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ABSTRACT 

A FRAMEWORK FOR DYNAMIC TRAFFIC MONITORING USING 

VEHICULAR AD-HOC NETWORKS 
 

Mohammad Hadi Arbabi 
Old Dominion University, 2011 
Director: Dr. Michele C. Weigle 

 
 

Traffic management centers (TMCs) need high-quality data regarding the status of 

roadways for monitoring and delivering up-to-date traffic conditions to the traveling 

public. Currently this data is measured at static points on the roadway using technologies 

that have significant maintenance requirements. To obtain an accurate picture of traffic 

on any road section at any time requires a real-time probe of vehicles traveling in that 

section. We envision a near-term future where network communication devices are 

commonly included in new vehicles. These devices will allow vehicles to form vehicular 

networks allowing communication among themselves, other vehicles, and roadside units 

(RSUs) to improve driver safety, provide enhanced monitoring to TMCs, and deliver 

real-time traffic conditions to drivers.  

In this dissertation, we contribute and develop a framework for dynamic traffic 

monitoring (DTMon) using vehicular networks. We introduce RSUs called task 

organizers (TOs) that can communicate with equipped vehicles and with a TMC. These 

TOs can be programmed by the TMC to task vehicles with performing traffic 

measurements over various sections of the roadway. Measurement points for TOs, or 

virtual strips, can be changed dynamically, placed anywhere within several kilometers of 



 

 

 

the TO, and used to measure wide areas of the roadway network. This is a vast 

improvement over current technology. 

We analyze the ability of a TO, or multiple TOs, to monitor high-quality traffic data 

in various traffic conditions (e.g., free flow traffic, transient flow traffic, traffic with 

congestion, etc.). We show that DTMon can accurately monitor speed and travel times in 

both free-flow and traffic with transient congestion. For some types of data, the 

percentage of equipped vehicles, or the market penetration rate, affects the quality of data 

gathered. Thus, we investigate methods for mitigating the effects of low penetration rate 

as well as low traffic density on data quality using DTMon. This includes studying the 

deployment of multiple TOs in a region and the use of oncoming traffic to help bridge 

gaps in connectivity. 

We show that DTMon can have a large impact on traffic monitoring. Traffic 

engineers can take advantage of the programmability of TOs, giving them the ability to 

measure traffic at any point within several km of a TO. Most real-time traffic maps 

measure traffic at midpoint of roads between interchanges and the use of this framework 

would allow for virtual strips to be placed at various locations in between interchanges, 

providing fine-grained measurements to TMCs. In addition, the measurement points can 

be adjusted as traffic conditions change. An important application of this is end-of-queue 

management. Traffic engineers are very interested in deliver timely information to drivers 

approaching congestion endpoints to improve safety. We show the ability of DTMon in 

detecting the end of the queue during congestion. 
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CHAPTER 1 

INTRODUCTION 

 

State transportation departments in the US must collect and probe various types of data 

for traffic monitoring purposes. Traffic management centers (TMCs) need high-quality 

data regarding the status of roadways for monitoring and delivering up-to-date 

information on traffic conditions to the traveling public. The most common of this traffic 

data are traffic volume and flow rate, vehicle classification, traffic speed, traffic density, 

travel time, and delay. Currently this data, such as speed and volume, is measured at 

static points on the roadway using technologies that have significant maintenance 

requirements. Systems that use this data to produce traffic reports are only as accurate as 

the quality of the collected data. To obtain an accurate picture of traffic on any road 

section at any time requires a real-time probe of vehicles traveling in that section. Current 

technologies can only monitor vehicles at fixed points of interest and require 

approximating some metrics, limiting the quality of the delivered data. Also fixed pointed 

detectors may miss locations where congestion occur since they are often located away 

from interchanges and other bottlenecks.  

In the future, intelligent transportation systems - formed of combinational networks 

(e.g. wireless, mobile, vehicular, and sensor networks) - will use roadside units that can 

communicate with equipped vehicles (or mobile nodes) and with a TMC (a server). We 

envision a near-term future where network communication devices are commonly 

included in new vehicles. These devices will allow vehicles to form vehicular networks 
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allowing communication among themselves, other vehicles, and roadside units (RSUs) to 

improve driver safety, provide enhanced monitoring to TMCs, and deliver real-time 

traffic conditions to drivers. In this dissertation, we introduce a Dynamic Traffic 

Monitoring mechanism (DTMon). We introduce RSUs called task organizers (TOs) that 

can communicate with equipped vehicles and with a TMC. These TOs can be 

programmed by the TMC to task vehicles with performing traffic measurements over 

various sections of the roadway. Measurement points for TOs, or virtual strips, can be 

changed dynamically, placed anywhere within near or far distance from the TOs, and 

used to measure wide areas of the roadway network. This is a vast improvement over 

current technology, where specific measurement points must be decided in advance and 

hardware installed in those locations. Since vehicles are used to take traffic 

measurements, TOs can report speed, travel times, and delays without needing 

approximation even in low market penetration rates, and can report volume and density in 

high market penetration rates. In addition to reporting traffic measurements to a TMC, 

TOs can also be used to inform vehicles about the latest traffic conditions and other 

useful information from the TMC.  

In this chapter, we introduce the important traffic data and the vehicular ad-hoc 

networks which can be used to probe and monitor this traffic data. Knowing the 

importance of each type of traffic data, we propose DTMon, a dynamic traffic monitoring 

mechanism using vehicular ad-hoc networks, TOs, and virtual strips, to augment and 

improve the capability of the currently-used technologies. The thesis statement and 

contributions are listed at the end of this chapter.          
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1.1. TRAFFIC DATA 

The goals of monitoring traffic are directly tied to specific functional objectives of 

departments of transportation (DOTs) and the related service providers, so the type of 

data and its level of spatial or temporal aggregation vary depending on the ultimate use of 

the data [1]. For example, some data are collected to support real-time traveler 

information and traffic control, whereas other data are collected and used off-line to help 

characterize typical travel patterns and project future traffic conditions. Examples of 

some of the uses of traffic data include the following: 

1. Predicting where roads should be built or expanded in the future 

2. Designing bridges and pavements to withstand predicted traffic loads 

3. Analyzing air quality in urban areas 

4. Alerting drivers to congestion and accidents 

5. Controlling traffic signals 

Three basic variables, volume or flow rate, speed, and density, can be used to 

describe traffic on any roadway. In addition to these variables, travel time and delay are 

used to describe the traffic movement on any section of roadway [1, 2, 3]. 

1.1.1. Volume and Flow Rate 

Volume and flow rate are two measures that quantify the amount of traffic passing a 

point on a lane or roadway during a given time interval. These terms are defined as 

follows: 
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 Volume is the total number of vehicles that pass over a given point or section of a 

lane or roadway during a given time interval; volumes can be expressed in terms 

of annual, daily, hourly, or sub-hourly periods. 

 Flow rate is the equivalent hourly rate at which vehicles pass over a given point 

or section of a lane or roadway during a given time interval of less than 1 hour, 

usually 15, 10, or 5 minutes. 

Volume and flow rate are variables that usually quantify demand, that is, the number 

of vehicle occupants or drivers (usually expressed as the number of vehicles) who desire 

to use a given facility during a specific time period. Congestion can influence demand, 

and observed volumes sometimes reflect capacity constraints rather than true demand. 

For example, in congested conditions demand is greater than volume because not 

everyone that wants to use the road can access it. 

The distinction between volume and flow rate is important. Volume is the number of 

vehicles observed or predicted to pass a point during a time interval. Flow rate represents 

the number of vehicles passing a point during a time interval less than 1 hour, but 

expressed as an equivalent hourly rate. A flow rate is the number of vehicles observed in 

a sub-hourly period, divided by the time (in hours) of the observation. For example, a 

volume of 100 vehicles observed in a 15-minute period implies a flow rate of 100 

veh/0.25 hour, or 400 veh/h. Also, flow rate can show the influence of sub-hourly 

fluctuations in traffic which could cause variation in congestion.  

Volume and flow rate can be illustrated by the volumes observed for four consecutive 

15-min periods. For example, the four counts are 1000, 1200, 1100, and 1000. The total 
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volume for the hour is the sum of these counts, or 4300 vehicles. The flow rate, however, 

varies for each 15-minute period. During the 15-minute period of maximum flow, the 

flow rate is 1200 veh/0.25 h, or 4800 veh/h. Note that 4800 vehicles do not pass the 

observation point during the study hour, but they do pass at that rate for 15 minutes. 

1.1.2. Speed 

Although traffic volumes provide a method for quantifying capacity values, speed is an 

important measure of the quality of the traffic data provided to the TMC. Speed is a  

measureable quantity of effectiveness, defining levels of service for many types of 

facilities, such as rural two-lane highways, urban streets, freeway weaving segments, and 

others. Speed can also be used to estimate travel time in some conditions. 

Speed is defined as a rate of motion expressed as distance per unit of time, generally 

as kilometers per hour (km/h). In characterizing the speed of a traffic stream, a 

representative value must be used, because a broad distribution of individual speeds is 

observable in the traffic stream. Usually the average travel speed is used as the speed 

measure because it is easily computed from observation of individual vehicles within the 

traffic stream and is the most statistically relevant measure in relationship to other 

variables. Average travel speed is computed by dividing the length of the highway, street 

section, or segment under consideration by the average travel time of the vehicles 

traversing it. If travel times t1, t2, t3,..., tn (in hours) are measured for n vehicles traversing 

a segment of length L, the average travel speed is computed using Equation 1. 

  (1) 

where 
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S = average travel speed (km/h), 

L = length of the roadway segment (km), 

ti = travel time of the ith vehicle to traverse the segment (h), 

n = number of travel times observed, and  

ta =  = average travel time over L (h). 

The travel times in this computation include stopped delays due to fixed interruptions 

or traffic congestion. They represent the total travel times to traverse the defined roadway 

length. Several different speed parameters can be applied to a traffic stream. These 

include the following:  

 Average running speed - A traffic stream measure based on the observation of 

vehicle travel times traversing a section of highway of known length. It is the 

length of the segment divided by the average running time of vehicles to traverse 

the segment. Running time includes only the time that vehicles are in motion. 

 Average travel speed - A traffic stream measure based on travel time observed on 

a known length of highway. It is the length of the segment divided by the average 

travel time of vehicles traversing the segment, including all stopped delay times. 

It is also a Space mean speed (SMS). It is called a space mean speed because the 

average travel time weights the average to the time each vehicle spends in the 

defined roadway segment or space.  

 Time mean speed (TMS) - The arithmetic average of speeds of vehicles observed 

passing a point on a highway; also referred to as the average spot speed. The 
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individual speeds of vehicles passing a point are recorded and averaged 

arithmetically.  

 Free-flow speed - The average speed of vehicles on a given facility, measured 

under low-volume conditions, when drivers tend to drive at their desired speed 

and are not constrained by control delay or congestion. 

For most of the procedures using speed as a measure of effectiveness in this 

dissertation, SMS and TMS are the defining parameters. For uninterrupted-flow facilities 

like a segment of a highway or a street, the average travel speed is equal to the average 

running speed.  

SMS is always less than TMS, but the difference decreases as the absolute value of 

speed increases. Based on the statistical analysis of observed data, this relationship is 

useful because TMS often is easier to measure in the field than SMS [1, 2, 3]. To 

calculate SMS accurately, average travel time must be calculated in an accurate way 

which requires the observation of two constructing points of the segment rather than one.  

It is possible to calculate both time mean and space mean speeds from a sample of 

individual vehicle speeds. For example, suppose three vehicles are recorded with speeds 

of 40, 60, and 80 km/h. The time to traverse 1 km is 1.5 min, 1.0 min, and 0.75 min, 

respectively. The time mean speed is 60 km/h, calculated as (40 + 60 + 80)/3. The space 

mean speed is 55.4 km/h, calculated as (60)[3 ÷ (1.5 + 1.0 + 0.75)]. 

1.1.3. Travel Time and Delay 

Travel time is the amount of time that takes a vehicle to travel between two points on the 

road. It is the piece of data most understandable for the driving public and, thus, is the 
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most desired data for traffic engineers. Historically, gathering travel times has been 

challenging. Travel time is a variable used in calculation of average running speed and 

average travel speed and also space mean speed.  

Delay, or expected delay, is also a piece of data useful for the driving public. This is 

the time difference between the observed travel time of the road segment and the travel 

time usually measured directly by knowing the length of the segment and the desired 

speed on that segment. For example, the travel time for a 5 km segment of a roadway 

with a speed limit (desired speed) of 80 km/h is 0.0625 h (1 km ÷ 80 km/h). If the 

observed average travel time of the vehicles that have passed the same segment is 0.09 h, 

then the average delay can be estimated as 0.0275 h (1.65 min). This delay can be 

assumed as the average delay that the drivers have encountered during their journey 

through the segment or can be used as an estimate for the expected delay, the delay that 

drivers may expect to encounter upon entering the same segment.          

1.1.4. Vehicle Classification 

Vehicle classification data records traffic volume with respect to the type of vehicle that 

passes a point on the road. The Federal Highway Administration (FHWA) has defined a 

set of 13 vehicle classes that are commonly used by most states [1, 3]. In addition to 

vehicle classification, TMC needs the percentage of vehicles in different classes which 

pass a point on the road. The classification scheme is separated into categories depending 

on whether the vehicle carries passengers or commodities. Non-passenger vehicles are 

further subdivided by number of axles and number of units, including both power and 



9 
 

 

 

trailer units. The most common vehicle types are motorcycles, buses, passenger cars 

(including all sedans, coupes, and station wagons), and trucks.    

1.1.5. Density 

Density is the number of vehicles occupying a given length of a lane or roadway at a 

particular instant. For the computations in this dissertation, density is usually averaged 

over time and is usually expressed as vehicles per kilometer (veh/km).  

Direct measurement of density in the field is difficult, requiring a vantage point for 

photographing, videotaping, observing significant lengths of highway, or surrogating 

based on other metrics. Density can be computed, however, from the average travel speed 

and flow rate, which are measured more easily. Equation 2 is used for under-saturated 

traffic conditions. 

  (2) 

where 

v = flow rate (veh/h), 

S = average travel speed (km/h), and 

D = density (veh/km). 

A highway segment with a rate of flow of 1000 veh/h and an average travel speed of 

50 km/h would have a density of 

 

Density is a critical parameter because it characterizes the quality of traffic 

operations. It describes the proximity of vehicles to one another and reflects the freedom 

to maneuver within the traffic stream.  
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Roadway occupancy is frequently used as a surrogate for density in control systems 

because it is easier to measure. Occupancy in space is the proportion of roadway length 

covered by vehicles, and occupancy in time identifies the proportion of time a roadway 

cross section is occupied by vehicles. 

1.1.6. Headway and Spacing 

Spacing, or space headway, is the distance between successive vehicles in a traffic 

stream, measured from the same point on each vehicle (e.g., front bumper, rear axle, etc.). 

Headway, or time headway, is the time between successive vehicles as they pass a point 

on a lane or roadway, also measured from the same point on each vehicle.  

These characteristics are microscopic, since they relate to individual pairs of vehicles 

within the traffic stream. Within any traffic stream, both the spacing and the headway of 

individual vehicles are distributed over a range of values, generally related to the speed of 

the traffic stream and prevailing conditions. In the aggregate, these microscopic 

parameters relate to the macroscopic flow parameters of density and flow rate. 

Spacing is a distance, measured in meters. It can be determined directly by measuring 

the distance between common points on successive vehicles at a particular instant. This 

generally requires complex techniques, so that spacing is usually derived from other 

direct measurements. Headway, in contrast, can be easily measured with time 

observations as vehicles pass a point on the roadway. Since headway and spacing are 

related, knowing the headway allows the spacing to be determined as shown in Equation 

3.  
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The relationship between average spacing and average headway in a traffic stream 

depends on speed, as indicated in Equation 3. 

  (3) 

This relationship also holds for individual headway and spacing between pairs of 

vehicles. The speed is that of the second vehicle in a pair of vehicles.  

The average vehicle spacing in a traffic stream is directly related to the density of the 

traffic stream, as determined by Equation 4. 

  (4) 

Flow rate is related to the average headway of the traffic stream as shown in Equation 

5. 

  (5) 

1.1.7. Relationship Among Basic Parameters 

Equation 2 cites the basic relationship among the parameters density, speed, and flow 

rate, describing an uninterrupted traffic stream. Although the equation v = S * D 

algebraically allows for a given flow rate to occur in an infinite number of combinations 

of speed and density, there are additional relationships restricting the variety of flow 

conditions at a location.  

Figure 1 shows a generalized representation of these relationships, which are the 

basis for the capacity analysis of uninterrupted-flow facilities like in highways and streets 

where relationship between speed and density is assumed to be linear. Speed is space 

mean speed. 
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Figure 1. Generalized relationship among  speed, density, and flow rate (based on 

[2]). 

The form of these functions depends on the prevailing traffic and roadway conditions 

on the segment under study and on its length in determining density. Although the 

diagrams in Figure 1 show continuous curves, it is unlikely that the full range of the 

functions would appear at any particular location. Survey data usually show 

discontinuities, with part of these curves not present. 

The curves of Figure 1 illustrate several significant points. First, a zero flow rate 

occurs under two different conditions. One is when there are no vehicles on the roadway, 

thus both density and flow rate are zero. Speed is theoretical for this condition and would 
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be selected by the first driver (presumably at a high value). This speed (the free flow 

speed) is represented by Sf  in Figure 1. 

The second case is when density becomes so high that all vehicles must stop�—the 

speed is zero, and the flow rate is zero, because there is no movement and vehicles cannot 

pass a point on the roadway. The density at which all movement stops is called jam 

density, denoted by Dj in Figure 1. 

Between these two extreme points, the dynamics of traffic flow produce a 

maximizing effect. As flow increases from zero, density also increases, since more 

vehicles are on the roadway. When this happens, speed declines because of the 

interaction of vehicles. This decline is negligible at low and medium densities and flow 

rates. As density increases, these generalized curves suggest that speed decreases 

significantly before capacity is achieved. Capacity is reached when the product of density 

and speed results in the maximum flow rate. This condition is shown as optimum speed So 

(often called critical speed), optimum density Do (sometimes referred to as critical 

density), and maximum flow vm. 

The slope of any ray line drawn from the origin of the speed-flow curve represents 

the inverse of density, based on Equation 2. Similarly, a ray line in the flow-density graph 

represents speed. As examples, Figure 1 shows the average free-flow speed and speed at 

capacity, as well as optimum and jam densities. The three diagrams are redundant, since 

if any one relationship is known, the other two are uniquely defined. 

As shown in Figure 1, any flow rate other than capacity can occur under two 

different conditions, one with a high speed and low density and the other with high 
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density and low speed. The high-density, low-speed side of the curves represents 

oversaturated flow. Sudden changes can occur in the state of traffic (e.g., in speed, 

density, and flow rate). We emphasize that these are theoretical relationships based on a 

linear speed-density relationship. Empirical data differs from these somewhat.  

1.2. Vehicular Ad-hoc Networks 

A Vehicular Ad-Hoc Network, or VANET, is a technology that uses vehicles (usually 

moving vehicles) as nodes in a network to create a mobile network. Therefore, VANET is 

a form of mobile ad-hoc network [4, 5]. Vehicles in VANETs are able to communicate 

with nearby vehicles and between vehicles and nearby fixed equipments. The main goal 

of VANETs is to provide safety and comfort for passengers. There are several 

applications for VANETs such as incident management, collision warning, vehicle 

tracking, improved driving, resource awareness, etc. [5]. There may also be multimedia 

and Internet connectivity facilities for drivers (passengers), all provided within the 

wireless coverage of each vehicle. Automatic payment for parking lots and toll collection 

are other examples of possibilities using VANETs.  

An on-board unit (OBU) consists of a wireless transceiver in a vehicle that provides 

the communication with nearby road-side units (RSU) using Dedicated Short Range 

Communication (DSRC). DSRC [6] provides short-to-medium range wireless 

communication channels (5.9 GHz up to range of 300 meters) specifically designed for 

automotive use. There are a corresponding set of protocols and standards (IEEE 1609 [7], 

IEEE 802.11p [8]) associated with DSRC. Vehicles are also able to store useful data 
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during their trip for later delivery. The information gathered by OBUs and RSUs can be 

mined to derive traffic data and its derivatives. 

The main advantages of using VANETs in monitoring traffic compared with other 

technologies are as follows: 

1. VANETs can be used to collect and monitor real time traffic speeds and travel 

times. 

2. VANETs can be used to collect and monitor real time information on congestion. 

3. VANETs have the potential to be used to dynamically change traffic signal 

timings. 

4. There are two-way communications between vehicles and roadside units in 

VANETs. 

5. VANETs have the potential to provide up-to-date traveler information in addition 

to safety messages. 

6. RSUs are nonintrusive. 

The initial disadvantages are as follows: 

1. VANET is still in its infancy, and the technology and requirements have not been 

thoroughly tested and evaluated. 

2. Its reliability and accuracy must be ensured.  

3. Like other probe vehicle-based methods, VANET suffers when the market 

penetration rate and sample size are low. 

4. Its cost is still unknown. (OBU, RSU, operating, maintenance, etc.) 
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 In Chapter 3, we will explain the use of VANETs in our proposed framework 

(DTMon) and its components in more detail. 

1.3. Traffic Management Centers 

The TMC serves as the focal point for the management of the roadway transportation 

system in an area [3]. It integrates data from a variety of different sensor sources and 

provides a means for operators to manage traffic and inform the public from a centralized 

point. Many TMCs are also co-located with emergency responders to help facilitate 

coordination when a crash or other emergency arises. The workstations offer 

functionality to perform tasks like changing messages on dynamic message signs 

(DMSs), viewing police dispatch reports, and controlling closed-circuit cameras. 

Sensors and other detection devices can usually communicate and transfer data with 

the TMCs through wired, wireless, or by portable data storage [3, 9, 10]. Wired 

mechanism involves regular cable, fiber optic cables (higher bandwidth), or telephone 

lines. Wireless transfer of data can be done through cell phones or radio frequencies 

specified for this purpose. Portable data storage devices are usually located nearby 

sensors or attached to them. They store data which will be transferred to TMCs for 

archiving or off-line data processing.      

The major functions of the TMC are the following (see Figure 2): 

1. Surveillance. The surveillance function involves the collection of data on traffic 

flow conditions on the roadways being monitored. 
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2. Traveler information. In the traveler information function, the TMC provides 

information on current conditions to the public, enabling them to change routes or 

times of departure to avoid congestion. 

3. Incident detection and management. Incident detection and management includes 

the timely detection of sources of congestion and developing strategies to mitigate 

their impact. 

4. Ramp and lane control. This involves dynamically changing traffic control 

devices on ramps and main freeway lanes to improve traffic flow. 

 

 

Figure 2. Functions of a TMC. Copyright©2011 from Chapter 1: �“Traffic 

Monitoring�” by M. Fontaine in Vehicular Networks From Theory to Practice, edited 

by S. Olariu and M. Weigle. Reproduced by permission of Taylor and Francis 

Group, LLC, a division of Informa plc. 
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1.4. THESIS STATEMENT AND CONTRIBUTIONS 

There are several sensors/detectors and technologies currently used to monitor traffic data 

(see Chapter 2 Sections 2.1 and 2.2). These traffic data are usually monitored by 

technologies such as inductive loop detectors (ILDs), video detection systems, acoustic 

tracking systems, and microwave radar sensors (MRS). In addition, wireless technologies 

are used in systems such as automatic vehicle identification (AVI), automatic vehicle 

location (AVL), and wireless location technology (WLT).  

Among these, ILDs are the most prevalent, generally have the highest accuracy, and 

can monitor all of the fundamental traffic data except travel times. However, they are 

prone to failure. Maintenance, installation, and replacement can be problematic, and 

because of this, large portions of an ILD network may not be returning quality data at any 

given time. Video detection systems have issues in inclement weather (e.g., fog, rain, 

snow) and especially with occlusion. Occlusion is also a major problem for acoustic 

tracking and microwave radar systems. The ability of AVI-based systems to provide 

useful data is directly linked to the number of probes on the road. Therefore, these 

systems require the installation of significant roadside infrastructure to detect equipped 

vehicles. AVL systems are susceptible to the same sample size limitations as AVI 

systems. Also, trucking companies have been reluctant to share their AVL data with 

others due to concerns about losing competitive advantages in the marketplace, so data 

sources are not widely available. Note that AVL devices can also be installed in 

municipal buses or taxis. WLT systems are based on the presence of cellular phones in 
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vehicles for monitoring traffic. But, these systems do not have the same location 

precision as GPS and cannot distinguish between different phones in the same vehicle. 

Thesis Statement: Vehicular networks and in particular DTMon, a dynamic traffic 

monitoring system consisting of task organizers (programmable road side units) and 

virtual strips (dynamic points of interest), can be used to efficiently provide to TMCs 

high-quality, fine-grained traffic measurements covering a large area of the roadway.  

This thesis is a framework for designing various systems that could be deployed in 

different configurations based on highway topology and traffic conditions. We will 

analyze the capabilities of DTMon and TOs to monitor high-quality traffic data in various 

traffic conditions (free-flow and congested states). For some types of data, the percentage 

of equipped vehicles, or the penetration rate, affects the quality of data gathered. We will 

investigate methods for mitigating the effects of low penetration rate as well as low 

traffic density on data quality. This may include deploying multiple TOs in a region or 

using oncoming traffic to help bridge gaps in connectivity. 

Our framework, and in particular DTMon, can have a large impact on traffic 

monitoring. Traffic engineers can take advantage of the programmability of TOs, giving 

them the ability to measure traffic at any point within up to reasonably far distances from 

TO. Since the location of virtual strips can be changed at any time, measurement points 

can be adjusted as traffic conditions change. An important example of this is end-of-

queue management. Traffic engineers are very interested in monitoring the endpoints of 

congestion and would like to deliver timely information to drivers approaching these 

points to improve safety. Another important example of the usefulness of dynamic 
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measurement is an evacuation scenario. As drivers evacuate, they may take roadways that 

are not normally monitored. A TO could be placed temporarily in those locations as 

conditions mandate to measure traffic and provide important information to drivers. Most 

real-time traffic maps measure traffic at midpoint of roads between interchanges and the 

use of this framework would allow for virtual strips to be placed at various locations in 

between interchanges, providing fine-grained measurements to TMCs. Maybe most 

importantly, a single TO could be used to monitor traffic up to reasonably far distances, 

resulting in lower monitoring costs with less delay than is currently possible in providing 

real-time information from/to drivers. 

Contributions: 

1. A method for using probe vehicles to perform spatial sampling of traffic 

conditions �– Probe vehicles can provide real-time measurements of speed and 

travel time. Using spatial sampling allows for these measurements to be made at 

specific locations of interest on the roadway. This avoids the need for 

interpolation and estimation that is required when temporal sampling of probe 

vehicles is performed. 

2. An analysis of the factors that can impact the quality of monitored traffic data 

when using vehicular networks �– These factors are market penetration rate, traffic 

conditions, communication range, distance between communicating entities, 

methods of message delivery, message reception rate, and message delay. We 

have performed an analysis of these factors and how each contributes to the 
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quality of traffic data that can be reported. We note that both traffic conditions 

and market penetration rate affect the distance between communicating entities. 

3. An evaluation of the impact of different methods of message delivery on the 

quality of traffic data that can be gathered by vehicular networks �– We compared 

four different message delivery methods (regular forwarding, dynamic 

transmission range, store-and-carry, and a hybrid approach) by measuring 

message reception rate and message delay in different traffic conditions and 

different market penetration rates. We found that a hybrid approach (regular 

forwarding coupled with store-and-carry and using vehicles traveling in the 

opposite direction) can significantly improve the performance of DTMon in 

poorly connected traffic conditions. We also showed that when the market 

penetration rate is high, the message delay can be reduced significantly. 

4. An evaluation of the effectiveness of DTMon as compared with current 

technologies such as inductive loop detectors (ILD) and automatic vehicle 

location (AVL) �– We show that DTMon can be used to report travel times that are 

not statistically different from the actual travel times. In comparison, we show 

that technologies such as ILD cannot measure travel times with this level of 

accuracy. 

5. A demonstration of the usefulness of DTMon�’s monitoring approach for 

monitoring congested traffic conditions �– We have shown the ability of DTMon 

to allow a TMC to dynamically place additional monitoring points (virtual strips) 

in locations where congestion is building up. This allows the TMC to detect 



22 
 

 

 

transitions in traffic flow using speeds and travel times, without having to rely on 

flow rate information. We have shown that DTMon can be used to detect and 

track the end-of-the-queue in traffic with congestion. 

6. Highway mobility modules for the ns-3 network simulator �– We have contributed 

the first highway mobility modules designed to produce realistic vehicle mobility 

and communications in ns-3. The mobility model has been validated against the 

well-known vehicular mobility models, and the networking components use ns-3, 

which has been validated against wireless models. These modules have been 

released to the ns-3 community and are now being used by other researchers 

around the world. 

1.5. OUTLINE 

The dissertation is organized as follows: 

 Chapter 2 presents the background and related work for the proposed DTMon and 

implemented integrated VANET simulator. We also present the background and 

related work regarding traffic monitoring using technologies such as 

sensors/detectors and probe vehicle-based systems. 

 Chapter 3 introduces and explains the components of DTMon for dynamic traffic 

monitoring using VANETs. We describe the main components of the proposed 

framework such as proposed task organizers, proposed virtual strips and segment, 

equipped vehicles and methods/techniques to monitor traffic data. We analyze the 

effect of the market penetration rate and the traffic density on DTMon�’s 

performance. We explain various scenarios and strategies for deploying TOs. We 
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also describe the advantages of TOs and dynamically defined virtual strips in 

augmenting the current in-use systems for monitoring traffic.  

 Chapter 4 evaluates the proposed methods in free-flow traffic and addresses the 

effect of traffic flow, speed, density, and market system penetration rate on 

monitoring high quality traffic data. We show the performance of various 

methods of message delivery on information and message reception rate and 

delay in monitoring high quality traffic data. In addition to free flow traffic, we 

evaluate the proposed methods in traffic with congestion and addresses the effect 

of traffic flow, speed, density, and market system penetration rate on monitoring 

high quality traffic data. We show the performance of various methods of 

message delivery and compare the results with sensors/detectors and probe 

vehicle-based systems. We also show advantage of using our dynamic monitoring 

in detecting congestion.    

 We conclude and summarize our research and achievements in Chapter 5. We 

discuss future research directions in Chapter 5 as well. 

 Appendix A presents the first implementation of a well-known vehicle mobility 

model in ns-3, the next generation of the popular ns-2 networking simulator. We 

show the need and motivation for a quality integrated VANET simulator which 

was used to evaluate our proposed dynamic traffic monitoring system. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

In the United States and numerous other parts of the world, road traffic is a critical part of 

a region�’s economic activity. Numerous measures are taken to address problems arising 

from traffic flow, its transition, and congestion. An essential step in this direction is the 

creation of a traffic monitoring system with capabilities to estimate traffic data with 

significant accuracy and reliability. Historically, dedicated infrastructure has been used 

for monitoring traffic data, however, the corresponding sensors have limited coverage, 

high installation and maintenance costs, and their fixed position does not enable 

optimized and adaptive sampling as traffic conditions change. Therefore, there is a need 

for a mechanism which can augment these monitoring systems or even replace them. 

In this chapter, we present traffic monitoring methods and technologies. We explain 

the advantages and disadvantages of these technologies. 

2.1. TRAFFIC MONITORING METHODS AND TECHNOLOGIES  

There are several sensors and detectors, methods, and technologies that can be used to 

collect, probe, and monitor traffic data [3, 9, 10]. The sensor technologies can be broadly 

classified into two categories: intrusive and nonintrusive sensors.  

 Intrusive detectors require intrusion into the pavement to perform installation or 

maintenance activities.  

 Nonintrusive detectors are mounted either above or beside the roadway.  
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An example of an intrusive detector would be an inductive loop detector (ILD) 

installed in the pavement surface. Intrusive detectors in comparison to nonintrusive 

detectors have several problems: 

1. Travel lanes may have to be closed in order to perform maintenance on the 

sensor. 

2. Timely maintenance, particularly in a congested urban area, is a significant barrier 

where it may be difficult to close lanes during the day due to the impact on traffic.  

3. They need to be replaced every time a road is repaved.  

In addition to sensors, a number of new monitoring methods that rely on the use of 

probe vehicle data have been deployed as a way to gather traffic data mostly relating to 

travel time and speed. Probe vehicle-based systems track the movements of a subset of 

the vehicle population in order to estimate the travel characteristics of all vehicles on the 

road. Probe vehicle systems can generate estimates of speed and travel time on a section 

of road, but they generally do not produce estimates of the volume or density of traffic. 

By using this approach, estimates of SMS (rather than TMS) are generated for the road. 

Thus, the speed estimates more fully characterize what drivers actually experience [2, 3, 

9]. One method to probe traffic data is the use of wireless technology such as cell phones. 

In this section, we introduce these commonly used sensors, methods, and 

technologies in addition to their connectivity to TMC. 

2.1.1. Inductive Loop Detectors 

Inductive loops are intrusive detectors, consisting of a coiled wire that is cut into the 

pavement. The ILD senses the presence of metal objects that pass over the coiled wire. 
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When a vehicle passes over or stops on top of an ILD, it reduces the loop inductance of 

the wire. Currents are induced in the vehicle, reducing loop inductance. The reduction in 

loop inductance is then translated by a controller into a detection of the presence of a 

vehicle (see Figure 3). Lengths of vehicles can be estimated, but the number of axles is 

not explicitly counted.  

 

 

Figure 3. Inductive loop detector system. 

ILDs can be installed as either a single or double loop configuration. Single loop 

detectors comprise just one loop of coiled wire installed in the pavement and are 

generally used to provide traffic volume and density information. With double loops, two 

loops are installed in a lane of road one after another, with a short space between the two 

ILDs. Double loops are necessary to generate speed estimates. As the two ILDs are 

placed a known distance apart, the speed of a vehicle can be estimated by examining the 

time that elapses between the activations of the two loops.  

There are also several advantages to using ILDs: 

1. The technology is mature, and there is a large experience base with the sensors.  

2. All of the fundamental traffic data including volume, occupancy, TMS, and 

vehicle classification can be provided by ILDs.  
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3. ILDs are robust to inclement weather such as fog, rain, and snow. 

4. ILDs generally have the highest accuracy of commonly used sensors, with 

accuracy reported to be between �–1 and +2% across a variety of studies [11, 12]. 

5. ILDs can produce high quality data (i.e., flow rate and volume). 

Disadvantages of ILDs are as follows: 

1. ILDs require regular tuning to ensure that speeds and vehicle classification data 

are of high quality.  

2. They are intrusive sensors, therefore maintenance, installation, and replacement of 

ILDs can be problematic, particularly in congested urban areas.  

3. Multiple loops are usually required to monitor a location. 

4. Detection accuracy may decrease when design requires detection of a large 

variety of vehicle classes. 

5. They are prone to failure, and large portions of an ILD network may not be 

returning quality data at any given time because of ILD failure rates and 

maintenance difficulties.  

For example, in 2005 the Virginia Department of Transportation Traffic Management 

Center in Hampton Roads estimated that about 40% of their ILDs were not returning 

quality data [13]. The difficulties in maintaining ILDs have been a significant reason why 

alternative detection technologies have been pursued.    

2.1.2. Video Detection System 

Video detection systems utilize cameras and image processing software to collect data on 

traffic flow. A camera is pointed at a roadway, and image processing software analyzes 
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changes in pixels between successive frames. The processing software identifies when a 

vehicle has entered the frame, and then translates the movement of the vehicle on the 

video into traffic flow parameters [9, 10]. 

Video detection offers several advantages over ILDs: 

1. Video detection systems are nonintrusive detectors which can collect all of the 

same traffic flow parameters as inductive loops. 

2. A single controller and camera combination can be used to detect multiple lanes 

on an approach. 

3. Wide-area detection can be provided when information gathered from multiple 

camera locations are linked together. 

4. Video detection system is sometimes more cost effective solution for traffic 

signal detection over the lifecycle of the equipment. 

The problems with video detection systems are as follows: 

1. Some periodic maintenance, such as cleaning camera lenses, requires shutting 

down lanes.  

2. Video detection systems have issues in inclement weather (i.e., fog, rain, snow) 

which can create problems with the video processing software because they 

reduce the contrast in the image between vehicles and the background. 

3. The field of view of the camera can be affected by high winds.  

4. Reliable nighttime signal actuation requires street lighting. 

5. Occlusion is a major potential problem with video detection systems (see Figure 

4) [3, 4]. 
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Occlusion occurs when a vehicle obscures another vehicle within the camera�’s field 

of view. Occlusion can cause undercounting of traffic volumes or poor speed estimation. 

 

 

Figure 4. Occlusion and its impact on video detection. Copyright©2011 from 

Chapter 1: �“Traffic Monitoring�” by M. Fontaine in Vehicular Networks From 

Theory to Practice, edited by S. Olariu and M. Weigle. Reproduced by permission of 

Taylor and Francis Group, LLC, a division of Informa plc. 

2.1.3. Microwave Radar Sensors  

Microwave radar sensors (MRS) are devices for transmitting high frequency 

electromagnetic signals and receiving echoes from objects of interest within their volume 

of coverage.  

MRS have flexibility in where they can be placed. The sensors are typically mounted 

on existing structures that pass over the highway (such as sign structures or bridges) or on 
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posts adjacent to the roadway, therefore MRS are another alternative option to ILDs, and 

have the following advantages: 

1. MRS are nonintrusive. 

2. They can directly measure speed. 

3. They can provide volume, occupancy, TMS, and vehicle classification data.  

4. They can be mounted to collect data for a single lane or to collect data across 

multiple lanes.  

5. They are typically insensitive to inclement weather at relatively short ranges. 

MRS have disadvantages: 

1. The accuracy of MRS is not as good as well-functioning ILDs. 

2. MRS suffer from many of the same occlusion problems as video detection. 

3. They cannot detect stopped vehicles and vehicles with low speed. 

 

 

Figure 5. Microwave radar operation. 
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The most common application of microwave sensors is to supplement data collected 

from ILDs on major freeway facilities. Infrared, ultrasonic, and acoustic radars are fairly 

similar technologies that are used for detection of vehicles, but these technologies do not 

perform as accurately as MRS in various conditions and are not used as widely as ILDs, 

cameras, and MRS for monitoring traffic data.       

2.1.4. Automatic Vehicle Identification 

Automatic Vehicle Identification (AVI) systems are probe vehicle-based systems that 

usually rely on tags which reflect encoded radio signals transmitted from roadside 

antennas or readers. The reflected signals are modified by the tag identification code so 

that the tag�’s information can be read by the system. This type of system has also been 

adapted to collect traffic monitoring data. In a monitoring application, roadside antennas 

are installed along major highways where the DOT wants to collect information on travel 

times or speeds. The unique tag identification numbers are logged each time a vehicle 

passes by an antenna. 

The travel time of the vehicle can then be explicitly calculated by examining when a 

vehicle passes known antenna locations on the highway. This provides true point-to-point 

travel times for all vehicles with tags. An example for this method is the system of toll 

transponders and vehicles�’ smart tags. 

There are several issues related to the deployment of AVI-based monitoring systems: 

1. The ability of AVI-based systems to provide useful data is directly linked to the 

number of potential probes on the road.  
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2. A sufficient number of probe vehicles must travel a route for the travel time and 

speed estimate to have statistical validity.  

3.  These systems require the installation of significant roadside infrastructure in the 

form of AVI tag readers and communications in order to gather data.  

4. These systems have significant cost. 

Capital costs for a single AVI site on a six-lane highway range from $18000 to 

$38000, with annual operating costs of $4000 to $6000 per site [14, 15]. If sites are to be 

spaced every 2 to 3 kilometers, this can be a significant cost. The advantage these 

systems have is that they can produce quality speed and travel time estimates. 

2.1.5. Automatic Vehicle Location 

Automatic Vehicle Location (AVL) refers to a suite of probe vehicle-based technologies 

that track the location of vehicles traveling through the roadway network. The more 

commonly-used method in AVL relies on global positioning system (GPS) data. GPS 

data is collected continuously by the vehicle and then periodically transmitted back to a 

central control facility over a radio backbone, cellular service, or satellite 

communications network. The location data generated by AVL systems could be mined 

to generate traffic data. Examples for such a system are transit companies which track 

location of buses on their routes [16] and combined traffic information providers such as 

INRIX [17] which fuse their data from several sources including AVL systems (usually 

from equipped trucks, buses, taxis, etc.). 

The advantages of using this system are as follows: 

1. Few pieces of fixed infrastructure are required. 
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2. Vehicles could be monitored anywhere on the network. 

3. AVL technologies can provide estimates of speed and travel times on roads where 

no point sensors (i.e., ILDs, MRS, cameras) are available.  

This system has several limitations: 

1. AVL has problem with the sample size limitations where only a small subset of 

the vehicle population is outfitted with AVL equipment. 

2. The estimated travel time and speed includes the stop and load delay time of 

equipped vehicles during their trip (see Section 1.1.2). 

3. The data source is also not widely available since participant companies may not 

share their data with others due to concerns about losing competitive advantages 

in the marketplace. 

4. Usually the routes (i.e., AVL drivers�’ path) are predictable and the generated data 

using AVL are not enough for monitoring the entire region. 

2.1.6. Wireless Location Technology 

Wireless Location Technology (WLT) involves using wireless devices to track the 

vehicle (generally the mobile passenger) movements or to transfer information from the 

vehicles for monitoring purposes. WLT systems are mostly based on the presence of 

cellular phones in vehicles for monitoring traffic. An example for such system is 

anonymous tracking of cellular phones [3, 18, 19]. WLT based traffic monitoring has the 

potential to expand both the number of vehicles being monitored and the size of the 

roadway network where data could be obtained.  

The advantages of WLT using cellular phones are as follows: 
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1. A majority of car owners own cell phones. 

2. Any road with cellular service can theoretically be monitored without installing 

any infrastructure on the road. 

3. Aggregated data are not particular to the fixed points on the road and can provide 

information about several sampled locations on the road. 

The major barriers to widespread use of WLT-based monitoring are as follows: 

1. The spatial accuracy of the location estimates used by WLT systems is not as 

precise as GPS data. (e.g., existing systems cannot distinguish between different 

phones in the same vehicle or even determine differences in travel speeds between 

adjacent lanes of traffic.)  

2. Producing precise estimates of speed and travel time is highly affected by the 

precision of location estimates. 

3. WLT has issues with the continuous consumption of bandwidth on the wireless 

link which can also cause congestion in the wireless network, information drops, 

or unwanted handoffs.    

4. Questions about who owns the data and what rights a DOT has to distribute the 

data still remain since the data is generated by a third party vendor that sells the 

data as a service to a DOT. 

5. Privacy of users in these systems is questionable. 

2.2. USE OF CELLULAR NETWORKS AND SMARTPHONES 

An alternative to using dedicated sensing infrastructure is to leverage an existing 

communication systems such as the cellular phone network. The mobile Internet and 



35 
 

 

 

Web 2.0 are the underlying technologies and paradigms that have enabled the 

development of traffic estimation systems based on GPS-enabled phones as well as 

numerous other cellular device-based traffic monitoring systems. WLT systems are based 

on the presence of cellular phones in vehicles for monitoring traffic. But, these systems 

do not have the same location precision as GPS and cannot distinguish between different 

phones in the same vehicle. In addition, since these systems report data based on at a 

particular time, it is difficult to collect data at a certain location. In this dissertation, when 

we mention WLT systems we mean systems that rely on cellular network based 

positioning and handsets that do not use GPS. Although, handsets may be equipped with 

GPS device too. 

There are several projects developing the use of wireless technology for traffic 

monitoring, such as PATH�’s Group-Enabled Mobility and Safety (GEMS) project [20]. 

GEMS is based on AVL and WLT technologies with use of Internet queries for 

delivering data to handheld devices. In the Mobile Millennium project [19], cell phones 

are the main part of the architecture. The project�’s concept of virtual lines is similar to 

our proposed virtual strips, which we propose and describe in Chapter 3. Using the 

mobile Internet, user-generated content (in this case, traffic data measured by the smart-

phone) is sent to a central system, which provides information back to the cell phone 

owner for personal use. This Web 2.0 user-generated content-based location based 

service is commonly referred to as �“participatory sensing�”, which refers to the ad-hoc 

process of voluntarily providing sensing data to a system. GPS-equipped vehicles 

transmit data upon traversing virtual geographical sensors, thus offering a promising 
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alternative to estimating traffic statistics using fixed point-sensors. This sensing 

technique leverages market-driven telecommunication infrastructure, thus limiting cost 

for society and users. Moreover, these virtual sensors, by definition, are not embedded in 

the physical infrastructure, and their location can be optimized dynamically (adaptively) 

as traffic conditions change. The location of the sensors can be dictated by the central 

system to optimize the value of each traffic sensor measurement sent to the system.  

The Nericell project [21] is another example of using cellular networks and smart-

phone for monitoring of road and traffic conditions. Nericell system uses mobile smart-

phones equipped with an array of sensors (GPS, accelerometer, microphone) and 

communication radios. This project mainly focuses on the sensing components which are  

installed or setup on smart-phones, and specifically focuses on how these sensors and 

radios are used to detect bumps and potholes, braking, and honking, and to localize the 

phone in an energy-efficient manner. While GPS provides higher accurate location 

estimates compared to cellular technologies, it has several limitations such as some 

phones do not have GPS at all and the GPS sensor does not work in �“urban canyons�” (tall 

buildings and tunnels) or when the phone is inside a pocket. Also the GPS on many 

phones is power-hungry and drains the battery quickly. The VTrack system [22] 

addresses these key challenges (e.g., energy consumption and sensor unreliability). In 

VTrack, energy consumption can be reduced using inaccurate position sensors (WiFi 

rather than GPS). VTrack uses a hidden Markov model (HMM)-based map matching 

scheme, with a way to interpolate sparse data to identify the most probable road segments 
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driven by the user and to attribute travel times to those segments, to obtain accurate travel 

time estimates from these inaccurate positions. 

Besides the value of the data for traffic estimation, ensuring location privacy of the 

users is an important consideration for the deployment of mobile traffic sensing methods. 

A GPS-enabled smartphone is capable of recording and transmitting its GPS location 

every few seconds. While this level of detail can be useful for traffic estimation [23], it 

can be privacy invasive without the proper safeguards, since the device is ultimately 

carried by a single user.  

We describe the advantages of using virtual strips and spatial sampling in Chapters 3. 

The same idea can be used via WLT systems.  For example, Virtual Trip Lines (VTLs), 

similar to our contributed virtual strips, provide a mobile sensing framework that 

preserves the privacy of users [24]. VTLs are geographical markers embedded in the 

map, that trigger probabilistic measurement updates. Each VTL consists of two GPS 

coordinates which make a virtual line drawn across a roadway of interest. Instead of 

time-based periodic sampling, VTLs trigger disclosure of speed and location updates by 

spatial sampling, creating updates at predefined geographic locations on roadways of 

interest. Additionally, the travel time between pairs of VTLs can be extracted and this 

type of travel time data will be considered the primary data source used in this approach. 

This sensing paradigm of virtual trip lines has emerged as a viable solution for real-time 

traffic monitoring based on large-scale traveler participation. However, standard VTL 

deployment is static and does not take advantage of the mobility of probes compared to 

our proposed DTMon where virtual strips are defined dynamically. 
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2.3. USE OF VEHICULAR NETWORKS AND SENSOR NETWORKS 

VANETs are networks in which each node is a vehicle. Such systems aim to provide 

communications between individual vehicles and between vehicles and nearby fixed 

equipment, or roadside units. The goal of VANETs, and more broadly vehicular 

networks, is to improve traffic safety by providing timely information to drivers and 

concerned authorities. The development of VANETs has received much attention from 

the automotive industry and government agencies, including the US Department of 

Transportation (DOT) which has launched the Connected Vehicle initiative [25, 26].  

There have been a few attempts at using VANETs to monitor traffic. TrafficView 

[27] is a scalable traffic monitoring system for inter-vehicle communication considering 

road conditions, but it does not consider low penetration rates or low traffic density. 

CarTel [28] is distributed mobile sensor computing system that uses cell phones and cars 

as nodes in a dynamic sensor network. CarTel provides software to collect, process, and 

visualize data from sensors located on mobile devices to a central portal. Kitani et al. [29] 

have proposed traffic information sharing using public buses traveling regular routes. 

This VANET-based technique is only useful in urban areas with good public 

transportation systems and only monitors those areas traveled by the transit system. 

As we show in Chapter 3, one of our main contributions is the first introduction of 

location-aware sensing strategies via VANETs (using DTMon and virtual strips) that are 

adaptive to the traffic conditions, thereby enabling the sensing infrastructure (i.e., TOs) to 

take full advantage of the mobility of probes. TOs programmed by TMCs can also define 

the points of interest dynamically in addition to that in DTMon, TOs are also able to 
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redefine, modify, add, or remove these virtual strips dynamically based on the monitored 

traffic condition and real-time monitoring needs. We show the performance of DTMon in 

various traffic conditions in Chapter 3. The main difference between the WLT systems 

and our proposed DTMon is the base technology used in our framework. The technology 

used in DTMon relies on vehicular ad-hoc networks than cellular networks. There has 

been some work done in Connected Vehicle Research for traffic monitoring under low 

penetration rates [25, 26]. But, there has been no work done on monitoring traffic 

dynamically using VANETs for various traffic conditions and market penetration rates. 

Therefore we believe our research, the proposed framework, and experiments perfomred 

using DTMon will be a pioneer in real-time traffic monitoring with benefits of 

dynamically defined spatial criteria. We also believe that our work on the 

programmability of TOs can easily be adopted for use with different technologies and 

infrastructures such as cellular networks. Nevertheless, we aim to find methods that can 

augment the in-use monitoring technologies. Vehicular networks, cellular networks, or 

sensors networks or their combinations seem to be future of probe vehicle-based 

technologies [30].  

2.4. NEED FOR AN INTEGRATED VANET SIMULATOR 

As we propose DTMon, we need to evaluate its performance under various traffic 

conditions and market penetration rates [31, 32, 33], and for that we need tools to 

evaluate vehicular ad-hoc networks with realistic mobility [34].  

In order to provide applications that can fulfill this vision, approaches must be 

thoroughly evaluated. There are a limited number of testbeds with instrumented vehicles 



40 
 

 

 

and roadside units. As this is prohibitively expensive for most academic researchers, the 

majority of evaluation studies have been performed via simulation. VANET simulations 

have typically been segregated into traffic simulations and network simulations. Traffic 

simulators, such as CORSIM [35], SUMO [36], VISSIM [37], and VanetMobiSim [38] 

have been used to generate realistic mobility traces of vehicle traffic. These traces would 

then be fed into well-known network simulators such as ns-2 [39], QualNet [40], OPNET 

[41], or GloMoSim [42] to measure network performance. VANET tools such as TraNS 

[43] and MOVE [44] have been used to facilitate this interaction between traffic and 

network simulators. More recently, researchers have developed integrated simulators 

such as ASH [45] and Gorgorin et al. [46] that allow feedback between the applications 

using the network and the traffic model. This is important because the goal of most 

VANET applications is to provide drivers with information that may change their driving 

behavior or allow them to make more informed decisions (e.g., start braking now, or take 

the next exit to avoid a traffic jam). Interested readers can find detailed comparisons of 

various VANET simulators in Hassan [47] and Yan et al. [48]. 

The problem with integrated simulators is that often either the mobility model is 

overly simplified or the network model is overly simplified. In order to study important 

networking properties of VANETs, a high quality network simulator is essential. As we 

will show in Appendix A, we have chosen to balance these two concerns by taking the 

latest version of the highly-regarded network simulator, ns-3 [49], and adding a well-

known traffic mobility model in order to provide an integrated simulator for VANET 

research. 
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ns-3 is a discrete-event network simulator written in C++, targeted primarily for 

research and educational use and intended as a replacement for the popular ns-2 

simulator. ns-3 promises to be a more efficient and more accurate simulator than its 

predecessor (especially for wireless protocols). In addition, during the first quarter of 

2010, ns-3 averaged almost 7000 downloads per month [49]. For this reason, we were 

interested in using ns-3 to perform our VANET simulations. ns-3 provides various 

mobility models, but none are appropriate to simulate the mobility of vehicles. The 

mobility of a node in the mobility models included in ns-3 depends only on the node 

itself. In realistic vehicular mobility, the mobility of the node must depend on the 

surrounding nodes and the conditions on the road. Furthermore, this node dependency 

becomes essential when messages in the network can affect the mobility of the nodes on 

the roads.  For example, the receipt of a safety message may result in a speed reduction. 

Fiore and Harri [50] and Fiore [51] investigated the effects of node mobility on network 

characteristics.  They found that realistic mobility, especially at intersections, has a great 

impact on networking connectivity metrics and that car-following models, such as the 

Intelligent Driver Model (IDM) [52], provide realistic movement.  In addition, they found 

that multi-lane scenarios are important when considering network-level clustering. We 

describe our integrated VANET simulator [34] using the implemented IDM and the 

MOBIL lane change model [53] in Appendix A. 

2.5. SUMMARY 

We presented related work on traffic monitoring technologies and systems in this chapter. 

We started with the most commonly used technologies (e.g., ILDs, radars, cameras) and 
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showed that these fixed-point sensors and detectors are not sufficient for real-time 

monitoring of traffic. Then, we showed that there have been several works on the use of 

cellular networks and smart-phones to augment these monitoring systems and 

technologies. We presented vehicular networks as a solution which can be used to 

augment the introduced monitoring systems. We described the related work on probe 

vehicle-based systems either with use of cellular networks or VANETs. And more 

importantly, we presented related work for our dynamic traffic monitoring system 

(DTMon) using VANETs. In addition to describing benefits of using each of these 

technologies and specifically DTMon, we described that there was a need to develop an 

integrated VANET simulator. We concluded the section with related work on VANET 

simulators.    
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CHAPTER 3 

DTMON: DYNAMIC TRAFFIC MONITORING 

 

We describe the main components of the proposed framework and DTMon in this 

chapter. The main components of DTMon are the roadside units, task organizers, and the 

equipment inside each vehicle. In addition, we introduce the idea of a virtual strip. The 

communication among vehicles and roadside units in DTMon happens via standard 

channels using Dedicated Short-Range Communications (DSRC) [6, 7, 8] which is the 

currently proposed standard for vehicular communications due to its low latency, making 

it suitable for safety applications. Using DTMon and its components, we introduce 

methods to monitor traffic data (i.e., flow rate, density, speed, travel time) in urban and 

rural roads in this chapter. With the assumption that some percentage of vehicles are 

equipped (the market penetration rate of the system) with a Global Positioning System 

(GPS) device for positioning, a detailed digital road map for route guidance, and a 

transceiver for communication (DSRC device), we explain and analyze the impact of 

market penetration rate and traffic density on the performance of DTMon. We conclude 

this chapter with strategies for the deployment of TOs. 

3.1. COMPONENTS AND METHODOLOGY 

We describe the main components of DTMon in this section. We explain our approach 

and how DTMon can be used to monitor in rural (highway) and urban (arterials and 

intersections) areas.  
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3.1.1. Task Organizer 

A TO is responsible for communicating with vehicles to inform them about upcoming 

traffic conditions, assign measurement tasks, collect traffic data and organize the received 

measurements. The TO may be the property of the local Department of Transportation 

(DOT) and should be able to directly communicate with the local Traffic Management 

Center (TMC). The goal of the TO is to provide accurate measurement information to the 

TMCs and to disseminate timely messages or traffic reports from the TMCs to equipped 

vehicles.  

We assume that there is at least one TO deployed along the road. Each TO is 

equipped with a DSRC transceiver and communicates with passing equipped vehicles. 

Deploying multiple task organizers along the road and applying the union of information 

gathered by them is an option for complex roads and for higher performance. The 

equipped vehicles and the task organizer use a common piece of application software for 

communication. Through neighbor discovery (described in Section 3.1.3), we assume that 

equipped vehicles and the task organizer are aware of the position of equipped vehicles 

within the standard DSRC communication range (300 meters). 

3.1.2. Vehicles 

Equipped vehicles contain the following equipment: 

 GPS device 

 DSRC transceiver 

 Vehicle ID (maps to the vehicle network address or the vehicle identification 

number)  
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 Detailed digital map  

 Processor/memory which interacts with the GPS device and DSRC transceiver 

 Common piece of application software for communication and for processing the 

tasks and managing the events 

Equipped vehicles are able to record the following information: 

 Speed 

 Spatial location represented in the form of (longitude, latitude, altitude) 

 Direction 

 Timestamp 

 Travel time (i.e., travel time of a segment defined by two virtual strips) 

 Route (i.e., road, street, highway) number  

 Lane number, if available. We assume that vehicles are not directly aware of the 

lane they are in due to GPS inaccuracies. But, we assume that digital road maps 

may contain information about the number of lanes on each roadway. 

Each transmitted message from a vehicle contains a header that includes all of the 

above information (shown in Figure 6). Vehicles may receive tasks from a TO and 

forward the tasks to other vehicles. They can also produce new messages and forward 

them back to the TO. Vehicles may store and carry the messages to the next available 

TO. Vehicles can talk to the TO directly or indirectly (via messages forwarded to the TO 

by other vehicles). 
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ID Timestamp (Longitude, Latitude, Altitude) Speed Route Lane Direction ... 

Figure 6. A sample header of a message or a report. 

Vehicles have the ability to store events that should be fired at a specific time, speed, 

or location. As vehicles will be running other VANET applications, we anticipate that 

much of the information needed to report traffic measurements can be piggybacked on 

the packets from these other applications or be gathered from data produced by these 

other applications, as is done by Robinson et al.�’s Message Dispatcher [54] and in 

CASCADE by Ibrahim [55]. We assume vehicles and TOs are able to communicate 

securely using the latest security techniques introduced for VANETs [56, 57, 58, 59, 60, 

61, 62]. 

3.1.3. Message Delivery 

DTMon can use well-known neighbor discovery, routing, and message forwarding 

techniques (such as [63, 64, 65, 66, 67]) or opportunistic message dissemination methods 

(such as OPERA[68] and SODA[69]) to pass tasks and information through the VANET 

and to the TO. At the moment TOs are deployed, the topology of the roads and the paths 

that messages may travel are known, therefore geographical routing can be appropriate 

for our system. Our focus in this thesis is on how to monitor traffic measurement data 

rather than introducing a new forwarding or routing algorithm, although we investigate 

how to improve message delivery and the amount of received information. Both vehicles 

and the TO perform neighbor discovery (Pseudocode 1) periodically, for instance each 

second. In neighbor discovery, each equipped vehicle broadcasts a report containing its 
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current position, speed, direction, route, ID, and timestamp (see Figure 6). This type of 

neighbor discovery may be part of a larger geographical routing algorithm. This 

exchange of information can be piggybacked on messages sent by safety applications that 

are broadcasted many times per second so that little overhead is added.  Once a vehicle 

receives a report from its neighbor, it checks its neighbor list. If the neighbor is unknown 

(i.e., does not exist in the list), it is added.  If the neighbor appears in the list, its 

information is updated.  If no reports from a particular neighbor are received for two 

seconds, it is removed from the neighbor list.  

 

 

Pseudocode 1. Neighbor discovery. 

Messages and measurement tasks can be created by a TO or by a vehicle. They can be 

stored and carried or forwarded in any direction along a road to reach to the desired 

location, segment, vehicle, or TO. Vehicles and TOs update their neighbor list of 

reachable vehicles, i.e., those within the DSRC range of R0 meters, periodically as 

described in this section.  

Neighbor Discovery 

N - neighbor list 
R_ID - report that contains current position, speed, direction, route, ID, and timestamp 
 
Broadcast report, R_ID 
Receive R_ID reports from neighbors 
Update N 

- add previously unknown neighbors to N 
- update information on known neighbors 

- remove expired neighbors from N 
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In addition to sending messages to neighbors, messages can also be forwarded to a 

vehicle or TO outside of the sender�’s range. To use the fewest possible hops when a 

message is forwarded, it is best that the first hop be the neighbor farthest from the sender 

in the appropriate direction. 

 

 

Pseudocode 2. Forwarding a message to a destination (Multi-Hop). 

We show the basic outline of the forwarding process in Pseudocode 2. If the 

destination vehicle D is in range of the sender V, the message is sent directly to D.  

Otherwise, the neighbor list is scanned to find the most appropriate next hop. Choosing 

the appropriate target vehicle for the next hop depends not only on its distance from the 

sender and signal strength, but also on the speed at which it is traveling. 

ForwardMessage (V, D, M) 

 V - current vehicle 
 D - destination 
 M - message or task 
 N - neighbor list 
 R0 - communication range 
 R - filtered range 
 d (x, y) - distance from x to y 
 
 if (d (V, D)  R0) 
     send M directly to D 
 else 

    L  N | d (V, L)  R 
    if (L = NULL) 
         exit, message cannot be forwarded at this time 
    else 

         V'  L | dmax (V, V') 

         send M directly to V' (with final destination D) 



49 
 

 

 

A situation could arise where a vehicle selects a target vehicle near the boundary of 

its range, but by the time the message is constructed, the vehicle has moved outside of the 

sender�’s communication range. To avoid this situation, vehicles will only select target 

vehicles from a filtered list.  This filtered list is the set of neighbors that are within R 

meters of the sender, where R < R0. The difference (R0 �– R) is such that the target vehicle 

will remain within communication range of the sender until the next update, based on the 

maximum relative speed between the two vehicles. The received signal strength can be 

also applied as a factor to select the appropriate vehicle from the filtered list. For 

example, assume the speed limit is 33 m/s, then the maximum relative speed between two 

vehicles in the worst-case (traveling in opposite directions) would be 66 m/s.  So, relative 

to the sender, the target vehicle can move at most 66 meters in one second, or 66 meters 

between neighbor discovery events.  If R0 is the DSRC range and the frequency of 

neighbor discovery is 1 second, then R should be set to at least (R0 - 66) meters. 

3.1.4. Virtual Strips 

A virtual strip (VS) is an imaginary line that crosses a road. Virtual strips, or strips, can 

be defined geometrically as the intersection of a plane with the road (another plane). In 

practice, the spatial location is represented in the form of longitude, latitude, and altitude 

which can be used to express the points on every lane of the road that virtual strips 

intersect. For example, a virtual strip over a road with three lanes can be represented in a 

simpler way with only three points instead of a line, one point for each lane.  
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Figure 7. Illustration of virtual strips and segments. 

A vehicle can reside on only one side of a strip. If vehicle is moving towards a strip, it 

is before the strip, and once it passes the strip it is considered to be after the strip. Two 

virtual strips can be used to create a virtual segment, or segment. Vehicles can be inside 

the segment or outside the segment. 

We use Figure 7 as an illustration of strips and segments.  The virtual strips are 

labeled VS1 and VS2 and are boundaries for the virtual segment VS1VS2. Vehicle a is 

before VS1 and outside the segment VS1VS2, while vehicle b is after VS1, before VS2, and 

inside the segment. Vehicle c is after VS2 and outside the segment. P1 is the point 

representing the location of VS1 at the right most lane on the road in practice. For a 

roadway with six lanes like the one illustrated in Figure 7, six points would be used to 

represent VS1. These points can be easily mapped and represented on a vehicle�’s digital 

map.    

3.1.5. Approach (Rural Areas/Highways) 

We first consider how DTMon can be used in rural areas or on highways. 

3.1.5.1. Traffic Volume, Flow Rate, Speed, and Classification 

We can use the same basic procedure to monitor several important traffic metrics: traffic 

volume, flow rate, time mean speed (TMS), and vehicle classification. Figure 8 
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illustrates a situation where one TO (TOA) is located next to the road  and has defined the 

virtual strip VS1. The virtual strips VS1, VS2, VS3, and VS4 can be the desired strips, or 

points of interest, for monitoring traffic data. Vehicles will report as they pass these strips 

(e.g., the marked vehicle passing strip VS3 in Figure 8). 

 

 

Figure 8. Five dynamically defined virtual strips and two TOs. 

In Pseudocode 3, we outline our algorithm to monitor the traffic volume at a desired 

virtual strip. The source TO (TOsrc) broadcasts a task containing its location, a list of 

potential destination TOs (TOdes), the data to collect, and a list of the virtual strips where 

the data should be collected. Each vehicle passing TOsrc receives the task. When a vehicle 

passes each VS in the list, the task is triggered, and the vehicle sends a message to the 

closest TOdes. This message contains the original task, TOsrc, TOdes, the VS, the vehicle�’s 

current speed, position, and vehicle classification (the type of the vehicle). Note that 

when there is only one TO deployed on the road, list<TO> = TOsrc, therefore TOdes = TO-

src. Once several messages have been received, TOdes can calculate the flow rate, volume, 

TMS, vehicle classification, and VMT metrics for a VS over a specific time interval. 
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Pseudocode 3. Monitoring traffic volume. 

 

Figure 9. A sample volume-speed task. This task from TOA requires vehicles not to 

forward the report but to store and carry them to TOB. The virtual strips of interest 

(dynamic points) are listed as target strips. 

 

Type: Volume-Speed 

Delivery Method: Store-and-Carry (SAC) 

Source TO: TOA (xa, ya, za) 

Target TO: TOB (xb, yb, zb) 

Target Strips: VS1, VS2, VS3, ... 

Monitor[flow rate, classification, speed, �…] 

   V - current vehicle ID 
   P - current vehicle position 
   TOsrc - source task organizer 
   TOdes - destination task organizer     
   <list>(TO) - list of possible destination TOs 
   <list>(VS) - list of desired virtual strips  
   K - task (data to collect, TOsrc, <list>(TO), <list>(VS)) 
   E - vehicle's event list 
   M - message 
 
   Receive task K from TOsrc 

   if (K  E) ignore, exit 
   else add K to E 

   while (exists unmarked VS in list<VS>) 
         update GPS position P 

         if (P < VS) continue        
         if (P > VS and VS is not marked) 
             Mark VS as passed 
             TOdes = closest TO to VS (from list<TO>) 
             M = K, TOdes , VS, speed, classification, timestamp, V, 

P 
             Forward M to TOdes    *Note: See Section 4.1 delivery methods 

   Remove K from E 
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Figure 9 shows a sample format of the volume task. The task description can include 

multiple virtual strips, the type of message delivery method, and the location of the TOs 

where message must be delivered.  

Target Strip Outside Range of TO: First, we consider the scenario where the target strip 

is outside the communication range of the nearest TO. Through neighbor discovery, the 

TO knows about the vehicles that are within DSRC range and before the TO�’s nearest 

virtual strip. The TO sends a task to these vehicles, requesting them to forward volume 

information back to the TO (or to the other TOs given in the task) once they pass the 

target virtual strip. These vehicles store the task as an event that should be raised when 

the vehicle passes the location of the target strip. Each time the TO receives a completed 

volume message, it will increment the number of vehicles that have passed the target 

strip.  Thus it can compute the traffic volume and flow rate at the target strip for any 

duration.  

Target Strip Within Range of TO: If the target strip is within communications range of 

the TO, no forwarding will be required. In this case, the TO may be able to collect 

volume, speed, and classification data for each lane of the road.  The TO can use its own 

location as a reference and the location of each vehicle that passes the target strip as a 

target location. Therefore, it can estimate the lane in which the vehicle is traveling.  There 

might be some GPS inaccuracy when a vehicle reports its location, but the TO can 

approximate this inaccuracy by assuming a particular width for each lane and comparing 

the vehicle�’s reported location to the location of vehicles traveling in the adjacent lanes as 

a second reference. It is the TO�’s responsibility to collect the coordinates of vehicles 
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during some period to estimate the boundaries of the left-most and right-most lanes. The 

received signal strength indicator (RSSI) may also be used to estimate the lane number, 

as it has been shown that RSSI can be used by a receiver to estimate the location of the 

transmitter [70]. 

Low Density or Low Penetration Rate Considerations: In situations where there are few 

equipped vehicles (either due to low penetration rate or low density traffic), message 

forwarding may fail, and the TO may count a much lower volume and density than the 

ground truth. Road profiles and the past history of the roadway may also be a great help 

in determining the difference between low penetration rates and low traffic density. There 

are several papers that have investigated the impact of low density traffic (resulting in a 

sparse network) in VANETs [63, 65, 71, 72, 73, 74]. We suggest measuring traffic 

volume at some point inside the communication range of a TO to avoid the need for 

forwarding and to mitigate the effects of low traffic density. 

In Chapter 4, we will describe methods to improve the message delivery. These 

methods include using the traffic in opposite direction, using dynamic transmission 

range, and requiring vehicles to store and carry the messages (i.e., whenever they cannot 

be forwarded) to the next available TO.  

3.1.5.2. Traffic Density 

Traffic density refers to the number of vehicles on a section of road. Current methods that 

monitor this type of data, like aerial photography, are not cost effective. Most often, 

detector occupancy [3, 10], the percentage of time that the detector (such as an ILD)  is 

active due to the presence of a vehicle, is used as a surrogate measure for traffic density. 
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Pseudocode 4. Monitoring traffic density. 

We show how VANETs can be used to collect instantaneous, accurate traffic density 

of a desired segment on the road. In the following explanation, we assume a limited 

CalcDensity 

  TO - task organizer 
  C - vehicle count inside target segment 
  VS1 - target strip [segment beginning] 
  VS2 - target strip [segment end] 
  K - task (contains TO, VS1, VS2, C = 1) 
  E - event list 
  N - neighbor list 
  V - current vehicle 
  P - current vehicle position 
  d (x, y) - distance from x to y 
  R - communication range  
 
  Receive density task K from TO 

  if (K  E) ignore, exit 
  else add K to E 

  while (P < VS1) 
      update GPS position P 
  if (P > VS1) 
      if (P < VS2)  Collect (TO, VS1, VS2, C) 

  else  
    D = d (P, VS1) 
    R' = min (R, D) 

    N'  N | d (V, N')  R' 

    V'  N' | dmax (V, V') 
    Forward K to V' 
    
Collect: 
  D = d (P, VS2) 

  N'  N | d (V, N')  R and N' < VS2 

  C += # N' 
  if (D > R) 

    V'  N' | dmax (V, V') 
    Forward modified K to V' 
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deployment with a single TO, although multiple TOs can be applied as described in 

Sections 3.1.5.1 and 3.2.3.2. The existence of additional TOs would necessarily reduce 

the amount of forwarding required as the resulting density measurement could be passed 

to an upcoming TO rather than being passed backwards to the originating TO. 

The basic algorithm is outlined in Pseudocode 4. The TO periodically selects a 

vehicle that is in range and sends it a �“Density�” task containing the location of the TO, 

the boundaries of the segment of interest (VS1 and VS2), and a count initialized to 1. If the 

vehicle is inside the segment of interest, the task is triggered. The vehicle counts the 

number of its neighbors that are both inside its communication range R and before VS2.  

Then, the vehicle updates the count in the task message.  

If the distance to VS2 is greater than R, the vehicle will forward the task (with the 

updated count) to its farthest neighbor inside R and before VS2.  Otherwise, the updated 

task message will be forwarded back to the TO. If the vehicle receiving the task from the 

TO is outside the segment of interest, it will initiate message forwarding to a vehicle 

either at the edge of its communication range or to a vehicle just inside the segment of 

interest. 

Vehicles in charge of counting the number of vehicles can also aggregate the average 

speed of the vehicles they count. In this case, the same message that contains density 

information can contain the average speed of vehicles counted inside the segment. This 

average speed may be another useful metric that the TO can collect. The TO could 

request this kind of task periodically to monitor the current travel situation on the 

roadway. We have to mention that this method can only calculate the density of equipped 
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vehicles and that the quality of computed density is highly dependent on the market 

penetration rate. Computing density based on flow rate and speed [31, 32, 33] is faulty 

since a TO�’s estimated flow rate has significant error as compared to the actual flow rate. 

We explain this fact in Section 3.2 and Chapter 4. 

In our description, we have assumed a 100% penetration rate of equipped vehicles as 

our method can only count equipped vehicles. With a lower penetration rate, the TO can 

estimate density if it knows the approximate penetration rate ahead of time. It is possible 

that messages cannot be forwarded to measure density in an entire segment due to low 

density traffic or an obstacle blocking the roadway. In such situations, if a delegate 

vehicle cannot forward the message farther, it will forward to the TO the density up to the 

last strip in which it was able to collect data. In the worst case, the TO may not receive 

any message for a requested density task. If this occurs repeatedly over some time 

interval, the TO should check the traffic volume to infer either low density traffic or 

severe congestion inside the segment. 

3.1.5.3. Travel Time and SMS 

We propose a method to collect travel times, which is very similar to the method used to 

monitor volume-speed data. In general, if vehicles include a timestamp when they report 

the volume message, the travel time is the difference between the timestamps gathered 

from two different strips for each vehicle. Thus, the TO only needs to keep a record of 

vehicles that have passed two particular strips. When it is collecting volume for those 

strips, the TO can also compute the travel time for an individual vehicle, or the mean 

travel time for all reporting vehicles over a certain period of time. An alternate method 



58 
 

 

 

for calculating the travel time is to let each vehicle compute its travel time after it passes 

the two strips of the segment and send the result back to the TO included in reports.  

Another metric of interest to traffic engineers is the space mean speed (SMS). The 

SMS is based on the average speeds of vehicles over an extended segment. To compute 

SMS, the TO needs the travel time of each vehicle that passes through a segment. Then, 

the TO can calculate the SMS as the length of the segment divided by the average travel 

time. 

3.1.6. Approach (Urban Areas/Arterials and Intersections) 

An urban area can be modeled with a combination of streets and intersections. TOs can 

be located beside streets or they can be located at the corner, center of intersections, or on 

top of the roads. We suggest that TOs be located at intersections since one TO will be 

enough to monitor traffic data on joint streets as well as in the intersection. Like ILDs, 

TOs can be deployed only on those intersections and streets that are considered to be 

significant for the TMC. 

3.1.6.1. Streets 

The method for collecting traffic data in streets is similar to method we described in 

Section 3.1.5. Each street can be assumed to be a virtual segment. Therefore, TOs can 

collect traffic volume, density, speed, classification, and travel time for any strip and 

segment of the streets. The TMC or centralized TOs can combine the travel times of 

connected streets and related intersections to estimate the travel time of desired paths in 

the area. Each TO is also capable of broadcasting this type of information to vehicles on 

the road. 
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3.1.6.2. Intersections 

Count information is the key data to be collected at intersections as it can be used to 

calculate traffic flow and volume. We consider two possibilities to model an intersection: 

stop sign model and traffic light model [38, 75, 76]. One TO is located either at the center 

of the intersection or on one side in the corner. The TO broadcasts tasks frequently and 

monitors individual vehicle reports. Vehicles approaching the intersection may turn right, 

turn left, or move straight. Therefore they can potentially pass through one strip from 

three possible strips (except u-turns). For example in Figure 10, the content of a task for 

vehicles (westbound) at the road numbered �“1�” (practically route number and direction) 

is as follows: 

 this task is for vehicles on �“1�” before virtual strip s1 

 report the code �“1�” back to TO whenever you pass virtual strip s1, s2, or s3 

 ignore duplicate tasks 

 

 

Figure 10. An illustration of TO and virtual strips in an intersection. 
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Vehicles will receive tasks (stored as events). They will raise an event whenever they 

pass the specified strips. The message sent to the TO by a vehicle will contain its speed, 

classification (the type of the vehicle), route number, timestamp, and the code number. 

The code number, embedded in the task and received by the vehicle, will help the TO 

collect data for the various turning options. For example, consider a vehicle that receives 

the task with code �“1�” and then passes s3. The TO can determine that this vehicle turned 

left at the intersection. In the same way, the TO can monitor the traffic volume for 

vehicles that turned right, turned left, or continued straight at each intersection. There is 

no need for vehicles to route or forward messages and tasks to/from the TO since the TO 

and strips are in the vehicles�’ communication range. 

3.2. IMPACT OF TRAFFIC DENSITY AND MARKET PENETRATION RATE 

DTMon is a probe vehicle-based system. Market penetration rate, the number of 

equipped vehicles (usually as percentage) satisfying VANET standards within a specific 

population of vehicles, plays a significant role in amount of received and collected 

information; as a result, the quality of collected data can be highly dependent on the 

market penetration rate. It is possible to roughly estimate the density of equipped vehicles 

in an area by knowing the traffic density (function of flow rate and speed) and the market 

penetration in that area. In addition to market penetration rate, the traffic density of 

equipped vehicles in the area is a factor which can determine the amount of success in 

information delivery among vehicles and toward the location of TOs  in that area.  

Any increase in market penetration rate is gradual, requiring the increase of the 

production rate in automobile factory lines to produce vehicles equipped for VANETs. 
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On the other hand, the traffic density of equipped vehicles does not vary only by the 

market penetration rate but also can vary based on the conditions on the road in various 

scenarios such as rural area, urban area, traffic with congestion, high speed free flow 

traffic, low speed free flow traffic, low capacity roadways, affluent neighborhood, etc. 

Two broad categories of congestion can be defined: recurring and nonrecurring. 

Recurring congestion occurs regularly at the same locations on the roadway system at 

about the same time every day. Nonrecurring congestion occurs when a crash or other 

unusual event (such as a construction zone or severe weather) causes a reduction in the 

traffic-carrying capacity. These two types of congestion result in an increase in traffic 

density which can directly and indirectly impact the amount of success in information 

delivery, latency (delay in delivery), travel time and vehicular delay. We will define 

message reception rate and information reception rate to evaluate the performance of 

TOs in receiving information from virtual strips using VANETs and for different 

message delivery methods.  

In this section, we analyze the effect of the market penetration rate and the traffic 

density on our system and DTMon. We explain various scenarios and strategies for 

deploying TOs. We also describe the advantages of TOs and dynamically defined virtual 

strips in augmenting the current in-use systems. 

3.2.1. Message Reception Rate and Information Reception Rate 

The Message reception rate (MRR) for a particular virtual strip is the percentage of 

messages generated by equipped vehicles passing the strip that were received by the TO. 
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The MRR shows what ratio of generated messages has been received to TOs. The upper 

limit for message reception rate is 1.0 (or 100%). 

The Information reception rate (IRR) for a particular virtual strip is the percentage of 

messages received by the TO out of all possible messages generated by vehicles passing 

the strip (i.e., as if all vehicles were equipped). The IRR indicates how well count 

information can be collected by the TOs under scenarios with different market 

penetration rates (PR). 

The information reception rate can be estimated by knowing the message reception rate 

and the market penetration rate, as shown in Equation 6. 

 
 (6) 

For example, in 50% (0.5) market penetration rate, the information reception rate for a 

strip with 59% (0.59) message reception rate will be estimated as 0.5 * 0.59  0.29 or 29%. 

The upper limit of the IRR is equal to the PR. Thus, if the PR is 100%, then IRR = MRR. 

3.2.2. Effect of Market Penetration Rate and Traffic Density 

Equations 3, 4, and 5 in Chapter 1 (Section 1.1.6) show the relationship that exists among 

density and spacing as well as among density, flow rate, and speed. In practice, 

estimating traffic speed and flow rate is a simpler task. Also, most of the research that 

models traffic for vehicular networks applies spacing among vehicles (equipped vehicles) 

to analyze the behavior of the communication and the network [72, 73, 74]. 

We consider several traffic characteristics in our analysis, including inter-vehicle 

spacing, density, flow rate, and mean speed. Inter-vehicle spacing is the distance between 

vehicles. Density is the number of vehicles occupying a certain area, usually represented 
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in vehicles/km. Flow rate is the number of vehicles passing a certain point over a certain 

amount of time, usually represented in vehicles/h. In free-flow traffic, the mean speed 

typically follows a normal distribution [1, 2]. The relationship between inter-vehicle 

spacing, flow rate, and mean speed is expressed in Equations 7 and 8: 

  (7) 

  (8) 

where 

 = inter-vehicle spacing (density is 1/ ) 

v = flow rate, vmin  v  vmax 

S = average speed (mean) of vehicles with normal distribution (TMS can be used 

as an appropriate estimate for S). 

The flow rate in low and medium density traffic can have three different types of 

distributions: Poisson, exponential, or uniform [2]. According to the derived equations for 

inter-vehicle spacing with an exponential distribution [72, 73, 74], the probability that 

messages are forwarded successfully is very low for distances farther than the 

transmission range of the TO, taking into account the market penetration rate.  

The flow rate in very low density traffic has a Poisson distribution [2]. The 

probability that the spacing of equipped vehicles in an interval is less than the 

communication range is zero, taking into account the PR and traffic speed. Therefore, the 

chance that a message is able to be forwarded even a short distance will be zero. The 

conclusion is that in very low density traffic, the IRR will be very small and TOs will not 
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receive any messages from outside their communication range. Therefore, methods other 

than message forwarding must be considered to improve the IRR in such traffic 

conditions. 

For the remainder of this section, we consider medium to high density traffic, where 

the flow rate v varies in a limited range and the inter-vehicle spacing  will have a 

uniform distribution. Adding in the market penetration rate p, we can calculate the inter-

vehicle spacing of equipped vehicles Ep as shown in Equation 9: 

  (9) 

  (10) 

  (11) 

where 

p = market penetration rate 

Ep = inter-vehicle spacing of equipped vehicles (E1.0 =  and E0.0 = ) 

Ep, inter-vehicle spacing of equipped vehicle with market penetration rate p, has an 

uniform distribution according to Equations 9, 10, and 11. Equation 12 shows the 

probability density function (pdf), and Equation 13 shows the cumulative distribution 

function (cdf) of Ep respectively. 

  (12) 

where 

min  x  max otherwise (x) = 0. 
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  (13) 

   

Equation 14 shows the mean, expected values, for inter-vehicle spacing Ep. 

  (14) 

In this analysis, we assume that a connection between two equipped vehicles can only 

take place if the spacing between them does not exceed the maximum DSRC 

transmission range R0 and propagation loss is negligible. For a vehicle to forward a 

message, it must be able to find at least one equipped vehicle in its neighbor list within 

R0. Equation 15 shows the probability of a connection between two vehicles, Pconnected. 

  (15) 

  (16) 

where 

Pconnected  =  probability that vehicles are connected. 

Pdisconnected = probability that two vehicles are disconnected or the message cannot 

be forwarded farther. 

A message can be forwarded through a group of connected vehicles (i.e., a cluster of 

equipped vehicles). The inter-vehicle spacing C in a cluster of connected vehicles will 

have the following pdf: 

  (17) 

 Therefore the average distance between two connected vehicles in a cluster will be  
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  (18) 

Let Cv be the number of equipped vehicles in the cluster, then the probability mass 

function for a cluster with size n will be 

  (19) 

Let Epi be the inter-vehicle spacing between vehicle i and i+1, then 

fCv(1)  = P{Ep1 > R0} = Pdisconnected 

fCv(2)  = P{Ep1  R0   Ep2 > R0} = Pconnected Pdisconnected 

fCv(3)  = P{Ep1  R0  Ep2  R0  Ep3 > R0} = (Pconnected)
2
Pdisconnected 

... 

fCv(n) = Pdisconnected(Pconnected)
n-1 

Therefore, the expected number of vehicles in the cluster is: 

  (20) 

E[Cv] is as same as the expected number of hops that a message traverses to be 

forwarded in a segment (from a VS to another VS or to a TO) within the traffic flow. As 

a result, the average cluster length L will be 

  (21) 

In a segment of size d (e.g., the distance between a VS and a TO), the probability of 

having a successful message reception by a TO can be estimated by knowing the average 

number of hops required and the probability of connectivity at each hop as shown in 

Equation 22: 

  (22) 



67 
 

 

 

Equation 22 implies that it takes on average n-1 hops (last hop directly talks to the 

TO) to forward a message to the TO. The probability of connectivity at each hop is 

determined by Equations 13 and 15, which implicitly consider the traffic density (also 

density of traffic in the opposite direction, if any), traffic speed, market penetration rate, 

and DSRC communication range R0. 

Figures 11, 12, and 13 illustrate the cumulative density function FEp in traffic with an 

average speed S of 110 km/h (30 m/s, or 65 mph) and for three ranges of flow rate (in 

veh/h) regardless of number of lanes on the road. The flow rate ranges are as follows: 

1. Medium, 1800   v  3600  

2. Medium-High, 3600   v   5400 

3. High, 5400  v  7200  

 

 

Figure 11. cdf of Ep in different PRs for medium flow rate. 
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Figure 12. cdf of Ep in different PRs for medium-high flow rate. 

 

Figure 13. cdf of Ep in different PRs for high flow rate. 
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Figure 14. E[C] for different market penetration rates and traffic flow ranges. 

 

 

Figure 15. The probability of success in forwarding through a 1000 meter segment 

with different market penetration rates and traffic flow ranges.



70 
 

 

 

Theoretically, the maximum equipped inter-vehicle spacing max will be less than R0 

(300 m) and Pconnected will be 1.0 (100%) when the penetration rate p is above 0.1 (10%) 

for flow rates vmin  v  vmax.  

Figure 14 shows that the expected inter-vehicle spacing is above R0 for p less than or 

equal to 10% even with a high traffic flow rate. Therefore, the probability that a message 

is successfully forwarded a distance of 1000 m or longer is zero. These results emphasize 

the fact that using TOs and message forwarding may only work in a highly equipped 

system. The farther the distance between the VS and the TO, the higher the traffic density 

must be and the more vehicles that must be equipped to achieve a high IRR. Therefore, 

with low PR, either VS should be placed near TOs or methods that avoid forwarding 

should be used to produce a high MRR. Our analysis does not consider fading effects, but 

this would only make the conclusions stronger. In many situations, it is not feasible to use 

a forwarding-only message delivery scheme and other methods should be examined. 

3.2.3. Deployment Of TOs 

The technologies described in Chapter 2 (Sections 2.1 and 2.2) can only detect vehicles at 

fixed points on the roadway, therefore they are usually deployed according to the 

topology of freeways, streets, and intersections considering the needs of traffic engineers 

and the importance of required traffic data. The type of sensor and existing limitations 

and barriers for each, which impacts the quality of collected data, may play a decisive 

role. For example, nonintrusive sensors are installed in a way that their view, and hence 

their data collection ability, is not occluded by other vehicles that are present within the 

viewing area of the sensor. In rural areas, availability of a power source is a factor in 
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determining the location of the sensor (if not powered by solar cells). The method of 

communication with TMCs is also a factor. For example, microwave radar sensors are 

usually placed in locations with satisfactory cellular signal reception which enables 

remote communication with the TMCs using a cellular phone mechanism. Video 

detectors are preferred to be connected to TMCs with fiber optic cables which provides 

higher bandwidth required for transferring larger data such as image frames.  

TOs are nonintrusive units that can communicate with equipped vehicles,  although it 

is possible to integrate and combine these units with the other technologies such as 

cameras or microwave radar sensors to improve their performance. Overall, TOs can be 

deployed over/beside any desired point of interest on the road as long as they are supplied 

with power. TOs have these advantages over previously discussed technologies in terms 

of deployment: 

 TOs are nonintrusive. 

 Weather conditions, occlusion, mounting height and location, vehicle mixture, 

road configuration, etc.  do not affect the strategy of their deployments  

 TOs are not limited to only fixed points on the road.  

 One TO is able to collect data of from a wide area outside its communication 

range.  

 Dynamic definition of virtual strips forms dynamic points and areas of interest in 

enabled. 

 One TO is sufficient for each intersection. 
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 One TO is sufficient to for several branches on the road (e.g., a TO at highway 

can detect vehicles from the ramps too). 

 TOs can be assembled harmlessly next to existing sensors and detectors 

 TOs can be moveable (mobile). 

 Centralized multiple TOs (sometimes mixed with other sensors) provide 

significant flexibility on TOs deployment for wider area coverage 

 A change in a point of interest does not require a change in location of TO, but 

may only require for redefinition of the location of virtual strips. 

3.2.3.1. Single TO and Multiple Points of Interest 

The equations 6 and 22 in Section 3.2.2 imply that DTMon�’s best performance in 

monitoring traffic data cannot exceed the information reception rate, which is directly 

affected by the market penetration rate. This performance is in its extreme when virtual 

strips are defined nearby the TO where no message forwarding is required and vehicles 

directly communicate with the TO. Equation 22 in Section 3.2.2 shows that a TO�’s 

performance in collecting information from farther strips relies on the spacing of 

equipped vehicles which must remain below the DSRC communication range (300 m) for 

a successful delivery. This is true even when the equipped vehicles in opposite direction 

participate. We explain the methods of message delivery that may improve these 

situations in Chapter 4. 

Doubling the distance of a virtual strip from a TO, will decrease the message 

reception rate exponentially. Nevertheless, traffic data such as TMS, SMS, and travel 

time can be estimated with just a few received samples. Also, a TO can dynamically 
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change the location of virtual strips (included in tasks) to monitor various points of 

interest on the road. The redefinition of virtual strips can also happen based on a TO�’s 

observation of received data. This requires a decision-making program (e.g., incident 

detection algorithm, real-time and up-to-date monitoring mechanism, etc.). This program 

can be run on TMC computers which control the TOs or can be directly installed and run 

on TOs.  

Figure 16 illustrates a single TO and the message reception rate related to its distance 

from the virtual strips. The message reception rate for VS1 is considered to be 1.0 (100%). 

The average probability of success in receiving a message from distance d is freception. If 

the traffic condition remains same, the probability of success decreases exponentially and 

will be (freception)
2 when the distance doubles.  

Figure 17 shows that a single TO is sufficient to cover a major road and its incoming 

and outgoing branches (e.g., entrance or exit ramps, an intersection, etc.). 

 

 

 

Figure 16. Relationship between distance d and probability of message reception 

freception. 
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Figure 17. An ability of a single TO in multi-branch roadways. 

A single TO is able to collect traffic data from locations like VS1 and VSR (e.g., a 

ramp). The TO is also able to collect traffic data from locations beyond the merging 

point, like VS2. The traffic data collected by the TO can be used to determine differences 

in flow rate, TMS, SMS, and sometimes congestion. The TO can define additional virtual 

strips for a more complex roadway. The TO will not define multiple VS in a short 

distance as it may generate excess network overhead and the traffic data collected from 

very small segments is not typically useful.    

3.2.3.2. Multiple TOs 

The coverage of a single TO is limited. Farther locations (defined virtual strips) may not 

be accessible by a single TO, and message delivery can encounter disconnectivity in the 

network. The need for multiple TOs in an area is inevitable. Tasks may include multiple 

destinations (location of TOs). This adds the ability for a message to be stored and 

dropped off at the next available TO during the travel, therefore few messages may be 

lost due to unsuccessful forwarding. Also, having a TO in front adds the possibility of 

forward forwarding (messages can travel forward not backward). In addition to covering 
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a wider area, the use of multiple TOs can improve the message delivery mechanism. 

Latency may be reduced in some occasions. Furthermore, generated reports and warnings 

by TOs are spread faster and more reliably in the region. In addition, vehicles involved in 

transferring the traffic data can share their experience of past points on the road (virtual 

strips). Centralized TOs, assumed to be all connected to TMCs or each other, can provide 

the union of information about the region. TOs can also be mobile and are not necessarily 

statically placed. TOs can be moved by traffic managers to different parts of the roadway 

system as needed. The TOs should remain stationary long enough to collect at least an 

aggregation period�’s worth of messages from assigned tasks. As long as it can maintain a 

network connection to the TMC, in practice, the TO could be placed in a special vehicle 

and driven to needed locations. 

 

 

 

Figure 18. Two TOs, desired virtual strip, and actual travel times. 

Figure 18 shows two TOs, their distance from each other and from the desired strip 

VSi in addition to the travel time for each segment. If only one TO, TO1, is used to collect 
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data from vehicles passing VSi located in distance d1, then messages can only be 

forwarded back to TO1.  

Message delay is the delay from when a message was generated to when the TO 

received it. In fact, latency in traffic data is the encountered message delay. The TO can 

calculate the average delay from when a message was generated to when the TO received 

it using the message timestamp in addition to the time spent to aggregate the traffic data. 

The metrics can be computed simultaneously by the TO or in the TMC, therefore the 

latency is close to the message delay. We will show in Chapter 4 that average delay in 

receiving the messages is a small number of milliseconds [31, 32, 33]. In a bi-directional 

roadway, messages can also be stored and carried to TO1 by vehicles in the opposite 

direction [31, 32, 33]. The average delay (latency) will be half the average travel time in 

segment TO1VSi in the opposite direction.  

If a message cannot be forwarded farther back from some point (marked x in Figure 

18), it will encounter unsuccessful message delivery. By adding an additional TO, TO2, 

on the way, this message can be forwarded ahead toward TO2 or stored and carried to 

TO2. The latency of a message carried from x to TO2 is (t2+t4) which is the average travel 

time from x from TO2. There is no need to forward the messages back to TO1 if VSi is 

nearby TO2. A message can be forwarded to TO2 with little delay (almost milliseconds) 

or be stored and carried to TO2 with average delay t2, which is the travel time from VSi to 

TO2.  
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In a case where the union of TO1 and TO2 is used and messages can be forwarded in 

any direction or stored and carried to available TOs with a mechanism to avoiding 

duplicate messages, the average delay (latency) is as follows: 

  (23) 

  (24) 

where 

nf = total number of distinct received forwarded messages received by forwarding 

nc = total number of distinct received carried messages 

n =  total number of distinct received messages 

tf = forwarding delay  0.0 

tc = carrying delay  average travel time 

wf = nf /n 

wc = nc/n 

The average delay of a message generated in segment TO1TO2 is (t/2) which is the 

average travel time from any point inside segment TO1TO2. The average delay for 

messages related to VSi will be wf t1 +wct2.  

Note that, the average travel time at each interval highly depends on the actual traffic 

conditions on the road. For example, nonrecurring congestion happening between VSi and 

TO2 causes an increase in t2. Therefore all messages behind the congestion that are stored 

to be carried will be delivered with latency higher than expected. In addition, if the 

message reception rate is high (i.e., density of equipped vehicles is high) most of 

messages are forwarded, and wc will be small and latency tends toward zero. Otherwise, 
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most messages are destined to be dropped or be carried, therefore wf will be small and the 

latency tends toward the average travel time. 

3.3. SUMMARY 

In this chapter, we explained the main components of DTMon such as task organizers, 

equipped vehicles, and virtual strips. We described methods in DTMon to monitor traffic 

data such flow rate, volume, density, speed, and travel time in rural roads (e.g., 

highways) and in urban roads (e.g., streets and intersections). We analyzed and showed 

the impact of market penetration rate and traffic density on message reception and 

message delay in DTMon. We demonstrated that there is a need for use of various 

methods of message delivery to achieve higher information reception rates. We explained 

the deployment strategies of TOs, such as the use of multiple TOs.    
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CHAPTER 4 

EVALUATION 

 

The theoretical analysis in Chapter 3 (Section 3.2) showed that the reception rate in 

receiving data for virtual strips farther from TOs is low when the inter-vehicle spacing of 

equipped vehicles is high. This can be caused by a low traffic flow rate, a low penetration 

rate, or both with various traffic speeds. Nevertheless, in this chapter we evaluate DTMon 

and show that the quality of estimated metrics such as time mean speed (TMS), space 

mean speed (SMS), and travel time will not be affected even with low information 

reception rates in free flow (i.e. non-congested) traffic. Furthermore, we show that it is 

possible to improve the reception rate from farther virtual strips in such situations. We 

evaluate DTMon when it uses traffic in the opposite direction, dynamic transmission 

range, or a store-and-carry technique, in which the messages will be delivered to the next 

possible TO on the way. 

In addition, we evaluate the performance of DTMon to measure travel times and 

speeds in transient flow traffic caused by non-recurring congestion. We show DTMon�’s 

ability to gather high-quality real-time traffic data such as travel time and speed. These 

metrics can be used to detect transitions in traffic flow (e.g., caused by congestion) 

especially where accurate flow rate information is not available. We evaluate the 

accuracy and latency of DTMon in providing traffic measurements using different 

methods of message delivery. We show the advantages of using dynamically-defined 

measurement points for monitoring transient flow traffic. We compare DTMon with 
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currently in-use probe-based systems (e.g., AVL) and fixed-point sensors and detectors 

(e.g., ILD).   

4.1. MESSAGE DELIVERY METHODS 

We will compare the performance of the following message delivery methods in 

improving message and information reception rates as well as the quality of reported 

traffic data: 

 Regular Forwarding (RF): A vehicle passing a virtual strip will forward the 

message to the closest possible TO from the list of TOs defined in the task (see 

Chapter 3 Section 3.5).  

 Dynamic Transmission Range (DTR): A vehicle will use RF initially with the 

standard DSRC range of 300 m. If the message cannot be forwarded (i.e., there is 

no vehicle within 300 m), then the vehicle will increase its transmission range to 

600 m. If the vehicle is still not able to find a neighbor, it will increase its 

transmission range to 1000 m. Note that IEEE 802.11p [6, 7, 8] allows for 

transmission power settings that can result in a range of 1000 m in certain 

instances. 

 Store-and-Carry (SAC): A vehicle will store the message and physically carry it 

to the next TO. 

 RF+SAC: A vehicle will forward the message to the closest TO using RF and 

will also store and carry the message to the next TO in order to ensure reception 

by a TO. Duplicate reports are detected by the central server using the message 

generation time and location. 
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 DTR+SAC: A vehicle will forward the message to the closet TO using DTR and 

also store and carry the same message to the next TO. 

In bi-directional roadways, vehicles traveling in the opposite direction can participate 

in forwarding or carrying messages, which may further improve the performance of these 

methods.  

4.2. FREE FLOW TRAFFIC 

We will evaluate and compare the message delivery methods described in Section 4.1, 

considering message and information reception rates, message delay, and quality of 

traffic data in free flow traffic. 

4.2.1. Methodology 

We perform several experiments using VANET modules that we developed [34] for the 

ns-3 simulator [49]. Our VANET simulator and these modules are described in Appendix 

A. The goal is to compare the message reception rates and message delays of the various 

delivery methods described Section 4.1 under various market penetration rates. 

We focus on the highway scenario to highlight situations with potentially poor 

connectivity. We used a six-lane bi-directional highway with two TOs and four VS as 

shown in Figure 19. The subscripts on the TO and VS labels indicate their distance in km 

from the highway entrance. Vehicles enter the highway with a medium flow rate (average 

of 1800 veh/h) and a desired speed between 30±5 m/s (110±18 km/h). Recall, we have 

defined the possible ranges of the flow rates in our analysis in Chapter 3 (Section 3.2.2). 

We performed 10 30-minute simulation runs for each message delivery method and 

present the average over all runs. 



82 
 

 

 

In each experiment, TO1 tasked passing vehicles with reporting when they passed 

VS2, VS5, and VS9. Depending on the message delivery method, these reports were 

delivered back to TO1 or were delivered to TO5. Our simulations use the log-distance 

signal fading model. 

 

 

Figure 19. A six-lane bi-directional highway with two TOs and four VS.  

4.2.2. Evaluation 

Using SAC will increase the reception rate (Section 4.2.2.1), but comes with the tradeoff 

of increasing the message delay (Section 4.2.2.2). We note that a 100% reception rate 

does not mean that all of the possible information is collected as only equipped vehicles 

can report to the TO. We consider the question of traffic data quality and the information 

reception rate in Section 4.2.2.3. 

4.2.2.1. Message Reception Rate 

Figure 20 is a repeat of Figure 14 from Chapter 3 (Section 3.2.2). It shows the expected 

inter-vehicle spacing given different penetration rates and traffic flow rates. The results 

shown in Figure 20 indicate that with a medium flow rate and a 300 m communication 

range, market penetration rates (PR) of 10% and below will result in total disconnectivity 
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as the average equipped inter-vehicle spacing is higher than the communication range. 

Thus, with a PR of 5-10%, no messages will be received by TO1 from VS2 or farther 

strips when regular forwarding (RF) is used. With a PR of 5%, the situation is the same 

for dynamic transmission range (DTR). Our simulations use the log-distance signal 

fading model, so even though Figure 20 indicates that the average inter-vehicle spacing 

is less than the maximum range of 1000 m, the signal is not actually able to propagate 

that far. Since there is total disconnectivity, the SAC methods, including RF+SAC and 

DTR+SAC, will have equal performance, as all messages will be carried to TO5. This 

will increase the message reception rate (MRR) from 0% to 100% and the information 

reception rate (IRR) will be equal to the PR. 

 

 

Figure 20. Expected inter-vehicle spacing for different market penetration rates 

with medium (1800 veh/h) and higher flow rates (3600 and 5400 veh/h) (Reprint of 

Figure 14). 
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Figure 21 shows Freception for TO1 of messages sent by vehicles passing VS1, VS2, and 

VS4 calculated by Equation 22 in Chapter 3 (Section 3.2.2) and the probability of 

reception by TO1 obtained by simulation using RF with PRs of 50% and 100%. The 

simulation produced an average speed of 27.45 m/s, so that was the speed used for S in 

Equation 9 (Chapter 3 Section 3.2.2). Figure 21 shows that the analysis is confirmed by 

the simulation results. The MRR drops when the VSs are farther from TO1. Even with 

100% PR, TO1 will miss 10% of the messages from VS2 (1 km away) and about 30% of 

messages from VS5 (4 km away).  

 

 

Figure 21. Freception based on the distance from the VS to TO1. 

Figure 22 shows the MRR for messages from VS2 using different delivery methods 

with 50% PR. The figure also indicates what portion of the MRR is due to forwarding to 

TO1 or carrying to TO5. RF results in over 50% MRR, and DTR improves that to over 
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75%. But, the addition of SAC (either alone or in combination with RF or DTR) results in 

100% MRR. Any messages that cannot be forwarded back to TO1 are able to be carried 

and delivered successfully to TO5.  

 

 

Figure 22. MRR from VS2 with 50% PR. 

Figure 23 shows how the MRR is affected by the distance of the report origination 

from TO1 with 50% PR. Note that because of carrying, the distance does not affect the 

delivery results when SAC is used. For both RF and DTR, the MRR drops dramatically 

when the distance from TO1 is increased from 1 km (VS2) to 4 km (VS5). This is due to 

periods of disconnectivity in the traffic when the message cannot be forwarded back to 

TO1. Thus, if the VS is far from the originating TO, SAC methods should be used to 

achieve high MRR. 



86 
 

 

 

 

Figure 23. MRR from VS2 (1 km away) and VS5 (4 km away) with 50% PR. 

Table 1. MRR from VS2 using traffic in opposite direction. 

Penetration 

Rate 
RF, without 

opp dir. 
RF, with 

opp dir. 
DTR, without 

opp dir. 
DTR, with 

opp dir. 
5% 0% 0% 1.1% 2.4% 

50% 59% 72% 78% 96.7% 
 

Using vehicles traveling in the opposite direction on bi-directional roadways can 

decrease the equipped inter-vehicle spacing for message delivery and therefore improve 

the MRR. Table 1 shows the MRR when traffic in the opposite direction (with the same 

medium flow rate) is also used for forwarding. With a 50% PR, using opposite direction 

traffic with either RF or DTR improves the MRR from VS2 by 20-25%. For DTR, this 

results in a total MRR of close to 100%. Unfortunately, since the opposite direction 
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traffic has the same flow rate as the forward direction, there is still much disconnectivity 

with a 5% PR and thus, little or no improvement in the MRR. 

4.2.2.2. Message Delay 

Message delay is the time from a message being generated by a vehicle until the message 

is received at a TO (either TO1 or TO5). Figures 22 and 23 showed that SAC greatly 

improves the MRR, but there is a tradeoff in increased delay, which may impact its 

usefulness in obtaining real-time traffic statistics.  

 

 

Figure 24. Average message delay from VS2 with different delivery methods. 

Figure 24 shows the average message delay from VS2 to a TO (either TO1 or TO5) 

for the different delivery methods. When delivery is successful, RF and DTR have very 

low delay, on the order of milliseconds. SAC has the highest delay because of the travel 

time that vehicles encounter while driving towards TO5. Using SAC combined with 

message forwarding will reduce this delay. For example, where the average delay for 
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SAC alone is 118 s, the average delay for RF+SAC is about 50 s. This is because 59% of 

the messages with RF+SAC are able to be forwarded to TO1 using RF, which has a delay 

of only 7 ms. The remaining 41% were carried to TO5 with an average delay of 118 s, 

which is the average travel time for a 3 km segment. The distance between the TOs and 

the distance from the VS to the closest TO has a direct impact on message delay using 

SAC. Using traffic in the opposite direction may reduce the overall message delay by 

allowing more forwarding to take place. In Figure 24 we only show messages originating 

at VS2 because VS5 is co-located with TO5 and thus, would have no delay regardless of 

the forwarding method. Even if there were only one TO (e.g., TO1), a successful delivery 

using RF or DTR would have a delay on the order of milliseconds. 

4.2.2.3. Quality of Traffic Data 

Traffic management centers (TMCs) are interested in gathering travel times and traffic 

speeds over certain sections of the highway. There are two types of speed that TMCs 

consider, time mean speed (TMS) and space mean speed (SMS). TMS is the average 

speed of vehicles passing a point on a roadway, and SMS is the average speed of vehicles 

based on the average travel time of vehicles traversing a segment of roadway. DTMon 

can only count equipped vehicles, therefore traffic flow rate and density estimates are 

precise only with a high PR. But, DTMon can provide high quality estimates of travel 

time and traffic speed with just a few received messages, thus it can be used even in low 

PR situations.  
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Table 2 shows the results of a t-test (  = 0.05) between actual traffic data (i.e., 

ground truth from the simulation) and the traffic data collected by the TOs (using 

RF+SAC) from VS2 with 5% PR. The estimates we consider here are TMS in m/s, travel 

time (TT) in s, and SMS in m/s. The results show that DTMon can be used to estimate TT 

and SMS with 95% confidence for PRs as low as 5%. Note that with the 100% MRR 

provided by RF+SAC and 5% PR, the information reception rate (IRR) is only 5%. So, 

these results show that TT and SMS can be accurately estimated with as little as 5% of 

the traffic reporting. It does not matter whether this is due to low PR or low MRR. We 

note that there is a significant difference between the actual TMS and the estimated TMS 

at 5% PR. This is because there are so few samples (i.e., equipped vehicles) at the 

particular point used for computing the TMS. With an increase in the PR to 50%, the 

TMS is more accurate.  

 

Table 2. T-Test 5% PR (  = 0.05). 

 

Table 3 shows the results of a t-test between RF+SAC and actual data with 50% PR. 

Here, there is no significant difference between the actual data and that collected by the 

TOs.  

 

 
Actual RF+SAC 

t-Stat p-Value Sig.? 
Mean Var Mean Var 

TMS 27.26 0.13 26.65 1.21 -9.7002 0.0006 Yes 
TT 39.88 0.19 39.38 12.97 0.3165 0.7673 No 

SMS 25.07 0.40 25.39 2.0 -0.3117 0.8076 No 



90 
 

 

 

Table 3. T-test 50% PR (  = 0.05). 

 
Actual RF+SAC 

t-Stat p-Value Sig.? 
Mean Var Mean Var 

TMS 26.34 0.23 27.08 0.67 1.0689 0.2005 No 
TT 40.62 0.28 38.84 0.05 0.4025 0.5127 No 

SMS 24.62 0.03 25.74 0.01 2.2064 0.3911 No 
 

Table 4. T-test 50% PR (  = 0.05). 

 
RF RF+SAC 

t-Stat p-Value Sig.? 
Mean Var Mean Var 

TMS 27.45 0.41 27.08 0.67 2.9473 0.2082 No 
TT 39.17 1.35 38.84 0.05 0.5075 0.7010 No 

SMS 25.52 2.01 25.74 0.01 0.0521 0.9668 No 
 

Since the forwarding method can affect the number of samples received by the TOs, 

we look at how well the data obtained using RF compared to RF+SAC with 50% PR. We 

show the results of the t-test in Table 4. There is no significant difference between the 

data collected with RF+SAC and with RF. So with a higher PR, TMCs could use 

forwarding-only techniques to lower the message delay, while still receiving high quality 

estimates.  

4.3. TRAFFIC WITH TRANSIENT FLOW 

Our goal in this section is to evaluate the performance of the DTMon to measure travel 

times and speeds in transient flow traffic caused by non-recurring congestion. Because 

the coverage area of a single TO is limited and transient traffic conditions can cause 

periods of network disconnectivity, there is a need for multiple TOs in areas that are 
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prone to experiencing non-recurring congestion events. When multiple TOs are used, 

message delay and latency may affect the quality of data that can be accurately gathered. 

In addition, it is important to carefully assign measurement points in transient traffic as 

the conditions can change quickly. We show how DTMon can allow for the dynamic 

creation of new measurement points (VS) and the movement of existing VS. 

4.3.1. Congestion  

There are two types of traffic congestion. Recurring congestion occurs regularly at the 

same locations on the roadway system at about the same time every day. Non-recurring 

congestion occurs when a crash or other unusual event (such as a construction zone, 

merging traffic, or severe weather) causes a reduction in the traffic-carrying capacity. 

Detecting recurring congestion is not a critical monitoring process and requires a long-

term overview (i.e., weekly, monthly, or annual) of a large archive of collected traffic 

data, estimated metrics, and structural features of the roads (e.g., capacity) in addition to 

extra data-mining to detect the recurrence of similar patterns, all of which can be done 

offline. Detecting and monitoring non-recurring congestion, on the other hand, is an 

important function of TMCs. Extended periods of non-recurring congestion may require 

immediate action, including notifying emergency personnel, highway patrols, or even 

changing traffic light timings on surface streets to handle the extra capacity from diverted 

highway vehicles.  

4.3.2. Latency 

In DTMon, tasks can include the locations of multiple TOs. This adds the ability for 

messages to be stored and be dropped off at the next available TO during the travel (using 
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RF+SAC). This will reduce the number of messages lost due to unsuccessful forwarding. 

In addition to covering a wider area, the use of multiple TOs can improve the message 

delivery mechanism. The delay between a vehicle passing a VS and delivering the report 

to a TO may be reduced in some instances. Furthermore, generated reports and traffic 

warnings by TOs can be spread faster and more reliably in the region.  

As described in Sections 3.2.3.2 and 4.2.2.2, message delay is the delay from when a 

message was generated to when it was received by a TO. Since vehicles timestamp all 

reports, the receiving TO can calculate the message delay for each message. When 

messages are delivered to multiple TOs in a region, there is additional processing delay 

associated with sending the message to the central TMC and having that data aggregated 

with previously received data.  We use the term latency for the total time from when a 

message was generated to when it is ready to be used in analysis. In a single-TO system, 

the latency is the same as the message delay.  TMCs often aggregate data and use specific 

averaging intervals (e.g., 1 min, 5 min) when reporting traffic conditions. Latency is 

important if it rises to higher than the averaging interval. In this case, some late-arriving 

data may not be included in the estimate.  

4.3.3. Dynamically Defined Virtual Strips 

The location of VS can be re-defined and modified by a TO at any time. A TO can divide 

the roadway into several virtual segments. The size of the segments can vary by 

relocating the VS. Also, additional VS can be defined inside any desired virtual segment. 

This allows the TO receive more traffic information by defining additional points of 

interest on the road without the cost of using additional TOs. Currently, achieving this 
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would require the installment of numerous sensors and detectors along the road. In AVL 

and WLT systems, this would require a significant increase in the sampling rate to 

maintain the desired level of accuracy [77]. 

Congestion can produce a transition in traffic flow which cannot be detected by 

probe-based systems when the PR is not high. We show that the transition in the flow rate 

can produce a transition in travel time and SMS, which can be detected by DTMon. The 

travel time algorithms proposed by Sethi et al. [78] and Sermons [79] utilize both the 

travel time and average speed measures of the congested segment and the adjacent 

segment. DTMon using dynamically defined strips/segments can satisfy this data 

requirement. Two variables, travel time and speed, are compared to historical averages 

for each segment to infer if congestion occurs on this segment. It was found by Sethi that 

traffic measures for the congested segment were most useful for detecting congestion 

located in the downstream portion of the segment, while traffic measures for the next 

upstream segment worked well for detecting congestion occurring in the upstream or 

middle portion of the segment. The segment in the upstream portion that shows no 

significant change in traffic measures is inferred to be the end-of-the-queue.  

Identifying the end-of-the-queue is important for traffic engineers as this is the place 

where most secondary incidents occur. The primary incident is the cause of the 

congestion, but secondary incidents tend to occur at the point where the speed transition 

is the sharpest. Traffic engineers would like to be able to identify these locations so that 

approaching drivers can be warned in advance, potentially avoiding the secondary 

incidents. We explain how DTMon can be used to determine the end of the queue in 
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congested traffic in Section 4.3.5.5. We show that transitions in travel times and speeds 

detected by DTMon are two major factors in inferring the possibility of the congestion on 

the roadway. 

4.3.4. Methodology 

We again use our VANET modules [34] to examine DTMon�’s ability to collect high-

quality traffic data, especially travel times and SMS, in transient flow traffic (i.e., non-

recurring congestion). 

 

 

Figure 25. Location of TOs and virtual strips (not to scale). 

As shown in Figure 25, TO1 is located 1 km away from the entrance of a bi-

directional four-lane highway. TO5 is located 5 km away from the beginning of the 

highway as an optional secondary TO for the cases when RF+SAC is used. The vehicles 

enter the highway with a medium flow rate (average 1800 veh/h) to simulate slightly 

sparse traffic [31, 33] where the possibility of message reception by TOs is much lower 

than in dense traffic. Trucks, which keep a larger inter-vehicle spacing and have slower 
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acceleration and deceleration than cars, comprise 20% of the vehicles. The desired speed 

of all vehicles is 65±5 mph (29±2.2 m/s).  

We induce congestion by stopping a vehicle in the first lane, 1.5 km away from the 

entrance, between VS1 and VS2, 5 minutes after the simulation has started. The stopped 

vehicle is outside the communication range (300 m) of TO1 and is relatively far from 

TO5. The vehicle will remain stopped for 5 minutes, then the vehicle will start moving, 

allowing traffic flow to gradually return to normal. During the stopped phase, following 

vehicles will slow and try to change lanes around the stopped vehicle. This causes traffic 

congestion in both lanes. We have observed through experimentation that 5 minutes is 

long enough to create a transient flow. Note that congestion could have occurred at any 

point on the road, and virtual strips can be defined dynamically by TOs. We examine 

advantage of dynamically defined virtual strips in Section 4.3.5.5. At this point, we 

named only those VS that surround the starting point of the congestion.  

The performance of DTMon in monitoring traffic data is compared with the actual 

simulation status (ground truth) at VS2 (2 km away from the highway entrance and 0.5 km 

from the stopped vehicle). To compare our system with AVL, we assume that some 

percentage of the trucks are able to periodically communicate directly to an operating 

center to report their current status. In this comparison, we assume that AVL is used only 

by trucks, which we note have slower speeds, acceleration, deceleration than cars. For 

comparison with fixed point sensors and detectors (e.g., ILDs or microwave radar 

sensors), we use actual simulation data sampled from VS1 and VS2. We execute 10 runs 

of the simulation (20 min each) for each experiment. We test PRs of 5, 10, 25, 50, and 
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100%. Travel times, speeds, delays, and message reception rated are measured by TOs. 

We compare the results for each scenario using t-test with  0.05 and 95% confidence.   

4.3.5. Evaluation 

There are several factors that can affect the quality of data gathered by DTMon. The first 

factor is the percentage of equipped vehicles, or the market penetration rate (PR). Second, 

we are concerned with the amount of information (i.e., location, speed, time) that is 

received from vehicles. Third, we must consider how quickly and in what manner the 

information is received. Methods that can collect more information from vehicles (higher 

MRR and IRR) with less latency are preferred in up-to-date traffic monitoring. 

4.3.5.1. MRR and IRR using RF or RF+SAC 

For strips within transmission range of TO1  (e.g., VS1), the message reception rate 

(MRR) is 100% and the information reception rate (IRR) equals the market penetration 

rate (PR). For farther strips where message delivery is required, the MRR using regular 

forwarding (RF) varies according to the distance from the TO and the PR. When 

RF+SAC is used, only PR affects the MRR. 

Table 5 shows the MRR for RF, RF using traffic in the opposite direction, and 

RF+SAC for different penetration rates. With low PR, no messages were able to be 

forwarded using RF. Even using traffic in the opposite direction does not improve the 

MRR. In 25% PR, TO1 receives only 5.71% of messages (only 1.43% of total 

information) from VS2. Only RF+SAC was able to deliver messages with full MRR. In 

medium PR (e.g., around 50%), RF can deliver almost half of the messages although the 

IRR still remains below 30%. Using traffic in opposite direction only improved MRR by 
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7%. In 100% PR, TO1 misses about 20% of messages when RF alone is used (due to 

medium traffic flow rate and high inter-vehicle spacing). Using traffic in the opposite 

direction for delivery improves the MRR by 15%.  

 

Table 5. MRR for different penetration rates. 

PR Actual RF RF+w/opp RF+SAC 

5% 100 0.00 0.00 100 
25% 100 5.71 5.71 100 
50% 100 52.03 56.20 100 
100% 100 79.50 91.01 100 

Table 6 shows the corresponding IRR. Note that, having low IRR in low penetration 

rates means that the system cannot estimate traffic flow rate or density. For example, 

DTMon in 25% PR can only count 1.43% (25% with SAC) of vehicles in the traffic, thus 

the flow rates estimated by DTMon will be 0.014 (0.25 with SAC) of the actual flow rate 

on the road. This is a limitation of any system that does not directly count the physical 

presence of vehicles. 

Table 6. IRR for different penetration rates. 

PR Actual RF RF+w/opp RF+SAC 

5% 100 0.00 0.00 5 
25% 100 1.43 1.43 25 
50% 100 26.01 28.10 50 

100% 100 79.50 91.01 100 
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Figure 26 shows the percentage of messages that were forwarded or carried using 

RF+SAC in different penetration rates. Even in 100% PR, 20% of messages were carried. 

Figure 26 also shows that with 100% PR using RF, in which no messages are carried, 

DTMon will count 20% fewer vehicles than actually exist. This is because inter-vehicle 

spacing can still be above the DSRC transmission range (300 m) in medium traffic flow. 

This is especially true for sections after a point of congestion but before VS2 where the 

traffic flow rate decreases and the gap among vehicles increases.   

 

 

Figure 26. MRR from VS2 using RF+SAC in different PRs. 

4.3.5.2. Travel Time and Space Mean Speed 

First, we show that ILDs cannot accurately estimate travel times during transient traffic 

flow. Next, we investigate how well DTMon is able to measure travel times and SMS 

compared to current technologies. 
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Figure 27 shows the travel time in seconds, averaged every 5 minutes, for ILDs along 

with the actual (ground truth) travel times. Recall that congestion starts from beginning of 

the second interval (t = 5 minutes), reaches its peak at the end of this interval (t = 10 

minutes), and starts to release during the third interval (t = 10-15 minutes). Since the 

ILDs estimate the travel time as the segment size divided by the averaged traffic spot 

speed, they cannot accurately follow the transient nature of the non-recurring congestion 

event. 

 

 

Figure 27. Estimated travel time by ILDs compared to actual (aggregation every 5 

minutes). 

Probe-based monitoring can perform better than ILDs for measuring travel times and 

SMS, so we compare the estimated travel time and SMS during each interval (1 min or 5 

min) among data collected using RF, RF+SAC, and with AVL. RFp is RF  with a PR of p. 
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In AVL where only trucks are equipped, AVLp is AVL with p percentage of trucks 

equipped. For example, AVL25 means 25% of the trucks in traffic are equipped and use 

AVL. AVL25 can be compared with RF5 in DTMon since 5% of the total population of 

vehicles are equipped and 20% of all vehicles are trucks. 

Tables 7 and 8 show the results of a t-test with  = 0.05 (95% confidence) for travel 

time (in seconds) in four 5-minute intervals, as well as the average travel time and SMS 

(in m/s) for the entire 20 minutes with 5% PR. The t-Stat column is the result of the t-test, 

showing if the mean of the samples is larger or smaller than the mean of the actual data. 

The p-Value column is the probability that the sample and the actual data come from 

different distributions. If p-Value is less than  (0.05), then the sample population and the 

actual population are deemed to have a significant statistical difference. 

 

Table 7. T-test AVL25 and Actual. 

Time 
(min) 

Actual AVL25 
t-Stat p-Value Sig.? 

Mean Var Mean Var 
0-5 38.55 0.40 43.12 0.03 -1.5326 0.0393 Yes 
5-10 119.51 0.46 138.01 0.02 -7.0277 0.0055 Yes 

10-15 99.59 0.32 127.86 0.60 -1.8161 0.0018 Yes 
15-20 40.62 0.28 42.97 1.10 -2.1121 0.0400 Yes 

0-20 74.57 1456.39 87.99 1163.09 -0.8172 0.0360 Yes 
SMS 13.41 - 11.36 - - - Yes 

Travel time and SMS estimated by AVL25 systems have significant differences 

compared to the actual data as shown in Table 7. This is because mainly trucks have 

lower acceleration and deceleration than cars. Table 8 shows that even in 5% PR, 

RF5+SAC provides travel times and SMS with no significant difference from the ground 
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truth. In addition, the eminent change in travel time with a large mean difference 

occurring in the second and third intervals shows the possibility of congestion or 

transition in traffic flow. 

Table 8. T-test RF5+SAC and Actual. 

Time 
(min) 

Actual RF5+SAC 
t-Stat p-Value Sig.? 

Mean Var Mean Var 
0-5 38.55 0.40 40.40 5.19 -0.9700 0.4371 No 

5-10 119.51 0.46 113.89 666.13 0.6910 0.0559 No 
10-15 99.59 0.32 105.39 902.07 -2.8911 0.0223 Yes 
15-20 40.62 0.28 39.38 21.68 0.0060 0.9577 No 

0-20 74.57 1456.39 69.77 1025.95 0.0773 0.9391 No 
SMS 13.41 - 14.33 - - - No 

 

 

Figure 28. Average travel time (aggregation every 5 minutes). 
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Figure 28 shows the travel times for actual, AVL25, and RF+SAC5. Note that RF5 has 

0.0 MRR and therefore no travel time can be estimated. As indicated in Tables 7 and 8, 

RF+SAC5 can produce travel times much closer to the actual traffic status than AVL25. 

We note that the performance of AVL in estimating travel times and speeds could be 

closer to that of RF+SAC if other types of vehicles (e.g., sedans) were also equipped with 

AVL devices. In such cases, AVL (in the best case and avoiding the inaccuracy in 

sampled data and interpolation by AVL) may perform as accurately as RF+SAC. 

 

Table 9. T-test AVL100 and Actual. 

Time 
(min) 

Actual AVL100 
t-Stat p-Value Sig.? 

Mean Var Mean Var 
0-5 38.55 0.40 44.95 0.01 -15.8148 0.0402 Yes 
5-10 119.51 0.46 144.98 0.0007 -54.8502 0.0116 Yes 

10-15 99.59 0.32 139.86 0.03 -153.0912 0.0041 Yes 
15-20 40.62 0.28 44.79 0.08 -23.6415 0.0269 Yes 
0-20 74.57 1456.39 93.64 2722.33 -3.4170 0.0111 Yes 
SMS 13.41 - 10.67 - - - Yes 

 

Table 9 shows that even AVL100 provides a significantly different estimation of travel 

time and SMS compared with the actual status of the highway. Table 10 shows that RF50 

(and by extension, RF+SAC50) can provide high quality estimation of travel time and 

SMS that is not significantly different than the actual traffic conditions. The addition of 

SAC to RF will only add to the data quality because even more data can be delivered than 

with RF alone. Table 11 shows the comparison between RF50 and RF+SAC50. Some of 

the messages with RF+SAC may have higher message delay, but as long as the delay is 

less than the aggregation interval, the data can be used in the traffic analysis. 
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Table 10. T-test RF50 and Actual. 

Time 
(min) 

Actual RF50 
t-Stat p-Value Sig.? 

Mean Var Mean Var 
0-5 38.55 0.40 39.00 2.01 -0.3117 0.80761 No 
5-10 119.51 0.46 115.78 9.85 2.1514 0.2769 No 

10-15 99.59 0.32 123.55 367.38 -1.7165 0.3358 No 
15-20 40.62 0.28 39.17 1.35 3.2641 0.1892 No 

0-20 74.57 1456.39 79.37 1918.00 -0.9630 0.3676 No 
SMS 13.41 - 12.59 - - - No 

 

Table 11. T-test RF50+SAC and RF50. 

Time 
(min) 

RF50 RF50+SAC 
t-Stat p-Value Sig.? 

Mean Var Mean Var 
0-5 39.00 2.01 38.94 0.01 0.0521 0.9668 No 
5-10 115.78 9.85 116.72 0.15 -0.4858 0.7120 No 

10-15 123.55 367.38 97.92 0.01 1.8805 0.3111 No 
15-20 39.17 1.35 38.84 0.05 0.5075 0.7010 No 
0-20 79.37 1918.00 73.10 1388.43 1.2612 0.2476 No 
SMS 12.59 - 13.67 - - - No 

 

 

Figure 29. Travel time in 50% PR (aggregation every 5 minutes). 
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Figure 30. SMS in 50% PR (aggregation every 5 minutes). 

Figures 29 and 30 show the estimated travel time and SMS, respectively, in 50% PR. 

Because of the 100% MRR that RF+SAC provides, DTMon is able to track the actual 

traffic status even during the transient flow periods.  

 

 

Figure 31. SMS in 50% PR (aggregation every minute). 
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Figure 31 shows the trend in SMS when the aggregation interval is 1 minute. This 

indicates that transitions in traffic flow rate can affect travel times and speeds. Even at 

this level of aggregation, RF+SAC can track the actual status closely. 

Table 12 summarizes the comparison of DTMon with conventional sensors and 

detectors currently in use as well as other probe vehicle-based systems, such as AVL. 

Note that WLT system performance is very similar to AVL except that WLT has also 

issues with accurately detecting the location and timing of vehicles at a specific point.  

 

Table 12. Comparison of DTMon with other technologies. 

Good Estimate? 
Sensors and 

Detectors 
AVL (using trucks) DTMon 

Travel Time Not Available Overestimate Yes 
SMS Not Available Underestimate Yes 

As mentioned earlier, point-based sensors and detectors cannot directly measure 

travel times. AVL systems are typically installed in commercial trucks (or taxis, etc.), 

which have different characteristics than the majority of traffic (slower 

acceleration/deceleration, larger inter-vehicle gaps,  resulting in longer travel times). 

4.3.5.3. Latency (Message Delay) 

Sensors and detectors sense vehicles instantly. Their collected data are usually transferred 

to a TMC periodically via cable or wireless communication with some amount of latency. 

The aggregation usually happens every 5 minutes [14, 16]. In AVL systems, vehicles�’ 

location and speed are probed periodically with negligible delay but these locations and 

speeds must be interpolated for a desired location and specific point on the road. For 

example, a vehicle with maximum speed 30 m/s may be probed anywhere in the range of 
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150 meters around VS2 when the sampling period is every 5 seconds (which is a high 

rate). In the best case, a vehicle�’s location is probed when it is exactly passing VS2 at 

probe time. With a lower sampling rate, this offset increases.  

Latency in DTMon varies depending upon several factors. The variation in the delay 

depends on the method of message delivery. For example, RF adds very small delay (in 

terms of milliseconds), while store-and-carry adds some travel time to the carried 

messages. In the previous section, we showed that TOs are capable of collecting and 

estimating high quality travel times and speeds as well as their trends even in traffic with 

transient flow rate and with various market penetration rates.  

 

 

Figure 32. Message delay.  

Figure 32 shows the message delay when RF+SAC is used with different PR. Recall 

from Table 5, in 5% PR, the MRR (of messages sent from VS2 to TO1) is zero when RF 
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is used and only RF+SAC could deliver the messages. This increases the message delay 

by the average travel time from VS2 to TO5. In medium PR like 50%, almost half of the 

messages could be forwarded to TO1, with an average message delay of 7 ms. The rest of 

the messages are carried to TO5. Congestion during the second and third interval 

(between 5-10 minutes) also adds additional delay to the messages that are carried. In 

high PR like 100%, more messages are forwarded (80%) than carried (20%) and the 

average message delay becomes lower.  

Message delay can be a factor in selecting the method of message delivery. In Tables 

10 and 11 we showed that in 50% PR and higher, RF and RF+SAC can provide high 

quality estimation of traffic speed and travel time and can also sense transition and trends 

in traffic flow based on travel time and SMS with 95% confidence. The advantage of 

using RF alone is that we can use a single TO instead of multiple TOs to cover the area, 

resulting in a latency below one second. The disadvantage of RF is a lower IRR 

especially for VS far from a TO. In contrast, RF+SAC results in higher IRR, especially in 

low PR, but with added latency. This latency can vary according to the traffic conditions 

and the distance from TOs.  

Message delay can also be used to show how fresh the generated reports are. This 

may be crucial in real-time traffic monitoring. For example, aggregation may happen 

every minute as shown in Figure 31, but during congestion the message delay was 70 

seconds for RF+SAC50 (Figure 32), resulting in deviations from the actual traffic status.  
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4.3.5.4. Count Information 

Count-based metrics such as flow rate, volume, and density can only be estimated when 

the market penetration is high. Figure 33 shows the computed flow rate by DTMon with 

100% PR during each time interval. Only 20% of the traffic are trucks, therefore the 

estimated flow rate using AVL is inaccurate. RF100 on average has 79.50% IRR and 

missed 21.5% of the vehicles that passed VS2. RF100+SAC collects all messages and 

reports the same flow rate as ILDs and the actual traffic status. In 100% PR, RF and 

RF+SAC can detect the transition in flow rate as shown in Figure 33. Thus, for high PR 

scenarios, DTMon can be a good replacement system for sensor and detectors. In low or 

medium PR, DTMon can be used to augment current systems and add important travel 

time and SMS data.  

 

    

Figure 33. Flow rate at VS2 in 100% PR (aggregation every 5 minutes). 
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4.3.5.5. End-of-the-queue Virtual Segment 

As we explained in Section 4.3.3, identifying the end-of-the-queue is important for traffic 

engineers as this is the place where most secondary incidents occur. The primary incident 

is the cause of the congestion, but secondary incidents tend to occur at the point where 

the speed transition is the sharpest. Traffic engineers would like to be able to identify 

these locations so that approaching drivers can be warned in advance, potentially 

avoiding the secondary incidents. We explained the importance of dynamically defined 

virtual strips and virtual segments for detecting end-of-the-queue in traffic with 

congestion in the previous sections. We showed that the transition in the traffic flow rate 

cannot be detected in low PRs, although a transition in the traffic flow rate can produce a 

transition in travel time and speed which can be detected using DTMon. 

We show an example of detecting an end-of-the-queue using DTMon in this section. 

A vehicle breaks down after 600s of simulation (10 min) in the first lane at a location 

approximately 3.5 km from the highway entrance, far from TO1 which is located 1 km 

away from the highway entrance. The vehicle blocks the first lane of the road in two-lane 

highway for a long period (30 min). This causes kilometers of backup and congestion in 

the traffic that initially has a flow rate 3600 veh/h and speed 29 m/s. After  a total of 40 

minutes have passed, the blocking vehicle starts moving in order to release the congestion 

for the remaining 20 minutes of the one hour simulation. 

During the 30 minutes of blocking, a backup starts to form, and the end of the backup 

will move. The end will fall into different virtual strips/segments of 1 km size VS1, VS2, 

VS3, VS4 (VS1VS2, VS2VS3, and VS3VS4 respectively) which were predefined by TO1. 
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The virtual strips VS2.5 and VS3.5 will be dynamically defined by TO1 during the 

congestion, after the vehicle�’s break-down (and its location) is reported to TO1 (as shown 

in Figure 34). TO1 (and TO5 if necessary for low penetration rates)  monitor the traffic 

speed and travel time for each defined strip and segment. Note that we have shown the 

impact of penetration rate, distance, and use of store-and-carry in our previous 

experiments. In this experiment, we plan to show how TO1 (with average message delay 

of less than1 second where RF is used) can infer the end location of the backup in traffic. 

 

 
 

Figure 34. Location of TOs and VS (not to scale). 

Figure 35 shows the traffic speed at defined virtual strips when averaged every 

minute. The transition in traffic speed at a specific VS can be used to infer that the 

backup has passed that VS, since traffic behind that strip has a slower speed. For example 

at time 24 min, the backup has not reached VS3 because the monitored traffic speed for 

that strip was still high. But at time 26 min, the backup endpoint must have passed VS3 

because the traffic passing VS3 reported a very low speed. Figure 35 shows the ability of 
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DTMon to detect the transition in traffic speed, which is one important factor to locate 

the end of the queue. 

 

 

Figure 35. TMS at virtual strips. Traffic stoppage occurs during 10-40 min. 

In Figure 36, we show an alternate view of data in Figure 35 to highlight the 

movement of the end of the queue. The darker points indicate lower traffic speeds. If the 

traffic speed for a VS (e.g., VS2.5 at 2100s)  is dark and the traffic speed for the location 

ahead is dark too (e.g., VS3 at 2100s), the TO can infer that congestion has reached the 

VS. When the points become brighter (e.g., VS3 at 3000s), it means that the speeds are 

increasing, therefore the TO can infer that the congestion must have been released at VS3. 

Figure 36 shows the ability of DTMon to detect the transition in traffic at various points 

on the road and at any dynamically defined virtual strip. DTMon can compare these 
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transitions in speed at any two consecutive virtual strips. This is helpful to locate the end 

of the back up or the release in the back up.    

 

 

Figure 36. Time, Space, and Speed. 

 

Figure 37. Travel time for defined virtual segments.  
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Figure 37 shows the travel time averaged every minute at the dynamically defined 

virtual strips. Transitions in travel time in a specific virtual segment can be used to infer 

whether the backup has reached that virtual segment or not. For example, travel time in 

segment VS2VS3 starts to increase after 25 min, showing that the backup has reached this 

segment and has started to expand toward the farther strips. The TO can dynamically 

define VS2.5 define in this segment to monitor whether the backup has reached the upper 

section (VS2.5VS3) or lower section (VS2VS2.5) of the segment VS2VS3. For example, the 

traffic speed at VS2.5 (see Figures 35 and 36 ) has sharply decreased after 35 min, and the 

travel time for the segment VS2V2.5 has increased, showing that the backup must have 

reached into VS2VS2.5, the lower section of the segment VS2VS3. In contrast, the end-of-

the-queue must have been inside the upper section between 25 min to 35 min. Overall, 

Figures 35, 36, and 37 show the advantage of dynamically defined virtual strips in 

DTMon, and DTMon�’s ability to infer the location of the end of the queue during 

congestion.  

4.4. ESTIMATING MARKET PENETRATION RATE 

In the previous sections, we have shown that DTMon can be used to estimate high-

quality travel times and speeds with relatively low PRs.  But, DTMon, as with any probe-

based system, can only estimate high-quality flow rates and density with high PRs. As the 

quality of flow rate and density measurements are proportional to the PR, the level of PR 

needed for high-quality estimates depends on the acceptable error level. It is possible to 

augment DTMon with current technologies such as sensors and detectors (i.e., MRS or 

ILDs) and use the count information data collected by these technologies fused with data 
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collected by TOs. As a result, data collected by the TOs are augmented by data gathered 

from sensors and detectors for the same virtual strip (same point of interest on the road). 

This gives a TO the ability to estimate the PR by observing the total number of equipped 

and unequipped vehicles which pass virtual strips in the range of the TO. In this case, the 

total number of vehicles (equipped + unequipped) is collected by sensors and the total 

number of equipped vehicles is collected by the TO. Once the PR is estimated, we can 

apply it to density and flow rate measurements to increase the quality of those estimates.  

We expect that the PR in an area will change very slowly over time, so this estimation 

could be done once and used to augment DTMon�’s density and flow rate estimates for 

several months. 

4.5. USING STATISTICAL SAMPLING IN DTMON 

There are statistical methods (e.g., Sample Size with Acceptable Absolute Precision for 

Finite Populations [80]) that can be used to determine how many samples (reports) are 

required to be received by a TO to maintain a desired level of accuracy and confidence in 

the traffic estimates. These methods require the input of acceptable variance, acceptable 

significance level, and acceptable absolute error and output the required sample size.  

In DTMon, the traffic conditions (including the PR) play a major role in the number 

of messages that a TO successfully receives. Even in 100% PR, the TO may not have a 

high message reception rate from virtual strips that are out of its range, therefore the TO 

will task all passing equipped vehicles in order to be sure it can keep the message 

reception rate high from farther strips. This will help to keep the message reception rate 

at its maximum in any traffic condition with various penetration rates. Also, the accuracy 
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of estimated metrics will remain at its maximum. We do not consider the problem of 

sampling and distributing tasks by TOs to a smaller population of equipped vehicles. The 

goal of traffic monitoring by the TMC is to collect and archive all possible data for 

accurate record-keeping and archiving. As the goal of DTMon is to support this data 

collection, we strive to collect all possible data. This is feasible because there is not much 

overhead in DTMon, as mentioned in Chapter 3 (Sections 3.1.3 and 3.1.5.3).  Reports 

where sampling could be employed, such as travel times and speeds, can be piggybacked 

on flow rate and density (volume) reports, where the data from the maximum number of 

vehicles is required for high-quality estimates. 

4.6. SUMMARY 

We analyzed the ability of DTMon to provide high-quality traffic data in free-flow traffic 

with low to medium market penetration rates. We showed how MRR and IRR were 

affected by the market penetration rate, traffic speed, traffic flow rate, and distance of the 

measurement point (VS) from the TO. The IRR directly impacts the quality of certain 

traffic data. We evaluated different methods of delivering messages to improve the IRR 

and showed that an improvement in the message reception rate can have the cost of 

increased message delay. But, regardless of the method of message delivery, we showed 

that DTMon can collect high-quality travel time and speed data in free-flow traffic where 

the possibility of receiving messages from just a few vehicles exists. 

In general, average speed, travel time, SMS are not affected by missing messages 

(unless all are lost or failed to be delivered). The amount of difference in calculated 

averages for speed (TMS and SMS) and travel time are  negligible. This shows that with 
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a lower penetration rate and a higher miss rate, these averages can still be good 

estimations for actual traffic speed and travel time. On the other hand, the estimate of 

traffic flow rate, volume, and density are affected by information reception rate. DTMon 

can only provide good estimate of count information in traffic with high penetration rates.  

Overall, store-and-carry can always deliver the data from strips when multiple TOs 

are deployed, especially for low market penetration rates. This may add cost to system as 

well as latency in delivering messages. DTR can only improve the system when the 

market penetration rate is medium or high, and it will perform to equal RF in low market 

penetration rates or with low density traffic. Nevertheless, TMS, SMS, and travel time 

can be estimated even with few samples in free flow traffic. 

We also showed that DTMon can provide high quality travel time and SMS data in 

transient flow traffic, such as that caused by non-recurring congestion. Currently-

deployed sensors and detectors can only estimate these metrics, and with transient flow 

traffic, the estimates are often far off from reality. With low market penetration rates, 

DTMon�’s measurements may incur some delay caused by vehicles having to carry their 

data to a nearby TO. But, even in these situations, DTMon can be used to augment 

current fixed point sensors and detectors. With high market penetration rates, DTMon 

could replace these sensors and detectors altogether.  

In addition to providing up-to-date travel statistics, DTMon can be used to detect 

transitions in traffic flow using travel time and speed measurements gathered from 

dynamically defined virtual strips. We showed the advantage of using dynamically 

defined virtual strips in DTMon and that DTMon can detect end of the queue by 
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monitoring traffic speed and travel time and their transitions from various dynamic points 

on the road. 

We have shown that DTMon provides better performance than AVL systems in 

monitoring these metrics. The decision regarding which of DTMon�’s message delivery 

methods to use depends on the market penetration rate, message delay, and acceptable 

latency. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

In this dissertation we introduced DTMon, a framework for monitoring traffic data. The 

main components of the DTMon are task organizers, virtual strips, and equipped 

vehicles. Task organizers (TOs) are roadside units that can communicate with equipped 

vehicles and with a traffic management center (TMC). These TOs can be programmed by 

the TMC to task vehicles with performing traffic measurements over various sections of 

the roadway. Virtual strips (VS) are the measurement points for TOs. VS can be changed 

dynamically and placed anywhere within several kilometers of the TO. This is a vast 

improvement over current technology, where specific measurement points must be 

decided in advance and hardware installed in those locations. DTMon can be used in both 

rural and urban areas with very little infrastructure. We have shown that in medium to 

high density traffic, a single TO can be used to collect data over several kilometers of 

roadway. The installation of an additional TO past the desired monitoring points allows 

for the use of store-and-carry techniques, which would improve DTMon�’s performance in 

low density traffic. This system presents a clear advantage over current point-based 

monitoring systems in that it can collect highly-desired travel time and speed metrics. In 

addition, the VS measurement points can be dynamically defined based on changing 

traffic conditions. 

We analyzed the ability of DTMon to provide high-quality traffic data in free-flow 

traffic with low to medium market penetration rates. We introduced the information 
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reception rate (IRR) and showed how it was affected by the market penetration rate (PR), 

traffic speed, traffic flow rate, and distance of the measurement point (VS) from the TO. 

The IRR directly impacts the quality of certain traffic data. We evaluated different 

methods of delivering messages to improve the IRR and showed that an improvement in 

the message reception rate can have the cost of increased message delay. But, regardless 

of the method of message delivery, we showed that DTMon can collect high-quality 

travel time and speed data in free-flow traffic where the possibility of receiving messages 

from just a few vehicles exists. 

We showed that DTMon can provide high quality travel time and SMS data in 

transient flow traffic, such as that caused by non-recurring congestion. Currently-

deployed sensors and detectors can only estimate these metrics, and with transient flow 

traffic, the estimates are often far off from reality. With low market penetration rates, 

DTMon�’s measurements may incur some delay caused by vehicles having to carry their 

data to a nearby TO. But, even in these situations, DTMon can be used to augment 

current fixed point sensors and detectors. With high market penetration rates, DTMon 

could replace these sensors and detectors altogether. In addition to providing up-to-date 

travel statistics, DTMon can be used to detect transitions in traffic flow using travel time 

and speed measurements gathered from dynamically-defined virtual strips. We showed 

that DTMon is able to detect end of the queue locations during congestion using 

dynamically-defined virtual strips and detecting transition in travel times and speeds. We 

have shown that DTMon provides better performance than Automatic Vehicle Location 

(AVL) systems in monitoring these metrics. The decision regarding which of DTMon�’s 
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message delivery methods relies on the market penetration rate, message delay, and 

acceptable latency. 

In Appendix A, we described the first implementation of a vehicular mobility model 

integrated with the networking functions in ns-3. The integrated VANET simulator that 

include both mobility and network models and allowed us to evaluate the performance of 

DTMon in comparison with the rival technologies and over various traffic conditions 

(e.g., free flow traffic, traffic with congestion, etc.).  

The summary of this dissertation is as follows: 

 DTMon is a probe vehicle-based system that uses spatial sampling to 

dynamically monitor traffic data. DTMon has two major components: 

o Task Organizers 

o Virtual strips   

 DTMon can provide high quality estimates of travel time and speed. 

 DTMon can provide high quality estimates of flow rate and density in higher 

penetration rates. 

 Hybrid message delivery improves information reception rate with the cost 

of increased latency as an option for low penetration rates. 

o RF and RF+SAC have similar performance in higher penetration rates 

o Using RF+SAC is an improving option in low penetration rates 

 DTMon can detect transitions in traffic flow using estimated travel time and 

speed. 
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 DTMon can detect end of queue situations in congested traffic via 

dynamically-defined virtual strips and transition detection using travel time 

and speed. 

 DTMon can augment current technologies and systems in monitoring 

important traffic data. 

 We contributed the first implementation of a vehicular mobility model 

integrated with the networking functions in ns-3. 

o Full user control for studying a wide variety of scenarios in 

VANETs using realistic mobility and network models  

o Customization of almost all aspects of the simulation 

o Settings and functions for wireless communication 

o Manually and automatically creation of scenarios 

o Allowing for feedback 

5.1. CONTRIBUTIONS 

The contributions of this dissertation are as follows: 

1. A method for using probe vehicles to perform spatial sampling of traffic 

conditions �– Probe vehicles can provide real-time measurements of speed and 

travel time. Using spatial sampling allows for these measurements to be made at 

specific locations of interest on the roadway. This avoids the need for 

interpolation and estimation that is required when temporal sampling of probe 

vehicles is performed. 
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2. An analysis of the factors that can impact the quality of monitored traffic data 

when using vehicular networks �– These factors are market penetration rate, traffic 

conditions, communication range, distance between communicating entities, 

methods of message delivery, message reception rate, and message delay. We 

have performed an analysis of these factors and how each contributes to the 

quality of traffic data that can be reported. We note that both traffic conditions 

and market penetration rate affect the distance between communicating entities. 

3. An evaluation of the impact of different methods of message delivery on the 

quality of traffic data that can be gathered by vehicular networks �– We compared 

four different message delivery methods (regular forwarding, dynamic 

transmission range, store-and-carry, and a hybrid approach) by measuring 

message reception rate and message delay in different traffic conditions and 

different market penetration rates. We found that a hybrid approach (regular 

forwarding coupled with store-and-carry and using vehicles traveling in the 

opposite direction) can significantly improve the performance of DTMon in 

poorly connected traffic conditions. We also showed that when the market 

penetration rate is high, the message delay can be reduced significantly. 

4. An evaluation of the effectiveness of DTMon as compared with current 

technologies such as inductive loop detectors (ILD) and automatic vehicle 

location (AVL) �– We show that DTMon can be used to report travel times that are 

not statistically different from the actual travel times. In comparison, we show 
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that technologies such as ILD cannot measure travel times with this level of 

accuracy. 

5. A demonstration of the usefulness of DTMon�’s monitoring approach for 

monitoring congested traffic conditions �– We have shown the ability of DTMon 

to allow a TMC to dynamically place additional monitoring points (virtual strips) 

in locations where congestion is building up. This allows the TMC to detect 

transitions in traffic flow using speeds and travel times, without having to rely on 

flow rate information. We have shown that DTMon can be used to detect and 

track the end-of-the-queue in traffic with congestion. 

6. Highway mobility modules for the ns-3 network simulator �– We have contributed 

the first highway mobility modules designed to produce realistic vehicle mobility 

and communications in ns-3. The mobility model has been validated against the 

well-known vehicular mobility models, and the networking components use ns-3, 

which has been validated against wireless models. These modules have been 

released to the ns-3 community and are now being used by other researchers 

around the world. 

5.2. FUTURE WORK 

Our future work is to continue studying the design of traffic monitoring systems that 

could be deployed in different configurations based on roadway topology and traffic 

conditions. As we have seen for some types of data, the market penetration rate affects 

the quality of data gathered. We have investigated deploying multiple RSUs (e.g., TOs) 

in a region and using oncoming traffic to help bridge gaps in connectivity. But, future 
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work may require an investigation of methods for processing collected data from mobile 

nodes (e.g., cell phones) or from other sources. This opens various avenues of research, 

including communication protocols, wireless characteristics of vehicular (or mobile or 

sensor) networks, security, packet delivery and routing algorithms, standardization, real-

time data-mining, and simulation/modeling. In addition to the research on these types of 

networks, this work can motivate new directions on the design of appropriate operating 

systems and applications of the required devices. These devices may be static or mobile 

and may be servers or clients of traffic data. Low cost, high performance data mining 

techniques (usually bound with data sources, search engines, and maps) must be 

investigated. 

We will further investigate the use of dynamically-defined virtual strips and TOs in 

DTMon to evaluate the performance of our proposed framework in urban area 

specifically where TOs are deployed at intersections. Therefore, we have plans to extend 

our implementation of VANET simulation modules for urban areas (e.g., intersections) 

and add the ability to read in and use detailed maps instead of a single straight highway. 

We also have plans to implement and develop the most recent WAVE/DSRC standard in 

ns-3. This will allow users to simulate up-to-date wireless communication for VANETs 

based on the standard. We hope that our addition to ns-3 along with our future work will 

allow researchers to easily perform high-quality VANET simulations.   
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APPENDIX A 

SIMULATION MODULES FOR VANETS AND HIGHWAY 

MOBILITY IN NS-3 

  

The study of VANETs, and in our case DTMon, requires efficient and accurate 

simulation tools. As the mobility of vehicles and driver behavior can be affected by 

network messages, these tools must include a vehicle mobility model integrated with a 

quality network simulator. We present the first implementation of a well-known vehicle 

mobility model to ns-3, the next generation of the popular ns-2 networking simulator. 

Vehicle mobility and network communication are integrated through events. User-created 

event handlers can send network messages or alter vehicle mobility each time a network 

message is received and each time vehicle mobility is updated by the model. To aid in 

creating simulations, we have implemented a straight highway model that manages 

vehicle mobility, while allowing for various user customizations. We show that the 

results of our implementation of the mobility model matches that of the model�’s author 

and provide an example of using our implementation in ns-3. 

The problem with integrated simulators is that often either the mobility model is 

overly simplified or the network model is overly simplified. In order to study important 

networking properties of VANETs, a high quality network simulator is essential. We 

have chosen to balance these two concerns by taking the latest version of the highly-

regarded network simulator, ns-3 and adding a well-known traffic mobility model in 

order to provide an integrated simulator for VANET research. This work [34] has been 
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published and is being used by various researchers and users. ns-3 is a discrete-event 

network simulator written in C++, targeted primarily for research and educational use, 

and intended as a replacement for the popular ns-2 simulator. ns-3 promises to be a more 

efficient and more accurate simulator than its predecessor (especially for wireless 

protocols). For this reason, we were interested in using ns-3 to perform our VANET 

simulations.  

ns-3 provides various mobility models, but none are appropriate to simulate the 

mobility of vehicles. The mobility of a node in the mobility models included in ns-3 

depends only on the node itself. In realistic vehicular mobility, the mobility of the node 

must depend on the surrounding nodes and the conditions on the road. Furthermore, this 

node dependency becomes essential when messages in the network can affect the 

mobility of the nodes on the roads.  For example, the receipt of a safety message may 

result in a speed reduction. 

We have implemented IDM and the MOBIL lane change model in ns-3 (see Sections 

A.1.3 and A.1.4). In addition, we have provided a Highway class to represent a straight 

multi-lane, bi-directional roadway. In our simulations, the Highway object is the �“brain�” 

of the system and efficiently manages the behavior of vehicles and their mobility on the 

road. Each vehicle is a fully-fledged wireless node in ns-3. In this way, vehicles can 

move with realistic mobility and communicate with each other to form a VANET. In our 

network and mobility combined design, a user can simulate VANETs in highways with 

customized road-side and on-board units. Users can create user-defined actions and event 
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handlers to customize simulation scenarios, allowing them to study vehicular traffic, 

network traffic, or both.  

We explain the main components of our design in Section A.1 and highlight possible 

user customizations, such as adding helicopters or embedded highway sensors, in Section 

A.2. In Section A.3, we discuss validation of our IDM/MOBIL implementation in ns-3, 

and in Section A.4 we discuss an example of our additions to ns-3.  

A.1. ARCHITECTURE 

Here we describe the components of our design, which consists of five main classes 

(Figure 38): 

 

 

Figure 38. Class diagram of the main components in our design. 

1. Vehicle - a mobile node that contains a wireless communications device 

2. Obstacle - a Vehicle that has no mobility 

3. Model - the IDM car-following mobility model  
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4. LaneChange - the MOBIL lane change model  

5. Highway - holds Vehicle and Obstacle objects and uses a Vehicle�’s Model and 

LaneChange properties to control its mobility 

Highway uses the first four classes to generate the traffic in a highway. Since 

vehicular mobility models, and especially car-following models like the one we 

implement, need to know the position and mobility of other vehicles, the Highway object 

must be used to control the mobility of all vehicles. Users can customize Highway 

(including highway length, uni-directional or bi-directional traffic flow, number of lanes, 

lane width, and center median width) to create a variety of simulation scenarios. 

In the following sections, we will describe each of the classes in order. The source 

code, examples, and documentation [34, 81] are available for researchers and developers. 

A.1.1. Vehicle 

A Vehicle is a mobile node that contains a wireless communications device. A Vehicle 

has the following properties: 

 vehicleID 

 width - width of the vehicle in meters 

 length - length of the vehicle in meters 

 lane - lane number on the highway where the vehicle is located 

 direction - {-1, 1} (Assume eastbound is 1 and westbound is -1). 

 position - a vector (x, y, z), where x is the rear position of the vehicle, y is the 

center of the vehicle, and z is the altitude of the vehicle above the highway (all 

units in meters) 
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 velocity - in m/s 

 acceleration - in m/s
2 

 model - mobility model settings, desired velocity is associated with the mobility 

model 

 lanechange - lane change model settings 

In our design, the Highway object is in charge of managing the positions, directions, 

and the lane numbers of its vehicles. A Vehicle�’s acceleration and velocity can be set 

manually or can be calculated based on the IDM mobility model rules. A Vehicle is able 

to change lanes, if necessary and possible, based on the MOBIL lane change model. 

Vehicle objects can either be manually created and inserted onto the Highway, or they can 

be automatically injected into the Highway. 

Since a Vehicle contains a wireless communications device, we can control the 

vehicle�’s WiFi capabilities. Vehicles are able to communicate (send/receive) through the 

standard ns-3 WiFi channels. The messages, including sent and received packets, and all 

related events can be captured by setting the appropriate event handlers to the 

implemented callbacks, which are designed and considered for these purposes. A Vehicle 

can unicast packets or it can send broadcast messages. The user has full control on how to 

schedule the sending process and how to handle the receive callback. There are also 

several callbacks for the purpose of tracing the different layers of the network and the 

mobility of the vehicle. These help the user create and trace simulation scenarios easily.  
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A.1.2. Obstacle 

An Obstacle is a static node that contains a wireless communications device. It is 

inherited from the Vehicle class and has all of the capabilities of a Vehicle except that it 

cannot be mobile (i.e., velocity = acceleration = model = lanechange = 0). An obstacle 

can be used as an barrier to close a lane or to temporarily create stoppages that result in 

congestion on the highway. An obstacle can also be used as a roadside unit or other piece 

of infrastructure along, but outside of, the highway. If an Obstacle is placed on the 

highway, it must have a direction and lane number. Anything that can be done to a 

Vehicle object can be done to an Obstacle object (aside from affecting mobility), so in the 

rest of this paper we will just use the term Vehicle. 

A.1.3. Mobility Model 

Model is the class that implements the mobility model for a Vehicle. We have 

implemented the Intelligent Driver Model (IDM) in ns-3 based on equations and 

parameters developed by Treiber [52, 82]. IDM is a car-following model, meaning that 

each vehicle�’s acceleration or deceleration depends upon its own velocity, its desired 

velocity, and the position and velocity of the vehicle immediately in front in the same 

lane, which Treiber calls the front vehicle. 

Each vehicle in IDM has a desired velocity, safety time headway (time needed to 

cover a gap between two vehicles, e.g., the �“2 second rule�”), acceleration in free-flow 

traffic, comfortable braking deceleration, and desired minimum distance to the front 

vehicle. IDM uses these parameters and the current state of the vehicle and front vehicle 

to compute the new acceleration. Acceleration is, in turn, used to update the velocity and 
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position of the vehicle. Note that acceleration necessarily decreases towards 0 when the 

velocity of the vehicle approaches the desired velocity.  

The function CalculateAcceleration in the Model class uses the IDM equations to 

calculate and return the new acceleration at each time step. The vehicle�’s new velocity 

and position are then adjusted based on this new acceleration. 

For customizability, each vehicle can have its own set of IDM parameters. Treiber 

suggests different parameter settings for cars and trucks. For example, trucks have a 

lower desired velocity and acceleration in free-flow traffic, and longer deceleration gap 

than cars. �“Careful�” drivers would have a high safety time headway, and �“pushy�” drivers 

would have a low safety time headway, higher desired velocity, higher acceleration, and 

higher deceleration.  

In our design, we also allow each Vehicle object to have its own IDM parameters. We 

have included reasonable default values for cars (the Sedan class) and trucks (the Truck 

class). The user can create their own vehicle types with different parameter values for 

specific experiments. For example, a user may want to create a mix of careful and pushy 

drivers, or include sports cars, police cars, emergency vehicles, and buses, all of which 

would have very different mobility characteristics. 

A.1.4. Lane Change Model 

LaneChange is the class that implements the lane changing model for a Vehicle. We have 

implemented the MOBIL lane change model based on equations and parameters 

developed by Treiber [53, 83]. Each lane change in this model must satisfy both the 

safety criterion and the incentive criterion. The safety criterion states that the lane change 
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must not cause the vehicle that is being changed in front of (the back vehicle) to 

decelerate unsafely (faster than a certain threshold). The incentive criterion is satisfied if 

the lane-changing vehicle�’s advantage is greater than the other vehicles�’ disadvantages. 

Note that although the incentive criterion is usually much easier to satisfy than the safety 

criterion, both must hold for the lane change to occur. In addition, the IDM rules still 

apply, meaning that the new front vehicle must be a certain distance ahead in order for 

the lane change to occur. 

To compute the incentive criterion, MOBIL first calculates the lane-changing 

vehicle�’s advantage. This is simply the difference between the vehicle�’s current 

acceleration and the vehicle�’s new acceleration after the lane change. The goal is to 

increase the acceleration, or to reduce the braking deceleration, which are essentially the 

same things. The disadvantage to both the back vehicle in the current lane and the back 

vehicle in the new lane are considered. Again, this is done by comparing the acceleration 

before the lane change with the acceleration after lane change.  

To allow for some variability in how aggressive drivers are in deciding when to 

change lanes, MOBIL weights the other vehicles�’ disadvantage with a politeness factor, 

p. When p  1, the driver is considerate and puts others�’ disadvantages equal to or ahead 

of their own advantage. In reality, most drivers are in the 0 < p  0.5 range, where some 

weight is given to other drivers�’ disadvantage. If p = 0, the driver is inconsiderate, 

discounting the disadvantage to others. 

MOBIL also includes a right-lane bias parameter when computing the incentive 

criterion. This parameter allows for modeling situations in countries where passing a 
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vehicle on the right is not allowed. The parameter can also be used to allow vehicles to 

pass from either side or prevent trucks from travelling in the leftmost lanes.  

The function CheckLaneChange in our LaneChange class returns a boolean to 

indicate if the lane-change can take place or not. CheckLaneChange uses the MOBIL 

equations and suggested parameters along with the statuses of the lane-changing vehicle, 

the current front vehicle, the new front vehicle, and the new back vehicle. As with our 

IDM implementation, we have included reasonable default values for each of these 

parameters. We provide a Considerate driver class and an Inconsiderate driver class. The 

user can, of course, create their own driver types with different parameters.  

A.1.5. Highway 

Highway is the class that holds Vehicles and manages their mobility. We will discuss 

Highway�’s physical properties, Vehicle management tasks, and how users can control 

vehicles on the highway in order to customize simulations. 

A.1.5.1. Physical Properties 

Highway represents a straight highway topology and has the following physical 

properties: 

 length �– length of the highway in meters (up to 10,000 m) 

 number of lanes �– in each direction [1,5] 

 lane width �– in meters 

 median gap �– width of the median, in meters 

 bidirectional �– true if the highway contains two-way traffic, false if the highway 

is one-way 
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Figure 39 shows two example highway configurations. Figure 39a is a unidirectional 

highway with three lanes, and Figure 39b is a bidirectional highway with four lanes in 

each direction. 

 

 

Figure 39. A small segment of a highway. Cars are represented by small rectangles, 

and trucks are represented by larger rectangles. (a) unidirectional highway with 

three lanes, (b) bidirectional highway with four lanes in each direction and a 

separating median.  

A.1.5.2. Vehicle Management 

There are several Vehicle management functions that Highway performs. Highway can 

automatically create Vehicle objects with certain parameters, automatically insert these 

created objects into lanes, and move each Vehicle according to its mobility and lane 

change models. 

Automatic Creation and Injection of Vehicles: When the AutoInjection parameter of 

Highway is true, Vehicle objects will be automatically created and injected onto the 
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highway. For this purpose, Highway creates default mobility models with parameters set 

appropriately for the standard car and truck, named SedanModel and TruckModel, 

respectively. Highway also creates default lane change models with appropriate 

parameters set for cars and trucks. The ratio of cars to trucks that are created is controlled 

by the injectionMix parameter. Automatically-created Vehicle objects are provided with 

default WiFi Phy/Mac settings appropriate for VANETs. 

Highway stores each lane as a list structure. When a Vehicle object is added to 

Highway, it is inserted in its proper place according to its lane, direction, and x position. 

For auto-injection, there is a minGap parameter that specifies the minimum distance 

between two vehicles entering the highway. Newly created Vehicle objects are not 

inserted until the x position of the last Vehicle in the lane is at least minGap meters from 

the start of the highway. Vehicles are inserted with a negative x position, so that the front 

of the vehicle starts at the start of the highway (x = 0) according to user selected flow rate 

distribution (i.e. uniform, exponential, normal, log-normal, Poisson) and velocity 

distribution (i.e., uniform, exponential, normal, log-normal). Each lane is checked to see 

if a Vehicle can be added, in round-robin fashion, starting with the rightmost lane (lane = 

0) in the eastbound direction (direction = 1) and ending with the leftmost lane in the 

westbound direction (direction = -1, if using bidirectional traffic). Thus, on a 

bidirectional highway, vehicles are added to both directions considering the flow rate and 

velocity in each direction. 

Mobility of Vehicles: Every DeltaT seconds, Highway calls its step function which 

updates the position, velocity, and acceleration of each Vehicle according to its mobility 
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model. In this way, vehicles with different mobility characteristics (e.g., trucks, 

emergency vehicles) can be represented on the same highway. Vehicles are updated by 

lane in round-robin fashion, starting with the Vehicles in the rightmost lane in the 

eastbound direction. After the update, if a Vehicle�’s x position is greater than the length 

of the Highway, the Vehicle is removed from the lane list. After all Vehicle positions have 

been updated, automatic injection of new Vehicles occurs. 

The opportunity for each vehicle to change lanes is evaluated every 10 * DeltaT 

seconds to prevent unrealistic lane-changing patterns (e.g., vehicles changing lanes 

multiple times in less than 1 second). If a vehicle can safely change lanes (according to 

the Vehicle�’s MOBIL parameters), Highway removes the Vehicle from the current lane 

and adds it to the target lane at the x position specified according to IDM/MOBIL. When 

a lane change is allowed, it occurs before mobility is updated, so a Vehicle changing 

lanes only has its mobility updated one time in DeltaT seconds. 

The best case driver reaction time is 0.7 seconds [84]. Vehicle positions should be 

updated more often than the driver reaction time, so we choose 0.1 seconds for the 

default value of DeltaT as a tradeoff between efficiency and accuracy. Reducing DeltaT 

(i.e., having the step function called more often) will produce a more detailed translation 

of the position of the vehicle, but will result in a slower simulation (Figure 40). 

Increasing DeltaT (i.e., having the step function called less often) will cause less accuracy 

in mobility since each step may result in a larger displacement of the vehicles (Figure 

41).  
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Figure 40. The elapsed real time for 1 minute of dense traffic simulation (average 

180 vehicle/km). 

 

Figure 41. A vehicle�’s displacement vs. velocity in a single simulation step with 

different DeltaT values. 
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User Control of Vehicles: To allow for feedback between the network and the mobility 

model, there must be a way for the user�’s application code to interact with individual 

Vehicle objects. Highway allows the user to access any Vehicle object through its 

VehicleID using FindVehicle(). The user can then use this object to change any of the 

Vehicle�’s parameters. In addition, Highway provides FindVehiclesInRange() which 

returns a list of all Vehicle objects within range meters of the given Vehicle.  

FindVehiclesInSegment() returns a list of all Vehicle objects in a particular lane between 

positions x1 and x2. To access these Vehicle objects at particular times, Highway triggers 

several events that can be bound to an event handler created by the user. The events 

InitVehicle, ControlVehicle, and ReceiveData are discussed below. In addition, there are 

several other events, such as DevRxTrace and PhyRxErrorTrace, for the purposes of 

tracing the communication channel, the PHY/MAC layer, and the behavior of the 

network devices installed on vehicles.  

InitVehicle is triggered at Highway initialization time. This gives the user the ability 

to create customized scenarios or modify the initial settings. Although the user can create 

and position Vehicle objects at any time, inside this event handler is the ideal place to 

create and place initial objects on the highway. If AutoInjection is set to true in Highway, 

automatically-created Vehicles will move around the previously placed Vehicles. The 

event handler is passed a pointer to the Highway and a reference to a vehicleID (set to 1 

initially). Any manually-created Vehicles should use and increment this vehicleID so that 

all objects will have unique IDs. Note that any manually-created Vehicles will be 

controlled by Highway according to the Vehicle�’s mobility model. The event handler 
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should return true if Vehicles have been manually added to the Highway or default 

settings have been modified. In this case, Highway will sort the lane lists based on the 

Vehicle positions. If no Vehicles have been added, there is no reason to sort the lists, so 

the event handler should return false.  

For each Vehicle, ControlVehicle is triggered by the step function, which is executed 

every DeltaT seconds. In this way, the user has full control of each Vehicle at each time 

step. For example, a particular Vehicle could be made to decelerate or stop in order to 

create traffic congestion. In addition, this event handler is an ideal place to output the 

locations of all Vehicles in order to produce traffic visualizations. The event handler is 

passed a pointer to the Highway, a pointer to the particular Vehicle, and the value of 

DeltaT. If the event handler has changed the Vehicle�’s position, it will return true, so that 

the Vehicle�’s acceleration will not be updated by the mobility model. Otherwise, the 

event handler will return false so that Highway will adjust the Vehicle�’s position 

according to its mobility model.  

ReceiveData is triggered when any Vehicle successfully receives data from the 

network. The event handler is passed a pointer to the Vehicle that received the data, a 

pointer to the data packet, and the address of the packet�’s sender. 

A.2. CUSTOMIZATIONS 

We provide a basic framework for a straight highway scenario and tools for generating 

communicating vehicles traveling with a realistic mobility. There are many possible 

customizations that can be made using this framework. We describe a few customizations 

that can be made with Vehicle objects. 
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Any Vehicle can be associated with a parameterized mobility or lane-change model. 

This allows the user to create simulations that contain various types of vehicles. For 

example, a police car is a vehicle that during a chase has a higher desired speed and 

acceleration than a normal vehicle. In addition, the user could set the networking 

parameters such that the police car also has a more powerful transceiver than a normal 

vehicle. In another instance, a helicopter used to transmit advertisements, warnings, or 

reports could be simulated as a Vehicle with a positive z value (altitude). Since the 

helicopter does not travel on the highway, it should not be added to or managed by 

Highway. Instead, at every time step (i.e., in the ControlVehicle event handler), the 

helicopter�’s position should be updated manually.  

Stationary roadside units, such as digital guides, placed outside the highway can be 

created using Obstacles. As with Vehicles that are outside the highway, these devices 

would should not be added to Highway. As another example, a gantry on top of a 

highway could be represented as an Obstacle with a positive z value. Sensors under the 

road could be Obstacles with negative z values. These devices may have different 

communications requirements than standard vehicles, so the user is free to adjust the 

network parameters as well.  

A.3. VALIDATION 

We validate our implementation of IDM/MOBIL in ns-3 against Treiber�’s own 

implementation of IDM/MOBIL in a Java applet [82, 83]. The first step is to validate that 

the functions Model::CalculateAcceleration() and LaneChange::CheckLaneChange() 

produce output correctly in comparison with Treiber�’s formula, model, and code 



153 
 

 

 

individually with various input and mobility model settings. The second step is to 

produce simple traffic in a one lane roadway and compare the vehicle�’s acceleration, 

deceleration, velocity, and position at each simulation interval. Finally, we need to show 

that despite the difference in our design and the logic of step function, we are able to 

create traffic similar to that created by Treiber�’s applet.  

The first two steps have been performed during code implementation and testing. 

Here we show the results of the third step of validation. We use Treiber�’s Java applet to 

produce traffic on a straight two lane roadway for several traffic inflow rates. We record 

traffic statistics (simulation time, vehicle type, acceleration, velocity, position, and lane) 

at two points. Point A is the roadway entrance, and point B is 500 m from the entrance. 

We apply the generated traffic recorded at point A in Treiber�’s applet to our ns-3 

simulation and record the traffic statistics at point B. This is to mitigate the different 

injection models used by Treiber�’s applet and our code. We compare the traffic at point B 

in Treiber�’s applet with the traffic at point B in our ns-3 code during a 5 minute 

simulation.  Figure 42 shows the average traffic density over the 500 m as the traffic 

inflow rate increases and with different desired speeds. The results between the two 

applications are almost identical. Figure 43 shows the average differences in position and 

speed between the two applications for each vehicle as it passes point B. Again, there is 

very little difference between the two. The position differences are less than 7 mm, and 

the speed differences are less than 1 cm/s. 
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Figure 42. Comparison between average density results of our code in ns-3 and Java 

applet for different traffic inflow and different desired velocity. 

 

Figure 43. Average difference in position (m) and average speed (m/s) between ns-3 

version and Treiber Java applet for different traffic densities. 
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A.4. EXAMPLE 

We have provided an example to show how to create a customized highway, set 

parameters, handle events, and control which vehicles send and receive customized 

messages. This example, also available as the part of our open source project [85], 

demonstrates how a user can have full control of events to produce the desired scenarios 

and experiments. The example generates output suitable for plotting vehicle positions 

using gnuplot or other graph-plotting tool.  

We have created a Controller class to handle events and create special vehicles. The 

highway is a bidirectional 1 km roadway with two lanes in each direction. The lane width 

and median width are both 5 meters. The sedan-truck mixture is 80%, so 80% of vehicles 

are sedans and 20% are trucks. Automatically-generated vehicles will enter and be 

injected to the highway with at least a 10 meter gap. We place a broken car (Obstacle 

object) in the middle of the highway (lane=0, direction=1, x=500) which broadcasts a 

safety message revealing its location and asking for help every 5 seconds. We also create 

a police car with a VehicleID of 2. The police car is faster than a normal car and has a 

higher wireless transmission range. It listens for messages and unicasts a reply for each 

received request. The police car will decelerate when it reaches the broken car and will 

eventually stop nearby.  

The generated output points can be directed to gnuplot to be plotted and animated. 

Figure 44 shows the gnuplot snapshot after 2 minutes and 40 seconds of the simulation. 

The police car reached the broken car at 500 meters after 20 seconds and stopped in the 

second lane, causing congestion.   
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Figure 44. A sample plotted highway output for a 1000 m roadway with two lanes in 

each direction. This snapshot is taken at time 2 minutes, 40 seconds. The police car 

has stopped in the lane next to the broken car at time 20 seconds, causing the 

congestion behind it. 

Below, we show a skeleton of a Controller class and main() function. Comments that 

are shown in italics are placeholders for user-defined code. 

Controller.h 

class Controller : public Object 
{ 
 private: 
  Ptr<Highway> m_highway; 
  // other local variables 
 public: 
  Controller(); 
  Controller(Ptr<Highway> highway); 
  // event handlers 
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  bool InitVehicle (Ptr<Highway> highway, int& vehicleID); 
  bool ControlVehicle (Ptr<Highway> highway, Ptr<Vehicle> 
vehicle, double dt); 
  void ReceiveData (Ptr<Vehicle> veh, Ptr<const Packet> 
pckt, Address addr); 
  // other function declarations 
}; 

 

Controller.cc 

Controller::Controller() {} 
Controller::Controller(Ptr<Highway> highway) {m_highway = 
highway;} 
 
bool Controller::InitVehicle(Ptr<Highway> highway, int& 
vehicleID) 
{ 
  // objects to create, settings to change at highway 

initialization time 
 return true; // let Highway sort vehicles in highway lanes  
} 
 
bool Controller::ControlVehicle(Ptr<Highway> hw, Ptr<Vehicle> 
veh, double dt) 
{ 
 // actions that should occur each time this vehicle�’s 

mobility is updated 
 return false; // let Highway manage the mobility of this 
vehicle 
} 
 
void Controller::ReceiveData(Ptr<Vehicle> veh, Ptr<const 
Packet> pckt, Address addr) 
{ 
 // actions that should occur each time a message is 

received by this vehicle 
} 
 

main() 

int main (int argc, char *argv[]) 
{ 
 // Create Highway and Controller 
 Ptr<Highway> highway = CreateObject<Highway>(); 
 Ptr<Controller> controller = 
CreateObject<Controller>(highway); 
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 // Set highway parameters 
 
 // Bind highway events to event handlers in controller 
  highway-
>SetInitVehicleCallback(MakeCallback(&Controller::InitVehicle, 
controller); 
 highway-
>SetControlVehicleCallback(MakeCallback(&Controller::ControlVe
hicle, controller); 
 highway-
>SetReceiveDataCallback(MakeCallback(&Controller::ReceiveData, 
controller); 
 
 // Schedule the highway and run the simulation 
 Simulator::Schedule(Seconds(0.0), &Start, highway); 
 Simulator::Schedule(Seconds(100.0), &Stop, highway); 
 Simulator::Stop(Seconds(100.00)); 
 Simulator::Run(); 
 Simulator::Destroy(); 
 return 0; 
} 
 

A.5. SUMMARY 

In this appendix, we described the first implementation of a vehicular mobility model 

integrated with the networking functions in ns-3. Integrated VANET simulators that 

include both mobility and network models are essential, allowing network 

communications to affect vehicle mobility, which is one of the main goals of future 

VANET deployments (e.g., network messages may prompt drivers to slow down early or 

to take an alternate route). Our implementation allows for this feedback by triggering an 

event each time a network message is received and each time vehicle mobility is updated. 

User-created event handlers can then send network messages or alter the mobility of the 

vehicle in response to the triggered event. These features can facilitate more detailed 

simulations of VANETs. 
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Realistic vehicle mobility is achieved through the validated implementation of the 

IDM car-following model and the MOBIL lane-change model. We introduced the 

Highway class, which not only simulates a straight roadway, but also manages the 

mobility of all vehicles on the highway. Our implementation also allows the user to take 

advantage of automatically created and inserted vehicles or to manually insert vehicles at 

any point along the highway. In addition, our implementation allows for the 

customization of almost all aspects of the simulation so that the research can study a wide 

variety of scenarios (e.g., DTMon). 
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