)} (18)
log(1 —p)

At this point it is important to observe that ¢ docs not represent the nnmber of
sensors required for the task; instead, ¢ represents the mumber of candidate sensors
from which the required workforce w is to be selected. Hence, if the TIE wants to
collect a workforee of w sensors for the next task, it substitutes ¢ in equation (18) by
¢ = f(w) > w (the derivation of the function f(w) is presented later). This way the
ptotocol probabilistically attracts the attention of more than w candidate scnsors.
From these sensors, only w sensors will be selected based on the difference in sensor
remaining energy.

Next, we show how the TIE cstimates p, the probability that a sensor is awake.
Assume that a sensor during its whole life and before its energy is totally depleted
goes throngh m sleep/awake duty cycles. We assnme that in cach cycle, a sensor
sleeps [or a random amount of time uniformly distributed in the range [T, 1] and
stays awake for a random amount of time uniformly distributed in the range [13, T7).
If 1, the total number of cycles, is sufficiently large, then the expected total awake

time, the expected total sleeping time, and the expected total lifctime of a sensor
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can be expressed as
m(Ty + T,
Awake Time = ﬂ(—-f";—f') (19)
(T, + Ts
Sleep Time = {H(zés) (20)
* !!Y 3 Ts f]!
Life Time ~ 0 ; L) , ml ; 5)
_ m{T, + Ty + 15+ Ts) (21)
2
From (19) and (21), we can cvalnate p by writing
m{Ty+10) T
Dootredd 1+ T
p= L= Lo (22)
m T+t ls) 4Ty + T, +Ts
- ;

Interestingly, the cxpression in (22) shows that the probability that a sensor is

awake is independent of time.

IV.1.3 Workforce Selection

Workforce selection starts immediately after the last CTW message through one
ot more bidding rounds. A bidding round is a contention-based mechanism used
to select a subset of sensors from a larger set based on a certain criterion. Each
bidding round has a number of bidding slots which is explicitly specified in CTW
messages ot within bidding result messages of the previous rounds. Candidate scnsors
willing to participate in a task show their interest by bidding randomly in one of the
hidding slots. The task coordinator (the nearcst backbone sensor to the task center)
is responsible for coordinating the bidding process (i.e. it announces the winning
bidders at the end of each round, determines whether there is a need for another
bidding round and announces the number of bidding slots in the next bidding round).
Only single-bidder slots are considered winning slots. Omnce the task coordinator
announces the winning slots in a round, the winning bidders {scnsors which bid on
any of the winning slots) immediately join the workforce. 1f the required workforce is
not fully recruited, bidding continues for another round. In the new bidding round,
not only losers in the previous round arc eligible to bid but also additional sensors
who received the bidding results message but were asleep during the CTW stage can
place their bids. If the bidding extends beyond the maximum number of bidding

rounds allowed, there are two options available: (1) cancel the task, (2) cxecute the
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task with the currently recruited workforce. Lither way the TIE must be informed
thal the required level of Qos will not be satisfied.

Immediately after the last CTW message (for the first bidding round) or the
bidding result message (for the following bidding rounds), the time line is divided
into a number of bidding slots; each bidder selects one of these slots at random and
transmits a short frame that contains the sensor current energy level and the slot
number (to avoid any confusion due to the lack of accurate synchronization between
SEIB0TS).

Candidate sensors participate in bidding with probabilities that are proportional
Lo the differcnce between their current energy and the maximum cnergy among can-
didate sensors f9n,,. TIBs send their estimate of the value of Ep,., in the neighbor-
hood of the required task within CTW messages. In the first bidding round of the
first task within a certain area, the 'I'lE does not know f4,,,,, so candidate sensors
participate in bidding with probabilities % (we justify for this choice later}). For sub-
scquent rounds, the task coordinator can estimate Ey,., from the bids rcecived so
far and transmits the estimated value of fne, within the bidding results message.
This value is also transmitted with the aggregated result to the TIE which uses the
received valucs to update an internal two dimensional matrix that keeps track of the
current estimate of E,.,. in different regions of the network.

Each bidding slot can have zero, one, or multiple bids. Slots with no bids are
useless while those with multiple bidders result in garbled messages and also are
useless and ignored. Only messages in single-bidder slots can be received correctly.
At the end of each bidding round, the task coordinator calculates the number of
single-bidder slots . If ¢ is greater than the required workforce w, then the task
coordinator selects required workforce by adding sensors based on their remaining
encrgy starting by those with higher encrgy first. If G is less than w, then it selects all
the winning sensors and announces for another bidding round to collect the remaining
workforce.

Each bidding result message contains a vector v that has s elements corresponding
to the ¢ bidding slots in the preceding bidding round. For bidding slot 2, the corre-
sponding element v[7] is set to 0 to indicate that the bidding sensor was not selected
at this round, otherwise v[¢] is set to a non zero temporary 1D to indicate that the
bidding sensor was selected by the task coordinator to join the workforce. A sensor

starts task execulion immediately after it joins the workforce. When sensors finish



the execntion of the required task and based on their temporary IDs they sequen-
tially send their results fo the task coordinator for local data aggregation. Finally,
the task coordinator sends the aggregated results to the TIE for further processing
if necessary.

Next, we show how the number of bidding slots in any bidding round is estimated.
Assuming that for a general bidding round we have » bidders and s slots, we calculate
the expected number of single-bidder slots in this round. We assume that a bidder
can bid on any slot with cqual probability, more precisely % and since we have n

bidders that bid independently of each other, the probability that a specilic slol has
1

only one bidder equals n{1)(1 — 1)® '. Since we have ¢ slots, the expected number

of single-bidder slots, G, can be expressed as

—1
E(G] = n (1 - %)

Recall that, in our workforce selection only single-bidder slots are counted. Hence,
maximizing the number of these slots will definitely reduce the number of bidding
rounds needed. Since 7 is a discrete variable, we deline the continuous vatiable z

such that z = n for all the values of n. Now, we can differcntiate E[G/] with respect

EiG) = « (I‘E)H
G )

The maximum value of E[(] occurs when its first derivative equals 0.

. r—1
g—fllG—] = (l—l) [1+$-ln(1—1)]={)
dx 5 8
1l = —x-In (1 — 1)
s
1 —n
1 = In (1 - —)
s

to z as follows.

e = (e)s >xmsmn (23}

Obviously, the approximation in equation (23) is valid for large valucs of 5. More-

over, equation (23) shows that the maximum value of E[(] occurs when the number
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of bidders n is cqual to the number of bidding slots s and that the maximum number

of single-hidder slots expected is given by
E[Gl'mrn;c =85 (]_ — %)S—l

For a task that requires a workforce of size w, the required number of single-

bidder slots is also w. Based on this, we can determine thic number of slots to nse as

1 s 1
G=w = .‘;(1——)
§

follows,

.. sc
R (Y
52
ew s—1
£ —ecw-s+e-w & 0
f:‘w(l-f—w‘l—ﬁ)
s m (24)

2
For w >3, (1 4+ /1 — -%) = 2, hence equation (24) can be simplified to
SREC-W (25)

Next, we turn our attention to the relation between 7, the number of bidders, and
e, the number of candidate sensors. Previously, we mentioned that cach candidate
sensor participates in bidding with probability that is proportional to the difference
between its energy (i.e E,) and the maximum energy among all candidate scnsors
(i.¢ Eiper). In particular, a candidate sensor with encrgy level E, should bid with
probability m Assuming that the energy of candidate sensors is uniformly
distributed across I consccutive levels, the expected number of bidders can be related

to the number of candidate sensors as follows,

1 c
Eln] = ZP@‘Q: 7

Solving for ¢, yiclds
Enl-1 = n-l
() +v  In()+7
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where v & 0.57721 is Euler’s constant. The TIE uscs cquation {26) to estimate the
required number of candidate sensors it has to collect through CTW messages in order
to seleet the workforce for the next task. The parameter { in equation (26) reflects
the average width of sensor energy spectrum at different points in nelwork lifetime.
Since the task management protocol is designed to balance energy expenditure among
sensors by minimizing variations in their energy, it is expected that the value of [
will remain small most of the time. Simulation results verified this cxpectation
and showed that { did not exceed 6 levels in all our experiments. More details are
presented in Section IV.4.

Recall that in Subsection IV.1.3, in the presence of an unknown value for Fr,q.,
the participation probability of scnsors was taken to be % Equation (26) can be
wsed to justify our choice for this value as follows. Equation (26) cxpresses the ratio
between the number of bidders to the number of candidate sensors as l““% The
average value of this ratio for small values of I (i.e < 6) is 0.515 = 0.5. llence, at the
very early stage ol the network lifetime when the differences hetween sensor energy
levels are minor (i.e [ is small) and when E,,q; is unknown, if each of the candidate

sensors participates in bidding with probability of 0.5, then the expected number of

bidders will be close to » justifying our choice.

IV.2 DISTRIBUTED TASK ASSIGNMENT

A major problem with the centralized approach described in Section IV.1 is the
excessive load it imposes on backbone sensors for coordinating workforce selection
and data aggrogation. Several techniques can he used to overcome this problem. For
instance, we can use “Backbone Switching”, in which several alternative backbones
are constructed instcad of having only a single backbone. Switching periodically
between alternative backbones distributes the load on network sensors and gives
exhausted sensors a chance to rest. Another way to solve this problem is to use
*'I'agk Management Delegation”, in which the coordination needed for a specific task
is treated like a task by itself and is delegated to one of the network sensors that is
chosen to be with relatively high energy.

In addition to the two previous techniques, we propose a distributed version of our
workforce selection protocol. In this version, we adopt the tasking model depicted in
Figure 23.

The model is similar to the tasking model we used earlier in the centralized case
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FIG. 23: Tusking model for the distributed protocol

with some differences in the task assignment stage and the way data is aggregated.
In the distributed tasking model, task assignment consists of two phases. In the first
phase, candidate sensors collected in the CTW stage run a distribufed protocol to
determine the maximum energy among themselves (sec Subsection IV.2.1). In the
second phase, each sensor decides whether or not to participate in the current task
based on: (1) the dillerence between its current cnergy and the maximum energy
determined in the first phase; (2) its distance to the position of the task center (see
Subsection IV.2.2).

Our previous assumptions about the capabilities of sensors still hold. In the
following subsections, we present the details of the different phases of the task as-

signment protocol.

IV.2.1 Phase 1: Estimating the Maximum Energy

The main goal of this phase is to run a fully distributed protocol in order to determine
Foez, the maximum encrgy among collected candidate sensors. Assume that sensor
energy E, can be quantized into 2" levels (i.e. E; can be encoded in a string of n
bits). The ideca is to let candidate sensors transmit the strings that represent their
energy levels bit by bit in a sequence of n short packets (7 iterations). The time line
is divided into 7 slots, and sensors start the encoding process immediately after the
last CTW message !. Sensors stari, their transmission [rom the most significant bit

to the least significant hit as follows: a value of 0 is not transmitted while a value

14We assnme that CTW messages include information about the mumber of remaining CTW
IICSSAFCS.
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of 1 is transmitted. Sensors that pick up the values transmitted use the following

disambiguation scheme:
* No packets received: 0 is recorded;
¢ A single packet received: 1 is recorded;
e Two or more packets received or a collision detected: 1 is recorded.

A scnsor drops out if the binary representation of ifs energy has a 0 in its k™ most
significant bit, and it detected a collision or received one or more packets in the &
iteration (time slot). At the end, each sensor in the sensing area stores the maximum
encrgy among all candidate sensors in the sensing area. Note also that there is no
loss of information in the process of estimating the maximum.

The reader might argue that we cannot trust the synchronization achieved using
the last C'I'W message because packets received by different sensors suffer from dil-
ferent propagation and processing delays. Although this seems to be true, we still
can argue that the achieved level of synchronization is more than sufficient for our
purpose especially when there is no actual payload (data) in the packets transmitted.
Detecting a collision is equivalent in its interpretation to receiving a packet. Hence,
if the iteration slot length is 7°, and the transmission time to send any of these small
packets is 7y, the only way in which this protocol fails is when a sensor is delayed
for a period longer than T —T;. In this case its string is transmitted and interpreted
shifted by one or more hits. However, since the slot time 7" can be chosen arbitrarily,
we can choose T such that the probability that a sensor will be delayed longer than
T — T, is very small, especially when the sensors arc within the same sensing area.

Next, we show an example of how this protocol works. Referring to Figure 24,
we assumc a scenario where there are 5 sensors (i.c Sy, S;, 93, S1 and S5) that lie
within the sensing arca of a specific task. We assume that the respective energy
levels of these sensors are 11101, 10111, 11011, 01111 and 11100. To determine the
maximuwm, we need 5 iterations. In the first iteration, only sensors 5y, Sz, S3 and
S5 transmit. A collision is recorded and all the sensors set Lthe most significant bit
of the perccived maximum to 1. Moreover, sensor S realizes it should drop out
since its most significant bit is a 0. In the second iteration, only sensors S, 53,
and S; transmit. Again a collision is recorded, and all the sensors set the second

most significant bit 1o 1. Sensor 53 drops out. In the third iteration, ouly sensors



a7

Epoch | Transmissions | Bit $ _ /
1 81,952,832, 8:> 1 . son ;"lf |
2 < 8,,83.8:> 1 . s
3| <S8 1 . L
4 Ambient 0 . FPaosition ]
5 ‘CS|> 1 ",n" I".m |

S, [11101], S;[10111], Sy|110L1], SJ011E1], S5[11100] S

1 ! 1 ! 1 ' 0 ! !

[Ss1) | N ! ;

i m i 'Ig_rlf’( Safety ; H

; ; - Distance ; :

Lost| : [S] | [&T 0o [S] L :

CTW| 8§ L I8 ] P . [s i
E E, E, E, Ey

FIG. 24: Estimation of the mazimum energy among candidate sensors

S and Sy transmit. All the sensors set the third most significant bit to 0. Sensor
S, remains inactive for the remaining iterations. lIn the fourth iteration, there is
no transmissions, so 0 is recorded. Finally, in the fifth iteration, only sensor S,
transmits. Sensors set the least significant bit of the perceived maximum to 1 and
reach the consensus that the maximum energy is 11101.

1t is worthwhile to mention that when sensors know the maximuin energy within
each sensing area, they can benefit from this in many different ways. For example,
this knowledge allows cach sensor to adjust its duty cycle (the ratio between its
sleep and awake time) based on the difference between its remaining energy E, and
the maximuwmn energy in its scnsing area Ep.,. As a result, sensors with relatively
low cnergy (E; < Epnq) can sleep for longer periods than sensors with relatively

high-energy. More details about this feature is presented in Chapter V.

1V.2.2 Phase 2: To Participate or Not to Participate

After evaluating the maximum energy in the sensing area, each sensor has to decide
whether or not it is going to participate in the task at hand. Bach sensor makes
this decision based on the difference between its energy E, and the maximum energy
E, ... detcrmined in the previous phase. Since our protocol is fully distributed and
there is no central node to coordinate sensor participation, sensor decisions have to be

taken independently of cach other. Unfortunately, under these conditions we cannot
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FIG. 25: Dividing the sensing range into k disjoint subregions

guarantee that the number of participating sensors matches the required workforce.
The best we can do while keeping our protocol distributed is to keep the actual
number of recruited sensors as close as possible to the required workforce.

To achieve this goal we divide the task sensing region inte & disjoint subregions
of equal size using concentric circles of radii 7y < r2 < +-- < 7 = K. Based on the
task center position and its own position, each sensor can determine its subregion (sce
Figure 25). Participation decisions are taken in decision rounds that run immediately
after estimating the maximum energy iu the sensing area. Each decision round is
associated with an encrgy level that determines the set of sensors that can join the
workforce.

Specifically, in the first decision round, only sensors with energy equals to Eina.
are allowed to transmit, in the sccond decision round, only sensors with energy
equals to E.n.. — 1 are allowed to transmit and so on. The packets transmitted by
sensors arc very short and contain no payload, the payload is implicitly encoded in
the transmission itself. Bach decision round has k time slots corresponding to the
k subregions described above. In slot ¢ in decision round j, only scnsors that are in

subregion 7 with energy level equals 7 are allowed to transmit.



Each sensor initializcs an internal counter to 0 and waits for the decision round
corresponding to its energy and the time slot corresponding to its subregion. It is
possible that the protocol collects the required workforce and terminates before the
decision round and slot of a sensor comes. The idea of the protocol is to recruit
sensors one by one based on their energy and using subregions to reduce the number
of sensors that are being added in cach step {only onc sensor at each step if possible).
The sensors that pick up the packets transmitted use the following scheme to update

their counter:
¢ No packets received: no action is taken;
e A clear packet received: increment counter by 1;
* A collision recorded: increment connter by 2.

The protocol terminates when the internal counter of a sensor is greater than or
equals the required workforce. Only scnsors that had the chance to transmit during
the participation phase join the workforce. To gnarantee that the protocol terminates
in a finite number of decision rounds, there should be a maximum number of decision
rounds that the protocol allows. If the last decision round is reached, then all the
sensors that are in the sensing area and have not already transmitted, transmit in
their corresponding slot irrespective of their energy level.

Immediately after joining the workforce, sensors start the execution of their as-
signcd tasks. When sensors complete the execution of their tasks, they send their
results to the nearest backbone sensor in the same order they joined the workforce.
After the nearest backbone sensor collects the data from all the sensors, it aggregates
the collected results and forwards their aggregate to the TIE for further processing.
Because morc than one sensor can join the workforce at the samc time, collisions
between sensor transmissions during data aggregation might occur (i.e sensors will
have the same transmission turn during data aggregation). In order to coordinate
hetween scnsor transiissions during data aggregation, we suggest that when their
transmission turn comes, each of the competing sensors delays its transmission by a
random amount of time uniformly distributed in the range [0, Moz]. When its delay
timer oxpires, a scnsor transmits its result immediately. If the message is transmitted
successfully, other sensors reset their delay timers to another random valuc and wait

for their new timers to expire in order to be able to transmit. When a collision is
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detected, only colliding sensors reset their delay timers, non-colliding sensors should
not reset their timers. If Moz time units pass since the last successful transmission,
then this indicates that all competing scnsors have successfully transmitted their
data to the backbone sensor. At this point of time, scnsors in the next turn should
start to send thcir data.

The radii that divide the sensing area into subregions are determined in such a
way that the number of sensors in thesc subregions are as even as possible. The best
way to do this under uniform distribution is to choose these radii such that the areas

of the subregions are equal. Mathematically, this can be expressed as follows,

Pl = we k)

o= wl, -, (27)

W

substituting in (27) for vy, 1 2 ...

f’f = 3, — 2"'@'2 3
2 _ .2
ry o= 4dri 5 -3,

A simple inductive argument shows that

r? = z’-rf—(ﬁ—'l)rg

k3

r. = Vior (28)

If the entire sensing area is divided into k subregions of equal area (i.e. %), then

R=r. = \/E‘ﬁ

o= A (29)

vk

Finally, substituting the value of r; from equation (29) into equation (28) yiclds

i

IV.2.3 Average Over-Recruited Workforce

After determining the radii of the subregions, we estimate the average number of
over-recruited workforce by evaluating the probabilistic distribution of the number

of sensors in each subregion and show how it changes with the number of subregions
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k. Assuming a uniform distribution of sensors in the scnsing area, we can map the
problem to the classical “balls and bins” problem in which 7 balls are distributed
uniformly at random into k bins. In our scenario, we have n sensors that are deployed
randomly in %k subregions. The reader should note that here 7 refers to the number of
sensors in the sensing arca with energy level that matches the cuergy level determined
by the decision round. Since sensors in the sensing area may have different energy
levels, n only represents a fraction of the total number of candidate nodes collected
in the sensing arca.

The event that a given sensor will be deployed in a particular subregion is a
Bernoulli trial with probability of success equal to the ratio between the region area
to the whole sensing area (i.e. % since the subregion areas are eqnal}, Thus, the
random variable X; which represents the number of sensors in subregion 7 [ollows a

Binomial distribution B(n, §).

- ()6 (5

We are interested in evaluating the probability that more than two scnsors fall in
the same region becausc this may result in recruiting more sensors than the required

size of the workforce. The sought probability is

3
|

Pr[{X; > 2}] 1—- Pri{X; <2}

CROE )T e

To simplily our notation we define a;(n, k) as follows

o B (7

i=0
1
¥y (?’1, k) = E [(k _ 1)n -+ 'H(k o l)n_l] (32)
(}:g(ﬂ,k) = (k‘iiﬂd ((k—l)2+ﬂ(k—l)+ﬂ’—‘;zﬁ) (33)

By substituting (33) in (31) we obtain

Pri{X; > 2}] = 1— aa(n, k) (34)



62

We are no ready to evaluate the expected size of the extra workforce recruited for a
given task. For this purpose, we define the random variable Y; that represents the
number of extra workforce in subregion 7 and also define ¥ = Ele Y;, the size of
extra workforce in the whole sensing area. Easy manipulations show that

n—2 n—2

Ely;] = Zj-Pr[{Y;=j}]=Zj-Pr[{X£=j+2H

B RZZ - " ) 1 2 E1\" {7+2)
B VES AV k

(l ! E—1 r—l
k k

i i1 1 (n—1} (I-1}
% (E) ( k ) -

2o\ fIN Sk -1\
320 () ()
=3

1 —aq(n— L1k} —2[1 — as(n, k)]

k

By the linearity of expectation

—_—

&
BlY] = ) E[Yi]=k- E[Y]

= [l —an(n—1,K)] - 2k[L — ay(n, k)] (35)

Figure (26) gives us more insight about how E[Y] changes with changes in k and
7. Obviously, as the number of subregions & increases the expected number of extra
workforce recruited decreases to match the required workforce, Tt is also important to
note that E[Y] represents the expected number of extra workforce recruited assuming
that the protocol continues to run in all the slots of the decision round. llowever
this is not the case for many Lasks in which the protocel terminates in the first. few
slots of the first decision round. So in fact /[Y] is morc like an upper bound on the

extra workforce recruited.

IV.3 DATA AGGREGATION

As we mentioned earlier, the excessive load imposed on backbone sensors for coordi-

nating workforce selection and data aggregation may result in depleting their energy
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at a very high rate. In this section, we propose a set of distributed data aggregation
techniques that can be used to aggregate sensory data collected by recruifed sensors.
In general, it is very difficult to devise efficient distributed protocols to evaluate a
generic aggregate function. Fortunately, for certain functions like the MAX, MIN,
and the Logical OR this can be done.

In section IV.2.1, we showed how the maximum can be obtained. By a simple
trick we can use a similar approach to evaluate the minimum. For instance if X is the
digitized reading of a seusor, instead of transmitting X; directly, each sensor should
transmit V; = N — X,, where N is a constant which is greater than the maximum
possible value of the sensor reading X;. After the last iteration, Vg, the maximum
value transmitted should be known to all the sensors. Each sensor can evaluate the
minimum as X = N — Ve

A similar approach can be used to evaluate the logical OR of the values collected
by different sensors in n iterations, where 7 is the number of bits used to encode

these valucs. In this case, the disambiguation scheme should be as follows:
¢ Ambient noise: 0 is recorded;
e A single packet is received: 1 is recorded;

e Two or more packets are received or a collision is detected: 1 is recorded.
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At the end, every recruited sensor in the sensing area storcs the logical OR of the

data cellected by the recruited sensors.

Algorithm 2 Approximation of the most significant & bits of the average
1: L‘; = O
2 N=20
3 for i=1 To k do

4  if (no packets arc received) then

5 continue

6: end if

7. if (a single packet is received) then
8 5=5+(-1)

9: E\'r = j\'r + 1
10:  end if

11:  if (collision is detected) then
12: S=5+2-1-1}

13: N=N¥N+2
11:  end if

15: end for

16: if (N = 0) then
17: Ay =10

18: else

19 Ay = [S5/N]
20: end if

21: return A,

Now, we show another protocol to approximate the average of the collected sen-
sory data. Again, we assume that the sensory data can be encoded into a string of n
bits. We further divide the n bits representation of each value into 2 parts, the first
part consists of the least significant n — & bits while the second part consists of the
most significant. & bits. Data aggregation occurs in 2 stages.

In the first stage, the logical OR of the least n— & significant bits of each collected
value is evaluated as an approximate of the least n — & significant bits of the average
function. We refer to the result of the logical OR operation as A; and this value can
he evaluated in 7 — k iterations as described above.

In the second stage, the most significant k bits of each collected value is written in
the “Single-One representation” format. In this format, each value m, {0 <m < 2t}
is represented by n zeros followed by a 1. Obviously, 2* bits are necded to represent
the first part. Table | shows the One-Bit representation of 0 < m < 2% = 8.

After preparing the Single-One representation of the k most significant bits of
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TABLE 1: Single-One Representations of 0 < m < 23 =18

[ m | Representation [ m | Representation |
0 00000001 1 (0000010
2 (0000100 3 00001000
4 00010000 5 00100000
i) 01000000 7 10000000

each value (and in 2% subsequent iterations from right to left), each sensor transmits
a short packet only in the iteration corresponding to the position where it has 1 in
its value. When sensors pick up the valucs ttansmitted, they implement Algorithm
Iv.3.

Tn Algorithm IV.3, A, represents an approximation of the most significant k bits
of the average of the data collected by different sensors. The final value of the
average approXimation is Ay -2"7* + A; and can be evaluated in n—k+ 2% iterations.
Obviously, the accuracy of the obtained average depends on k which is chosen to be

around 3 bits.

IV.4 SIMULATION RESULTS

Using C| |-, we built a WSN simulator that implements different workforce selec-
tion protocels. To the best of our knowledge we are the first to address workforce
selection in WSN. Hence, we could not comparc our protocols to other well-known
protocols. llence, we compare the performance of our proposed protocols to the per-
formance achicved using ideal workforce selection in which the worklorce is selected
from sensors with the highest energy in the sensing range of the task being executed.
In addition to this, we compare our protocols to encrgy-unaware or encrgy-neutral
protocol which uses the same CTW and bidding rounds mechanisms described in our
centralizex] protocol. The only difference is that the bidding decisions of candidate
sensors are made irrespective of their remaining energy. This is different [rom our
approach in which the estimate of the maximum cnergy among candidatc sensors,
Frnas, 15 uscd to control the probability by which candidate sensors participate in
bidding for the next task.

An important parameter which we necd to consider when dealing with energy-

neutral protocols is the “Participation Factor” (PF). PE defines the probability by
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which candidate sensors participate in bidding. In our simmulation, we run several
experiments assuming PF takes the values 0.5, 0.75, and 0.90.

Before presenting our results, we find it more appropriate to start by defining
what we mean by the reliable-lifetime of the network. In a typical sensor network,
sensors are deployed with a predetermined density p which is usnally chosen in a way
that satisfies QoS requirements cxpressed in terms of number of sensors participating
in different sensing tasks. An appropriately chosen valtie of p can provide a reliable
network performance by guaranteeing that enough sensors will be available to perform
upcoming tasks with the required level of QoS. Unfortunately, sensors have limited
and non-renewable energy budget, once the energy of a sensor is entirely depleted, it
becomes non-operational and eventually the sensor density decresses. When sensor
density goes below certain threshold, the number of sensors available may not be
enough to satisfy QoS requirements of upcoming tasks and at this point the sensing
results cannot be considered rteliable anymore. Based on this, we define a-reliable
lifetime of a network as the average number of tasks the network can perform till the
sensor density goes below « of ifs initial value. For instance, the 0 1-reliable lifetime
of & network with density 0.5 sensors/m?, is the average number of tasks that can
be performed on this network before the sensor density goes below 0.05 sensors/ me.

We conducted several experiments to evaluate the performance of our proposed
pr'otocols‘ In our simulation, sensors were deployed uniformly at random in a square
with side length 200m. We used different sensor densities ranging from 0.3 to 1.5
sensors/m?. The nctwork has a single TII3 which is placed at the origin (0,0) and
is responsible for tasking sensors across the deployment area. QoS requircments of
gencrated tasks were expressed in terms of the minimum number of sensors needed
to participate in each task. The required workforce for different tasks was selected
randomly from the range [1,20]. We tried to balance tasking load on different spots
of the network by sclecting the positions of the task centers uniformly at random
across the whole deployment area. Sensors were assumed to have a fixed sensing
range of 10.0 meters, beyond this range sensor readings may not be reliable. Sensors
sleep and wake up alternatively and asynchronously in a way that makes them active
for only %10 of their lifetime. Initially, each sensor has cxactly 30 units of cnergy
(i.e. each sensor can at most participate in 30 tasks).

Figure 27 shows, for different network densities, the average number of CTW

messages needed to gel the attention of sufficient number of sensors in order to
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FIG. 27: Average number of CTW messages

exccute the next upcoming task. The optimal protocol assumes that a single CTW
message is cnough. However, this is not the casc for other protocols which substitute
its specific estimate of the number of candidate sensors into equation (18) to evaluate
the required number of CTW messages. Each of the shown protocols has its own way
to estimate, ¢, the number of candidate sensors. The centralized protocol depends
on equations (25) and (26) to estimate ¢. However, in the distributed protocol, ¢
is evaluated by multiplying the workforce size, w, by some constant factor f, (in
our simulation experiments, we assume fi = 4). The encrgy-neutral protocol uses
equation (25) to estimate the number of bidders, n, from the workforce size. After
that, it uses the participation factor to relate the number of bidders to the number
of candidate sensors {n = PF - ¢). From figure (27), we can see that the avcrage
number of CTW messages needed decreases as the network density increases with
very minor differences between different protocols.

Figures 28 and 29, respectively, show the expected number of bidding rounds
along with the expected number of bidding slots within each round. In the optimal
scenario, the workforce selection protocol ends using a single bidding round which has
a number of bidding slots that is equal to the size of the required workforce. However,
for other protocols, typically more than one bidding round is needed to compensate
for any empty or garbled slots that might arisc due to bidding collisions (i.e when

more than one sensor bid into the samc slot). As the value of the participation
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factor of energy-neutral protocols increases, the expected number of bidding rounds
increases. This goes to the increasc in the number of sensors willing to bid within
the same round. Hence, the resulting number of single-bidder slots decreases and
more rounds are needed to select the remaining workforce.

Figure 29 confirms that the average number of bidding slots used in the central-
ized protocol bidding rounds is very close to its counterpart in the energy-neutral
protocol with very minor changes due to using different participation factors. It is
also important to understand that the curve associated with the distributed protocol
in figure 28 shows the number ol decision rounds used in workforce selection since in
this protocol there is no bidding. And for the same reason, the number of bidding
slots for this protocol is always 0.

Figure 30 shows how our centralized and distributed protocols can preserve net-
work density for longer periods by balancing the rate by which sensor energy is
consumed. In particular, the figure compares the average width of sensor energy
spectrum throughout the network 0.2-reliable lifetime for different network densities.

To estimate the average width of sensor energy spectrum, we evaluated the width of
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the spectrum after the execution of every task using equation (36).

i Z:;l (Es - E) .ES Z E
We = (36)
Ly (B -5 B, <E

Where /¢ is the average energy of sensors immediately after the execution of task
{. 7, is the number of sensors whose remaining energy is larger than or equal to E.
Similarly, n is the number of sensors whosce remaining energy is less than FE. Finally,
the average spectrum width among all executed tasks was cstimated as iZ::J e,
where 7 is the total number of tasks executed during the network lifetime.

From figure 30, we can see that the average width of sensor energy specirum
of the distributed protocol is much narrower than the width obtained when using
any of the other protocols. Moreover, the average spectrnm width is very close to
its optimal value {i.e 1). The superior performance of the distributed protocol over
other protocols can be attributed to: (1) The accuratc estimation of the maximum
energy among candidate sensors. (2) Selecting workforce using decisions rounds that
give priority to sensors with higher energy over sensors with lower energy. Although,
the average spectrum width of the centralized protocol is slightly wider than its
counterpart in the distributed approach, it is much narrower than its value in other
energy-neutral protocols. At this point, it is worthwhile to mention that in both
of the centralized and the distributed protocols, the average spectrurn width hardly
changes with sensor initial energy. This is not the case for energy-neutral protocols,
in which the average spectrum width increases when scnsor initial energy increases
as confirmed by Figure 31.

The large differences between the energy of sensors when using energy-neutral
protocols makes onc expect that many of the heavily loaded sensors would die out
at an carly stage of the network lifetime. Typically, when a large number of sensors
which reside at some spot die out, the network density at this spot decreascs. Figures
32-a, 32-b, and 32-c capture this phenomenon when using different worklorce selection
protocols with initial deployment densities of 0.3, 0.7, and 1.0 respectively.

As shown in figure 32, degrade in network density for energy-neutral protocols
starts at relatively an earlicr stage compared to other protocols. Table 2 lists the

percentage of the network lifctime lived before the network density starts to degrade.



71

0 5 ~m-Optimal - 50 Units —¥%-Optimal - 100 Units

~—i—Centralized - 50 Units ~@~Centralized - 100 Unlts
—3=Distributed - 50 Units =—t=Distributed - 100 Units
wipe Energy-feutral - 50 Units ~ ——Energy-Neutral - 100 Unlts

P
in

i S ——— I oy e -

=
o

‘.
i
L 3
-
S
4

w

Avg. Energy Spectrum Width

1.2 15

0.9
Natwork Density

FIG. 31: Avg. width of energy spectrum for different initial energy levels

TABLL 2: Percentage of network lifetime lived before density degrades

| Density | Optimal | Centralized | Distributed ] Energy-Neutral ]
0.3 96.1 86.0 93.2 61.7
0.7 97.0 88.8 94.5 63.4
1.0 97.2 83.3 94.3 62.3
1.5 97.3 90.9 94.3 61.9

The continuous degrade in network density can eventually create energy holes.
We conducted a set of experiments to capturc the impact of using different workforce
selection protocols on the rate by which holes grow up in the network. Figure 33
compares the growth rate of energy holes using the four protocols under different
deployment densities. The initial deployment densities of figures 33-a,33-b, and 33-¢
are respectively 0.3, 0.7, and 1.0. The sharp slopes of the curves in figure 33 show
that our centralized and distributed protocols can reduce fthe rate by which holes
grow up in the network specially under small and medium network densities. Under
dense deployments, our protocols tends to be less effective in reducing the growth
rate of holes. In order to explain the reason behind this, we recall that energy holes

grow up only when all the sensors within the hole are decad. Although the degrade
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in network density when using encrgy-nentral protocols starts in an carlier stage,
there is always a nonzero probability Lo find at lcast a single alive sensor that can
restrict the growth of the energy holes. This probability gets higher under dense
deployments which in turn delays the appearance and the growth of energy holes
making our techniques less effective.

Figure 34-a compares the maximum number of tasks the network can execute
throughout its 0.2-reliable-lifetime using the 4 different protocols. [t is interesting
to notice that some protocols are able to execute more tasks than the optimal pro-
tocol. To understand how this could happen, we recall our tasking model in which
a scquence of CTW messages are transmitted by the TIE to attract the attention
of sensors willing to participate in the execution of the next task. In some cases,
especially at the late stages of the network lifetime, the number of collected sensors
is less than the required size of the workforce as determined by QoS. Hence, those
down-recruited tasks are executed using whatever was collected even if the collected
number of sensors was less than what was specified in the CTW messages. For cxam-
ple, if at a late stage of the network lifctime all sensors within a certain spot died out
except for a single sensor which has E units of cnergy remaining, then the network
can assume falsely it can execute up to i additional tasks at this spot irrcspective
of the workforce size required by these tasks. Fortunately, the same scenario cannot
happen using any of the optimal, centralized, or distributed approaches because of
the minor differences between sensor energy. By the time the first sensor within a
certain spot. dies out, the remaining sensors within the same spot will be about to die
out as well. llence down-recruiting occurs for a small number of tasks. Our explana-
tion is confirmed by the results we got in figure 34-b in which we show the number of
tasks execuled using the exact workforce size. From the figure, it is obvious that the
optimal protocol has superior performance over other protocols. Although, the cen-
tralized approach is the closest protocol to optimal in performance, the distributed
approach seems to perform poorly and even worse than energy-neutral protocols.
The reasou for this goes to over-recrniting. Boecause of the distributed nature of
the protocol, sensors join the workforce independently, and as a result the number
of recruited sensors may be larger than the required workforce size. Simulation re-
sults showed that for %38.3 of the total cxecuted tasks, the size of the workforce
recruited by the distributed protocol is larger than the required workforce size by

around %17.1. We confirmed this by adding another curve to figure 34-b that shows
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the total number of tasks exccuted using a workforce size that is at least as large
as the required workforce size. Surprisingly, after adding over-recruited tasks, the
performance of the distributed protocol has increased tremendously to the extent it
became slightly better than the centralized protocol. On the average our centralized
approach can increase the network 0.2-reliable lifetime by around %16.5 while our

distributed approach can increase it by around %17.2.
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CHAPTER V

SCHEDULING IN SENSOR NETWORKS

Sensors spend their entire lifetime switching between two modes: sleep mode wherc
energy consumption is minimum aud ewake mode where energy consumption is rel-
atively high. Due to their modest non-renewable energy, sensors spend most of
their lifetime in sleep mode and wake up for short periods to participate in various
tasks supportive of the overall mission of the network, Varions deterministic and
probabilistic schemes can be used to determine the schedule based on which sensors
sleep and wake up. Each sleep/awake schedule has an impact on the gffective sensor
density (ESD), defined as the density of awake scnsors. The ESD) is an important
network parameter because it is precisely the ESD that an application “sees” when
it is launched. Consider for example, an intrusion event. The quality of the intrusion
detection is a function of the number of awake sensors that witness the event. It
is clear, thercfore, that the network ESD is of fundamental importance to guaran-
tee that sensing tasks are cxecuted at their required level of QoS. In other words,
it, is necessary to bave control over the ESD in order to satisfy QoS requircments
expressed in terms of the minimum number of scnsors needed to report monitored
events.

Our main goal in this chapter is to show how our proposed backbone can help
solving the scheduling problem in sensor networks. To achieve this goal, we start by
conducting a rigorous mathematical analysis on ESD as scen from the perspective of
the monitored events. We also provide design guidelines to determine deployment-
time scnsor density and an associated sleep schedule which probabilistically keeps
the ESD at a level nceded by QoS requirements. After that, we propose a backbone-
guided fully distributed sleep schedule which adaptively adjusts the duty cycles of
sensors within the same sensing area based on the relative difference in their re-
maining energy budget. To adjust its sleep schedule, each sensor must have access
to up to date information about the minimum and the maximum sensor energy in
its neighborhood. Through interaction with sensors in their neighborhood during
workforce selection and data aggregation, backbone sensors get access to required
information about sensors energy. After task completion and while forwarding the
aggregated results to the sink node, backbone sensors attach the minimum and the

maximum energy of sensors it its neighborhood as an extra field in the message
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payload. Sensors that receive the message, extract energy information and adjust

their sleeping schedule accordingly. The main advantage of the proposed scheme is to

halance cnergy consumption among sensors, thus promoting the functional longevity

of the network, without changing the ESD.

We can summarize onr contributions into the following:

(2)

under the assumption that arrival of the cvents to be monitored is a Poisson
process, we condnct a rigorous probabilistic analysis to prove that the well-
known PASTA [44] property can be applied to the number of awake sensors
(and, consequently, to ESD) as seen from the perspective of the monitored
cvents. Specifically, we show that under a mild technical condition the limiting
fraction of the events that find k& awake sensors in a certain area is precisely the
fraction of time that the area is under the surveiliance of k awake scnsors. This
is a result of great importance as it justifics using the time-invariant probability

distribution of k-coverage to analyze different, scheduling schemes;

we state the slcep-awake cyvcle of a scusor as a renewal process and, using the
Key Rencewal Theorem [45] derive a general expression for the limiting (i.e.
time-independent) probability of a sensor to be awake at a given moment. To
the best of our knowledge this is the first time such a result is obtained for

sensor nctworks;

we investigate different sleep scheduling schemes and their impact on ESD and

the capability of the network to satisfy QoS requirements;

we also look into how we can achicve better network lifetime hy adjusting the
sensor sleep schedule without redueing the ESD. In particular, in subsection
V.3.3, we propose a sleep schedule scheme that prolongs the sleep time of
sensors with relatively low encrgy and probabilistically compensates for their
absence by shortening the slecp time of sensors with relatively high energy.
An interesting by-product of our scheme is that the ESD, as perceived by the

monitoring events, remains unchanged;

finally and through simulation, we monitor sensor energy distribution during
the network lifetime and show that using our cnergy aware scheduling approach

can balance encrgy consumption among sensots. We also show that using the
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proposed scheme provides a substantial increase in reliable network lifetime

when compared with static and dynamic scheduling schemes.

The remainder of this chapter is organized as follows: in Scction V.1, we look
into the nurber of awake scnsors as a stochastic process then we prove that if the
monitored events follow a Poisson process, then the PASTA property can be used to
analyze the number of awake sensors as seen by the monitored events. In Section V.2
we cast the sleep/awake cycle of a sensor as a renewal process and derive a general
expression for the limiting probability that a given sensor is awake at time £, Using
the theoretical foundations laid down in Sections V.1 and V.2, in Section V.3, we
evaluate the time independent probability distribution and the expected value of the
number of awake sensors using different scheduling schemes including our proposed
energy-aware scheduling scheme. In Section V.4, we show how our proposcd backbone
can be useful in solving the scheduling problem and propose several approaches by
which sensors can have access to information needed to apply our scheduling scheme.

Simulation results are summarized in Section V.5.

V.1 APPLICABILITY OF PASTA

Throughout this work, we take the view that the sensor network was deployed in
support of detecting events of an unspecified nature. Moreover, we assume that QoS
requircments stipulate that in the intcrest of refigbility a minimum of k, (k > 1),
sensors must detect each event, where k is an application-specific parameter. Thus,
in such a context, in order to meet the specifications of the QoS, a minimum of &
sensors should be awake in each sensing neighborhood.! If an arriving event “finds”
k awake sensors in its neighborhood, then it will be correctly detected - otherwise
it will not. Thus, it is of great theoretical interest to look at the ESD of the sensor
network as seen by the occurring events.

Tn this section, we show that if the events occur according to a Poisson process,
then the PASTA [44] property (Poisson Arrivals See Time Avcrages) is applicable
to the number of awake sensors available to detect the occurrence of these events.
This result justifies analyzing the performance ol the scheduling schemes presented in
Section V.3 using the time-invariant probability distribution of the number of awake

sensors in the sensing area centered at the location of the event.

18ome authors refer to this as k-coverage. ‘Lo follow established terminology, we shall use the
term k-coverage in the remainder of this work.
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For a uniformly distributed random deployment of scnsors where the sensing
range of each sensor is v, we choose an arbitrary point p and define the couniing
pracess, {N(£),t > 0}, such that N{{) represent number of awake sensors at time {
in the disk D of radius r centered at p. We refer to {N(t) = k} as “the process IV is
in state k at time £’ whosc semantic value is “disk D is k-covered at time ¢ where
the maximality of & with this property is implied.

Assuming that the number of events arriving at the network is a Poisson process
{A(t), t > 0} with rate A > 0, our objective is to compare the fraction of time
the process N(#) is in state k to the fraction of the cvents occurring in /7 that find
the stochastic process {N(¢),# > G} in state k. Put differently, we are interested in
comparing the fraction of arriving events that oceur while D is k-covered with the
fraction of time disk D is k-covered.

For this purpose, define 7(¢) as the indicator random variable of {N(1) = k} at

time £

1 if {N{#)=k
I(t) = Ve ) )
0 otherwise.
In other words, I (1) is 1 if and only if the number of awake sensors in D is & at time
t. Recalling that we are interested in k-coverage (for some &k > 1), to simplify the
notation we shall drop the subscript k and write /(t) instead of 1.(t).
Define the random variable F(t) as follows
1 2
r = / I(s) ds. (37)
- Jo
The intention is for F(¢) to Teprcsent the fraction of time in [0,¢] that disk D is
k-covercd. Since I7(¢) involves the Riemann integral of I(z) on [0,}, the definition of

the integral, as a limit, allows us to approximate I'(t) for sufficiently large n by

o= 5 () [c00

i=0

with

_li1>n () = F(¢t). (39)

For later reference we take note of the fact that |F,(t)] is bounded. Indecd,

|Fn(t)| = Fn(t)

- 1 (40)
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An important consequence of (40) is that the Lebesgue Bounded Convergence

Theorem applies to the sequence of random variables {F,(¢)} and

lim E[F,(6)] = E[F()] (41)

Th—+D0

Similarly, let a(t) be the random variable denoting the number of events occurring
in disk D in the time interval [0,7] that find the disk fJ k-covered. Formally, a(t) is

the Stieltjes integral of I{(£) with respect to A(f). Thus, we can write

a(t) = /t I{s) dA(s).

By the definition of the Sticltjes integral, as a limit, it follows that a(¢) can be
approximated for sufficiently large n by

o BOb(E2)aE)] e

lim a,(t) = a(t). (43)

Ao

with

Next, we show that |a,(t)| is bounded. Indeed, we can write

e (O] = on(t)

< aft) [because A(t) is monotone non-decreasing]

_ /ﬂ " I(s) dAs)

< /U dA(s) [because I(s) < 1]

e

— A - A©)

_ A(t). [because A(0) = 0] (44)

Since it is well-known, and also very easy to prove from scratch, that the number
A(t) of Poisson arrival (i.e. events) in disk D in [0,7] is bounded, the conclusion
follows.

An important conscquence of (44) is that the Lebesgue Bounded Convergence
Theorem applies to the sequence of random variables {a,({)} and, therefore,

lim Ela,(t)] = Ela(i)]. (45)

FL—r X
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Before proceeding, we observe that the event arrival process A is independent of
the number of awake sensors in disk D). Moreover, future increments of the events
arrival process do not, in any way, depend on the current or any previous number of

awake sensors in 7). In other words, for cach 0 € s <{,z >0
[A(t + x) — A(t)] and [{s) are independent. (46)

This turns out to be a simple instance of the lack of anticipation assumption [44].
We arc now ready to prove the first non-trivial result stating that in any finite
interval [0,¢], the ezpected number ol events that find the disk D k-covered equals

the cvent arrival rate times the expected time during which D is k-covered.

Theorem V.1.1 Forali{ >0

E[u(t)] = ME { /; I(s) ds} .
Proof 1 We begin by evaluating Ela,()]. First, by the linearity of ezpectation we
s = B4 (52) )]
Sl () A (5) - (JH

Since, by virtue of (46}, the random variables [A(l + z) — A(t)] and I(s) are inde-

pendent for every choice of 0 < s <& and x > 0, we can write

s 55 (2] o (152) 4 ()

Recalling that Poisson processes have stationary increments, it is the case that
-1 ]
el () -4 E)] - =Gl
n n 7l

and, consequently, the expression of Ela.(l)] becomes

s - ()] # 1 ()]

have
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Further, by (41) and (45) combined, we cen write

Bla(t)] = lim E [an(1)]

n—D0

we—1 - C B
t ] 1 ¥

= lim \E E ¥ (3_) [M_LH
=20 =0 T T Tt
n—1 . .
i £ 1 2

— AE | lim 1(35> {(” e _u jl
P0G p n T 7

— AE [/ﬂtl’(s)dsl

This completes the proof of the theorem.

laving proved Theorem V.1.1 it is helpful to put the result in perspective.

¢ We note that Theorem V.1.1 is part of the sensor network folklore and has
been used iu the literature without proof. To the best of our knowledge this is
the first time it has reccived a formal proof for the case where the monitored

events occur according to a Poisson process;

e We are, however, quick to point out that Theorem V.1.1 holds for other arrival
processcs: however, it would seem that the problem of characterizing the class

of monitored events for which Theorem V.1.1 holds is still an open problem;

o In spite of its interest, Theorctn V.1.1 only refers to the “average” casc and
does not provide a truly crisp view of the instantaneous status in which a given

cvent occurring in disk /) may find the process V.

We now turn our attention to the general case: our aim is to compare the fraction
of time that disk D is k-covered with the fraction of the cvents occurring in D that
find D k-covered. More precisely, define P(¢) as the fraction of the events in [0, 1]

that find disk D k-covered

U1 ()
(1) = Tt (47)

In this notation, we shall prove the following fundamental result, similar in spirit,

to the well-known PASTA property proved in a different context [44].

Theorem V.1.2
lim P(t) = lim I'(¢).

toroo t—roa
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The proof of Theorem V.1.2 is rather technical and relies on a number of re-
sults which are of independent interest. To begin, we define the stochastic process
{R(t),t > 0} wherc

R(t) = ult) — At - F/(1). (48)

The intention is for B(2) to capture, for a given ¢ > 0, the difference between the
nuwber a(t) of events occurring in [0,¢] that find D k-covered and the arrival rate
) times the total time in [0,¢] during which 1) is k-covered. Since the arrival time
A multiplied by the total time in [0,t] during which D is k-covered is the expected
number of arriving events that find D is k-covered, it follows that R(t) denotes the
difference between Lhe number of events occurring in [0, #] that find /2 k-covered and

the expected number of events that {upon arrival) find 7 k-covered.
Lemma V.1.3 R(t) is a continuous-time martingale.

Proof 2 In order to prove that R(t) is a martingale we need to show that for { >
0, h>0
E[R(t+ h) | R(s), 0 <s <1] = R(t).

We find it convenient to prove the following equivalent statement
E[R{t+h) — R R(s), 0<s<H =0

Recall from the definition of R(t) that,

R{1)
R(t+ h)
R(t+ 1) — R(1)

a(t) — M- F(1)
alt + h) — At +h) - F(L + h)
[a(t+ h) — a()] — [M(t + R)F(L + h) — AtF(t)]

Applying the expectation operator on both sides of the previous equality and using

clementary manipulations we write

E[R(t+Rh) — R(B)] = BElalt+h) — o)) — E+ R F{t+ h) — MF(8)]

= Ela(t+ h)] — Fla(t)] — EIML+ RYF(t + by — MF(0){49)

[l

Recall that by Theorem V.1.1

Ela(t)] = A5 U{; I(s) ds}
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and

Ela{t+ h)] = AE [[;M I($) ds} ,

It follows that

EMG+hH—EM@H=AE[/HﬂMﬂd4. (50)

Further, recalling that
o+
tH(t) = / I(s)ds
0

and that b
(t+hF{t+h) = / I({s)ds
Jo

we can write
tih
Mt+ RYF(L+ h) — ME(t) = )\/ I(s)ds
£

and so "
EM(t+ h)F(t+ h) — MF(1)] = AE [/ I(s} ds} . (51}

Substituting (30) and (51} in ({9}, we oblain

AE [/:M I{s) ds] —
AE [/:Jrh I(8) ds}

= 0.

E[R( + k) — R(®)]

We just proved that R(t + h) — R(t) is independent of R(s) for 0 < s <t. This

completes our proof of Lemma V. 1.5.
For arbitrary h > 0 and positive intcger n define the sequence of random variables
X]: —?: T X‘.rh

by writing
X, = R(nh) — R((n—1)h). (52)
Observe that (52) implies

i Xn= R(ﬂ’h‘)
i=1
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and that by linearity of cxpectation
E[X.] = FE[Rnh) — R((n—1)k)]
= F[R(nh)] — E[R((n — 1)h)]
= 0

Now, the previous two equalitics together with the Law of Large Numbers allow

s to write

lim fi{nh) = lim ——-—ilen
R T o i
= B[X.)
= 0 (53)

We now turn our attention to the proof of Theorem V.1.2. Observe that by

dividing both sides of (48) by ¢, we can writc

R  a(l) — AtF(2)

A t
11
= $ — AF(1)
a(t)  Aft)
= —L.—= —AF(t
Aty 1 ®
t -
= P(:ﬂ)—g—)- — AF(t) (54)
Observe that since A(t) is Poisson distributed with parameter A
tim A _ ) (55)
e
Thus, taking limits in (54) as £ — oo we obtain
Alt -
lim ulol = lim [P(I)—(—t) — AP'(t)}
t—oo  f t—rox t
Al
= lim P(t) lim Al _ lim AF(t)
ok t—roc |, t—oo

= Atliglo Pty — Atliglo F(t) [by (55)] .

- Ahmpm—ymﬁm} (56)

t—=oc
Equation {56) makes it plain that in order to complete the proof of Theorem
V.1.2 we need to show that lim; . %ﬂ =1).
With this in mind we now provide the prool of that missing link. Specifically, we

show that
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Lemma V.1.4
R(1)

limn = 0
t—0a

Proof 3 Let h > 0 be arbitrary and wrile
e |t
=15t
By virtue of (57) we have the following double tnequality
nh <1 < (n+ Lk {(58)
Now, recalling that a(t) is monotone non-decreasing allows us o write
a{nh) < o(t) < a((n+ 1)h),
which, upon subtracting AtF(t), yields
a{nh) — MF(t) < a(t) — MF(t) < a((n+ 1)h) — ALF(T).
Using (48}, the above double inequality can be written as

R(nh) + AnhF(nh) — MI'(t) < R(t) <
R((n+ L)) + Aln + DRI ((n + L)h) — MF(t) (59)

Further, using (37) and (58) it is straightforward to see that

(n+1)h
j I(s)ds
i

{n+13n
/ ds
nh

= h (60)

(n+ DAF({{n+ 1)h) — iI(t)

A

and, sirnilarly, that

nh
nhI(nh) — tF(t) = / (s) ds

= _[:,, I{s)ds

i
> - ds
nh

{413k
> - j ds
nh

= —h (61)



38

Now, by replacing (61) and (60} in (59) we obtain
R(nh) — M < R(t) < R((n+ 1)R) + Ah. (62)

Dividing (62) by t and taking limits as 1 — 00 we write
R(nh) — Ah < lim R{t} R{{(n+ 1)h) + ,\h‘

lim < — < lim (63)
oo t t—oe t—oo t
Noticing that im0 2 = 0, (68) can be written as
1 ' DA
fim ) gy ROy, BT DR) (64)
t—oo oo f 00 1
By (57), t — oo implies that n = | L] — oo and, moreover
. N
lim — < oc.
t—roc
This observation allows 1us to write
lim ____R(n ) = lim Rnh) lim =
t roq i f—roa T t—oa §
— 0 foy (53) (65)
Similarly,
i R((n+1h) _ X R((n+ 1}h) im 1+
t 200 t n—oo n+1 t—oc
= 0 [fby (53)] {66)
Finally, replacing (65) and {66} in (64) yields
i
0 < lim ) <10
t—0oC

completing the proof of Lemma V.1.4.

With this the proof of Theoretn V.1.2 is complete.

Theorem V.1.2 tells us that for large intervals [0, ], the fraction of events that occur
while I? is k-covered equals the fraction of time the disk D is k-covered. In other
words, if the monitored events occur according to a Poisson process, the number of
sensors that will be awake to report these events is a discrete random variable with
probability distribution determined by the fraction of time the network spends in each
state. Based on this, it is probabilistically correct to analyze sleep scheduling schemes
using the #ime-invarient probability distribution of the number of awake sensors in
a given sensing arca, provided such a time-invariant probability distribution exists.
It is the goal of the next section to show that under very mild technical conditions,

this is indeed the case.
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V.2 REASONING ABOUT THE TIME-INDEPENDENT AWAKE
PROBABILITY

In deployments populated by energy-constrained sensors it is of paramount impor-
tance to design energy-aware protocols that promote the functional longevity of the
underlying network. This typically means that the sensors spend their lifetime alter-
nating hetween two modes: in sicep mode the sensor turns off its radio interface clocks
down its processor; in awake mode the sensor is fully functional, with its processor
running at top speed and its radio interface turned on.

Let the sequence of random variables A;, Ay,--- , A,, - denote the consecutive
awaeke times of a given sensor. It is quite natural to assume that these awake times
are independent identical distributed (i.i.d.) with a common distribution linction
Iy and that A has finite expectation. Similarly, let the sequence of random variables
51,8, ,S,, - denote the consecutive sleep times of a given sensor. We assume
that the sleep times are 1.i.d. with a common distribution function Fg. As before,
we assume that 5 has finite expectation

To make a choice,? we assume that the sensor wakes up for the 0-th time at ¢ = ().
Referring to Figure 35, we find it useful to mode! the lifetime of the given sensor as
a renewal process {N(1), ¢{ > 0}, where the rencwal points are the moments when

the sensor wakes up (other than the 0-th wake-up at time { = 0). Let
TU = 07 .T] = Al + SJ.} (‘“2 == AQ + S’Z} Ty T.‘n = A-n. =+ Sﬂ,} e

be the inter-arrival times of the rencwal process where for n > 1, T,, is the time inter-
val between the (r, — 1)-th and the n-th renewals where, recall, t = 0 is taken as the
(-th renewal. It is clear that the random variables 71,75, - ,T,, - have a common
distribution Fir, which is the convolution of Iy and Fs. Since, by assumption, hoth

A and S have finite expectation, so does 7', In fact, we can write
w=E[l=E[A+ 5] =E[A] + E[S] < . (67)

We are intercsted in the limiting probability 2(¢) that our sensor is awake at time

t. To derive the integral cquation satisfied by h(t), we condition on the time of the

2 Ag it turns out, this assumption is adopted for convenicnce only; as far as the limiting probability
of the sensor to be awake at some arbitrary time ¢ this assumption is irrelevant.
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FIG. 35: Illustrating the renewal process of weke-up times.

first renewal, 7. Indeed, we can write
h(t) = /0-00 Pr[{awake at time 1} | {T| = s}] Pr[{T} = s}]
= \/:3 Pr[{awakec at time ¢} | {Th = s}] dF7r(s)
= /: Pr[{awake at time t} | {1} = s}] dF7,(s) +

/ Pr[{awake at time ¢} | {7, = s}] dFx () (68)
At
Ohserve that for 0 < 5 < {, we can write
Pr[{awake at time t} | {71 = s}] = h{t — 5). (69)
On the other hand, for ¢ > ¢ we have
/ Pr{{awake at time ¢} | {71 = s}]dFr(s)
&
— Prl{4, >t} N (T3 > 1}]
= Pr[{A, > t}] [since {4, >t} € {T; > t}]
= 1 Fu(d). ' (70)
By virtue of (69) and {70), combined, (68) becomes
t
h{t) =[1— Fa(t)] + / h(t — s) dFr(s) (71)
4o
Writing
Q(t) =1 — I4lt)
it is easy to see that h(t) satisfles the rencwal integral equation
i
h(t) = Q(t) + / hit — s)dFr(s) (72)
0

and that (¢} has the following properties
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(al) Q) =20
(g2) Qi) is non-increasing for all t > 0;

(@3) f7 Q) dt = [;°[1 — Fa(t)] di = E[A] < 0.

0

Assuming that 7' is non-lattice,® the Key Renewal Theorem [45] gnarantees that

lim A{t) = tlim [1 - Fa(t)] + tlim i/ Q(s) ds
—ro0 50 0

t—rox

t—=oa [f

1 o
= lim — s)d:
im /0 Q(s) ds

1
= ;;E [A] [by property (g3) above]

_ E{A] : :
= FAT B [by (67)] (73)

To summarize our findings, we have proved the [ollowing result.

Theorem V.2.1 Assuming that A has finite expectation and that T = A+ 5 s non-
lottice with finite expectation, the limiting probability that a given sensor is awoke al

time | equals

r[A]
E[A]+ £[S]

Having proved Theorem V.2.1, it is important to put this result in perspective.

e Since the conclusion of Theorem V.2.1 is intuitively satisfying, the result itself
has been a part of the sensor network folklore and bas been nsed without proof.

To the best of our knowledge this is the first time the result is formally proved;

e Theorem V.2.1 has an unmistakable PASTA "[lavor™: for, consider an observer
external to the network that is watching and noting the behavior of our scnsor.

The observer will note that the long-term probability of the sensor to be awake
. E[4]

15 FTAT+E[S)
origin (i.e. £ = 0), the probability that the sensor is awake at an arbitrary time

fe ale E[A] |
t1s also Tﬁ-[m

. Ou the other hand, Theorem V.2.1 tells us that far away from the

e Theorem V.2.1 is a very convenient tool since it allows onc te nse the time-
invariant probability of a sensor heing awake in lieu of the instantaneous awake

probability.

%A discrete random variable is said to be latiice if all the values it can assume with positive
probability arc of the form nh for some kb > 0 and integer n.
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We put Theorem V.2.1 to work in the Section V.3, where it will be used to reason
ahout various scheduling schemes. Before that, in Lhe next subsection, we offer an

empirical validation of Theorem V.2.1.

V.2.1 Empirical validation

In order to validate empirically the results of Theorem V.2.1, we cenducted the

following experiment to compare the probability that a sensor is awake (i.e. the

expected value of 722 to the value obtained from Theorem V.2.1 (i.e ﬁ%) It is

straightforward, albeit tedious, to show that if A is uniformly distributed at random
in {a,b] and S is uniformly distributed in [¢, d] then, with A = 2(b — a)(d — ¢}, the

expectation E [ﬁ] of the random variable I% reads

Bl - Lo tst (i),

A+ S 2 A b+ d
dg—czln(u—lr(:)+a!2—a..21n(u,+d)
A b+d A a+c¢/

"The interested reader can find a detailed discussion of the probability distribution
function of ﬁ%s as well as the derivation of E[ﬁ] in Appendix A.

Our goal was to measure the difference between the exaet and the approximated
values of the awake probability assuming different ranges for [a, 8] and [c, d]. Without
loss of generality we can always use shifting and scaling to map one of the two ranges
into the range [1,2] and express the other range using the samc mapping. Figure 30
shows a plot of the simulated, theoretical, and approximated values of sensor awake
probability. In Figure 36, we assumed that the range [a, 8] is mapped info the range
[1,2] and we tried different ranges for [, d] bascd on the ratio jf%; Specifically, we
tried the following ratios: 1h=. op: 35 %ﬁ, 151, 2,4, 8, 16, 32, 64, and 128.
As shown in Figure 36, for all the ranges, the differences between the theoretical,
simulated, and approximated values of the probability are minor and can be ignored

in almost all practical applications.

V.3 SCHEDULING SCHEMES

In a sensot network with nominal (i.e. deplovment-time) density p where, in order
to promote systern longevity, some sensors will be in sleep mode, of interest is the

effective sensor density (ESD) p. delined as the density of the awake sensors in the
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FIG. 36: Empirical validation of Theorem V.2.1

network at any point of time. If a time-invariant probability F,uu. of individual

sensors to be awake exists, then p, is related to g by
P = Pa.wakcp-

Switching between the slecp and awake modcs is controlled by a scheduling scheme
used in the network. Different deterministic and probabilistic scheduling schemes can
be invented and implemented; each such scheme makes decisions about how much
the sensors sleep and, as such, impacts the g, and the ESD.

We begin this section by introducing two relatively simple scheduling schemes: our
first such scheme is static, the second is dynamic. We also study the iraplications of
each scheme on the ESD. Finally, we propose a third, energy-aware scheduling scheme

designed to balance energy consumption among the sensors in the same sensing area.

V.3.1 Static Scheduling

The main advantage and unmistakable appeal of static scheduling schemes are their
simplicity. Before deployment, cach sensor is given two values 7, and T, which

represent the number of time units each sensor stays in sleep mode and awake mode,
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F1G. 37: Sleep and awake cycles in static scheduling

respectively. In general T, and T, are choscn such that T, >> T,. This choice
allows the sensors to slecp more than they stay awake helping them to save their
energy budget and to extend their lifetime. Moreover, it is highly recommended to
give sensors common values for T;, and T, otherwise the energy consumption rate of
sensors with longer awake times will be much higher than the energy consumption
rate of other sensors. This, in turn, would adversely impact network longevity and
reliability and could, eventually, lead to the creation of energy holes that would
partition the network into disconnected islands [10, 46].

Because the sensors arc asynchronous, the sleep time of a sensor usually overlaps
with the awake time of other sensors. Hence, using au appropriate deployment density
we can ensure there is always, with any desired probability, a sufficient number of
awake scnsors to attend to any required network task. Figure 37 shows an example
where the overlapping ol the awake times of sensors Sy through Sg totally cover the
scheduling cycle.

In the static scheduling scheme the total length of the sleep and awake cycle is
fixed to T, + 7 time units. Each sensor stays awake for T, time units and slceps
for T, time units. 1t is clear that, in this case, the time-independent probability of a

sensor to be awake 1s
L4 Al
T
T, + T,

Given a nominal network density p and a sensor sensing range of 7, the erpected



number of sensors in the sensing area can be evaluated as n = #r?p. Under these as-
sumption, the probability distribution of the number X of awake scnsors is a binomial
random variable and for all k, (0 < k < nj},

e (;) (ﬂfr:;)k (TiT) k

(M THT)
- (ff) T+ Ty ™

Since the schedule is static, it makes sense to define for an arbitrary sensor the

awake ratio A as

T
A — i
T, + T,
In this notation, (74) becomes
PH{X =k} = (;:) AF(1 — Ay, (75)

Now, (75) implies, unsurprisingly, that the ESD, E{X], corresponding to this

scheme is

E[X] = nA = nr’pA. (76)

Equation (76) can be used to cstimate the required nominal density, given QoS

requircments expressed in terms of number of sensors needed per task.

V.3.2 Dynamic Scheduling

In this scheme, we assume that a sensor sleeps for a random amount of time selected
uniformly at random in the interval [T}, T’s|, and is awake for another random amount
of time that is selected uniformly in the interval [T,, Ta]. Dcfine the random variables
A; and S; representing, respectively, the awake and sleep time of a generic sensor in
an arbitrary cvcle ¢. The expected values of sleep time and awake time in cycle ¢ are
given by

Is + T,

HS) = =5 (77)
T
E[A] = —"‘;—rﬁ (78)

Our choice of the distribution of A; and S; along with (77) and (78) ensure that the

random variable T, = A; + 5; is non-lattice and has finite expectation. By Theorem
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V.2.1, the time-invariant probability of a sensor to be awake is

b _ Al
A 7 FE[A]+ E[S]
To+Ta

To+Ta+ T, + 715 (79)

Define X as the random variable that denotes the number of awake sensors when
the next event occurs. To evaluate the probability distribution of A, we model the
problem as a sequence of n Bernoulli trials, where the probability of success is Pa.
According to this model, the random variable X follows a binomial distribution with

parameters n and Pjy.
PUX = k)] = (2) P(L— Pay

(N (L Ta) (T + 1)
k] (Ta+Ta+T,+ T

and, similarly,
w(T, + Ta)
(T, +Ta+T,+ 1Is)
2o(T, + T
_ ”?r'r p(Ty + Ta) (80)
(Ta+Ta+T,+Ts)

As in the case of static scheduling, equation {80) can be used to estimate required

191X

deployment density to satisfy QoS requircments when the network uses dynamic
scheduling.

It is also worth noting that our dynamic scheduling schemc presented in this
work follows the “standard” {and, perhaps, simplistic view that the awake and sleep
periods are wuniform random variables. There is no need for this; in fact, we could
have taken any distribution for the awake times and for the sleep times that satisfics
the conditions of Theorem V.2.1.

Observe that by Theorem V.2.1, for any dynamic scheme it is always possible
to construct a probabilistically equivalent static scheme that draws its sleep and
awake times from general probability distribution functions. To de this, in the newly
created static scheme the sensors sleep and awake times are adjusted at the expected

values of the sleep and awake distribution functions of the original dynamic scheme.

V.3.3 Energy-Aware Scheduling

Finally, we propose a dynamic scheduling scheme [47, 48] that contributes to balanc-

ing energy consumption among sensors by adjusting their sleep time based on their
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remaining encrgy budget. The main idea behind the proposed scheme is to proba-
bilistically prolong the sleep time of sensors with relatively low energy and shorten
the sleep time ol sensors with relatively high energy, without affecting the ESD of
the network.

As in Subsection V.3.2, wc assume that a scnsor sleeps for a random amount
of time uniformly distributed in [T}, Ts] and is awake for a random amount of time
uniformly distributed in [T, T4]. Either periodically or after each task, the sensors
adjust the upper bounds of the ranges from which they select their sleep and awake
times. This adjustment is based on the relative difference between sensor energy
¢;, the minimum energy ¢, and the maximum energy &, among the neighboring
sensors. Iu Scction V.4 we propose several approaches by which sensors can have
access to cnergy information of the sensors in their neighborhood.

Several adjustment formulas can be used; one natural choice is

Cmaz — i
Ts,.., = Titc (————) (Ts - T.) (81)
€maz — Cruin
2 — Couin T
TA‘HE"? = Ta + c ((J e ;. ) (TA - I‘L) (82)

where ¢ is a constant to be determined. Using equations (81) and (82), each sensor
can adjust its sleep and awake time by sclecting them, uniformly at random, from
] and {tr(n TA

that the expected value of ESD remains unchanged.

. respectively. The constant ¢ is determined such

ncw] ?

the ranges [T, s

e

If the sleep time and the awakc time upper bounds in cycle ¢ are Tg,,, and
T,

respectively, as

respectively, then the expected sleep time and awake time can be expressed,

nem

r)rlsn A + TS
2

and
" Ane.n.- + .Tﬂ

2

Unfortunately, both T and Ts . change over timc. However, because these

changes do not occur abruptly, it is safe to assume that Ty, and T will remain
fixed for the upcoming m cycles until the next adjustment. Based on this, A, 5; for

the upcoming m cycles are drawn uniformly from the ranges [1,, 74, ] and [Ty, Ts,...)



respectively. Hence, we can cxpress the expected value of 4 and § as follows,

ElA] = E[izli] :iwm]

i=1

T TAn . + Ta
- Sof

=1
_ mT %Z S ]

Similarly, E[Ta,....] can be evaluated as

E[e‘i] — Emin,

Emur — Emin

E[TAW,“] = T, +¢ (

Crnm + Comin

) (Ta—T,)

E il =
ed .
gzt Cmin Eynin .
E[T-‘Anew] = Tﬂu —}_ c ( 2 : ) (TA - I:l)
Cmox — Emin
= T,+ ({ W —T,)

Substituting the expression for E[Ty, . ] from (84) into {83) yiclds

LU

rl4] = m; o 1z)
—— '.rr.uc(f{}j1 )
m(cls + (4 — )T)

4
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(84)
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Using the same approach, we can cvaluate E[S] as,
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TLE
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Emar — Emin
e _ Emar -t Cmy
B i ki 2 O
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Crmax — Cmin
= T+ (TS ~T)

T

T,
18] = _m' —ZT + —Ty)

. 4_,,,,(,@34_ )

ElS] - micls —|—i4 —¢)T%) (86)

Now, using equations (85) and (86), Theorem V.2.1 tells us that the probability a
sensor is awake is

m{eTa+{4- cfTa)
A

m Tty +{1-c)Fa) + mdof's +({1-c)Ta}
4 4

__ cTh+ (4 —)T, (87)
T Ta+ d—o)T s+ (4 — o)t

Solving equations (79) and (87) for ¢, yields ¢ = 2; with this, the equations (81) and

(82) can be rewritten as

Emaz — & T3
Tsnen = Lot 2 ( e ) (1s —T.) (88)
Cmar — Cmin
1 €¢ — Cinin e
(J' Apem = TCA + 2 (64"6_"_) ("{A - Tﬂ)' (89)

After determining ¢, the equations (88) and (89) are uscd by individual sensors to
adjust their sleep/awake schedule. As we noted at the end of the previous subsection,
we have chosen the uniform distribution of sleep/awake times for convenience only;
in fact, any distribution satisfying the conditions of Theorem V.2.1 could have been
employed just as well. We expect that, ultimately, the choice of the distribution to

be application-dependent.
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TABLE 3: Mica? Power Reguirements
Component Power | Component Power ]
CPPU Active 24.0 mW | Rx 21.0 mW
CPU Sleep 225.0 pw | Tx(-20 dBm) | 11.1 mW

(
Sensor ADC 30mW | Tx(-15dBm) | 16.2 mW
Sensor board 2.1 mW | Tx(- 8 dBm) | 19.5 mW
(
(

EEPROM Read { 18.6mW | Tx( 0 dBm) | 25.5 mW
EEPROM Write | 55.2mW | Tx{(+4 dBm) | 34.8 mW

V.4 ENERGY ESTIMATION

The energy-aware scheduling scheme proposed in Subsection V.3.3 assumes that cach
sensor has information about the minimum and the maximum encrgy in its neighbor-
hood. In this section we propose several approaches that can be used to provide such
information to sensors. Particularly, we provide answers to two questions: (1) How
can a sensor estimate its own cnergy? (2) How can a scnsor get access to information
about the energy of other scnsors in its neighborhood?

Since current technology enables battery-powered electronic devices to measure
their remaining energy [49], this might be taken as an easy answer to the first question
regarding how sensors can estimate their remaining energy. However, from a practi-
cal prospective, this technology may not be sufficiently mature o be applicable at a
reasonable price for our liny inexpensive sensors. Fortunately, it is possible to find
an alternative software solntion to this problem. To be able to apply this solution,
the manufacturer of each sensor should provide an energy consumption data-shect
that specifies the energy consumed per unit time for different sensor featurcs. Table 3
shows the power consumption for the Mica2 platform for diflerent sensor components
and different operating modes. For instance, the CC1000 transceiver in Lhe Mica2
mote [50] features a transmission range proportional to the radiated output power,
which can be sclected from —20dBm to -+5dBm. Table 3 shows the CNErgy consnmp-
tion when a Mica2 mote transmits al power -20dBm, -15dBm, -8dBm,0dBm, and
+4dBm. Also the table shows the CPU energy consumption when the sensor is in
awake or sleep mode.

We can use the energy consumption information provided in the data-sheet to

estimate the remaining scnsor energy budget as follows:
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e Each sensor should have an internal counter initialized to zero e. = 0.

e Upon changes in the functionality of the sensor, the counter value should be
updated based on the manufacturer data-sheet to reflect changes in energy
consumption. For example, if a Mica2 mote is to switch to sleep mode for 2
seconds, then before the CPU switches to the sleep mode, it should increment

the counter as ¢, « e, + 0.15 to reflecl changes in consumed energy.

o ¢.(f), the value stored in the counter at time ¢ is a measure of the total cnergy
consumed up to this point in time. If ¢; is the initial number of energy nnits
a scnsor has, then e(t), the remaining energy of a sensor at time i, can be

obtained as e(t) = er — e.(?).

We have just outlined two different ways in which a sensor can estimate its remaining
energy al any point in its lifetime. However, this might not be sufficient, since the
energy-awarc scheduling scheme described in Subsection V.3.3 not only requires cach
sensor to be aware of its remaining energy but also requires each sensor to be aware
of the minimum and the maximum energy among the sensors in its neighborhood
(i.e. within the same sensing area). Next, we propose two different strategies that
the sensors can use to eslimate the minimum and the maximm energy of sensors in
their neighborhood.

The first strategy to solve this problem ig to let each sensor include the value of
its remaining energy e(t) in the header of cach packet transmitted. Basically, each
sensor uses two internal variables to keep track of its estimation of the minimumn
and the maximum energy among the sensors in its sensing area. Each sensor shonld
initialize these variables to the current value of its own energy. When a sensor
receives a packet from another scnsor, it extracts the value of the current energy
of the transmitting sensor from the packet hcader. After that it uses this value to
update its estimatc of the minimum and the maximum energy in its sensing area. It
is worthwhile to mention that a sensor should not use all received packets to update
its internal variables as some of the received packets may be transmitted from sensors
outside its sensing area. Based on the strength of the received signal a sensor can
determine whether the transmitting sensor is within its sensing area or not, hence it
can decide whether to update the variables or to ignore the packet completely. Also,
when the energy of a scnsor changes, a sensor may need to update its estimation of

the minimum and the maximum energy in its sensing area. This way a sensor has
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access to up to date information about the minimum and the maximum energy of
sensors in its sensing area with minimum overhead, hence it can apply our proposed
scheme to adjust its sleeping schedule.

Qur second strategy to allow sensors estimate the minimum and the maximum
energy in their neighborhood is through integrating sleep scheduling with task man-
agement. In particular, information about the minimum and the maximum energy in
the sensing arca is obtained during the time the workforce for a given task is selected
{40, 39, 42].

In Scetion 1V.1, we proposed a bidding-based centralized approach for workforce
selection in which backbone sensors (i.e task coordinators) would have access to up
to date information about the remaining energy of sensors in their neighborhood.
After task completion and while forwarding aggregated rcsults toward the sink, a
backbone sensor can always attach the minimum and the maximum energy among
sensors in its neighborhood. Sensors that reccive this message should extract these
values and adjust their sleep schedule accordingly.

Also, in Section 1V.2, we proposed a distributed workforce selection protocol that
considers sensor energy while selecting the required workforce. The proposcd protocol
simply consisted of two phascs where in the first phase, the maximum energy among
sensors in the area of interest is detcrmined (please refer to subsection IV.2.1 for
details). Also in Section IV.3, we showed how the minimum cnergy among awake
sensots within the same sensing area can be evaluated using a similar approach.
Once the maximum and the minimum energy arc known, sensors can adjust their

sleep schedule as described in Subscction V.3.3.

V.5 PERFORMANCE EVALUATION

To verify our analytical results and to evaluate the performance of the scheduling
scheme proposed in Subsection V.3.3, we built a siinulator of a wireless sensor network
that can be configured to implement static, dynamic and encrgy-aware scheduling
schemes. In our simulation, we assumed that sensors are cquipped with necessary
hardware to estimate their remaining energy, also we assumed that the header of
each packet transmitted by a sensor contains the current remaining energy of the
transmitting sensor. For static scheduling, awake time T, was set to 10 time units
and sleep time 7, was set to 90 time units (a sensot is awake 10% of the time). In

dynamic scheduling, awake and sleep times was selected uniformly from the ranges
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[1,9] and [1, 89] respectively (on the average a sensor is awake 10% of the time). We
used the same settings of dynamic scheduling in our energy-aware scheduling scheme.

For the simulation configuration, we assumed a square deployment arca of size
100m x 100m. We adopted a rcactive tasking model which assumes the existence
of a powerful sink node placed at the origin and responsible for assigning tasks to
sensors according to a Poisson point process. A task is defined using its position
(z,%) and QoS expressed in terms of required workforce w. Each task is assumed
to consume one unit of sensor energy. Sensors had a transmission range of 25m and
a sensing range of 15m. Unless mentioned otherwise, we assumed that each scnsor
starts with 50 units of cnergy.

Recalling the definition of the a-reliable lifctime of the nctwork given in Chapter
IV, to show the impact of using different scheduling protocols on network reliable-
lifetime, we ran our simulator using the three scheduling schemes presented in Section
V.3 and measured the 0.20 reliable-lifetime of the network. Figure 38(a) compares
the average number of tasks the network can exccute throughout its 0.2-reliable-
lifetime using different. scheduling protocols. The figure assumes different network
densities ranging from 0.1 to 1.0 sensors/m?. Interestingly, the number of tasks
executed when using our energy-aware scheduling scheme is hardly higher than its
counterpart valnes when using static or dynamic scheduling schemes. Although, this
might imply that onr energy-aware protocol is not very useful in extending network
lifetime, however a deeper insight showed that this conclusion is incorrect.

While recrujting the workforce for some tasks cspecially in later stages of the
network lifetime, the number of sensors available at the task position may be less than
the minimum size of the workforce specified in QoS requirements. Hence, those tasks
are under-recruited and executed using whatever is available even if that number
is much lower than what was specified in QoS requirements. This situation gets
worse when the variations between sensor energy increase. For instance, if at a late
stage of the network lifetime all sensors within a certain area have expired except
for a single sensor which has ¢ units of energy remaining, then the nctwork can
assume incorrectly that it can exccute up to ¢ additional tasks, irrespective of the
workforce size required by these tasks. Fortunately, using technigues that consume
sensor encrgy evenly reduces the probability that such a scenario can happen. By fhe
time the first sensor within a certain area is about to expire, the remaining sensors

within the same arca will be about to expire as well. llence under-recruiting oceurs
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for a small number of tasks and at the very late stages in the life of the network.
Our explanation is confirmed by Figure 38(b) that shows for dillerent scheduling
protocols the percentage of the executed tasks that are under-rccruited. On the
average, only about 5% of the tasks executed on networks running Energy-Aware
scheduling are under-recruited compared to around 25% of the tasks executed on
networks implementing static or dynamic scheduling,.

Figure 38(c) shows the number of reliable tasks executed by dillerent protocols.
By reliable tasks, we mean tasks that were exeented while satisfying their required
level of QoS {i.e. number of sensors participating in each task is greater than or
equal to the required workforce specified in the task QoS requirements). As shown in
Figure 38(c), using Energy-Aware scheduling increases reliable-networl lifetime for
different network sizes by around 18.1%. DBefore leaving this point, it is instructive
to note that the average number of executed tasks during the network 0.2 reliable-
lifetime when using static schednling and dynamic scheduling is almost the same.
This result is consistent with the theoretical results, as for any dynamic scheduling
scheme onc can always construct an equivalent static scheme where the sleep and
awake times of sensors are fixed at the averages ol the dynamic scheme.

Figure 39(a) shows the distribution of sensor energy during subsequent stages of
the network lifetime when using static scheduling. For clarity of prescntation, we
represented diflerent stages by different colors. Figures 39(b), and 39(c) respectively
show sensor energy distribution in case of dynamic scheduling and energy-awarc
scheduling. Apparently, when using static and dynamic scheduling as time passes
and network ages, the energy of sensors spans a broad range of the whole energy
spectrum which implics severely unbalanced consumption of sensor energy. On the
other hand, using energy-aware scheduling can bound variations in sensor energy
within around 4 energy levels in different stages of Lthe network lifetime which implics
balanced consumption of scnsor energy.

Figure 40 summarizes sensor energy distribution patterns for different scheduling
schemes and diffetent network densities. In particular, the figure compares the av-
erage width of sensor energy spectrum throughout the network 0.2-reliable lifetime
for different network densities ranging from 0.1 to 1.0 sensors/m?*. To estimate the
average width of sensor encrgy spectrumn, we nsed the same formula we used earlier

in Chapter IV (i.e. equation {36)).
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Figurc 40 reveals that the average width of sensor energy spectrum of energy-
aware scheduling is much narrower than the width obtained when using other
schemes. Moreover, althongh it is not shown here duc to limited space. we found
that the spectrum width for static and dynamic scheduling schemes gets even larger
when sensor initial energy was set to larger values (e.g 70 or 100 units).

The large variations in sensor energy when using static or dynamic scheduling
protocols makes one expect that many of the heavily loaded sensors would die out
at an early stage of the network lifetime. Typically, when a large number of sensors
which reside at some spot die out, the network density at this spot decreases. Figures
41-(a), 41-(b), and 41-(c) capture this phenomenon when using different workforce

selection protocols with initial deployment densities of 0.3, 0.7, and 1.0 respectively.

As shown in Figure 41, the degradation in network density for static and dynamic
scheduling starts at relatively an earlier stage comparcd to energy-awarc scheduling.
Table 4 lists the percentage of the network lifetime lived before the network density
starts to degrade for different schemes.

The degradation in network density can eventually lead to the creation of cnergy
holes. We conducted a set of experiments to capture the impact of different scheduling

protocols on the rate at which holes appear in the network. Figure 42 compares the
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TABLE 4: Percentage of network lifetime lived before density degrades

Density | Static | Dynamic | Energy-Aware
0.3 64.0 64.3 90.8
0.7 54.2 54.4 93.4
1.0 52.4 2.7 03.3

growth rate of energy holes using static, dynamic and energy-aware scheduling under
different deployment densities. The initial deplovment densities of Figures 42-(a),12-
(b), and 42-(f) are respectively 0.3, 0.7, and 1.0. The steep slope of the curve of the
energy-aware scheduling protocol shows that it can reduce the rate at which holes

appear in the network under different network densities.
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CHAPTER VI

CONCLUSIONS

This work has cxplored the construction and the advantages of having a virtual
hackbone for WSNs. Specifically, we proposed a new backbone construction protocol
for WSNs where, in addition to the tiny sensors, several more powerful devices known
as sinks have been deploved. The protocol works equally well with static or mohile
sinks as long as they are capable of omnidirectional as well as directional transmission.
[nitially, the deployment area around a given sink is tiled using identical regular
hexagons. Backbone schsors are selected to be the closest sensors to the centers of
the hexagons they represent. Collectively, all the backbone scnsors in a certain disk
around the sink is referred to as the “Network Backbone” relative to that sink. We
also introduced the concept of “Backbone Switching”, that can be used to create
alternative backbones by rotating the tiling hexagons for different arbitrary angles.
When several alternative backbones are available, the network can periodically switch
between them to balance energy consumption among sensors.

The main advantage of the constructed backbone is to help mitigate many of
the challenges inherent to sensor networks. In addition to sensor localization, the
proposed protocol provides an implicit clustering mechanism in which each hexagon
represents a cluster and the backbone sensor around the center of the hexagon is the
cluster head. Moreover, we showed how the proposed backbone can simplify many of
network management tasks including data aggregation and geographic routing. We
also point to how using mobile sinks on top of our backbone can reduce the growth
rate of cnergy holes within the network.

In addition to that, we showed the usefulness of the proposed backbone in energy
aware task management and workforce sclection. We started by demonstrating how
tasking sensors improperly can affect the reliability and ihe durability of the neiwork
by reducing network density, creating energy holes, and isolating the network into
disconnected islands. After that, we proposed one centralized and another distributed
workforce selection protocols for maximizing network lifetime by balancing task load
among scnsors within the same sensing area. The centralized approach depends
on running a contention-based bidding rounds to select required workforce for any
task based on sensor remaining cnergy. Backbone sensors play a crucial rule in

coordinating the bidding process and in aggregating and forwarding results to the sink
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node after task completion. On the other hand, the distributed approach works in
two phases. In the first phase, sensors within the task sensing range runs a distributed
protocol to estimate the maximum energy among themselves. After that, and in the
second phasc sensors join the workforce in decision rounds based on their distance
to the Lask center and the difference between their current energy and the maximum
energy determined in the first phase. Again, alter task completion, sensory results
are aggregated and forwarded toward the sink node through backbone sensors.

Due to the importance of using an appropriate sleep scheduling scheme on the
coverage capability of the network, we dedicated a separate chapter to discuss difter-
ent scheduling schemes and to demonstrate how our backbone can be useful for this
purpose. In Chapter V, We showed that when the monitored events in an area occur
according to a Poisson process, the PAST'A property can be applied to the effective
sensor density (ESD) (i.c. density of awake sensors) as scen from the perspective of
the monitored events. Specifically, we showed that under a mild technical condition
the limiting {raction of the events that find k awake sensors in a certain area equals
the fraction of time that this area is under the surveillance of k awake sensors. This
result has a great importance as it jussifies using the time-invariant probability dis-
tribution of k-coverage to analyze diflerent scheduling schemes. We also modeled the
sleep-awake cycle of a sensor as a renewal process and derived a general expression
for the limiting (i.e. time-independent) probability of a sensor to be awake at a given
moment. ‘10 the best of our knowledge this is the first time such a result is obtained
for sensor networks.

We have developed a rigorous mathematical analysis on several scheduling
schemes including static, dynamic, and energy-aware scheduling. We also brielly
discussed the problems inherent in cach of these scheme. We proposed a backbone-
guided energy-aware scheduling scheme designed to extend network reliable lifetime
by balancing energy consumption among scnsor nodes. The main idea of the pro-
posed scheme is to continuously and probabilistically adjust slecp and awake times
of sengors based on differences in their remaining energy. In particular, the proposed
scheme trics to prolong the sleeping periods of sensors with relatively low energy
and compensate for their absence by shortening sleeping periods of sensors with rel-
atively high energy. The main challenge is to do this without reducing the effective
density of the network, To achieve this goal, we conducted a probabilistic analysis

to determine necessary paramecters needed for the adjustment process.
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We have conducted extensive simulation experiments to simulate the performance
of our backbone under different network sizes and network densities. We also consid-
ered different deployments in noisy and noise-ftee environments. Simulation results
showed that our backbone construction protocol can construct strongly connected
backbones that is well distributed across the whole network. The results also proved
that our backbone can be very useful in mitigating many of the typical challenges
inherent to sensor network design. For instance, when we compared the localization
accuracy achieved by our backbone against other localization techniques known in
the literature, simulation results showed that using the same number of sink nodes
(anchors), the localization accuracy achieved by our backbone is higher than those
achieved by (e.g. DV-HOP and APIT). Simulation results also demonstrated that
backbone-guided task management and scheduling can increase the rcliable-lifetime
of the network by evenly consuming sensors cnergy and reducing energy differences

between sensors within the same sensing area.

VI.1 FUTURE RESEARCH DIRECTIONS

Despite the encouraging results, many important challenges and research questions
remained unanswercd. In this section, we list several future research dircctions

through which this work can be extended.

e In the construction protocol, it would be useful to reduce the amount of inaccu-
racy due to RSS; one way around this difficulty would be Lo estimate the initial
distance through several readings and to continuously update this estimate

form different messages reccived throughout the networl lifetime.

e Given the limited on-board energy budget available to sensors, it would be of
intercst to see how far can one streamline the computational requirements of the
construction protocol. In other words, in the current version of the construction
protocol, backbone sensors in different columns are sclected simultaneously,
can we also parallelize the selection of hackbone sensors in different rows? The
answer to this question is yes, one way to do this is to let the sink node estimate
the positions of all the hexagon centers and to broadcast them to all the sensots.
After that, scnsors in different hexagons can simultancously estimate the closest

sensor to the center of each hexagon.
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e Sensor Synchronization is one of the most challenging problems in sensor net-
works. It would be of interest to shew, if possible, how our proposed backbone

can be useful in simplifying the synchronization problem.

» Network security is something that we completely overlooked in our presented
work. Revisiting the proposed protocols form a security point of view would

definitely open a new dimension of research challenges.

This all promise to be exciting rescarch directions for future work.
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APPENDIX A

DISTRIBUTION AND EXPECTATION OF

Given the uniformly distributed random variables X and Y defined as shown below,
X € Ula,b], 0<a<bh
Y € Ule,d], 0<e<d

We define the random variable 7 as,
X

Xy
We arc interested in Fz(Z), VZ € R as well as E[Z].

Since X and Y are positive, so is Z. Morcover, It is straightforward to realize that,

z D<a+re

[/

< A<
a+d~ T b+e
Consequently,
a
Fz(ZV=0 V7 <
2(2) “a+d
and ;
g =1 VZ >
F2(2) b+ d

llence, from now on, we assume that

a b
A= T
{ +db+c]
Initially, we observe that,

X X . 1—2=z
< =< . <
{X”_z}@{z_xnf}@{x . _y}

Now consider the planar domain

=

&

1—2
D= {(u.,-?;)lr:-:§u§b;c§w§d; ugfu}

Tn this notation, Vz € [-%5, -],

atd’ bto

- | D|
Fz(z) = Pllu,v) € D] = ———7——=
22) = Pl(u.v) € D] = o=

Consider the line § defined by the following equation
1—=z
v = u
z

Each value of z determines the slope of the line 4 which in turn determines the
boundary of the area of interest ).

Now, we distinguish between the following two cases.
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Y

Casel(ad<hc) Case 2 (ad >bc}

FIG. 43: An illustration of different possible cases or different vanges of the random
variables X and Y

A.0.1 Case 1 {ad < be)

This is equivalent to % < £. In other words, the slope of the line passes through (0, 0)
and (b,d) does not exceed the slope of the line passes through (0,0) and (a,c). As
shown in Figure 44, depending on where ¢ intersects with the line of equation v = ¢,

we have the following subcases:

e Subcase 1.I: 2 < z < -4 the intersection points of the linc v = =2y with

the rectangle are (a, (]_z—z)") and (7L, d). It follows that our area of interest

D is the triangle whose vertices are the points (a,d), (a, (l_zz)a), and (£ d)

1-z?

which can be evaluated as,

o= () (-5

[(a+d)z — a]?
22(1 — z)

f

Hence, the reguired probability is evaluated by,

[(a+d)z —a)?

Pz <=l = TFa

(90)

e Subcase 1.2: - <z < ﬁﬁ! the intersection points of the line v = 1%1‘.*_. with

the rectangle are (%5, ¢) and (%} d). In this subcase, D is the trapezoid whose
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2 ¢}, (6,¢), (a,d),and (7L, d). Hence,

vertices arc the points (7

D] = (4;6) Kl“za)Jr(lmzwaﬂ
- %%[(Qa—derc)z—Qa]

(d—)[(2e + d + )z — 24}
2(1 = z)(d—¢)(b—u)
(d— &) (20 + d+ )z — 2a]
Al —z)

(91)

o Subcase 1.3: 373 <2 < -, the intersection points are (%, ¢) and (b, __(1—;);;)‘

PR

In this subcase, apparently, it is more appealing to start by evaluating the

area of D) which is a triangle whose vertices arc the points (#5,¢) (b, ¢}, and

(b, =28 The area of D can be cvaluated as,

E . %(b—lzfz‘) ((l—zz)bdc)

22(1 — 2)
Consequently,
_ | D] _ D]
PUZ<20 = Gon—0 ' W=t -0
[b—(b+c)z]?
Lo Az(l —z) (%2)

From equations (90},(91), and (92), it follows that in the case ad < be, Fz(z) can
be delined as,

'8

0 , 2 <
S da<i<il
() = { @lldidetdl a- <5 < (93)
1 Gt b g b
[ 1 <z

A.0.2 Case 2 (ad > bo)

The casc condition is equivalent to % > £. In other wards, the slope of the line
passes through (0,0) and (b, d) exceeds the slope of the line passes through (0,0) and

(a,c). In gencral, case 2 is very similar to case 1 and can be handled in a similar
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YI _ b
'2 y brd
(0.4) : ,,-"l(b,d)
b
_p b
(U,c) - (b, C)
4 (b,(]) L 4
v

F1G. 44: An illustration of the different subcases of Case 1

way. Again, and as shown in Figure 45, depending on where § intersects with the

line of cquation ¢ = ¢, we have the following subcases:

l-z
z

@ with

vy F . i _b___ : - : 1 ay o=
e Subcase 2.1: 2o < z < 7, the intersection points of the line v
zd

the rectangle are (o, @) and (£%,d). Tt follows that our area of interest,

D, is the triangle whose vertices are the points (a, d), (a, (lz_z)a) and ({_%,d)

which can be evaluated as,

[(6+ d)z — a?

Dl = 2z(1 — 2)

Hence, the required probability is evaluated by,

[(a+d)z —al®

Az(l—2) (94)

Pl{z <z}] =

» Subcase 2.2: bid < z < %, the intersection points of the linc v = 1%2.55 with

the rectangle are (o, {1_;)”') and (b, Elz—z)b) In this subcase, D is the trapczoid




FIG. 45: An dlustration of the different subcases of Case 2

whose vertices arc the points (a, @), (a,d), (b,d), and (&b, ('—_ZZ—E) Hence,

- ) o)

= (bz_z“") [(2d+ a+ b)z —a—b)
(b—a)|[(2d+a+b)z—a—b
22(d — e)(b—a)
(b—a)[(2d + o+ b)z —a — b]

- Az (95)

e Subcase 2.3 - <z < ﬁ: the intersection points are (%, ¢) and (b, (,l,—zﬁ)

ot — 1—2?

Again, it is more appealing to start by evaluating the area of D which is a

triangle whose vertices are the points (=, ¢) (b, ¢}, and (b, Q‘;—}b) The area of

1—z1
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D) can be evaluated as,

o= 3o ) (52

B~ (b+ ¢)e)?

22(1 —2)
Consequently,
i _ | D] L |D]
PUZ<2)] = oap—a = =00 -0
_ [b— (b+ ¢)z]?
= 1= Az(l —z) (96)

From equations (94),(95), and (96), it follows that in the case ad > be, I'z(2) can

he defined as follows,

4

0 <
[(‘zrz“({%;)z s sa< b%—d
FZ(Z) = { (h—u)[[?dt;&;l-b}z‘ a b ﬁ <z ;:3__( (97)
==
\ 1 ;:;_‘_. <z

A.1 EVALUATING E[Z]

Now, we turn our attention to the evalnation of E[Z]. In particular, we show that,
& — i b+c d? — 2 o+c d? —a? a+d
| 1
A ln(b+d)+ A n(b+d)+ AT u-+(:)
2 b—a b d—c
—lnfl —In{l —
+An( +a-+c)+An(+b+c)
l ]_’b-—ﬂ.- r:f,?l 1+d—r:
" +d AT a+te

where A = 2(b —a){d — ¢).
Because Lhe distribution function is different, we again have the same two cases

Bo | =
+

Elevy] =

O] -

L] =

we pointed out earlier.



A.1.1 Case 1 (ad < bo):

127

'l'o prove this, we find it more approptiate to start the evaluation of /4[7] using the

/ dz—i—/ [1 — Fz(2)]dz+
U i

following formula,

13]7]

[77[L - Fz(2)] dz

e

However,

IR

atd

/m[l — Fz(2)dz
0

htd

[

h
]a
i

(

aro alz —d’z —a?
Az(l = z2)

1—F

atd

_ ({u+d)z— a)?

Az(l —z}

_(a+ d)?z?

dz

—2a(a + d)z + 6°

—dz

Azl —2)

(98)

(99)

Ee N (a+d)? (1—2z—1 +i 2a(a + d)z — o? dz
a A 1 -2z A z(1 —2)
utd)? a{d—-c) ate —ulz—d%x42a%: a?
L+ ( A ) (atdy{ote) + fﬂi: Qz(lf -z ) dz (100)
1 [ (a2 — d?) ol
dz = — / dz
A i (1—z) 2(1—2z)
l wre (02 —d?)  o? a?
- T T - a®
n+d Z s
N 2
= — / ; ¢ _ % g
A (1—2z) z
2 ate—a ] i
= @ (ln ———a::{_ﬂ) % (l “")
AN\ ST ard
d? a+d ¢ @’ a+d
- = - — (101
A (ln s —|—ln ) A ( 01)

Substituting cquation {101} into equation (100) yields,

n
a4

[1— Fz(2)] dz

@
el

d2

2
a lla--}d

atc

A

d ln-

n{d—ac)

+ (ot (ned)

[1 + [u+d} } (102)
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1)

e

And also,

/mu — Fy(z))dz
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o (d —)(2a+ d+¢)z — 2d]
/u - Al —z) 4z
B (d—c)(20+d+ c)(1—2z— 1) N 2a(d — )
o Al —2) Al —2)

b
B+ (d—c){2a+d+c) 2a{d ¢) -{d -c){2atd re)
/ 1+ x + ATT=2) dz

dz

r}
adr

]ﬁ Ap{d—o)2a+d+e  (d—e){d+

— dz
- A Al — 2
(= QO—w+Qurdte)) | (bo—ad) | (d?-c%) -2

A ’ (e} (Bad} fa¥ 1- #

& 2 a & 2 d (be—ad){d—c){2b+d+c) .
In 33 + A In ¢ + Ao+ (B+d) (103)

ic
fa¥ bld

L fEe (b (bt )2)?
- /h Az(l—z az

I )
1 02— 2b+ b + (b + )75
AS 21— z)

btk

dz

i e b2 + [ 2(b+c)b . (h-i—(.'}z(l—z—'l) d”
A \ z 1—z 1—z 1-=z =

BT , 02 VP 4+2be—(b+c)?
_ 1 b2, 92
= A/, b+ ¢) +z: —

b+ be—d) 1 $52+ &2
A (B+d)i{b+e) A 202 1=z

b(b+ c) 1{ ., = =
2(b—a)(b+d)+A(b o 255~ ¢l 2

bt bid

b(b+c} 1 bte ¢ bt
T T I—aibt+d) + A (_b2 in F;——T-tr? - CQ In d + ('2 In F:Id
A d = b+te bb+ )
= —ln-+ n —
AYeTTA "ird 2wt d)

dz

(104)

Now, gathering all the pieces together.

o _i S 2 x 2 22 . 2 42
E[Z] = m—i—l:ﬁi—i_fﬂ( —I—igln?—:—i—d&a lnzif—i—dgf‘ lngﬁ—}—‘:& ln:_:_j
afd—e) u.@—(.'){a+d)2 {bc ad){d c)(2b4-d4e) . b{b+c)
g @ T arerdad T Maroerd) Sy o d) (105)
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[nterestingly, the non-logarithmic terms can be simplified as follows,

;o (be—ad)(d—c}(2b+d+c)  blb+e)
v Alo+e)(b+d) 2(h — a)(b + d)
 {be—ad)(b+ )+ (b4 d)) — b6+ c)a + )
B 2b—a)ae+o)(b+d)
~be(b+ o) Fbelb+d) —ad(b+ ¢) —ad(b+d) — balb + ) —be(b + )
B 26— a)a+c)(b+d)
_belb+d) —ad(b+ ) —ad(b+ d) — ba{b+ )
B 2(h —a){a+ )b+ d)
obelb+d) —ad(b+d) —alb+ )b+ d)
B 2(b —a)(e + )b+ d)
be — ab — we — ad
T 2b—w(e+o
_abe—a%b — a’c - a’d 4 bed — abd — acd — ad®
B 2(b—a)a+)a+d)
Lo a(d — ¢) a{d — c)(a+ d)?
27 e+ ole+d | (at+oe+dA
_ 2a{d—c)(b—a)+ala+ d)’
N 2Ha+c)a+d)(b—a)
_ 2a{d—c)(b—a)+ala+d)?
- 2(a + ¢}a + d)(b— u)
_a(2bd — 2be 4 20c+ o + d7)
N 20+ o+ d){(b—a)
L+ L - abc—aQb—azc—azd+bcd.—;{aﬁo_’.;;{&d;;cg:ij;abd—Qabc+2fr.2c+a3+an!2
_  abe—a?b—e?e—oldtbrd—obd—aed—od® + 2ebd—2abet+ 202 c a3 tad?
= 200 a)fatciard)
 —ad{o+ o)+ (e + Obd — abla+ ¢) + *{c + a)
B 2b—a)(a+ e+ d)
 —ad+bd—ab+d?
 2(b—a)la+d)
_db—a) —alb—a)
o 2b—a)e+d)
d—u
 2(a+d) (106)
Substituting the value of equation (106) into equation (105), £[Z] can be written as,
a d—a d*—a® ao+d d&~F ate A bic
Blzl = Tt sma g T3 Maret A Prrdt A “ria

B l+c2-b?1nb+c+d‘—czlna+c+dg—a?lnu+d (107)
9 A h+d A b+d A o+




Which can be further simplified and rewritten in any of the following formats,

1 29 - > — 2

In(a +¢) —

a+d
4+

Elz] = 5t 4 In(d + ¢) — A In(b + d) + A
_ 2 2 _ 42
il ‘Qm@+dy%f alﬂu+d%~dA01Ma+@
1 - & —c?
— S S (4 ) — (ot ) +
a4* — a?
A {(In{e +d) — In{a + ¢))
1 &- b —d?
= 53T & In{b +c) + A In(b + d) +
2 _ 2 a2
4 AL lufa -+ c)+d2 4 In{a + d)
and
1 & b+e B b+d £ b+d o
BEl = gt Ay e A e a3 ard A"
and also,

. 1 ? b—a b d—c
EZ] = §—|— Zln (l—l— " c) + Kln (1 + b—l—(_‘.) —
a

A.1.2 Case 2 (ad > bo):

Again, we start by writing F[Z] as lollows,

a B

ElZ] — Amﬂ—ﬁﬂﬂMz “

fﬁL&%ﬂ&+/mﬂ—&@Mz

a

b _a_

btd ot

Now, looking at the terms of equation (111) separately yields,
] h .
= ‘ 2] ((a+ d)z — a)?

/ﬂ [l—f‘[,(z)]dz = /ﬂ l—mdz

i 2+l

Fa L (o + d)?2% — 2u({a - d)z + a* s
Az(1—z) -

@
2+l

tf”@+/wu—&mmm-
U .
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(Infa+ ¢} ~ In(b+ d)) +

(108)

(109)

(110)

(111)

[F3 A A

wtd

1—2=2

5 ) wramrd As(1=2)

w 2 -z = ; (a+d)z — a?
/:+ ]+(ﬁ.—|—d) ‘(1 1)+i_20(ﬁ+d) a

201 — z)

(1+ (a'}"d-)z) di{b—a} fh:% a’z d’zi2a’z a® dz
a4

L&

(112)
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However,
/Hid a?z — d’z — o? g 1 -/T (a? — d?) a? p
———dz = — - 23
o Az(l — z) A (1-—2) z(1 — 2)
1 (% (2 —d) @ a?
=3 =2 =z (-2
" r.i:—d ( z z z
1 fFa —d? a?
- Z/ = 2
" n:—d ( o z) z
; bid b b
= d—z(ln ;'d’ )—ﬁ(lnﬂ)
oted—a 1]
A ::+<£ A a+d
d*—o® a+d a* b
1 — —In— 113
A "b+d A a (113)
Substituting equation (113) into equation (112) yields,
]
B+ \ 2_421 @ a2 d{b—a : a+d)?
/u [1—Fz(z)]dz = &5 —nl 4 (a-‘rEi)(b-i)—d) [l + led) } (114)
ol
And similarly,
o aE b—a)(2d+ a+bz—a—b
A+ g Az
m A—(h—a)2d+a+ b B —a
_ / (h—a)(2d+a-+b) n a
b A Az
bt
(a—b(2c+a+b) { a b )_I_.’)Q—a?l o
= - n
A a+c b+d A 57*;‘_—&
{a—bt¥(2c | at b){ad-be) be —q? b+d B2 —n? o
Aaraprg T & W et txIng (115)
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And also,

e

‘/j“‘rl(z”d' - /_ R

o (b — (b+ ¢)2)? 0

1/’T B —2b+ )bz + (b+ )?22

= — dz

A ﬁ 2(1—3)

. i/%& b2 2b+ o (b+c)_(1-z_1)n,2r
A a2 1—z 1—=z 1—2z

1 e , R4 26— (b+c)?

= z/$ —(b+¢)+;— — dz

_(bre® e /H b2 c
B A (u—l—( b+c A 1—,»,

broe—h
= _ﬂj—)i # In b+f Zln J-':+t
) A o —a

2(0' + C)(C - u.—‘,—t: a-te

e(b+¢) B—32 u+e B b
= I —ln - 11
2(a + c}{e—d) + A Thte + A m I (L16)

Now, gathering all the picces together,

ElZ] =

o d(b — a) {l (a,+d,)2] (@ —8)(2¢ + a + b)(ad — be)
cid Grd+d A Ala+ b+ d)
elb+ ¢) d*—a®> o+d * b ¥ —a* b+d
In ——In—+ In +

2(a + c)(c — d) A b+d A a A a+e

—af o BP-0 a+c ¥ b
In — ] ZnZ 117
A i N T TN (117)

Again, the non-logarithmic terms can be simplified as follows,

I3

(@ —b)(2e+ a+ b)(ad — be) elb+ )
Ale+ ¢)(b+ d) 2{a+ )¢~ d)
(2¢+ a+ b)(be —ad) — (b + ) (b+d)
200+ d){a + ¢)(d — ¢)

(26c2 — 20cd + abe — a?d + e — abd) — (b%c + bed + bP + Ad)
200+ d)(a + c){d —¢)

be? — 2acd + abe — o®d — abd — bed — 2d

2(b+ d)(a + c)(d — ¢)

(ubr 262 cdta?be—odd—albd—ne Zd (bczd 2ucd® —o2d? —abd? -bod® CZd-z}
2{b rd}{o+c){at+d) (d-c)




I4'—=

db—a) [ (a+d)?
ot Db+ d) {H }
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A

d(b —a) (2bd — 2ad — 2bc + 20¢) + (0% + 2ad + &%)

(a+ d)(b+ d) 2(b —a)(d —¢)
2bd? — 2bed + 2acd + o?d + d*

200+ )b+ d){d—0)

(2abd? — 20bed + 2a%cd + o®d + ad®) + (2bed?® — 2b%d + 2ac?d + a*ed + dP)

2(e + d)(b+ d)(a+ e){d—¢)

[(:.h(.'2 —202ed4alle—utd—abd abed—e d)-‘r(b(_:2d —Dued? fabid—a2d? —abd?  bed? —ctd? ) +

2(b+d}{atc)(otd){d—c)

(2abd? -Zabed+2o2cd+a’ dtad?)+{20cd?  2be?d + 2acd+oed+od?)

2(n+d)(b+di{a+ci(d )

Rearranging terms,

Iy + 14

(abd® — abed + bed? — btd + ad® — acd® + cd® — Ad?) N

o+ b+ d)at d—0)
(—abd + o2be — abed + ab® — ?d® + aPed — oed? + oc’d)

2a+ )b+ d)(a+ c)d—c)

di{abd —abed-bed bc? | ad? —acddod?—cd) —ufubd—abetbed-- be? 1 ad® —acd+ed® —c2d)

2{a t )b +dYa+c}d—e)
(d — a)((abd — abe + bed — b)) + (ad® — acd + ed® — Ad))

e+ d)(b+ d){a+ c)(d —c)
(d — a)(bod — ac+ cd — &) + dad — ac + cd — %))

20a+ )b+ d){a+c){d—1c)
(d — a)(b+ d){(ad ~ uc+ cd — )

2{a + d)(b+ d)(a+ c)(d — ¢)
(d—a)(a(d—c)+ c(d — )

2{a+ d){a+ c)(d—c)
(d—a)a+){d—¢)
2(a + &)+ e)(d — ¢)
d—a
2{u+d)

(118)

By substituting the value of equation (118) into equation (117}, yields [7[Z] as,

ElZ]

E[Z]

N d-— d2 a2 K: B — b4l B —e2 4
atd + 2(a -iﬂd} + J’_\a In gld + &( In i + Ar In (;-l_-:;
1+d2—u21 a—I—d}bQ—agl b+-d+52+(:21 a+c¢
- n n 1

2 A b+d A a+e A b+ e

(119)

We can relate equation (107) to equation (119) by the following nice argument,

E[Z] = E[ al }:E[w}

X+Y
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By exchanging the random variables X < Y, and their corresponding ranges
¢ = ¢, and b < d, one can convert from case 1 to case 2 and vice versa. More
interestingly, evalualing the difference between equation (107) and equation{119)

vields,

k1!,2—!;'2]“r’)—i—r:_i_d?—(?] u+c+d2—u? a+d
- 11 11

A h4+d A b+d A @+ ¢
1 d—a? a4+4d F—-0> b+d F-0F a+c
- — In — In — In

2 A b+ d A a4+ A b+c
1

= A ((@ =8+ — ) In(h + o)+

W=+ —d®—a>+d* =0 +a) In(b+ d)+
(P -+ —d*+ 0 —a? =V + A In(a+ )+
(

@ - — & +d" Y In{a+d)) =0 (120)

Iifference

| S

Which implies that equation (107) and equation{119} are equal, completing the

proof.
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