
Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Theses &
Disssertations

Electrical & Computer Engineering

Summer 2014

IDPAL – A Partially-Adiabatic Energy-Efficient
Logic Family: Theory and Applications to Secure
Computing
Mihail T. Cutitaru
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Hardware Systems Commons, Power and Energy Commons, Theory and Algorithms
Commons, and the VLSI and Circuits, Embedded and Hardware Systems Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted

for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more

information, please contact digitalcommons@odu.edu.

Recommended Citation
Cutitaru, Mihail T.. "IDPAL – A Partially-Adiabatic Energy-Efficient Logic Family: Theory and Applications to Secure Computing"
(2014). Doctor of Philosophy (PhD), dissertation, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/
v8qq-6742
https://digitalcommons.odu.edu/ece_etds/63

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/63?utm_source=digitalcommons.odu.edu%2Fece_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


IDPAL -  A PARTIALLY-ADIABATIC ENERGY-EFFICIENT 
LOGIC FAMILY: THEORY AND APPLICATIONS TO SECURE 

COMPUTING

Mihail T. Cutitaru 
B.S. May 2010, Old Dominion University

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY 
August 2014

by

Lee A. Belfore, II (OreCtor

Chung-Hao Chen (Member]

Khan Iftekharuddin (Membe



ABSTRACT

IDPAL -  A PARTIALLY-ADIABATIC ENERGY-EFFICIENT 
LOGIC FAMILY: THEORY AND APPLICATIONS TO SECURE 

COMPUTING

Mihail T. Cutitaru 
Old Dominion University, 2014 
Director: Dr. Lee A. Belfore, II

Low-power circuits and issues associated with them have gained a significant amount 
of attention in recent years due to the boom in portable electronic devices. Historically, 
low-power operation relied heavily on technology scaling and reduced operating voltage, 
however this trend has been slowing down recently due to the increased power density 
on chips. This dissertation introduces a new very-low power partially-adiabatic logic 
family called Input-Decoupled Partially-Adiabatic Logic (IDPAL) with applications in 
low-power circuits. Experimental results show that IDPAL reduces energy usage by 79% 
compared to equivalent CMOS implementations and by 25% when compared to the best 
adiabatic implementation. Experiments ranging from a simple buffer/inverter up to a 32- 
bit multiplier are explored and result in consistent energy savings, showing that IDPAL 
could be a viable candidate for a low-power circuit implementation.

This work also shows an application of IDPAL to secure low-power circuits against 
power analysis attacks. It is often assumed that encryption algorithms are perfectly secure 
against attacks, however, most times attacks using side channels on the hardware imple
mentation of an encryption operation are not investigated. Power analysis attacks are a 
subset of side channel attacks and can be implemented by measuring the power used by 
a circuit during an encryption operation in order to obtain secret information from the 
circuit under attack. Most of the previously proposed solutions for power analysis attacks 
use a large amount of power and are unsuitable for a low-power application. The almost- 
equal energy consumption for any given input in an IDPAL circuit suggests that this logic 
family is a good candidate for securing low-power circuits again power analysis attacks. 
Experimental results ranging from small circuits to large multipliers are performed and 
the power-analysis attack resistance of IDPAL is investigated. Results show that IDPAL 
circuits are not only low-power but also the most secure against power analysis attacks 
when compared to other adiabatic low-power circuits.



Finally, a hybrid adiabatic-CMOS microprocessor design is presented. The proposed 
microprocessor uses IDPAL for the implementation of circuits with high switching ac
tivity (e.g. ALU) and CMOS logic for other circuits (e.g. memory, controller). An 
adiabatic-CMOS interface for transforming adiabatic signals to square-wave signals is 
presented and issues associated with a hybrid implementation and their solutions are also 
discussed.
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CHAPTER I 

INTRODUCTION

The tremendous success of the microprocessor industry has been driven by the scala

bility of the transistors over the past 50 years according to Moore’s predictions [5]. Heat 

dissipation has become a major issue in circuit design given the high transistor density, 

even in the area of low power design. The usual solution has heavily relied on reducing the 

operating voltage with each decrease in feature size, but current processes are approach

ing the limits of scaling due to limitations on the threshold voltage of each technology 

node. Landauer noted [6] that the minimum energy dissipation per switching event will 

ideally be no less than &Tln2 J, where k  is Boltzmann’s constant and T is the operating 

temperature in degrees Kelvin. Many techniques are currently in use to reduce the power 

consumption of circuits, but the current value for energy dissipation per bit erased is still 

almost three orders of magnitude larger than the theoretical limit calculated by Landauer. 

This prompts for new solutions to reduce the energy dissipation in low power micropro

cessors in order to extend the battery life of devices.

Continued development and miniaturization of transistor features has allowed for a 

surge in the number of portable devices used daily by society. Current devices provide 

more processing power than full-size desktops from ten years ago, which has prompted 

some people to move their digital identities to these devices due to many security fea

tures embedded in applications used. In recent years, extensive research has shown
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that encryption modules in cellular phones, smart cards, and other specialized hard

ware are prone to attacks that use side channels for extraction of secret information 

[47, 62,66, 72,79, 80, 81, 82, 84, 85]. Side-channel attacks are attacks that gather secret 

information by exploiting channels other than the traditional communication channels in 

these devices. There is no indication in literature that any hardware security measures 

are implemented in current portable electronic devices, leaving them exposed for possible 

attacks because of the amount of information that an attacker stands to gain from a suc

cessful attempt. This problem suggests that power analysis attack countermeasures would 

be a valuable feature for low power electronic devices,

1.1 Review of Complementary Metal-Oxide Semiconductor Devices

The workhorse of the semiconductor industry for more than 50 years has been the 

Complementary Metal-Oxide Semiconductor (CMOS) process. CMOS circuits are built 

using two kinds of transistors: PMOS (p-channel metal-oxide-semiconductor field-effect 

transistor) and NMOS (n-channel metal-oxide-semiconductor field-effect transistor), ar

ranged in complementary networks. The PMOS networks implement the desired function 

and are called pull-up networks (PUN) and the NMOS networks implement the comple

mentary function and are called pull-down networks (PDN). CMOS circuits are digital 

circuits and, as such, take values at either of the two discrete potentials: High (‘1’ or 

Vdd) and Low (‘O’ or GND). Because of these two distinct values, charge is always be

ing shuffled from the source {Vdd) to the output nodes to change it to a ‘1’ or from the 

output nodes to the GND to change the value to a ‘O’. Furthermore, when no signals are
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changing, CMOS circuits consume very little power, making them an attractive choice for 

implementation of electronic circuits.

Energy dissipation in CMOS devices occurs due to three distinct components: 

static/leakage, short-circuit, and dynamic [7]. Static power dissipation occurs when the 

value of a node is kept constant and is due to the reverse current of the PN junctions in a 

transistor. Leakage power is due to the subthreshold conduction current present between 

the source and drain of a MOS device. The subthreshold conduction current can be de

creased by increasing the threshold voltage, although this also leads to the need for wider 

devices and higher dynamic energy dissipation. In larger technology nodes, the contri

bution of leakage energy dissipation is very small, however, with decreased feature sizes 

in modem processes, this component increases exponentially. The second component is 

the contribution from short circuit energy dissipation, which occurs when the output node 

switches values and both the PUN and PDN are briefly conducting at the same time form

ing a path between Vdd and GND. This is a very short event and has a small contribution 

to the overall energy dissipation. The last and largest component is the dynamic energy 

dissipation, also known as active losses. This occurs when a given combination of inputs 

causes the output node to switch values, either by charging or discharging. It is widely 

known that for a rail-to-rail voltage of Vdd and output node capacitance C, the energy re

quired to bring a node from GND to Vdd is £  =  CV2, with half of this energy dissipated in 

the transistor network as heat during charging. Since this component has the largest con

tribution to the overall power dissipation, the main focus of low power design has been to 

reduce it with every new technology node.



1.1.1 Low Power Devices and Techniques

Historically, CMOS circuits have been employed where low power consumption is 

desired. In many applications where the systems are operated at low frequencies, CMOS 

has performed well. The subject of low-power has not seen much interest for many years 

except for a small subset of devices such as medical implants. It was not until the prolif

eration of portable electronic devices and the continued technology scaling that the focus 

has shifted to low power design and challenges associated with it. Low power design 

was not an issue earlier since the device density was much smaller than it is now. Given 

Moore’s Law, we expect to have a larger number of faster transistors packaged in the same 

area, providing an opportunity for new low power technologies to allow the trend to con

tinue by providing more efficient heat dissipation and reducing the thermal impacts that 

result in circuit deterioration.

The miniaturization of transistor feature sizes has allowed for low power circuits to 

flourish and be used in many new areas. As an example, in the recent years we have seen 

explosive growth in the use of portable electronic devices, especially in the cell phone 

arena. It is now possible to check email, browse the Internet, and do many other useful 

activities from a handheld device, which was not possible a decade ago. However, this 

has also brought attention to many existing constraints, e.g. we want smaller, lighter, 

and more powerful devices than ever before. Traditional solutions, such as increasing the 

battery size (and consequently its weight) to provide longer battery life are not feasible [7]. 

Indeed, companies market external batteries to extend the battery life of a portable device 

by a few hours. However, this does not change the fact that with regular use, a modem
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smartphone lasts less than a day without needing a charge. The general conclusion is that 

batteries alone will not solve the low power problem and alternate solutions are highly 

desirable.

One of the easiest and most effective ways to reduce dynamic dissipation is by reduc

ing the operating voltage of a circuit, since energy dissipation is proportional to the square 

of the operating voltage (E — CV2). Many trade-offs are associated with voltage reduc

tion. Most significantly, a loss in performance is observed since transistors are slower 

because of the lower operating voltages. This is due to the non-linear scaling of the tran

sistor threshold voltage with the operating voltage in order to avoid leakage current. Noise 

immunity is also reduced given a lower voltage swing. Additionally, level converters are 

required in order to interface low swing signals to full swing signals.

Some of the other techniques for lower power are to reduce parasitic capacitance, 

switching frequency, and leakage and static currents. Reducing parasitic capacitance is 

one of the standard steps in modem Computer-Aided Design (CAD) software, although 

a very thorough understanding of the full circuit design process is required. Switching 

frequency reduction has the same effect as reducing capacitance as it is best applied to 

nodes with high capacitance, so nodes with smaller capacitances can only see a small 

reduction in power consumption. Reducing the switching frequency also has positive 

impact on the reliability of a chip. Static and leakage currents are the most difficult to 

control since they are highly dependent on the process technology, although some level of 

control can be achieved by transistor sizing and layout [7].



All low power techniques attempt to reduce the energy dissipation by making strate

gic changes to CMOS circuit parameters; however, they do not solve the issue that energy 

dissipation is a function of how CMOS circuits operate. A revolutionary change in how 

circuits are built, clocked, and powered is necessary if any additional reductions in energy 

dissipation are to be expected. Several other types of logic families have been explored 

by the research community to replace CMOS logic for low power circuits, one of which 

is adiabatic computing. Adiabatic computing works under the principle that if signal 

voltages are changed gradually to evaluate logic functions and then gradually reclaim

ing charge when done, resistive losses are reduced and average power dissipation can be 

greatly reduced. This gradual charging avoids the high resistance imposed by the transis

tor network and the current peak associated with it. Adiabatic logic requires a different 

design flow, custom libraries, and special considerations in order for the circuits to operate 

properly, but it provides a significant reduction in energy consumption.

1.2 Hardware Security and Power Analysis Attacks

The second area explored in this dissertation is hardware security. Security of com

putation is usually incorporated at the algorithmic level in software, with most encryption 

algorithms being very secure from an algorithmic and mathematical standpoint. Attacks 

on mainstream encryption algorithms have proven very difficult and many security pre

cautions have been taken for these algorithms to be secure at the software level. However, 

hardware implementations of these encryption algorithms may not always be secure and 

there is only a small amount of research in this area. Some of the applications of these



encryption tasks are user DD, phone card, secure authentication tokens, smart cards, and, 

more recently, bank cards. Oftentimes these circuits are not secured from attacks that 

could be staged using non-traditional communication channels, also known as side chan

nels. This kind of security attack is also called “implementation attacks” as their main 

focus is the physical implementation of otherwise-secure algorithms. As society moves 

towards using more and more portable devices to conduct everyday business, hardware se

curity becomes vastly more important. In recent years, we have also observed an increase 

in the use of smart cards being used as bank cards, mass transit cards, chips in biometric 

passports, and other applications [82], which makes them more prone to hardware attacks. 

Side-channel attacks take advantage of the power used, time elapsed, electromagnetic ra

diation emitted, and even sound waves from computer hardware during computation in 

order to extract secret information. These side-channel attacks are especially important 

in secure environments, e.g. military, banks, corporations, and require using systems that 

have built-in hardware security.

Attacks on cryptographic devices are mainly categorized based on two criteria: 1) 

invasive vs. non-invasive and 2) passive vs. active. Invasive attacks are the most powerful 

because there is no limit on what can be done to the device. Invasive attacks also require 

an exact copy of the device under attack, detailed implementation knowledge, and very 

expensive tools. Non-invasive attacks can be implemented with relatively inexpensive 

equipment and pose a more serious threat to the security of cryptographic devices because 

this attack leaves no detectable evidence of tampering. Active attacks are implemented by 

an attacker tampering with the device in order for it to behave abnormally, which can
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lead it to reveal secret information. This kind of attacks are very powerful, but require 

detail knowledge and a sophisticated setup. Passive attacks, on the other hand, are staged 

during normal operation of a cryptographic device and are based on observing physical 

properties of the device. They are implemented using readily-available hardware and 

software, are simple to set up, and are the least costly. In this work, the focus is on 

power analysis attacks, which fall in the category of non-invasive passive attacks, and 

their countermeasures.

Power analysis attacks rely on the fact that CMOS circuits will consume a different 

amount of energy for different inputs to a circuit. This unequal energy consumption can 

be exploited by an attacker to reveal the secret key by measuring the power usage for 

several inputs. For example, presenting a certain set of inputs can result in an increased 

probability of correctly guessing part of the secret key, thus weakening the encryption and 

potentially compromising devices. Power analysis attacks can be implemented even on 

very noisy power traces or without any knowledge of the device under test, which makes 

this kind of attack of great concern in the future of computing hardware. Attacks can be 

staged on circuits of any size and power characteristics, ranging from a personal computer 

to smart cards used in the banking industry to implanted medical devices. Current power 

analysis countermeasures are mainly aimed at circuits that are not limited in their energy 

budget, i.e. non-battery-operated devices, and little research exists in the area of power 

analysis attacks countermeasures on low power devices. An example of energy-limited 

devices with a need for hardware security are implantable medical devices, which have 

limited energy due to their size and the consequences of power analysis attacks could be
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fatal.

1.3 Problem Statement

The abundance of low power portable devices in use today continues to grow and this 

growth is expected to continue at least at its current rate. Circuit designers need to devise 

new techniques to make these devices use less power while delivering a higher quality 

user experience with the same or longer battery life. Recent developments in the areas 

of sensors, implantable medical devices, and wearable computing (e.g. smart watches, 

Google Glass) prompt for new low power solutions at small sizes. Devices with very 

low power dissipation could also allow for deployment of systems with solar cells as a 

power source, making the systems self-sustaining and decreasing the interval between 

battery replacements. As the traditional energy dissipation reduction rate slows down, 

new avenues for reducing energy dissipation in computing circuits need to be explored.

At the same time, as portable devices get even more integrated into our everyday lives, 

privacy and security issues become more important. As more and more users move their 

digital lives onto portable devices and continue assuming that hardware implementation 

of security algorithms are secure, security breaches can prove more devastating than ever 

before. Many security features are in place for protection against software attacks, e.g. 

viruses and other malware, but there are no indications of any hardware security coun

termeasures implemented in these circuits. Given the possible consequences of a power 

analysis attack on a cryptographic circuit, it is necessary to make circuits resistant to this 

type of attacks.
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These two separate problems have not been investigated as one in the literature, but 

given the miniaturization of circuits and their tighter integration in daily lives, power 

analysis attacks on low power circuits become a reality with possibly devastating conse

quences. The few proposed solutions to this problem either solve the low power problem 

or the power analysis problem, but not both. A solution that covers both issues is needed 

in order to protect low power circuits from this kind of attacks.

1.4 Dissertation Contributions

This work aims to provide a novel solution that provides lower power operation and 

resistance to power analysis encryption attacks by introducing a new very low power 

logic family named Input Decoupled Partially-Adiabatic Logic (IDPAL). IDPAL is a new 

adiabatic logic family that uses a two-phase sinusoidal Power Clock and has very low 

variation in energy dissipation between input values. IDPAL shows promising results in 

reducing the energy used in computations by up to 79% compared to standard CMOS 

implementations and up to 25% compared to next-best adiabatic implementation. It also 

increases the resistance against power analysis attacks when compared to state-of-the-art 

secure logic families. A proof-of-concept hybrid adiabatic-CMOS microprocessor design 

using IDPAL is presented. Issues associated with a hybrid dual-rail microprocessor design 

and adiabatic-CMOS interfacing are discussed.
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1.5 Dissertation Overview

The rest of the dissertation follows a traditional format. Chapter II gives a back

ground of CMOS computing, explains the basics of adiabatic computing, and discusses 

some of the most well-known adiabatic logic families. It also gives some background 

in hardware security, power analysis attacks, and existing countermeasures. Chapter III 

presents IDPAL, explains its operation principle, and provides simulation results from 

circuits of different sizes. Chapter IV describes the application of IDPAL to hardware 

security, specifically as a power analysis countermeasure, using circuits of different sizes. 

Chapter V describes the implementation of a hybrid adiabatic-CMOS microprocessor us

ing EDPAL for the implementation of adiabatic blocks. Chapter VI presents some areas of 

future work and other applications for EDPAL and Chapter VII summarizes the contribu

tions of this dissertation.
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CHAPTER II 

BACKGROUND AND RELATED WORKS

This chapter gives a background on the basics of adiabatic logic, its operating prin

ciples, and clocking schemes. It also presents some of main adiabatic logic families that 

have shown promising results in terms of energy efficiency, both theoretically and dur

ing testing of any fabricated chips. The second half of the chapter provides an overview 

of power analysis attacks and briefly presents existing countermeasures at the hardware 

level. Several non-adiabatic dual-rail solutions are discussed, along with their respective 

advantages and disadvantages.

n.l Background in Adiabatic Computing

Conventional CMOS circuits dissipate half of the input energy during gate charging 

and store the other half in the output node capacitance when a logic value changes. This 

can be illustrated using the CMOS inverter and its equivalent circuit in Fig. 1 as an ex

ample. When the input is switched from High to Low, the PMOS transistor turns ON and 

charges the output capacitor, where the output capacitor (C) models the fanout of the gate. 

When the input switches to High, the charge stored in C is discharged through the NMOS 

transistor to GND. During the charging process, a charge of Q =  CVdd is transferred from 

the source to the output, where Vdd is the supply voltage. The supplied energy is then 

calculated as

^supplied = QVdd — C^dd- 0 )
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The current flow during charging is given by

(2)

where R is the equivalent transistor resistance, and the power is calculated as

(3)

The amount of energy stored in C can be calculated by integrating the power over time 

and is given by

This result shows that only half of the input energy is stored in the output capacitor, while 

the other half is dissipated in the transistor network during charging. Furthermore, when 

the output changes values, the energy stored in C is not recycled back to the source but is 

dissipated in the NMOS transistor network. Energy dissipation in CMOS circuits is due 

to how these circuits are driven, i.e. using square-wave clocks, and dissipation of stored 

energy as heat when the output value switches to a Low, reducing the energy efficiency of 

the circuit.

An alternative to CMOS logic is a adiabatic switching, which ideally operates as a 

reversible thermodynamic process, without loss or gain of energy. Adiabatic computa

tion works by making very small changes in energy levels of nodes in circuits sufficiently 

slow, ideally resulting in no energy dissipation during charging and recovering the en

ergy from the output capacitance when discharging. However, practical implementations

Estored (4)
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Fig. 1: CMOS inverter and its equivalent circuit.

of adiabatic circuits contain some losses, even if the circuits are driven at a small fre

quency. There exist two types of adiabatic computations: fully-adiabatic (circuit operates 

slower, loses arbitrarily little energy per operation, and almost all of the input energy 

is recovered) and partially-adiabatic (some energy is recovered and some is lost to irre

versible, non-adiabatic operations). While fully-adiabatic circuits are very attractive from 

a reversible logic perspective and are most suitable for the implementation of reversible 

circuits, most existing adiabatic circuit designs are partially-adiabatic because of their 

simpler implementations and smaller circuit area.

Adiabatic switching attempts to minimize the energy wasted during charging by using 

a more gradual charge delivery system which is more efficient at lower frequencies. A 

gradual charge transfer avoids the large current peak of Vdd/R and reduces the power 

loss during output switching. Adiabatic circuits replace the square-wave clock with a 

time-varying Power Clock (PC), which supplies both power and clocking information to 

circuits. Unlike CMOS circuits, adiabatic circuits normally require more than one clock
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phase to operate correctly. The most common types of PC’s used in adiabatic circuits are

4-phase trapezoidal and 1- or 2-phase sinusoidal oscillators.

Because of their continuous time-varying nature, the outputs of an adiabatic gate 

charge and discharge on every PC cycle, having an activity factor a  = 1. Given this high 

activity factor, adiabatic logic circuits maintain their advantage over CMOS circuits and 

are more suitable for circuits with moderate to high switching activity, e.g. arithmetic cir

cuits. This continuous switching forces them to be operated in a micro-pipelined fashion, 

most often using multiple PC phases.

Adiabatic circuits work by charging the output nodes for part of the clock cycle, al

lowing the next clock phase to sample the output, then recovering the charge from the 

output node capacitances. The number of PC’s depends on the adiabatic family and the 

type of oscillator used. In general, trapezoidal PC’s use 4 phases, although a few designs 

with a single phase and some with 8 phases exist. Trapezoidal PC’s have 4 phases of op

eration: Wait, Charge, Hold, and Recover. Sinusoidal PC’s usually use 2 phases, but some 

technologies have additional circuitry to achieve single-phase operation. Sinusoidal PC’s 

have two operating phases: Charge and Recover. An example of the 4-phase trapezoidal 

and 2-phase sinusoidal PC’s is shown in Fig. 2.

II. 1.1 Benefits and Disadvantages of Adiabatic Logic

Adiabatic logic circuits have a several important advantages over CMOS circuits. 

First, they offer very low energy consumption at a frequency of up to several hundred 

MHz for circuits with a moderate to high activity factor. While operation at higher speeds
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Fig. 2: 2-phase sinusoidal and 4-phase trapezoidal PC's with each stage marked for the 
first phase.

is possible as demonstrated in a commercial chip [15], the advantages of adiabatic switch

ing diminish as the power clock charging time approaches the MOS transistor charging 

time. Therefore, adiabatic circuits would be more suitable for use in applications that 

operate at frequencies below 1 GHz.

Another advantage of adiabatic logic is its inherent micro-pipelining. Unlike tradi

tional CMOS circuits where the value of an output needs to be stored in a latch when the 

inputs change, adiabatic logic allows for a micro-pipelined approach, where each output 

is dynamically buffered and stored for one clock cycle. This allows for an adiabatic sys

tem to operate without the use of latches since the intermediary outputs are generated and 

immediately sampled by the next stage. Most adiabatic technologies do not have special 

latch circuits due to their micro-pipelining, although some flip-flop designs for adiabatic
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circuits have been proposed in [21 ]—[23]. These designs were not true flip-flops, but were 

based on adiabatic buffers without any special circuitry for holding a constant value. Tra

ditional CMOS latches and flip-flops can still be used for outputs at the adiabatic-CMOS 

interface.

CMOS circuits are limited in their maximum operating frequency by the critical path 

of a given circuit. A critical path does not exist in adiabatic logic circuits as micro

pipelining allows the evaluation of only one gate per stage. The PC enforces that input 

signals are valid as soon as a gate starts to evaluate its outputs. Delay due to the evaluation 

of complex gates with large input stacks is also not an issue for adiabatic circuits since the 

evaluation of inputs will take place before the outputs start evaluating. Adiabatic circuits 

are also not constrained by setup and hold times as the next gate will only evaluate after 

the outputs of the current gate are stable (when the PC is at its peak).

Adiabatic switching does not have as rigorous a constraint on voltage scaling as does 

CMOS switching [18]. There is a tradeoff between speed and power consumption in 

CMOS circuits, therefore the voltage can only be reduced to a level to which timing con

straints are not violated based on the critical path. On the other hand, adiabatic switching 

does not have any timing constraints other than the fixed gate delay due to the threshold 

voltage of the charging transistors.

Another advantage of adiabatic circuits is that it strongly reduces the effects of elec

tromigration. Electromigration is the wear-out process on lines carrying currents with a 

strong current density and is a predicting factor in the mean time to failure of electronic 

components. The effect is more likely to occur on power supply lines in CMOS circuits
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where unidirectional currents are strong. In cases where the current flow is bidirectional, 

such as adiabatic circuits, the effects of electromigration are greatly reduced. Reducing 

the effects of electromigration contributes to a longer mean time to failure and also allows 

the clock lines to be narrower, which reduces capacitance and energy consumption.

Adiabatic circuits also have some limitations. They are dual-rail circuits by design, 

which requires both an input and its complement and produces the output and its comple

ment. Dual-rail circuits often have up to double the area requirements of single rail cir

cuits and require special care during layout for interconnects. As an example, the CMOS 

2-input NAND gate can be built using 4 transistors (2 PMOS and 2 NMOS), whereas the 

smallest adiabatic implementation using the 2N2P logic family [8] contains 6 transistors 

(4 NMOS for function implementation and 2 PMOS for charging).

Adiabatic logic circuits more often than not use more than one clock phase for op

eration. While there are a couple of logic families that use only one clock phase (e.g. 

TSEL[11], CAL[10]), they also use auxiliary signals to make one-phase operation pos

sible. Most sinusoidal adiabatic logic families use two sinusoidal clock phases, whereas 

the trapezoidal families use four phases. The use of multiple clock phases adds more area 

and routing constraints to the circuit compared to a single-phase clock and raises issues of 

clock synchronization across multiples phases. As the output of each stage in an adiabatic 

micro-pipelined circuit feeds into another stage with a different phase, the multiple clock 

phases have to be exactly spaced in order to compute a result properly and increase energy 

efficiency.

Inherent micro-pipelining can also be a disadvantage of adiabatic logic if proper care
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is not taken to buffer signals in circuits that have multiple evaluation stages. Insertion 

of extra buffers adds to the circuit area, increases capacitance, and has an impact on the 

design flow as the buffers have to be accounted for in the design process. The number 

of transistors used in buffer circuits necessary to translate a CMOS design to an adiabatic 

design depends on the chosen adiabatic family and the particular implementation of a 

circuit. Values for the number of transistors for each adiabatic family investigate were not 

available from the original authors, but experimental values for large arithmetic circuits 

were found to range from 25% to 35% of total transistor count.

II.1.2 Summary of Adiabatic Families

Adiabatic logic families can be divided into two main categories: ones that use diodes 

and ones that do not. Most modem adiabatic logic families are diode-less as they are 

more energy-efficient because the voltage drop across the diode in older families results 

in lower efficiencies. There have been a number of adiabatic logic families proposed 

[8]-[14], [16, 17, 19, 20], [23]-[27], but only a few of them have been successful in 

gaining recognition and usage in the adiabatic logic research community. Most of these 

families use a trapezoidal PC and only a few use a 2-phase sinusoidal PC, even though 

the generation of a sinusoidal PC is more energy efficient than a trapezoidal one. Some of 

these adiabatic families, their operation, and advantages and disadvantages are succinctly 

described below.

2N2P: This partially-adiabatic logic family introduced in [8] uses a four-phase trape

zoidal PC and the buffer/inverter implementation is shown in Fig. 3. The buffer/inverter



uses a simple NMOS pull-down network structure and contains a low number of transis

tors. The cross-coupled PMOSs (PI and P2) are a feature of almost all adiabatic logic 

families and ensure that the voltages at the PMOS transistors’ drain terminals (out and 

out) are always complementary. Furthermore, the PMOS transistors provide a pathway 

to recover charge back to the power clock. The two NMOS transistors implement the 

buffer and inverter functionality by using a complementary pull-down network. Their 

functionality can be expanded by using a PDN structure to implement any function and 

its complement.

PC

P I

outout

Fig. 3: 2N2P buffer/inverter circuit.

The operation of a 2N2P gate follows a traditional trapezoidal PC sequence. When 

PC is at GND, during the WAIT stage, the inputs are evaluated and the corresponding 

output is pulled to GND. In the next stage (EVALUATE), once Vpc > \V tp \  (the PMOS 

threshold voltage), the other output is ramped up following the PC up to Vdd- Since the 

inputs are stable throughout the four clock phases, the output that is initially at GND does
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not change values while the other charges adiabatically to Vdd- During the next stage 

(HOLD), the outputs are held at complementary values in order for the next stage of gates 

to evaluate. In the last phase (RECOVER), the High output is ramped down to GND by 

following the PC and the energy stored in that node is recovered until Vpc =  \V tp \ -  If the 

inputs change and cause a change at the outputs, the remaining energy will be discarded 

as the outputs switch values. If the inputs remain constant, the remaining energy will be 

used in charging the outputs during the next clock cycle, thereby reducing the amount of 

energy lost in the system.

2N2P achieves very good energy efficiency compared to CMOS (up to 57% less), but 

suffers from possible floating output nodes during the HOLD stage which reduces energy 

efficiency. Another disadvantage is that it uses four clock phases, adding more area and 

capacitance in layout. And lastly, the use of a trapezoidal PC allows for a more linear 

charge delivery, however, the generation of a trapezoidal PC reduces the energy efficiency 

of the system since it is significantly more difficult to generate than a sinusoidal PC.

2N-2N2P: The 2N-2N2P [8] logic family is an extension of 2N2P and has the same 

timing and clock phases. The difference is that it adds a Static Random Access Memory 

(SRAM)-like structure that allows for the outputs to be non-floating for all PC phases 

(Fig. 4). One of the disadvantages of using this SRAM-like structure is that it limits 

the energy efficiency at operating speeds higher than 100 MHz. In large circuit simula

tions, 2N-2N2P achieved an energy efficiency of 63% less than equivalent CMOS circuits, 

slightly better than 2N2P circuits.
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Fig. 4: 2N-2N2P buffer/inverter circuit.

Clocked Adiabatic Logic (CAL): CAL [10] is a single-phase partially-adiabatic logic 

family containing a SRAM cell at its core, similar to 2N-2N2R Modifications from 2N- 

2N2P include the two NMOS control transistors inserted between the output nodes and 

the input pull-down networks (Fig. 5) and controlled by two complementary square-wave

controlling alternate gates with alternate auxiliary signals. The main advantage of this 

family is the use of a single-phase PC, allowing it to use a classical CMOS-like clock 

distribution scheme. The main disadvantage is the ability to take new inputs only at half 

the PC frequency due to the auxiliary signals. Given the fact that CAL uses a one phase 

PC with two additional signals makes it not a true single phase adiabatic logic family, 

however it has seen some use in large circuits in adiabatic literature [34].

True Single-Phase Energy-Recovery Logic (TSEL): TSEL [11] is a single-phase 

partially adiabatic logic family with features similar to the 2N2P family. It uses a single

phase sinusoidal PC with cascades composed of alternating PMOS and NMOS gates. The

auxiliary signals (CX and CX). The two signals allow for single-phase PC operation by
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Fig. 5: CAL buffer/inverter circuit.

structure of a TSEL PMOS buffer/inverter is shown in Fig. 6. Each TSEL gate contains a 

reference voltage (either V r p  or V rw ,  depending on the type of transistors used) as a bias 

voltage, which is a distinctive feature of this family. TSEL uses pre-charging of gates in 

order to achieve single-phase operation and contains two distinct phases: discharge/charge 

and evaluate. During the discharge state in the PMOS inverter, the energy stored in the out 

ox out node is recovered. At the beginning of this stage, PC is High and as it starts ramping 

down, both outputs are pulled towards Vjp and the energy is recovered. This transition 

is adiabatic until Vpc < Vrp — \Vjp\, which disables the cross-coupled PMOS structure. 

Assuming that in is High and in is Low at the beginning of the Evaluate phase, Vpc starts 

rising from Low to High and turns ON P3 and P4, which turns ON PI and P2. As long 

as Vpc < V r p  — \Vpp\, P3 and P4 are conducting. Since V r p  >  Vpc at this point, out starts 

rising towards V r p  through P4 and the two cross-coupled PMOSs help amplify the voltage 

difference between out and out. Once the difference between the output nodes is larger 

than \Vpp\, PI turns OFF and out charges adiabatically to Vdd- When Vpc > V r p  — \V tp \ ,
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P3 and P4 stop conducting and the outputs are disconnected from the input networks half 

of the gate. This allows this family to be immune to any changes that occur in the inputs 

after P3 and P4 have been turned off. Sampling of the outputs occurs at the end of the 

Evaluate stage, when the PC is at its highest.

PC

PI

o u t ou t

P4

RP

Fig. 6: TSEL PMOS buffer/inverter circuit.

II.2 Power Analysis Attacks Background

This section gives an introduction to power analysis attacks, explains how they are 

implemented, and presents existing state of the art countermeasures.

Q.2.1 Power Analysis Attacks Basics

Cryptographic algorithms are designed to be secure from a mathematical standpoint, 

but, as it is sometimes the case between theory and practice, many implementations of the 

cryptographic algorithms may not be completely secure from attacks using other indirect 

means. An attacker may obtain information from an encrypted communication channel by
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means different than the ones originally intended for communication in that channel. This 

kind of methods that exploit unintentional information channels are called side-channel 

attacks. There exist several channels that have been used in the past to mount side-channel 

attacks, e.g. electro-magnetic radiation [43, 51], time elapsed [84], leakage currents [61, 

65], acoustic emanations [81], fault injection [79], and power usage. In this dissertation, 

the focus is on the power analysis attacks and their countermeasures.

Power analysis attacks are a special subset of side-channel attacks that can be mounted 

with relative ease and without requiring very expensive hardware. These attacks are aimed 

at extracting secret information from a microprocessor or Application-Specific Integrated 

Circuit (ASIC) chip by analyzing the power consumed by the chip during encryption or 

decryption operations. It is likely that this kind of attacks will be more prevalent in the 

future due to the recent boom in portable electronic devices. As more people integrate 

these devices in their lives and store more and more of their personal information on 

them, they become a worthy target to an attacker. Moreover, since a majority of the world 

is moving towards implementing smart cards in the banking industry (credit and debit 

cards), the issue of hardware security is of even more importance.

Most of the power analysis attacks are aimed at encryption cores or microprocessors 

performing encryption operations. The extracted private keys could be used to mimic 

a particular device and take advantage of it. There have been numerous attacks staged 

on several kinds of encryption algorithms, including Data Encryption Standard (DES) 

and Advanced Encryption Standard (AES), by using power analysis attacks [40]—[42], 

[44,47,72,75, 80, 82, 85]. As power analysis attacks are passive non-invasive attacks, it
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is usually very hard for the user to be aware of the attack and protect against it.

Power analysis attacks make use of the fact that a microprocessor uses asymmetric 

amounts of power for different kinds of operations and instructions. A two-input CMOS 

NAND gate is used as an example of information leakage as asymmetric power con

sumption, which can be used by attacker to gain insights into the inputs to the gate. The 

transistor-level diagram of the NAND gate with charge (dotted line) and discharge (inter

rupted line) paths is given in Fig. 7. A truth table for the NAND gate is shown in Table 1. 

It can be observed that for 3 input combinations (.AB = “00”, “01”, “10”) the gate output 

is High, while for 1 input combination (AB = “11”) the value is Low. A table with all 16 

possible transitions is presented in Table 2. When the inputs change between these two 

different sets, the gate will consume dynamic energy (’D’ in Table 2), as the output value 

switches. When the inputs switch between values inside each set, only static energy will 

be consumed (’S’ in Table 2) by the CMOS gate. Since the amount of energy dissipated 

between dynamic and static dissipations are very different, an imbalance can be observed 

and unintentionally reveal information about the inputs to the gate.

Table 1: Truth table for a 2-input NAND gate.

Input Output
00 1
01 1
10 1
11 0

Power analysis attacks are divided into two categories: Simple Power Analysis (SPA) 

and Differential Power Analysis (DPA). SPA attacks were introduced by Kocher [40] and



27

Vdd

A-<\

C

Fig. 7: A 2-input CMOS NAND gate showing charging (dotted) and discharging 
(dot+line) paths.

rely on deriving the secret key directly from a given power trace. This can make SPA 

attacks challenging in practice since an attacker might need detailed knowledge about 

the architecture of the device under test and the particular cryptographic algorithm used. 

Furthermore, if only one power trace is available, complex statistical methods are required 

to extract the information from the signal. An example of a viable SPA attack is when a 

person uses a smart card to pay for gas at a gas station. An attacker can compromise the 

card reader in order to extract the power trace from a user’s card. It is not uncommon for a 

user to frequent the same gas station more than once, so more traces could be obtained and 

a SPA attack staged successfully. DPA attacks were also introduced in [40] and are the 

most popular type of power analysis attacks since they do not require in-depth knowledge 

of the attacked device and are effective at revealing secret keys even from very noisy power 

traces. In contrast to SPA, DPA attacks need a large number of power traces, usually 

requiring the possession of the cryptographic device for some time in order to mount 

an attack on it. Several successful SPA and DPA attacks were implemented in recent
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Table 2: All 16 possible input transitions for a 2-input NAND gate and type of energy 
consumption for each transition in a CMOS implementation.

Current Next E ty p e

00 00 s
00 01 s
00 10 s
00 11 D
01 00 S
01 01 s
01 10 s
01 11 D
10 00 S
10 01 S
10 10 S
10 11 D
11 00 D
11 01 D
11 10 D
11 11 S

years on specialized cryptographic cores [41], Field-Programmable Gate Array (FPGA) 

implementations [47, 63], and smart cards [40, 82], The relative ease of implementation 

and possible consequences make power analysis attacks a growing concern for portable 

electronic devices and call for power analysis attack resistant circuit design.

II.2.2 Existing Hardware Countermeasures

Power analysis attacks can be viewed as a problem from two different perspectives: 

mathematical and engineering. As a mathematical problem, the goal is to find mathemati

cal models that describe the leakage of cryptographic devices in order to build secure sys

tems based on these models. As a result of this viewpoint, the solutions created are mainly



29

software and algorithmic solutions, like masking. Masking solutions [48, 49, 50, 56] at

tempt to hide the bits processed in the cryptographic core by randomizing intermediate 

results. These solutions, however, have been proven insecure several times in the past 

[45,46] in order to hide the signal. As an engineering problem, the goal is to decrease the 

leakage of information by decreasing the leaked signal or by increasing the noise. As a 

result, the solutions from this perspective lead to the development of DPA-resistant logic 

styles. This viewpoint has seen more research interest in the recent years as it tries to at

tack the problem at its root cause -  at the hardware level, although more complex changes 

need to be made to implement these solutions. In this work we focus on the engineering 

approach and describe some of the proposed technologies to reduce information leakage 

at the hardware level.

Most of the engineering approaches to the problem try to solve the problem of balanc

ing the amount of energy dissipated during switching between all possible inputs. Most of 

the time, this is impossible to achieve perfectly, but the goal is to get as close as possible to 

equal dissipation. In order to achieve balanced dissipation all input combinations have to 

use the maximum amount of energy possible for a given gate. Several logic families and 

other types of countermeasures have been introduced [37, 38, 52, 55, 57, 60, 64], [66]- 

[70], [73, 74, 76, 78, 83] and compared in [39, 53, 54, 59, 62, 71, 77]. However, almost 

all these countermeasures use significantly more energy than an equivalent CMOS circuit 

or are not designed to have built-in security against power analysis attacks. The two most 

well-known countermeasures against power analysis attacks are Sense Amplifier Based 

Logic [37] and Wave Dynamic Differential Logic [38] families and are discussed briefly
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in this work.

Sense Amplifier Based Logic (SABL) [37] is one of the first logic styles proposed as 

a countermeasure against power analysis attacks. SABL cells are designed to have a con

stant internal power consumption independent of the processed logic values. Additionally, 

combinational SABL cells are designed such that their time-of-evaluation (TOE) is data 

independent, i.e. the cells only evaluate after all inputs have been set to complementary 

values.

SABL cells are dual-rail and use precharge and evaluate stages to achieve balanced 

energy dissipation. Unlike CMOS cells, all SABL cells are connected to a common 

clock and are precharged simultaneously, which causes very high current peaks during 

the precharge phase. The current peaks during the evaluation phase are smaller because 

not all combinational SABL cells evaluate simultaneously. Since combinational SABL 

cells only evaluate after all inputs have been set to complementary values, the evaluation 

events of different types of cells are spread out over the evaluation phase. However, due 

to a constant TOE, same type of gates evaluate at fixed moments in time for each clock 

cycle and input combinations.

The area requirements for SABL circuits are at least doubled compared to equivalent 

CMOS circuits, while the maximum clock frequency is halved. The power consumption 

of SABL circuits is significantly larger than for CMOS circuit. Experimental results with a 

2-input NAND gate showed an increase of around 10 x compared to an equivalent CMOS 

gate, although this ratio is likely to fluctuate based on the type of gate tested. The DPA
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resistance of SABL circuits is typically very high (if all complementary wires are suffi

ciently balanced), because the internal power consumption of the SABL cells is constant 

and the cells always evaluate at fixed moments of time during each clock cycle.

Figure 8 shows the transistor-level schematic of the 2-input NAND/AND SABL cell. 

In order to achieve the same number of transitions at the cell outputs AND  and NAND in 

each clock cycle, the SABL cell consists of the differential pull-down network (DPDN) 

and cross-coupled inverters, similar to a SRAM cell core. The DPDN is made of NMOS 

transistors in such a way that the discharge paths use the same number of transistors, 

regardless of the input combination. The inverters are cross-coupled so their outputs are 

always complementary and this forms the sense amplifier part of the SABL gates. In a 

SABL gate, the evaluation phase starts when the clock switches to a High value. During 

this phase, the input signals of the DPDN are set to complementary values and the NMOS 

transistor Pr3 is turned ON. As a result, the cell outputs AND  and NAND  are switched to 

complementary values. When the clock switches to a Low value, the gate is in precharge 

phase. During this phase, Pr\ and Pr2 charge all the internal nodes of the SABL gate to a 

High value and the outputs of the gate to a Low value, thus SABL gates fall in the category 

of “precharge to zero” gates. The precharge to zero is necessary to ensure the next level 

of gates in the cascade do not provide a path to GND during the next evaluation phase. A 

SABL cell can also be built from PMOS transistors in a differential pull-up network, but 

a circuit has to contain only one type of cell in order to provide a valid computation.

The second most common type of logic style countermeasure against power analysis 

attacks is Wave Dynamic Differential Logic (WDDL) [38], WDDL cells are built as
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Fig. 8: A 2-input SABL NAND gate.

dual-rail cells from single rail cells in standard-cell libraries. This makes the structure of 

WDDL gates much simpler than SABL as this logic family was originally developed as 

a secure computation method for FPGAs. A simpler design leads to significantly smaller 

circuits than SABL, however this comes at the expense of lower DPA resistance. The 

lower DPA resistance is mainly due to the combinational WDDL cells since their internal 

power consumption and TOE are data dependent, which cause WDDL combinational cells 

to suffer from early propagation.

Unlike SABL, only the sequential WDDL cells are connected to the clock signal, 

so only these cells all precharge and evaluate simultaneously. Combinational WDDL 

cells precharge when their inputs have been set to the precharge value and evaluate when 

their inputs have been set to complementary values. Thus, the precharge value as well 

as the complementary values provided by the sequential WDDL cells move like a wave
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through the combinational WDDL circuit. Since combinational WDDL cells precharge 

and evaluate successively, the current peaks in WDDL circuits are much smaller than 

those in SABL circuits but they contain higher variations. Even if the propagation delays 

of complementary wires in balanced WDDL circuits are pairwise identical, the TOE of 

the combinational WDDL cells is still dependent on the processed data, which reduces 

the DPA resistance of WDDL circuits.

Area requirements for WDDL circuits are at least doubled compared to CMOS circuits 

with equivalent functionality, similar to SABL circuits. Power consumption of WDDL 

circuits also increases significantly compared to CMOS, but it is lower than SABL circuits 

as it uses independent cells from standard libraries with smaller current peaks and does 

not precharge simultaneously. Maximum clock rate in WDDL circuits is similar to CMOS 

circuits, however, as the WDDL D-flip-flop consists of two stages of single-rail D-flip- 

flops, it is necessary to double the clock frequency to achieve the same throughput as in 

CMOS or SABL circuits.

The WDDL NAND/AND gate is presented in Fig. 9. It consists of a single-rail AND 

cell with true inputs and a single-rail OR cell with complementary inputs. At the begin

ning of the evaluation phase, all complementary inputs of a combinational WDDL cell are 

precharged to GND. When the input signals are set to complementary values, only one 

GND to Vdd transition occurs at the outputs of the WDDL cell per evaluation cycle, while 

the other output stays at GND. By ensuring one transition per evaluation cycle per gate, 

WDDL is able to have a constant number of transitions for any given input combination 

in a circuit, allowing it have some DPA resistance.
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Fig. 9: A 2-input WDDL NAND gate.

Energy consumption for WDDL cells is not constant mainly for three reasons. First, 

different conducting paths with a varying number and arrangement of MOS transistors are 

established for different input combinations. Second, not all internal nodes of a WDDL 

cell are charged and discharged in the same way in each clock cycle for all data values, 

leading to charges stored at internal nodes in a cell to be dependent on the value processed 

(the memory effect). Third, the TOE of combinational WDDL cells depends on the input 

values, as mentioned earlier.

Power analysis attacks are very powerful tools for an attacker to extract secret informa

tion from a device using relatively inexpensive equipment. The proposed countermeasures 

found in the literature usually provide good protection against these attacks, but at a cost 

of much larger area and energy consumption, making these solutions unsuitable for low 

power applications. A new low-power solution for power analysis attacks is needed.



35

CHAPTER IH 

IDPAL -  INPUT DECOUPLED PARTIALLY-ADIABATIC LOGIC

The main contribution of this work is the development of a new very low power 

partially-adiabatic logic family with decoupled inputs named Input Decoupled Partially- 

Adiabatic Logic (IDPAL). The originality of IDPAL is in its separation of a gate into two 

distinct parts: input network evaluation and function evaluation. In this chapter, IDPAL 

and several of its applications, starting from small logic gates to very large arithmetic cir

cuits, are presented. Experimental results show that IDPAL is capable of reducing energy 

consumption of circuits by up to 79% compared to its equivalent CMOS implementations 

[1, 2, 3]. IDPAL also uses at least 25% less energy than state-of-the-art adiabatic logic 

families. Several large circuits are described and their energy consumption compared to 

other equivalent CMOS and adiabatic implementations.

III.1 IDPAL Operating Principle

IDPAL is a new very low power partially-adiabatic logic family. Similar to other 

adiabatic logic families, IDPAL is a dual-rail family, so it requires both an input and its 

complement in order to evaluate a given function. IDPAL differs from other families in 

the fact that gates implemented in IDPAL are composed of two decoupled parts: input 

network evaluation and function evaluation. A general view of an IDPAL gate is shown 

in Fig. 10. The inputs control two complementary switching networks to evaluate the 

true (F) and complementary (F) functions. Once the inputs are evaluated, one switching
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network is conductive, allowing current to flow from the PC to the respective NMOS 

transistor of the function evaluation part. The complementary switching network is OFF 

and its respective NMOS transistor remains OFF. In this way, the inputs are provided to 

the function evaluation part where the appropriate output manifests as a High by following 

the PC and the complementary output remains at Low. The two NMOS and two PMOS 

transistors form the function evaluation part of IDPAL gates. A unique feature of IDPAL 

is the connection of input networks to the PC rather than GND, unlike other adiabatic 

technologies, which allows the inputs evaluation portion to be actively driven by the PC. 

A more detailed explanation of IDPAL gate operation is described using the example of a 

buffer/inverter.

PC

out out

Fig. 10: General gate construction in IDPAL.

The simplest functional IDPAL gate is the buffer/inverter shown in Fig. 11 and its op

eration is as follows. Assuming that in is at Vdd and in is at GND, when the PC rises from 

GND to Vdd, in will cause N1 to turn ON. When Vpc reaches Vjn  (the NMOS threshold 

voltage), N3 will turn ON and out will be anchored at GND. This event will turn P2 ON
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and allow out to charge adiabatically to Vdd and the circuit will achieve the buffer/inverter 

function with complementary outputs. When the PC swings from Vdd to GND, the en

ergy stored in out will be recovered through P2 until Vpc < Vjp■ The remaining energy 

is discarded to GND if the inputs change, resulting in non-adiabatic losses. Otherwise, 

the output ramps up again as the PC rises, without any non-adiabatic losses. The energy 

loss due to the threshold voltage of the PMOS transistors is unavoidable in any partially- 

adiabatic family that uses the cross-coupled PMOS structure.

PC

Ml P l j l

outout

Fig. 11: IDPAL buffer/inverter.

An equivalent RC circuit for an IDPAL buffer/inverter with the main capacitances is 

shown in Fig. 12. Each transistor was replaced with a resistor to account for energy loss 

when the transistor is ON and 3 capacitors to account for the three main capacitances of 

a transistor (gate-to-drain/source, drain-to-substrate, and source-to-substrate). Assuming 

that the input in is High and its complement, in, is Low, we obtain the circuit shown in 

Fig. 13. From this circuit, we observe three separate circuits that are part of an IDPAL



gate: input evaluation circuit, complement evaluation circuit, and function evaluation cir

cuit. The input gate capacitance is not connected to the input evaluation circuit, instead 

it is connected as an additional capacitor to the function evaluation circuit in order to 

account for the capacitance of the subsequent gates driven by the current gate.

PC

in

outout

Fig. 12: Equivalent RC circuit for an IDPAL buffer/inverter.

A more complete picture can be observed by examining the RC representation of 

an IDPAL 2-input AND/NAND gate implementation using the three different circuits, 

shown in Fig. 14. In this example, the input network is composed of two series conduct

ing transistors, whereas the other two circuits (complement output evaluation and output 

evaluation, respectively) are the same for all gates and circuits. If a larger gate is used in a 

circuit, the additional losses will take place in the input evaluation network due to the ad

ditional RC nodes. However, due to being driven by the PC, any additional capacitors that
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PC

out out

Fig. 13: Equivalent RC circuit for an IDPAL buffer/inverter with one of the inputs con
ducting.

are charged will be discharged to the PC as the charge is recycled, therefore contributing 

to the energy-efficiency of the circuit.

P C
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: 2CN
r

Cn :

2Cp
o u t PC

Cp x  Cp

^Rn

-‘VW-
Rp

— o u t  
CoUT

Fig. 14: Equivalent RC circuit breakdown for an IDPAL 2-input AND/NAND gate.

In order to calculate the energy usage in an IDPAL gate, each of the three circuits has 

to be investigated separately by calculating an expression for the current trace. This value 

can then be multiplied with the PC voltage and integrated over time in order to calculate
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the energy dissipation for a given circuit. For the first sub-circuit, the complex impedance 

can be evaluated by:

1 -  1 , 1 +  j2(j)CNRN ^  _  Rn ...
Z2 Rn N Rn  ’ 2 l+j2(oCNRN

Z , = « „ + Z2 =  K „+ t t 7 L  (6)

1 _  1 , . ^  _  1 +  jtoCyZi _  Zi
Z  Z i J N Z i  ’ 1 +  ytflC w Zi (  )

p  i Rn  2RN+ j2aC NRN2
2   _____  l+y2(oCy/tjv_____   l+j'2(oCjv/?Af____________ ,g,

1 +  /C O C W /fo +   )  1 +j2(aCNRN+j(i)CNRN+j2(iy2CN2RN2 + jaC NRN
j  n  1+ j 2<oCn Rn S \+ j2w C NRN

2Rn +  J2(x)CnRn2 
1 +  JAwCnRn  +  ]2(£?-Cn2Rn2

Z = -------------------------------------------------------------------- (9),  . . . . . . .  ^  2 n  ,2 v 7

The current is then calculated as:

i ( t ) = m = Y f sin(w). (10)

The second sub-circuit has a very low voltage swing, only up to the threshold volt

age of the PMOS transistor and is controlled only by the Vdd- The impedance can be 

calculated by:
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1_+J®CnRn _  Rn
■  —— ;Zi = ------ 7— -------
Rn  1 +  J®CnRn

(11)

Z — Z  1 _  Rn 1 _  j2(oCpRN +1 +  J(x)CnRn
* j2caCp 1 -+- j'coCnRn j2(aCp j1(aCp +  j2aP,CpCNRN

The third sub-circuit contains two types of power sources: the sinusoidal PC and 

the Vdd, therefore energy dissipation from both sources has to be taken into account. 

From a personal interview with Ana Samolov (Ph.D. Physics), the solution to this problem 

appears to be non-trivial.

Simulation waveforms for a single buffer/inverter are shown in Fig. 15. The simulation 

was performed using LTspice in a TSMC 0.25/im process with transistor width/length 

(W/L) ratios of 0.36/zm/0.24//m and 0.72/im/0.24//m for the NMOS and PMOS transistors, 

respectively. The clock frequency is 10 MHz and the input frequency is 5 MHz. From the 

Figure, it can be clearly seen that when an input is High for two consecutive clock cycles, 

the output is not taken to GND after the first clock cycle, but stays at the \Vpp\ level until 

the PC ramps up again. The output is taken to GND level and the energy below Vpp is lost 

only when the inputs change values. This allows the non-adiabatic energy losses to have a 

small contribution to the total energy consumption if the inputs are constant for very long 

periods.



42

0  0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 1 .1

Time (ps)

1.8

5 *  1 .4

bo 1 is
o 0.6

0.2

- 0.2
0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9 1 1.10

Time (|is)

1.8

> 14
& 1(9% 0.6

0.2

- 0.2

0  0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9 1 1.1

Time (ps)

Fig. 15: Simulation waveform for an IDPAL buffer/inverter.
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Energy dissipation is calculated by integrating the instantaneous power over the op

erating time, as was done for several previous adiabatic technologies, including [8], [10], 

and [11], using

T  T
^dissipated == JQ i(t)V(t)dt. (13)

A plot of the energy dissipation and recovery for the single buffer/inverter setup above 

is shown in Fig. 16. As mentioned earlier, when the input is High for two clock cycles, 

the energy stored in the gate output capacitance when the PC reaches Vpc = \Vtp \ is not 

lost, but recycled into the next evaluation cycle. The Figure also shows that the amount of 

energy lost is larger when the inputs switch values and the outputs are re-evaluated since 

the complementary output needs to be charged to Vdd from the GND level.

1.2

ST 08
s 0.6 
01
£  0 .4

0.2

0 .4 0 .50.0 0.1 0.2 0 .3 0.6 0 .7 0.8 0 .9 1.0

Time (us)

Fig. 16: Energy consumption plot for a single IDPAL buffer/inverter with alternating 
inputs.

Circuits with multiple layers of logic need to be controlled using alternate clock phases 

(PC and PC), similar to other adiabatic families. To test the energy efficiency of ID

PAL using multiple small gates, a simulation was performed using 5 buffers and results
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are shown in Fig. 17. The simulation was performed using the same parameters as in 

the case of the single buffer/inverter. The value of the input is cascaded through each 

buffer/inverter and reaches the output of the fifth buffer/inverter by the third clock cycle 

of the first PC. It can be observed that when the output is applied at t = 0.75ps, it takes 

50fjs for it to evaluate to peak in each buffer, with the final output available at t = 3.25jus.

Layout of adiabatic circuits is very different compared to standard CMOS circuits 

because special care has to be taken to minimize the area taken by the PC’s and the larger 

number of transistors, so a custom cell library must be created. The layouts of the 2-input 

AND/NAND in IDPAL and 2N2P and NAND gate in CMOS in a 3 metal, 2 poly process 

are shown in Fig. 18. When compared with its CMOS equivalent, the IDPAL AND/NAND 

is 2.4 x larger, however, this is mostly due to IDPAL being a dual-rail logic family as it 

produces both an output and its complement. Additionally, the CMOS NAND gate does 

not contain any connections to a clock, although layout of larger circuits will need to 

add the clock and other control circuitry. When compared to the smallest layout from an 

adiabatic implementation (2N2P AND/NAND), the IDPAL AND/NAND uses only 20% 

more area, but has the added advantage of being able to use a two-phase sinusoidal PC 

instead of a four-phase trapezoidal PC. The type of PC used and its generation can greatly 

impact both the area used by a circuit (due to routing constraints) and the power used, as 

some types of PC are more efficient than others. In this case, IDPAL has an advantage 

over 2N2P as a sinusoidal PC can be more efficiently generated than a trapezoidal one. 

While adiabatic circuits use more circuit area (at most 2.16x in the case of the IDPAL 

NAND gate), their energy efficiency (5x less energy) can justify their use in low-power
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(a) IDPAL AND/NAND (b) 2N2P AND/NAND (c) CMOS NAND

Fig. 18: Layout of IDPAL and 2N2P AND/NAND and CMOS NAND gates in a 3-metal, 
2-poly process.

applications. Additionally, more complex gates would reduce the relative increase in area, 

making IDPAL even more attractive as a new low-power family.

Larger gates and circuits using IDPAL can be built by replacing the two input evalu

ation blocks (F and F  in Fig. 10) with NMOS pull-up switching networks and comple

ment, respectively. Being an adiabatic logic family, IDPAL has all the features of other 

adiabatic logic families, including micro-pipelining and the need for extra buffers in the 

output chain in order to propagate a valid value to the output. Additionally, similar to 

other two-phase sinusoidal logic families, IDPAL offers an easier solution to manage the 

PC’s during layout, both in circuit area used and in routing issues, when compared to 

adiabatic solutions using more clock phases. As an example, in a two-phase sinusoidal 

family, a possible solution for routing the PC’s would be to have tracks for one on one 

side of the circuit and the other on the other side. A four-phase trapezoidal family would 

need to use two separate metal layers for layout to avoid overlap, which results in a less 

energy-efficient design.

Simulations of several other basic gates were performed using LTspice in a 0.25/mi
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process with a two-phase sinusoidal PC oscillating between OV and 1.8V to measure the 

energy consumption of each gate. The W/L ratios are 0.36jum/0.24//m and 0.72//m/0.24//m 

for the NMOS and PMOS transistors, respectively. Energy consumption values per cycle 

for single gates running at 100 MHz with a given load capacitance are shown in Table 3. 

Simulation values agree with expected values for these basic gates. It was expected that 

the AND and OR gates would have very similar values for energy consumption due to 

their complementary implementations at the transistor level, a fact that was confirmed in 

simulations. It was also expected that the inverter would have the lowest energy usage 

since it is the simplest of all structures, whereas the XOR gate would have the highest 

energy usage due to a larger input stack and thus a larger resistance and capacitance. All 

gates were simulated in their usual implementations without any modifications.

Table 3: Energy dissipation (J ) per cycle for each type of gate and load at 100 MHz.

Gate/Load IfF lOfF lOOfF
Inverter 2.25E-17 8.46E-17 7.56E-16
AND 2.38E-17 8.61E-17 8.14E-16
OR 2.37E-17 8.59E-17 8.22E-16
XOR 2.51E-17 8.68E-17 8.35E-16

In order to confirm the energy efficiency of the proposed logic with composite gates, a 

full-adder (FA), shown in Fig. 19, with a lOfF output load was simulated and compared to 

its equivalent implementations in CMOS, CAL, 2N2P, and 2N-2N2P. Several frequencies 

were tested in order to observe the advantage of the proposed family over other adiabatic 

families and CMOS equivalents in a wide operating range. A more compact design was 

selected with the Sum and Cout being calculated in one stage instead of three stages and
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several gates that would be otherwise needed for a traditional implementation. The FA 

in the current implementation uses 38 transistors, while the CAL, 2N2P, and CMOS full- 

adders use 42,34, and 28 transistors, respectively. An even more compact implementation 

is possible for the Sum term in IDPAL by combining the inputs forming a 2-input XOR 

gate and reducing the total number of transistors required for the full-adder to 30, making 

the difference between the IDPAL and CMOS implementations even smaller.

PC

SumSum

PC

CoutC out

Fig. 19: IDPAL full-adder implementation.

Simulation waveforms for the FA implementation in IDPAL are shown in Fig. 20. All 

8 possible input combinations, ranging from “111” down to “000” are covered to confirm 

correct operation. Similar to the case of the buffer/inverter, when the evaluation of inputs 

does not change the output from one clock to the next, the value of the output does not 

fall to GND level but stays at \Vjp\, contributing to the energy efficiency of the circuit.
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Fig. 20: IDPAL full-adder simulation waveforms. Inputs cycle from “111” down to “000”.

Full-adder simulations were also implemented for other adiabatic families and the 

results agree with the results reported in [8] and [10], allowing us to conclude that our 

models and implementations function correctly. As it can be observed from Fig. 21, the 

FA implemented using IDPAL is up to 67% more energy-efficient than other adiabatic full- 

adders (CAL FA at 100 MHz) and 79% more energy-efficient than CMOS (at 10 MHz). 

These results are in agreement with previous small-scale tests performed on simple gates. 

Although the IDPAL full-adder uses more transistors than a CMOS FA (38 vs. 28 in 

CMOS), it uses less energy due to a more energy-efficient operation.

m.2 Results for Large Arithmetic Circuits

Building circuits larger than a few gates in IDPAL is accomplished in a straightfor

ward manner. While the design is relatively simple, care has to be taken in the choice of
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Fig. 21: Energy usage (J)/cycle for a full-adder with lOfF load at different frequencies.

implementation. Similar to other adiabatic logic families, IDPAL needs to use buffers to 

maintain the validity of a given signal as it moves through the micro-pipeline due to its 

continuously-oscillating nature. If this issue is overlooked, the resulting circuit will pro

duce garbage outputs. Depending on the chosen implementation, buffers can contribute a 

significant number of additional transistors to an adiabatic circuit, so choosing the most 

compact implementation in terms of number of evaluation stages and number of buffers 

is very important.

In this experiment, a Kogge-Stone Adder (KSA) of several sizes (8-, 16-, and 32-bit) 

has been simulated at different frequencies with lOfF output loads to confirm the energy 

efficiency of IDPAL for very large circuits. KSA is a type of Carry-Lookahead Adder 

(CLA) proposed in [31] which produces results in 0(log2n) time, resulting in 5, 6, and 

7 micro-pipeline stages for each adder size, respectively. This adder takes more area to 

implement than other fast adders due to a larger number of gates used, but has a constant
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fan-out of 2 at each stage, which increases performance. KSA is the industry standard for 

adder implementation and is considered the fastest adder design available.

The diagram of the 32-bit KSA is shown in Fig. 22 for reference. KSA uses a struc

ture similar to a CLA with Propagate and Generate blocks, but restructures them into 

two new blocks, called Black Cell and Grey Cell. A Grey cell acts as a traditional CLA 

Carry-generation unit, whereas the Black cell includes the functionality of a Grey cell and 

adds the Propagate functionality from the CLA. Several KSAs were simulated and the 

total number of each type of gate and transistors used in each IDPAL implementation is 

given in Table 4. These numbers show that with each increase in the length of the adder, 

the main contributions in the increase of the transistor count come from non-linear vari

ations in the numbers of Black Cells and Buffers. The KSAs were compared to similar 

implementations in CAL, 2N-2N2P, and CMOS. Even when using the most compact im

plementation of a fast adder, the number of transistors contributed by the buffers needed 

for an adiabatic implementation is around 25-26%, stressing the importance of choosing 

an appropriate design in implementation. The buffers in the diagram are only needed for 

the adiabatic implementations and are removed for the CMOS implementation. Micro

pipelining in adiabatic circuits also allows for the first rounds of outputs of the 32-bit 

KSA to be available only after 7 PC phase delays, however, if the pipeline does not have 

any stalls, the outputs are available one per PC cycle afterwards.

The 32-bit KSAs were simulated in LTspice using a TSMC 0.25/nn process with a 

W/L ratio of 0.72jum/0.24/mi and 0.36/jm/0.24/im for p- and n-type transistors, respec

tively, with PC's oscillating between GND and 1.8 V. Several frequencies were tested
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Table 4: Number of each type of gate and total transistor count for the 8-, 16-, and 32-bit 
KSAs implemented in IDPAL.

AND XOR Grey Black Buffer Transistors
8-bit 8 16 8 13 32 762
16-bit 16 32 16 38 80 1836
32-bit 32 64 32 103 192 4350

in order to observe the energy advantages of the proposed family over other adiabatic 

families and CMOS equivalents and simulation results are plotted in Fig 23. As can be 

observed from the plot, IDPAL maintains its energy efficiency against other implementa

tions for all frequencies tested. The proposed family uses at least 22% less energy than 

2N-2N2P at 10MHz and 71% less energy than CMOS at 100 MHz. Energy consumption 

values for all simulations are given in Table 5.
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Fig. 23: Energy usage (J)/operation for a 32-bit KSA with a lOfF load at different fre
quencies.
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The use of adiabatic logic increases the complexity of the circuit and the number of 

transistors used (Table 5), but the energy savings can justify this increase. The largest 

increase in the number of transistors between CMOS and other adiabatic implementations 

is due to the high number of buffers used to buffer the signal from stage to stage (around 

26% of the total number of transistors). The largest number of transistors used were in 

the CAL implementation due to the use of two control transistors per gate in order to 

achieve single-phase operation. The 2N-2N2P and IDPAL implementations had the same 

number of transistors, however, the proposed implementation has a 22-26% better energy 

efficiency at the frequencies tested.

Table 5: Energy dissipation per addition operation at different frequencies and number of 
transistors needed for each implementation of the 32-bit KSA.

Family Energy/op (J) Number of 
transistors1MHz 10MHz 100MHz

IDPAL 6.98E-13 7.12E-13 9.49E-13 4350
CMOS 3.30E-12 3.31E-12 3.32E-I2 2528
CAL 1.24E-12 1.60E-12 2.38E-12 5402
2N-2N2P 9.42E-13 9.15E-13 1.24E-12 4350
2N-2P 1.07E-12 1.23E-12 1.42E-12 3298

An experiment was performed with the 4 adiabatic families investigated in this disser

tation (CAL, 2N2P, 2N-2N2P, and IDPAL) with a 32-bit KSA running at 1GHz in order 

to observe the energy efficiency of each implementation and compare it with a CMOS im

plementation. Adiabatic circuits have an advantage over an equivalent CMOS implemen

tation at lower operating frequencies due to longer charging times, allowing for smaller 

resistive losses in the transistor networks and, thus, increased energy efficiency. As the
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frequency of a circuit is increased, the charging time is decreased proportionately. There

fore, it is expected that the energy efficiency of adiabatic circuits at speeds of 1GHz will 

be reduced compared to lower speeds, generally surpassing the energy consumption of the 

CMOS equivalent due to the larger number of switching transistors.

Experimental results (Fig. 24) show that the energy usage in all adiabatic circuits 

grows dramatically when running at 1GHz, as expected. The amount of energy usage 

between the adiabatic families are in the same order as running at other frequencies. It 

can be observed from the Figure that a CAL implementation has a 5 x larger energy usage 

than CMOS, whereas the IDPAL implementation uses around 2.75 x more than a CMOS 

implementation. Again, the much larger energy usage in adiabatic circuits at this fre

quency is due to the shorter charging time compared to other frequencies and the larger 

number of switching transistors compared to a CMOS implementations. These results 

are similar to previously-reported results for circuits runing at frequencies higher than 

100MHz.

Another experiment was performed only with the two most energy-efficient logic fam

ilies (2N2P and IDPAL) in order to observe the approximate frequency at which the adi

abatic implementations equal the energy consumption of a CMOS implementation. A 

32-bit KSA was simulated at 200MHz and it was found that the 2N2P implementation 

uses 2.65£-12 J/operation whereas the IDPAL implementation was around 18% lower 

at 2.18£-12 J. Both values are very close to the CMOS energy dissipation for the same 

circuit at 3.3E~n  J. Based on previous energy usage values from 100MHz and 1GHz, 

it is estimated that both 2N2P and IDPAL would cross the energy threshold of a CMOS
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Fig. 24: Energy usage for a 32-bit KSA at frequencies from 1MHz to 1GHz.

implementation at a frequency slightly lower than 250MHz.

Lastly, an even larger design was simulated in order to observe the energy efficiency 

of IDPAL -  8-, 16-, and 32-bit Wallace multipliers [32]. A Wallace multiplier design was 

chosen because it has one of the lowest number of evaluation stages compared with other 

hardware multipliers, which implies that the result is available in fewer clock cycles in an 

adiabatic implementation and fewer buffers will be used in its implementation.

The operation of a Wallace multiplier is as follows. First, the partial products are 

calculated using 2-input AND gates for each pairwise bit combination of inputs. Next, a 

series of full adders are used to compress three rows of intermediary results of the same 

weight into two rows by using the following rule. If there are three rows of intermediary 

results available, then full adders are used on each three results, which will generate a bit
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of the current weight and a bit of the next higher weight. Next, if there are two inputs of the 

same weight, they are input into a half adder. Lastly, any remaining intermediary results 

are buffered to the next layer. If three rows of intermediary results are not available, the 

existing intermediary results are not grouped in any half-adders but buffered to the next 

stage. Once the number of partial product layers reaches two, an adder is used to add 

them and get a final result. In this implementation, a KSA was used as the last stage for 

faster results. Larger multipliers follow the same idea, but include a much larger number 

of compression stages and transistors in their implementations.

Simulation results from the 32-bit Wallace multiplier using a 0.25//m process with 

W/L ratio of 0.72/rm/0.24/jm and 0.36//m/0.24/im for PMOS and NMOS transistors, re

spectively, with PC’s oscillating between GND and 1.8 V at several frequencies are shown 

in Figure 25. These results show that IDPAL maintains its advantage in energy efficiency 

even for very large circuits and would be a suitable candidate for a low-power circuit im

plementation. Another observation made during the building of these multipliers was that 

the number of buffers used at each multiplier size decreased as a percentage of the total 

as the size of the multiplier increased. For the 8-bit multiplier, the number of transistors 

used in buffers account for 13.1%, whereas for the 32-bit multiplier it was only 5.1% of 

the total transistor count. This is a clear example of the influence of choosing a suitable 

design on the number of transistors used for an adiabatic implementation and its energy 

efficiency.

In order to test IDPAL energy efficiency with process scaling, the 32-bit KSA was 

also implemented in a TSMC 0.18/mn process with W/L ratios of 0.54//m/0.18//m and



58

Ag-11

S  2.5E-11

2E-11

£  l.SE-11

IE-11

5E-12

10 1001

— • »CMOS 

 CAL

— — 2N2P

—  »2N-2N2P 

 IDPAL

F re q u e n c y  (M Hz)

Fig. 25: Energy usage (J)/operation for a 32-bit Wallace multiplier with a lOfF load at 
different frequencies.

0.27jum/0.18jum. Results from these simulations with lOfF loads and PC oscillating be

tween GND and 1.8V are shown in Fig. 26. Dennard’s Law [29] indicates that a change 

in the feature size causes a decrease in the dissipated energy proportional to 1 /k , where 

k  is the ratio of the original to the new feature sizes, if all other values remain constant 

(e.g. operating voltage). When scaling from a 0.25/jm process to a 0.18/im process, we 

have k  =  0.25/0.18 =  1.388, making the energy dissipation for the new process approx

imately 0.72 x the old value, although in most cases in literature this is rounded to 0.7. 

Simulation results from the 0.18jum implementation of the 32-bit KSA show that the new 

energy dissipation values are within the range 0.69 to 0.74 of the results for the 0.25/an 

implementation. Variations are likely due to the rounding of values in calculating the 

energy dissipation, but are within previously reported limits on scaled circuits, including
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adiabatic circuits [18]. The result agree with expected values since the two adjacent pro

cesses are both far from the current deep-sub-micron processes and leakage current and 

leakage energy do not have a large contribution to the overall energy dissipation. At these 

processes, a reduction in feature size implies a proportionate reduction in the area and 

capacitance of a circuit and a similar loss mechanism. Even a deep-sub-micron processes, 

where leakage currents are much larger, the reported energy scaling closely approximates 

Dennard’s Law for frequencies between 1 MHz and 100 MHz [18].
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Fig. 26: Energy usage/operation for a 32-bit KSA with a lOfF load at different frequencies 
in a TSMC 180nm process.

Process scaling also enables circuit operation using a smaller operating voltage. One 

of the main drivers of lower energy dissipation has been the quadratic dependence of en

ergy loss with operating voltage (E =  0.5CV2). However, CMOS circuits are limited in 

the amount the operating voltage can be reduced since a lower operating voltage increases 

the gate propagation delay, resulting in a slower circuit. CMOS circuits are limited by 

design since their propagation delay depends on the critical path. Adiabatic logic is not
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limited in its voltage reduction by any timing constraints since each gate operates inde

pendently and the propagation delay is negligible. The limiting factor for the operating 

voltage reduction in IDPAL are the 2 NMOS transistors in the function evaluation part of 

a gate, as they need to be conducting in order for the gate to be able to generate the proper 

outputs. More formally, VoD,min@IDPAL =  Vj n - If the operating voltage falls below this 

value, the circuit will malfunction and produce invalid outputs. Other adiabatic families 

have similar operating voltage constraints, with the operating voltage minimums ranging 

between max{VTN,\VTp\) (for 2N2P) and 2VTN (for PFAL) [18].

IIL3 Chapter Conclusion

This chapter presented IDPAL -  a new partially-adiabatic logic family capable of 

achieving up to 79% reduction in energy compared to equivalent CMOS circuits and at 

least 25% less energy than state-of-the-art adiabatic families. Simulation examples rang

ing from small gates (buffer/inverter, AND, OR, XOR) to very large complex circuits 

(adder, multiplier) were presented. Results revealed a consistent reduction in energy dis

sipation across circuits of all sizes, making EDPAL a promising alternative to CMOS in 

low power circuits. An experiment using a 32-bit KSA showed that energy consumption 

in IDPAL circuits scales well with feature size reduction, although more experiments are 

required for the deep-sub-micron feature sizes. It was also shown that EDPAL, like other 

adiabatic logic families, does not have as strict of a limitation on the scaling of operating 

voltage due to its micro-pipelining.
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CHAPTER IV

POWER ANALYSIS ATTACK SECURITY USING IDPAL

In this chapter, the resistance of power analysis attacks of IDPAL as applied to low 

power circuits is explored. IDPAL has very good energy consumption characteristics, 

as shown in Chapter HI, but another feature of interest is the almost-constant energy 

dissipation, regardless of the input combinations [4]. This makes IDPAL a promising 

countermeasure for power analysis attacks in low power circuits. This chapter explores 

the security aspect of IDPAL against power analysis attacks using several security met

rics and power models. It also compares its security against state-of-the-art secure logic 

families and other partially-adiabatic logic families.

IV.l Motivation for Combinational Circuit Security

As power analysis attacks are based on correlations or energy differences between 

intermediate values, many power analysis attacks are focused in places where these values 

are stored -  registers. This is a great opportunity for an attacker because register activity 

is clocked and reproducible in time, which means that register statistics will have a strong 

correlation with either the contents of a register or changes in its contents.

In this work, the focus is on the hardware security of combinational logic, including 

large arithmetic circuits, in contrast with some of the previous approaches. This work was 

motivated by the fact that a majority of the transistors in most circuits are used for com

binational logic rather than sequential logic. For example, the AES encryption algorithm
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uses around 80% combinational logic by area and power dissipation [77], with the rest 

being sequential logic and interconnects. However, the combinational part of the circuit 

is not the most frequent the target for power analysis attacks. One of the reasons for not 

attacking combinational circuits is the increased difficulty of the attack because the com

binational gates evaluate at data-dependent times and might also include logic hazards, 

whose power dissipation is difficult to model.

In a system where all registers are protected against power analysis attacks, which can 

become a reality given all previous attempts at secure logic implementations, the only 

source of possible information leakage resulting from different inputs to combinational 

circuit. Given the nature of CMOS circuits, one may observe that in a given circuit, the 

registers can consume power on the rising edge and/or falling edge of the clock, whereas 

combinational logic consumes power shortly after the registers have evaluated. With this 

knowledge in mind, it would not be difficult to balance the energy consumption of reg

isters as their number is relatively small compared to the combinational circuits. Both 

SPA and DPA could target combinational logic circuits if the registers are protected. In 

this chapter, we assume that required protections are in place for the easy targets (regis

ters) and focus on the secure implementations of combinational circuits in order to thwart 

power analysis attacks in the future.

Since the other theme of this work is providing a solution for low power environ

ments, secure logic applications studied have to also fulfill the low power requirement. 

Many previously-proposed technologies often use significantly more energy than a regu

lar CMOS circuit, making them unsuitable for our applications. Some of these solutions
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are compared with IDPAL and other adiabatic families in the next sections.

IV.2 Security Metrics and Power Models Used

Resistance against power analysis attacks can be measured theoretically using sev

eral methods. In a low power secure design environment, the first criteria is low power 

consumption. The average energy (E) usage per operation is measured as the parameter 

indicative of low power performance. Along with the average energy consumption, the 

minimum (£mw) and maximum (fwx) energy usage for different input combinations is 

also tracked to give a better idea of the energy imbalance between the best and worst case 

scenarios for a given circuit. These values are used in a second parameter called Normal 

Energy Deviation (NED), calculated as (fw * — Emin) I  E-max- A third parameter used for 

resistance against power analysis attacks is the Normalized Standard Deviation (NSD), 

calculated as Oe /E , where o>£ is the dissipated energy standard deviation. The fourth 

parameter used in this work is the current trace of a circuit (either iydd or ipc) which is di

rectly proportional to the power consumption and could leak information about individual 

bits processed if enough traces are available for analysis.

A power model for the variability of power consumption for a circuit has to be care

fully chosen in order to be able to successfully perform power analysis attacks on the 

given circuit. There are several methods for constructing a power model, one of which 

is simulation of the device under attack. This can be especially useful if the architecture 

is known in advance and simulation results can provide a more accurate prediction of the 

power consumption of the device. However, in most cases the architecture of a circuit is
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not known in advance or it is infeasible to simulate it, so a more general model should be 

used. Two of the most common leakage models are the Hamming weight and Hamming 

distance models [82].

The Hamming Weight model is the most basic power consumption model and has 

been used in SPA and DPA attacks extensively in the past [40]. This model can be applied 

to approximate the power consumption of data buses and relies on the fact that a bus will 

consume an amount of power proportional to the number of bits switched ON on the bus. 

It assumes that a bus with no bits ON will consume an insignificant amount of power 

compared to when all bits are ON. This model can be used when no information about 

a particular implementation exists, but it is not very effective at showing accurate values 

for the power consumption of a circuit. This model is also more effective on pre-charged 

buses where the pre-charged value is “all zeroes”, which yields the power consumption 

model to depend on W//(0...0 © Yj) =  W n ( Y j ) ,  where T, is the value of an intermediate 

variable at time i [82].

The second most common power model is the Hamming Distance model -  an exten

sion of the Hamming Weight model. This model uses the changes in value at a given 

time to determine the power usage. Changes in value can occur in both combinational 

and sequential circuits and the power model uses the idea that the approximate amount of 

power consumption is proportional to the number of ‘O’ —> ‘ 1’ and ‘ 1 ’ —» ‘0’ transitions in 

the circuit. The number of bit transitions can be calculated using the Hamming weight of 

the XOR of the two different output values. More formally, Du(Yi-\,Yi) = Wh (Y^\ ©1/), 

where i is the time at which the switch from one value to the other occurs. This model
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gives a better approximation for the power consumption than the Hamming Weight model, 

but it requires a more in-depth knowledge of the device under attack.

IV.3 Experimental Results

A simple experiment to demonstrate the energy usage differences and the information 

that can be gathered from circuits when using CMOS gates starts the procedure. In this 

example, an inverter is implemented in CMOS with a lOfF load at 10 MHz and a periodic 

input with 25% duty cycle. The current trace is shown in Fig. 27. Note that the current 

amplitudes are shown as negative when the outputs are charging and positive when the 

outputs are discharging. It is relatively easy to notice the input transitions based on the 

inverter current trace and guess the type of gate used. It can be observed that the input 

is periodic with a 400ns period, discharging the output at t =  475ns and charging 100ns 

later and keeping the output constant for 300 ns. If it is known that the gate is a function 

of one input, then it can be guessed that it most likely is an inverter. Larger gates can be 

analyzed in a similar manner, but require more sophisticated analysis and statistics. This 

small experiment shows a definite need for countermeasures in combinational circuits and 

the unsuitability of CMOS circuits to act as secure hardware circuits.

Another experiment was performed using 2-input NAND gates implemented in S ABL, 

WDDL, 2N2P, CAL, and IDPAL. The gates were simulated in LTspice with a lOfF output 

load using a 0.25/jm process with a W/L ratio of 0.72//m/0.24^m and 0.36jum/0.24//m 

for p- and n-type transistors, respectively. The experiment was performed at 100MHz 

using a square-wave clock for SABL and WDDL, trapezoidal PC for CAL and 2N2P, and
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Fig. 27: Current trace for a CMOS inverter.

sinusoidal PC for EDPAL, oscillating between GND and 1.8 V.

The current drawn from the source (or PC, in case of the adiabatic circuits) was taken 

as the first security metric. Current traces from each of the simulated NAND gates cycling 

through the basic 4 possible inputs (“11” -> “10” -» “01” —> “00”) are shown in Figures 

28-32. The input sequence starts at time t = 40 ns and repeats every 40 ns. Note that 

the current traces in the following Figures have a negative amplitude for current supplied 

from the power source and a positive amplitude for the current returned to the source (only 

applies to adiabatic circuits). The short positive peaks for SABL and WDDL are due to 

input switching activity and are not considered as energy recovery but discharging of the 

output capacitors.

1 ! 1
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Fig. 28: Current trace for a 2-input SABL AND/NAND gate.

Fig. 29: Current trace for a 2-input WDDL AND/NAND gate.
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Fig. 31: Current trace for a 2-input 2N2P AND/NAND gate.
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Fig. 32: Current trace for a 2-input IDPAL AND/NAND gate.

Figure 33 presents current traces from all implementations on the same scale to pro

vide a better view of the magnitudes for each family. It clearly shows very large spikes 

and magnitude differences in current traces for the SABL and WDDL implementations 

and much smaller peaks and variations in the adiabatic implementations. This makes adi

abatic implementations a promising solution in reducing both the energy consumption and 

improving hardware security against power analysis attacks.

Differences in the current drawn from the source can be used in SPA and DPA attacks 

to observe the power dissipation and extract information about a circuit. In CAL and 

2N2P, the current spikes are larger than IDPAL due to using a trapezoidal PC instead 

of a sinusoidal PC. The sinusoidal PC allows for a longer charging time, leading to 

smoother current variations and more uniform energy dissipation. When compared to 

the two non-adiabatic solutions, the largest difference between current peaks is larger 

in IDPAL compared with the best previous implementation (15/iA vs. 6/rA in SABL).
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However, the largest peak current in the current implementation is almost 4x  less than in 

SABL. The significantly lower peak current is an advantage of IDPAL and could further 

contribute to the security of information in a given circuit, especially if the attacker does 

not possess tools capable of measuring at this resolution. Additionally, the basic two- 

input AND/NAND gate uses 12 transistors in SABL, 10 transistors in WDDL, and only 8 

transistors in IDPAL. Thus IDPAL offers a method to design secure circuits while using a 

lower number of transistor, which implies less area and, consequently, significantly lower 

energy dissipation than both WDDL and SABL.

The figures of merit described earlier (NED and NSD) along with the average energy 

usage measure are given in Table 6. Simulation results show that information leakage in 

the NAND gates is very low for the SABL family (NSD=2.71%), however, this comes 

at a very large energy consumption as the gate draws the maximum amount of energy 

in the pre-charge phase for every input (£=382fJ), over 34 x the energy used in the ID

PAL NAND gate. WDDL yielded much better results in terms of energy consumption 

(only approximately 5 x the energy for IDPAL), but the differences in the amount of en

ergy used are more significant than SABL gates (NSD = 90.08%). Both CAL and 2N2P 

offered much lower energy consumption compared with SABL and WDDL, mainly due 

to being adiabatic implementations, and leaked similar amounts of information between 

themselves. IDPAL has better energy characteristics than both CAL and 2N2P and leaks a 

slightly smaller amount of information (NSD = 40.7%). It can be observed that the NED 

and NSD for SABL are much lower than any other approaches. This is mainly because 

these are normalized values and SABL has a very large energy consumption. Nominal
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value for the energy differences for SABL is approximately equal to the deviation of 

2N2P and CAL and roughly 3 x larger than IDPAL. In conclusion, SABL has very good 

information leakage characteristics compared to IDPAL, but it comes at a much larger 

increase in average energy consumption, making it unfit for low-power applications.

Table 6: Security metrics for the NAND/AND gate for each logic family.

SABL WDDL 2N2P CAL IDPAL
367 7.53 7.37 13.8 7.06

EmaxL fJ] 391 121.78 22.1 29.7 15.2
NED[%] 6.18 93.82 66.7 53.4 53.5
E im 382 58.51 14.8 21.5 11.2
oEm 10.4 51.71 8.32 8.84 4.55
NSD[%] 2.71 90.08 56.1 41.1 40.7

State-of-the-art secure logic families like SABL and WDDL were shown to be either 

effective in preventing power analysis attacks but consume a significant amount of energy 

(in the case of SABL) or significantly ineffective but consume a lower amount of energy 

(in the case of WDDL). Neither family fit the requirement of both low power and security 

mainly because both families are derived from traditional CMOS circuits, which do not 

provide a secure solution against this kind of attacks as we observed in the case of the 

CMOS inverter. Therefore, further analysis on secure low-power solutions focuses on 

adiabatic circuits only, which were shown to be low power and some provide resistance 

to power analysis attacks.

An additional analysis of the 2-input NAND gate can be done using the Hamming



Weight/Distance power models for the NAND gates above. For this experiment, a two- 

input IDPAL NAND/AND gate has been cycled through all 16 possible input combina

tions shown in Table 7 to account for both the Hamming Weight and Hamming Distance 

power models. Simulations were performed with the same parameters as before, but using 

a 10MHz PC to observe the decrease in current magnitudes at a lower frequency. Addi

tionally, energy values for each transition were calculated to obtain a clearer picture of the 

energy imbalances.

Table 7: All 16 possible input transitions for a 2-input NAND/AND gate and energy 
consumption values for each transition in IDPAL.

Current Next Energy (fj)
00 00 4.11
00 01 4.76
00 10 4.78
00 11 7.33
01 00 4.75
01 01 4.12
01 10 4.71
01 11 4.77
10 00 4.74
10 01 4.80
10 10 4.09
10 11 4.75
11 00 4.78
11 01 4.73
11 10 7.48
11 11 4.13

Figure 34 shows an overlay of the 16 current traces for this experiment. A visual 

inspection of the traces reveals that two of the 16 traces have peaks that are around 2x 

larger than other peaks. The input transitions causing these peaks are “00” —> “11” and 

“11” “10”, the same two transitions that produced higher peaks in Figure 32. Similarly,

more significant peaks were observed in the 2N2P and CAL NAND gates for the same
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input transitions.
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Fig. 34: Current traces for all 16 possible transitions for the DDPAL AND/NAND gate.

Applying the Hamming Weight model and comparing energy consumption of the 1 

value that produce a Low value on the output of the NAND gate vs the 3 values that 

produce a High value, an average energy consumption of 5.800 is achieved for the three 

values, whereas the single Low-producing value uses 7.93fJ. The difference is significant 

(27%), however it is due to only one of the values producing a Low output. This imbalance 

can allow an attacker to extract the fact that the inputs to the 2-input NAND gate were “11” 

if only one gate is under attack, although this situation is improbable and does not produce 

any useful information about the circuit, a larger circuit would need to be analyzed to 

observe the ability of this model to predict the input values.

The Hamming Distance model used on the 16 transitions listed above is expected to 

give a more accurate representation of the energy consumption for each transition since 

the average will depend on more than one output value. Of the 16 outputs, ten have a 

Hamming Distance of 0 and six have a Hamming Distance of 1. The average energy 

consumption for the distance =  0 outputs is 4.49 fJ, whereas the average for distance =  1



75

is 5.64 fj, a difference of only 1.15fJ. The larger energy consumption for the distance =  1 

transitions is due to the two peak values being part of this average, otherwise the two 

average values would have been almost equal. The smaller difference in the case of the 

Hamming Distance model shows that IDPAL is able to successfully reduce the amount of 

information that can be extracted by analyzing the energy consumption of a circuit.

IV.4 Results for Large Circuits

Large circuits have been simulated and analyzed for resistance against power analysis 

attacks. Attacks on larger adiabatic circuits have to take into account the leakage from 

other PC’s as the circuits will contain more than one evaluation stages. If the number 

of evaluation stages is odd, one of the PC current traces can be larger than the others. 

Other factors, such as the use of unequal number of gates and different types of gates for 

different evaluation stages, will affect the magnitude of the current trace for a given PC.

To illustrate the issue of having a different number of evaluation stages for each PC, 

two simple simulations were performed with a chain of 4 and 5 IDPAL buffer/inverters. 

Since all gates are of the same type, the difference between the current traces between 

the first and second experiment should not be very large, but it should be visible. Current 

traces for each experiment are shown in Fig. 35. Results show that ipc in the second 

experiment is approximately 200nA larger than the same trace in the first experiment 

since it drives 3 evaluation stages vs. 2 in the first experiment. It can also be observed that 

ipc stays constant since it does not drive any additional gates in the second experiment. 

It would be possible to almost equalize two current traces in a larger circuit by adding
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buffers to the circuit, but doing so would affect the energy efficiency as well as circuit 

area. Current trace inequality is an issue in any adiabatic logic family using more than a 

single phase, but no significant information can be extracted from this fact except that one 

phase of the PC drives more transistors than the other(s).
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Fig. 35: Current traces for even (4) vs. odd number (5) of evaluation stages for IDPAL 
inverters.

A larger experiment consisted of simulating 8-, 16-, and 32-bit KSAs using the same 

parameters with PC's running at 10MHz. As the state space even for the 8-bit KSA is very 

large (65,536 total possible transitions) and increases exponentially with the adder width, 

results from only a few representative and a few random inputs are shown in this section.



The values for the two inputs and the carry-in signals used in the 32-bit KSA are given in 

Table 8.

Table 8: Input test cases for the 32-bit KSA and Wallace multiplier.

A 00000000000000000000000000000000
1 B 00000000000000000000000000000000

Cin 0
A 00000000000000000000000000000000

2 B 00000000000000000000000000000000
Cin 1
A 11111111111111111111111111111111

3 B 11111111111111111111111111111111
Cin 0
A 11111111111111111111111111111111

4 B 11111111111111111111111111111111
Cin 1
A 00000000000000000000000000000000

5 B 11111111111111111111111111111111
Cin 0
A 11111111111111111111111111111111

6 B 00000000000000000000000000000000
Cin 1
A 01010101010101010101010101010101

7 B 10101010101010101010101010101010
Cin 0
A 11110000111100001111111100000000

8 B 01101001011010101111111111111111
Cin 1

Average current along with standard deviations at each data point between the 8 input 

cases from the 32-bit KSA for 2N2P, CAL, and IDPAL are shown in Fig. 36. Large current 

differences between different inputs would be an indication of lower resistance to power 

analysis attacks and leakage of more information. Standard deviation values among the 8 

current waveforms from one PC of each family are shown in Table 9. Average values for 

the standard deviation are 3.24/iA for IDPAL, 3.07/iA for 2N2P, and 10.45juA for CAL. 

The average standard deviation is slightly lower for 2N2P compared to IDPAL most likely



because of the higher number of clock phases used in 2N2P and more homogeneous gates 

on each phase of the PC. The same observation can be made between IDPAL and CAL, 

although the difference in the averages is significantly higher in this case. The range of 

the standard deviation in the current traces for IDPAL is also lower than the other two 

families and the reason is thought to be a more gradual and longer charging period due to 

using a sinusoidal PC in IDPAL.

Table 9: Minimum, maximum, and average standard deviation values for current wave
forms for a 32-bit KSA in the adiabatic families tested.

Family Standard Deviation (A)
Min Max Average

IDPAL 3.8E-10 1.02E-5 3.24E-6
2N2P 7.4E-8 1.4E-5 3.07E-6
CAL 1.7E-8 1.00E-4 1.05E-5

The largest differences among the 8 input cases were observed in test case pairs (1,4) 

and (5, 6) for all three families, however, these differences were relatively small. These 

imbalances are most likely due to the number of bits switching values, leading to the con

clusion that adiabatic logic families offer some resistance, but an attacker with extremely 

sophisticated tools might be able to extract some information from a running circuit. Addi

tionally, the 32-bit KSA contains 7 evaluation stages, which results in differences between 

the current traces of each PC in IDPAL and 2N2P. For IDPAL, the first PC drives 4 evalu

ation stages with a total of 2418 transistors, whereas the second PC drives the remaining 

3 stages with 1932 transistors. This imbalance results in a difference of the current peaks 

between the two P C s of approximately 300/tA, which is proportional to the difference in 

the number of transistors. The only information that can be extracted from this imbalance
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without any knowledge about the circuit implementation is that one phase of the circuit 

powers more transistors than the other. Additional security metrics information would be 

needed in order to stage an attack on a given circuit.

The figures of merit NSD and NED were also calculated and the results are shown in 

Table 10. Simulation results show that the average energy for CAL is highest whereas it 

is lowest for IDPAL, results which were expected from Chapter III. IDPAL also has the 

lowest NED and NSD values (5.83% and 2.03%, respectively). These results are a direct 

consequence of having a smaller range for the minimum and maximum energy values and 

energy standard deviation. This implies that IDPAL has the highest energy efficiency and 

resistance against power analysis attacks among the tested adiabatic logic families.

Table 10: Security metrics for the 32-bit KSA for each adiabatic logic family.

CAL 2N2P IDPAL
Emin [pJ] 1.52 1.18 0.69
Emax [pi] 1.66 1.27 0.73
NED[%] 8.65 7.01 5.83
£[pJ] 1.60 1.23 0.70
<*E[pJ] 0.05 0.03 0.01
NSD[%] 3.30 2.88 2.03

A 32-bit Wallace multiplier was also simulated and security metrics are shown in 

Table 11. The NSD and NED values for IDPAL were significantly lower than for 2N2P 

and CAL most likely due to the more even distribution of the types of gates in the 32-bit 

multiplier between the two PC phases. Since the multiplier contains 16 evaluation stages, 

each PC phase for a logic family controls an equal number of evaluation stages. This 

aids in helping equalize energy dissipation for each phase, although variations in the type
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of gates in each evaluation stage may cause an unequal amount of energy dissipation. 

The 2N2P multiplier saw an increased variation in the energy consumption for each PC 

phase because all phases controlled more than one evaluation stages containing different 

gates. Compared to the 32-bit KSA, the NSD and NED for IDPAL for the 32-bit Wallace 

multiplier was only slightly higher, most likely due to the different types of gates drive by 

each phase of the PC, however IDPAL showed a lower variation in the amount of energy 

usage compared to other adiabatic implementations.

Table 11: Security metrics for the 32-bit Wallace multiplier for each adiabatic logic family.

CAL 2N2P IDPAL
Emin CpJ] 16.34 12.35 7.39
Emax [pJ] 18.06 13.52 7.85
NED[%] 9.52 8.65 5.86
E[ pJ] 17.31 12.92 7.61
CtetpJ] 0.69 0.43 0.18
NSD[%] 4.04 3.36 2.30

IV.5 Chapter Conclusions

This chapter explored several power analysis attack metrics applied to adiabatic and 

non-adiabatic circuits to measure hardware security of these circuits. It was experimen

tally shown that CMOS logic does not fit the requirements for a low-power and secure 

circuit design due to its very large differences in energy usage, demonstrating the need 

for more secure circuits styles. SABL and WDDL were explored in small-circuit sim

ulations, but shown to have large energy consumption, making them unsuitable for use 

in a low power environment. SABL has very good security metrics (NSD=2.71%), but
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very large energy consumption, whereas WDDL has better energy characteristics but high 

variability in energy consumption (NSD=95.2%). Adiabatic logic families showed lower 

energy consumption characteristics and good resistance to power analysis attacks. IDPAL 

has the lowest variability in energy consumption (NSD=2.03% and NED=5.83%) for a 

large adder, making it a suitable candidate for low power secure circuit applications.
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CHAPTER V

DESIGN OF PROOF OF CONCEPT MICROPROCESSOR

This chapter presents the design of a proof of concept hybrid adiabatic-CMOS micro

processor. The bus width will be kept generic to the extent possible. Aspects that can be 

customized will be highlighted and implementation sizes will be estimated for different 

implementation configurations. All internal logic building blocks have an adiabatic imple

mentation using IDPAL, while the controller, register file, and memory are implemented 

using CMOS logic. The design of the microprocessor is not pipelined, but it can use the 

micro-pipelining abilities of adiabatic logic.

V.l Implementation Constraints and Customizable Features

The current implementation of the hybrid microprocessor is limited to the available die 

space -  a 5mm2 die in 0.5/on 3-metal 2-poly process. The goal of this proof-of-concept 

microprocessor is to take advantage of the best features from adiabatic and CMOS logic 

styles. Computation units with high switching activity (e.g. adder, shifter) are imple

mented in IDPAL, whereas units with low switching activity (e.g. controller, memory) 

are implemented using CMOS logic. This hybrid design presents several implementation 

constraints, but also offers many customization options.

The microprocessor is a reduced version of an OpenRISC microprocessor with a basic 

set of instructions in a load/store architecture. The design was based on the need for a 

general purpose processor capable of performing integer and logical operations as well
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as implementing encryption algorithms using basic instructions. Further, this particular 

design was selected because the Reduced Instruction Set Computing (RISC) paradigm 

results in simpler data paths and control logic. The proposed microprocessor has many 

features typical of an implementation of a smartcard microprocessor, adapted for the con

straints imposed by die size.

As noted, the microprocessor configuration will depend on the resources that are avail

able for implementation. In particular, the silicon area will be used to assess the actual 

configuration implemented. Among the customizable features are the bus width, number 

of registers, and the complexity of the instruction set. This reduced implementation also 

does not include a multiplication and division unit or a floating point unit. Multiplication 

operations can be implemented as a series additions at the expense of a larger number of 

clock cycles. Division operations can be implemented using shift, subtract, and compari

son operations, all of which are available in this implementation. The number of registers 

is at least 8, although a 16-register register file (RF) would be more optimal. The register 

can be implemented using a 3-ported SRAM cell, with 2 read and 1 write ports.

V.2 Hybrid Microprocessor Design Issues

A hybrid microprocessor design allows for great flexibility in the implementation of 

each block but also presents issues of compatibility and interfacing between each logic 

block. Since IDPAL and CMOS logic implementations are very different from each other 

and use different types of clocking circuitry, it presents several issues related to the imple

mentation of the proposed hybrid microprocessor.
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One of the main issues stemming from using adiabatic logic is the dual-rail nature 

of adiabatic circuits, where an output and its complement have to be made available for 

computation. Since CMOS circuits are single-rail, the CMOS output will need to be 

inverted to produce the additional complementary output required for interfacing to an 

adiabatic cell. Being able to invert an input instead of needing to use double the circuitry 

to calculate a complement makes a hybrid design very appealing and was one of the factors 

used in the decision to implement a hybrid microprocessor. Gate delay from the inverted 

output is not an issue in this case as IDPAL circuits start evaluating the outputs only when 

Vpc > Vjn  and it is highly unlikely that an inverter would present a considerable delay 

that would affect operation.

Clock management and synchronization can be an issue in large circuits in a silicon 

implementation since IDPAL uses a two-phase PC. This issue may not be too difficult to 

overcome, as it would be possible to interleave the two clock phases in layout, either on 

the same metal layer or different layers. Additionally, a two-phase sinusoidal PC design 

might be helpful since the load is divided among the two phases instead of relying on 

a single and deep square-wave clock distribution network, where clock skew issues are 

a big concern. All signals being latched onto an adiabatic bus have to have the same 

phase since all buses have to be synchronized for a signal to be transmitted correctly. If 

a component contains an odd number of evaluation stages, a buffer stage can be inserted 

in order to have its output driven by the required phase. Depending on the size of the 

circuit, the additional buffering layer can cause a significant increase in the number of 

transistors in the adiabatic implementation if a large number of units need to have their
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outputs buffered. Additionally, logic can be inserted to determine when a components has 

finished evaluating its output in order for the circuit to continue executing other tasks.

One of the other issues in a hybrid adiabatic-CMOS processor is the interfacing be

tween the adiabatic and CMOS circuits. Special interfacing circuitry is required because 

the circuit can produce invalid values if the output of an adiabatic gate is connected di

rectly to the input of a CMOS gate or flip-flop. Since adiabatic circuits are driven contin

uously by the PC, the output of an adiabatic gate will fall to \Vt p \ level when the PC is 

at GND. This event will trigger a CMOS flip-flop to switch values, causing its output to 

approximate the oscillating nature of adiabatic circuits by charging and discharging every 

PC cycle. This solution is clearly inadequate and special circuitry needs to be constructed 

to allow the flip-flop to operate similar to a CMOS flip-flop. Two CMOS inverters in 

series have been reported to work as converters from a trapezoidal adiabatic input signal 

to a square-wave output signal in [28]. However, due to the longer rise time of an adia

batic input, there is a large short-circuit current in the first inverter, causing a large energy 

consumption.

A solution to the interfacing problem used in this work takes advantage of the dual

phase operation of IDPAL to produce a square-wave output. The flip-flop circuit does not 

use any additional control signals and its implementation is composed of two modified 

CMOS inverters connected in series. A diagram of the circuit is shown in Fig. 37. As

suming that the input in is controlled by PC, the interface circuit then has to be controlled 

by the complementary phase, PC. When in is at GND and the PC is at GND and starts 

rising towards Vj j , the intermediary output T  takes on a High values since both PMOS
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transistors are ON. Once PC rises past the |V t p \ threshold, the output may no longer be 

changed since the PMOS control transistor is OFF. When in is at V^d, the NMOS network 

starts conducting once Vpc > Vtn, pulling the intermediary output T  to GND. The PMOS 

network is disconnected since in is at Vdd and does not have any influence on T. The inter

mediary output T  is the converted and inverted version of the input in and approximates 

a CMOS signal. However, due to the oscillating adiabatic input and PC, the intermediary 

output contains small ripples, as illustrated in Fig. 38a. In order to obtain an equivalent 

square-wave version of the original oscillating input signal without any ripples, the T sig

nal is then passed through a pure CMOS inverter, as shown in Fig. 38b. The input in in 

the Figure has a 75% duty cycle to show the behavior of the adiabatic-CMOS interface 

under both input cases. The use of the two control transistors controlled by PC removes 

the large short circuit current by blocking the formation of a path from the PMOS to 

NMOS transistors during switching and results in a better design for the adiabatic CMOS 

interface.

in — PC D

Fig. 37: An adiabatic-CMOS interface circuit used in the proposed microprocessor.
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This interface has the advantage of not needing any additional control circuitry other 

than the signals already available. It also uses a small number of transistors in its im

plementation compared with other implementations [28], which increases its energy effi

ciency. The interface circuit was tested and shown to be operational on both trapezoidal 

and sinusoidal PC’s, however its performance is better on a sinusoidal PC, where the 

square-wave output is valid slightly earlier than on the trapezoidal PC. This difference is 

mainly due to the earlier evaluation of sinusoidal PC’s compared to the trapezoidal ones.

A disadvantage of all adiabatic-CMOS interfaces encountered in literature, including 

the one described above, is that due to the time-varying nature of the adiabatic input and 

the PC’s, the square-wave output is only available approximately 1/4 of the way into a 

PC cycle. The reason for the delay is that the adiabatic output only starts evaluating once 

Vpc > |V7w|.

Because some of the operations in the microprocessor may not have a set number of 

clock cycles required for execution (i.e. they are asynchronous), a fully adiabatic imple

mentation might not be the best solution due to its micro-pipelining. To accommodate 

this issue, a square-wave implementation using a flip-flop is used in this microprocessor 

for the memory read/write operations. The proposed approach uses the adiabatic-CMOS 

interface circuit in order to generate a square-wave output signal to be written to memory. 

When a memory operation is complete, a signal will be triggered to indicate the end of 

the operation, allowing the next unit to continue evaluation using the new input.
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V.3 Implementation Details

The microprocessor block diagram is shown in Fig. 39. Dotted outlines show adia

batic implementations whereas solid outlines show CMOS implementations. There are a 

few instances of the adiabatic-CMOS interface being used, denoted with an interrupted 

outline. As can be observed, the ALU and all temporary registers are fully implemented 

using EDPAL, whereas CMOS implementations include the register file, control circuitry, 

and memory. A square-wave clock can be generated from either of the two adiabatic 

phases by passing it through an instance of the adiabatic-CMOS interface presented ear

lier. The control circuitry is implemented as a hard-wired ROM due to the simplicity of 

implementation. Although not shown in the Figure, the two source buses (SI and S2) are 

driven by PC, whereas the destination bus (D) is driven by PC.

Due to the limited size of the implementation, the OpenRISC instruction set was re

duced to only the most basic instructions that would allow implementation to be charac

terized as OpenRISC also being able to implement an encryption algorithm. A description 

of the building blocks of the proposed microprocessor follows.

The Program Counter (PC, not to be confused with PC — the Power Clock) uses an 

adiabatic buffer for storage of the next instruction address. A buffer is inserted between 

the D bus and the PC in order to have the correct phase drive the PC on the SI and S2 

buses. The ALU has pass-through capability in order to allow the value from PC (or any 

other value from the SI and S2 buses) to be passed onto the D  bus.

The memory is CMOS-based and is hosted off-chip due to limited die space. An 

additional off-chip square-wave clock is used for control along with any other memory
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Fig. 39: Block diagram of the hybrid adiabatic-CMOS microprocessor.
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control signals coming from the chip. If the memory were to be placed on chip, an adi

abatic implementation similar to the one in [30] could be used. The memory has to be 

byte-addressable in order to be able to execute instructions that operate on single bytes. 

As the proposed microprocessor does not contain advanced features, the memory contains 

both instruction and program data. Additionally, no cache or memory management units 

are implemented in order to maintain the simplicity of this proof-of-concept implementa

tion.

Although the microprocessor is not pipelined, we can take advantage of the micro

pipelining abilities of adiabatic logic if multiple instructions of the same type are executed 

consecutively. For example, in an encryption operation, many shift, XOR, and multiply 

operations take place. In a micro-pipelined environment, the results of these operations 

could be available one per PC cycle once the first result is available, assuming that the 

operations are independent of each other. Encryption operations and some digital signal 

processing operations could make use of this micro-pipelining feature of adiabatic cir

cuits to obtain results faster than performing individual instructions sequentially. If the 

operations are not independent, issues that affect regular pipeline operations have to be 

considered before implementation (e.g. data hazards).

V.3.1 Implementation of Main Instructions

For demonstration purposes, the following discussion is based on an 8-bit implemen

tation of the hybrid microprocessor. The discussion can be extended to a 16- or 32-bit 

implementation without many changes. All instructions follow the same execution stages
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as a in a traditional CMOS non-pipelined implementation, although the ALU has micro

pipelining abilities due to using IDPAL for implementation.

Addition and subtraction operations are implemented using an 8-bit KSA, similar to 

the one discussed in Chapter ID. A block diagram for the ALU is shown in Fig. 40. Unlike 

traditional adder/subtractors, where a XOR gate is used in conjunction with the Cin signal 

to generate the inverted version of one of the inputs, adiabatic logic signals have both 

the input and its complement available and only need to have different routing paths. A 

swap gate that has the functionality of a 2-bit multiplexer, implemented as a 2-input XOR 

gate using 10 transistors (Fig. 41), is inserted before the KSA in order to account for the 

subtraction operation. This gate is controlled by a signal which allows the inputs to be 

swapped when it is asserted. The second input is presented in its regular form and needs 

to be buffered for an additional stage due to the swap gate. The overhead associated with 

the subtraction operation then becomes 16 transistors for each input bit pair for a total 

of 128 transistors, or 14% of the total number of transistors in an adder/subtractor. The 

8-bit KSA had 5 evaluation stages before the addition of the layer of swap gates, which 

requires a stage of buffers at the output of the adder in order to synchronize its outputs 

with the bus. Thus, the addition of the swap gates stage adds the extra evaluation stage 

that synchronizes the outputs as well as provides the subtractor functionality, allowing for 

an even lower overhead compared with a pure adder.

An improvement over this design would be to have logic that reads the next instruction 

in the micro-pipeline and is able to detect whether it is a subtraction operation or not. If 

the next instruction is a subtraction, then the results of the current instruction, regardless
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Source Bus

Adder/Subtractor 
(6 cycles)

Comparison Op's 
(2 cycles)

Status Reg.
(1 cycle)

Q)

Octo

Logic Op's 
NOT, AND, OR, XOR 

(1 cycle)

Shifter 
(3 cycles)

2:1 Mux 
(1 cycle)

Destination Bus

Fig. 40: High-level ALU block diagram implementation.

PC

XNOR XOR

Fig. 41: Implementation of a 2-input XOR gate in DDPAL used as a swap gate.
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of what it is, can be routed to opposite registers in the register banks using two 2-to- 

1 multiplexers, thus swapping the input values with their complements and eliminating 

the need for a new layer of logic in the KSA. Due to the additional transistors used in 

multiplexers, a more detailed analysis of the particular use of this microprocessor would 

need to be performed in order to choose the most optimal implementation. Additionally, 

this design would not be feasible on the current version of the microprocessor as the KSA 

needs to produce a result in an even number of phases.

Shift instructions (SRL,SRA,SLL,ROR) are implemented using a bi-directional barrel 

shifter implemented with modified 8-to-1 and 4-to-1 multiplexers. A diagram of the shifter 

design is shown in Fig. 42. The 4-to-l multiplexers form the majority of the multiplexers 

used and only use 3 inputs, whereas the 8-to-l multiplexers only use 5 inputs. The rest of 

the available inputs to each kind of multiplexer are “don’t cares” as their values will not 

influence the output of each multiplexer and are not shown in the diagrams for simplicity. 

The few 8-to-l multiplexers used are needed in order to shift constant values for some 

of the instructions that do not have a more regular structure. The control signals Sxo and 

Sxi , where x =  0,1,2, are the same for both types of multiplexer and the signal Sx2 is only 

used for the 8-to-l multiplexers for the non-regular cases. An additional layer of buffers 

is required at the shifter output in order to use an even number of clock phases for correct 

operation. The first input to each type of multiplexer allows the previous input to pass 

through the multiplexer unchanged. The second input produces the ROR operation, as 

well as SRL and SRA on the 4-to-l multiplexers. These two instructions are different on 

the 8-to-l multiplexer as a 0 needs to be shifted in for the SRL operation (input 5) and



the value of the first bit needs to be shifted in for the SRA operation (input 4). The third 

input on both multiplexers is for the SUL operation, which has hard-wired connections 

to GND for the lowest bit positions and the multiplexers do not require any additional 

modifications.

S»Ss>Sw SuS.iS-c SsoSo-Sw

SLL frr 
SRL/SR/vROR

P ass -►

4:1 4:1

4:1

4:1

4:1

4:1

4:1

4:1

4:1

4:1

4:1

4:1

4:1

8:1 8:1

6:1

8:1

0 ■ 1 0  '  • 0 * 1

Fig. 42: An 8-bit bi-directional barrel shifter implementing the SRL, SRA, SLL, ROR 
instructions.

Comparison operations use a special 5-bit status register to store the result of a com

parison operation. Several hardware comparator options were available, although due to
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space constraints it was decided to use the 8-bit KSA implemented earlier with a few mod

ifications to account for comparison operations. Comparison can be implemented using a 

KSA performing a subtraction operation. Assuming the subtraction operation is A — B, to 

check if A > B or A < B, we check the carry-out (Cout) signal of the KSA. If CoM =  1, then 

A > B, otherwise A < B. To check for equality (A = B), we check the Cout and also pass 

the output through an OR gate and check the result. If Cout =  1 and the OR gate result 

is a 0, then A = B. Since the A = B operation involves two steps, it adds two layers of 

logic to the computation. The other two comparison operations (A > B  and A < B) can be 

implemented from the two basic operations A < B  and A > B, respectively, by inverting 

their values.

Load and store instructions use an instance of the adiabatic-CMOS interface described 

earlier and a flip-flop in order to have a strong CMOS signal to write to and read from the 

memory. Address and data to be written are stored in MAR and MDR, respectively. An 

additional buffer was inserted between the D  bus and the MAR for synchronization with 

the operation of MDR due to the 2-to-l multiplexer. Memory is off-chip and is clocked 

using a separate clock running at the same frequency as the PC. Data is loaded from the 

MDR into the flip-flop by using a memory control signal supplied by the controller, which 

is then written to memory in the next clock cycle. The micro-pipeline can be padded with 

enough buffers in order to match the memory access time and avoid using more complex 

control circuitry, e.g. an interrupt. A similar scenario takes place during a load instruction 

and an interrupt is triggered when the load operation is complete. The PC and memory 

clocks do not have to be synchronized as the flip-flop load signal and the memory write
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signal will be spaced by 1 clock cycle, allowing the address and data to be written to flip- 

flops and then available for the memory in the next clock cycle. Since the micro-pipeline 

depth will match the required access times for a read operation, available data can be 

passed to the multiplexer to be loaded into the MDR during the next PC cycle

Basic branching instructions also are implemented in this microprocessor. Uncondi

tional branches are implemented by simply latching the address of the next instruction in 

the PC register. Conditional branching instructions using the results of conditional set-flag 

instructions can be readily implemented using the flags in the special 5-bit status register 

and multiplexers. Other branching instructions (e.g. jump-and-link) will contain special 

control circuitry in the controller to achieve their particular implementations.

V.4 Microprocessor Testing

The proposed microprocessor has been tested in VHDL for behavioral and dataflow 

functionality. It is currently in layout stage using the Cadence layout suite in preparation 

for fabrication in silicon. Rigorous testing on the energy efficiency and hardware security 

of the microprocessor will begin once fabricated parts are available.

Several steps need to be taken before testing of the fabricated parts is possible. First, 

a special test fixture that will be able to supply the clocking information for the PC and 

PC to the microprocessor needs to be developed. The test fixture will contain circuitry 

necessary for the generation the two PC phases (either a RLC circuit or a phase-locked 

loop circuit) tuned to the specifications of the microprocessor extracted from layout. It 

is expected that the microprocessor will be tested in the 10-100 MHz frequency range,
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so an appropriate oscilloscope will need to be used to properly sample signals from the 

microprocessor. Second, an external memory capable of running at the specified speeds 

will need to be acquired and the appropriate memory control signals, including a new 

square-wave clock, will need to be generated.

The fabricated microprocessor will be evaluated using programs ranging from a simple 

logical operation to a full state-of-the-art encryption algorithm (e.g. DES, AES). Energy 

efficiency will be tested from measurements only on the two clock phases (PC and PC) 

as the square-wave clock is not part of the adiabatic implementation. An accurate 1£1 

resistor will be placed in series with the PC line in order to measure the current supplied 

and recovered in the circuit.

V.5 Chapter Conclusion

In this chapter, a new hybrid adiabatic-CMOS microprocessor partially implemented 

using IDPAL was proposed. A general description of the microprocessor using a block 

diagram and a more detailed explanation of each block was given. The chapter also de

scribed an adiabatic-CMOS interface circuit capable of producing square-wave outputs 

from oscillating inputs using a small number of transistors without any external signals. 

Due to the limitation on the size of the die for fabrication, a memory was not implemented 

in the proposed microprocessor, but an interface for using external memory was described.

A short summary of the implementation of the main instructions was presented, giv

ing a more detailed view of the arithmetic unit. It was shown that for correct operation of 

the ALU, each internal component has to produce an output in an even number of clock



intervals, which is due to the source (51 and 52) and destination (D) buses being operated 

using opposite phases. In many cases this restriction is not a limiting factor in the perfor

mance of the microprocessor as many of the instructions already use an even number of 

clock intervals. A large number of more complex instructions can be implemented using 

the basic instructions described in this chapter, although their implementation will take 

more clock cycles than having specialized hardware for specific instructions. Overall, the 

proposed microprocessor makes use of the advantages of adiabatic logic for circuits with 

high switching activity and uses CMOS logic for the other circuits.
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CHAPTER VI 

FUTURE WORK

This dissertation presented promising results which can be implemented successfully 

in the design of larger low-power adiabatic circuits. IDPAL has been tested in large circuit 

simulations as described in previous chapters and its energy efficiency scaled well with 

increased circuit size. This work could be further expanded to the implementation of a 

32-bit RISC processor using IDPAL. Previous adiabatic processors were fabricated at 8- 

and 16-bit length [33]-[36], which do not offer a full range of options for testing the 

processor against standard benchmarks. A 32-bit processor would allow for an equal 

comparison with equivalent commercial processors. The proof of concept microprocessor 

can be implemented without any pipelining in order to confirm energy energy efficiency in 

silicon, with subsequent pipelined versions fabricated in the future. The processor could 

implement encryption operations using a provided instruction set and/or a dedicated AES 

cryptographic co-processor could be implemented in hardware. Implementing encryption 

using two different ways allows for a more in-depth comparison of energy efficiency and 

power analysis attack resistance both in a RISC and an ASIC. A fabrication run would 

also yield more than one processor, so an extension to this work can be an analysis of 

multiple dies to be able to gauge inter-die variations and their effects on energy efficiency 

and power analysis attack resistance.

The arithmetic units in this work (adder and multiplier) were implemented and trans

lated from their CMOS implementation manually. An extension to this work would be to
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create an automatic translation tool for converting single-rail CMOS designs (from VHDL 

code or netlists) to any type of adiabatic logic family given the details of a particular fam

ily and other design criteria. The tools should be able to optimize a design based on area 

or energy usage and any other constraints set by the designer.

IDPAL circuit scalability has only been investigated at 180nm and it was found that it 

scales similar to CMOS and other adiabatic implementations between these two adjacent 

technology nodes. An extension of this work would be to compare energy efficiency in 

more modem processes in the deep-sub-micron region (e.g. 22nm, 16nm) and analyze 

power analysis resistance at these technology nodes. Leakage currents are very strong 

and leakage power is often a very large contributor to the overall power dissipation at 

these feature sizes. An analysis at this level would also allow for the implementation of 

leakage power analysis attacks.

Sequential circuits were not investigated in most adiabatic logic families encountered 

in literature due to the micro-pipelining abilities of adiabatic logic. The few attempts 

that were made used only modified buffer designs and did not contain special circuitry 

for stand-alone latches and flip flops. One of the disadvantages of relying on micro

pipelining is the inability of buffers to hold a value when the buffer input is disconnected 

by a control transistor and such a case would require special circuitry for a self-sustaining 

adiabatic flip-flop. New control circuitry would need to be developed in order to interface 

the flip-flops with the rest of the adiabatic circuit and with square-wave output circuitry 

for energy-efficient operation.



The ultimate goal of this work is to help design a framework for cost-effective, re

liable, and secure identification, monitoring, and tracking system which could be used 

in hospital environments. Current technology, starting from hospital admission to drug 

delivery and monitoring to discharge paperwork, is very convoluted and time-consuming 

and ends up in discomfort to the patient, missed procedures, and reduced efficiency. A 

vision for the future is to use IDPAL in smart cards, sensors, and implantable medical de

vices for better and secure patient care and decreased costs. Smart cards could be used for 

patient identification by storing patient information, health history, and other patient data 

locally and securely. This approach would allow for much shorter admission times and 

more immediate care. Sensors could monitor patient movement throughout the hospital, 

drug admission and patient response, and securely make the data available to attending 

doctors. Finally, implantable medical devices, such as pacemakers, can transmit real-time 

data to the doctor, their batteries can last a longer time, and die devices themselves be 

secure against power analysis attacks. Overall, adoption of next-generation technology, 

including circuits implemented using IDPAL, can provide for more immediate care for 

patients, decrease hospital and patient costs, and increase security of both devices and 

patient information.
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CHAPTER VII 

CONCLUSIONS

This dissertation presented IDPAL -  a new very low power partially-adiabatic logic 

family. The unique feature of IDPAL is in the decoupling of input networks from the 

evaluation networks, which allows the input stack to evaluate the inputs to the evaluation 

network long before the evaluation stage is enabled. This gate design was shown to reduce 

energy consumption compared to equivalent CMOS circuits by up to 79% and at least by 

25% than other state-of-the-art adiabatic logic families in large circuits (32-bit adder and 

multiplier). IDPAL circuits continue to maintain their energy advantage with circuit scal

ing. In an experiment where minimum feature size was reduced from 250nm to 180nm, 

an IDPAL 32-bit adder scaled similar to CMOS circuits and other adiabatic circuits.

IDPAL also has good power analysis attacks resistance characteristics due to its 

almost-constant energy dissipation for any input combination. In small circuit simula

tions, all adiabatic logic families tested showed a larger normalized energy deviation than 

state-of-the-art secure logic families. However, since the adiabatic families studied have 

a much smaller absolute magnitude deviation, they are a better choice for implementation 

of power analysis attack resistant circuits. The energy deviation between maximum and 

minimum values is 17/iA lower for IDPAL than SABL, which can increase the resistance 

of IDPAL against power analysis attacks. When compared to other adiabatic logic fami

lies, IDPAL increases power analysis attack resistance by at least a 32%. These qualities 

allow IDPAL to be used as a low power power analysis attack countermeasure.
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A hybrid adiabatic-CMOS microprocessor implemented using IDPAL for the adia

batic circuits was also proposed. The microprocessor takes advantage of the reduced en

ergy consumption of IDPAL circuits for circuit blocks with high switching activity (e.g. 

ALU) and uses CMOS circuits for circuit blocks with lower switching activity (e.g. con

troller, memory). An adiabatic-CMOS interface circuit that operates without any external 

signals to convert an adiabatic signal to a square-wave signal was also discussed.

The use of IDPAL in low power circuits could extend the life of battery-powered de

vices, avoid expensive and dangerous surgeries in the case of implantable medical devices, 

and provide a cheaper solution for fault-tolerance applications. Given that adiabatic cir

cuits are more suitable for medium to high switching activity applications, some other 

applications include digital signal processors, sensor networks, and displays.
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