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ABSTRACT 

Hedonic property value analysis is one of the leading methods of environmental 

valuation. This non-market technique uses variation in home sales to infer the values of 

amenities or disamenities. While there have been numerous studies about air quality and 

hazardous waste, the number of papers focusing on water quality is much smaller. Consequently, 

there are still many unanswered questions about the proper handling of water quality through 

hedonic methods. Furthermore, estimates from hedonic property price analyses are rarely used in 

government cost benefit analyses. This dissertation investigates several important hedonic issues 

in a large analysis of water quality in central Florida. 

 The first chapter of this paper explores the extent of water quality benefits. Almost all 

past studies have focused exclusively on waterfront homes. The present paper includes non-

waterfront homes and investigates three hypotheses about the marginal impact of water quality. 

The first hypothesis is that non-waterfront homes are positively affected by water quality, but by 

a smaller amount than waterfront homes. The second hypothesis is about the effect of lake 

distance on the relationship between water quality and property prices: this relationship should 

be negative. The third hypothesis states that properties near larger lakes have a higher implicit 

price for water quality than homes around smaller lakes, all else constant. These three hypotheses 

are investigated in each chapter of the dissertation, and provide a unifying theme to the paper. 

Results from Chapter 1 support all three hypotheses. Most importantly, the empirical estimates 

indicate that water quality benefits extend beyond the waterfront in a declining gradient. 

Excluding non-lakefront homes from the analysis can therefore substantially underestimate the 

total benefits of a water quality improvement. Estimates of the total property price benefits from 
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a one foot increase in water quality were found to double with the addition of non-waterfront 

homes. 

 The second chapter examines the sensitivity of results to several spatial specifications. 

Spatial issues can be a problem in analyses of real estate data because of spatially correlated 

variables, unobservable neighborhood codes and covenants, identical or similar builders, and 

property appraisal valuation techniques. The focus of the chapter is on the spatial weights matrix 

(SWM). Six different SWM’s are constructed, which are based on popular specifications 

encountered in the current spatial hedonic literature. An out-of-sample forecasting exercise is 

used to compare multiple spatial specifications. Results indicate that certain spatial models may 

be sensitive to the specification of the weights matrix. Furthermore, many popular models 

currently used in the literature could be improved by allowing more non-zero elements in the 

SWM.  

 The third chapter investigates the definition of ―water quality‖ and uses several additional 

quality indicators. Choosing the proper pollution indicator is an issue that has plagued many 

areas of the valuation literature. While clarity indicators have become popular in hedonic 

property price analysis, they are not used for the purposes of regulation by many state 

environmental departments. This chapter uses several indicators that are used by the state of 

Florida to classify lakes and implement policy. Implicit prices are computed for all of the 

indicators and issues of benefit extent and total benefits are explored. Instead of finding an 

optimal indicator for all situations, results indicate that the use of at least two types of indicators 

may capture a larger range of the true total benefits.  

The final chapter uses a repeat sales model to address potential problems with omitted 

variable bias. Due to the size of the data set in this paper, there are a substantial number of 
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homes that have sold more than once. The repeat sales model analyzes differences in property 

sales prices for the same home over time. The three hypotheses of the first chapter are explored 

in this alternative model. The implicit price obtained from the repeat sales model is much larger 

than the regular hedonic model. However, there are some concerns with the smaller population 

of repeat sales. 
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INTRODUCTION 

 Hedonic property price analysis has become a preferred method of environmental 

valuation. Instead of relying on subjective surveys and techniques, as in the stated preference 

category of environmental valuation, hedonic property price analysis relies on actual market 

behavior. It is a revealed preference method with a rich empirical background, and is used in a 

variety of areas, ranging from the construction of the consumer price index to the prediction of 

mortgage defaults.  

In the field of environmental policy, hedonic property price analysis has had varying 

impacts. While it is not frequently used as a primary estimate of benefits in a cost-benefit 

analysis, Smith and Palmquist (2002) state that it is frequently used as a double check, or 

―second opinion‖ on primary estimates. Also, they point out that hedonic analysis has seen 

significant success in litigation, where demonstrated real effects on property price as a result of 

pollution or other environmental damages can be particularly convincing to judges and juries. 

The most common applications of hedonic analysis in the environmental literature are air quality, 

hazardous waste, and water quality. While air quality and hazardous waste have received 

significant attention recently, water quality has lagged behind.  

The last two decades of hedonic literature have seen a gradual increase in the use of 

spatial econometrics. Hedonic property price analysis uses real estate data, which are spatially 

distributed across a landscape. This spatial configuration of real estate data makes it especially 

prone to spatial autocorrelation. While it is typically easy to quantify a property’s structural 

characteristics, locational attributes are much harder to observe. Neighborhood characteristics 

and location, which can heavily influence a home’s price, are typically included in a hedonic 

analysis only through proxy variables. These proxy variables—such as census tracts—are almost 
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always estimated with error (Dubin 1998), and rarely capture true neighborhood boundaries or 

characteristics. Furthermore, similar building techniques, neighborhood attributes, and other 

omitted variables are not accounted for in a traditional ordinary least squares regression (OLS). 

These issues result in spatial dependence in the data, which cause OLS estimates to be biased. 

A variety of methods have been developed to deal with spatial dependence. Spatial 

econometrics has emerged as a wide field, with its roots in geography. Applications of spatial 

econometrics are appearing in a wide variety of areas, from transportation economics to the 

political economy of voting districts. Spatial techniques have appeared in limited quantities in 

hedonic studies from all three of the main applications, with the most papers dedicated to 

analyzing air quality. However, much of the literature has been slow to adopt these techniques, 

as there are no concrete theoretical recommendations for the ―correct‖ spatial functional forms 

and approaches to utilize in a hedonic analysis. The approach to spatial modeling can appear 

rather arbitrary at times, though data size and the particular context can provide a rough guide to 

the proper approach. 

To cope with the theoretical shortcomings of spatial econometrics, this paper will 

compare a variety of the main techniques in order to find one, or several, preferred spatial 

functional forms. The dissertation enhances its use of spatial econometrics with tools and 

methods from the field of property appraisal. Since hedonic modeling and property appraisal can 

have similar goals, and because hedonic regression is sometimes employed in property appraisal, 

these two fields yield complementary procedures. The methods use here should simultaneously 

allow a thorough hedonic analysis of lake water quality and a critical exploration of spatial 

techniques. 
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The dissertation is composed of four chapters. The first chapter is a spatial hedonic 

analysis of water quality. The focus of this chapter is the spatial extent of benefits from an 

improvement in water quality. The prevailing wisdom in the literature is that these benefits are 

restricted to the population of waterfront homeowners. Chapter 1 includes non-waterfront homes 

in the analysis and tests three hypotheses about the marginal effect of water quality on property 

prices. The second chapter explores some of the spatial econometric issues encountered in the 

first chapter. A central component of a spatial analysis is the construction of the spatial weights 

matrix, yet there is no theoretical guidance for the proper formulation of this matrix. This chapter 

uses six weights matrices and two spatial models to determine the spatial sensitivity of the results 

from Chapter 1. 

The third chapter explores the definition of water quality. Clarity indicators are typically 

employed in hedonic property price analyses. On the other hand, Florida regulators use ―water 

chemistry‖ indicators to manage lakes. The clarity indicators may be measuring more aesthetic 

benefits than the water chemistry indicators. Chapter 3 explores several additional water quality 

indicators and their impact on the hedonic property model results.  

The final chapter uses an alternative property price model to investigate the impact of 

water quality changes on property prices. A hybrid repeat sales/hedonic model has been shown 

to control for omitted variable bias. There are a large number of repeat sales in the data for this 

dissertation. The hybrid model is used to explore the three hypotheses from the first chapter 

about the marginal effect of water quality. 
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CHAPTER 1: HEDONIC PROPERTY VALUE ANALYSIS OF WATER 

QUALITY 

1.1. Introduction 

 The Clean Water Act (CWA) is the primary federal legislation regulating US surface 

water. Originally passed in 1972 and amended in 1977, the CWA has directed billions of dollars 

into water programs since its inception. To assess the efficiency of expenditures, federal 

regulations require the Environmental Protection Agency to measure the benefits and costs of 

CWA programs.
1
 This task is complicated because many of the benefits of improved water 

quality are non-market in nature, so must be estimated. Hedonic analysis, a revealed preference 

valuation method, has significant potential in this area but remains under-utilized in benefit cost 

analyses of water quality (Palmquist and Smith 2001). The EPA does not currently use hedonic 

estimates to calculate the benefits of water policy; the agency favors recreation demand and 

stated preference (such as contingent valuation) estimates of benefits (Morgan and Owens 2001; 

Iovanna and Griffiths 2006). In contrast, hedonic methods are regularly used by federal agencies 

to value hazardous waste impacts (Jackson 2001; Case et al 2006), air quality benefits (Boyle 

and Kiel 2001), and mortality and morbidity risk (Viscusi and Aldy 2003).  

 Several issues and assumptions need to be addressed before hedonic estimates can be 

broadly applied in cost benefit analyses of water quality. A prevalent concern in the 

environmental valuation literature is the extent of benefits or damages (Smith 1993). For 

example, travel cost studies critically examine the spatial boundaries of recreation benefits 

(Smith and Kopp 1980), and the full population affected by an environmental change is a current 

issue in contingent valuation surveys (Vajjhala, John, and Evans 2008). The extent of benefits 

                                                 
1
 Executive Orders 12291 and 12866 require that all new US regulations above a certain monetary threshold be 

subjected to a benefit-cost analysis. 
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has not yet been analyzed in hedonic studies of water quality, where the conventional wisdom is 

that these benefits only extend a short distance from a water body (Palmquist and Smith 2001). 

This convention is illustrated by the focus of past studies on waterfront homes; all past hedonic 

studies of water quality (e.g. Michael et al 1996; Leggett and Bockstael 2000; Poor et al 2001; 

Gibbs et al 2002) except one (Poor, Pessagno, and Paul 2007) restrict the sample of property 

sales to this boundary. This may be realistic in certain rural areas where there are not many non-

lakefront homes. However, in other areas with more dense population the benefits may extend 

beyond waterfront homes, and this assumption may result in a considerable underestimation of 

total water quality benefits. The current paper investigates the diffusion of water quality benefits 

by including both waterfront and non-waterfront homes in a spatial hedonic analysis of water 

quality.  

  Concern about the wider spatial impact of water quality changes can be found in the 

hedonic literature on open space, which has consistently shown that proximity to lakes has a 

positive effect on property prices several hundred meters from the lake (Palmquist and Fulcher 

2006). Also, hedonic property studies of environmental disamenities, such as hazardous waste, 

frequently find that negative effects on property prices penetrate deep into the surrounding 

community (Jackson 2001; Deaton and Hoehn 2004). 

 A complete evaluation of the interaction between location and the value of water quality 

to date remains largely unexplored. The current paper seeks to bridge the gap between the 

hedonic lake proximity and water quality literatures by including non-lakefront homes in the 

sample and controlling for distance and location. Three main hypotheses relating to the value of 

water quality are tested. First, non-lakefront homes are affected by changes in the water quality 

of local lakes, but by a smaller amount than lakefront homes. Second, the value of water quality 
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depends on lake proximity, diminishing as lake distance increases. The third hypothesis asserts 

that the value of water quality increases in larger lakes.  

 These hypotheses are investigated in a database of more than 54,000 home sales and 146 

lakes in Orange County, Florida with water quality data covering a nine year time period. To 

analyze this large sample of spatially distributed real estate data, two issues must be confronted. 

The first is the selection of the functional form of the analysis and the second is the treatment of 

spatial dependence. A further complication is that there may be interaction and tradeoffs between 

the two issues. These econometric concerns are tackled in a spatial hedonic analysis using a 

spatial lag model in conjunction with several joint tests of functional form and spatial 

dependence. 

 Results indicate that water quality benefits extend beyond the waterfront in a declining 

gradient, supporting all three hypotheses and yielding several policy implications. First, 

excluding the non-lakefront home benefits can substantially underestimate the total benefits from 

a water quality improvement. Second, the total amount of home price appreciation and increase 

in property tax revenues due to improvements in water quality is larger than previously thought. 

Third, more efficient funding mechanisms to promote water quality improvement can be 

identified using these estimates.  

1.2. Data and Setting 

 The setting of the study is Orange County, Florida, which has an abundance of lakes and 

provides an ideal location for a hedonic water quality analysis. The property information was 

obtained from the Orange County Property Appraiser (OCPA).
2
 These data contain sales prices 

                                                 
2
 Residential sales that were not qualified (according to OCPA criteria) or did not meet a minimum or maximum 

threshold value for the deflated sales price were eliminated from the database. These thresholds were instituted to 
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and other property characteristics such as the number of bedrooms, the number of bathrooms, 

parcel size, home age, etc. Single family property sales within 1,000 meters of a lake in Orange 

County, Florida during the period 1996-2004 are used for estimation. The 1,000 meter boundary 

was implemented to exclude properties that are located far from lakes. Several papers in the open 

space literature find that home prices are unaffected by water bodies beyond this distance 

(Lansford and Jones 1995).  

The OCPA was also the source of several layers of GIS maps, which were used to define 

each property’s spatial location. Using the property’s latitude and longitude coordinates, ARC 

GIS was employed to calculate the spatial variables, such as the distance to the nearest lake and 

the central business district (CBD, downtown Orlando). Distances were calculated from the 

centroid of the parcel, correcting for potential problems with lakeshore definitions on particular 

lakes. 

 Additional data were integrated by geo-referencing the parcel location with the 2000 US 

Census. These data contain demographic and economic information on income, racial 

composition, and the senior population at the census tract level. Summary statistics for the 

dependent and independent variables appear in Table 2, separated by lakefront status. As 

expected, clear differences can be seen between these two groups. Waterfront homes are more 

expensive, larger, and newer, on average. The mean price for a waterfront home is more than 

double the mean price of a non-waterfront property.  Nonetheless, the average distance from 

downtown Orlando is very similar between the two groups, as are the average latitude and 

longitude coordinates. Also, looking at the distribution of sales over time, the two groups sold at 

comparable rates over the time period. 

                                                                                                                                                             
eliminate relative bequests, gifts, and other sub-market property transactions and outliers, a common practice in past 

literature (Krysel, et al., 2003) 
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 Obtaining reliable water quality data for the complete set of lakes over a nine year period 

involved four different sources and an extensive search. The Orange County Department of 

Environmental Protection provided the largest portion of the lake quality data. For the named 

lakes not appearing within these data, three individual municipalities provided records of lake 

monitoring activities, which were then recorded and geo-referenced into the database. 

A wide variety of water quality indicators have been used in past analyses. In this 

chapter, a clarity indicator is employed, Secchi Disk Measurement (SDM).
3
 Several studies have 

recommended this indicator because it is easily seen by consumers and can be a physical 

manifestation of eutrophication (Michael, Boyle, and Bouchard 1996; Michael, Boyle, and 

Bouchard 2000; Poor et al. 2001; Gibbs, Halstead, and Boyle 2002). Eutrophication results in 

excessive algal growth and significantly decreases the appearance and recreational benefits of the 

lake, and should affect consumers’ purchasing decisions (Michael, Boyle, and Bouchard 1996). 

This use of additional indicators of water quality is pursued further in Chapter 3. 

The data for this analysis contain 146 lakes, with wide variation in both lake size and 

water quality. Past studies have debated the use of maximum, minimum, or mean values for each 

individual lake, as in Boyle and Taylor (2001). The present study uses the annual mean value of 

SDM for each lake, as it is a more conservative estimate than the maximum or minimum value 

(Krysel et al. 2003). 

 There are no ―point sources‖ of pollution in this area, such as factories or industrial 

plants, so eutrophication is mostly the result of non-point sources such as residential or 

commercial development and sewer and stormwater runoff within each lake’s watershed (FDEP 

2006). Table 1 summarizes SDM over the sample period. Note that the number of lakes in each 

                                                 
3
 Obtaining an SDM reading involves lowering a black and white checkered disk into the water and recording the 

depth at which it disappears from sight. 



9 

 

year can vary as there may not be a home sale near each lake in each year.
4
 Out of the full set of 

lakes, 100 appear in every year.
5
 SDM levels fluctuate from a minimum of 0.66 feet in 2002 to a 

maximum of 18.05 feet in 1997, exhibiting substantial variation in water quality over lakes. Each 

home sale is matched to the average annual SDM level in the nearest lake. 

1.3. Literature Review 

The valuation of environmental amenities cannot be done through typical market 

valuation. There is no direct market where one can purchase water quality, so there are no price 

signals available. To overcome this problem, economists have developed several non-market 

valuation techniques, which include hedonic property price analysis. The most prevalent types of 

non-market valuation studies are stated preference analyses, where values are directly elicited 

from subjects, typically using surveys or experiments. Stated preference methods include 

contingent valuation, which has been used extensively in environmental valuation. The 

alternative form of valuation available is revealed preference, which extracts values from 

consumer purchasing behavior. Hedonic analysis is a form of revealed preference valuation. 

The term ―hedonic price‖ was first introduced by A.T. Court in 1939, in a paper about the 

price of automobiles. The practice of conducting a hedonic analysis has evolved substantially 

since the earlier studies. Technological advances in computing power in the latter half of the 20
th

 

century saw a large increase in the number of hedonic analyses. The principal idea of hedonic 

price analysis is to use variation in the price of heterogeneous goods resulting from variation in 

the characteristics of those goods to estimate marginal values for the individual characteristics.  

                                                 
4
 None of the lakes in these data appear on the 303(d) list of impaired waters for Florida, so fish kills and other 

extreme conditions were not observed in our sample. Also, fecal coliform is not a problem in any of the lakes. 
5
 While this core set of lakes could have been used, it was decided that the additional variation in SDM resulting 

from the additional lakes should be included. Also, the additional observations did not change the qualitative results. 
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A simple example can show the main ideas of hedonic property analysis. Suppose two 

homes are for sale and are identical except for the size of the parcels: one home is on a larger 

plot of land than the other. The difference in the prices of the two homes should be due to the 

difference in land sizes, and should reflect the marginal value of land. If the discrepancy between 

the two home prices is less than the marginal value of land, bidding by homes buyers will cause 

the price to rise (Haab and McConnell 2002). This basic idea can be extended to additional 

characteristics of non-identical homes with a large enough sample and several assumptions: 

perfect competition in the market, full available information, full mobility of consumers, and the 

maximization of well-behaved preferences (Chay and Greenstone 2005). 

1.3.1. Theoretical Background 

 The earliest application of the hedonic model to property prices was in the 1960s, and 

focused on the effect of air pollution on home prices (Haab and McConnell 2002). The hedonic 

model was theoretically established in Rosen (1974), who formulated an equilibrium model of 

buyers and sellers based in utility maximization.
6
 Rosen described a situation involving a 

differentiated commodity that could be described by a ―basket‖ of characteristics, z = (z1,…, zn). 

Homes are generally thought to fit this description well, as they are composed of a wide variety 

of attributes that are pursued by consumers and supplied by sellers and producers. Consumers 

shop around in a market composed of heterogeneous homes, which are described and advertised 

by the characteristic vector z.  

There are several main assumptions that Rosen institutes. First, both buyers and sellers 

are assumed to have full information about the prices of other homes and about the 

characteristics of homes. Additionally, it is assumed that the market has a large enough amount 

                                                 
6
 This model is summarized in Haab and McConnell (2002), from which the current paper draws. 
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of homes for sale at any given time so that the buyer faces a continuously varying set of 

attributes. The size of the market is large enough that it can reach equilibrium, which may be an 

unrealistic assumption in certain areas, but in a metropolitan area such as Orlando the market 

should be sufficiently large. It is generally assumed that each buyer is only purchasing one home 

at a time. Finally, it is assumed that the size of the market results in competitive behavior from 

both buyers and sellers, and that action from individuals on either side of the market does not 

influence the market price. 

The model describes the interaction of utility maximizing consumers and profit 

maximizing producers. Consumers are expected to choose a particular set of characteristics of 

the good so that the marginal price of each consumer is set equal to the marginal rate of 

substitution of a compound good (which represents other consumption). In the context of home 

sales, we assume households have a utility function that represents their preferences, in the form 

u(x, z; β). The vector of physical, spatial, and environmental housing attributes is represented by 

z, x is a composite bundle representing other commodities, and β is a vector of parameters of the 

household preference function. In most applied settings, only a portion of the total characteristics 

of a home that influence price and utility will be observable. The household’s budget constraint 

is given by y = h(z) + x, where the price of x is normalized to one, it is assumed that the 

household is only purchasing one home, and y represents household income. The function h(z) 

represents the hedonic price function. In equilibrium, the household maximizes their utility 

subject to the budget constraint. The slope of the hedonic function with respect to a particular 

characteristic represents the individual’s marginal willingness to pay for that characteristic.  

To determine the first order conditions of this maximization procedure, first substitute for 

the composite bundle within the utility function as x = y – h(z) to obtain: 
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This first order condition can be rearranged to demonstrate an important characteristic of the 

slope of the hedonic function: 

( ( ), , )
( )

( ( ), , )

z
z

x

U y h z z
h z

U y h z z









         (1.2) 

Where it is clear that the slope of the hedonic function with respect to a particular attribute in z is 

equal to the marginal rate of substitution between that attribute and the composite bundle, all else 

constant (Parmeter and Pope 2009). 

 A main part of Rosen’s theoretical model involves the interaction of consumer bid 

functions and producer offer functions. The consumer’s (buyer’s) bid for a property can be 

represented by the function θ(z;u,y), which holds constant utility and income. This function 

describes the maximum bid a consumer will place for a given vector of home attributes at given 

constant levels of utility and income. Using this function, it is possible to obtain a family of 

indifference curves illustrating tradeoffs between the composite bundle and home attributes, or 

characteristics, within z. The bid function can be used to obtain a new form of the first order 

condition (1.1) by substituting it for h(z). 

( ( ; , ), , ) ( ( ; , ), , ) ( ; , ) 0z x zU y z u y z U y z u y z z u y            (1.3) 

With the second order condition appearing as: 

2 2 3( 2 ) / 0zz x zz x z xz z xx xU U U U U U U U            (1.4) 

The equivalence of equation (1.3) to equation (1.1) illustrates an important characteristic 

of Rosen’s consumer model. The individual consumer bid functions are tangent to the market 

hedonic price function in equilibrium. The bid functions represent the maximum bid the 

individual would be willing to pay at a particular level of attributes, z. The hedonic function 
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represents the minimum market price that they would have to pay for a home with those 

characteristics. Therefore the hedonic price function forms an upper envelope of the consumer 

bid functions. Figure 1 contains Rosen’s example of this part of the consumer equilibrium, where 

he uses p(z) as notation for the hedonic price function h(z). This figure shows an example of two 

consumers and their corresponding tangencies, where consumer 2 has a bundle with more z1 than 

consumer 1.  

 

Figure 1: Consumer Bid Functions 
 

Producers are profit maximizers, and sell various bundles of goods with characteristics 

(z1,…, zn). Each producer sells M(z) units offering attribute bundle z. Each producer faces costs 

determined by the industry, represented by C(M, z; γ), where γ represent individual cost and 

production differences between the various producers. This cost function is assumed to have 

traditional assumptions with respect to its curvature properties: Cm and Cx are greater than zero 

and C is convex. 

 The profit of each firm is determined by  
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( ) ( , )Mh z C M z             (1.5) 

which yields first order conditions (1.6) and (1.7).  

( ) ( , ) / , 1,...,
ii zh z C M z M i n          (1.6) 

( ) ( , )Mh z C M z           (1.7) 

where equation (1.6) illustrates that at the optimum, the slope of the hedonic price function is 

equal to the marginal costs of production; marginal revenue is set equal to marginal costs. From 

equation (1.7), the hedonic price function (equal to marginal revenue for one unit) is set equal to 

the marginal cost of selling one additional unit. 

 While consumers had bid functions, the symmetrical function for producers is the offer 

function. This function, ϕ(z; π, γ) defines the unit prices that the firm is willing to accept for 

specific attribute bundles and a constant level of profit. From this we obtain a family of 

production indifference curves, or iso-profit functions. Similar to the approach in the consumer 

side, we substitute the seller’s offer price function for the producers offer function and then 

obtain first order conditions. 

/ 0
i iz zC M             (1.8) 

1/ 0M              (1.9) 

From these new conditions it can be seen that when profit is held constant, the marginal offer 

price will be equal to the marginal cost of production. Also, when attribute levels are held 

constant, the marginal offer price is equal to the constant 1/M. 

 To interpret the analysis of producers, we can proceed in a similar manner to the 

consumer approach. By definition, the offer price is the amount that the particular producer will 

accept for a particular bundle of attributes z and constant level of profit π. On the other hand, h(z) 

is the maximum price that they can get for a model with the particular attribute bundle in the 
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market. At the equilibrium both the producer offer functions and the market hedonic price 

function will satisfy essentially the same first order conditions just described. Consequently, the 

producer equilibrium will be characterized by a series of tangencies between individual offer 

functions and the market hedonic price function. Figure 2 illustrates Rosen’s depiction of this 

situation (p. 43). 

 

Figure 2: Producer Offer Functions 
 

In equilibrium, the interaction of consumers and producers will result in the formation of 

the hedonic price function, which is an upper envelope to the consumers’ offer functions and a 

lower envelope of the producers’ bid functions. This equilibrium price function represents a 

locus of equilibrium tangencies between consumer bid functions and producer offer functions 

(Parmeter and Pope 2009). This situation is pictured in Figure 3. Since all points on this locus 

represent tangencies between the bid functions and offer functions, the following equation holds. 
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z z z
         (1.10) 

Equation (1.10) indicates that the marginal price obtained from the hedonic price function is 

equal to a person’s marginal willingness to pay for an attribute z (Rosen 1974; Parmeter and 

Pope 2009). 

 

Figure 3: Hedonic Equilibrium 
 

 The estimation of the marginal values in equation (1.10) is the focus of the present paper, 

and is referred to a ―first stage‖ analysis. These represent the marginal rate of substitution 

between the home value and the individual attributes. In Rosen’s paper, he continued the 

theoretical derivation of this model to a ―second stage,‖ where demand functions for the 

attributes are estimated. Since the publication of Rosen’s (1974), several studies have shown that 

the second stage requires strict assumptions to be identified. This is because the second stage 

requires variation in the implicit prices obtained from the first stage. One way to confront this 

problem is through the use of multiple markets. If separate hedonic price functions are estimated 

for each market the implicit price will change over areas and the second stage demand functions 

can be identified. This approach is attractive since it does not require the assumption of additive 
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separability of property characteristics used in closed form solutions. However the definition of 

an individual market is never clear, which can complicate the situation (Boyle, Poor, and Taylor 

1999). The second stage will not be addressed in the current paper. 

1.3.2. Environmental Applications: Air and Hazardous Waste 

The hedonic model has been widely used in the environmental literature because it uses 

actual market transactions to estimate the value of non-market externalities. The market usually 

analyzed is the residential property market where the good is a collection of structural, location, 

and environmental attributes. Since water quality in local lakes is an attribute ―purchased‖ along 

with homes, variation in this attribute should be reflected by variation in home prices. If the 

property market is competitive and buyers and sellers are fully informed price takers, the hedonic 

price function can be used to extract the implicit price of improved water quality.  

A variety of environmental issues have been studied using hedonic property price 

analysis. Compared to other areas of the hedonic literature, the number of papers analyzing water 

quality is somewhat small (Leggett and Bockstael 2000). The first study to analyze air quality in 

a hedonic framework was Ridker and Henning (1967). This early paper employed a measure of 

sulfation levels to analyze air quality, and find that this form of air pollution is significantly 

related to property prices.
7
 In a study of air quality in Boston, Massachusetts, Harrison and 

Rubinfeld (1978) devote special attention to the process of estimating a willingness to pay 

function for improvements in air quality. Harrison and Rubinfeld found problems with past 

studies that use values obtained from marginal changes to infer benefits at other levels of 

pollution. They caution against this practice, as it assumes that the marginal damage function for 

air pollution is linear. In reality, marginal damages vary with the level of pollution. To deal with 

                                                 
7
 For ―sulfation levels,‖ a variable indicating the existence of SO2, SO3, H2S, and H2SO4 was used. 
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these issues, Harrison and Rubinfeld provide a four step procedure to evaluate the benefits of a 

pollution control strategy. The first two steps involve the calculation of each household’s 

marginal willingness to pay for improvements in clean air. The latter two steps use Rosen’s 

second stage procedure, where demand functions for clean air are constructed.  

Graves et al. (1988) investigate several prominent issues encountered in hedonic property 

value studies, including variable selection, measurement error, functional form, and the 

distribution of the errors. The particular application is air pollution in California and its effect on 

property prices. Several variations of each of the four prominent issues are explored. Graves et 

al. find that the results are sensitive to these four issues, yielding a wide range of marginal 

benefit estimates. Graves et al. recommend careful robustness checks for future studies, as the 

effects of collinearity and measurement error may have significant consequences for benefit 

estimates. Smith and Huang (1996) also examine the sensitivity of hedonic property price 

estimates to specification issues in a meta-analysis of air pollution models between 1967 and 

1988. They find that the MWTP estimated are influenced by several important factors within 

each city, such as the starting level of air quality and the average income of the residents. 

Furthermore, Smith and Huang state that there is evidence of ―publication bias,‖ as they find 

significantly smaller MWTP estimates in published studies. 

Zabel and Kiel (2000) use a data set of properties in four cities over the period 1974-1991 

to estimate demand equations for air quality. They compare the three main specifications of the 

hedonic equation: the linear, log-linear, and log-log models. The linear is found to be the worst, 

but the other two forms yield relatively similar results. Also, this study draws attention to a 

critical point about individuals’ perceptions of pollution. Zabel and Kiel use four different 

indicators of air pollution, and question which one most accurately represents individuals’ 
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perceived pollution levels. This is a definite issue in the water quality literature, and is explored 

in Poor et al. (2001) and later addressed in Chapter 3 of this dissertation. There are also several 

more recent analyses of air pollution, but discussion of these papers is delayed until Chapter 2, as 

they have a more direct focus on spatial econometrics. 

Hedonic analysis has also been used extensively to analyze the effect of proximity to 

environmental hazards on property prices. A review of the literature up to the year 2001 is 

provided in Jackson (2001). In one of the earliest papers in this category, Blomquist (1974) 

investigates the effect of distance to an electrical power plant on property prices. Blomquist finds 

that even smaller, cleaner power plants located in communities can cause significant damage to 

home prices at distances as far as two miles away. The paper uses census blocks as the unit of 

observation, with average property price serving as the dependent variable. 

The incident at the nuclear power plant on Three Mile Island in March, 1972 received 

broad coverage in the media. Nelson (1981), however, finds that this event was not capitalized 

into the prices of homes located within four miles of the plant. Nelson studied home prices 

several months after the accident using hedonic analysis. There were no significant differences 

between the home prices in the area near the power plant and two control areas located much 

farther away. 

Ketkar (1992) conducts a hedonic property price analysis of hazardous waste in New 

Jersey. Results indicate that the benefits of fast cleanup of sites exceed the costs. The cleanup of 

one site in a municipality is found to increase the median property value in that municipality by 

approximately $1,300 to $2,000. Ketkar also looks at implications of the Coase theorem to the 

cleanup of hazardous waste. He finds that it would be beneficial for property owners to 
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contribute to local hazardous waste cleanup, above the minimum amount done by the 

government. 

While many papers identify one particular hazardous waste variable, Deaton and Hoehn 

(2004) look at potential clustering of several perceived hazards in industrial zones. They show 

that traditional hedonic analysis of hazards encounters problems when zoning and other laws 

group several industrial disamenities together. Deaton and Hoehn argue that the failure of past 

studies to differentiate between these bundled disamenities may be responsible for some 

implausible results. They mitigate this dilemma by including a measure of industrial activity in 

their analysis of superfund sites, and find that failure to include this new variable may bias 

estimates of the negative effect of hazardous waste upwards. 

 Messer et al. (2006) look at the psychological effects of superfund sites on property 

values. They find that psychological stigma may significantly influence home values, and may 

take several years to wear off. Messer et al. say that hazardous waste cleanup should be done as 

quickly as possible in a way that causes the least media attention. The media attention may 

stigmatize the area, which can cause long-lasting damage to local homes.  

Kiel and Williams (2007) examine several superfund sites across the United States, and 

look at their effects on property prices. They are one of the first studies to enact an extensive 

analysis across multiple areas. The tools of meta-analysis are used to synthesize the results from 

the different areas. One of the main results is that the size of the site is related to its effect, with 

larger sites having a larger negative impact on local home prices. 

1.3.3 Environmental Applications: Water Quality 

The issue of water quality has not been as heavily investigated as the above 

environmental issues. Due to variation in data and setting, comparisons between past hedonic 
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water quality studies are problematic. Water quality can be measured by both subjective 

indicators (surveys), and objective indicators collected by sampling the waterbody or using 

scientific instruments to measure certain characteristics (such as temperature or pH). There is no 

agreement as to the ―best‖ indicator, and choices are frequently made on availability (Poor et al 

2001). Many studies rely upon water quality data collected by state agencies which are required 

to monitor water quality under the CWA. Yet in order to properly account for local conditions, 

states are given some freedom in the quality indicators they monitor (FDEP 2006). 

Consequently, a wide range of both objective and subjective water quality indicators have been 

used in past hedonic literature. 

In an early hedonic paper, David (1968) used Wisconsin Department of Conservation 

ratings of water quality that included ―poor‖, ―moderate‖ and ―good.‖ A better rating was found 

to significantly increase property prices. Brashares (1985) investigated a variety of definitions of 

water quality and found that indicators that are directly visible to consumers, such as clarity 

measures, are more likely to be reflected in the property price than physical measures like 

dissolved oxygen or pH. Epp and Al-Ani (1979) performed a hedonic analysis on streams in 

Pennsylvania. They obtained data on the pH of the water, along with dissolved oxygen, 

biochemical oxygen demand, acid from minerals, acid from carbon dioxide, and nitrate and 

phosphate concentrations. Each of these variables was used as a water quality indicator in 

separate hedonic equations. Their conclusions indicated that the water quality of local streams 

affected property prices, with the strength of this relationship depending on the indicator. The pH 

of the water was found to have an effect on property prices near clean streams but not near 

polluted ones. The authors postulated that this was due to the increase in recreational activities 

available on clean streams. Brashares (1985) also examined the use of multiple water quality 
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indicators in the hedonic equation. Brashares recommended the use of indicators which are 

visible to property owners, as these indicators are more likely to be absorbed into property 

prices.  

In a study of St. Albans Bay in Vermont, Young (1984) analyzed the effect of decreased 

water quality conditions on local property prices. The decreased conditions in the Bay, which is a 

part of the larger Lake Champaign, were a result of a malfunctioning treatment plant. Two 

methods were used to estimate the impact of the decreased water quality on property prices. The 

first was a simple dummy variable that indicated whether a home was located on the bay or on 

Lake Champaign. The second was a subjective indicator, based on a scale of one to ten, solicited 

from local ―water quality experts‖, realtors, and officials. Two regressions were performed, one 

for each water quality indicator. In the first regression, the dummy variable had a coefficient of -

4,690.2, indicating that homes located on the bay had average property prices of approximately 

$4,700 less than those on the lake. Young attributes this difference to the decrease in water 

quality. In the latter regression, the subjective indicator had a coefficient of 1,417.1. Since the 

average water quality rating in the lake was 6.4, while the average rating in the bay was only 3.4, 

the difference in property values is stated to be approximately $4,200. Since the average home 

price in the sample was $22,400, these values represent approximately a 20% impact on home 

values. 

To control for some of the population sorting issues encountered when using water 

quality in a hedonic property price analysis, Steinnes (1992) uses the value of a property’s land 

as the dependent variable. Normally the value of the entire parcel, including the land and 

structure, is used as the dependent variable. The land values were individually estimated using 

appraisal techniques. Furthermore, land values are aggregated by the lake level and expressed in 
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foot frontage. Steinnes found hedonic techniques can be used to estimate the effect of water 

quality on land values, and found that higher SDM readings were correlated with higher values.  

 There have been several recent hedonic property price analyses of water quality in Maine 

lakes. Michael, Boyle, and Bouchard (1996) is a report done for the Maine Department of 

Environmental Protection that finds a positive relationship between water quality and property 

prices. Implicit prices indicate a one meter improvement in lake water clarity results in an 

increase in the average property price of $11 to $200, expressed in benefit per foot frontage on 

the lake and varying over setting. Boyle, Poor, and Taylor (1999) investigate the demand for lake 

preservation in freshwater lakes. They use several real-estate markets to identify demand shifters, 

and find significant evidence that water quality is positively related to property prices. Unlike the 

present paper, Boyle et al. focus on the second stage of hedonic analysis, which focuses on 

estimating demand. The present stage instead concentrates on the first stage and implicit prices. 

 Michael, Boyle, and Bouchard (2000) explore the differences in estimated values caused 

by using different environmental quality indicators in a hedonic regression. They were concerned 

that the subjective choice of indicator by the researcher can affect the results and conclusions of 

the analysis. Several combinations of SDM, which include historical values and future 

expectations, are examined. They find that the various indicators, which represent differing 

points of view about water quality perception, result in significantly different estimates of value.  

Boyle and Taylor (2001) analyze error in the measurement of structural and 

neighborhood characteristics, and its effects on a hedonic regression of water quality. Boyle and 

Taylor were worried that there may be significant measurement error in data from tax collectors 

and other municipal sources. They compare regression coefficients resulting from several 

sources of data, and find positive coefficients on the water quality variables from each source. 
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The paper supports the use of tax assessor data, and finds that there is less error than previously 

assumed in these data.  

In the latest Maine study, Poor et al. (2001) follow the work of Brashares (1985) and 

Michael, Boyle, and Bouchard (2000) and compare objective and subjective indicators of water 

quality. Their results support the use of objective measures, such as SDM, as opposed to 

subjective survey measures. The debate over subjective versus objective indicators of water 

quality is still an active research focus. In a recent meta-analysis of the broader water quality 

valuation literature, Van Houtven, Powers, and Pattanayak (2007) support a movement towards 

the ―designated use‖ classifications of the CWA. These categories sort waterbodies into what use 

society has designated for them (such as drinking water, water-based recreation, fishing, and 

agricultural water supply) and Van Houtven et al say provide a common framework for 

standardization. Nonetheless, within the more specific hedonic literature, there appears to be a 

general trend towards the use of SDM. This indicator is easily seen by home buyers, collected on 

a wide scale, and is a proxy for eutrophication. 

Leggett and Bockstael (2000) use fecal coliform as the quality indicator in an analysis of 

waterfront homes on the Chesapeake Bay. It was expected that levels of fecal coliform bacteria 

would be incorporated into property prices because they were regularly announced in the media, 

and were the cause of frequent beach closings. In their study area sanitation plants are the source 

of fecal coliform. However, these plants are also associated with obnoxious noise and smells and 

can cause omitted variable bias if plant proximity is not incorporated in the hedonic model. This 

is the only hedonic analysis of water quality to control for spatial dependence. 

Other papers include an applied hedonic investigation by Gibbs, Halstead, and Boyle 

(2002), who estimate the implicit price of water quality using a variety of lakefront homes in 
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several markets in New Hampshire. Implicit prices are estimated for all markets, the majority of 

which are positive. The magnitude of the implicit price of water quality is found to be dependent 

on the study area. Results also indicate that policies that improve water quality can result in 

increased property taxes. 

 In a state government report in Minnesota, Krysel et al. (2003) estimated a hedonic 

analysis of water quality on several lake areas. Their main model was based on the previous 

Maine papers, to which they added slight variations to accommodate the setting. They found 

water quality to be a significant contributor to lakefront property prices in all lake areas studied. 

The potential benefit from water quality improvement programs was found to be in a range of 

tens of thousands to millions of dollars.  

The aforementioned hedonic studies have investigated a variety of issues in several 

different markets; however they share a common characteristic: they all focus on waterfront 

properties. In rural areas of Maine (as in Michael et al (1996), (2000) and Poor et al (2001)) 

where there may not be many properties past the lakefront, this focus may be justified. However, 

in more densely populated areas it is natural to question if benefits extend past the lakefront. If 

non-waterfront homes do in fact have a positive implicit price of water quality, a cost benefit 

analysis that ignores these values may substantially understate the true benefits. Both Gibbs et al 

(2002) and Leggett and Bockstael (2000) acknowledge that non-lakefront homes may be affected 

by water quality changes, but neither study confronts the issue. 

The only hedonic study to include non-lakefront homes is an analysis of ―ambient‖ water 

quality by Poor, Pessagno, and Paul (2007). Homes are grouped into broad geographic areas 

based on 22 water quality monitoring stations; each home within the area is assigned the same 

level of water quality. Properties are therefore not associated with a particular waterbody, so 
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issues of water proximity are not addressed and waterfront and non-waterfront homes are 

indistinguishable in their model.
8
 Total suspended solids and total inorganic nitrogen are used as 

the water quality indicators. Results indicate that the implicit price of a water quality 

improvement is positive for the average home; since 98% of the properties are non-waterfront 

they conclude that non-waterfront homes are positively affected by water quality. 

Evidence for the influence of location and the spatial extent of benefits can be found in 

other areas of the hedonic literature. For instance, hedonic studies of open space proximity 

commonly find that distance to a water body is positively valued (Irwin 2002; McConnell and 

Walls 2005; Anderson and West 2006; and Cho et al 2009). Brown and Polasky (1977), 

Lansford and Jones (1995) and Palmquist and Fulcher (2006) focus specifically on distance to 

water bodies and results indicate proximity to lakes is positively related to property prices, with 

the effect decreasing over distance. It is therefore reasonable to hypothesize that the value of lake 

proximity is affected by changes in water quality (Palmquist and Smith 2001). 

 Distance effects have also received careful treatment in hedonic studies of environmental 

disamenities (Kolhase 1991; Deaton and Hoehn 2004; Cameron 2006; Kiel and Williams 2007; 

Greenstone and Gallagher 2008). Cameron (2006) provides several models for incorporating 

both distance and direction in a hedonic model. A common result in hazardous waste papers is 

that the negative impact of the disamenity extends far into the surrounding community (Jackson 

2001). Additionally, benefit extent is a common problem in travel cost papers (Smith and Kopp 

1980; Smith 1993), illustrated by choices between day trips and overnight trips and travel 

                                                 
8
 They state that ambient water quality is appropriate because the area has a long history of 

fishing and water-based recreation, and is an integral part of the culture. Water quality 

deterioration in the area is a regular topic in local politics. 
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boundaries. Finally, market and benefit extent issues have recently been explored in contingent 

valuation surveys (Vajjhala, John, and Evans 2008). 

A cursory analysis of several other fields of the hedonic literature indicates that in many 

cases the effect of an amenity (or disamenity) can extend sizable distances. The extent of benefits 

may not be of paramount importance in rural areas with low population density around lakes. 

However, in more urban areas lakes represent a large source of recreation and aesthetic benefits 

to a broad group of recipients, so it is reasonable to propose that their impact on the local 

community is not confined to lakefront homes. A complete hedonic analysis of lake water 

quality should draw from these other fields to expand the focus beyond the lakefront. 

1.4. Methods 

The data for this analysis contain more than 54,000 property sales near 146 lakes, over a 

nine year time period. These data provide ample variation in homes and water quality, yielding a 

unique setting to analyze the extent of benefits. The econometric model is a first-stage hedonic 

analysis that estimates the implicit prices of attributes and does not go into the second stage 

outlined by Rosen (1974). This model is motivated by three main hypotheses: 

H
1
: The Edge Effect: The prices of non-lakefront homes are positively affected by increases in 

water quality, though by a smaller amount than lakefront properties. This issue has not been 

directly dealt with in the past (Poor, Pessagno, and Paul 2007) and is the first step in extending 

the boundary of water quality benefits. 

H
2
: The Proximity Effect: Given that water quality benefits extend past waterfront homes, this 

effect declines with distance. Motivated by several other areas of the valuation literature, this 

hypothesis introduces distance into the relationship between property prices and water quality.  
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H
3
: The Area Effect: The value of water quality depends on the size of the lake. Larger lakes 

permit recreational opportunities such as boating, swimming, and water skiing, which are 

enhanced by higher quality water. Several papers have found that the implicit price of water 

quality is higher in larger lakes, including Boyle et al (1999), Poor et al (2001), and Gibbs et al 

(2002). Also, in studies of open space, Anderson and West (2006) and Cho et al (2009) find that 

the implicit price of proximity to lakes also increases with lake size.  

 All three hypotheses are used to construct the econometric model. The main model 

appears in equation (1), which highlights the water quality and location interactions: 
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  (1.11) 

The dependent variable P is the deflated sale price, the waterfront dummy variable is WF, the 

water clarity variable is SDM, Distance is the variable that measures the distance from each 

home to the nearest lake, and Area represents the size of the nearest lake. The bold characters 

represent vectors. The additional property characteristics are contained in the x vector, the y 

vector contains location-based variables such as latitude and longitude coordinates and distance 

to the central business district, lake effects appear in the l vector, time effects for each year 

appear in the t vector, and ε is the error term. The lake effects control for lake specific attributes, 

such as docks, accessibility, and boat ramps. 

Equation (1.11) also contains interaction variables between SDM and three other 

variables: WF, Distance, and Area. Restrictions on these variables allow tests of the three main 

hypotheses. The Edge Effect is tested through the restriction β3=0; if this cannot be rejected, the 

implicit price of water quality does not differ between waterfront and non-waterfront homes.
9
 

                                                 
9
 In all models, waterfront and non-waterfront homes are pooled. Without pooling, nearby non-lakefront homes are 

omitted from the neighbor set defined in the Spatial Weights Matrix (SWM) for lakefront homes. Properties in both 
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The Proximity Effect can be tested with the null hypothesis β5 = 0. If the Proximity Effect exists, 

this coefficient is expected to be negative as the value of SDM decreases with distance. The final 

hypothesis, the Area Effect, can be tested through the coefficient β6, which is expected to be 

positive and significant. Three main models are estimated to highlight these restrictions. The first 

model omits the interaction terms SDM*Distance and SDM*Area. The second model includes 

SDM*Distance, and the third model contains the full form of equation (1.11). 

To econometrically estimate the model in (1.11) two important specification issues must 

be confronted: functional form and spatial dependence. There is no theoretical foundation for the 

functional form of a hedonic price model (Leggett and Bockstael 2000), so decisions about this 

choice are typically based on either assumptions about the data, a Box-Cox test, or the ―fit‖ of 

the various models. On the other hand, spatial dependence can be a problem in analyses of real 

estate data because of spatially correlated omitted variables, unobservable neighborhood codes 

and covenants, identical or similar builders, and property appraisal valuation techniques (Anselin 

1999; Kim et al 2003; Palmquist and Fulcher 2006). These spatial influences violate traditional 

regression assumptions about ε in equation (1.11), which will result in biased coefficients 

(Anselin 1999). There are currently no well defined procedures for the joint determination of the 

functional form and type of spatial dependence, although recent research indicates that they are 

directly related (McMillen 2003). 

The most commonly used functional forms are the linear, semi-log and double-log 

models. Water clarity variables are typically used in their natural log form because at higher 

levels of clarity it is more difficult to perceive a marginal change (Michael et al 1996; Poor et al 

                                                                                                                                                             
these groups share many unobservable neighborhood characteristics, and if the lakefront homes are separated, the 

SWM for that analysis will be extremely sparse and the value added by the spatial regression will be severely 

limited. Also, past studies that split the two groups have found it difficult to separate the effect of water quality on 

sales prices from other benefits associated with living on the water, such as view, recreation, and open space (Haab 

and McConnell 2002). 
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2001; Boyle and Taylor 2001). When modeling water quality variables, ecologists normally use 

this transformation to ―accommodate heterogeneity of variance‖ (Brown et al. 2000).   

The two most common forms of spatial dependence are the spatial lag and spatial error 

models. The spatial lag model uses a spatially weighted average of nearby home prices as a 

dependent variable to incorporate spatial influences. The spatial error model assumes that there 

are omitted variables that are spatially related to other variables in the analysis, and uses a non-

spherical error covariance to correct for this (Anselin 1988, 1999).
10

 These two forms of spatial 

dependence have been widely applied in the literature and are fully discussed in the second 

chapter of this dissertation. The spatial lag model has been used in several recent hedonic studies 

of air quality (Kim et al 2003; Anselin and LeGallo 2006; Anselin and Lozano-Gracia 2008) and 

the spatial error model has been used in the hedonic water quality literature (Leggett and 

Bockstael 2000). Both of these models employ an n x n spatial weights matrix, W, which 

specifies the spatial configuration of the data by defining a neighbor set for each observation. In 

the current paper, the spatial weights matrix is based on time and inverse distance. Wij is nonzero 

if the homes i and j are within 200 meters of each other and sold either 6 months before or 3 

months after each other.
11

 Several recent studies, such as Pace et al. (1998), Gelfand et al. 

(2004), and Case et al. (2004) have stressed the incorporation of both space and time into the 

spatial weights matrix. 

These two econometric issues–functional form and spatial dependence–have traditionally 

been treated independently. For instance, Patton and McErlean (2003) test for functional form 

                                                 
10

 The spatial lag model is represented by P = ρWP + Xβ + ε, where ρ is a spatial autocorrelation parameter similar 

to those used in time series analysis. W is a spatial weights matrix that specifies the spatial configuration of the data 

by defining a neighbor set for each observation. The spatial error model is expressed as P = Xβ + ε, where ε = Wε + 

u, and u ~ N(0, σ
2
I) and the parameter λ is a coefficient on the spatially correlated errors. A non-zero value of λ 

indicates the influence of spatial dependence in the errors which can cause inefficient but unbiased regression 

estimates (LeSage 1999).  
11

 This is fully explained in the next chapter. 
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using the Box-Cox model and then employ Lagrange Multiplier (LM) tests to confirm the 

existence of spatial dependence. Kim et al (2003) choose the semi-log functional form based on 

measures of collinearity, and then use LM tests to select the appropriate spatial model. However, 

recent evidence indicates that these two issues need to be considered jointly. McMillen (2003) 

shows that spatial tests may improperly detect spatial dependence if the functional form is 

incorrectly specified. 

Baltagi and Li (2001, 2004) developed LM tests that jointly test functional form and 

either spatial lag or spatial error dependence. These tests allow an exploration of spatial 

dependence under alternative functional forms and are based on a spatial Box-Cox 

transformation. Boxall et al (2005) use these tests to determine functional form in a hedonic 

analysis of oil and natural gas facilities. Le and Li (2008) and Le (2009) recently developed 

Double-Length Regression (DLR) tests that yield the same results as the Baltagi and Li LM tests 

but do not require the Hessian or second derivatives of the log-likelihood function. Due to the 

size of the dataset in the present dissertation, the DLR tests present less computational 

difficulties than the LM tests. The DLR tests are used in the present paper to examine issues of 

both spatial dependence and functional form. 

1.5. Results 

1.5.1. Estimation 

Since there is no theoretical basis for the functional form of the hedonic property price 

model (Le and Li 2009), several tests are performed. The traditional method of testing functional 

forms involves the use of a Box-Cox test. This test, which is explained in Chapter 2, uses a 

flexible functional form that can be employed to evaluate hypotheses about the functional form 
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of the model. Results of this test supported the double log regression over the linear or semi-log 

specifications.
12

 Cropper et al. (1988) show that the double-log model performs particularly well 

in hedonic models in the face of misspecification and Kang and Reichert (1996) find that the 

double log model performed the best at forecasting property prices. 

To further investigate functional form specification and spatial dependence, several DLR 

tests are performed.
13

 First, DLR tests of spatial lag and spatial error dependence are carried out 

under both linear and double log specifications. In each case the null hypothesis of no spatial 

dependence is rejected. Next, joint tests of spatial dependence and the linear and double-log 

functional forms are implemented. The results of these joint tests, which are presented in Chapter 

2, support the existence of spatial dependence and the use of the double-log functional form. 

 The DLR tests of spatial dependence do not consistently reject either spatial lag or spatial 

error dependence at a higher level than the other, which is the typical method of selection 

between the two forms (Mueller and Loomis 2008). To choose between the spatial lag and 

spatial error models, the second chapter of this dissertation examines both models using out-of-

sample prediction errors with the same data as this chapter. Based on seven categories of 

prediction error used in Case et al. (2004), the spatial lag model decisively outperforms the 

spatial error model. Therefore the spatial lag model is used.
14

 

For purposes of comparison, both spatial and non-spatial results are presented. The 

spatial and non-spatial models were both estimated using maximum likelihood regression, and 

selected estimation results are reported in Table 3. Breusch-Pagan tests indicated the presence of 

                                                 
12

 The procedure is fully explained in Chapter 2, where estimation results are also presented. 
13

 Since the eigenvalues of the SWM need to be calculated, the size of the data impose some computational 

constraints with these tests. To compensate for this, the data is split into the individual municipalities for DLR 

testing. This testing procedure is fully explained in Chapter 2. 
14

 The non-spatial models are estimated on Stata. All of the spatial work, including SWM construction and spatial 

lag estimation, is done on Matlab. The code for the spatial regressions can be found on www.spatial-

econometrics.com. 

http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
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heteroskedasticity, so White’s corrected standard errors are used. The complete set of 

coefficients, including time and lake fixed effects, appear in Table 6. Models 1, 2, and 3 are the 

non-spatial models, while Models 1S, 2S and 3S are the spatial lag models. 

 The three different model variations are used to test the hypotheses of Section III. 

Hypothesis 1 can be tested through Model 1, where the coefficient on Ln(SDM)*Ln(Distance) is 

0.116 and significant at the 0.01 level, indicating there is an edge effect present in the data. 

Water quality has a larger effect on waterfront homes than non-waterfront homes, illustrated by 

the positive and significant coefficient on this variable in all models of Table 3. Also, consistent 

with Poor et al (2007), the positive and significant coefficient on Ln(SDM) in Model 1 indicates 

that water quality has a positive effect on non-waterfront homes. 

 To investigate the character and extent of benefits beyond the lakefront, Model 2 contains 

the interaction term Ln(SDM)*Ln(Distance). The coefficient on this variable is -0.017 and 

significant, illustrating a negative relationship between the value of water quality and lake 

distance. The proximity effect of Hypothesis 2 is therefore supported by this result and the effect 

of a water quality change is dependent on the location of the home. 

 The Area Effect can be examined in Model 3, where the addition of Ln(SDM)*Ln(Area) 

yields the full form of Equation (1). The positive and significant coefficient on this interaction 

term indicates that the effect of water quality on property prices is positively related to the size of 

the lake. With all three interaction terms in the model the two previous hypotheses still hold, but 

the magnitude of the Ln(SDM)*Lakefront  coefficient decreases by approximately 30%. 

Consequently, the benefit to waterfront homes may be overstated if area and distance are not 

controlled for. Alternatively, the effect of lake proximity on water quality is relatively strong, the 

coefficient on Ln(SDM)*Ln(Distance) remains constant over all specifications. A likelihood ratio 
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test of the joint significance of the three water quality interaction terms confirms their inclusion 

at the 99% level and Model 3 is the preferred specification. 

 For the coefficients not appearing in Table 3, all structural home characteristics (such as 

the number of bathrooms, home size, and parcel size) were positive and significant, as presented 

in Table 6. The location and neighborhood variables all had expected signs except the variable 

indicating proximity to an airport, which was positive, and the ―percent black‖ and ―percent over 

65 variables,‖ which were insignificant. All of the annual dummy variables in both models were 

significant at the 99% level and negative (but increasing slightly each year). The variable left out 

of the equation was the 2004 indicator, so these negative and increasing coefficients capture the 

effect of escalating home prices in Orange County during this period. An F-test of the hypothesis 

that the year dummies are equal to zero is rejected at the 99% level (F8; 54,539 = 7,875.9).  

  Although the spatial parameter ρ is significant in each model, its size is small and the 

differences between the spatial and non-spatial coefficients are not substantial. None of the three 

hypotheses are affected when spatial dependence is controlled for.  The largest disparity between 

models is in the latitude and longitude variables, which partially represented spatial influences in 

the non-spatial lag model. Leggett and Bockstael (2000) and Mueller and Loomis (2008) also 

find that controlling for detected spatial dependence does not substantially change the magnitude 

of the coefficients in their hedonic models. 

1.5.2. Marginal Analysis 

To illustrate the policy relevance of these results, the effect of a one foot change in SDM 

on the average home price (expressed in dollars) appears in Table 4. For the mean level of SDM, 

this represents a 17% change in water quality. These implicit prices are estimated at mean lake 

distance values for the first two rows; in the next five rows the distance to the lake is varied. The 
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final row in the table contains the average implicit price of lake proximity. Kim et al (2003) 

illustrate the derivation of implicit prices for a spatial lag model; for the present paper the 

implicit price of water quality is: 

 * * *

1
* *ln( ) *ln( )

1
SDM WF SDM Dist SDM Area SDM

P P
WF Dist Area

SDM SDM
   




   

 

  
  
  

 (1.12) 

The mean implicit price of water quality for non-lakefront homes is positive in all models, and 

varies from a minimum of $435 in Model 2 to a maximum of $891 in Model 3S. The implicit 

price of water quality for a waterfront home is substantially larger than the non-waterfront 

estimate in all models. The Model 3S waterfront implicit price of $11,784.28 represents a 2.6% 

improvement in the average lakefront home price for a one foot change in SDM. 

 In the next five rows of Table 4 the implicit price is evaluated at several distance intervals 

from the lake, which allows a more complete picture of the relationship between water quality, 

lake proximity, and non-waterfront home prices. Models 1 and 1S do not allow distance to effect 

the implicit price of water quality so only average values for lakefront and non-lakefront can be 

evaluated. In the other models, the Proximity Effect can be clearly seen as implicit prices 

diminish with distance. For example, the implicit price of non-lakefront homes in Model 3S 

decreases from $1,786.31 at 100 meters from the lake to $509.71 at a distance of 900 meters 

away. The importance of including lake size can be seen in the differences between the Model 

2S and 3S implicit prices, especially with non-lakefront homes. All of the 3S values are 

substantially higher, with the average non-lakefront implicit price twice as high as the 2S value. 

Overall, the dollar values in Table 4 indicate that sizable welfare benefits would be excluded if 

the analysis was restricted to waterfront homes. 

 The results of this paper clearly indicate that non-lakefront homes have a positive implicit 

price for water quality in local lakes. Furthermore, this value differs between waterfront and non-
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waterfront homes, and varies with location and lake area. These are critical issues in the 

calculation of water quality benefits, and could result in large differences in policy 

recommendations. To illustrate these differences, three representative lakes were chosen for 

benefit estimates; a small lake (70 acres), a medium sized lake (271 acres), and a large lake (just 

over 1,000 acres). The assessed market values of all lakefront and non-lakefront homes within 

1,000 meters of the lake were used to calculate the total benefits of an improvement of one foot 

of water clarity using the estimates of the full spatial lag model. To accurately measure total 

benefits, this calculation contains all home values in the area, not just the property sales (as in the 

data used to calculate the hedonic model).
15

 

 Table 5 contains the results of the benefit calculations, in all three of the lakes the total 

non-lakefront benefits were larger than the total lakefront benefits. In the small lake, lakefront 

benefits were $971,452 and non-lakefront benefits were $1,079,068, representing a doubling of 

total benefits. Including the non-lakefront homes increases the total benefits by a factor of 4.6 in 

the medium sized lake and in the large lake total non-lakefront benefits are $1,992,136 larger 

than lakefront benefits. The last column of Table 5 contains the total non-lakefront benefits 

within 500 meters of the lake. Even when this smaller sample is used, the inclusion of non-

lakefront benefits approximately doubles the total estimate of benefits in each case, illustrating 

the importance of these values. 

                                                 
15

 It is recognized that the assessed value of these homes represent an imperfect estimate of their potential selling 

price. However, the focus of this exercise is a comparison of the total non-waterfront benefits to the total waterfront 

benefits. If all homes are undervalued by this assessment procedure by a similar amount, the ratio of waterfront to 

non-waterfront benefits should change only marginally. 
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1.6. Conclusion 

Water quality is an important policy issue in the United States, illustrated by the 

extensive requirements of the original CWA and the recently proposed ―Clean Water Restoration 

Act,‖ which seeks to expand the jurisdiction of the CWA from ―navigable waters‖ (as defined in 

the original CWA) to all waters in the US.
16

 The benefits of improved water quality accrue in 

several areas, including multiple forms of recreation, aesthetic appeal, ecosystem support, and 

property price appreciation. In past literature, it was assumed that the property price benefits only 

represented a small fraction of the total benefits and were confined to lakefront properties. The 

present paper explores the extent of property price benefits by including both lakefront and non-

lakefront homes in a large spatial hedonic analysis in Central Florida.  

 Three hypotheses about the effect of water quality are tested and supported. First, a 

waterfront edge effect is found, indicating that waterfront and non-waterfront properties have a 

significantly different implicit price of water quality. Second, the implicit prices are directly 

affected by lake proximity, diminishing as homes are located farther from the lake. Third, the 

area of a lake also affects the implicit price of water quality, with larger lakes having higher 

value implicit prices. Overall, the results of this paper yield considerable support for the 

inclusion of non-lakefront homes in hedonic property analysis. Water quality benefits extend far 

beyond the lakefront. These results yield several policy recommendations. One of the main 

objectives of conducting environmental valuation is to inform cost benefit analysis. In each of 

the three lakes analyzed in this paper, including the gains to non-lakefront properties would more 

than double the total estimate of water quality benefits. This represents a considerable increase in 

                                                 
16

 H.R. 2421, introduced to the US House of Representatives by James L. Oberstar (5/22/2007) and S.1870, 

introduced to the US Senate by Russell D. Feingold (04/09/2008) 
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benefits and shows that restricting the sample to waterfront homes could cause a severe 

downward bias in a cost benefit analysis. 

 Furthermore, the shape and magnitude of the implicit price gradient could be used to 

design more effective taxing regimes around lakes. Past taxing schemes for lake improvement 

activities in Orange County assign an MSTU (municipal service taxing unit) fee to the property 

tax of each home in a particular neighborhood surrounding a lake. These MSTU fees are similar 

to recycling or trash collection fees and are instituted through a majority vote by the 

neighborhood.
17

 When approved, every home in the neighborhood is assigned the same tax rate 

increase. The results of the present study indicate that these uniform fees do not accurately 

represent the distribution of benefits from lake improvements, especially with arbitrarily defined 

neighborhood boundaries. If the neighborhood is small, there is the problem of free riding by 

those outside the defined neighborhood. If the neighborhood is large, those at the periphery may 

be unfairly taxed. It would be more efficient to tax homes differentially based on lake proximity 

and waterfront status.  

 The magnitude of the implicit prices in this study also indicate that widespread lake 

improvement programs could cause a considerable increase in required property taxes through 

home price appreciation. Given the size of the total estimated property price benefits for the three 

lake examples in this study ($700,000 - $5,000,000), lake water quality improvement projects 

could yield a sizeable amount of tax revenue. This tax revenue could be used to fund additional 

lake programs. Given that 45% of our nation’s lakes are still classified as ―impaired‖ by the EPA 

(US EPA 2003), these results represent an opportunity for significant improvement.  

                                                 
17

 There have only been a handful of these MSTU programs implemented. Only 5 out of the 146 lakes in the present 

study contain MSTU programs, which are only active during some years. Attempts to relate MSTU funding to water 

quality found no correlation between the two. 
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 Several open questions remain after this exercise, some of which are addressed in later 

chapters. First, there are multiple potential approaches to the spatial modeling of the hedonic 

equation. Chapter 2 explores several different methods of incorporating spatial dependence. 

Second, SDM has been used as the only indicator of water quality. However, this is only one of 

several available indicators; alternative measurements may imply different implicit prices 

(Michael et al. 2000). Chapter 3 examines several alternative indicators of water quality that are 

used by state regulators to assess the health of lakes. Furthermore, additional research should 

investigate the functional form of the implicit price gradients. In the current paper these gradients 

are functions of the lake distance and lake area. The specific form may impact the identified 

benefit extent. 
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Tables and Figures: Chapter 1 

Table 1: Summary Statistics on Water Quality Over Time 
           ____Secchi Disk (feet)________            

Year Mean Std Dev Minimum Maximum Lakes (N) 

1990 5.53 3.25 0.66 15.49 101 

1991 5.30 3.18 1.31 15.39 104 

1992 5.51 3.35 1.31 15.06 103 

1993 5.75 3.52 1.25 16.67 112 

1994 5.86 3.37 1.51 16.40 137 

1995 5.76 3.33 1.21 16.47 136 

1996 5.86 3.45 1.54 15.49 143 

1997 6.18 3.73 1.64 18.05 152 

1998 5.23 2.81 1.54 17.26 148 

1999 5.25 3.04 1.48 15.35 152 

2000 5.23 3.20 0.89 13.88 137 

2001 5.27 2.84 0.98 13.12 134 

2002 4.95 2.90 0.66 14.76 126 

2003 5.23 2.69 1.31 14.53 129 

2004 5.33 2.69 1.15 12.99 125 
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Table 2: Summary Statistics of Property Sales: Lakefront and Non-Lakefront Homes 

      Lakefront (N =1,496)     Non-Lakefront (N =53,216)   

Variable    Units Mean Std Dev Mean Std Dev 

Property Characteristics      

     Sales Price 2002 Dollars 452,646.2  370,667.8 199,982.4 201,110.9 

     Heated Area  Square Feet 2,769.7 1,295.9 1,962 949.5 

     Area of Parcel Square Feet 30,002.3 30,487.7 11,580.9 11,737.0 

     Number of Bedrooms -- 3.6 1.0 3.3 0.8 

     Number of Bathrooms -- 2.8 1.1 2.2 0.9 

     Home Age Years 24.1 13.5 18.6 15.1 

     % With Pool -- 20.1 --- 20.7 --- 

Spatial Characteristics      

     Distance to Nearest Lake Meters 42.37 23.70 467.13 267.7 

     Area of Nearest Lake  Acres 519.3 635.2 278.1 445.2 

     Distance to CBD Meters  8,824.4 5,123.9 9,265.8  5,150.2 

     Latitude Coordinate Degrees 654,756.9 7,415.4 653,223.8 7,940.8 

     Longitude Coordinate Degrees 505,615.8 5,123.9 505,664.6 6,272.2 

     % In airport noise zone  -- 8.9 -- 15.9 -- 

Census Block Characteristics      

     % of Population White -- 88.6 -- 77.9 -- 

     % of Population Black -- 4.9 -- 12.5 -- 

     % of Population > 65  -- 15.2 -- 11.1 -- 

     Median Household Income 2002 Dollars 67,355.2 30,343.2 58,876.8 24,863.1 

Distribution of Sales by Year      

     % of sales in 1996 -- 10.4 -- 9.2 -- 

     % of sales in 1997 -- 11.1 -- 10.9 -- 

     % of sales in 1998 -- 12.9 -- 12.1 -- 

     % of sales in 1999 -- 14.0 -- 13.4 -- 

     % of sales in 2000 -- 11.0 -- 11.4 -- 

     % of sales in 2001 -- 8.9 -- 9.9 -- 

     % of sales in 2002 -- 11.3 -- 9.9 -- 

     % of sales in 2003 -- 11.0 -- 11.0 -- 

     % of sales in 2004 -- 9.4 -- 12.2 -- 
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Table 3: Selected Hedonic Estimation Results 

 
__________Non-Spatial__________ __________Spatial__________ 

 __Model 1__ __Model 2__  __Model 3__ __Model 1S__ __Model 2S__ __Model 3S__ 

 

Variable 
β SE β SE β SE β SE β SE β SE 

Lakefront 0.087
*
 0.026 0.143

*
 0.028 0.146

*
 0.028 0.087

*
 0.019 0.143

*
 0.020 0.146

*
 0.020 

Ln(Distance) -0.062
*
 0.002 -0.035

*
 0.004 -0.035

*
 0.004 -0.062

*
 0.001 -0.035

*
 0.004 -0.035

*
 0.004 

Ln(SDM) 0.017
*
 0.003 0.117

*
 0.017 -0.028 0.032 0.017

*
 0.004 0.118

*
 0.014 -0.030 0.031 

Ln(SDM)*Lakefront 0.116
*
 0.015 0.080

*
 0.016 0.078

*
 0.016 0.116

*
 0.010 0.081

*
 0.011 0.079

*
 0.011 

Ln(SDM)*ln(dist) --- --- -0.017
*
 0.003 -0.017

*
 0.003 --- --- -0.017

*
 0.002 -0.017

*
 0.002 

Ln(SDM)*ln(area) --- --- --- --- 0.011
*
 0.002 --- --- --- --- 0.012

*
 0.002 

Ln(X_coord) -6.273
*
 1.056 -6.290

*
 1.055 -6.442

*
 1.055 -6.335

*
 0.106 -6.362

*
 0.034 -6.509

*
 0.053 

Ln(Y_coord) 3.689
*
 0.695 3.509

*
 0.695 3.389

*
 0.694 3.763

*
 0.656 3.583

*
 0.662 3.462

*
 0.666 

Time variables Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 

Lake variables Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 Jointly 

Significant 

 

ρ --- --- --- 0.001
*
 0.000 0.001

*
 0.000 0.001

*
 0.000 

Pseudo adj-R
2
 0.893 0.894 0.894 0.893 0.893 0.893 

Note: * denotes significance at the 1% level. The full set of estimation results is reported in the Appendix. Also note that White’s robust standard errors are used to control for 

heteroskedasticity in Models 1, 2, and 3. 
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Table 4: Implicit Price of a One Foot Increase in Water Clarity 
 Scenario Model 1 Model 2 Model 3 Model 1S Model 2S Model 3S 

Edge Effect       

   Waterfront             $10,187.37 

(1,162.90) 

$10,295.22 

(1,161.89) 

$11,663.86 

(1,190.984) 

$10,270.89 

(816.66) 

$10,382.14 

(816.39) 

$11,784.28 

(857.10) 

   Non-Waterfront  $568.12 

(118.41) 

$434.84 

(115.35) 

$877.92 

(151.06) 

$572.16 

(125.07) 

$437.46 

(126.25) 

$890.71 

(151.95) 

Proximity Effect       

   Non-Waterfront (300m)  --- $690.91 

(120.74) 

$1,132.23 

(156.34) 

--- $696.47 

(126.06) 

$1,148.01 

(151.62) 

   Non-Waterfront (700m) --- $200.98 

(122.99) 

$645.65 

(155.91) 

--- $200.91 

(134.12) 

$655.73 

(158.71) 

Area Effect       

   Non-Waterfront (100 acres) --- --- $485.42 

(115.57) 

--- --- $489.26 

(126.59) 

   Non-Waterfront (1000 acres) --- --- $1,368.89 

(226.29) 

--- --- $1,392.89 

(218.57) 
Implicit prices are evaluated at the sample means. Standard errors computed using the delta method. 
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Table 5: Total Water Quality Benefits from a 1 Foot Increase in SDM 
Lake Size Lakefront Benefits  Non-Lakefront Benefits 

(Homes within 1,000m) 

Non-Lakefront Benefits 

(500m) 

70 Acres $971,452  $1,079,068  $728,822 

271 Acres $698,144  $3,219,550  $1,991,001 

1000 acres $5,441,246  $7,433,382  $5,057,007 
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Table 6: Full Regression Results 

  Model 1 Model 2 Model 3 Model 1S Model 2S Model 3S 

Waterfront 0.087* 0.143* 0.146* 0.087* 0.143* 0.146* 

    (1 if WF, 0 if non-WF) (0.026) (0.028) (0.028) (0.019) (0.020) (0.020) 

Ln(lake dist) -0.062* -0.035* -0.035* -0.062* -0.035* -0.035* 

    (Distance to lake in m) (0.002) (0.004) (0.004) (0.001) (0.004) (0.004) 

Ln(SDM) 0.017* 0.117* -0.028 0.017* 0.118* -0.030 

    (Feet of clarity) (0.003) (0.017) (0.032) (0.004) (0.014) (0.031) 

ln(SDM)*Waterfront 0.116* 0.080* 0.078* 0.116* 0.081* 0.079* 

 

(0.015) (0.016) (0.016) (0.01) (0.011) (0.011) 

Ln(SDM)*ln(dist) --- -0.017* -0.017* --- -0.017* -0.017* 

  

(0.003) (0.003)  (0.002) (0.002) 

Ln(SDM)*ln(lake area) --- --- 0.011* --- --- 0.012* 

    (Lake area in acres) 

  

(0.002)   (0.002) 

ln(x_coord) -6.273* -6.299* -6.442* -6.335* -6.362* -6.509* 

 

(1.057) (1.055) (1.056) (0.106) (0.034) (0.053) 

ln(y_coord) 3.689* 3.509* 3.389* 3.763* 3.583* 3.462* 

 

(0.696) (0.695) (0.694) (0.656) (0.662) (0.666) 

Canalfront 0.112* 0.104* 0.104* 0.113* 0.105* 0.105* 

    (1 if next to canal, 0 otherwise) (0.016) (0.016) (0.016) (0.018) (0.018) (0.018) 

Golffront 0.331* 0.332* 0.332* 0.332* 0.333* 0.334* 

    (1 if next to golf course, 0 otherwise) (0.038) (0.038) (0.038) (0.033) (0.033) (0.033) 

Ln(bath) 0.119* 0.120* 0.120* 0.119* 0.120* 0.120* 

 

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Pool 0.014* 0.014* 0.014* 0.014* 0.014* 0.014* 

    (1 if home has poo1, 0 otherwise)  (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Ln(age) -0.070* -0.071* -0.071* -0.070* -0.070* -0.070* 

    (Age of home in years) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Ln(area_heated) 0.673* 0.673* 0.673* 0.673* 0.672* 0.672* 

    (Area in sq. feet) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) 

Ln(area parcel) 0.165* 0.166* 0.165* 0.166* 0.167* 0.167* 

    (Area in sq. feet) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 

Ln(dist CBD) -0.187* -0.191* -0.189* -0.186* -0.190* -0.189* 

    (Distance in m) (0.011) (0.011) (0.011) 0.001) (0.010) (0.010) 

Near airport 0.027* 0.029* 0.029* 0.027* 0.028* 0.028* 

    (1 if near airport, 0 otherwise) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

Ln(Med income) 0.106* 0.108* 0.107* 0.105* 0.107* 0.106* 

    (Income in 2002 dollars) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) 

Percent white00 0.249* 0.247* 0.246* 0.248* 0.245* 0.244* 

    (In percentage of census block) (0.031) (0.031) (0.031) (0.032) (0.032) (0.032) 

Percent black00 0.052 0.053 0.052 0.052 0.054 0.053 
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    (In percentage of census block) (0.035) (0.035) (0.035) (0.034) (0.034) (0.034) 

Percent over6500 0.015 0.023 0.022 0.016 0.024 0.023 

    (In percentage of census block) (0.022) (0.022) (0.022) 0.020) (0.020) (0.020) 

year_1996† -0.820* -0.820* -0.821* -0.818* -0.818* -0.819* 

     (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_1997 -0.762* -0.762* -0.762* -0.760* -0.760* -0.760* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_1998 -0.693* -0.693* -0.692* -0.692* -0.692* -0.690* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_1999 -0.607* -0.606* -0.605* -0.606* -0.605* -0.603* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_2000 -0.498* -0.498* -0.498* -0.497* -0.497* -0.497* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_2001 -0.380* -0.380* -0.379* -0.379* -0.379* -0.378* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_2002 -0.287* -0.287* -0.285* -0.286* -0.286* -0.284* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_2003 -0.156* -0.157* -0.156* -0.156* -0.156* -0.155* 

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

BASS_LAKE‡ -0.127* -0.130* -0.080* -0.125* -0.128* -0.077* 

 

(0.025) (0.025) (0.027) (0.016) (0.016) (0.018) 

BAY_LAKE_B -0.306* -0.297* -0.260* -0.302* -0.293* -0.255* 

 

(0.033) (0.033) (0.034) (0.032) (0.032) (0.033) 

BEARHEAD_L~E -0.089* -0.090* -0.041 -0.086* -0.087* -0.037 

 

(0.025) (0.025) (0.027) (0.026) (0.025) (0.026) 

BIG_SAND_L~E 0.203* 0.198* 0.162* 0.203* 0.198* 0.162* 

 

(0.014) (0.014) (0.015) (0.014) (0.014) (0.016) 

CLEAR_LAKE -0.380* -0.375* -0.361* -0.378* -0.373* -0.359* 

 

(0.020) (0.020) (0.021) (0.018) (0.018) (0.018) 

DEEP_LAKE -0.082*** -0.078* 0.003 -0.080* -0.077** 0.006 

 

(0.044) (0.044) (0.046) (0.030) (0.031) (0.036) 

KASEY_LAKE -0.259* -0.256* -0.197* -0.261* -0.258* -0.198* 

 

(0.019) (0.019) (0.022) (0.020) (0.021) (0.024) 

KELLY_LAKE -0.325* -0.322* -0.222* -0.326* -0.324* -0.222* 

 

(0.019) (0.019) (0.027) (0.018) (0.019) (0.027) 

KRISTY_LAKE -0.334* -0.333* -0.239* -0.335* -0.334* -0.238* 

 

(0.018) (0.018) (0.026) (0.019) (0.019) (0.026) 

LAKE_ADAIR 0.092* 0.091* 0.134* 0.092* 0.091* 0.135* 

 

(0.024) (0.024) (0.026) (0.021) (0.021) (0.023) 

LAKE_ANDER~N -0.091* -0.093* -0.038 -0.088* -0.090* -0.034** 

 

(0.024) (0.024) (0.027) (0.016) (0.016) (0.018) 
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LAKE_ANGEL -0.492* -0.499* -0.435* -0.490* -0.496* -0.431* 

 

(0.029) (0.029) (0.032) (0.023) (0.023) (0.025) 

LAKE_ARNOLD -0.132* -0.134* -0.085* -0.130* -0.133* -0.083* 

 

(0.025) (0.025) (0.027) (0.018) (0.018) (0.020) 

LAKE_BALDWIN 0.010 0.012 0.026 0.013 0.016 0.030 

 

(0.030) (0.030) (0.030) (0.018) (0.019) (0.020) 

LAKE_BARTON -0.214* -0.215* -0.193* -0.211* -0.212* -0.190* 

 

(0.029) (0.029) (0.029) (0.016) (0.016) (0.017) 

LAKE_BEARD~L -0.551* -0.558* -0.471* -0.544* -0.551* -0.462* 

 

(0.061) (0.061) (0.064) (0.048) (0.048) (0.051) 

LAKE_BEAUTY -0.150* -0.149* -0.032 -0.150* -0.149* -0.029 

 

(0.043) (0.043) (0.049) (0.039) (0.039) (0.045) 

LAKE_BELL -0.206* -0.203* -0.160* -0.206* -0.203* -0.159* 

 

(0.029) (0.029) (0.030) (0.024) (0.025) (0.027) 

LAKE_BERRY 0.151* 0.151* 0.183* 0.151* 0.151* 0.184* 

 

(0.031) (0.031) (0.031) (0.018) (0.019) (0.021) 

LAKE_BESSIE 0.542* 0.527* 0.532* 0.544* 0.528* 0.533* 

 

(0.048) (0.048) (0.048) (0.023) (0.023) (0.023) 

LAKE_BLANCHE 0.059* 0.057* 0.070* 0.059* 0.057* 0.071* 

 

(0.012) (0.012) (0.013) (0.013) (0.013) (0.014) 

LAKE_BUCHA~N -0.151* -0.152* -0.113* -0.149* -0.150* -0.111* 

 

(0.025) (0.025) (0.026) (0.029) (0.029) (0.030) 

LAKE_BUCK 0.513* 0.512* 0.532* 0.520* 0.520* 0.540* 

 

(0.059) (0.059) (0.059) (0.025) (0.024) (0.022) 

LAKE_BUMBY -0.134* -0.134* -0.065** -0.131* -0.132* -0.061** 

 

(0.023) (0.023) (0.026) (0.026) (0.026) (0.029) 

LAKE_BURKETT 0.008 0.013 0.050 0.011 0.016 0.054** 

 

(0.042) (0.042) (0.043) (0.024) (0.026) (0.028) 

LAKE_BUTLER -0.012 -0.015 -0.066* -0.01 -0.013 -0.066* 

 

(0.019) (0.019) (0.022) (0.012) (0.013) (0.016) 

LAKE_C -0.170* -0.172* -0.105* -0.168* -0.170* -0.102* 

 

(0.028) (0.028) (0.031) (0.017) (0.017) (0.021) 

LAKE_CANE_A -0.045* -0.047* -0.022** -0.045* -0.047* -0.021 

 

(0.010) (0.010) (0.011) (0.013) (0.013) (0.014) 

LAKE_CATHE~B 0.139*** 0.149** 0.201* 0.140* 0.150* 0.203* 

 

(0.072) (0.072) (0.073) (0.046) (0.046) (0.047) 

LAKE_CAY_DEE -0.113* -0.116* -0.034 -0.112* -0.115* -0.032 

 

(0.030) (0.030) (0.034) (0.021) (0.021) (0.026) 

LAKE_CHARITY 0.129* 0.132* 0.181* 0.128* 0.131* 0.180* 

 

(0.046) (0.046) (0.047) (0.035) (0.036) (0.037) 

LAKE_CHASE 0.487* 0.478* 0.490* 0.489* 0.480* 0.492* 
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(0.066) (0.065) (0.065) (0.031) (0.031) (0.031) 

LAKE_CHERO~E 0.055*** 0.053***  0.109* 0.056** 0.054** 0.111* 

 

(0.032) (0.032) (0.034) (0.027) (0.027) (0.029) 

LAKE_CHRIS~E -0.158* -0.159* -0.103* -0.156* -0.156* -0.099* 

 

(0.025) (0.025) (0.028) (0.033) (0.033) (0.035) 

LAKE_COMO -0.009 -0.015 0.088* -0.008 -0.013 0.091* 

 

(0.026) (0.026) (0.033) (0.019) (0.019) (0.027) 

LAKE_CONCORD -0.044 -0.044 -0.010 -0.043 -0.043 -0.009 

 

(0.032) (0.032) (0.033) (0.028) (0.028) (0.029) 

LAKE_CONWAY -0.043*** -0.047**  -0.096* -0.040* -0.044* -0.094* 

 

(0.023) (0.023) (0.025) (0.012) (0.011) (0.015) 

LAKE_COPEL~D -0.018 -0.019 0.032 -0.016 -0.017 0.036 

 

(0.038) (0.038) (0.040) (0.030) (0.030) (0.031) 

LAKE_DANIEL -0.135* -0.131* -0.064** -0.134* -0.131* -0.062*** 

 

(0.028) (0.028) (0.031) (0.030) (0.030) (0.033) 

LAKE_DESTINY 0.223* 0.220* 0.281* 0.221* 0.219* 0.281* 

 

(0.030) (0.030) (0.032) 0.032) (0.032) (0.035) 

LAKE_DOT -0.485* -0.492* -0.413* -0.482* -0.490* -0.409* 

 

(0.045) (0.045) (0.047) (0.035) (0.035) (0.038) 

LAKE_DOVER -0.094* -0.096* -0.009 -0.092** -0.094* -0.005 

 

(0.030) (0.030) (0.035) (0.036) (0.036) (0.040) 

LAKE_DOWN 0.031* 0.034* -0.005 0.032* 0.035* -0.006 

 

(0.011) (0.011) (0.013) (0.011) (0.011) (0.013) 

LAKE_DOWNEY -0.005 0.004 0.074*** -0.003 0.007 0.078* 

 

(0.041) (0.041) (0.043) (0.014) (0.016) (0.022) 

LAKE_DRUID -0.005 -0.010 0.049*** -0.004 -0.009 0.051** 

 

(0.025) (0.025) (0.028) (0.019) (0.019) (0.022) 

LAKE_EMERALD 0.077 0.077 0.141* 0.081* 0.081* 0.146* 

 

(0.048) (0.048) (0.050) (0.023) (0.024) (0.028) 

LAKE_EOLA -0.105** -0.112** -0.062 -0.102* -0.109* -0.059 

 

(0.045) (0.045) (0.046) (0.035) (0.035) (0.036) 

LAKE_ESTELLE 0.031 0.031 0.071** 0.031 0.031 0.071** 

 

(0.032) (0.032) (0.033) (0.028) (0.029) (0.030) 

LAKE_FAIRH~E -0.072*** -0.066***   -0.006 -0.069** -0.062*** -0.001 

 

(0.040) (0.040) (0.041) (0.033) (0.033) (0.035) 

LAKE_FAIRV~W -0.259* -0.258* -0.258* -0.258* -0.257* -0.257* 

 

(0.023) (0.022) (0.022) (0.018) (0.018) (0.019) 

LAKE_FAITH -0.005 -0.004 0.056 -0.003 -0.002 0.060 

 

(0.049) (0.048) (0.050) (0.035) (0.035) (0.038) 

LAKE_FARRAR -0.090* -0.101* -0.018 -0.088* -0.100* -0.015 

 

(0.026) (0.026) (0.031) (0.019) (0.019) (0.024) 
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LAKE_FORMOSA -0.036 -0.036 0.007 -0.035 -0.035 0.009 

 

(0.030) (0.029) (0.031) (0.024) (0.024) (0.026) 

LAKE_FREDR~A 0.146* 0.152* 0.188* 0.148* 0.155* 0.191* 

 

(0.030) (0.030) (0.031) (0.017) (0.017) (0.018) 

LAKE_GATLIN 0.032 0.040 0.071** 0.035 0.044*** 0.076* 

 

(0.032) (0.032) (0.032) (0.025) (0.024) (0.025) 

LAKE_GEAR -0.049 -0.054*** 0.032 -0.046*** -0.052*** 0.037 

 

(0.033) (0.033) (0.037) (0.027) (0.027) (0.032) 

LAKE_GEM_A -0.102* -0.098* -0.024 -0.101* -0.098* -0.022 

 

(0.032) (0.032) (0.035) (0.023) (0.024) (0.029) 

LAKE_GEM_M~Y -0.048*** -0.051*** 0.007 -0.047** -0.050** 0.010 

 

(0.027) (0.027) (0.029) (0.021) (0.021) (0.023) 

LAKE_GEORGE -0.024 -0.023 0.010 -0.021 -0.021 0.013 

 

(0.025) (0.025) (0.026) (0.014) (0.014) (0.015) 

LAKE_GEORGIA 0.064 0.073*** 0.106** 0.065* 0.074* 0.108* 

 

(0.044) (0.044) (0.044) (0.017) (0.019) (0.022) 

LAKE_GILES -0.162* -0.162* -0.118* -0.160* -0.160* -0.115* 

 

(0.026) (0.026) (0.028) (0.019) (0.019) (0.021) 

LAKE_GLORIA -0.064* -0.067* -0.029 -0.062* -0.065* -0.025 

 

(0.020) (0.020) (0.022) (0.018) (0.018) (0.019) 

LAKE_GREEN~D -0.068*** -0.076** 0.019 -0.066** -0.074** 0.023 

 

(0.037) (0.037) (0.041) (0.030) (0.030) (0.035) 

LAKE_HART 0.248* 0.240* 0.249* 0.254* 0.245* 0.255* 

 

(0.046) (0.046) (0.046) (0.025) (0.023) (0.021) 

LAKE_HIAWA~E -0.132* -0.132* -0.121* -0.133* -0.133* -0.121* 

 

(0.008) (0.008) (0.008) (0.010) (0.010) (0.010) 

LAKE_HIGHL~D 0.004 -0.001 0.042 0.005 0.000 0.044*** 

 

(0.028) (0.028) (0.029) (0.022) (0.022) (0.024) 

LAKE_HOLDEN -0.347* -0.344* -0.325* -0.345* -0.342* -0.323* 

 

(0.019) (0.019) (0.020) (0.015) (0.015) (0.015) 

LAKE_HOPE -0.160* -0.156* -0.102*** -0.154* -0.150* -0.094*** 

 

(0.061) (0.060) (0.061) (0.051) (0.052) (0.053) 

LAKE_HUNGE~D -0.371* -0.368* -0.298* -0.369* -0.366* -0.294* 

 

(0.037) (0.037) (0.039) (0.030) (0.030) (0.033) 

LAKE_IRMA 0.007 0.012 0.040 0.008 0.013 0.041** 

 

(0.039) (0.038) (0.039) (0.015) (0.017) (0.019) 

LAKE_ISLEW~H 0.329* 0.322* 0.358* 0.331* 0.324* 0.362* 

 

(0.083) (0.082) (0.082) (0.039) (0.039) (0.040) 

LAKE_IVANHOE 0.068* 0.066* 0.090* 0.068* 0.066* 0.091* 

 

(0.023) (0.023) (0.023) (0.018) (0.018) (0.019) 

LAKE_JACKSON 0.090** 0.094** 0.144* 0.091* 0.095* 0.147* 
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(0.045) (0.045) (0.046) (0.030) (0.030) (0.032) 

LK_JEN_JEWEL -0.151* -0.150* -0.120* -0.149* -0.148* -0.117* 

 

(0.024) (0.024) (0.025) (0.021) (0.020) (0.021) 

LAKE_JESSA~E -0.245* -0.248* -0.242* -0.242* -0.245* -0.239* 

 

(0.018) (0.018) (0.018) (0.013) (0.013) (0.013) 

LAKE_KILLA~Y -0.111* -0.109* -0.096* -0.110* -0.108* -0.095* 

 

(0.026) (0.026) (0.026) (0.018) (0.018) (0.019) 

LAKE_KOZART -0.303* -0.315* -0.277* -0.302* -0.314* -0.275* 

 

(0.017) (0.017) (0.019) (0.017) (0.017) (0.018) 

LAKE_LANCA~R -0.003 -0.003 0.033 -0.002 -0.002 0.036*** 

 

(0.025) (0.025) (0.026) (0.018) (0.018) (0.019) 

LAKE_LAWSONA 0.115* 0.109* 0.172* 0.116* 0.110* 0.175* 

 

(0.028) (0.028) (0.031) (0.023) (0.023) (0.026) 

LAKE_LOUIS~B 0.404* 0.399* 0.414* 0.405* 0.401* 0.416* 

 

(0.052) (0.052) (0.052) (0.023) (0.023) (0.024) 

LAKE_LOVE 0.235* 0.229* 0.339* 0.233* 0.226* 0.339* 

 

(0.034) (0.034) (0.040) (0.041) (0.042) (0.047) 

LAKE_LOVELY -0.288* -0.289* -0.248* -0.288* -0.289* -0.247* 

 

(0.025) (0.025) (0.026) (0.021) (0.022) (0.024) 

LAKE_LURNA 0.001 -0.000 0.065** 0.002 0.001 0.068* 

 

(0.029) (0.029) (0.032) (0.022) (0.022) (0.025) 

LAKE_MABEL 0.163* 0.157* 0.158* 0.165* 0.158* 0.160* 

 

(0.027) (0.026) (0.026) (0.023) (0.024) (0.024) 

LAKE_MAITL~D 0.327* 0.329* 0.336* 0.327* 0.39* 0.36* 

 

(0.030) (0.030) (0.030) (0.017) (0.018) (0.020) 

LAKE_MANN -0.406* -0.408* -0.390* -0.403* -0.405* -0.387* 

 

(0.023) (0.023) (0.023) (0.020) (0.020) (0.021) 

LAKE_MARSHA -0.006 -0.008 0.015 -0.006 -0.008 0.016 

 

(0.011) (0.011) (0.011) (0.014) (0.014) (0.015) 

LAKE_MINNE~A 0.125* 0.130* 0.159* 0.125* 0.130* 0.160* 

 

(0.032) (0.032) (0.032) (0.021) (0.022) (0.024) 

LAKE_MIZELL 0.320* 0.322* 0.359* 0.321* 0.323* 0.361* 

 

(0.041) (0.041) (0.042) (0.027) (0.027) (0.029) 

LAKE_NAN -0.017 -0.012 0.042 -0.015 -0.010 0.046 

 

(0.040) (0.040) (0.041) (0.027) (0.028) (0.031) 

LAKE_NONA 0.433* 0.440* 0.419* 0.438* 0.446* 0.424* 

 

(0.048) (0.047) (0.047) (0.027) (0.026) (0.025) 

LAKE_OFWOODS -0.691* -0.710* -0.653* -0.687* -0.706* -0.648* 

 

(0.055) (0.055) (0.056) (0.051) (0.051) (0.052) 

LAKE_OLIVE -0.126* -0.126* -0.054 -0.12* -0.123* -0.049 

 

(0.044) (0.044) (0.046) (0.035) (0.034) (0.037) 



51 

 

LAKE_OLYMPIA -0.267* -0.264* -0.242* -0.268* -0.265* -0.242* 

 

(0.014) (0.014) (0.015) (0.016) (0.016) (0.016) 

LAKE_ORLANDO -0.243* -0.241* -0.219* -0.244* -0.241* -0.219* 

 

(0.019) (0.019) (0.019) (0.019) (0.019) (0.020) 

LAKE_OSCEOLA 0.360* 0.362* 0.384* 0.360* 0.362* 0.384* 

 

(0.033) (0.033) (0.033) (0.017) (0.018) (0.020) 

LAKE_PAMELA -0.359* -0.359* -0.297* -0.358* -0.358* -0.295* 

 

(0.034) (0.034) (0.036) (0.036) (0.036) (0.038) 

LAKE_PEARL_B -0.177* -0.184* -0.145* -0.177* -0.184* -0.144* 

 

(0.012) (0.012) (0.015) (0.014) (0.013) (0.015) 

LAKE_PICKETT 0.257* 0.266* 0.256* 0.269* 0.277* 0.268* 

 

(0.078) (0.078) (0.078) (0.050) (0.051) (0.052) 

LAKE_PINEL~H -0.109* -0.112* -0.077* -0.107* -0.110* -0.074* 

 

(0.023) (0.023) (0.024) (0.016) (0.016) (0.017) 

LAKE_PORTER -0.080* -0.086* -0.037 -0.078* -0.085* -0.035** 

 

(0.026) (0.026) (0.027) (0.014) (0.014) (0.017) 

LAKE_RABAMA -0.120* -0.123* -0.038 -0.118* -0.121* -0.034 

 

(0.026) (0.026) (0.031) (0.017) (0.017) (0.023) 

LAKE_RICHM~D -0.324* -0.322* -0.292* -0.321* -0.318* -0.287* 

 

(0.022) (0.021) (0.022) (0.021) (0.021) (0.021) 

LAKE_ROBERTS 0.027 0.022 0.042*** 0.028* 0.022 0.043** 

 

(0.023) (0.023) (0.023) (0.017) (0.017) (0.017) 

LAKE_ROSE_B -0.132* -0.131* -0.108* -0.132* -0.132* -0.108* 

 

(0.010) (0.010) (0.011) (0.012) (0.012) (0.013) 

LAKE_ROWENA -0.009 -0.012 0.024 -0.008 -0.011 0.026 

 

(0.027) (0.027) (0.028) (0.020) (0.021) (0.022) 

LAKE_SANTI~O -0.117* -0.120* -0.054*** -0.115* -0.117* -0.050** 

 

(0.028) (0.028) (0.031) (0.018) (0.018) (0.022) 

LAKE_SARAH -0.123* -0.119* -0.059 -0.123* -0.19* -0.058 

 

(0.036) (0.036) (0.038) (0.041) (0.041) (0.043) 

LAKE_SHADOW -0.151* -0.147* -0.115* -0.151* -0.148* -0.115* 

 

(0.025) (0.025) (0.025) (0.022) (0.023) (0.024) 

LAKE_SHANNON -0.098* -0.100* -0.011 -0.097* -0.099* -0.008 

 

(0.028) (0.028) (0.032) (0.017) (0.018) (0.025) 

LAKE_SHEEN 0.223* 0.220* 0.201* 0.223* 0.221* 0.202* 

 

(0.019) (0.019) (0.019) (0.016) (0.016) (0.017) 

LAKE_SHERW~D -0.185* -0.189* -0.168* -0.186* -0.190* -0.169* 

 

(0.012) (0.012) (0.012) (0.014) (0.014) (0.014) 

LAKE_SILVER 0.018 0.018 0.051** 0.018 0.018 0.052* 

 

(0.021) (0.021) (0.022) (0.017) (0.017) (0.018) 

LAKE_STARKE -0.302* -0.298* -0.287* -0.302* -0.298* -0.287* 
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(0.016) (0.016) (0.017) (0.017) (0.017) (0.017) 

LAKE_SUE 0.112* 0.112* 0.135* 0.113* 0.113* 0.136* 

 

(0.027) (0.027) (0.028) (0.017) (0.017) (0.019) 

LAKE_SUNSET -0.486* -0.493* -0.443* -0.481* -0.488* -0.437* 

 

(0.039) (0.039) (0.041) (0.033) (0.033) (0.034) 

LAKE_SUSAN~H -0.090* -0.092* -0.057*** -0.087* -0.089* -0.054* 

 

(0.029) (0.029) (0.030) (0.016) (0.017) (0.019) 

LAKE_SYBELIA -0.024 -0.024 0.010 -0.024 -0.024 0.011 

 

(0.036) (0.036) (0.036) (0.026) (0.027) (0.029) 

LAKE_SYLVAN 0.264* 0.266* 0.328* 0.264* 0.266* 0.329* 

 

(0.034) (0.034) (0.036) (0.021) (0.022) (0.026) 

LAKE_TENNE~E -0.177* -0.181* -0.111* -0.174* -0.178* -0.106* 

 

(0.027) (0.027) (0.030) (0.018) (0.018) (0.022) 

LAKE_TERRACE -0.187* -0.190* -0.104* -0.185* -0.188* -0.100* 

 

(0.024) (0.024) (0.030) (0.016) (0.016) (0.023) 

LAKE_THERESA -0.064** -0.066** 0.057 -0.063* -0.065* 0.060*** 

 

(0.030) (0.030) (0.038) (0.024) (0.024) (0.034) 

LAKE_TIBET 0.297* 0.295* 0.253* 0.298* 0.296* 0.254* 

 

(0.014) (0.014) (0.016) (0.013) (0.013) (0.015) 

LAKE_UNDER~L -0.129* -0.131* -0.108* -0.126* -0.129* -0.105* 

 

(0.027) (0.027) (0.028) (0.020) (0.020) (0.020) 

LAKE_VIRGI~A 0.286* 0.286* 0.303* 0.286* 0.286* 0.303* 

 

(0.029) (0.029) (0.029) (0.017) (0.018) (0.019) 

LAKE_WADE -0.101* -0.105* -0.040 -0.099* -0.103* -0.037 

 

(0.026) (0.026) (0.029) (0.019) (0.019) (0.023) 

LAKE_WALKER -0.385* -0.384* -0.335* -0.384* -0.382* -0.332* 

 

(0.036) (0.036) (0.037) (0.029) (0.029) (0.030) 

LAKE_WARREN -0.070* -0.069* -0.029 -0.068* -0.066* -0.025 

 

(0.025) (0.025) (0.027) (0.021) (0.020) (0.021) 

LAKE_WAUNA~A 0.060 0.063*** 0.099** 0.061* 0.063* 0.101* 

 

(0.038) (0.038) (0.039) (0.020) (0.021) (0.024) 

LAKE_WELDONA -0.046 -0.049 0.000 -0.044*** -0.047** 0.003 

 

(0.031) (0.031) (0.032) (0.024) (0.024) (0.026) 

LAKE_WESTON -0.343* -0.340* -0.298* -0.344* -0.340* -0.297* 

 

(0.023) (0.023) (0.025) (0.022) (0.022) (0.024) 

LAKE_WHIPP~R 0.131* 0.123* 0.134* 0.137* 0.129* 0.141* 

 

(0.045) (0.045) (0.045) (0.026) (0.025) (0.023) 

LAKE_WINYAH 0.103* 0.100* 0.151* 0.103* 0.100* 0.151* 

 

(0.024) (0.024) (0.026) (0.017) (0.018) (0.021) 

LAWNE_LAKE -0.290* -0.296* -0.273* -0.291* -0.297* -0.274* 

 

(0.016) (0.016) (0.017) (0.016) (0.016) (0.017) 
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LITTLE_FISH 0.480* 0.476* 0.516* 0.480* 0.477* 0.518* 

 

(0.017) (0.017) (0.019) (0.020) (0.020) (0.021) 

LIT_LK_FAIR -0.136* -0.136* -0.105* -0.136* -0.136* -0.105* 

 

(0.025) (0.025) (0.026) (0.020) (0.021) (0.022) 

LITTLE_SAND 0.231* 0.235* 0.247* 0.231* 0.236* 0.248* 

 

(0.015) (0.015) (0.015) (0.021) (0.021) (0.021) 

LONG_LAKE -0.348* -0.346* -0.322* -0.350* -0.348* -0.323* 

 

(0.020) (0.020) (0.020) (0.020) (0.020) (0.021) 

MUD_LAKE_C 0.094** 0.106** 0.171* 0.096** 0.107* 0.174* 

 

(0.047) (0.046) (0.048) (0.039) (0.040) (0.042) 

PALM_LAKE 0.035* 0.038* 0.103* 0.035* 0.038* 0.105* 

 

(0.010) (0.010) (0.016) (0.012) (0.012) (0.017) 

PARK_LAKE_B 0.030 0.024 0.090** 0.032 0.026 0.093* 

 

(0.034) (0.034) (0.036) (0.029) (0.029) (0.032) 

POCKET_LAKE 0.282* 0.280* 0.292* 0.283* 0.280* 0.293* 

 

(0.019) (0.019) (0.019) (0.018) (0.019) (0.019) 

ROCK_LAKE -0.480* -0.486* -0.444* -0.478* -0.484* -0.441* 

 

(0.026) (0.025) (0.027) (0.025) (0.025) (0.026) 

SPRING_LK_B -0.013 -0.018 0.022 -0.01 -0.015 0.025 

 

(0.024) (0.024) (0.025) (0.021) (0.021) (0.023) 

SPRING_LK_C 0.180* 0.181* 0.197* 0.183* 0.183* 0.200* 

 

(0.012) (0.012) (0.013) (0.014) (0.014) (0.015) 

Constant 42.555** 45.105** 48.569* 42.389* 44.962* 48.499* 

  (17.705) (17.662) (17.669) (7.215) (8.276) (9.458) 

Rho --- --- --- 0.001* 0.001* 0.001* 

    

(0.000) (0.000) (0.000) 

    

   
† All time variables are dummies = 1 if home sold in indicated year, 0 otherwise 

‡ All lake variables are dummies = 1 if home is closest to indicated lake, 0 otherwise. 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors appear in 

parentheses. 
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CHAPTER 2: EXAMINATION OF SPATIAL DEPENDENCE IN THE 

HEDONIC MODELING OF WATER QUALITY 

2.1. Introduction 

The treatment of spatially correlated influences has become a popular research topic in 

recent years. Traditional methods of controlling for location in hedonic property price analysis—

such as the use of dummy variables to indicate neighborhood, census tract, or town—have been 

shown to insufficiently capture the underlying spatial structure (Dubin 1998; Anselin 1999; Case 

et al. 2004; Anselin and Le Gallo 2006; Anselin and Lozano-Gracia 2008). The broad field of 

spatial econometrics has been developed to address these issues and provides tools to more 

effectively capture spatial structure and correlations. This remains, however, a relatively new 

field that lacks guidance in several areas. 

 The purpose of this chapter is to both explore some unanswered spatial questions and to 

further investigate the spatial sensitivity of the regressions in the first chapter. A specific focus of 

this chapter is differences caused by the spatial weights matrix (SWM). Most approaches to 

spatial analysis use a SWM to represent the spatial configuration of the data. This matrix plays a 

key role in the modeling process, yet there is limited theoretical guidance about its proper form 

(Mueller and Loomis 2008). This chapter investigates the impact of varying the SWM on the two 

core spatial models and compares the resulting differences. Another area with limited theoretical 

guidance is the functional form of the hedonic model. The most popular method of functional 

form testing involves the Box-Cox model; however the use of spatial econometric techniques 

complicates the Box-Cox test. Recent evidence indicates that the functional form of the 

regression can affect tests of spatial dependence and spatial modeling (McMillen 2003; Boxall, 

Chan, and McMillan 2005). This chapter uses a new double-length regression (DLR) test to 
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explore a spatial Box-Cox test, which is used to jointly test issues of spatial dependence and 

functional form.  

 Two central spatial specifications are investigated: the spatial error and spatial lag 

models. Six total variations of the two most popular types of weights matrices are used in 

conjunction with each of these models. The first type of spatial weights matrix is based on 

specifying a fixed number of neighbors for each parcel, while the second type defines the 

neighbor set using spatial and temporal distances between the parcels. These two types of 

SWM’s and their variations are the most popular configurations encountered in the literature. 

However, the choice of SWM in most spatial papers is not explained. This chapter hypothesizes 

that the distance-based SWM’s are superior to the nearest neighbor specifications. They 

introduce more information into the SWM and mitigate the influence of outliers. 

 A forecasting exercise is used to compare the various spatial models. This procedure 

splits the data and uses out-of-sample forecasting to gauge the fit of the models. Several forms of 

forecasting error are used to evaluate each model. Case et al. (2006) use a similar procedure to 

compare several more exotic spatial models.  

2.2. Data 

 The data in this chapter come from the same dataset used in Chapter 1. The analysis 

begins with 54,712 property sales from Orange County, Florida. As in Chapter 1, these data have 

been matched with US Census variables, water quality variables, and GIS maps. As the purpose 

of this chapter is to estimate and then forecast out-of-sample, the data are randomly split into two 

groups. The first group contains 44,712 property sales and the second group contains the 
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remaining 10,000 property sales. The first group is used to estimate the various spatial models 

while the second group is used for forecasting.  

 The proportion of observations in the prediction group and the forecasting group falls 

between two recent studies that employ a similar approach. Case et al. (2004) use approximately 

a 90/10 percent split in their sample and Bourassa, Cantoni, and Hoesli (2007) use an 80/20 

percent split. The split of 84/26% in the current paper falls in between the two previous papers. 

Summary statistics for this new smaller dataset appear in Table 7. The mean waterfront 

property price in the sample of 45,712 observations is $451,086.90 and the mean non-waterfront 

property price is $200,383.40, which are very close to the full sample values of $452,646.20 and 

$199,982.40 (appearing in Table 2). Also, the average heated area for both waterfront and non-

waterfront homes only change by approximately one foot and the average home ages are almost 

identical. Overall, Table 7 shows only minor changes in the average variables from the full 

dataset.  

2.3. Literature Review 

The influence of spatial econometrics has spread to a variety of economic fields in recent 

years. For instance, in 2008 the Nobel prize was won by Paul Krugman, whose contributions to 

the ―New Economic Geography‖ arose out of issues in regional science such as imperfect 

competition and increasing returns to scale (Florax and Van der Vlist 2003). Arbia (2006) 

discusses recent attempts to update the Solow Model and estimate cross-country convergence in 

growth levels using spatial econometric techniques. Spatial correlation was found to be an 

important influence on regional growth levels. In the sphere of public policy, Lacombe (2004) 
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analyzes the use of spatial econometric techniques in analyses of public policy, with a specific 

application to Food Stamp programs.  

Anselin (1988) roughly defines spatial dependence as the presence of a functional 

relationship between occurrences at one particular point in space and similar occurrences at other 

points. Early work on spatial issues arose from several statisticians in the 1940s and 1950s, with 

notable contributions by Moran (who later developed a test for spatial dependence), Geary, and 

Whittle (Florax and Van der Vlist 2003). Serious progress in the area began with the publication 

of Spatial Autocorrelation in 1973 (Cliff and Ord 1973), which covers many of the early 

approaches to handling spatial statistics and was the first source to suggest the handling of spatial 

data with maximum likelihood techniques. The first comprehensive approach to the econometric 

modeling of spatial dependence was Anselin (1988). This book treats several of the main 

econometric approaches to handling spatial data, with a focus on the use of maximum likelihood 

techniques to analyze spatial data.  

In any analysis where location is an integral component, spatial autocorrelation is likely a 

problem (Dubin 1998). Real estate data are particularly susceptible to spatial dependence, as 

location is an essential determinant of home prices. In addition to location, there are several area-

specific determinants which can also affect the property prices of nearby homes and can be 

correlated in a regression. The neighborhood effects are rarely measured properly since proxies 

are typically used—such as census tracts. Consequently, when conducting a hedonic analysis of 

property prices these spatial error issues must be addressed. Failing to correct for spatial 

autocorrelation can result in inefficient OLS estimators and biased variance estimates (Anselin 

1999).  
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2.3.1. Past Use of Spatial Models in Hedonic Property Value Analysis 

The influence of location and spatial dependencies on property prices has given spatial 

econometrics a prominent role in modern hedonic analysis. These spatial dependencies arise 

from several sources, in particular the practice of property appraisal which uses several nearby 

―comparable sales‖ to create an estimate of the property price. This section discusses some of the 

primary hedonic analyses that have used spatial econometric techniques. 

In hedonic analyses of property prices, the first applications of spatial econometrics 

appeared in Dubin (1988, 1992) and Can (1990, 1992). Dubin (1988) draws on earlier spatial 

studies in the fields of geography and geology to use kriging to estimate the variance structure of 

the data, based on the distance between homes. Maximum likelihood techniques are used to 

estimate a hedonic regression model, and spatial techniques perform significantly better than 

traditional OLS. Can (1990) introduces a spatial expansion model that allows the structural 

coefficients to vary with neighborhood quality. Can (1992) examines the influence of both 

spatial dependence and spatial heterogeneity and investigates four different SWM’s, as well as 

linear and semi-log functional forms. Several specification tests are explored, and models are 

compared by log-likelihood values.  Dubin (1992) examines the incorporation of neighborhood 

quality into hedonic analyses. Dubin recommends a spatial error model to treat neighborhood 

quality issues directly in the error term, instead of addressing it with dummy variables. 

Using the data from the influential Harrison and Rubinfeld (1978) hedonic analysis of air 

quality, Pace and Gilley (1997) re-estimate the analysis while correcting for spatial 

autocorrelation through a simultaneous autoregression. This model uses a spatially weighted 

average of the errors on nearby properties that reduced estimated errors by 44% lower than the 

previous OLS regression. Dubin, Pace, and Thibodeau (1999) investigate several spatial error 

modeling techniques in the context of real estate data. They explain the three types of functions 
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that have been used for this purpose—correlograms, covariograms, and semivariograms—and 

illustrate their usefulness in a hedonic example. Gawande and Jenkins-Smith (2001) use a spatial 

hedonic model to estimate the impact of highly publicized shipments of nuclear waste on home 

prices along the shipment route.  

 Kim, Phipps, and Anselin (2003) use a spatial model to estimate the marginal value of air 

quality in Seoul, South Korea. Both spatial lag and spatial error models are estimated and the 

spatial dependence is an important characteristic of the data. An important contribution of this 

paper is its explanation of the marginal effects in a spatial lag model. These marginal effects will 

be different due to the appearance of the spatially lagged dependent variable appearing on the 

right hand side of the equation. This will be discussed further in section 5 of this chapter. Using 

the spatial lag model, they find that a small positive change in air pollution of approximately 4% 

results in a property price increase of $2,333, or 1.43% of the average home price. 

 Brasington and Hite (2005) analyze the demand for environmental quality in Ohio. Their 

measure of quality is the distance to nearby environmental hazards and point sources of 

pollution. Significant spatial effects are detected and a spatial Durbin model is used for 

estimation. This is one of the few papers in the environmental hazards literature to use spatial 

econometrics and one of the only papers in the broader hedonic literature to use a spatial Durbin 

model.  

In another analysis of air quality, Anselin and Le Gallo (2006) examine the interpolation 

of air pollution values to home locations in a hedonic model. A spatial lag model is used to 

control for spatial autocorrelation. Strong spatial dependence is detected in the data even after 

controlling for house and neighborhood characteristics, as done in previous hedonic analyses of 

the same market. This paper devotes significant attention to the assignment of air pollution 
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variables to homes using a kriging process. This approach is used because air pollution readings 

are typically only taken at specific monitoring sites. Kriging is a minimum mean square error 

method of spatial prediction that is popular in the geosciences literature. It uses best linear 

unbiased prediction (BLUP) to assign weights to observations based on distances (Dubin, Pace, 

and Thibodeau 1999). It is commonly used to interpolate the values of a pollutant over a 

continuous surface when the only data available are a fixed number of monitoring stations 

(Anselin and Le Gallo 2006). 

One of the most recent spatial hedonic analyses of air quality is Anselin and Lozano-

Gracia (2008). Using the data from Anselin and Le Gallo (2006), Anselin and Lozano-Gracia 

(2008) takes an ―errors in variables‖ approach to deal with the endogeneity of the air pollution 

variable. There are two potential sources of endogeneity. The first source involves residential 

sorting, where preferences for pollution affect the selection of home location. The second source 

of endogeneity arises from errors in the assignment of the pollution value, which may be 

correlated with other spatial variables and omitted variables. This paper directly deals with the 

latter type of endogeneity but they stress that, from an empirical perspective, the source of the 

endogeneity does not matter for the treatment. A spatial two stage least squares approach is used 

to confront the endogeneity, where the latitude, longitude, and the product of the two are used as 

instruments for the endogenous air pollution indicators (two are used).   

One of the few hedonic papers that evaluates differences in spatial specifications and 

SWM’s is Mueller and Loomis (2008). In a hedonic analysis of the impact of wildfires on home 

prices, they find evidence that in many studies spatial corrections do not cause substantive 

differences from the OLS estimates. They further investigate this phenomenon and use three 

different SWM’s: four nearest neighbors, eight nearest neighbors, and inverse distance. The three 
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SWM’s cause minor changes in the magnitudes of the coefficients. There are no qualitative 

differences in the implicit prices. Nonetheless, they stress that the lack of theoretical guidance for 

the SWM is a void in the literature that needs to be further analyzed. 

While a broad array of spatial techniques have been used in the hedonic literature, the 

incorporation of spatial techniques into hedonic analyses of water quality and lake proximity has 

been rather limited. Leggett and Bockstael (2000) utilize a spatial error model to estimate a 

hedonic model of water quality in the Chesapeake Bay in Maryland. While a series of tests 

indicated the presence of spatial autocorrelation, they found that correcting for spatial 

autocorrelation did not seem to produce any consistent direction in the bias in the standard errors 

in the variables of importance to the study. 

 Palmquist and Fulcher (2006) use the spatial error model in an analysis of lake proximity. 

The purpose of the article is to replicate the study by Brown and Polakowski (1977), with 

corrections for spatial dependence. Palmquist and Fulcher repeat the qualitative results of Brown 

and Pollakowski and find lake proximity to be positively related with home prices. Also, the 

implicit price of lake proximity increases with the spatial error model. The purpose of the present 

analysis is to expand the application of spatial econometrics to a hedonic analysis of water 

quality beyond a basic spatial error model.  

2.3.2. Functional Form and Spatial Dependence Tests 

As discussed in the first chapter, two econometric concerns that must be jointly 

confronted are functional form and spatial dependence. The functional form of the regression is a 

contentious issue in hedonic regression and is further aggravated by the introduction of spatial 

dependence. When the hedonic model was theoretically developed in Rosen (1974), there was no 

prescription for the proper functional form of the regression. The two econometric issues of 
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functional form and spatial dependence are interrelated and must be confronted jointly. 

McMillen (2003) uses a Monte Carlo experiment to show that spatial tests may improperly detect 

spatial autocorrelation if the functional form is incorrect.  

 A popular method of testing for functional form is the Box-Cox model (Haab and 

McConnell 2002). This model uses a transformation of the dependent and independent variables 

that can be used to test between functional forms. The most common form of the Box-Cox model 

appears below: 

( ) ( )r ry X Z               (2.1)  
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         (2.2) 

In equation (2.1) X is a matrix of continuous independent variables and Z is a matrix of non-

continuous independent variables that are not subject to the Box-Cox transformation. When r = 1 

the equation becomes linear, when r = 0 the transformation becomes the double log specification. 

This flexible functional form has not commonly been used in spatial models since it significantly 

complicates the implementation of the model and the interpretation of the results (Kim et al. 

2003). However, it is sometimes used as a preliminary check of the functional form. For 

instance, Patton and McErlean (2003) use a Box-Cox test before spatial analysis to explore the 

most appropriate functional form.  

 A test commonly used for spatial dependence is the Lagrange Multiplier (LM) test 

(Mueller and Loomis 2008), but the normal version of this test does not account for alternative 

functional forms. Baltagi and Li (2001) and Baltagi and Li (2004) developed LM tests to jointly 

test functional form restrictions and both spatial error and spatial lag dependence. These tests 
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allow an exploration of spatial dependence under alternative functional forms and are based on 

the Box-Cox model. Boxall, Chan, and McMillan (2005) use these LM tests to support the 

results of a Box-Cox test in a hedonic regression of the effects of oil and natural gas facilities on 

home prices. The main problem with the LM test, however, is that it is extremely difficult to 

estimate with large datasets. Le and Li (2008) and Le (2009) develop Double-Length Regression 

(DLR) tests that mimic the Baltagi and Li LM tests, but unlike the latter they do not require the 

computation of the Hessian or the second derivatives of the log likelihood function. The DLR 

tests can therefore be used on larger datasets and are employed in the present paper to jointly test 

functional form and spatial dependence. 

 The DLR tests first appeared in Davidson and MacKinnon (1985) for non-spatial tests of 

Box-Cox functional forms. The application of the DLR test to spatial Box-Cox models is the 

subject of two recent papers. The first paper is Le and Li (2008), which develops the DLR test 

for a spatial error model. The test begins with the Box-Cox model in equations (2.1) and (2.2), 

but the error is assumed to be of the form: 

W u               (2.3) 

where λ is a spatial autoregressive coefficient on the errors, W is a spatial weights matrix and u is 

an nx1 vector with u~N(0,σ
2
I)—the basic spatial error model. The foundation of the DLR model 

is composed of two equations from the log-likelihood function: 
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1 1
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log log 2 ( , ) ( , )
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n n

i i
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n
L k y f y  

 

           (2.4) 

where 

( ) ( )1
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
           (2.5) 

and  
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( , ) log log(1 ) ( 1)logi i ik y r y              (2.6) 

Which is an element of the column vector k(y,θ), and in a similar fashion an individual element 

of f(y,θ) is fi(y θ). To define (2.6), Le and Li use a result from Anselin (1988):  

1

log | | log(1 )
n

i

i

I W 


           (2.7) 

where i  are the eigenvalues of the SWM W. The parameters of the equation are contained in 

the vector θ = (ζ,β’,γ’,λ’,r). 

Now, define: 
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Given these definitions, the DLR regression is performed by estimating the following model: 

( , ) ( , )

( , )n

f y F y
e

K y

 


 

   
    
  

         (2.10) 

where F(y,θ) and K(y,θ) are n x (K+L+3) (y is n x 1, X is n x K, and z is n x L), δ is (K+L+3) x 1, 

ιn is an n x 1 vector of ones, and e is the residual. Following Davidson and MacKinnon (1985), to 

compute the DLR test for a null hypothesis, the restricted maximum likelihood estimates of θ, F, 

and K are computed and the regression in (2.10) is performed. The test statistic is the explained 

sum of squares in this regression, which is distributed as 2

R , where the degrees of freedom are 

the number of restrictions under the null hypothesis. 

 The spatial lag version of the DLR test defined in Le (2009) is a slight variation of the 

above procedure. The starting point is a spatial lag Box-Cox equation: 

( ) ( ) ( )r r ry Wy X Z               (2.11) 
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where ρ is the familiar spatial lag coefficient and X and Z are defined as in equation (2.1). This 

equation can be rewritten as; 

( ) ( )1 1
( ) ( )r rI W y X Z   

 
            (2.12) 

Where both sides of the equation have been divided by the standard deviation so that the error 

terms are normally distributed, or (ε/ζ)~N(0,I). 

 The f and k functions are now defined as:  

( ) ( )1
( , ) [( ) ]r rf y I W y X Z   


           (2.13) 
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( , ) log( ) log(1 ) ( 1) log( )
n n

i i

i i

k y T w r y  
 

            (2.14) 

Given these new equations, F(y,θ) and K(y,θ) are defined as in (2.8) and (2.9). The DLR test 

statistic is computed the same way as with the spatial error model, using the regression given by 

(2.10) with the new F and K functions. 

2.3.3. Spatial Weights Matrix 

 Anselin (1999) shows that spatial autocorrelation can be formally expressed by the 

moment condition: Cov[yi,yj]=Eyiyj– EyiE[yj]≠ 0, for i≠j, where i, j refer to individual 

observations (locations). In most settings, there is inadequate information present to estimate this 

covariance matrix directly from the data. As the number of observations (N) grows, the 

covariance matrix grows by N
2
. The typical approach for dealing with this information shortfall 

is to impose a structure on the functional relationships between observations in space. This is 

done through the construction of an N x N SWM. The imposition of a spatial structure on the 

underlying spatial system allows empirical estimation and testing of other relationships in the 

data. 
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 The original methods espoused for constructing a SWM were advanced by Moran (1948) 

and Geary (1954) and were based on the notion of contiguity. SWM’s were constructed by 

entering a 1 in the wij position of the SWM if observation i and observation j are spatially 

contiguous. This approach to the classification of space is useful when analyzing geographical 

units such as counties, states, or voting districts. However, in applications where direct 

contiguity is not common and individual observations are much smaller, such as real estate sales 

data where direct neighbors will not frequently sell their homes within similar time periods, this 

type of SWM fails to adequately capture space. More appropriate definitions of the SWM are 

based on defining a set of neighbors that influence each observation. Anselin (1988) gives 

several possibilities for this, and formally defines the concept as follows. Assume there exists a 

system S of N spatial observations and a variable x that is observed for each of these 

observations. The set of neighbors for observation i is J such that P[xi | x] = P[xi | xJ], where P[.] 

indicates probability. A less strict definition is ( j | P[xi] ≠ P[xi | xJ]). A more strict definition that 

explicitly includes concerns with space and distance, and is recommended by Anselin, is ( j | 

P[xi] ≠ P[xi | xJ] and dij < ϵij), where ϵij is a cutoff point for each spatial unit (which almost always 

is the same for each unit) and dij is the distance between observations i and j. 

 A primary objective of the construction of the SWM is to define the spatial configuration 

of the data. As discussed in Chapter 1, there are many unobserved spatially-correlated 

characteristics that may affect the prices of nearby homes. Individual neighborhoods may have 

unobservable codes or covenants. Also, certain neighborhoods may have local parks, proximity 

to shopping areas, playgrounds, and other amenities or disamenities that may affect local housing 

prices in a similar fashion. Additionally, the size of an individual home in relation to other homes 

in a neighborhood may affect the home price. Traditional ways to control for these neighborhood 
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effects involve using indicator variables or latitude and longitude coordinates of homes. 

However, unlike time variables, where organization is usually intuitive (such as annual or 

monthly dummies), spatial configurations are less clear. The optimal spatial configuration of 

neighborhood indicators can also vary significantly over a landscape. Dubin (1998) finds that the 

use of neighborhood indicators is typically unable to adequately capture the spatial configuration 

of homes. Pace et al. (1998) compare a hedonic model with 28 variables that uses spatial 

indicators to a simpler 12 variable spatial model that accounts for space and time in a SWM. The 

spatial model significantly outperforms the OLS model with indicator variables. 

The most common forms of SWM’s are based on either distance or n nearest neighbors. 

Both of these forms fit into the above neighbor definition. The former includes in the neighbor 

set all homes within a given distance and uses one of several options for the individual elements 

in the SWM. In one variation, if observation j is within the distance boundary of observation i, 

wij = 1, otherwise wij = 0. This specification, however, more closely resembles the nearest 

neighbor specification described below. Alternatively, one could use a function of the actual 

distance in wij, such as the inverse distance between i and j. For instance, if inverse distance is 

used, wij = (1/dij) if dij > B, where B is a maximum distance boundary, and wij = 0 otherwise. 

Inverse distance squared has also been used, where wij = (1/dij
2
) (Can 1992). Functions of the 

inverse distance are popular because homes that are farther away from the subject property 

receive less weight in the SWM. 

In some of the original versions of weights matrices, Cliff and Ord (1973) recommend 

the use of distance in the SWM. They propose several versions of the SWM that use a 

combination of distance and the size of the regional unit (since the applications were mostly in 

regional science, this was appropriate). Weights matrices based on distance have become popular 
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in the literature, as they allow a relatively flexible definition of the neighborhood. Also, they 

admit more information into the SWM with respect to the relationship between individual 

observations. 

While distance has been incorporated into spatial analyses, the influence of time has only 

recently been included in the construction of the SWM. The incorporation of time was briefly 

discussed in Chapter 1, where it was emphasized that it is prudent to recognize the dynamic 

variation in spatial attributes if the data span several years. During the time period analyzed in 

this paper, the housing market was experiencing a significant expansion. The construction of 

new homes, apartments, and condos accelerated in Orlando and the neighboring areas. 

Consequently, the composition of many neighborhoods within the area changed, so that omitted 

neighborhood variables in one year may not correspond to those in the next year.  

Several papers have attempted to control for these issues in recent years. Pace et al. 

(1998) propose a spatiotemporal autoregressive (STAR) model, and use a time weights matrix as 

well as a spatial weights matrix. A function of these two matrices is used as the overall weights 

matrix in the spatial regressions. Their weights matrix is fundamentally different than most used 

in the literature because it is constructed to be a lower diagonal matrix organized by sales dates 

from oldest to newest. This aids in later filtering and computation using OLS instead of the 

typical maximum-likelihood approach. Case et al. (2004), in a study previously mentioned in this 

paper, use multiple techniques in an attempt to control for both spatial and temporal influences. 

Pace and Gilley (1998) also use both a SWM (S) and a time weights matrix (T), and multiply (I – 

S) by (I – T) to obtain the full weights matrix for the analysis. All of these studies agree that time 

and distance should both be recognized in the analysis. This can be done through the particular 

configuration of the weights matrix. 
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2.3.4. Forecasting 

 There are several potential methods available to examine the strengths of the various 

spatial approaches. This chapter uses a forecasting method which had seen significant use lately 

in the hedonic and real estate literature (Dubin 1988; LeSage 1999; Pace et al. 2000; Case et al. 

2004; Bourassa, Cantoni, and Hoesli 2007). The forecasting exercise allows a comparison of the 

various SWM’s by determining which model can best predict property prices. To do this, the 

data is split into two parts. The larger of these sections is used for estimation. The coefficients 

from the larger data set are then used to predict the property prices from the smaller dataset. The 

forecasted values can then be compared to the actual values. Based on these results, several 

comparisons can be made. 

 Pace et al. (2000) use out-of-sample forecasting to evaluate the contribution of temporal 

restrictions on the SWM. They also examine the effect of varying the number of neighbors in the 

SWM and find that this has little effect on the model’s goodness of fit. However, they only 

examined the range of 160-200 nearest neighbors. A wider range of neighbors may have resulted 

in a larger impact of the SWM definition on the results. Also, temporal restrictions were found to 

have a positive impact on the goodness of fit. 

Much of the inspiration for the current chapter arises from Case et al. (2004), who 

compare several spatial approaches with the same dataset. An open call was made to spatial 

researchers to participate in the study and a large database of home sales and characteristics from 

Fairfax, Virginia was made available to participants. There was also an out-of-sample group of 

observations withheld from participants, and stayed in the possession of one individual 

responsible for calculating out-of-sample statistics. Once the out-of-sample forecasting was 

performed, and errors calculated, several statistics were calculated to compare the various 

models. The statistics used for comparison were mean and median prediction error, standard 
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deviation of the prediction error, root mean and median squared prediction error, and mean and 

median absolute value percent error. Another interesting characteristic of the data was that 

participants were provided with a significant deal of information on nearest neighbors. The 15 

nearest neighbors (for both in and out-of-sample observations) were identified for each 

observation, as well as the corresponding distances between observations. 

There were three participants who answered the call for participation: Bradford Case, 

Robin Dubin, and John Clapp. The models compared were three unorthodox spatial econometric 

models that have been espoused by each author but have not seen wide application in the 

literature. Case used a variation of his process of dividing a housing market into its various 

districts. Clapp used a kriging version of his local regression model. Dubin used two versions of 

her kriging model. An OLS regression was also estimated for purposes of comparison. Of the 

three models, Clapp’s local regression model performed poorest. The superior performance of 

the other two models was attributed to their incorporation of nearest neighbors. A second round 

of forecasting was allowed, where authors could attempt to improve their models. The largest 

improvement was a result of incorporating more information about nearest neighbors, similar to 

expanding the number of neighbors in a SWM. The maximum number of nearest neighbors 

given was 15, and results indicated that moving beyond this threshold would likely further 

improve results. 

Bourassa, Cantoni, and Hoesli (2007) use forecasting to evaluate geostatistical and lattice 

models in a hedonic analysis of New Zealand homes. The focus of the paper is on housing 

submarkets and issues more closely related to spatial heterogeneity than spatial dependence. 

They find that the inclusion of accurate submarket variables in an OLS regression result in larger 

predictive gains than the use of geostatistical or lattice methods. 
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This dissertation chapter employs the basic approach of Case et al. (2004), although with 

more of a focus on the SWM than on more exotic models of spatial dependence. To evaluate the 

various models, this chapter employs the error statistics from Case et al. (2004), including mean 

and median prediction error, standard deviation of the prediction error, root mean and median 

squared prediction error, and mean and median absolute value percent error.  

2.4. Methods 

 A variety of models are examined in this chapter, using a large dataset of approximately 

55,000 observations. Two key econometric issues are encountered when using large real estate 

databases. The first is the functional form of the regression equation. The second issue is the 

handling of spatial dependence. These issues must addressed individually and in tandem, as 

recent evidence suggests that the functional form of the regression can alter the results of spatial 

tests (McMillen 2003). Two main spatial models and six SWM’s are evaluated in this chapter. 

To assess all of these models an out-of-sample forecasting exercise is performed. The present 

section explains the construction of the SWM’s, the joint tests of functional form and spatial 

dependence, and the spatial error and spatial lag models.  

 In Chapter 1 the full version of the hedonic model—with three interaction terms between 

SDM and the waterfront, distance, and area variables—was chosen as the preferred model. The 

interaction terms allow the implicit price of water quality to vary over the landscape, instead of 

restricting it to be the same over lakes, types of property, and location. In light of these 

observations, this chapter will use the full version of the hedonic model from Chapter 1, again 

appearing below: 
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The variables not directly depicted in this equation are the same as in Chapter 1, and again 

include structural and census tract variables (x), location variables (y), and lake (l) and time (t) 

fixed effects. 

2.4.1. Functional Form and Spatial Testing 

 Several restrictions can be used in both of the DLR tests to test for spatial dependence. 

These tests cannot, however, be used to select between the spatial error and spatial lag model. 

Forecasting is used later in the chapter to select between the two models. The first hypotheses to 

consider are joint hypotheses of spatial dependence and functional form. These tests are useful 

for comparing the linear and double-log models. The two joint hypotheses to be tested are H00: r 

= 0, ρ = 0 (or λ = 0 for the spatial error model), or a double-log model with no spatial 

dependence, and H10: r = 1, ρ = 1 (λ = 1), or a linear model with no spatial dependence. The 

alternative hypothesis for both these tests would be a general Box-Cox model with parameter r 

and the presence of spatial dependence.  

 Since a rejection of the joint hypotheses could reflect either improper functional form of 

the existence of spatial dependence, ―one-direction‖ DLR tests are used to confirm the existence 

of spatial dependence. The first of these tests is H0: ρ = 0 (λ = 0) assuming r = 0, or a test for 

spatial dependence assuming the proper model is double log. The second one-direction test is H1: 

ρ = 0 (λ = 0) assuming r = 1, or a test for spatial dependence assuming the proper model is linear. 

Spatial lag and spatial error versions of both joint and one-direction tests will be performed. 

 There is one additional constraint on the implementation of these tests. As shown in 

equation (2.7), the n eigenvalues of the n x n SWM need to be computed. The size of the data is a 

barrier to this calculation, so the data are split into smaller subsets. The data are first split by 

individual municipalities within Orange County, and for the two largest municipalities the data 
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are randomly split into smaller subsets. Municipalities are used because much of the spatial 

dependence should be contained within these areas. Within a given municipality residents pay 

the same taxes and have access to the same municipal facilities.  

2.4.2. Spatial Weights Matrix 

 The distance and time-based SWM employed in the first chapter uses a distance 

boundary of 200 meters and a time boundary of six months previous back and three months 

forward. With a 200 meter boundary, all homes within the circle centered on each observation 

with a diameter of 400 meters, or a quarter mile, are potential neighbors. The distance boundary 

was believed to adequately capture neighborhood effects in the dense urban area under study. 

The time boundary was chosen with the practices of property appraisers in mind, who typically 

use homes sold within six months as ―comparables.‖ For a discussion of these issues in the 

context of spatial analysis, see Pace et al. (1998), Pace and Gilley (1998), and Pace et al. (2000). 

The three month forward boundary was chosen due to lags between the actual close of a sale and 

its withdrawal from the market and subsequent reporting. Can and Megbolugbe (1997) use a 

similar SWM and discuss some of the positive aspects of this formulation. 

This chapter conducts a more thorough examination of the SWM by varying the 

boundaries of the neighborhood definition. Six different SWM’s are used to explore the effect of 

the SWM definition on the estimated coefficients and implicit prices. These SWM’s are defined 

and described in Table 8, where the names appear in the first column. The names are simply 

based on the type of boundaries. For instance, the first SWM is a basic inverse distance matrix 

with a distance boundary of 200 meters so its name is ―200‖. The second SWM, which is the 

default model from the first chapter, has time boundaries of 6 months back and 2 months 

forward, so its name is ―20063‖. The distance and temporal boundaries of each SWM are defined 
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in columns 2-4 of Table 8. Columns 5-7 give summary statistics about the number of neighbors 

for each observation. Since SWM 200 has no time boundaries, its average number of neighbors 

is approximately 40 more than the 20063 SWM. These columns illustrate the differences in the 

SWM caused by the different SWM definitions. Note that the NN15 and NN20 SWM’s have the 

same number of neighbors over all observations. Finally, the last column of Table 8 contains the 

full number of non-zero elements in the SWM. This column shows that the 200 SWM clearly has 

the most total non-zero elements. 

The other SWM’s used in this chapter represent further permutations of the 20063 SWM. 

The third SWM (200123) extends the time boundary of the default model back from 6 months to 

12 months. Increasing the time boundary to 12 months expands the average number of neighbors 

in the SWM to 9 and the maximum to 119. The fourth model keeps the 6 month time boundary 

but extends the distance boundary to 400 meters. Doubling the distance boundary to 400 meters 

more than doubles the mean number of neighbors to 14, with a maximum neighbor set equal to 

137. The last two SWM’s are based on the nearest neighbor definition; one uses 15 nearest 

neighbors and the other uses 20 nearest neighbors.  

In order to estimate the distance and time based SWM, an iterative routine was 

programmed for use in Matlab. The code draws on a previous program written by Shawn 

Bucholtz at the US Department of Agriculture. Spatial distances are measured between each 

observation using the latitude and longitude coordinates. The sale dates of the homes are used to 

determine temporal distances between property sales. The iterative procedure computes both the 

spatial and temporal distances between each observation and imposes the boundary conditions to 

construct the SWM.  
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The other form of SWM—the n nearest neighbor approach—contains a 1 in the SWM at 

entry wij if j is one of the n closest neighbors to i. The particular density of homes can vary 

substantially over a particular setting in both space and time. Pace et al. (1998) point out that a 

particular distance boundary near a city center may represent significantly different population 

density than the same boundary applied farther away. They also draw attention to the fact that 

real estate appraisers, who specialize in predicting short-term fluctuations in home prices, use a 

fixed number of neighbors in space, although the distance between neighbors may vary with 

local market conditions. 

The nearest neighbor based SWM is the most common form of SWM used in the 

literature, yet there is significant variation in the construction and composition of these types of 

matrices. Kim, Phipps, and Anselin (2003) have data on 78 individual districts within Seoul, 

South Korea that properties reside in. All homes within the same district are considered 

neighbors, as well as all homes within neighboring districts that have a centroid less than 4 km 

away. Both Pace et al. (1998) and Pace and Gilley (1998) use weights matrices based on 15 

nearest neighbors. Anselin and Lozano-Gracia (2008) use two nearest neighbor weights matrices, 

based on 6 and 12 nearest neighbors.  

The creation of the nearest neighbor weights matrix in the current paper is accomplished 

through a program in the spatial toolbox found at www.spatial-econometrics.com (LeSage 1999), 

and based on a Delaunay triangularization. This procedure uses triangles created by forming line 

segments between points in a plane. The key idea is to get the smallest number of triangles made 

by these connecting segments, without crossing segments or points within triangles. Once these 

triangles have been created, the program uses them to define neighbors based on the triangles 

and the neighbors of neighbors. For this paper, the highest order of four is selected, so that 
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neighbors of neighbors of neighbors of neighbors are analyzed to determine the set of n nearest 

neighbors. When the program is used with the default second order, only slight differences 

emerge. Brasington (2006) uses a nearest neighbor SWM based on continuity through the same 

Delaunay triangularization used here. The nearest neighbor matrix for the current paper uses 15 

nearest neighbors, as this has been determined to adequately capture the spatial configuration of 

data in several papers, including Pace et al. (1998), Pace, Sirmans, and Slawson (2002), and Case 

et al. (2004).  

  Finally, two additional characteristics of each SWM include row standardization and zero 

diagonal entries. Row standardization requires that each row sum to one, formally:
1

1
n

ijj
w


 . 

This transformation eases interpretation and aids in estimation, and is recommended by most 

sources in the literature (Anselin 1988; Can 1992; Anselin 1999). The diagonal elements of the 

SWM are constrained to equal zero, or wii = 0, so that individual observations are not their own 

neighbors, or that individual observations do not predict themselves (Anselin and Lozano-Gracia 

2008). This chapter will use the six types of SWM’s for each model analyzed. There are several 

pros and cons for each type of weights matrix, and a comparison of them over several models 

should provide significant insight into their respective merits. 

2.4.3. Spatial Lag Model 

 This section explains the econometric estimation of the spatial lag model through 

maximum likelihood techniques. This model uses a spatially lagged dependent variable on the 

right hand side of the regression model, Wy. This model is also called the mixed regressive-

spatial autoregressive model, due to its lagged dependent variable. The formal expression of the 

spatial lag model is: 

y Wy X               (2.16) 
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where y is the dependent variable, W is the SWM, X is a matrix of independent variables, β is a 

vector of estimated coefficients, ε is the error term, and ρ is a spatial autoregressive coefficient, 

similar to an autoregressive coefficient used in time series analysis. An alternative expression of 

the spatial lag model is as follows. 

1 1( ) ( )y I W X I W                (2.17) 

 The Wy term captures the influence of the sales prices of other homes in the area. Due to 

the use of ―comparable sales‖ in the property appraisal practice, which use nearby home sales to 

construct an estimate of a home price, property prices may be spatially correlated. Also, as 

discussed earlier, homes in the same neighborhood will have similar attributes and be located 

near the same local amenities or disamenities (many of which, such as parks, trails, ―rough 

areas,‖ local shopping centers, and good landscaping, are difficult to quantitatively represent). If 

the SWM used is based on distance or inverse distance and is row standardized,Wy will represent 

a spatially-weighted (by distance) average of nearby home prices. If the SWM is based on the 

nearest neighbors criterion and is row standardized, the Wy term represents an average of 

neighboring home prices. While it would seem that the estimation would parallel the approach of 

time series—as the above equation resembles the first order autocorrelation equation from time 

series—this is not the case. In time series the correlation is linear in nature, either forward or 

backward in time. Spatial correlation operates in two dimensions and requires different tools for 

estimation.  

 Through the reduced form of the spatial lag model, a final interpretation, or 

representation, is explained in Anselin and Lozano-Gracia (2008). Under standard regularity 

conditions, it is possible to represent the inverse (I-ρW)
-1

 using a power expansion as follows: 

1 2 2( ) ...I W I W W               (2.18) 
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when this expression is inserted into the reduced form of the spatial lag model, it is easily seen 

that the property price is a function of both its own characteristics (through X) and the 

characteristics of neighboring properties (through, for instance, WX and W
2
X). 

 Anselin (1988) explains some of the differences between spatial autocorrelation and 

temporal autocorrelation. A well known result in econometrics is that the OLS model will remain 

consistent in the face of a lagged dependent variable, as in the case of first order autocorrelation, 

as long as serial correlation is not present (Wooldridge 2003). Even though the estimator will be 

biased it can still be used for inference because it is consistent. The same situation does not hold 

with a spatially lagged dependent variable. For example, with a simple first order autoregressive 

model,  y=ρWy+ε, there are two conditions for consistency. The first is: plim N
-1

(Wy’Wy) = Q, a 

finite and non-singular matrix, and the second is plim N
-1

(Wy’ ε) = 0. The first of these 

consistency conditions is feasibly satisfied with several simple assumptions. The second 

condition will not hold, which is easily seen by solving for y and inserting the solution. This 

yields plimN
-1

(Wy’ ε)=plimN
-1

ε’W(I-ρW)
-1

ε, which will not equal zero. The results of this simple 

demonstration translate directly into the spatial lag model which includes X variables alongside 

the Wy term on the right hand side of the regression equation. Consequently, if OLS is used to 

estimate this model, the parameters will be both biased and inconsistent. 

 To confront these OLS estimation issues, maximum likelihood techniques are used to 

estimate regression parameters in the face of spatial dependence. These techniques are 

sufficiently outlined in Anselin (1988) and were first derived in Ord and Cliff (1973). The log-

likelihood for the spatial lag model is: 

2
2

1ln ( ) ln(2 ) ( ) ln ln ( )( ) '( )
2 2 2

N NL I W y Wy X y Wy X      


         
   (2.19) 
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In a traditional regression model, the joint likelihood simply equals the sum of the individual log 

likelihoods. This is not the case in a spatial lag model estimated by maximum likelihood. In this 

instance, the spatial dependence introduces a Jacobian term that is the determinant of a full N x N 

matrix (Anselin 1999).  

 The first order condition of this model, from Anselin (1999), is: 

1ˆ ( ' ) '( )ML X X X y Wy  
         (2.20) 

Anselin points out that this first order condition can be used to obtain the maximum likelihood 

estimates using a five step procedure. This procedure is used in the econometric programming of 

the spatial lag model used in this paper, from the econometrics toolkit (LeSage 1999). The first 

order condition above is equivalent to:  

1 1ˆ ˆ ˆ( ' ) ' ( ' )ML O LX X X y X X XWy       
      (2.21) 

With this equation in mind, the first step in the process is to use an OLS regression of y on X to 

obtain: 

 
1ˆ ( ' ) 'O X X X y 

          (2.22) 

The second step is to perform another OLS regression of Wy on X to obtain the following 

equation: 

1ˆ ( ' ) 'L X X X Wy 
          (2.23) 

The third step in the process is to calculate residuals. Equations (2.22) and (2.23) will yield 

residual vectors eO and eL equal to: 

ˆ
O Oe y X 

 and          (2.24) 

ˆ
L Le Wy X 

.          (2.25) 
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From additional first order conditions appearing in chapter 6 of Anselin (1988), these two 

residual vectors will later be used to compute an estimate for the error variance: 

2ˆ (1/ )( ) '( )O L O LN e e e e    
.        (2.26) 

The fourth step in the procedure is where the actual maximum likelihood process takes 

place. A concentrated log-likelihood of the following form is employed: 

( ) ln[(1/ )( ) '( ) ln | |
2C O L O L

NL C N e e e e I W       
     (2.27) 

where the C term appearing in the equation contains the familiar constant parts of the log-

likelihood equation. Given eO and eL from the previous step, the maximization of this equation 

involves the maximization of a function of only one parameter, ρ, which is the fourth step in the 

process. 

 The fifth and final step in the procedure is to use the estimate of ρ to compute the 

following two estimates:  

ˆ ˆ ˆ
ML O L   

          (2.28) 

2ˆ (1/ )( ) '( )O L O LN e e e e    
.        (2.29) 

 In order to obtain estimates of variance, the maximum likelihood estimates of ρ and σ
2
 

are used to compute the numerical hessian matrix. An internal Matlab function is used to 

compute the hessian, and the negative of the inverse of this matrix is used to obtain asymptotic 

estimates of the variance-covariance matrix.  

2.4.4. Spatial Error Model 

The spatial error model is the second of the two most common spatial models. Unlike the 

spatial lag model, if the OLS model is estimated in the face of spatial dependence in the error 

term, the parameters will be unbiased but inefficient. The inefficiency will result from the 
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spatially correlated configuration of the variance-covariance matrix. The spatial error model is a 

variation of a regression that uses a spatially weighted error term, and the basic structure appears 

as follows: 

y X                (2.30) 

where W u     and u ~ N(0, ζ
2
I ). 

This functional form has been particularly popular in the hedonic literature. In empirical 

studies of spatial autocorrelation, it is the most common model employed (Arbia 2006). In fact, it 

is the only specification that has been used thus far in the water quality literature (Leggett and 

Bockstael 2000). Unlike the spatial lag model, the calculation of the implicit prices in a spatial 

error model remains the same as in an OLS model. 

 The full log likelihood for this model is: 

2 2ln ( / 2) ln ( / 2) ln ln | | (1/ 2 )( ) '( ) '( )( )L N N I W y X I W I W y X                  

            (2.31) 

In order to compute estimates of the spatial error model, an iterative approach, similar to that of 

the spatial lag model, is used. This iterative approach originally appeared in chapter 12 of 

Anselin (1988) and is used for the programming of the spatial error code in the present analysis 

(described in LeSage (1999)). This procedure again takes advantage of some of the first order 

conditions of the spatial maximum likelihood model (presented in Chapter 6 of Anselin (1988)) 

to use a concentrated form of the log likelihood: 

( / 2) ln[(1/ )( ) '( ) '( )( )] ln | |cL C N N y X I W I W y X I W           
  (2.32)

 

The approach for the spatial error model is slightly more complicated than the approach for the 

spatial lag model. While the maximization of the concentrated log likelihood for the spatial lag 

model involved one parameter, ρ, with the spatial error model the residual vector is also 
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indirectly a function of λ. Consequently, a simple optimization of Lc with respect to λ is not 

sufficient. 

 The full procedure, from Anselin (1988, p. 183), is as follows: 

1. Compute OLS estimates of a regression of y on X to obtain ˆ
OLS  

2. From the OLS estimates, obtain the residuals eOLS. 

3. Given the residual vector, find an initial value of λ that maximizes Lc. 

4. Using this initial value of λ, carry out estimated generalized least squares (EGLS) to 

obtain ˆ
EGLS .The EGLS estimate of β is obtained through: 

1ˆ [ '( ) '( ) ] '( ) '( )EGLS X I W I W X X I W I W y        
    (2.33)

 

where 
2 ˆ ˆ(1/ )( ) '( ) '( )( )EGLS EGLSN y X I W I W y X        

   (2.34)
 

5. Compute the residuals from the EGLS procedure: 

ˆ( )EGLS EGLSe y X 
         (2.35)

 

6. If a previously defined convergence criteria is satisfied, continue on to step 7. Otherwise, 

return to step 3. 

7. Given the estimates of eEGLS and λ, compute the final estimate of: 

2 ˆ ˆ(1/ )( ) '( ) '( )( )EGLS EGLSN y X I W I W y X             (2.36) 

This process will produce estimates for the spatial error model and can be used with a relatively 

large number of observations.  
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2.5. Results 

2.5.1. Functional Form and Spatial Dependence 

 The first step in the determination of the functional form is a Box-Cox test. When this 

transformation is applied to the property sales in the current study, a statistically significant 

estimate of r of -0.145 is obtained (results appear in Appendix). This estimate is much closer to 

the double-log than the linear specification. Results of the regression appear in the appendix to 

the dissertation. It is important to interpret the coefficients of the regression with caution, 

however. Since the focus of the Box-Cox model is on the fit of the data, the coefficients are not 

typically the best linear unbiased estimators (Zabel and Kiel 2000).  

In order to fully test for spatial dependence, issues of functional form and spatial 

dependence must be considered jointly. Preliminary tests of spatial dependence use the DLR one 

directional test of spatial dependence. This is a test for either spatial lag or spatial error 

dependence while assuming a particular functional form. Four of these tests are performed: two 

tests of spatial lag dependence (one for the linear functional form and one for the double-log 

functional form) and two tests of spatial error dependence for both functional forms. Two 

different SWM’s are used for these tests, one based on distance and time (with a distance 

boundary of 200 meters and a time window of 6 months back, 3 months forward) and a 15 

nearest neighbor specification. The results of the 20063 one directional tests appear in Table 9 

and the results of the NN15 tests appear in Table 10. The results of all tests are unanimous: the 

null hypothesis of no spatial dependence (in either spatial lag or spatial error form) is rejected at 

the 99% significance level. 

The one direction tests therefore all agree on the existence of spatial dependence. An 

interesting characteristic of the two tables is that varying the weights matrix does not affect the 
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results of these tests. There are only small changes in the magnitudes of the test results between 

Table 9 and Table 10. Similar results are discussed in Anselin (1988). Additionally, the 

municipalities with the largest number of properties (the three Orlando samples and four 

Unincorporated samples) reject spatial dependence at the highest levels.  

To further analyze the existence of spatial dependence while controlling for functional 

form, several joint DLR tests are performed. These joint tests use the null hypotheses H00: r = 0, 

ρ = 0 (λ = 0 for spatial error dependence), and H10: r = 1, ρ = 0 (λ = 0). Both the spatial lag (Le 

2009) and spatial error (Le and Li 2008) versions of these tests are performed, and two types of 

SWM are again used. The results of these tests appear in Table 11 and Table 12. The chi-squared 

critical value for two degrees of freedom (equal to the number of restrictions) at the 0.001 level 

is 13.82. All of the DLR tests appearing in these tables are again rejected, indicating that there is 

an improper specification of functional form or spatial dependence (or both) for each scenario in 

the table. Given that the one-directional tests found the presence of spatial dependence, the 

important part of these tables is that for both the spatial lag and spatial error versions the H10 test 

is rejected at a much higher level than the H00. In fact, the difference is approximately 10 times 

greater in almost all cases. This indicates that the linear model is always rejected at a much 

higher rate, holding spatial dependence constant. 

2.5.2. Spatial Lag and Spatial Error Models 

 The various spatial models are estimated in Matlab with the full 54,712 observations.
18

 

Selected results of the spatial lag (spatial autocorrelation) models appear in Table 13 (full results 

appear in Table 18). All coefficients appear in this table except the time and lake effects. The 

                                                 
18

 Due to the size of the weights matrices and the number of computations involved, it took an average of two and a 

half hours to construct each SWM. All of the computations were done on a laptop with a 2.2 Ghz processor with 3 

gigabytes of RAM. It is likely that advances in computing power will decrease the time required to construct these 

matrices in the near future. 
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labels at the top of the table indicate which SWM is used in each model. ―Sar‖ denotes the 

spatial autoregressive, or spatial lag, model. The autoregressive parameter ρ appears in the first 

row of Table 13. Although it is significant in all models except for the 20 nearest neighbor 

specification, the absolute magnitude of this parameter is small. Also, ρ is negative in the nearest 

neighbor models and positive in the distance and time models. The insignificance of ρ in the 

20NN model may arise from the inclusion of distant properties into nearest neighbor sets, a 

consequence of the SWM construction. If a home does not have many nearby property sales, the 

specification will still include 20 neighbors, some of which may be separated by large distances. 

These remote homes may have no correlation with the price of the subject property, and if 

enough of these homes are included in the SWM it may dull the contribution of the spatial 

analysis. 

The other coefficients in the model are relatively stable between specifications. The 

coefficient on Ln(SDM) varies from a minimum of -0.052 in the Sar200 model to a maximum of 

-0.011 in the SarNN15 model. With the distance and time SWM’s, the coefficients only vary 

from -0.029 to -0.032, a fairly small range. The coefficients on the interaction term 

Waterfront*Ln(SDM) are even closer in range, all are within 0.001 of each other and significant 

at the 0.01 level except the Sar200 model. The water quality interaction terms exhibit similar 

stability. More importantly, the Edge Effect, Proximity Effect, and Area effect are all present in 

each of the spatial lag models. The variance in SWM’s has not had a major impact on these main 

hypotheses. The majority of the coefficients in Table 13 exhibit stability across specifications, 

with the largest differences appearing in the latitude and longitude coefficients. As these 

coefficients also deal with spatial influences and location, it is no surprise that they are sensitive 

to the definition of the SWM. Finally, the two variables that are consistently insignificant are 
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%Black and %Over 65. The stability of the coefficients between SWM’s is similar to the results 

of Mueller and Loomis (2008), who also found that their model’s results were not particularly 

sensitive to specification. They point out that from a statistical perspective, the spatial models are 

superior. However, from a practical point of view, the differences in the coefficients may not be 

significant enough to alter policy. 

The results of the spatial error models appear in Table 14, where the ―Sem‖ in the column 

labels denotes spatial error and the numbers refer to the particular SWM (full coefficient results 

appear in Table 19). The first row contains the spatial error parameter λ, which is positive and 

significant in all models but displays much more variation than the spatial lag parameter ρ. Also, 

the SDM coefficients in this table display more variation between specifications than the spatial 

lag estimates. For instance, the coefficient on ln(SDM) varies from -0.07 to 0.06 and the 

ln(Distance)*ln(SDM) coefficient is insignificant in the Sem200 model but is highly significant 

in all other models. The Proximity Effect is therefore not present in the Sem200 model, further 

indicating that the spatial error model is more affected by changes in the weights matrix than the 

spatial lag model. The magnitudes of most of the other coefficients in Table 14 do not vary 

substantially over specifications. The interaction terms Waterfront*Ln(SDM) and 

Ln(Area)*Ln(SDM) are relatively stable across the six models, as are most of the home attribute 

variables. The Edge Effect and the Area Effect are therefore present in all specifications. 

 To analyze the differences in the various models in terms of dollar estimates, the 

marginal effects, or implicit prices, are computed for the spatial lag and spatial error models. The 

formula for the spatial lag implicit price is given in Chapter 1. The formula for the spatial error 

implicit prices appears in equation (2.37): 

 * * *
* *ln( ) *ln( )

SDM WF SDM Dist SDM Area SDM

P P
WF Dist Area

SDM SDM
   


   



 
 
 

     (2.37) 
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The calculation of this implicit price is the same as the calculation of an OLS, or non-spatial, 

implicit price since there is no spatially weighted lag term. 
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Table 15 contains the spatial lag implicit prices for the six different SWM’s. For the 

waterfront prices, the 15 nearest neighbor SWM model has the lowest value at $11,360.75. The 

maximum implicit price appears in the 200 regression, at $12,274.90. The values in the 200 

specification are higher than the other estimates for all implicit prices. The 200123 and 40063 

models illustrate that the effect of increasing the neighbor boundaries is to increase the 

waterfront implicit prices. This is not the case with non-waterfront implicit prices, as these have 

slightly different rates of decay with lake distance due to small differences in the 

ln(Distance)*ln(SDM) coefficient and differences in the value of ρ. Based on these observations, 

there is no clear relationship between the number of neighbors and the implicit prices. 

Nonetheless, changes in SWM only result in small percentage changes in the implicit prices in 

the spatial lag model. 

 The spatial error estimates appear in Table 16. These values are both considerably less 

than the spatial lag values and more sensitive to the SWM. The mean non-lakefront spatial error 

implicit prices are approximately half the value of the non-lakefront spatial lag prices. Also, 

whereas the 200 waterfront estimates were the largest in   



89 

 

Table 15, they are the smallest here. The 200 model has the most deviant values in Table 16 

compared to the other, starting at a lower value but leveling off as distance is increased. 

Strangely, the implicit price of water quality for non-lakefront homes only changes by $46.55 

from 500 to 900 meters. This anomalous behavior is contrary to all other spatial error models and 

may indicate that this particular SWM is ill-specified.  

 The effect of increasing the neighborhood boundary in Table 16 differs depending on the 

type of boundary relaxed. In the nearest neighbor specifications, including more neighbors 

depresses the implicit prices. With the distance/time based SWM’s, increasing the time boundary 

decreases the implicit prices, while expanding the distance boundary increases the lakefront 

implicit price but slightly decreases the non-lakefront implicit price. There appears to be a 

complex relationship between the specification of the SWM and the implicit prices, which is 

more erratic with the spatial error model than the spatial lag model.  

 Comparing the implicit prices of the error and lag specifications, some general 

observations can be drawn. The spatial error regressions are much more sensitive to the 

particular specification of the SWM. For instance, the use of the 200 SWM results in a loss of the 

Proximity Effect. The spatial lag implicit prices are both larger than the spatial error models and 

closer to the original non-spatial implicit prices from Chapter 1. Overall, the coefficients and 

implicit prices are much more sensitive to the model specification (error vs lag) than to changes 

in the SWM. These differences between models will be further examined in the upcoming 

section on forecasting and errors. 

2.5.3. Forecasting Errors 

 In order to examine the fit of the models that have been presented and discussed in the 

last two sections, a forecasting exercise is performed. This procedure follows four main steps. In 
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the first step, the data are split into two portions: one containing 45,712 observations (referred to 

as the in-sample) and another containing 10,000 observations (the out-sample). In the second 

step, all of the models are estimated using the in-sample. In the third step, the estimates from the 

second step are applied to the out-sample to obtain predicted estimates. In the fourth step, the 

seven forms of prediction error from Case et al. (2004) are calculated and analyzed. These error 

variables include mean and median prediction error, the standard deviation of the errors, root 

mean and median square error, and mean and median absolute value percent error. 

 The prediction error variables for the spatial lag and spatial error models appear in Table 

17. The first column in this table contains the mean prediction error, where all of the spatial lag 

models have lower (absolute magnitude) errors than the corresponding spatial error models. For 

example, the SARNN15 lag model has a mean prediction error of 0.00271 and the SEMNN15 

model has a mean prediction error of -0.01277. The second column contains the median 

prediction errors, where all the spatial error models but one have lower median error than the 

corresponding spatial lag estimates. In the third column, all of the spatial lag models have a 

lower standard deviation of the prediction error than the spatial error models. The same also 

holds true for the root mean square error, root median square error, mean absolute value % error, 

and median absolute value % error. Given the superior performance of the spatial lag model in 

all columns but one, the spatial lag model fits the data much better than the spatial error model. 

The results of Table 17 can also be used to compare the various weights matrices. In both 

the spatial lag and spatial error results, all columns indicate that the distance and time based 

SWM’s have lower prediction error than the nearest neighbor specifications. For instance, the 

more accurate nearest neighbor model, NN20, has a mean prediction error that is 440% larger 
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than the 40063 model. The out-of-sample predictive ability of the distance-based SWM’s is 

clearly superior to that of the nearest neighbor specifications. 

Comparisons can also be made within the two main types of SWM. With the distance and 

time based models, increasing the number of neighbors improves forecasting. In the three 

distance and time-based SWM SAR models, all columns of Table 17 show a slight improvement 

in prediction error when the distance or time boundary is slightly relaxed. In 5 of the 6 columns 

of Table 17 the SAR200123 and SAR40063 models have lower error than the more tightly 

defined SAR20063 model. The 200 model represents a complete relaxation of the time 

boundary, and although this model has approximately twice the mean prediction error as the 

SAR distance and time-based models, it has a superior performance in all other columns. In fact, 

the 200 model has the best error performance over all columns, between both SEM and SAR 

models. The increase in additional information in the SWM from the relaxation of this boundary 

appears to considerably improve the fit of the model. Also, in both SEM and SAR models and in 

all columns of Table 17, the NN20 model performed better than the NN15. Again, it appears that 

introducing more information into the SWM results in a better fit of the model. Case et al. (2004) 

used models based on a maximum of 15 nearest neighbors and suggest that results indicated that 

the inclusion of more neighbors could have improved the models. This general trend suggests 

that future analyses may want to increase the average number of items in each row of the SWM. 

Future research should further examine the proper specification of the SWM. Numerous 

configurations are currently used without much theoretical or empirical motivation. Many 

hedonic analyses also use SWM’s based on nearest neighbors and contiguity that have a mean 

number of neighbors under 10 (for instance, Anselin and Le Gallo (2006), Anselin and Lozano-

Gracia (2008)). The present study and Case et al. (2004) both find evidence that it may be better 
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to increase the number of neighbors in the SWM beyond these low levels. Until tests or 

theoretical developments emerge for the specification of the SWM, forecasting represents a 

reliable way to compare alternatives. 

2.6. Conclusions 

 Spatial econometric techniques have seen a rapid increase in use over the last twenty 

years. Many fields that had traditionally been estimated with ordinary least squares or other 

common techniques are now being re-estimated to account for spatial dependence. Studies of 

regional GDP, international growth, and property prices, for example, have been shown to be 

critically affected by spatial influences. To account for spatial dependence, a wide variety of 

techniques, using maximum likelihood, GMM, and Bayesian methods are available (Arbia 2006; 

Anselin and Lozano-Gracia 2008). A common aspect of most of these models is that the spatial 

correlation between data points must be exogenously specified through an SWM. The 

construction of the SWM has not yet received critical attention, as computing advances have 

only recently allowed a variety of options. This chapter examines the behavior of several 

different SWM’s while using three different spatial models.  

 After investigating the out-of-sample predictive ability of the various weights matrices 

and spatial models, some general conclusions arise. First, in this particular application, the 

spatial lag model fit the data much better than the spatial error model. The spatial error model 

actually performed worse than the original non-spatial model in terms of prediction error.  

 There are also some general trends observed from varying the SWM in the spatial error 

and spatial lag models. First, the distance and time based weights matrices performed much 

better than the nearest neighbor matrices. Also, when the distance based matrices are used, 
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increasing the total number of neighbors improves the fit as more information is embedded in the 

SWM. These are critical results, as many recent papers use nearest neighbor matrices, such as 

Kim, Phipps, and Anselin (2003), Anselin and Le Gallo (2006), and Anselin and Lozano-Gracia 

(2008). In addition, it is clear that different SWM’s can result in quite different results. In the 

spatial error model, the six SWM specifications result in waterfront implicit prices that vary from 

$5,072 to $10,251, a 100% change in magnitude. Given this wide range of values, the only 

current method of determining which value is right is through a forecasting application, which 

may not always be feasible. This clearly represents a gap in the literature on spatial dependence.  

 The one area of optimism with respect to the SWM definition is spatial testing. Varying 

the SWM had no effect on any of the qualitative results of the DLR tests. A similar result was 

found by Anselin (1988), which is replicated in the current paper. Nonetheless, further 

exploration of simultaneous tests of spatial dependence and functional form should be explored. 
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Tables and Figures: Chapter 2 

Table 7: Summary Statistics for “In-Sample” 

      Lakefront (N =1,218)     Non-Lakefront (N =43,494)   

Variable    Units Mean Std Dev Mean Std Dev 

Property Characteristics      

     Sales Price 2002 Dollars 451,086.90 363,414.50 200,383.40 201,669.20 

     Heated Area  Square Feet 2,761.88 1,290.42 1,963.40 946.19 

     Area of Parcel Square Meters 2,798.07 2,757.67 1,079.35 1,140.27 

     Number of Bathrooms -- 2.75 1.11 2.22 0.88 

     Home Age Years 24.18 13.35 18.61 15.05 

     % With Pool -- 20.11 -- 20.65 -- 

Spatial Characteristics      

     Distance to Nearest Lake Meters 42.32 23.69 467.00 267.95 

     Area of Nearest Lake  Acres 2,044,963.00 2,543,847.0

0 

1,132,663.00 1,809,132.00 

     Distance to CBD Meters 8,844.95 5,149.64 9,269.03 5,151.67 

     Latitude Coordinate Degrees 654,732.60 7,463.92 653,235.50 7,949.14 

     Longitude Coordinate Degrees 505,761.60 6,757.01 505,668.70 6,273.74 

     % In airport noise zone  -- 9.03 -- 15.73 -- 

Census Block Characteristics      

     % of Population White -- 88.6 -- 0.22 -- 

     % of Population Black -- 4.9 -- 0.20 -- 

     % of Population > 65  -- 15.2 -- 0.07 -- 

     Median Household Income 2002 Dollars 64,053.01 28,880.8 56,400.49 23,795.07 

Distribution of Sales by Year      

     % of sales in 1996 -- 0.10 -- 0.09 -- 

     % of sales in 1997 -- 0.11 -- 0.11 -- 

     % of sales in 1998 -- 0.14 -- 0.12 -- 

     % of sales in 1999 -- 0.14 -- 0.13 -- 

     % of sales in 2000 -- 0.11 -- 0.11 -- 

     % of sales in 2001 -- 0.08 -- 0.10 -- 

     % of sales in 2002 -- 0.12 -- 0.10 -- 

     % of sales in 2003 -- 0.12 -- 0.11 -- 

     % of sales in 2004 -- 0.09 -- 0.12 -- 
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Table 8: Spatial Weights Matrix Descriptions and Summary Statistics 

 Distance/Time Boundaries # of Neighbors # of Non-Zero 

SWM Name Distance Time backward Time Forward Mean Min Max Elements in SWM 

200 200 -- -- 46.724 0 214 2,556,364 

20063 200 6 3 5.6191 0 111 307,432 

200123 200 12 3 8.6256 0 119 471,924 

40063 400 6 3 14.4779 0 137 792,114 

NN15 -- -- -- 15 15 15 627,945 

NN20 -- -- -- 20 20 20 837,260 

 

Table 9: One Direction DLR Tests of Spatial Dependence, DT20063 SWM 

  Spatial Lag Spatial Error 

  ρ=0 | r=0 ρ=0 |r=1 λ=0 | r=0 λ=0 | r=1 

Belle Isle 30.92 30.69 29.87 48.73 

Edgewood 32.72 120.45 39.41 99.31 

Maitland/Eatonville 46.72 65.19 54.31 46.72 

Ocoee/Winter Garden 27.63 27.37 27.36 29.61 

Windermere 29.96 36.14 31.46 34.59 

Winter Park 41.14 50.65 42.78 75.37 

Orlando 1 106.11 107.81 106.43 114.76 

Orlando 2 106.02 155.90 105.99 240.51 

Orlando 3 106.41 114.15 109.99 112.45 

Unincorporated 1 121.91 231.72 121.80 312.66 

Unincorporated 2 124.32 145.92 124.33 133.29 

Unincorporated 3 122.84 123.26 121.07 139.33 

Unincorporated 4 125.20 142.24 136.18 147.48 
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Table 10: One Direction DLR Tests of Spatial Dependence, NN15 SWM 

  Spatial Lag Spatial Error 

  ρ=0 | r=0 ρ=0 |r=1 λ=0 | r=0 λ=0 | r=1 

Belle Isle 41.12 55.75 34.29 62.42 

Edgewood 31.49 33.79 38.13 38.13 

Maitland/Eatonville 58.87 47.76 61.07 48.22 

Ocoee/Winter Garden 28.69 27.29 30.21 27.66 

Windermere 29.32 30.62 29.26 27.50 

Winter Park 42.11 369.74 57.26 141.33 

Orlando 1 106.02 108.08 106.67 115.44 

Orlando 2 105.95 148.61 107.45 168.06 

Orlando 3 106.17 115.01 106.87 116.34 

Unincorporated 1 122.95 155.95 124.16 145.19 

Unincorporated 2 124.24 161.62 126.86 173.78 

Unincorporated 3 121.09 129.20 121.98 122.05 

Unincorporated 4 126.97 257.82 135.48 243.18 
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Table 11: Joint DLR Tests of Functional Form and Spatial Dependence, DT20063 SWM 

 

Spatial Lag Spatial Error 

 

r=0, ρ=0 r=1, ρ=0 r=0, λ=0 r=1, λ=0 

Belle Isle 55.67 1,235.20 54.44 1,236.55 

Edgewood 32.81 407.56 39.44 404.67 

Maitland/Eatonville 47.28 1,857.65 54.75 1,858.27 

Ocoee/Winter Garder 40.25 448.05 39.82 448.04 

Windermere 51.31 457.56 51.96 456.11 

Winter Park 51.67 4,331.14 53.58 4,337.97 

Orlando 1 120.78 6,013.77 121.05 6,015.75 

Orlando 2 122.48 6,027.86 122.48 6,027.96 

Orlando 3 153.23 6,501.46 156.87 6,500.64 

Unincorporated 1 481.12 8,681.12 483.72 8,680.89 

Unincorporated 2 446.85 8,979.65 447.11 8,980.24 

Unincorporated 3 275.95 8,607.37 274.38 8,606.78 

Unincorporated 4 406.07 9,367.29 417.15 9,368.49 

 

Table 12: Joint DLR Tests of Functional Form and Spatial Dependence, NN15 SWM 

  Spatial Lag Spatial Error 

  r=0, ρ=0 r=1, ρ=0 r=0, λ=0 r=1, λ=0 

Belle Isle 62.96 1,256.32 57.66 1,236.64 

Edgewood 31.55 402.99 38.16 403.42 

Maitland/Eatonville 59.57 1,856.24 61.65 1,856.36 

Ocoee/Winter Garder 41.49 448.89 41.61 455.21 

Windermere 50.95 453.88 51.40 454.03 

Winter Park 52.16 4,332.80 65.09 4,349.56 

Orlando 1 120.69 6,013.86 121.29 6,015.00 

Orlando 2 122.42 6,026.44 124.05 6,027.80 

Orlando 3 153.17 6,497.36 153.94 6,498.89 

Unincorporated 1 481.03 8,684.35 482.16 8,683.27 

Unincorporated 2 446.98 8,980.48 448.91 8,980.41 

Unincorporated 3 274.35 8,606.86 275.69 8,608.44 

Unincorporated 4 406.65 9,366.79 419.70 9,369.99 

 

  



98 

 

 

Table 13: Spatial Lag Coefficients 
 SarNN15 SarNN20 Sar200 Sar 20063 Sar 200123 Sar 40063 

Rho 
-0.0027

*
 

(0.0002) 

-0.0001 

(0.0002) 

0.1090
*
 

(0.0077) 

0.0014
*
 

(0.0003) 

0.0026
*
 

(0.0004) 

0.0083
*
 

(0.0007) 

Ln(SDM) 
-0.011 

(0.031) 

-0.028 

(0.031) 

-0.052 

(0.030) 

-0.030 

(0.031) 

-0.029 

(0.031) 

-0.032 

(0.031) 

Waterfront*Ln(SDM) 
0.078

*
 

(0.011) 

0.078
*
 

(0.011) 

0.068
*
 

(0.011) 

0.079
*
 

(0.011) 

0.079
*
 

(0.011) 

0.079
*
 

(0.011) 

Ln(Distance)*Ln(SDM) 
-0.017

*
 

(0.002) 

-0.017
*
 

(0.002) 

-0.015
*
 

(0.002) 

-0.017
*
 

(0.002) 

-0.017
*
 

(0.002) 

-0.017
*
 

(0.002) 

Ln(Area)*Ln(SDM) 
0.010

*
 

(0.002) 

0.011
*
 

(0.002) 

0.013
*
 

(0.002) 

0.012
*
 

(0.002) 

0.011
*
 

(0.002) 

0.012
*
 

(0.002) 

Waterfront 
0.147

*
 

(0.020) 

0.146
*
 

(0.020) 

0.152
*
 

(0.020) 

0.146
*
 

(0.020) 

0.146
*
 

(0.020) 

0.147
*
 

(0.020) 

Ln(Distance Lake) 
-0.035

*
 

(0.004) 

-0.035
*
 

(0.004) 

-0.029
*
 

(0.004) 

-0.035
*
 

(0.004) 

-0.035
*
 

(0.004) 

-0.034
*
 

(0.004) 

Canalfront 
0.106

*
 

(0.018) 

0.105
*
 

(0.018) 

0.099
*
 

(0.017) 

0.105
*
 

(0.018) 

0.104
*
 

(0.018) 

0.104
*
 

(0.018) 

Golffront 
0.331

*
 

(0.033) 

0.332
*
 

(0.033) 

0.308
*
 

(0.032) 

0.334
*
 

(0.033) 

0.335
*
 

(0.033) 

0.341
*
 

(0.033) 

Ln(Bath) 
0.119

*
 

(0.005) 

0.120
*
 

(0.005) 

0.111
*
 

(0.004) 

0.120
*
 

(0.005) 

0.120
*
 

(0.005) 

0.120
*
 

(0.005) 

Pool 
0.013

*
 

(0.003) 

0.014
*
 

(0.003) 

0.013
*
 

(0.003) 

0.014
*
 

(0.003) 

0.014
*
 

(0.003) 

0.014
*
 

(0.003) 

Ln(Home Age) 
-0.072

*
 

(0.001) 

-0.071
*
 

(0.001) 

-0.064
*
 

(0.001) 

-0.070
*
 

(0.001) 

-0.070
*
 

(0.001) 

-0.070
*
 

(0.001) 

Ln(Home Area) 
0.675

*
 

(0.005) 

0.673
*
 

(0.005) 

0.621
*
 

(0.003) 

0.672
*
 

(0.005) 

0.672
*
 

(0.005) 

0.670
*
 

(0.005) 

Ln(Parcel Area) 
0.166

*
 

(0.003) 

0.165
*
 

(0.003) 

0.162
*
 

(0.003) 

0.167
*
 

(0.003) 

0.167
*
 

(0.003) 

0.167
*
 

(0.003) 

Ln(Distance CBD) 
-0.189

*
 

(0.010) 

-0.189
*
 

(0.010) 

-0.169
*
 

(0.010) 

-0.189
*
 

(0.010) 

-0.189
*
 

(0.010) 

-0.189
*
 

(0.010) 

Near Airport 
0.028

*
 

(0.006) 

0.029
*
 

(0.006) 

0.028
*
 

(0.006) 

0.028
*
 

(0.006) 

0.028
*
 

(0.006) 

0.028
*
 

(0.006) 

Ln(Lattitude) 
-6.633

*
 

(0.014) 

-6.445
*
 

(0.070) 

-5.680
*
 

(0.199) 

-6.509
*
 

(0.053) 

-6.555
*
 

(0.074) 

-6.727
*
 

(0.204) 

Ln(Longitude) 
3.620

*
 

(0.664) 

3.395
*
 

(0.666) 

2.761
*
 

(0.640) 

3.462
*
 

(0.666) 

3.440
*
 

(0.665) 

3.257
*
 

(0.657) 

Ln(Median Income) 
0.107

*
 

(0.005) 

0.107
*
 

(0.005) 

0.087
*
 

(0.005) 

0.106
*
 

(0.005) 

0.106
*
 

(0.005) 

0.103
*
 

(0.005) 

% White (2000) 
0.249

*
 

(0.032) 

0.246
*
 

(0.032) 

0.179
*
 

(0.031) 

0.244
*
 

(0.032) 

0.244
*
 

(0.032) 

0.238
*
 

(0.032) 

% Black (2000) 
0.056

***
 

(0.034) 

0.052 

(0.034) 

0.005 

(0.033) 

0.053 

(0.034) 

0.053 

(0.034) 

0.047 

(0.034) 

% Over 65 (2000) 
0.021 

(0.020) 

0.022 

(0.020) 

0.025 

(0.019) 

0.023 

(0.020) 

0.022 

(0.020) 

0.022 

(0.020) 

R
2
 0.8940 0.8935 0.8907 0.8935 0.8934 0.8933 

Note: *, **, and *** denotes significance at the 1%, 5% and 10 % levels. Standard errors appear in parentheses. 
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Table 14: Spatial Error Coefficients 
 semNN15 semNN20 sem200 sem 20063 sem 200123 sem 40063 

Lambda 
0.7560

*
 

(0.0057) 

0.7820
*
 

(0.0045 

0.5940
*
 

(0.0013) 

0.3500
*
 

(0.0025) 

0.4480
*
 

(0.0020) 

0.5070
*
 

(0.0017) 

Ln(SDM) 
-0.005 

(0.030) 

-0.011 

(0.030) 

-0.078
*
 

(0.028) 

0.024 

(0.037) 

0.064
***

 

(0.038) 

0.006 

(0.042) 

Waterfront*Ln(SDM) 
0.061

*
 

(0.011) 

0.061
*
 

(0.011) 

0.034
*
 

(0.012) 

0.058
*
 

(0.011) 

0.060
*
 

(0.011) 

0.067
*
 

(0.011) 

Ln(Distance)*Ln(SDM) 
-0.011

*
 

(0.003) 

-0.010
*
 

(0.003) 

-0.002 

(0.003) 

-0.020
*
 

(0.003) 

-0.021
*
 

(0.003) 

-0.019
*
 

(0.003) 

Ln(Area)*Ln(SDM) 
0.006

*
 

(0.002) 

0.006
*
 

(0.002) 

0.008
*
 

(0.002) 

0.008
*
 

(0.003) 

0.005
***

 

(0.003) 

0.009
*
 

(0.003) 

Waterfront 
0.157

*
 

(0.019) 

0.154
*
 

(0.019) 

0.197
*
 

(0.021) 

0.171
*
 

(0.019) 

0.165
*
 

(0.019) 

0.157
*
 

(0.019) 

Ln(Distance Lake) 
-0.066

*
 

(0.005) 

-0.068
*
 

(0.005) 

-0.078
*
 

(0.005) 

-0.042
*
 

(0.004) 

-0.046
*
 

(0.005) 

-0.044
*
 

(0.005) 

Canalfront 
0.070

*
 

(0.018) 

0.067
*
 

(0.018) 

0.066
*
 

(0.021) 

0.076
*
 

(0.017) 

0.069
*
 

(0.017) 

0.088
*
 

(0.017) 

Golffront 
0.231

*
 

(0.031) 

0.221
*
 

(0.031) 

0.236
*
 

(0.038) 

0.280
*
 

(0.030) 

0.217
*
 

(0.030) 

0.245
*
 

(0.030) 

Ln(Bath) 
0.089

*
 

(0.004) 

0.092
*
 

(0.004) 

0.098
*
 

(0.005) 

0.104
*
 

(0.004) 

0.098
*
 

(0.004) 

0.101
*
 

(0.004) 

Pool 
0.008

*
 

(0.002) 

0.007
*
 

(0.002) 

0.007
*
 

(0.002) 

0.009
*
 

(0.002) 

0.007
*
 

(0.002) 

0.009
*
 

(0.002) 

Ln(Home Age) 
-0.085

*
 

(0.001) 

-0.086
*
 

(0.001) 

-0.086
*
 

(0.001) 

-0.079
*
 

(0.001) 

-0.081
*
 

(0.001) 

-0.081
*
 

(0.001) 

Ln(Home Area) 
0.557

*
 

(0.005) 

0.563
*
 

(0.005) 

0.539
*
 

(0.005) 

0.603
*
 

(0.005) 

0.575
*
 

(0.005) 

0.584
*
 

(0.005) 

Ln(Parcel Area) 
0.172

*
 

(0.003) 

0.170
*
 

(0.003) 

0.179
*
 

(0.003) 

0.173
*
 

(0.003) 

0.174
*
 

(0.003) 

0.172
*
 

(0.003) 

Ln(Distance CBD) 
-0.203

*
 

(0.015) 

-0.166
*
 

(0.015) 

-0.192
*
 

(0.018) 

-0.188
*
 

(0.013) 

-0.190
*
 

(0.014) 

-0.187
*
 

(0.014) 

Near Airport 
0.030

*
 

(0.008) 

0.026
*
 

(0.008) 

0.010 

(0.009) 

0.020
*
 

(0.007) 

0.015
***

 

(0.008) 

0.014
***

 

(0.007) 

Ln(Lattitude) 
-4.378

*
 

(0.018) 

-3.485
*
 

(0.770) 

-4.096 

(0.413) 

-5.358
*
 

(0.673) 

-5.066
*
 

(0.440) 

-2.774
*
 

(0.497) 

Ln(Longitude) 
2.530

*
 

(1.319) 

3.038
*
 

(0.994) 

2.785
**

 

(1.162) 

2.247
*
 

(0.765) 

2.410
*
 

(0.905) 

2.134
**

 

(0.912) 

Ln(Median Income) 
0.121

*
 

(0.007) 

0.117
*
 

(0.007) 

0.127 

(0.009) 

0.121
*
 

(0.006) 

0.125
*
 

(0.007) 

0.118
*
 

(0.007) 

% White (2000) 
0.184

*
 

(0.049) 

0.189
*
 

(0.049) 

0.237
*
 

(0.057) 

0.266
*
 

(0.040) 

0.284
*
 

(0.044) 

0.224
*
 

(0.044) 

% Black (2000) 
-0.058 

(0.053) 

-0.054 

(0.053) 

0.036
*
 

(0.060) 

0.040 

(0.042) 

0.042 

(0.047) 

0.012 

(0.047) 

% Over 65 (2000) 
0.091

*
 

(0.027) 

0.101
*
 

(0.027) 

0.043
*
 

(0.033) 

0.050
**

 

(0.024) 

0.039 

(0.026) 

0.045
***

 

(0.025) 

R
2 

0.9171 0.9157 0.9259 0.9093 0.9145 0.9142 

Note: *, **, and *** denotes significance at the 1%, 5% and 10 % levels. Standard errors appear in parentheses. 

  



100 

 

Table 15: Spatial Lag Implicit Prices 

 

NN15 NN20 D200 DT20063 DT200123 DT40063 

SDM_WF 
11,360.75 

(852.18) 

11,668.39 

(855.77) 

12,274.90 

(934.37) 

11,784.28 

(857.10) 

11,842.51 

(858.02) 

11,978.16 

(862.12) 

SDM_NWF 
803.55 

(151.16) 

879.64 

(151.77) 

1,118.96 

(165.71) 

890.72 

(151.95) 

887.94 

(152.10) 

918.62 

(152.87) 

SDM_100 
1,678.36 

(179.69) 

1,764.62 

(180.42) 

2,017.99 

(197.34) 

1,786.31 

(180.68) 

1,784.34 

(180.84) 

1,821.63 

(181.76) 

SDM_300 
1,054.88 

(150.82) 

1,133.88 

(151.42) 

1,377.24 

(165.44) 

1,148.01 

(151.62) 

1,145.46 

(151.76) 

1,178.05 

(152.54) 

SDM_500 
764.97 

(151.87) 

840.61 

(152.49) 

1,079.31 

(166.48) 

851.22 

(152.67) 

848.40 

(152.82) 

878.80 

(153.60) 

SDM_700 
574.02 

(157.87) 

647.43 

(158.52) 

883.07 

(172.99) 

655.73 

(158.71) 

652.74 

(158.87) 

681.69 

(159.66) 

SDM_900 
431.39 

(164.82) 

503.15 

(165.50) 

736.50 

(180.57) 

509.71 

(165.70) 

506.59 

(165.87) 

534.47 

(166.69) 

WF 
128,783.97 

(3,103.21) 

128,563.36 

(3,116.71) 

138,756.89 

(3,385.91) 

129,408.11 

(3,123.71) 

129,788.42 

(3,126.72) 

131,127.18 

(3,141.40) 

Distance (M) 
-27.75 

(0.64) 

-27.79 

(0.64) 

-27.08 

(0.64) 

-27.97 

(0.64) 

-27.94 

(0.64) 

-27.92 

(0.64) 
Standard errors appear in parentheses. 
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Table 16: Spatial Error Implicit Prices 

 

NN15 NN20 D200 DT20063 DT200123 DT40063 

SDM_WF 
7,784.93 

(816.23) 

7,399.15 

(819.40) 

5,072.04 

(856.18) 

9,691.46 

(885.07) 

9,244.18 

(889.51) 

10,251.20 

(935.17) 

SDM_NWF 
336.41 

(142.11) 

252.86 

(141.86) 

705.20 

(125.30) 

489.42 

(189.37) 

254.90 

(189.19) 

487.60 

(222.71) 

SDM_100 
906.55 

(181.98) 

770.38 

(182.46) 

827.27 

(171.20) 

1,542.16 

(219.31) 

1,336.42 

(223.59) 

1,490.51 

(253.19) 

SDM_300 
500.21 

(140.85) 

401.53 

(140.85) 

740.27 

(124.10) 

791.86 

(188.55) 

565.61 

(188.55) 

775.73 

(222.14) 

SDM_500 
311.26 

(143.32) 

230.03 

(143.04) 

699.82 

(126.68) 

442.99 

(190.22) 

207.20 

(190.10) 

443.37 

(223.50) 

SDM_700 
186.81 

(152.93) 

117.07 

(152.49) 

673.17 

(137.62) 

213.19 

(197.08) 
--- 

224.45 

(230.09) 

SDM_900 
93.86 

(163.55) 

32.69 

(163.02) 

653.27 

(149.59) 

41.56 

(204.91) 
--- 

60.94 

(237.74) 

WF 
120,116.49 

(3,043.52) 

118,934.86 

(3,043.96) 

116,723.81 

(3,566.52) 

124,039.05 

(3,029.50) 

122,664.99 

(3,039.89) 

125,039.50 

(2,979.51) 

Dist 
-36.35 

(0.90) 

-36.64 

(0.89) 

-35.02 

(1.05) 

-33.22 

(0.76) 

-35.39 

(0.83) 

-33.42 

(0.82) 
Standard errors appear in parentheses. 
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Table 17: Forecasting Error, Spatial Lag and Spatial Error Models 

Model Mean Error Median Error St. Dev. Error 

Root mean sq 

error 

Root median sq 

error 

Mean abs value % 

error 

Median abs value 

% error 

Spatial Lag 

          SAR NN15 0.00271 0.01070 0.22151 0.16213 0.12395 0.01352 0.01037 

   SAR NN20 0.00250 0.01057 0.22150 0.16210 0.12394 0.01352 0.01037 

   SAR200 0.00100 0.00709 0.21752 0.15638 0.11877 0.01305 0.00992 

   SAR20063 -0.00053 0.00737 0.22132 0.16182 0.12381 0.01350 0.01035 

   SAR200123 -0.00047 0.00745 0.22132 0.16176 0.12354 0.01349 0.01034 

   SAR40063 -0.00046 0.00762 0.22117 0.16161 0.12323 0.01348 0.01034 

Spatial Error 

          SEM NN15 -0.01277 -0.00385 0.22747 0.16830 0.12917 0.01403 0.01077 

   SEM NN20 -0.01254 -0.00378 0.22742 0.16828 0.12863 0.01403 0.01072 

   SEM200 0.00258 0.00943 0.22624 0.16684 0.12795 0.01389 0.01077 

   SEM20063 -0.00183 0.00620 0.22282 0.16401 0.12587 0.01367 0.01054 

   SEM200123 -0.00400 0.00485 0.22400 0.16511 0.12734 0.01376 0.01057 

   SEM40063 -0.00473 0.00324 0.22404 0.16501 0.12755 0.01375 0.01066 
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Table 18: Full Spatial Lag Results 

 

SarNN15 SarNN20 Sar200 Sar20063 Sar200123 Sar40063 

Constant 
48.103 

(8.868) 

48.532 

(9.686) 

45.760 

(11.084) 

48.499 

(9.458) 

49.395 

(9.729) 

54.059 

(11.371) 

Ln(SDM) 
-0.011 

(0.031) 

-0.028 

(0.031) 

-0.052 

(0.030) 

-0.030 

(0.031) 

-0.029 

(0.031) 

-0.032 

(0.031) 

ln(SDM)*Waterfront 
0.078 

(0.011) 

0.078 

(0.011) 

0.068 

(0.011) 

0.079 

(0.011) 

0.079 

(0.011) 

0.079 

(0.011) 

Ln(SDM)*ln(dist) 
-0.017 

(0.002) 

-0.017 

(0.002) 

-0.015 

(0.002) 

-0.017 

(0.002) 

-0.017 

(0.002) 

-0.017 

(0.002) 

Ln(SDM)*ln(lake area) 
0.010 

(0.002) 

0.011 

(0.002) 

0.013 

(0.002) 

0.012 

(0.002) 

0.011 

(0.002) 

0.012 

(0.002) 

Waterfront 
0.147 

(0.020) 

0.146 

(0.020) 

0.152 

(0.020) 

0.146 

(0.020) 

0.146 

(0.020) 

0.147 

(0.020) 

Ln(lake dist) 
-0.035 

(0.004) 

-0.035 

(0.004) 

-0.029 

(0.004) 

-0.035 

(0.004) 

-0.035 

(0.004) 

-0.034 

(0.004) 

Canalfront 
0.106 

(0.018) 

0.105 

(0.018) 

0.099 

(0.017) 

0.105 

(0.018) 

0.104 

(0.018) 

0.104 

(0.018) 

Golffront 
0.331 

(0.033) 

0.332 

(0.033) 

0.308 

(0.032) 

0.334 

(0.033) 

0.335 

(0.033) 

0.341 

(0.033) 

Ln(bath) 
0.119 

(0.005) 

0.120 

(0.005) 

0.111 

(0.004) 

0.120 

(0.005) 

0.120 

(0.005) 

0.120 

(0.005) 

Pool 
0.013 

(0.003) 

0.014 

(0.003) 

0.013 

(0.003) 

0.014 

(0.003) 

0.014 

(0.003) 

0.014 

(0.003) 

Ln(age) 
-0.072 

(0.001) 

-0.071 

(0.001) 

-0.064 

(0.001) 

-0.070 

(0.001) 

-0.070 

(0.001) 

-0.070 

(0.001) 

Ln(area_heated) 
0.675 

(0.005) 

0.673 

(0.005) 

0.621 

(0.003) 

0.672 

(0.005) 

0.672 

(0.005) 

0.670 

(0.005) 

Ln(area parcel) 
0.166 

(0.003) 

0.165 

(0.003) 

0.162 

(0.003) 

0.167 

(0.003) 

0.167 

(0.003) 

0.167 

(0.003) 

Ln(dist CBD) 
-0.189 

(0.010) 

-0.189 

(0.010) 

-0.169 

(0.010) 

-0.189 

(0.010) 

-0.189 

(0.010) 

-0.189 

(0.010) 

Near airport 
0.028 

(0.006) 

0.029 

(0.006) 

0.028 

(0.006) 

0.028 

(0.006) 

0.028 

(0.006) 

0.028 

(0.006) 

ln(x_coord) 
-6.633 

(0.014) 

-6.445 

(0.070) 

-5.680 

(0.199) 

-6.509 

(0.053) 

-6.555 

(0.074) 

-6.727 

(0.204) 

ln(y_coord) 
3.620 

(0.664) 

3.395 

(0.666) 

2.761 

(0.640) 

3.462 

(0.666) 

3.440 

(0.665) 

3.257 

(0.657) 

Ln(Med income) 
0.107 

(0.005) 

0.107 

(0.005) 

0.087 

(0.005) 

0.106 

(0.005) 

0.106 

(0.005) 

0.103 

(0.005) 

Percent white00 
0.249 

(0.032) 

0.246 

(0.032) 

0.179 

(0.031) 

0.244 

(0.032) 

0.244 

(0.032) 

0.238 

(0.032) 

Percent black00 
0.056 

(0.034) 

0.052 

(0.034) 

0.005 

(0.033) 

0.053 

(0.034) 

0.053 

(0.034) 

0.047 

(0.034) 

Percent over6500 
0.021 

(0.020) 

0.022 

(0.020) 

0.025 

(0.019) 

0.023 

(0.020) 

0.022 

(0.020) 

0.022 

(0.020) 

year_1996 
-0.814 

(0.004) 

-0.821 

(0.004) 

-0.818 

(0.004) 

-0.819 

(0.004) 

-0.816 

(0.004) 

-0.812 

(0.004) 

year_1997 -0.754 -0.762 -0.759 -0.760 -0.759 -0.755 
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(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

year_1998 
-0.687 

(0.004) 

-0.692 

(0.004) 

-0.690 

(0.004) 

-0.690 

(0.004) 

-0.690 

(0.004) 

-0.685 

(0.004) 

year_1999 
-0.598 

(0.004) 

-0.605 

(0.004) 

-0.602 

(0.004) 

-0.603 

(0.004) 

-0.603 

(0.004) 

-0.599 

(0.004) 

year_2000 
-0.493 

(0.004) 

-0.498 

(0.004) 

-0.496 

(0.004) 

-0.497 

(0.004) 

-0.497 

(0.004) 

-0.494 

(0.004) 

year_2001 
-0.376 

(0.004) 

-0.379 

(0.004) 

-0.376 

(0.004) 

-0.378 

(0.004) 

-0.377 

(0.004) 

-0.375 

(0.004) 

year_2002 
-0.284 

(0.004) 

-0.285 

(0.004) 

-0.282 

(0.004) 

-0.284 

(0.004) 

-0.284 

(0.004) 

-0.282 

(0.004) 

year_2003 
-0.156 

(0.004) 

-0.156 

(0.004) 

-0.155 

(0.004) 

-0.155 

(0.004) 

-0.155 

(0.004) 

-0.154 

(0.004) 

BASS_LAKE 
-0.079 

(0.018) 

-0.080 

(0.018) 

-0.035 

(0.018) 

-0.077 

(0.018) 

-0.076 

(0.018) 

-0.070 

(0.019) 

BAY_LAKE_B 
-0.265 

(0.033) 

-0.260 

(0.033) 

-0.223 

(0.033) 

-0.255 

(0.033) 

-0.253 

(0.033) 

-0.234 

(0.034) 

BEARHEAD_LAKE 
-0.039 

(0.026) 

-0.041 

(0.026) 

-0.013 

(0.025) 

-0.037 

(0.026) 

-0.036 

(0.026) 

-0.033 

(0.026) 

BIG_SAND_LAKE 
0.168 

(0.016) 

0.162 

(0.016) 

0.134 

(0.016) 

0.162 

(0.016) 

0.162 

(0.016) 

0.157 

(0.016) 

CLEAR_LAKE 
-0.359 

(0.018) 

-0.361 

(0.018) 

-0.295 

(0.017) 

-0.359 

(0.018) 

-0.358 

(0.018) 

-0.353 

(0.018) 

DEEP_LAKE 
-0.004 

(0.035) 

0.003 

(0.036) 

0.043 

(0.037) 

0.006 

(0.036) 

0.009 

(0.036) 

0.022 

(0.038) 

KASEY_LAKE 
-0.208 

(0.024) 

-0.197 

(0.024) 

-0.140 

(0.023) 

-0.198 

(0.024) 

-0.197 

(0.024) 

-0.190 

(0.024) 

KELLY_LAKE 
-0.238 

(0.027) 

-0.222 

(0.027) 

-0.152 

(0.026) 

-0.222 

(0.027) 

-0.221 

(0.027) 

-0.212 

(0.027) 

KRISTY_LAKE 
-0.252 

(0.026) 

-0.238 

(0.026) 

-0.168 

(0.025) 

-0.238 

(0.026) 

-0.237 

(0.026) 

-0.229 

(0.027) 

LAKE_ADAIR 
0.130 

(0.023) 

0.135 

(0.023) 

0.155 

(0.022) 

0.135 

(0.023) 

0.136 

(0.023) 

0.141 

(0.023) 

LAKE_ANDERSON 
-0.037 

(0.018) 

-0.037 

(0.018) 

-0.007 

(0.018) 

-0.034 

(0.018) 

-0.033 

(0.018) 

-0.027 

(0.019) 

LAKE_ANGEL 
-0.438 

(0.025) 

-0.435 

(0.025) 

-0.354 

(0.024) 

-0.431 

(0.025) 

-0.431 

(0.025) 

-0.425 

(0.026) 

LAKE_ARNOLD 
-0.086 

(0.020) 

-0.085 

(0.020) 

-0.050 

(0.020) 

-0.083 

(0.020) 

-0.082 

(0.020) 

-0.075 

(0.020) 

LAKE_BALDWIN 
0.031 

(0.019) 

0.026 

(0.020) 

0.027 

(0.021) 

0.030 

(0.020) 

0.032 

(0.020) 

0.038 

(0.022) 

LAKE_BARTON 
-0.189 

(0.017) 

-0.193 

(0.017) 

-0.160 

(0.018) 

-0.190 

(0.017) 

-0.188 

(0.017) 

-0.181 

(0.019) 

LAKE_BEARDALL 
-0.479 

(0.051) 

-0.471 

(0.051) 

-0.345 

(0.049) 

-0.462 

(0.051) 

-0.459 

(0.051) 

-0.437 

(0.051) 

LAKE_BEAUTY 
-0.046 

(0.045) 

-0.032 

(0.045) 

0.005 

(0.044) 

-0.029 

(0.045) 

-0.029 

(0.045) 

-0.024 

(0.045) 

LAKE_BELL 
-0.166 

(0.027) 

-0.160 

(0.027) 

-0.115 

(0.027) 

-0.159 

(0.027) 

-0.159 

(0.027) 

-0.150 

(0.028) 
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LAKE_BERRY 
0.183 

(0.021) 

0.184 

(0.021) 

0.204 

(0.022) 

0.184 

(0.021) 

0.186 

(0.021) 

0.193 

(0.023) 

LAKE_BESSIE 
0.530 

(0.023) 

0.532 

(0.023) 

0.468 

(0.022) 

0.533 

(0.023) 

0.533 

(0.023) 

0.531 

(0.023) 

LAKE_BLANCHE 
0.067 

(0.013) 

0.070 

(0.014) 

0.073 

(0.013) 

0.071 

(0.014) 

0.070 

(0.014) 

0.068 

(0.014) 

LAKE_BUCHANNAN 
-0.113 

(0.030) 

-0.113 

(0.030) 

-0.029 

(0.028) 

-0.111 

(0.030) 

-0.109 

(0.030) 

-0.105 

(0.030) 

LAKE_BUCK 
0.548 

(0.023) 

0.532 

(0.022) 

0.450 

(0.020) 

0.540 

(0.022) 

0.542 

(0.022) 

0.552 

(0.021) 

LAKE_BUMBY 
-0.067 

(0.029) 

-0.064 

(0.029) 

-0.010 

(0.028) 

-0.061 

(0.029) 

-0.060 

(0.029) 

-0.056 

(0.029) 

LAKE_BURKETT 
0.048 

(0.027) 

0.051 

(0.028) 

0.082 

(0.030) 

0.054 

(0.028) 

0.057 

(0.029) 

0.071 

(0.031) 

LAKE_BUTLER 
-0.060 

(0.016) 

-0.067 

(0.016) 

-0.081 

(0.016) 

-0.066 

(0.016) 

-0.066 

(0.016) 

-0.067 

(0.016) 

LAKE_C 
-0.108 

(0.021) 

-0.105 

(0.021) 

-0.065 

(0.021) 

-0.102 

(0.021) 

-0.101 

(0.021) 

-0.091 

(0.022) 

LAKE_CANE_A 
-0.025 

(0.014) 

-0.022 

(0.014) 

-0.005 

(0.014) 

-0.021 

(0.014) 

-0.021 

(0.014) 

-0.021 

(0.014) 

LAKE_CATHERINE_B 
0.194 

(0.047) 

0.201 

(0.048) 

0.191 

(0.047) 

0.203 

(0.047) 

0.206 

(0.048) 

0.218 

(0.048) 

LAKE_CAY_DEE 
-0.043 

(0.026) 

-0.034 

(0.027) 

0.010 

(0.026) 

-0.032 

(0.026) 

-0.031 

(0.027) 

-0.022 

(0.027) 

LAKE_CHARITY 
0.174 

(0.037) 

0.181 

(0.038) 

0.155 

(0.038) 

0.180 

(0.037) 

0.181 

(0.038) 

0.187 

(0.039) 

LAKE_CHASE 
0.490 

(0.031) 

0.490 

(0.031) 

0.429 

(0.030) 

0.492 

(0.031) 

0.491 

(0.031) 

0.486 

(0.031) 

LAKE_CHEROKEE 
0.104 

(0.029) 

0.109 

(0.029) 

0.123 

(0.028) 

0.111 

(0.029) 

0.111 

(0.029) 

0.115 

(0.029) 

LAKE_CHRISTIE 
-0.100 

(0.035) 

-0.102 

(0.035) 

-0.058 

(0.033) 

-0.099 

(0.035) 

-0.099 

(0.035) 

-0.090 

(0.034) 

LAKE_COMO 
0.078 

(0.027) 

0.088 

(0.027) 

0.124 

(0.027) 

0.091 

(0.027) 

0.092 

(0.027) 

0.100 

(0.028) 

LAKE_CONCORD 
-0.015 

(0.029) 

-0.010 

(0.029) 

0.025 

(0.028) 

-0.009 

(0.029) 

-0.008 

(0.029) 

-0.002 

(0.029) 

LAKE_CONWAY 
-0.082 

(0.015) 

-0.096 

(0.014) 

-0.091 

(0.014) 

-0.094 

(0.015) 

-0.094 

(0.014) 

-0.092 

(0.014) 

LAKE_COPELAND 
0.029 

(0.031) 

0.033 

(0.031) 

0.065 

(0.031) 

0.036 

(0.031) 

0.036 

(0.031) 

0.041 

(0.031) 

LAKE_DANIEL 
-0.072 

(0.032) 

-0.064 

(0.033) 

-0.018 

(0.032) 

-0.062 

(0.033) 

-0.063 

(0.033) 

-0.056 

(0.033) 

LAKE_DESTINY 
0.267 

(0.034) 

0.281 

(0.035) 

0.291 

(0.035) 

0.281 

(0.035) 

0.283 

(0.035) 

0.292 

(0.036) 

LAKE_DOT 
-0.420 

(0.038) 

-0.413 

(0.038) 

-0.296 

(0.036) 

-0.409 

(0.038) 

-0.407 

(0.038) 

-0.399 

(0.038) 

LAKE_DOVER 
-0.010 

(0.040) 

-0.008 

(0.040) 

0.048 

(0.039) 

-0.005 

(0.040) 

-0.005 

(0.040) 

0.004 

(0.040) 

LAKE_DOWN 0.000 -0.006 -0.029 -0.006 -0.006 -0.009 
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(0.013) (0.013) (0.012) (0.013) (0.013) (0.013) 

LAKE_DOWNEY 
0.072 

(0.021) 

0.075 

(0.022) 

0.112 

(0.024) 

0.078 

(0.022) 

0.081 

(0.022) 

0.093 

(0.025) 

LAKE_DRUID 
0.042 

(0.022) 

0.049 

(0.022) 

0.080 

(0.022) 

0.051 

(0.022) 

0.052 

(0.022) 

0.059 

(0.023) 

LAKE_EMERALD 
0.141 

(0.027) 

0.141 

(0.028) 

0.171 

(0.030) 

0.146 

(0.028) 

0.150 

(0.028) 

0.173 

(0.031) 

LAKE_EOLA 
-0.068 

(0.036) 

-0.062 

(0.036) 

-0.026 

(0.035) 

-0.059 

(0.036) 

-0.058 

(0.036) 

-0.054 

(0.036) 

LAKE_ESTELLE 
0.066 

(0.030) 

0.071 

(0.030) 

0.084 

(0.030) 

0.071 

(0.030) 

0.072 

(0.030) 

0.078 

(0.031) 

LAKE_FAIRHOPE 
-0.010 

(0.035) 

-0.006 

(0.035) 

0.044 

(0.034) 

-0.001 

(0.035) 

-0.001 

(0.035) 

0.005 

(0.036) 

LAKE_FAIRVIEW 
-0.259 

(0.019) 

-0.258 

(0.019) 

-0.206 

(0.019) 

-0.257 

(0.019) 

-0.257 

(0.019) 

-0.249 

(0.020) 

LAKE_FAITH 
0.050 

(0.037) 

0.057 

(0.038) 

0.078 

(0.038) 

0.060 

(0.038) 

0.061 

(0.038) 

0.072 

(0.039) 

LAKE_FARRAR 
-0.022 

(0.024) 

-0.018 

(0.025) 

0.012 

(0.024) 

-0.015 

(0.024) 

-0.014 

(0.025) 

-0.007 

(0.025) 

LAKE_FORMOSA 
0.001 

(0.026) 

0.007 

(0.026) 

0.039 

(0.026) 

0.009 

(0.026) 

0.010 

(0.026) 

0.016 

(0.027) 

LAKE_FREDRICA 
0.190 

(0.018) 

0.188 

(0.018) 

0.186 

(0.018) 

0.191 

(0.018) 

0.192 

(0.018) 

0.198 

(0.019) 

LAKE_GATLIN 
0.074 

(0.025) 

0.071 

(0.025) 

0.065 

(0.024) 

0.076 

(0.025) 

0.075 

(0.025) 

0.076 

(0.025) 

LAKE_GEAR 
0.032 

(0.031) 

0.033 

(0.032) 

0.041 

(0.032) 

0.037 

(0.032) 

0.038 

(0.032) 

0.048 

(0.032) 

LAKE_GEM_A 
-0.034 

(0.028) 

-0.024 

(0.029) 

0.024 

(0.029) 

-0.022 

(0.029) 

-0.020 

(0.029) 

-0.011 

(0.030) 

LAKE_GEM_MARY 
0.005 

(0.023) 

0.008 

(0.023) 

0.029 

(0.022) 

0.010 

(0.023) 

0.010 

(0.023) 

0.015 

(0.023) 

LAKE_GEORGE 
0.013 

(0.015) 

0.010 

(0.015) 

0.019 

(0.014) 

0.013 

(0.015) 

0.014 

(0.015) 

0.017 

(0.015) 

LAKE_GEORGIA 
0.106 

(0.021) 

0.106 

(0.022) 

0.135 

(0.025) 

0.108 

(0.022) 

0.110 

(0.023) 

0.121 

(0.026) 

LAKE_GILES 
-0.116 

(0.021) 

-0.118 

(0.021) 

-0.084 

(0.020) 

-0.115 

(0.021) 

-0.115 

(0.021) 

-0.108 

(0.021) 

LAKE_GLORIA 
-0.025 

(0.019) 

-0.028 

(0.019) 

0.018 

(0.017) 

-0.025 

(0.019) 

-0.025 

(0.019) 

-0.023 

(0.018) 

LAKE_GREENWOOD 
0.011 

(0.035) 

0.020 

(0.035) 

0.053 

(0.034) 

0.023 

(0.035) 

0.023 

(0.035) 

0.029 

(0.035) 

LAKE_HART 
0.267 

(0.022) 

0.249 

(0.021) 

0.197 

(0.018) 

0.255 

(0.021) 

0.257 

(0.021) 

0.265 

(0.018) 

LAKE_HIAWASSEE 
-0.124 

(0.010) 

-0.121 

(0.010) 

-0.091 

(0.010) 

-0.121 

(0.010) 

-0.121 

(0.010) 

-0.118 

(0.010) 

LAKE_HIGHLAND 
0.037 

(0.024) 

0.042 

(0.024) 

0.072 

(0.024) 

0.044 

(0.024) 

0.045 

(0.024) 

0.051 

(0.024) 

LAKE_HOLDEN 
-0.322 

(0.015) 

-0.325 

(0.015) 

-0.266 

(0.014) 

-0.323 

(0.015) 

-0.322 

(0.015) 

-0.316 

(0.015) 
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LAKE_HOPE 
-0.104 

(0.053) 

-0.101 

(0.053) 

-0.071 

(0.053) 

-0.094 

(0.053) 

-0.088 

(0.053) 

-0.062 

(0.054) 

LAKE_HUNGERFORD 
-0.306 

(0.033) 

-0.298 

(0.033) 

-0.231 

(0.033) 

-0.294 

(0.033) 

-0.291 

(0.034) 

-0.279 

(0.034) 

LAKE_IRMA 
0.043 

(0.018) 

0.040 

(0.020) 

0.069 

(0.022) 

0.041 

(0.019) 

0.044 

(0.020) 

0.053 

(0.023) 

LAKE_ISLEWORTH 
0.358 

(0.040) 

0.359 

(0.040) 

0.297 

(0.039) 

0.362 

(0.040) 

0.363 

(0.040) 

0.367 

(0.040) 

LAKE_IVANHOE 
0.086 

(0.019) 

0.090 

(0.019) 

0.114 

(0.019) 

0.091 

(0.019) 

0.092 

(0.019) 

0.097 

(0.020) 

LAKE_JACKSON 
0.134 

(0.032) 

0.145 

(0.032) 

0.163 

(0.033) 

0.147 

(0.032) 

0.149 

(0.032) 

0.158 

(0.033) 

LK_JEN_JEWEL 
-0.117 

(0.021) 

-0.119 

(0.021) 

-0.092 

(0.020) 

-0.117 

(0.021) 

-0.117 

(0.021) 

-0.113 

(0.021) 

LAKE_JESSAMINE 
-0.236 

(0.013) 

-0.242 

(0.012) 

-0.207 

(0.011) 

-0.239 

(0.013) 

-0.238 

(0.012) 

-0.235 

(0.012) 

LAKE_KILLARNEY 
-0.096 

(0.019) 

-0.096 

(0.020) 

-0.053 

(0.020) 

-0.095 

(0.019) 

-0.094 

(0.020) 

-0.086 

(0.021) 

LAKE_KOZART 
-0.279 

(0.018) 

-0.277 

(0.018) 

-0.219 

(0.018) 

-0.275 

(0.018) 

-0.275 

(0.018) 

-0.269 

(0.019) 

LAKE_LANCASTER 
0.032 

(0.019) 

0.033 

(0.019) 

0.063 

(0.019) 

0.036 

(0.019) 

0.036 

(0.019) 

0.041 

(0.019) 

LAKE_LAWSONA 
0.165 

(0.026) 

0.172 

(0.026) 

0.194 

(0.025) 

0.175 

(0.026) 

0.175 

(0.026) 

0.181 

(0.026) 

LAKE_LOUISE_B 
0.417 

(0.024) 

0.414 

(0.024) 

0.352 

(0.023) 

0.416 

(0.024) 

0.417 

(0.024) 

0.418 

(0.024) 

LAKE_LOVE 
0.321 

(0.047) 

0.339 

(0.047) 

0.325 

(0.047) 

0.339 

(0.047) 

0.339 

(0.047) 

0.346 

(0.048) 

LAKE_LOVELY 
-0.256 

(0.024) 

-0.247 

(0.024) 

-0.172 

(0.024) 

-0.247 

(0.024) 

-0.245 

(0.024) 

-0.235 

(0.025) 

LAKE_LURNA 
0.058 

(0.025) 

0.066 

(0.025) 

0.096 

(0.024) 

0.068 

(0.025) 

0.069 

(0.025) 

0.073 

(0.025) 

LAKE_MABEL 
0.164 

(0.024) 

0.158 

(0.024) 

0.116 

(0.024) 

0.160 

(0.024) 

0.160 

(0.024) 

0.158 

(0.024) 

LAKE_MAITLAND 
0.334 

(0.019) 

0.336 

(0.020) 

0.318 

(0.022) 

0.336 

(0.020) 

0.337 

(0.020) 

0.344 

(0.022) 

LAKE_MANN 
-0.390 

(0.020) 

-0.390 

(0.021) 

-0.315 

(0.019) 

-0.387 

(0.021) 

-0.385 

(0.021) 

-0.378 

(0.021) 

LAKE_MARSHA 
0.016 

(0.014) 

0.015 

(0.015) 

0.051 

(0.014) 

0.016 

(0.015) 

0.015 

(0.014) 

0.015 

(0.014) 

LAKE_MINNEHAHA 
0.155 

(0.023) 

0.159 

(0.024) 

0.167 

(0.026) 

0.160 

(0.024) 

0.161 

(0.024) 

0.171 

(0.026) 

LAKE_MIZELL 
0.358 

(0.028) 

0.359 

(0.029) 

0.347 

(0.030) 

0.361 

(0.029) 

0.362 

(0.029) 

0.369 

(0.030) 

LAKE_NAN 
0.039 

(0.030) 

0.042 

(0.031) 

0.083 

(0.033) 

0.046 

(0.031) 

0.047 

(0.031) 

0.061 

(0.034) 

LAKE_NONA 
0.438 

(0.026) 

0.419 

(0.025) 

0.348 

(0.023) 

0.424 

(0.025) 

0.425 

(0.025) 

0.429 

(0.024) 

LAKE_OFWOODS -0.652 -0.653 -0.569 -0.648 -0.648 -0.630 
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(0.052) (0.052) (0.050) (0.052) (0.052) (0.052) 

LAKE_OLIVE 
-0.059 

(0.037) 

-0.054 

(0.037) 

-0.009 

(0.036) 

-0.049 

(0.037) 

-0.049 

(0.037) 

-0.044 

(0.037) 

LAKE_OLYMPIA 
-0.247 

(0.016) 

-0.242 

(0.016) 

-0.175 

(0.015) 

-0.242 

(0.016) 

-0.242 

(0.016) 

-0.239 

(0.016) 

LAKE_ORLANDO 
-0.224 

(0.020) 

-0.219 

(0.020) 

-0.174 

(0.020) 

-0.219 

(0.020) 

-0.219 

(0.020) 

-0.211 

(0.021) 

LAKE_OSCEOLA 
0.380 

(0.019) 

0.384 

(0.020) 

0.363 

(0.022) 

0.384 

(0.020) 

0.385 

(0.020) 

0.393 

(0.022) 

LAKE_PAMELA 
-0.306 

(0.038) 

-0.297 

(0.038) 

-0.231 

(0.037) 

-0.295 

(0.038) 

-0.295 

(0.038) 

-0.290 

(0.038) 

LAKE_PEARL_B 
-0.154 

(0.015) 

-0.144 

(0.015) 

-0.084 

(0.014) 

-0.144 

(0.015) 

-0.144 

(0.015) 

-0.141 

(0.015) 

LAKE_PICKETT 
0.265 

(0.051) 

0.256 

(0.053) 

0.581 

(0.048) 

0.268 

(0.052) 

0.280 

(0.053) 

0.326 

(0.056) 

LAKE_PINELOCH 
-0.076 

(0.017) 

-0.077 

(0.017) 

-0.046 

(0.016) 

-0.074 

(0.017) 

-0.074 

(0.017) 

-0.069 

(0.017) 

LAKE_PORTER 
-0.037 

(0.017) 

-0.037 

(0.017) 

-0.007 

(0.017) 

-0.035 

(0.017) 

-0.033 

(0.017) 

-0.027 

(0.017) 

LAKE_RABAMA 
-0.041 

(0.023) 

-0.037 

(0.023) 

-0.007 

(0.023) 

-0.034 

(0.023) 

-0.033 

(0.023) 

-0.026 

(0.024) 

LAKE_RICHMOND 
-0.292 

(0.021) 

-0.291 

(0.021) 

-0.226 

(0.020) 

-0.287 

(0.021) 

-0.288 

(0.021) 

-0.283 

(0.021) 

LAKE_ROBERTS 
0.037 

(0.017) 

0.042 

(0.017) 

0.059 

(0.017) 

0.043 

(0.017) 

0.042 

(0.017) 

0.044 

(0.017) 

LAKE_ROSE_B 
-0.112 

(0.013) 

-0.108 

(0.013) 

-0.064 

(0.012) 

-0.108 

(0.013) 

-0.107 

(0.013) 

-0.105 

(0.013) 

LAKE_ROWENA 
0.021 

(0.022) 

0.024 

(0.022) 

0.050 

(0.022) 

0.026 

(0.022) 

0.027 

(0.022) 

0.033 

(0.023) 

LAKE_SANTIAGO 
-0.055 

(0.022) 

-0.053 

(0.022) 

-0.024 

(0.022) 

-0.050 

(0.022) 

-0.049 

(0.022) 

-0.042 

(0.023) 

LAKE_SARAH 
-0.067 

(0.043) 

-0.059 

(0.043) 

-0.038 

(0.042) 

-0.058 

(0.043) 

-0.057 

(0.043) 

-0.054 

(0.043) 

LAKE_SHADOW 
-0.126 

(0.024) 

-0.115 

(0.025) 

-0.070 

(0.025) 

-0.115 

(0.024) 

-0.114 

(0.025) 

-0.105 

(0.026) 

LAKE_SHANNON 
-0.015 

(0.024) 

-0.010 

(0.025) 

0.016 

(0.025) 

-0.008 

(0.025) 

-0.006 

(0.025) 

0.002 

(0.026) 

LAKE_SHEEN 
0.208 

(0.017) 

0.201 

(0.017) 

0.157 

(0.017) 

0.202 

(0.017) 

0.201 

(0.017) 

0.196 

(0.017) 

LAKE_SHERWOOD 
-0.172 

(0.015) 

-0.168 

(0.014) 

-0.104 

(0.013) 

-0.169 

(0.014) 

-0.169 

(0.014) 

-0.166 

(0.014) 

LAKE_SILVER 
0.046 

(0.018) 

0.051 

(0.019) 

0.082 

(0.019) 

0.052 

(0.018) 

0.053 

(0.019) 

0.060 

(0.019) 

LAKE_STARKE 
-0.292 

(0.017) 

-0.287 

(0.017) 

-0.204 

(0.015) 

-0.287 

(0.017) 

-0.287 

(0.017) 

-0.281 

(0.016) 

LAKE_SUE 
0.134 

(0.018) 

0.135 

(0.019) 

0.143 

(0.020) 

0.136 

(0.019) 

0.137 

(0.019) 

0.143 

(0.020) 

LAKE_SUNSET 
-0.445 

(0.034) 

-0.443 

(0.034) 

-0.357 

(0.033) 

-0.437 

(0.034) 

-0.434 

(0.034) 

-0.419 

(0.034) 



109 

 

LAKE_SUSANNAH 
-0.052 

(0.018) 

-0.057 

(0.019) 

-0.046 

(0.020) 

-0.054 

(0.019) 

-0.052 

(0.019) 

-0.044 

(0.020) 

LAKE_SYBELIA 
0.008 

(0.028) 

0.010 

(0.029) 

0.024 

(0.029) 

0.011 

(0.029) 

0.012 

(0.029) 

0.023 

(0.030) 

LAKE_SYLVAN 
0.328 

(0.025) 

0.328 

(0.026) 

0.308 

(0.027) 

0.329 

(0.026) 

0.331 

(0.026) 

0.340 

(0.028) 

LAKE_TENNESSEE 
-0.114 

(0.022) 

-0.110 

(0.022) 

-0.066 

(0.022) 

-0.106 

(0.022) 

-0.106 

(0.022) 

-0.098 

(0.023) 

LAKE_TERRACE 
-0.111 

(0.023) 

-0.104 

(0.023) 

-0.062 

(0.022) 

-0.100 

(0.023) 

-0.099 

(0.023) 

-0.092 

(0.023) 

LAKE_THERESA 
0.046 

(0.033) 

0.057 

(0.034) 

0.090 

(0.033) 

0.060 

(0.034) 

0.062 

(0.034) 

0.072 

(0.035) 

LAKE_TIBET 
0.260 

(0.015) 

0.253 

(0.015) 

0.202 

(0.015) 

0.254 

(0.015) 

0.252 

(0.015) 

0.246 

(0.016) 

LAKE_UNDERHILL 
-0.106 

(0.020) 

-0.108 

(0.020) 

-0.070 

(0.020) 

-0.105 

(0.020) 

-0.104 

(0.020) 

-0.099 

(0.021) 

LAKE_VIRGINIA 
0.301 

(0.019) 

0.303 

(0.019) 

0.292 

(0.020) 

0.303 

(0.019) 

0.304 

(0.019) 

0.308 

(0.021) 

LAKE_WADE 
-0.046 

(0.023) 

-0.040 

(0.023) 

0.002 

(0.022) 

-0.037 

(0.023) 

-0.036 

(0.023) 

-0.030 

(0.023) 

LAKE_WALKER 
-0.338 

(0.030) 

-0.335 

(0.030) 

-0.264 

(0.029) 

-0.332 

(0.030) 

-0.332 

(0.030) 

-0.321 

(0.030) 

LAKE_WARREN 
-0.021 

(0.021) 

-0.028 

(0.021) 

-0.027 

(0.020) 

-0.025 

(0.021) 

-0.024 

(0.021) 

-0.019 

(0.020) 

LAKE_WAUNATTA 
0.099 

(0.023) 

0.100 

(0.024) 

0.126 

(0.026) 

0.101 

(0.024) 

0.102 

(0.024) 

0.111 

(0.027) 

LAKE_WELDONA 
-0.002 

(0.026) 

0.001 

(0.026) 

0.033 

(0.025) 

0.003 

(0.026) 

0.004 

(0.026) 

0.010 

(0.026) 

LAKE_WESTON 
-0.302 

(0.024) 

-0.297 

(0.024) 

-0.217 

(0.024) 

-0.297 

(0.024) 

-0.296 

(0.024) 

-0.285 

(0.025) 

LAKE_WHIPPOOR 
0.152 

(0.024) 

0.135 

(0.023) 

0.103 

(0.020) 

0.141 

(0.023) 

0.144 

(0.023) 

0.154 

(0.021) 

LAKE_WINYAH 
0.144 

(0.020) 

0.151 

(0.021) 

0.168 

(0.021) 

0.151 

(0.021) 

0.152 

(0.021) 

0.159 

(0.022) 

LAWNE_LAKE 
-0.276 

(0.016) 

-0.273 

(0.017) 

-0.212 

(0.016) 

-0.274 

(0.017) 

-0.273 

(0.017) 

-0.267 

(0.017) 

LITTLE_FISH 
0.511 

(0.021) 

0.517 

(0.021) 

0.464 

(0.021) 

0.518 

(0.021) 

0.517 

(0.021) 

0.511 

(0.022) 

LIT_LK_FAIR 
-0.107 

(0.022) 

-0.105 

(0.022) 

-0.035 

(0.022) 

-0.105 

(0.022) 

-0.103 

(0.022) 

-0.097 

(0.023) 

LITTLE_SAND 
0.251 

(0.021) 

0.247 

(0.021) 

0.261 

(0.021) 

0.248 

(0.021) 

0.248 

(0.021) 

0.246 

(0.021) 

LONG_LAKE 
-0.328 

(0.021) 

-0.322 

(0.021) 

-0.240 

(0.019) 

-0.323 

(0.021) 

-0.322 

(0.021) 

-0.315 

(0.021) 

MUD_LAKE_C 
0.164 

(0.042) 

0.171 

(0.042) 

0.164 

(0.042) 

0.174 

(0.042) 

0.175 

(0.042) 

0.181 

(0.043) 

PALM_LAKE 
0.096 

(0.017) 

0.104 

(0.017) 

0.106 

(0.017) 

0.105 

(0.017) 

0.104 

(0.017) 

0.103 

(0.017) 

PARK_LAKE_B 0.084 0.090 0.118 0.093 0.093 0.098 



110 

 

(0.032) (0.032) (0.031) (0.032) (0.032) (0.032) 

POCKET_LAKE 
0.290 

(0.019) 

0.292 

(0.019) 

0.253 

(0.018) 

0.293 

(0.019) 

0.292 

(0.019) 

0.286 

(0.019) 

ROCK_LAKE 
-0.446 

(0.026) 

-0.443 

(0.026) 

-0.373 

(0.025) 

-0.441 

(0.026) 

-0.439 

(0.026) 

-0.433 

(0.027) 

SPRING_LK_B 
0.019 

(0.023) 

0.022 

(0.023) 

0.048 

(0.023) 

0.025 

(0.023) 

0.026 

(0.023) 

0.031 

(0.023) 

SPRING_LK_C 
0.199 

(0.015) 

0.197 

(0.015) 

0.196 

(0.014) 

0.200 

(0.015) 

0.199 

(0.015) 

0.198 

(0.015) 

rho 
-0.003 

(0.000) 

0.000 

(0.000) 

0.109 

(0.008) 

0.001 

(0.000) 

0.003 

(0.000) 

0.008 

(0.001) 
Standard errors appear in parentheses. 
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Table 19: Full Spatial Error Results 

 

SemNN15 SemNN20 Sem200 Sem20063 Sem200123 Sem40063 

Constant 
33.395 

(17.489) 

14.478 

(2.782) 

26.185 

(9.764) 

49.449 

(19.075) 

43.610 

(17.782) 

16.605 

(5.352) 

Ln(SDM) 
-0.005 

(0.030) 

-0.011 

(0.030) 

-0.078 

(0.028) 

0.024 

(0.037) 

0.064 

(0.038) 

0.006 

(0.042) 

ln(SDM)*Waterfront 
0.061 

(0.011) 

0.061 

(0.011) 

0.034 

(0.012) 

0.058 

(0.011) 

0.060 

(0.011) 

0.067 

(0.011) 

Ln(SDM)*ln(dist) 
-0.011 

(0.003) 

-0.010 

(0.003) 

-0.002 

(0.003) 

-0.020 

(0.003) 

-0.021 

(0.003) 

-0.019 

(0.003) 

Ln(SDM)*ln(lake area) 
0.006 

(0.002) 

0.006 

(0.002) 

0.008 

(0.002) 

0.008 

(0.003) 

0.005 

(0.003) 

0.009 

(0.003) 

Waterfront 
0.157 

(0.019) 

0.154 

(0.019) 

0.197 

(0.021) 

0.171 

(0.019) 

0.165 

(0.019) 

0.157 

(0.019) 

Ln(lake dist) 
-0.066 

(0.005) 

-0.068 

(0.005) 

-0.078 

(0.005) 

-0.042 

(0.004) 

-0.046 

(0.005) 

-0.044 

(0.005) 

Canalfront 
0.070 

(0.018) 

0.067 

(0.018) 

0.066 

(0.021) 

0.076 

(0.017) 

0.069 

(0.017) 

0.088 

(0.017) 

Golffront 
0.231 

(0.031) 

0.221 

(0.031) 

0.236 

(0.038) 

0.280 

(0.030) 

0.217 

(0.030) 

0.245 

(0.030) 

Ln(bath) 
0.089 

(0.004) 

0.092 

(0.004) 

0.098 

(0.005) 

0.104 

(0.004) 

0.098 

(0.004) 

0.101 

(0.004) 

Pool 
0.008 

(0.002) 

0.007 

(0.002) 

0.007 

(0.002) 

0.009 

(0.002) 

0.007 

(0.002) 

0.009 

(0.002) 

Ln(age) 
-0.085 

(0.001) 

-0.086 

(0.001) 

-0.086 

(0.001) 

-0.079 

(0.001) 

-0.081 

(0.001) 

-0.081 

(0.001) 

Ln(area_heated) 
0.557 

(0.005) 

0.563 

(0.005) 

0.539 

(0.005) 

0.603 

(0.005) 

0.575 

(0.005) 

0.584 

(0.005) 

Ln(area parcel) 
0.172 

(0.003) 

0.170 

(0.003) 

0.179 

(0.003) 

0.173 

(0.003) 

0.174 

(0.003) 

0.172 

(0.003) 

Ln(dist CBD) 
-0.203 

(0.015) 

-0.166 

(0.015) 

-0.192 

(0.018) 

-0.188 

(0.013) 

-0.190 

(0.014) 

-0.187 

(0.014) 

Near airport 
0.030 

(0.008) 

0.026 

(0.008) 

0.010 

(0.009) 

0.020 

(0.007) 

0.015 

(0.008) 

0.014 

(0.007) 

ln(x_coord) 
-4.378 

(0.018) 

-3.485 

(0.770) 

-4.096 

(0.413) 

-5.358 

(0.673) 

-5.066 

(0.440) 

-2.774 

(0.497) 

ln(y_coord) 
2.530 

(1.319) 

3.038 

(0.994) 

2.785 

(1.162) 

2.247 

(0.765) 

2.410 

(0.905) 

2.134 

(0.912) 

Ln(Med income) 
0.121 

(0.007) 

0.117 

(0.007) 

0.127 

(0.009) 

0.121 

(0.006) 

0.125 

(0.007) 

0.118 

(0.007) 

Percent white00 
0.184 

(0.049) 

0.189 

(0.049) 

0.237 

(0.057) 

0.266 

(0.040) 

0.284 

(0.044) 

0.224 

(0.044) 

Percent black00 
-0.058 

(0.053) 

-0.054 

(0.053) 

0.036 

(0.060) 

0.040 

(0.042) 

0.042 

(0.047) 

0.012 

(0.047) 

Percent over6500 
0.091 

(0.027) 

0.101 

(0.027) 

0.043 

(0.033) 

0.050 

(0.024) 

0.039 

(0.026) 

0.045 

(0.025) 

year_1996 
-0.838 

(0.004) 

-0.836 

(0.004) 

-0.866 

(0.004) 

-0.816 

(0.005) 

-0.812 

(0.006) 

-0.804 

(0.007) 

year_1997 -0.780 -0.780 -0.803 -0.759 -0.756 -0.754 
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(0.004) (0.004) (0.003) (0.005) (0.005) (0.006) 

year_1998 
-0.712 

(0.004) 

-0.712 

(0.004) 

-0.730 

(0.003) 

-0.687 

(0.005) 

-0.688 

(0.005) 

-0.682 

(0.006) 

year_1999 
-0.621 

(0.004) 

-0.621 

(0.004) 

-0.638 

(0.003) 

-0.601 

(0.005) 

-0.600 

(0.005) 

-0.596 

(0.006) 

year_2000 
-0.513 

(0.004) 

-0.511 

(0.004) 

-0.526 

(0.003) 

-0.494 

(0.005) 

-0.493 

(0.005) 

-0.489 

(0.006) 

year_2001 
-0.397 

(0.004) 

-0.393 

(0.004) 

-0.401 

(0.003) 

-0.380 

(0.005) 

-0.378 

(0.005) 

-0.379 

(0.006) 

year_2002 
-0.295 

(0.004) 

-0.286 

(0.004) 

-0.293 

(0.003) 

-0.279 

(0.005) 

-0.276 

(0.005) 

-0.271 

(0.006) 

year_2003 
-0.162 

(0.004) 

-0.156 

(0.004) 

-0.167 

(0.003) 

-0.153 

(0.005) 

-0.155 

(0.004) 

-0.148 

(0.006) 

BASS_LAKE 
-0.206 

(0.027) 

-0.194 

(0.031) 

-0.166 

(0.030) 

-0.143 

(0.026) 

-0.168 

(0.027) 

-0.190 

(0.029) 

BAY_LAKE_B 
-0.347 

(0.055) 

-0.300 

(0.051) 

-0.265 

(0.063) 

-0.252 

(0.040) 

-0.254 

(0.045) 

-0.262 

(0.044) 

BEARHEAD_LAKE 
-0.176 

(0.038) 

-0.170 

(0.043) 

-0.123 

(0.046) 

-0.124 

(0.031) 

-0.145 

(0.033) 

-0.147 

(0.039) 

BIG_SAND_LAKE 
0.184 

(0.026) 

0.156 

(0.022) 

0.185 

(0.026) 

0.157 

(0.020) 

0.177 

(0.023) 

0.170 

(0.023) 

CLEAR_LAKE 
-0.452 

(0.027) 

-0.443 

(0.029) 

-0.427 

(0.032) 

-0.380 

(0.023) 

-0.386 

(0.025) 

-0.415 

(0.027) 

DEEP_LAKE 
-0.086 

(0.052) 

-0.132 

(0.040) 

-0.052 

(0.048) 

-0.029 

(0.055) 

-0.047 

(0.054) 

-0.069 

(0.041) 

KASEY_LAKE 
-0.263 

(0.038) 

-0.268 

(0.031) 

-0.242 

(0.036) 

-0.200 

(0.031) 

-0.227 

(0.034) 

-0.229 

(0.033) 

KELLY_LAKE 
-0.292 

(0.038) 

-0.328 

(0.032) 

-0.268 

(0.036) 

-0.237 

(0.034) 

-0.269 

(0.037) 

-0.245 

(0.038) 

KRISTY_LAKE 
-0.320 

(0.038) 

-0.330 

(0.033) 

-0.284 

(0.036) 

-0.250 

(0.034) 

-0.287 

(0.036) 

-0.250 

(0.037) 

LAKE_ADAIR 
0.051 

(0.032) 

0.055 

(0.030) 

0.076 

(0.037) 

0.109 

(0.031) 

0.084 

(0.033) 

0.077 

(0.031) 

LAKE_ANDERSON 
-0.131 

(0.025) 

-0.156 

(0.031) 

-0.113 

(0.031) 

-0.083 

(0.026) 

-0.109 

(0.026) 

-0.124 

(0.029) 

LAKE_ANGEL 
-0.557 

(0.038) 

-0.564 

(0.040) 

-0.493 

(0.043) 

-0.465 

(0.032) 

-0.490 

(0.035) 

-0.504 

(0.039) 

LAKE_ARNOLD 
-0.185 

(0.027) 

-0.206 

(0.030) 

-0.176 

(0.033) 

-0.135 

(0.029) 

-0.156 

(0.029) 

-0.167 

(0.029) 

LAKE_BALDWIN 
0.000 

(0.033) 

-0.055 

(0.028) 

-0.019 

(0.032) 

0.010 

(0.033) 

0.005 

(0.033) 

-0.048 

(0.025) 

LAKE_BARTON 
-0.293 

(0.027) 

-0.342 

(0.026) 

-0.268 

(0.029) 

-0.225 

(0.030) 

-0.239 

(0.029) 

-0.266 

(0.024) 

LAKE_BEARDALL 
-0.519 

(0.079) 

-0.593 

(0.077) 

-0.555 

(0.090) 

-0.472 

(0.059) 

-0.501 

(0.064) 

-0.515 

(0.069) 

LAKE_BEAUTY 
-0.215 

(0.053) 

-0.110 

(0.055) 

-0.080 

(0.072) 

-0.085 

(0.058) 

-0.109 

(0.062) 

-0.084 

(0.065) 

LAKE_BELL 
-0.195 

(0.043) 

-0.262 

(0.034) 

-0.235 

(0.043) 

-0.188 

(0.038) 

-0.214 

(0.041) 

-0.205 

(0.035) 
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LAKE_BERRY 
0.129 

(0.035) 

0.065 

(0.028) 

0.129 

(0.033) 

0.164 

(0.036) 

0.146 

(0.036) 

0.134 

(0.028) 

LAKE_BESSIE 
0.471 

(0.029) 

0.443 

(0.029) 

0.492 

(0.040) 

0.569 

(0.027) 

0.545 

(0.029) 

0.508 

(0.029) 

LAKE_BLANCHE 
0.093 

(0.019) 

0.060 

(0.019) 

0.105 

(0.025) 

0.090 

(0.018) 

0.089 

(0.020) 

0.104 

(0.021) 

LAKE_BUCHANNAN 
-0.254 

(0.048) 

-0.272 

(0.050) 

-0.172 

(0.046) 

-0.155 

(0.036) 

-0.173 

(0.039) 

-0.218 

(0.041) 

LAKE_BUCK 
0.671 

(0.047) 

0.635 

(0.062) 

0.444 

(0.052) 

0.613 

(0.028) 

0.637 

(0.028) 

0.565 

(0.045) 

LAKE_BUMBY 
-0.287 

(0.047) 

-0.270 

(0.049) 

-0.169 

(0.045) 

-0.154 

(0.037) 

-0.194 

(0.039) 

-0.233 

(0.042) 

LAKE_BURKETT 
-0.032 

(0.043) 

-0.074 

(0.030) 

-0.004 

(0.038) 

0.041 

(0.047) 

0.022 

(0.045) 

-0.025 

(0.031) 

LAKE_BUTLER 
0.090 

(0.021) 

0.101 

(0.022) 

0.022 

(0.025) 

0.007 

(0.022) 

0.052 

(0.023) 

0.062 

(0.024) 

LAKE_C 
-0.242 

(0.029) 

-0.279 

(0.031) 

-0.189 

(0.033) 

-0.152 

(0.033) 

-0.179 

(0.033) 

-0.197 

(0.032) 

LAKE_CANE_A 
-0.039 

(0.020) 

-0.045 

(0.020) 

-0.029 

(0.024) 

-0.039 

(0.018) 

-0.042 

(0.020) 

-0.032 

(0.021) 

LAKE_CATHERINE_B 
0.187 

(0.066) 

0.077 

(0.058) 

0.151 

(0.071) 

0.152 

(0.055) 

0.144 

(0.058) 

0.107 

(0.054) 

LAKE_CAY_DEE 
-0.071 

(0.034) 

-0.161 

(0.032) 

-0.082 

(0.037) 

-0.064 

(0.037) 

-0.076 

(0.038) 

-0.048 

(0.034) 

LAKE_CHARITY 
0.202 

(0.057) 

0.177 

(0.047) 

0.173 

(0.059) 

0.157 

(0.049) 

0.149 

(0.053) 

0.122 

(0.047) 

LAKE_CHASE 
0.501 

(0.038) 

0.469 

(0.037) 

0.417 

(0.047) 

0.523 

(0.034) 

0.506 

(0.036) 

0.446 

(0.034) 

LAKE_CHEROKEE 
-0.021 

(0.039) 

0.027 

(0.041) 

0.058 

(0.049) 

0.071 

(0.037) 

0.046 

(0.040) 

0.035 

(0.041) 

LAKE_CHRISTIE 
-0.256 

(0.078) 

-0.237 

(0.083) 

-0.212 

(0.068) 

-0.177 

(0.043) 

-0.211 

(0.050) 

-0.224 

(0.056) 

LAKE_COMO 
-0.057 

(0.033) 

-0.068 

(0.035) 

-0.038 

(0.038) 

0.021 

(0.037) 

-0.018 

(0.037) 

-0.017 

(0.039) 

LAKE_CONCORD 
-0.093 

(0.038) 

-0.061 

(0.038) 

-0.047 

(0.048) 

-0.008 

(0.037) 

-0.032 

(0.040) 

-0.042 

(0.038) 

LAKE_CONWAY 
-0.130 

(0.020) 

-0.154 

(0.028) 

-0.119 

(0.026) 

-0.113 

(0.019) 

-0.098 

(0.019) 

-0.169 

(0.026) 

LAKE_COPELAND 
-0.008 

(0.042) 

-0.045 

(0.043) 

-0.064 

(0.050) 

0.004 

(0.038) 

-0.023 

(0.041) 

-0.028 

(0.040) 

LAKE_DANIEL 
-0.139 

(0.045) 

-0.184 

(0.041) 

-0.143 

(0.049) 

-0.101 

(0.040) 

-0.123 

(0.043) 

-0.092 

(0.040) 

LAKE_DESTINY 
0.248 

(0.055) 

0.178 

(0.042) 

0.261 

(0.058) 

0.290 

(0.049) 

0.266 

(0.052) 

0.265 

(0.048) 

LAKE_DOT 
-0.455 

(0.051) 

-0.450 

(0.051) 

-0.383 

(0.060) 

-0.430 

(0.047) 

-0.443 

(0.050) 

-0.422 

(0.050) 

LAKE_DOVER 
-0.128 

(0.054) 

-0.144 

(0.054) 

-0.064 

(0.050) 

-0.069 

(0.051) 

-0.099 

(0.053) 

-0.139 

(0.053) 

LAKE_DOWN 0.122 0.105 0.069 0.049 0.075 0.078 
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(0.017) (0.018) (0.021) (0.017) (0.018) (0.021) 

LAKE_DOWNEY 
-0.057 

(0.034) 

-0.141 

(0.029) 

-0.057 

(0.027) 

0.000 

(0.043) 

-0.037 

(0.039) 

-0.086 

(0.028) 

LAKE_DRUID 
-0.042 

(0.030) 

-0.090 

(0.029) 

-0.058 

(0.034) 

-0.004 

(0.032) 

-0.029 

(0.033) 

-0.040 

(0.031) 

LAKE_EMERALD 
0.005 

(0.049) 

-0.084 

(0.047) 

0.009 

(0.043) 

0.063 

(0.050) 

0.021 

(0.046) 

-0.055 

(0.036) 

LAKE_EOLA 
-0.132 

(0.047) 

-0.163 

(0.048) 

-0.087 

(0.059) 

-0.078 

(0.044) 

-0.093 

(0.047) 

-0.113 

(0.047) 

LAKE_ESTELLE 
-0.022 

(0.039) 

-0.066 

(0.036) 

-0.011 

(0.044) 

0.035 

(0.039) 

0.011 

(0.040) 

-0.022 

(0.035) 

LAKE_FAIRHOPE 
-0.158 

(0.050) 

-0.155 

(0.045) 

-0.070 

(0.051) 

-0.038 

(0.044) 

-0.070 

(0.046) 

-0.086 

(0.045) 

LAKE_FAIRVIEW 
-0.302 

(0.032) 

-0.334 

(0.024) 

-0.291 

(0.032) 

-0.267 

(0.028) 

-0.271 

(0.030) 

-0.260 

(0.025) 

LAKE_FAITH 
0.059 

(0.061) 

0.003 

(0.050) 

-0.007 

(0.061) 

0.015 

(0.050) 

-0.021 

(0.053) 

0.005 

(0.047) 

LAKE_FARRAR 
-0.156 

(0.031) 

-0.162 

(0.035) 

-0.073 

(0.036) 

-0.069 

(0.034) 

-0.096 

(0.034) 

-0.109 

(0.036) 

LAKE_FORMOSA 
-0.056 

(0.036) 

-0.127 

(0.034) 

-0.066 

(0.044) 

-0.018 

(0.036) 

-0.038 

(0.038) 

-0.037 

(0.036) 

LAKE_FREDRICA 
0.103 

(0.026) 

0.055 

(0.032) 

0.129 

(0.033) 

0.160 

(0.030) 

0.154 

(0.029) 

0.092 

(0.031) 

LAKE_GATLIN 
-0.020 

(0.035) 

-0.019 

(0.040) 

0.027 

(0.043) 

0.025 

(0.030) 

0.012 

(0.033) 

-0.035 

(0.035) 

LAKE_GEAR 
-0.156 

(0.047) 

-0.215 

(0.046) 

-0.054 

(0.046) 

-0.009 

(0.044) 

-0.031 

(0.045) 

-0.064 

(0.042) 

LAKE_GEM_A 
-0.031 

(0.043) 

-0.105 

(0.032) 

-0.072 

(0.042) 

-0.035 

(0.041) 

-0.054 

(0.043) 

-0.026 

(0.036) 

LAKE_GEM_MARY 
-0.091 

(0.030) 

-0.115 

(0.035) 

-0.079 

(0.038) 

-0.038 

(0.030) 

-0.064 

(0.031) 

-0.087 

(0.034) 

LAKE_GEORGE 
-0.064 

(0.021) 

-0.066 

(0.029) 

-0.027 

(0.028) 

-0.013 

(0.023) 

-0.017 

(0.022) 

-0.070 

(0.026) 

LAKE_GEORGIA 
0.015 

(0.038) 

-0.064 

(0.022) 

0.022 

(0.027) 

0.067 

(0.045) 

0.040 

(0.042) 

-0.029 

(0.022) 

LAKE_GILES 
-0.212 

(0.030) 

-0.231 

(0.033) 

-0.189 

(0.035) 

-0.155 

(0.030) 

-0.177 

(0.031) 

-0.197 

(0.031) 

LAKE_GLORIA 
-0.140 

(0.036) 

-0.185 

(0.041) 

-0.099 

(0.036) 

-0.098 

(0.024) 

-0.115 

(0.026) 

-0.148 

(0.033) 

LAKE_GREENWOOD 
-0.143 

(0.043) 

-0.142 

(0.045) 

-0.085 

(0.054) 

-0.042 

(0.044) 

-0.083 

(0.047) 

-0.062 

(0.048) 

LAKE_HART 
0.216 

(0.044) 

0.137 

(0.063) 

0.121 

(0.052) 

0.166 

(0.025) 

0.155 

(0.025) 

0.085 

(0.048) 

LAKE_HIAWASSEE 
-0.142 

(0.016) 

-0.150 

(0.016) 

-0.138 

(0.020) 

-0.128 

(0.014) 

-0.135 

(0.016) 

-0.130 

(0.017) 

LAKE_HIGHLAND 
-0.027 

(0.033) 

-0.053 

(0.033) 

-0.024 

(0.040) 

0.015 

(0.033) 

0.003 

(0.035) 

-0.009 

(0.033) 

LAKE_HOLDEN 
-0.413 

(0.024) 

-0.439 

(0.027) 

-0.402 

(0.028) 

-0.367 

(0.021) 

-0.380 

(0.022) 

-0.389 

(0.025) 
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LAKE_HOPE 
0.078 

(0.085) 

0.074 

(0.074) 

-0.027 

(0.081) 

-0.101 

(0.060) 

-0.105 

(0.061) 

-0.073 

(0.057) 

LAKE_HUNGERFORD 
-0.316 

(0.051) 

-0.401 

(0.042) 

-0.288 

(0.051) 

-0.325 

(0.043) 

-0.324 

(0.045) 

-0.299 

(0.040) 

LAKE_IRMA 
-0.044 

(0.036) 

-0.082 

(0.023) 

-0.035 

(0.025) 

0.011 

(0.040) 

-0.013 

(0.037) 

-0.068 

(0.021) 

LAKE_ISLEWORTH 
0.568 

(0.053) 

0.521 

(0.052) 

0.357 

(0.062) 

0.450 

(0.047) 

0.464 

(0.047) 

0.431 

(0.047) 

LAKE_IVANHOE 
0.022 

(0.029) 

0.003 

(0.026) 

0.020 

(0.032) 

0.056 

(0.028) 

0.036 

(0.029) 

0.020 

(0.026) 

LAKE_JACKSON 
0.062 

(0.050) 

0.001 

(0.039) 

0.134 

(0.054) 

0.092 

(0.044) 

0.041 

(0.046) 

0.025 

(0.042) 

LK_JEN_JEWEL 
-0.158 

(0.031) 

-0.179 

(0.035) 

-0.191 

(0.037) 

-0.147 

(0.027) 

-0.162 

(0.028) 

-0.205 

(0.031) 

LAKE_JESSAMINE 
-0.311 

(0.021) 

-0.317 

(0.026) 

-0.287 

(0.026) 

-0.271 

(0.016) 

-0.270 

(0.018) 

-0.295 

(0.023) 

LAKE_KILLARNEY 
-0.144 

(0.033) 

-0.207 

(0.023) 

-0.156 

(0.031) 

-0.129 

(0.030) 

-0.130 

(0.032) 

-0.139 

(0.024) 

LAKE_KOZART 
-0.362 

(0.028) 

-0.390 

(0.028) 

-0.359 

(0.031) 

-0.315 

(0.024) 

-0.333 

(0.027) 

-0.345 

(0.028) 

LAKE_LANCASTER 
-0.053 

(0.027) 

-0.080 

(0.030) 

-0.065 

(0.033) 

-0.016 

(0.027) 

-0.030 

(0.028) 

-0.051 

(0.029) 

LAKE_LAWSONA 
0.105 

(0.034) 

0.026 

(0.036) 

0.086 

(0.042) 

0.125 

(0.035) 

0.096 

(0.037) 

0.085 

(0.037) 

LAKE_LOUISE_B 
0.431 

(0.035) 

0.428 

(0.034) 

0.488 

(0.041) 

0.499 

(0.030) 

0.525 

(0.032) 

0.537 

(0.032) 

LAKE_LOVE 
0.281 

(0.065) 

0.270 

(0.055) 

0.330 

(0.072) 

0.315 

(0.060) 

0.281 

(0.064) 

0.227 

(0.060) 

LAKE_LOVELY 
-0.262 

(0.042) 

-0.303 

(0.030) 

-0.281 

(0.037) 

-0.267 

(0.033) 

-0.286 

(0.036) 

-0.289 

(0.031) 

LAKE_LURNA 
-0.049 

(0.032) 

-0.073 

(0.035) 

-0.042 

(0.041) 

-0.004 

(0.033) 

-0.034 

(0.035) 

-0.056 

(0.036) 

LAKE_MABEL 
0.212 

(0.043) 

0.159 

(0.040) 

0.193 

(0.042) 

0.136 

(0.033) 

0.141 

(0.035) 

0.158 

(0.034) 

LAKE_MAITLAND 
0.341 

(0.035) 

0.244 

(0.018) 

0.328 

(0.028) 

0.338 

(0.035) 

0.340 

(0.034) 

0.296 

(0.021) 

LAKE_MANN 
-0.464 

(0.032) 

-0.501 

(0.032) 

-0.457 

(0.036) 

-0.409 

(0.026) 

-0.419 

(0.028) 

-0.441 

(0.029) 

LAKE_MARSHA 
0.017 

(0.025) 

0.011 

(0.025) 

0.048 

(0.026) 

0.003 

(0.019) 

0.005 

(0.021) 

0.029 

(0.023) 

LAKE_MINNEHAHA 
0.132 

(0.042) 

0.077 

(0.025) 

0.151 

(0.036) 

0.161 

(0.039) 

0.151 

(0.040) 

0.144 

(0.028) 

LAKE_MIZELL 
0.257 

(0.042) 

0.248 

(0.033) 

0.308 

(0.041) 

0.337 

(0.041) 

0.315 

(0.042) 

0.279 

(0.033) 

LAKE_NAN 
-0.049 

(0.051) 

-0.097 

(0.040) 

-0.041 

(0.047) 

0.020 

(0.049) 

-0.008 

(0.050) 

-0.045 

(0.037) 

LAKE_NONA 
0.567 

(0.048) 

0.517 

(0.061) 

0.360 

(0.056) 

0.426 

(0.033) 

0.436 

(0.035) 

0.376 

(0.050) 

LAKE_OFWOODS -0.671 -0.771 -0.667 -0.669 -0.702 -0.701 
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(0.078) (0.077) (0.089) (0.063) (0.072) (0.069) 

LAKE_OLIVE 
-0.099 

(0.048) 

-0.135 

(0.049) 

-0.104 

(0.058) 

-0.082 

(0.045) 

-0.107 

(0.048) 

-0.131 

(0.048) 

LAKE_OLYMPIA 
-0.246 

(0.032) 

-0.260 

(0.032) 

-0.230 

(0.031) 

-0.237 

(0.019) 

-0.245 

(0.022) 

-0.224 

(0.027) 

LAKE_ORLANDO 
-0.250 

(0.034) 

-0.262 

(0.027) 

-0.227 

(0.034) 

-0.206 

(0.027) 

-0.217 

(0.030) 

-0.229 

(0.028) 

LAKE_OSCEOLA 
0.327 

(0.034) 

0.268 

(0.019) 

0.377 

(0.029) 

0.394 

(0.035) 

0.387 

(0.034) 

0.349 

(0.022) 

LAKE_PAMELA 
-0.337 

(0.053) 

-0.452 

(0.052) 

-0.315 

(0.070) 

-0.332 

(0.049) 

-0.331 

(0.056) 

-0.383 

(0.054) 

LAKE_PEARL_B 
-0.153 

(0.024) 

-0.185 

(0.026) 

-0.133 

(0.027) 

-0.162 

(0.019) 

-0.179 

(0.021) 

-0.137 

(0.026) 

LAKE_PICKETT 
0.089 

(0.116) 

-0.003 

(0.117) 

0.211 

(0.067) 

0.208 

(0.073) 

0.202 

(0.068) 

0.022 

(0.054) 

LAKE_PINELOCH 
-0.151 

(0.024) 

-0.219 

(0.029) 

-0.134 

(0.030) 

-0.126 

(0.023) 

-0.143 

(0.024) 

-0.159 

(0.027) 

LAKE_PORTER 
-0.161 

(0.023) 

-0.169 

(0.028) 

-0.102 

(0.028) 

-0.078 

(0.027) 

-0.099 

(0.026) 

-0.132 

(0.027) 

LAKE_RABAMA 
-0.162 

(0.029) 

-0.200 

(0.033) 

-0.121 

(0.034) 

-0.077 

(0.033) 

-0.108 

(0.033) 

-0.137 

(0.035) 

LAKE_RICHMOND 
-0.452 

(0.034) 

-0.395 

(0.034) 

-0.357 

(0.038) 

-0.320 

(0.026) 

-0.321 

(0.030) 

-0.353 

(0.032) 

LAKE_ROBERTS 
0.123 

(0.032) 

0.120 

(0.035) 

0.121 

(0.033) 

0.069 

(0.023) 

0.072 

(0.025) 

0.092 

(0.029) 

LAKE_ROSE_B 
-0.120 

(0.022) 

-0.132 

(0.022) 

-0.098 

(0.024) 

-0.116 

(0.016) 

-0.125 

(0.018) 

-0.101 

(0.021) 

LAKE_ROWENA 
-0.045 

(0.031) 

-0.089 

(0.029) 

-0.025 

(0.035) 

0.014 

(0.032) 

-0.004 

(0.033) 

-0.012 

(0.029) 

LAKE_SANTIAGO 
-0.181 

(0.030) 

-0.227 

(0.033) 

-0.130 

(0.035) 

-0.112 

(0.033) 

-0.134 

(0.033) 

-0.167 

(0.033) 

LAKE_SARAH 
-0.134 

(0.056) 

-0.201 

(0.052) 

-0.126 

(0.064) 

-0.092 

(0.050) 

-0.135 

(0.052) 

-0.144 

(0.048) 

LAKE_SHADOW 
-0.169 

(0.041) 

-0.226 

(0.029) 

-0.216 

(0.038) 

-0.152 

(0.035) 

-0.181 

(0.037) 

-0.201 

(0.031) 

LAKE_SHANNON 
-0.132 

(0.033) 

-0.181 

(0.030) 

-0.099 

(0.033) 

-0.058 

(0.037) 

-0.085 

(0.037) 

-0.083 

(0.033) 

LAKE_SHEEN 
0.307 

(0.027) 

0.266 

(0.023) 

0.252 

(0.029) 

0.225 

(0.023) 

0.249 

(0.025) 

0.254 

(0.024) 

LAKE_SHERWOOD 
-0.187 

(0.026) 

-0.191 

(0.025) 

-0.165 

(0.026) 

-0.172 

(0.018) 

-0.183 

(0.021) 

-0.176 

(0.023) 

LAKE_SILVER 
-0.033 

(0.028) 

-0.041 

(0.024) 

-0.013 

(0.030) 

0.027 

(0.027) 

0.010 

(0.028) 

-0.001 

(0.025) 

LAKE_STARKE 
-0.279 

(0.032) 

-0.312 

(0.033) 

-0.289 

(0.033) 

-0.304 

(0.018) 

-0.319 

(0.022) 

-0.271 

(0.028) 

LAKE_SUE 
0.083 

(0.029) 

0.037 

(0.024) 

0.089 

(0.030) 

0.123 

(0.030) 

0.111 

(0.030) 

0.074 

(0.024) 

LAKE_SUNSET 
-0.570 

(0.052) 

-0.558 

(0.051) 

-0.488 

(0.058) 

-0.461 

(0.040) 

-0.483 

(0.043) 

-0.471 

(0.045) 
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LAKE_SUSANNAH 
-0.207 

(0.031) 

-0.248 

(0.028) 

-0.111 

(0.029) 

-0.094 

(0.031) 

-0.098 

(0.031) 

-0.141 

(0.025) 

LAKE_SYBELIA 
0.028 

(0.049) 

-0.053 

(0.038) 

-0.013 

(0.045) 

0.011 

(0.040) 

-0.012 

(0.043) 

-0.011 

(0.036) 

LAKE_SYLVAN 
0.226 

(0.040) 

0.201 

(0.030) 

0.278 

(0.036) 

0.294 

(0.040) 

0.273 

(0.041) 

0.230 

(0.032) 

LAKE_TENNESSEE 
-0.219 

(0.028) 

-0.240 

(0.033) 

-0.197 

(0.035) 

-0.174 

(0.031) 

-0.196 

(0.031) 

-0.204 

(0.033) 

LAKE_TERRACE 
-0.221 

(0.028) 

-0.228 

(0.032) 

-0.186 

(0.033) 

-0.165 

(0.032) 

-0.194 

(0.032) 

-0.193 

(0.034) 

LAKE_THERESA 
-0.111 

(0.041) 

-0.162 

(0.040) 

-0.085 

(0.043) 

-0.021 

(0.046) 

-0.075 

(0.047) 

-0.053 

(0.045) 

LAKE_TIBET 
0.345 

(0.022) 

0.300 

(0.020) 

0.325 

(0.024) 

0.284 

(0.021) 

0.321 

(0.022) 

0.308 

(0.022) 

LAKE_UNDERHILL 
-0.212 

(0.029) 

-0.231 

(0.031) 

-0.207 

(0.035) 

-0.152 

(0.029) 

-0.171 

(0.030) 

-0.197 

(0.029) 

LAKE_VIRGINIA 
0.252 

(0.030) 

0.193 

(0.023) 

0.237 

(0.031) 

0.280 

(0.032) 

0.259 

(0.032) 

0.207 

(0.025) 

LAKE_WADE 
-0.114 

(0.029) 

-0.171 

(0.033) 

-0.146 

(0.037) 

-0.092 

(0.030) 

-0.119 

(0.032) 

-0.109 

(0.034) 

LAKE_WALKER 
-0.443 

(0.043) 

-0.466 

(0.043) 

-0.480 

(0.050) 

-0.386 

(0.037) 

-0.404 

(0.040) 

-0.421 

(0.041) 

LAKE_WARREN 
-0.145 

(0.033) 

-0.178 

(0.040) 

-0.117 

(0.039) 

-0.081 

(0.028) 

-0.096 

(0.030) 

-0.117 

(0.036) 

LAKE_WAUNATTA 
0.040 

(0.043) 

-0.018 

(0.031) 

0.044 

(0.033) 

0.076 

(0.043) 

0.054 

(0.042) 

0.003 

(0.028) 

LAKE_WELDONA 
-0.099 

(0.034) 

-0.150 

(0.036) 

-0.074 

(0.041) 

-0.060 

(0.033) 

-0.076 

(0.035) 

-0.091 

(0.035) 

LAKE_WESTON 
-0.325 

(0.043) 

-0.354 

(0.034) 

-0.319 

(0.038) 

-0.309 

(0.034) 

-0.328 

(0.036) 

-0.325 

(0.033) 

LAKE_WHIPPOOR 
0.092 

(0.048) 

-0.020 

(0.064) 

0.014 

(0.055) 

0.056 

(0.028) 

0.046 

(0.029) 

-0.023 

(0.049) 

LAKE_WINYAH 
0.066 

(0.030) 

0.022 

(0.024) 

0.060 

(0.031) 

0.104 

(0.031) 

0.080 

(0.032) 

0.063 

(0.028) 

LAWNE_LAKE 
-0.326 

(0.026) 

-0.363 

(0.023) 

-0.305 

(0.028) 

-0.279 

(0.022) 

-0.291 

(0.025) 

-0.307 

(0.024) 

LITTLE_FISH 
0.495 

(0.033) 

0.485 

(0.028) 

0.510 

(0.036) 

0.482 

(0.028) 

0.471 

(0.031) 

0.470 

(0.031) 

LIT_LK_FAIR 
-0.165 

(0.038) 

-0.218 

(0.032) 

-0.127 

(0.034) 

-0.127 

(0.032) 

-0.144 

(0.034) 

-0.135 

(0.030) 

LITTLE_SAND 
0.226 

(0.037) 

0.203 

(0.036) 

0.229 

(0.035) 

0.218 

(0.028) 

0.211 

(0.031) 

0.208 

(0.032) 

LONG_LAKE 
-0.362 

(0.041) 

-0.410 

(0.034) 

-0.339 

(0.036) 

-0.318 

(0.026) 

-0.334 

(0.030) 

-0.326 

(0.030) 

MUD_LAKE_C 
0.154 

(0.059) 

0.088 

(0.050) 

0.177 

(0.067) 

0.182 

(0.053) 

0.151 

(0.057) 

0.181 

(0.048) 

PALM_LAKE 
0.105 

(0.022) 

0.109 

(0.021) 

0.114 

(0.025) 

0.092 

(0.022) 

0.080 

(0.024) 

0.109 

(0.026) 

PARK_LAKE_B 0.019 -0.008 0.016 0.057 0.032 0.032 
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(0.043) (0.044) (0.051) (0.040) (0.043) (0.043) 

POCKET_LAKE 
0.314 

(0.030) 

0.291 

(0.025) 

0.337 

(0.032) 

0.297 

(0.024) 

0.314 

(0.027) 

0.312 

(0.026) 

ROCK_LAKE 
-0.482 

(0.040) 

-0.459 

(0.041) 

-0.487 

(0.047) 

-0.449 

(0.034) 

-0.458 

(0.037) 

-0.479 

(0.039) 

SPRING_LK_B 
-0.058 

(0.033) 

-0.057 

(0.032) 

-0.017 

(0.038) 

0.006 

(0.030) 

-0.023 

(0.033) 

-0.047 

(0.032) 

SPRING_LK_C 
0.168 

(0.023) 

0.184 

(0.022) 

0.192 

(0.027) 

0.174 

(0.019) 

0.179 

(0.022) 

0.181 

(0.023) 

Lambda 
0.756 

(0.006) 

0.782 

(0.004) 

0.594 

(0.001) 

0.350 

(0.002) 

0.448 

(0.002) 

0.507 

(0.002) 
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CHAPTER 3: WATER QUALITY INDICATORS IN THE HEDONIC 

PROPERTY PRICE MODEL 

3.1. Introduction 

 Although significant progress in cleaning up US waterbodies has been made since the 

passage of the CWA, non-point source pollution still remains a threat to lakes. The EPA 

estimates that almost half of the nation’s lakes are classified as impaired, with nutrients the 

leading source of impairment (US EPA 2003). Numerous state and local programs have been 

enacted to combat lake pollution. These programs typically focus on reductions in nutrients 

loadings and improvements in other physical measures. Chapters 1 and 2 used hedonic property 

analysis to show that considerable benefits result from lake programs that increase water quality. 

However, an issue that has received scant attention is whether variables used to represent water 

quality in hedonic analysis imply the same concept of ―quality‖ used to set regulatory goals. 

Since Secchi Disk Measurement (SDM) is not directly used to regulate lakes, there may be 

differences in the goals of regulators and the values of property owners that could bias the results 

of a cost-benefit analysis. If property owners are not fully informed about the ecological and 

ecosystem benefits, the values obtained from property prices may understate these benefits and 

favor the value of aesthetic benefits. 

A chronic issue in the valuation of water quality is the choice of water quality indicator. 

In papers that compare multiple water quality indicators, the typical goal is to find the one ―best‖ 

measure. However, evidence from the fields of ecology and biology suggests that a focus on a 

single indicator may be too narrow (Hoyer et al. 2002). ―Water quality‖ itself is a multi-

dimensional concept that depends on the designated use of the waterbody and varies over the 

population. Recreational anglers may value greener water as a good fish habitat, whereas 
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swimmers desire higher transparency (Hoyer, Brown, and Canfield Jr. 2004). These differences 

are recognized in the Clean Water Act, which classifies lakes and their water quality targets by 

designated uses.  

How individuals perceive water pollution is a major concern in this area. The hedonic 

model assumes that consumers know the level of water quality and translate this knowledge into 

their purchasing decision. Zabel and Kiel (2000) discuss a similar issue in the context of air 

quality and note that very little research into individual’s perceptions of pollution has been 

conducted. Delucchi, Murphy, and McCubbin (2002) look at differences in consumer’s values 

for health and visibility benefits from improved air quality. They point out that is hard to 

determine which of these categories consumers have in mind when purchasing a house. 

Imperfect information exists, since individuals likely obtain their perceptions from visibility and 

the media. 

The current water quality regulation in Florida was constructed from a biological and 

ecological point of view, where visibility only plays a small role. Lake regulation is done with 

the health of the ecosystem in mind, and policy variables are chosen to reflect this. If clarity 

indicators like SDM are not directly correlated with physical indicators, hedonic analyses may 

not be measuring the desired benefits. Furthermore, it would be easier for regulators to use 

hedonic estimates if they were formulated in terms of variables they have control over. Cropper 

(2000) notes that to be effective, estimates of value associated water quality changes must be 

relevant to environmental management.  

Several past studies have questioned the validity of SDM as an indicator of ecosystem 

health (Leggett and Bockstael 2000). Transparency can represent the process of eutrophication in 

certain settings, but this relationship has been shown to be very loose in Florida (FDEP 1996). 
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Tannins released by plants and trees can cause less transparent water with no quality change. 

Furthermore, Leggett and Bockstael (2000) point out that lakes in the northeast US that have 

been made very clear by acid rain but are unable to support an ecosystem. However, while there 

may not always be an ecological value linked with clear water, it is important to recognize that 

there are considerable economic benefits associated with it. Chapter 1 and several studies 

mentioned therein illustrate sizeable property price benefits resulting from increased clarity. In 

order to create the most efficient policy that properly considers social benefits and costs, 

regulators should not ignore these economic benefits. 

This chapter investigates several water quality indicators in a spatial hedonic property 

price analysis in order to compare the resulting implicit prices and benefit estimates. The choice 

of indicators was driven by official Florida state water quality policy. The four additional 

indicators are total nitrogen, total phosphorous, chlorophyll, and TSI. The first three are regularly 

used nationwide to classify lakes and are deemed the most important variables (alongside SDM) 

for nutrient criteria by the EPA (EPA 2000). The fourth indicator, TSI, plays a primary role in 

Florida lake classification and regulation. The goal of this chapter is to compare the alternate 

indicators to the previous SDM estimates and to determine if the previous three hypotheses (the 

Edge Effect, Proximity Effect, and Area Effect) hold when other indicators are used. Results 

indicate that consumer’s valuations of water quality differ over indicators. Future policy and 

research can gain from accounting for the value of improvements from more than one indicator. 

3.2. Literature Review 

In the early years of the CWA, the majority of effort and legislation focused on the 

regulation of point sources. Significant progress was made in this area, which led regulators to 
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realize the large impact of non-point sources of pollution. In 1987, the US Congress amended the 

CWA to include non-point sources. These alternative forms of pollution were addressed under 

section 319 of the CWA, which calls on states to develop programs to manage and monitor non-

point sources. These state reports now show that non-point sources of pollution are the main 

cause of impairment of US surface waters (US EPA 2003). According to the EPA, the main 

source of non-point source pollution is agriculture.  

In Orange County, the majority of water pollution is a result of non-point sources. 

Whereas agriculture is a large contributor to water pollution in rural areas, urban areas are much 

more affected by pollution from stormwater runoff, precipitation, atmospheric deposition, and 

seepage. (US EPA 2003). The increased amount of impervious surfaces in urban areas creates a 

different situation for water pollution than rural areas with increased farming activities. 

Heterogeneity in pollution definitions is not unique to water quality. Studies of air quality 

(Smith and Huang 1995; Zabel and Kiel 2000), open space (Anderson and West 2006; Cho et al. 

2009), and hazardous waste (Jackson 2001) have all debated about proper representations of the 

relevant amenity or disamenity. To fully understand concerns with the definition of water 

quality, lessons from these other areas can be incorporated. 

This literature review begins with two sections about consumer perceptions, which draws 

on papers from several areas of valuation. Next, indicators from past studies of water quality are 

discussed. In the short history of this field, a wide variety of water quality indicators have been 

used. The final section of this literature review summarizes water quality legislation and the 

indicators that are used in the State of Florida for water regulation.  
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3.2.1. Perceptions  

There are many influential reasons to use SDM to measure water quality. Water clarity is 

easily perceived by consumers and past hedonic papers have found that indicators that are visible 

to the public are more likely to affect property prices (Brashares 1985). People’s perceptions are 

likely to be the impetus of their behavior (Egan et al. 2009), so it makes sense to use an indicator 

that reflects this fact. Also, SDM is cheap to obtain and is widely collected by many 

organizations. 

 On the other hand, people’s perceptions of water quality may not match up with the 

physical measures of water quality (also called ―water chemistry‖ indicators) used by states to 

regulate waterbodies. Pendleton, Martin, and Webster (2001) conducted a survey in California to 

determine the accuracy of people’s perceptions about beach water quality and find that the 

public’s perceptions often conflict with the actual situation. Respondents generally overstated 

pollution levels, could not properly sort beaches by water quality, and were typically unable to 

identify the true causes of water degradation (storm water run-off and sewage overflow).  

 Jeon et al. (2005) examine differences in water quality perceptions and several physical 

measures in an analysis of recreation demand. A survey was sent to a random sample of Iowans 

which collected recreation demand and perception information about 131 Iowa lakes. The 

surveys were designed to elicit answers that were easily compared to physical indicators of water 

quality. In their recreation demand model they find that the use of either the survey perceptions 

or physical measures alone paints an incomplete picture of behavior. To fully explain 

respondents’ behavior, they recommend the use of both classes of variables. Additionally, they 

find that individuals have different perceptions of water quality than the EPA or scientists. 

Another paper to compare individual perceptions to objective measures is Adamowicz et al. 

(1997), who investigate discrete choice models of the demand for moose hunting. They find that 
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the indicators based on perceptions slightly outperform the objective measures in explaining 

behavior and that there may be some differences between the two categories. However, similar to 

Jeon et al. (2005), a joint model that combines both forms of information outperforms the two 

separate models. 

 Hoyer, Brown, and Canfield Jr. (2004) compare individual’s perceptions to physical 

measures in Central Florida. They survey volunteers of the Florida Lakewatch program on the 

same day that water quality samples are taken to determine if there is a relation between user 

perceptions and water chemistry and visibility data. A direct relationship between perceptions 

and water chemistry measures is found, although there is significant noise in the relationship and 

perceptions varied significantly between individuals. Furthermore, they note that their results are 

hard to translate to the general population because they survey active participants in lake 

monitoring. 

In most regions of the country, SDM is seen as a physical, objective measure of water 

quality. In Florida, however, there are particular biological concerns that make clarity measures 

more subjective. In particular, ―dark water‖ can occur because local plants and trees release 

tannins into the water, which typically have no effect on the quality of the water but can 

substantially affect clarity. This dark water can potentially affect consumers’ personal 

perceptions of water quality. In a Florida Department of Environmental Protection report, it is 

stated that ―Attempts in previous reports to include secchi depth have been unsuccessful in dark-

water lakes and estuaries, where dark waters rather than algae diminish transparency‖ (FDEP, 

2006). 

 Another issue relating to consumer perception is consumer’s awareness of non-

transparency indicators. Variation in these variables may not be easily identified and have a 
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smaller correlation with property prices than more visible indicators (Brashares 1985). These 

issues of perceptions have important implications for hedonic property price analysis since past 

research has shown that the choice of water quality indicator can affect the significance and 

magnitude of the estimated implicit prices (Michael, Boyle, and Bouchard 2000). Since these 

implicit prices are used to construct estimates of the total benefits of water quality 

improvements, the results of a cost benefit analysis can depend on the particular indicator used. 

 A hedonic study that represents a preliminary investigation of this problem is Poor et al. 

(2001), who investigate differences between objective and subjective water quality indicators. 

Their subjective indicator is based on a survey of waterfront homes and their objective indicator 

is SDM; they find that the objective indicator is preferred to the survey based indicator in its 

ability to explain variation in home prices. The current paper takes Poor et al.’s analysis one step 

further by questioning the reliability of SDM as an objective indicator. Water clarity indicators 

may only measure one dimension of water quality related to perceptions and ignore other 

dimensions related to state regulatory targets. 

 Issues of perception have seen some interest in recent air quality studies. Zabel and Kiel 

(2000) call for more research into how individuals form their perceptions of quality and how 

these impact values obtained from property prices. Delucchi, Murphy, and McCubbin (2002) 

distinguish health benefits from aesthetic benefits in estimates of the value of air quality. They 

assert that individuals form their perceptions from visibility and the media, which is likely to 

cause incomplete information. When individuals purchase homes and bid more for those with 

better quality air, their definitions of quality may be more influenced by visibility than health 

effects. In a contingent valuation paper, Brookshire, Thayer, and Schulze (1982) find that 

approximately 34% of the value of air quality benefits is from visibility and 66% is from health 
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impacts. Since visibility is easily perceived, it is likely that value estimates from hedonic 

property analysis capture the majority of this aesthetic benefit. However, due to imperfect 

information, the value of health benefits is likely biased downwards (Cropper 2000).  

These issues of perception in the air quality literature parallel those in the current analysis 

of water quality. Home prices may be conveying two distinct values: aesthetic benefits and 

ecosystem or environmental benefits. When consumers purchase homes, it is likely that they care 

about both of these issues. However, imperfect information about the determinants of ecosystem 

health may cause hedonic estimates to undervalue these issues. 

3.2.2. Consumer Information and Indicator Choice 

. The use of property prices to infer the value of water quality may introduce some 

restrictions on the choice of water quality indicator, since consumers (property buyers and 

sellers) must have access to information on that indicator. This information requirement can 

introduce a tradeoff between indicators that better represent the health of a lake and indicators 

that are most easily perceived by home buyers. While it is relatively easy for consumers to see 

clarity as represented by SDM, finding information on TSI and nutrients may be slightly more 

involved. If consumers do not have access to information about the water chemistry indicators, 

they are not likely to influence home prices. For instance Leggett and Bockstael (2000) stressed 

that consumers regularly encountered information about their physical indicator (fecal coliform) 

since its levels were regularly broadcast on the radio, published in local newspapers, and were 

the cause of frequent beach closings. 

In order to use nitrogen, phosphorous, chlorophyll a, and TSI as water quality indicators 

in a hedonic property regression in central Florida, it is important that individuals have access to 

information about them. Several pieces of evidence indicate that this is the case. First, Central 
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Floridians can download a wealth of data from the STORET database (an online database started 

by the EPA). This is a national database that is updated by individual states. However, the 

database requires a degree of technical sophistication and may only be used by a small fraction 

of homeowners. 

In a more user friendly format, the city of Orlando has a comprehensive listing of local 

lakes on its website (http://www.cityoforlando.net/public_works/stormwater/lakes/index.htm), 

which contains a summary of recent TSI, nitrogen, phosphorous, and chlorophyll a levels for 

each lake. This water quality information is on the same website that contains official 

information about garbage and recycling collection, job openings, community events, local 

parks, police and fire departments, and other local information that prospective homebuyers are 

bound to come across. The other municipalities in Orange County also disseminate lake 

information. For instance, the City of Winter Park distributes a ―Lake Management Report and 

Lake Users Guide‖ to its residents. This pamphlet contains information on SDM, water 

temperature, pH, dissolved oxygen, conductivity, oxidation reduction potential, total nitrogen, 

total phosphorous, chlorophyll a TSI, and turbidity, for all lakes in the municipality. Historical 

trends with lines of best fit are presented for the majority of the indicators, and interpretations are 

provided about lake conditions. 

Finally, the Florida Lakewatch program is an active network of volunteers that sample 

and record lake readings on a monthly basis. Volunteers are required to complete a training 

course, and are given equipment for sampling and secchi depth measurements. Water samples 

and secchi readings are deposited at several collection centers for recording and analysis. The 

result is an extremely active network, which produces and distributes quarterly newsletters 

throughout the community that detail local water quality information and data. Furthermore, data 

http://www.cityoforlando.net/public_works/stormwater/lakes/index.htm
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is available from their website, and all indicators used in this chapter are freely available. These 

data regularly appear in local news stories about lake issues.  

Water quality information is therefore distributed on the state, municipality, and local 

level, and home buyers have access to the information on the four additional indicators. 

Furthermore, the importance of lake recreation in the area results in water quality issues being 

regularly raised in local news and politics. Due to all of the above sources, it is clear that 

residents can easily access information about nutrients, TSI, and chlorophyll a. 

3.2.3. Water Quality Indicators in Environmental Valuation 

A wide variety of water indicators have been used in the hedonic water quality literature, 

several of which were discussed in the first chapter. In early hedonic property analyses, survey 

methods were used to measure the effect of water quality on property prices. David (1968) used 

this method in Wisconsin by having representatives from the Wisconsin Department of 

Conservation rate a lake as poor, moderate, or good in terms of water quality. She concluded that 

the water quality of nearby lakes definitely affects property prices. Other studies that use surveys 

include Epp and Al-Ani, (1979), Young (1984), Michael, Boyle, and Bouchard (2000), and Poor, 

et al., (2001). There is widespread skepticism with surveys, however, since the implicit price of 

water quality computed could be measuring a perceived, rather than actual, measure of water 

quality (Steinnes, 1992; Poor et al. 2001).  

Another class of water quality indicators used in hedonic property analysis is based on 

the chemical composition of the water body, frequently referred to as ―physical measures‖ or 

―water chemistry.‖ For instance, Epp and Al-Ani (1979) use the pH of the water along with 

dissolved oxygen, biochemical oxygen demand, acid from minerals, acid from carbon dioxide, 

and nitrate and phosphate concentrations. They used each of these in a separate hedonic 
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equation, though they were looking at streams instead of lakes. Their conclusions indicated that 

the water quality of local streams affected property prices. Feenberg and Mills (1980) used 13 

different physical quality measures and found that indicators that are visible to people, such as 

oil content and turbidity, were most correlated with property prices. Other indicators of this type 

that have been used in hedonic pricing equations include fecal coliform, (Leggett and Bockstael, 

2000) and dissolved inorganic nitrogen and total suspended solids (Poor, Pessagno, and Paul 

2007).   

As discussed in the first chapter, the most common indicator of water quality used in 

hedonic price analyses in recent studies is SDM. This indicator is relatively simple to obtain and 

is recorded by most state-level departments of environmental protection for large water bodies. 

The ease of measurement and widespread use are frequently cited as reasons for its prevalent use 

in water quality research dealing with property prices (Poor et al. 2001).  

Michael, Boyle, and Bouchard (2000) focused on the selection of the water quality 

indicator in their study of water pollution in Maine lakes. They stated (p.283) ―It appears that 

most hedonic studies are conducted using whatever empirical measure(s) of environmental 

quality is (are) available as environmental variable(s)…‖ They also observed ―Consequently, an 

issue that appears to have been overlooked in the literature is the appropriate selection of an 

environmental variable to include in the hedonic price equation.‖ The focus of the paper was on 

temporal variation in water quality, and whether people consider long term trends or short term 

changes. A survey about respondent’s perceptions of water quality was distributed to local 

property owners. Based on the results of the survey, nine variations of SDM were used in a 

hedonic property price analysis around several Maine lakes. The nine variations were created to 

represent differing perceptions about past, current, and future impressions of water quality. The 
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results do not provide clear evidence for a preferred indicator and the confidence intervals for all 

of the estimated implicit prices overlap. Nonetheless, the magnitudes of the point estimates are 

very different between indicators, with some half that of others. They conclude that the choice of 

indicator can influence policy recommendations resulting from a cost benefit analysis. 

 Studies that use SDM as a water quality indicator typically claim that the clarity of the 

water can be interpreted as the quality of the water (Michael, Boyle, and Bouchard 2000). This 

may be true in certain pristine environments like the Maine lakes encountered in Michael, Boyle, 

and Bouchard (2000), however many others are questioning whether this can be extended to 

other settings. For example, Steinnes, (1992) suggests that SDM may be capturing a perceived, 

rather than actual, measure of water quality. He cites a litigation case in Minnesota dealing with 

acid rain. Because acid rain can kill certain algae, it can actually increase water transparency. 

Therefore, paradoxically, acid rain and water pollution may appear to be positively correlated 

with property values when using SDM as an indicator of water quality. Leggett and Bockstael 

(2000) also talk about this point, stating ―benefits of improvements in water clarity have 

ambiguous ecological merit: mountain lakes plagued by acid rain can be crystal clear, yet 

completely sterile‖ (Leggett and Bockstael, 2000, p.122). 

A variety of indicators have also been used in other areas of the environmental valuation 

literature. In a random utility model about recreation demand for sport fishing, Karou, Smith, and 

Liu (1995) connect regulations on effluent loadings to measures of environmental quality that 

influence people’s behavior. They focused on non-point source pollution, and linked changes in 

nutrients (in the form of nitrogen) and biochemical oxygen demand with predictions of changes 

in fish catch. These water quality variables are found to significantly influence the demand for 

sport fishing. von Haefen (2003) also examines recreation demand in random utility models, but 
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is concerned with welfare measures and several specific functional forms. To represent water 

quality at each of 219 potential sites for water based recreation, von Haefen uses the Trophic 

State Index (TSI, discussed below). The Pennsylvania TSI uses a combination of phosphorous 

and SDM to calculate the trophic state of a waterbody. 

Atasoy, Palmquist, and Phaneuf (2006) use a spatial econometric model to analyze the 

effect of residential development and impervious surfaces on water quality. Total suspended 

solids, total nitrogen, and total phosphorous are used to represent water quality. Both residential 

development and changes in development contribute to increased TN and TP levels and degrade 

water quality. Only new construction is found to increase the level of total suspended solids. 

In a meta-analysis of water quality valuation studies, Van Houtven, Powers, and 

Pattanayak (2007) summarize much of the previous water quality valuation literature. As 

discussed in Chapter 1, they had trouble combining numerous studies because of differences in 

water quality indicators. In order to include the most past comparable papers, the meta-analysis 

is restricted to previous stated preference papers that express water quality in a 10-point scale. 

They find that WTP values for water quality changes vary in expected ways with socioeconomic 

factors in the population. In order to standardize future analyses of water quality in stated 

preference research, Van Houtven et al support the use of indicators based on the ―designated 

use‖ classifications of the CWA. 

Egan et al. (2009) directly examine the choice of water quality indicator in a recreation 

demand model. They focus on indicators used by the EPA to classify lakes as ―impaired,‖ 

including SDM, total nitrogen, total phosphorous, chlorophyll, bacteria (cyanobacteria and total 

phytoplankton), and suspended solids (organic and inorganic). They split the data and perform 

out-of-sample prediction to determine goodness of fit, similar to the second chapter in this 
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dissertation. Results indicate that SDM is ―clearly‖ the best indicator to use due to its pervasive 

statistical significance and the low cost of obtaining measurements. The second best indicator is 

found to be total phosphorous, while chlorophyll and suspended solids fare the worst. They also 

find the surprising result that increased chlorophyll levels do not negatively impact recreation 

decisions, indicating that the average respondent may not mind some ―greenish‖ water due to 

higher chlorophyll levels. The tolerance for greenish water highlights the point that water quality 

is a much larger concept than simply clarity. There are many ecosystem services provided by 

lakes that may not always be directly correlated with clarity (Hoyer, Brown, and Canfield Jr. 

2004). Overall, this study provides significant evidence that recreation decisions are influenced 

by water quality, including characteristics represented by physical measures such as total 

phosphorous and total nitrogen. 

3.2.4. Water Quality Regulation 

 The Clean Water Act (CWA) provides an overall framework under which all states must 

cooperate. Legislation and regulation of water quality in most states is directly influenced by the 

mandates of the CWA. In the official Florida regulation dealing with water quality, the CWA is 

frequently mentioned as a motivation (FDEP 2008). The present section discusses the CWA and 

the relevant Florida laws that pertain to the maintenance of water quality.  

 Under the CWA each state has to submit a 305(b) report and a 303(d) list every two 

years. Arising from section 305(b) of the CWA, the first report requires individual states to 

conduct water quality monitoring activities and describe current conditions and activities. The 

second report, the 303(d) list, contains a list of water bodies that do not meet specific standards.  

 In the 305(b) report, each waterbody in the state is sorted into one of three categories: 

fully meets use designations, partially meets use designations, or does not meet use designations 
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(DeBusk 2002). Under the CWA, waterbodies are assigned ―designated uses‖ such as class I: 

potable water supply, class II: shellfish propagation or harvesting, and class III: recreation, 

propagation and maintenance of a healthy, well balanced population of fish and wildlife. There 

are three main sources of data that the state of Florida uses to assess whether the designated uses 

are met. The first source involves water chemistry data from the Florida STORET database, 

which is the source of most of the water quality data in the present paper. The second source is 

biological data from the FDEP Biological Database, and the third source is the Department of 

Health’s fish advisory data (DeBusk 2002). For lakes a TSI (discussed in the next section) is 

created from these data and used to determine if the relevant designated use is met. In Orange 

County, the only water body that does not meet its designated use is Lake Apopka, which is not 

included in the data for this dissertation. 

 Recognizing the differences in pollution sources between states, the CWA allows some 

flexibility in individual state water quality monitoring. The official rules on monitoring and 

water quality regulation were drafted by the Florida Department of Environmental Protection and 

approved by the legislature; these various forms of legislation appear in the Florida 

Administrative Code (found at www.flrules.org/) and the Florida Statutes (found at 

www.flsenate.gov). Florida Statute 403 deals with environmental control and pollution control 

and contains some of the main laws about the regulation of water quality. Section 403.067 

defines ―the establishment and implementation of total maximum daily loads‖ and outlines some 

of the main state procedures that are required to comply with the CWA. This law essentially 

states that any waterbody that does not meet specific criteria will be listed and a TMDL will be 

established. 

http://www.flrules.org/
http://www.flsenate.gov/
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 The specific water quality criteria are defined in the Florida Administrative Code, in 

Chapter 62-303. Section 62-303.310 of the FAC states that a waterbody shall be placed on a 

―planning list‖ if one of four thresholds is exceeded. Waterbodies included on the planning list 

will be analyzed for inclusion on the 303(d) list. The first threshold is an aquatic life-based 

criteria outlined in 62-303.320. The second threshold deals with biological assessments which 

are defined in 62-303.330. The third threshold concerns toxic components as defined in 62-

303.340 and the final threshold is based on nutrients as defined in 62-303.350. To illustrate the 

particular indicators used for regulation, each of these thresholds will be briefly discussed. 

 The aquatic life-based criteria in 62-303.320 include several chemicals and substances 

that have been found to be toxic to aquatic life, including aluminum, arsenic, chlorine, cyanide, 

DDT, silver, and several others. The actual thresholds are based on the proportion of samples 

taken that contain a certain level of the chemical or substance.  

 The biological thresholds of section 62-303.330 only apply to lakes with a color 

classified as less than 20 platinum cobalt units (extremely clear). This section declares that 

biological data must meet the requirements of 62-303.320, and refers to an expanded list of 

chemicals and substances that are defined in section 62-302.530. Section 62-303.340 states that 

any waterbodies with two samples that indicate either acute or chronic toxicity will immediately 

be placed on the planning list. 

 The fourth threshold contained in section 62-302.350 is based on nutrients, and states that 

the TSI and annual mean chlorophyll a values are to be used as the primary indicators of nutrient 

impairment. Since the majority of Florida lakes are impaired by nutrients (FDEP 2006), these 

thresholds are the most commonly employed. The specific nutrient thresholds for each class of 

water defined by the CWA are discussed in the 305(b) reports.  
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 The FDEP is also currently developing a set of numeric nutrient criteria to protect against 

the further nutrient enrichment of state waters (FDEP 2009). These are being designed to support 

the narrative nutrient criteria of the state, which declares ―in no case shall nutrient concentrations 

of a body of water be altered so as to cause an imbalance in natural populations of flora or 

fauna.‖ These new nutrient criteria are for phosphorous, nitrogen, chlorophyll a and potentially 

transparency. 

 These above FAC thresholds provide specific guidance about water quality criteria used 

by the state of Florida to classify lakes. These were passed by the Florida state government and 

guided by the CWA. None of the aforementioned documents specifically mention SDM as a 

means of classifying or regulating lakes. Consequently, when Florida regulators set goals for 

water quality and conduct management projects, SDM may not be directly used. This could be a 

problem for hedonic property analysis that uses SDM, as the goals of regulators may differ from 

what is being used as the water quality indicator. This begs an important policy question: does 

the actual health of the lake get incorporated into home prices, or is it only lake visibility that 

affects home prices? If visibility is the most important characteristic, this has welfare 

implications for policy makers. Since current policy targets physical indicators over clarity 

indicators, changes to these physical measures may have unintended impacts on property prices 

and the resulting welfare calculations (Jeon et al. 2005). 

3.3. Data 

 This chapter will use the same housing data as the first chapter, augmented with four 

additional water quality variables. These new variables are total nitrogen, total phosphorous, 

chlorophyll a, and TSI. As discussed in the past section, these indicators are used by the state of 
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Florida to classify lakes and institute policy. These additional indicators have been shown to 

accurately gauge the level of water pollution resulting from both point sources and non-point 

sources, though they are particularly useful for non-point sources (FDEP 2008).  

 Nutrients exist naturally in low levels in most lakes. However, when their levels are 

elevated, the process of eutrophication occurs. Eutrophication is harmful to many types of 

organisms and can significantly limit the ability of the lake to achieve its designated use. When 

the additional nutrients are introduced, certain aquatic plant life and algal bloom productivity 

substantially increases. The increase in aquatic plants can decrease the amount of light and 

subsequent photosynthesis taking place in the deeper areas of lakes. Also, when this excessive 

aquatic plant life dies, bacteria that decompose this organic matter appear in abundance. These 

bacteria tend to deplete the oxygen supply for other organisms and can produce a bad odor, as 

well as significantly decreasing visibility (US EPA 2003). Chlorophyll a has been found to be a 

useful indicator for the prevalence of algal blooms. When other data are not freely available, 

Florida reporting agencies track levels of Chlorophyll a.  

Another reason to use an indicator like chlorophyll is that ―chlorophyll is the dominant 

factor determining Secchi Depth‖ in Florida waters, and in Florida lakes chlorophyll accounts for 

as much as 72% of the variance in Secchi Depth (Hoyer et al. 2002). Focusing on chlorophyll 

may better capture the many elements of water quality, and net out many of the problems with 

perceptions. Nitrogen and phosphorous are also useful in this respect, as they more accurately 

gauge the level of eutrophication in a lake. Furthermore, total phosphorous is the principal 

limiting nutrient in Florida Lakes, and accounts for approximately 79% of the variation in 

chlorophyll (Hoyer et al. 2002). 
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There are two main classifications of the trophic status of lakes: oligotrophic (―little 

food‖ in Greek) and eutrophic (―well fed‖). A third class is generally called mesotrophic and 

refers to waterbodies in transition between oligotrophic and eutrophic (Ryding and Rast 1989). 

These trophic states are generally used to describe the ―health‖ of the lake and its nutrient 

contents. Oligotrophic lakes generally have low nutrient concentrations, diverse plant and animal 

life, low primary productivity and biomass, and generally good water quality for the majority of 

uses (Ryding and Rast 1989). On the other hand, eutrophic lakes are characterized by high 

productivity and frequent algal blooms, anoxic bottom waters during thermal stratification, less 

diverse plant and animal communities, higher growth of littoral zone aquatic plants, and 

generally poor water quality for the majority of uses (Ryding and Rast 1989). Nonetheless 

eutrophic waters can support increased fish productivity, though the diversity of fish is typically 

much less. 

A measure has been developed to measure the trophic state of lakes: TSI. This measure 

was developed in Carlson (1977) as a way to address the multidimensional concept that is a 

lake’s trophic state. At the time it was believed that a lakes trophic status could not be 

summarized by one measure because it is due to many different influences such as nutrient 

loading and concentration, algal productivity, and local plant activity. Carlson was concerned 

with the usefulness of multi-parameter indices and designed an indicator based on chlorophyll a, 

SDM, and total phosphorous. The TSI has since evolved from its original form to be adapted to 

specific areas. 

The Florida TSI was developed by the FDEP and is a combination of total nitrogen, total 

phosphorous, and chlorophyll a. The dark water issue is the reason that the FDEP defines its TSI 

differently than most other states. In the face of dark water, which affects the clarity but not 
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quality of the water, limnologists found that TSI measures based on SDM could be misleading 

(FDEP 1996). The TSI is defined in the FDEP 1996 305(d) report to the EPA, and is based on 

statistical analyses of nutrient levels in Florida lakes. Figure 4 is from that report, and gives the 

precise equations that define the TSI. The index uses the three inputs to produce a number 

between 1 and 100. A TSI value between 0-59 is seen as good, from 60-69 is fair, and 70 to 100 

is classified as poor.  

 

Figure 4: Trophic State Index Definition 
 

From the figure it is clear that TSI is not a continuous function. This is because the TSI is 

based on the limiting nutrient concept. While the level of both nitrogen and phosphorous in a 
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lake is important to gauge its health, the ratio of nitrogen to phosphorous can also play a 

significant role. For instance, a lake is declared phosphorous limited if the ratio is greater than 30 

and nitrogen limited if the ratio is less than 10. These situations can imply different levels of 

eutrophication and water quality (FDEP 1996). In the bottom of Figure 4, these unbalanced ratios 

result in different calculations of TSI which take into account the limiting factor.  

Table 20 summarizes the TSI rating of lakes used in this study. The first row presents the 

average of all individual lake samples in the data. Approximately 88% of observations are 

labeled good, 12% are fair, and 1% of the observations are classified as poor. The third row of 

Table 20 contains numerical counts of lake ratings, from which the first row was obtained. Only 

10 annual TSI readings in the data are classified as poor.  

 

Table 20: TSI Ranking Exploration 

  Good Fair Poor 

Average TSI across all lake samples 0.876 0.124 0.008 

Total number of samples in each category  1035 146 10 

 

The TSI, nutrient, and chlorophyll a data for the present chapter was obtained from the 

Florida STORET database, with some missing observations filled in by data from three 

municipalities (the same sources as the SDM data in Chapter 1). Table 21 shows mean TSI, total 

nitrogen, total phosphorous, and chlorophyll a values over all lakes in each year. From this table 

it can be seen that the highest years of lake water quality were between 1998 and 2000. This is 

clearly reflected in both TSI and chlorophyll a values, which both see a slight decrease in those 

years. This table also illustrates the similarity between these four variables, as they all move 

together. In particular, as nutrients increase there is an increase in algal mass, illustrated by the 

subsequent increase in chlorophyll a. 



140 

 

 

Table 21: Water Quality Indicators 

 

TSI TN TP Chlor a 

Mean Indicator Level by Year 

  1996 46.828 0.872 0.039 12.753 

1997 45.983 0.819 0.036 11.809 

1998 42.782 0.706 0.034 9.947 

1999 42.460 0.849 0.032 9.744 

2000 41.549 0.859 0.034 9.117 

2001 43.407 0.830 0.036 10.873 

2002 45.746 0.850 0.037 10.712 

2003 47.712 0.856 0.038 11.567 

2004 46.111 0.828 0.037 11.956 

Summary Statistics Over all Years 

  Mean 44.677 0.829 0.036 10.925 

St. Dev 13.256 0.334 0.034 11.142 

Min 11.185 0.154 0.003 0.35 

Max 87.49 2.565 0.35 72.431 

 

 Table 21 also shows the overall summary statistics for all lakes in all years for each of the 

sampling-based water quality indicators. Similar to the result in Table 20, the overall TSI mean 

in Table 21 is less than 59, indicating a rating of ―good‖. In the max level row a wide range of 

TSI values are represented: there was a lake that had a very poor rating of 87.49, and the best 

lake rating is 11.185. 

3.4. Methods  

 With the introduction of the alternative water quality indicators, the hedonic model from 

Chapter 1 can be re-estimated. In order to facilitate comparison between estimates, the basic 

structure of the final model from Chapter 1 will remain the same except SDM is replaced with 

one of the other indicators. Therefore four new models will be estimated, one for each alternative 

water quality indicator. These new models appear below. 
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Total Phosphorous (TP): 
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Chlorophyll (Ch): 
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In each equation, the variables are defined as in Chapter 1. For all four of these models, three 

regressions are estimated: a non-spatial regression and two spatial regressions—one with 15 

nearest neighbors and another with distance and time boundaries of 200 meters and 6 months 

back, three months forward. In Chapter 2, there were not large qualitative differences between 

the various SWM’s in the spatial lag model. Nonetheless, two of the main types of SWM are 

employed to ensure these results are not affected by the specification of the weights matrix. 

 After the regressions are estimated, implicit prices can be constructed and compared. The 

spatial extent of these new implicit prices is of particular interest. If the magnitude and spatial 

extent of the physical indicators of water quality are different than the corresponding SDM 

values, regulators may be faced with some policy tradeoffs. Following Michael, Boyle, and 

Bouchard (2000) and Poor et al. (2001), the a priori expectation is that these implicit prices will 

be different than the SDM values. Finally, the total benefits for three representative lakes of the 
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first chapter will be calculated. These total benefits should better illustrate differences between 

water quality indicators. 

3.5. Results 

 The non-spatial regressions are estimated using maximum likelihood in Stata while the 

spatial regressions were estimated in Matlab. In order to conserve space the 146 lake dummies 

are not presented in the following tables. The coefficients on these dummies are not of any 

particular interest for interpretation. An F-test of the significance of the dummies was estimated 

for each regression. The hypothesis that the coefficients were all equal to zero was strongly 

rejected in each case.  

The results of the TSI and Chlorophyll a regressions appear in Table 22. Starting with the 

first column of non-spatial coefficients, the variables unrelated to lakes all display the expected 

signs. With the lake variables, the expected signs are the opposite of the SDM regressions since 

higher values of TSI correspond to lower water quality. Therefore a negative coefficient on the 

TSI variable indicates that increases in TSI and worse water quality are negatively related to 

home prices, as expected. In fact, all three of the hypotheses from the first chapter about the 

effect of water quality on property prices are confirmed in this regression. The negative and 

significant coefficient on the TSI and waterfront variable indicates that waterfront homes are 

more negatively affected by increases in TSI than non-waterfront homes, illustrating the Edge 

Effect. The coefficient on the distance and TSI interaction term is positive and significant, 

indicating that the negative impact of higher TSI on property prices diminishes with distance, in 

line with the Proximity Effect. Also, the Area Effect is confirmed by the negative and significant 

coefficient on WQ*Ln(Area), although this coefficient is now only significant at the 5% level. 
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Overall, these results exhibit the same qualitative implications as the model based on SDM 

measures of water quality. 

As in the previous chapters, there is not much variation between the spatial and non-

spatial coefficients, which are quite stable across specifications. The standard errors in the spatial 

regressions are lower for every variable except Canalfront, where there is a difference of 0.001. 

Consequently, the main impact of controlling for spatial influences and omitted variables is a 

narrowing of confidence intervals. The spatial parameter ρ is highly significant in each spatial 

model, but relatively small in magnitude, at 0.003 for the nearest neighbor SWM and 0.001 for 

the distance/time SWM.  

 The results of the three chlorophyll a regressions appear on the right side of Table 22. 

The Edge Effect, Proximity Effect, and Area Effect are all supported in these regressions and all 

of the water quality interaction terms are significant at the 99% level. The non-lake related 

coefficients all conform to the expected signs. Furthermore, their magnitudes are very similar to 

those in the TSI regressions, illustrating stability over specifications. For instance, the 

coefficients on the Ln(Bath) variable in all TSI and chlorophyll a regressions are within 0.001 of 

0.120. The chlorophyll a coefficients are also stable across spatial and non-spatial specifications, 

with only minor differences in magnitude and almost all standard errors are smaller. 

 Table 23 contains the results of the TN and TP regressions. The TN regressions exhibit 

the same general characteristics as the TSI and chlorophyll a regressions. The Edge Effect, 

Proximity Effect, and Area Effect all hold and the nutrient variable and its interactions are all 

significant at the 99% level. Also, ρ has the same significance and magnitude as the TSI and 

Chlorophyll a regressions, and the main difference between the spatial and non-spatial models is 

a decrease in standard error. In the TP regressions, however, there are some notable differences 



144 

 

with the other models. First, the Area Effect is not supported in any of the three TP models as the 

area and TP interaction term is not significant. The effect of TP on property prices does not 

change with the size of the lake, contrary to expectations.  

 In Table 24 and Table 25 the implicit prices for the nutrient regressions appear. Due to 

differences in units, these variables are calculated differently than SDM. The implicit price of 

SDM was expressed in one unit, or one foot, of SDM. A one unit change in each of the 

alternative indicators implies a much different change; since TSI is based on a scale of 1-100 a 

unit change is miniscule, while a one unit change in TP is enormous (the mean TP level is 

0.036). It is important that the changes in lake quality not be too large; non-marginal changes 

may cause the demand function for housing and environmental attributes to shift (Haab and 

McConnell 2002). While recognizing that the difference between the various water quality 

indicators will cause any choice of units to be rather imperfect, the implicit prices of the 

alternative water quality measures are instead expressed in percentage changes. As a one unit 

change in SDM corresponds to approximately 17% of the mean level of SDM, the same 

percentage change is used for the other indicators. 

 The TSI implicit prices appear in the first three columns of Table 24, where the most 

visible changes from the SDM estimates are the missing values in the table. The blanks in the 

table correspond to implicit prices that have dropped to zero, where a change in water quality is 

no longer valued. For all of the TSI models the non-waterfront implicit price evaluated at the 

average distance from the lake is zero. In fact, the implicit price for TSI drops to zero at 

approximately 441 meters from the lake; considerably shorter than the extent of the implicit price 

of SDM, which was positive beyond the 1000 meter boundary. On the other hand, the implicit 

price of TSI is relatively high for lakefront homes and non-lakefront homes within 100 feet of 
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the lake; they are both almost twice as large as the SDM implicit prices of $11,784.28 for 

waterfront homes and $1,786.31 for non-waterfront homes 100 meters from the lake. These 

differences in implicit price magnitudes and extent may be due to the desired use of the lake. 

Waterfront property owners have a greater interest in maintaining the overall health of the lake 

for multiple uses. Conversely, those located farther from the lake may have more topical interests 

in the lake, based more on view and aesthetic benefits. SDM is therefore more ―valuable‖ to 

properties located beyond 500 meters from the lake than TSI. 

The chlorophyll a implicit prices appear in the third through sixth columns of Table 24. 

While the implicit price of chlorophyll a is still positive for the mean distance non-lakefront 

home, these implicit prices are quite small. The extent of improved chlorophyll a benefits 

completely diminishes at about 500 meters from the lake. All of the chlorophyll a implicit prices 

are less than the SDM implicit prices.  

Table 25 contains the implicit prices of the total nitrogen and total phosphorous 

regressions. The benefits of a 17% improvement of TN extend farther than the TSI and 

chlorophyll a benefits. Although the mean waterfront implicit price of TN is greater than the 

waterfront SDM implicit price, the mean non-waterfront implicit price for the spatial model with 

a distance/time SWM is $361, almost half the value of the non-waterfront implicit price of SDM. 

Also, the extent of TN benefits is less than the extent of SDM benefits. The phosphorous implicit 

prices appear in the last three columns of Table 25. The extent of TP benefits is even less than 

those of TSI. The implicit price of TP has a steep gradient: the waterfront implicit price is larger 

than that of SDM, but the implicit price diminishes to zero closer to the lake.  
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Figure 5: Implicit Price Gradients: Non-Waterfront 
 

 Figure 5 contains a graph of the non-waterfront implicit prices and lake distance, where 

the differences in the slopes of the gradients are clearly illustrated. SDM begins relatively high 

and gradually decreases. On the other hand, TSI has the highest y-intercept but the steepest 

slope, rapidly decreasing to zero at approximately 441 meters from the lake. The implicit price 

gradient of chlorophyll a has the most similar slope to SDM. This is not too surprising since 

Hoyer et al. (2002) show that chlorophyll a is the largest contributor to lake clarity. It is, 

however, surprising that the chlorophyll a curve has such a low y-intercept and extent. One 

explanation for this may be the popularity of fishing in central Florida lakes. Florida is regularly 

referred to as the fishing capital of the world, and central Florida attracts numerous anglers each 

year. Hoyer, Brown, and (Canfield Jr. 2004) state that citizens who are interested in fishing may 
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view green water (a symptom of high chlorophyll a levels) as a supportive habitat for healthy 

fish. Also, in their survey of Florida lake users they find that people who live in lake areas 

characterized by green waters are more likely to be tolerant of it, dulling the effect of chlorophyll 

a on property prices. 

 The total benefits implied by these implicit prices appear in Table 26. Similar to Chapter 

1, three lakes of different sizes are used as examples. The first row contains the benefits for a one 

foot increase in SDM. As this represents a much larger percentage change in Lake Mann than the 

other two lakes, the second row contains the total benefits of a 17% increase in SDM. The next 

four rows contain the benefits of a 17% improvement in the other indicators, with lake 

descriptive statistics appearing in the lower rows. Benefits of the increase in water quality are 

separated into three categories: waterfront benefits, non-waterfront benefits and total benefits. 

Due to the broad extent of its benefits, SDM has larger total non-lakefront benefits than the other 

indicators. Alternatively, since TSI had the highest implicit price for homes nearest the lake, 

improvements in TSI yield the largest lakefront benefits in all lakes. In each lake, either SDM or 

TSI yields the highest level of benefits. In all lakes chlorophyll a yields the lowest benefits for a 

17% improvement. 

 The above results show that different water quality indicators can result in substantially 

different benefit estimates, implicit price magnitudes and benefit extent. Although all of the 

indicators exhibit the Proximity Effect, the extent of benefits is dependent on the indicator. The 

Area Effect varies over indicator choice; this hypothesis was not present in the TP regressions. 

Furthermore, benefits from the physical indicators are concentrated closer to the lake, while 

SDM benefits extend past 1,000 meters from the lake. These large differences in results indicate 

that the sole use of SDM in a hedonic analysis of water quality may not fully capture the full 
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range of benefits from a water quality improvement. The shapes of the gradients, along with 

evidence from past papers, indicate that changes in SDM are valued for aesthetic and visual 

benefits. Conversely, improvements in physical measures condensed in the TSI are valued for 

deeper ecosystem and lake recreation benefits. A proper benefit cost analysis of water quality 

improvements should account for all of these benefits. If SDM is the sole measure of water 

quality in a hedonic analysis, the resulting estimate of benefits will improperly discount the 

values of homes directly near the lake.  

3.6. Conclusion and Policy Discussion 

 Current Florida water quality policy weighs improvements in nutrient indicators much 

more heavily than improvements in clarity (FDEP 2009). While these changes are not mutually 

exclusive, results of the present study show that they may imply considerably different economic 

impacts. While the ecological benefits of transparency are suspect (Leggett and Bockstael 2000), 

the economic benefits of improvements in lake clarity are hard to ignore. Consequently, lake 

management activities that improve nutrient levels may have unintended welfare impacts on the 

local community. Since lake management programs are funded by local taxpayers, the economic 

impacts of transparency changes should be given more consideration. In contrast, the current 

hedonic water quality literature may be placing too much weight on transparency indicators. In 

certain areas these indicators may not fully reflect important ecosystem and recreation services. 

 This section uses several different indicators of water quality in a spatial hedonic 

analysis. Implicit prices are computed for all of the indicators and issues of benefit extent and 

total benefits are explored. Instead of finding an optimal indicator for all situations, results 
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indicate that the use of at least two types of indicators may capture a larger range of the true total 

benefits. 

 All indicators examined were found to be significantly related to property prices. Results 

show that the two indicators that yield the greatest total benefits are SDM and TSI. TSI has a 

large effect on waterfront homes and homes close to the lake but has a short extent, diminishing 

just before 500 meters away. The implicit price gradient of SDM is less steeply sloped and the 

implicit prices of waterfront homeowners are not as high as those from TSI, but the extent of 

SDM benefits is much longer, extending past 1,000 meters. One explanation of these differences 

in the magnitude and extent of benefits is related to lake usage. Property owners close to the lake 

value the eutrophic status of the lake, which supports a variety of uses and amenities. 

Conversely, property owners further from a lake have less of an interest in the eutrophic state of 

the lake and more of an interest in aesthetic and purely recreation-based activities. Alternatively, 

property owners closer to the lake may have a greater incentive to obtain information about 

physical indicators, while owners located farther away base their purchasing decision on 

visibility. 

 TSI has only been used previously in studies of recreation demand (Jeon et al. 2005). The 

present section represents the first time this indicator has been used in a hedonic analysis of 

water quality. This is an important step since this is the main indicator used by the state of 

Florida (and several other states) to classify and regulate lakes. When lake managers aim to 

improve the water quality in a particular lake, one of their main targets is TSI, illustrating the 

importance of this indicator. TSI holds considerable potential for future hedonic analysis. It is 

measured on a 100-point scale that can be adapted to different states and settings and was created 

to condense several other indicators of eutrophication into one convenient scale (Carlson 1977). 
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Furthermore, since it is based on several measures of water chemistry and based on the work of 

limnologists, it is an objective indicator. 

 Alternatively, SDM has received the most attention in hedonic analyses of water quality. 

Although there are concerns with dark water Florida, variation in SDM is significantly related to 

property prices and yields higher total benefits than each of the individual components of TSI. 

Given the solid performance of both indicators, future studies should consider both in hedonic 

property price analysis. Instead of focusing on a single indicator to estimate benefits it may be 

better to incorporate both. Since the concept of water quality may vary over different portions of 

the population (Hoyer, Brown, and Canfield Jr. 2004), the use of two indicators may capture a 

broader estimate of benefits.  

Concerns with water quality definitions point to some of the fundamental problems in 

valuing water quality. Quality is a different concept to different portions of the population, and is 

dependent on the designated use of the lake (Hoyer, Brown, and Canfield Jr. 2004). These 

differences have been incorporated into the foundation of the CWA through the assignment of 

differing designated uses to different lakes and should be integrated into cost benefit analyses of 

water quality changes. Future hedonic analyses of water quality should use both visibility and 

physical measures to reflect differences in designated uses and perceptions. Similar to air quality 

studies that differentiate between health benefits and visibility benefits (Delucchi, Murphy, and 

McCubbin 2002), water quality hedonic studies should recognize the differences between 

aesthetic visibility values and ecosystem or environmental values.  

 The recognition of these different categories of values is also important for lake 

management officials. An optimal policy should weigh the full social costs and benefits. If 

regulators focus solely on the ecosystem benefits of a policy and ignore the economic benefits of 
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improved visibility there may be potential gains left on the table. For instance, TSI 

improvements can be made through changes in its three individual components. By evaluating 

which changes will yield the desired TSI improvement while simultaneously increasing 

visibility, lake managers can maximize the positive impact of lake programs.  

 Future research should include stated preference surveys to elicit more accurate data on 

consumers’ water quality preferences and perceptions. Similar to the stated preference work in 

the air quality literature that differentiated between health benefits and visibility benefits, water 

quality surveys should differentiate between aesthetic benefits and ecosystem or environmental 

benefits. These surveys could guide decisions about the proper set of indicators to use in a 

hedonic property price regression. 
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Tables and Figures: Chapter 3 

Table 22: Regression Coefficients: TSI, Chlorophyll a 
 TSI Chlorophyll a 

 Non-

Spatial NN15 Dist/Time 

Non-

Spatial NN15 Dist/Time 

WQ Variable 
-0.205

*
 

(0.050) 

-0.216
*
 

(0.048) 

-0.209
*
 

(0.048) 

-0.025
***

 

(0.015) 

-0.026
***

 

(0.014) 

-0.026
***

 

(0.014) 

WQ*Waterfront 
-0.161

* 

(0.026) 

-0.160
*
 

(0.016) 

-0.161
*
 

(0.016) 

-0.063
*
 

(0.008) 

-0.062
* 

(0.005) 

-0.063
* 

(0.005) 

WQ*Ln(Distance 

Lake) 

0.052
* 

(0.004) 

0.052
*
 

(0.003) 

0.052
*
 

(0.003) 

0.012
*
 

(0.001) 

0.012
* 

(0.001) 

0.012
* 

(0.001) 

WQ*Ln(Area) 
-0.008

** 

(0.003) 

-0.007
**

 

(0.003) 

-0.008
**

 

(0.003) 

-0.004
*
 

(0.001) 

-0.004
* 

(0.001) 

-0.004
* 

(0.001) 

Waterfront 
0.854

* 

(0.094) 

0.851
*
 

(0.059) 

0.858
*
 

(0.059) 

0.365
*
 

(0.016) 

0.366
* 

(0.010) 

0.366
* 

(0.010) 

Ln(Distance 

Lake) 

-0.251
* 

(0.017) 

-0.251
*
 

(0.013) 

-0.253
*
 

(0.013) 

-0.081
*
 

(0.003) 

-0.081
* 

(0.002) 

-0.081
* 

(0.002) 

Canalfront 
0.096

* 

(0.017) 

0.097
*
 

(0.018) 

0.096
*
 

(0.018) 

0.101
*
 

(0.017) 

0.103
* 

(0.018) 

0.101
* 

(0.018) 

Golffront 
0.336

* 

(0.038) 

0.335
*
 

(0.033) 

0.338
*
 

(0.033) 

0.335
*
 

(0.038) 

0.333
* 

(0.033) 

0.336
* 

(0.033) 

Ln(Bath) 
0.121

* 

(0.005) 

0.119
*
 

(0.004) 

0.121
*
 

(0.005) 

0.120
*
 

(0.005) 

0.119
* 

(0.004) 

0.120
* 

(0.005) 

Pool 
0.014

* 

(0.003) 

0.013
*
 

(0.003) 

0.014
*
 

(0.003) 

0.014
*
 

(0.003) 

0.013
* 

(0.003) 

0.014
* 

(0.003) 

Ln(Home Age) 
-0.071

* 

(0.001) 

-0.072
*
 

(0.001) 

-0.071
*
 

(0.001) 

-0.071
*
 

(0.001) 

-0.072
* 

(0.001) 

-0.070
* 

(0.001) 

Ln(Home Area) 
0.673

* 

(0.006) 

0.675
*
 

(0.005) 

0.673
*
 

(0.005) 

0.675
*
 

(0.006) 

0.677
* 

(0.005) 

0.674
* 

(0.005) 

Ln(Parcel Area) 
0.164

* 

(0.004) 

0.165
*
 

(0.003) 

0.165
*
 

(0.003) 

0.163
*
 

(0.004) 

0.164
* 

(0.003) 

0.165
* 

(0.003) 

Ln(Distance 

CBD) 

-0.196
* 

(0.011) 

-0.195
*
 

(0.010) 

-0.195
*
 

(0.010) 

-0.194
*
 

(0.011) 

-0.193
* 

(0.010) 

-0.193
* 

(0.010) 

Near Airport 
0.029

* 

(0.006) 

0.029
*
 

(0.006) 

0.029
*
 

(0.006) 

0.029
*
 

(0.006) 

0.028
* 

(0.006) 

0.028
* 

(0.006) 

Ln(Lattitude) 
-6.360

* 

(1.055) 

-6.569
*
 

(0.036) 

-6.426
*
 

(0.014) 

-6.046
*
 

(1.056) 

-6.265
* 

(0.172) 

-6.107
* 

(0.157) 

Ln(Longitude) 
3.528

* 

(0.691) 

3.746
*
 

(0.659) 

3.609
*
 

(0.661) 

3.711
*
 

(0.692) 

3.930
* 

(0.644) 

3.788
* 

(0.647) 

Ln(Median 

Income) 

0.112
* 

(0.006) 

0.112
*
 

(0.005) 

0.111
*
 

(0.005) 

0.111
*
 

(0.006) 

0.111
* 

(0.005) 

0.110
* 

(0.005) 

% White (2000) 
0.223

* 

(0.031) 

0.225 

(0.032) 

0.221
*
 

(0.032) 

0.224
*
 

(0.031) 

0.227
* 

(0.032) 

0.222
* 

(0.032) 

% Black (2000) 
0.039

 

(0.035) 

0.043 

(0.034) 

0.039 

(0.034) 

0.041 

(0.035) 

0.044
 

(0.034) 

0.041
 

(0.034) 

% Over 65 

(2000) 

0.040
*** 

(0.022)
 

0.038
**

 

(0.020) 

0.041
**

 

(0.020) 

0.036 

(0.022) 

0.035
*** 

(0.020) 

0.037
*** 

(0.020) 
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ρ --- 
-0.003

*
 

(0.000) 

0.001
*
 

(0.000) 
--- 

-0.003
*
 

(0.000) 

0.001
*
 

(0.000) 

R
2 

0.8942 0.8947 0.8942 0.8940 0.8945 0.8939 
*, **, and *** indicate significance at the 0.01, 0.05, and 0.10 levels, respectively. Standard errors appear in parentheses. 

 

Table 23: Regression Coefficients: TN, TP 
 TN TP 

 Non-

Spatial NN15 Dist/Time 

Non-

Spatial NN15 Dist/Time 

WQ Variable 
-0.120

*
 

(0.042) 

-0.130
*
 

(0.041) 

-0.118
*
 

(0.041) 

-0.108
*
 

(0.031) 

-0.121
* 

(0.029) 

-0.110
* 

(0.029) 

WQ*Waterfront 
-0.118

* 

(0.025) 

-0.117
* 

(0.019) 

-0.119
*
 

(0.019) 

-0.122
* 

(0.012) 

-0.121
* 

(0.009) 

-0.122
* 

(0.009) 

WQ*Ln(Distance 

Lake) 

0.037
* 

(0.004) 

0.037
* 

(0.004) 

0.037
*
 

(0.004) 

0.021
*
 

(0.002) 

0.021
* 

(0.002) 

0.022
* 

(0.002) 

WQ*Ln(Area) 
-0.008

* 

(0.003) 

-0.008
* 

(0.003) 

-0.009
*
 

(0.003) 

-0.001 

(0.002) 

0.000 

(0.002) 

-0.001 

(0.002) 

Waterfront 
0.238

* 

(0.012) 

0.240
* 

(0.009) 

0.239
*
 

(0.009) 

-0.223
*
 

(0.050) 

-0.220
* 

(0.037) 

-0.223
* 

(0.037) 

Ln(Distance 

Lake) 

-0.052
* 

(0.002) 

-0.052
* 

(0.002) 

-0.052
*
 

(0.002) 

0.020
*
 

(0.008) 

0.020
* 

(0.006) 

0.021
* 

(0.006) 

Canalfront 
0.098

* 

(0.017) 

0.100
* 

(0.018) 

0.099
*
 

(0.018) 

0.099
*
 

(0.017) 

0.100
* 

(0.018) 

0.099
* 

(0.018) 

Golffront 
0.330

* 

(0.038) 

0.329
* 

(0.033) 

0.331
*
 

(0.033) 

0.334
*
 

(0.038) 

0.333
* 

(0.033) 

0.336
* 

(0.033) 

Ln(Bath) 
0.120

* 

(0.005) 

0.119
* 

(0.005) 

0.120
*
 

(0.005) 

0.120
*
 

(0.005) 

0.118
* 

(0.004) 

0.120
* 

(0.005) 

Pool 
0.014

* 

(0.003) 

0.014
* 

(0.003) 

0.014
*
 

(0.003) 

0.014
*
 

(0.003) 

0.013
* 

(0.003) 

0.014
* 

(0.003) 

Ln(Home Age) 
-0.071

* 

(0.001) 

-0.072
* 

(0.001) 

-0.070
*
 

(0.001) 

-0.071
*
 

(0.001) 

-0.072
* 

(0.001) 

-0.071
* 

(0.001) 

Ln(Home Area) 
0.672

* 

(0.006) 

0.674
* 

(0.005) 

0.671
*
 

(0.005) 

0.672
*
 

(0.006) 

0.675
* 

(0.005) 

0.672
* 

(0.005) 

Ln(Parcel Area) 
0.166

* 

(0.004) 

0.166
* 

(0.003) 

0.167
*
 

(0.003) 

0.164
*
 

(0.004) 

0.165
* 

(0.003) 

0.165
* 

(0.003) 

Ln(Distance 

CBD) 

-0.189
* 

(0.011) 

-0.188
* 

(0.010) 

-0.189
*
 

(0.010) 

-0.197
*
 

(0.011) 

-0.196
* 

(0.010) 

-0.197
* 

(0.010) 

Near Airport 
0.028

* 

(0.006) 

0.027
* 

(0.006) 

0.028
*
 

(0.006) 

0.033
*
 

(0.006) 

0.033
* 

(0.006) 

0.033
* 

(0.006) 

Ln(Lattitude) 
-5.675

* 

(1.059) 

-5.894
* 

(0.193) 

-5.735
*
 

(0.174) 

-6.221
*
 

(1.054) 

-6.429
* 

(0.119) 

-6.287
* 

(0.096) 

Ln(Longitude) 
3.540

* 

(0.696) 

3.766
* 

(0.642) 

3.613
*
 

(0.646) 

3.616
*
 

(0.692) 

3.840
* 

(0.651) 

3.696
* 

(0.655) 

Ln(Median 

Income) 

0.108
* 

(0.006) 

0.108
* 

(0.005) 

0.107
*
 

(0.005) 

0.111
*
 

(0.006) 

0.111
* 

(0.005) 

0.110
* 

(0.005) 

% White (2000) 
0.258

* 

(0.031) 

0.261
* 

(0.032) 

0.256
*
 

(0.032) 

0.225
*
 

(0.031) 

0.228
* 

(0.032) 

0.223
* 

(0.032) 

% Black (2000) 0.067
*** 

0.070
** 

0.067
**

 0.045 0.049
 

0.045
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(0.035) (0.034) (0.034) (0.035) (0.034) (0.034) 

% Over 65 

(2000) 

0.014 

0.022) 

0.013 

(0.020) 

0.015 

(0.020) 

0.035
***

 

(0.021) 

0.034
*** 

(0.020) 

0.036
*** 

(0.020) 

ρ --- 
-0.003

*
 

(0.000) 

0.001
*
 

(0.000) 
--- 

0.001
*
 

(0.000) 

-0.003
*
 

(0.000) 

R
2 

0.8936 0.8941 0.8935 0.8942 0.8947 0.8942 
*, **, and *** indicate significance at the 0.01, 0.05, and 0.10 levels, respectively. Standard errors appear in parentheses. 

 

Table 24: Implicit Prices: TSI, Chlorophyll a 
 TSI  Chlorophyll a 

17% Improvement in Water Quality 17% Improvement in Water Quality 

 
Non-Spatial NN15 Dist/Time Non-Spatial NN15 Dist/Time 

WQ: Mean 

WF 
22,108.74 

(1,823.18) 

21,877.70 

(1,157.72) 

22,235.27 

(1,164.58) 

7,269.29 

(575.96) 

7,252.65 

(397.76) 

7,294.69 

(400.11) 

WQ: Mean 

NWF 
--- --- --- 

17.87 

(80.86) 

29.24 

(66.31) 

12.10 

(66.70) 

WQ 100m 
2,612.54 

(304.68) 

2,585.90 

(251.00) 

2,626.72 

(252.48) 

651.19 

(104.37) 

659.38 

(80.80) 

652.82 

(81.27) 

WQ 300m 
677.91 

(215.88) 

656.80 

(202.74) 

672.84 

(203.93) 

199.81 

(82.06) 

210.27 

(65.84) 

196.17 

(66.23) 

WQ 500m --- --- --- --- 
1.45 

(66.74) 
--- 

WQ 700m --- --- --- --- --- --- 

WQ 900m --- --- --- --- --- --- 

Waterfront 
115,612.40 

(4,461.77) 

115,897.04 

(3,196.53) 

116,439.02 

(3,217.49) 

102,945.40 

(4,857.12) 

103,286.80 

(3,656.63) 

103,726.77 

(3,680.11) 

Lake 

Proximity 
24.95 

(0.68) 

24.94 

(0.62) 

25.11 

(0.63) 

23.16 

(0.76) 

23.16 

(0.69) 

23.28 

(0.69) 
Standard errors appear in parentheses, obtained using the delta method. 
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Table 25: Implicit Prices: TN, TP 
 TN TP 

17% Improvement in Water Quality 17% Improvement in Water Quality 

 Non-Spatial NN15 Dist/Time Non-Spatial NN15 Dist/Time 

WQ WF 
17,129.74 

(1,818.46) 

16,854.86 

(1,377.73) 

17,264.24 

(1,385.82) 

13,062.97 

(954.72) 

12,808.45 

(715.39) 

13,136.85 

(719.49) 

WQ NWF 
354.54 

(203.74) 

298.71 

(200.78) 

361.17 

(201.91) 
--- --- --- 

WQ 100m 
2,296.92 

(283.14) 

2,241.79 

(248.99) 

2,309.08 

(250.41) 

978.85 

(175.85) 

922.45 

(158.35) 

987.09 

(159.24) 

WQ 300m 
912.57 

(208.08) 

856.94 

(198.71) 

920.78 

(199.83) 

180.52 

(143.41) 

128.83 

(140.87) 

179.80 

(141.65) 

WQ 500m 
268.88 

(204.70) 

213.02 

(202.34) 

275.26 

(203.48) 
--- --- --- 

WQ 700m --- --- --- --- --- --- 

WQ 900m --- --- --- --- --- --- 

Waterfront 
118,634.20 

(4,621.78) 

118,911.82 

(3,242.98) 

119,377.74 

(3,263.89) 

91,734.62 

(5,010.16) 

92,194.68 

(3,806.71) 

92,454.68 

(3,830.39) 

Lake 

Proximity 
25.55 

(0.71) 

25.53 

(0.62) 

25.70 

(0.63) 

23.23 

(0.70) 

23.23 

(0.66) 

23.37 

(0.67) 
Standard errors appear in parentheses, obtained using the delta method. 
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Table 26: Total Benefits of an Increase in Water Quality 

 

Lake Silver (70 Acres) Lake Mann (271 acres) Lake Conway (1000 acres) 

WQ Indicator WF Benefits  NWF Benefits 

Total 

Benefits WF Benefits  NWF Benefits 

Total 

Benefits WF Benefits  NWF Benefits 

Total 

Benefits 

SDM* 971,452 1,079,068 2,050,520 698,144 3,219,550 3,917,694 5,441,246 7,433,382 12,874,628 

SDM (17%) 950,586 1,055,890 2,006,476 255,053 1,176,198 1,431,251 9,461,946 12,926,130 22,388,076 

TSI* 1,925,818 650,091 2,575,909 478,823 466,424 945,247 15,421,028 6,905,877 22,326,905 

Total Nitrogen 1,456,301 635,259 2,091,560 368,364 562,615 930,979 12,262,230 8,174,365 20,436,595 

Total Phosphorous 1,174,163 263,384 1,437,547 285,331 155,257 440,588 9,208,511 2,055,284 11,263,795 

Chlorophyll 613,778 130,846 744,624 155,311 125,104 280,415 5,290,549 2,309,189 7,599,738 

Number Homes 62 1,928 1,990 63 2,635 2,698 669 6,300 6,969 

Average SDM 5.756 2.149 10.229 

Average TSI 46.235 57.308 27.580 

Average TN 0.718 1.439 0.529 

Average TP 0.022 0.030 0.009 

Average Chlor 7.663 17.178 1.417 
*For the first SDM row, a one foot increase is used. For the other rows a 17% increase is used. Estimates from the distance/time SWM spatial lag model used for calculation.  
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CHAPTER 4: WATER QUALITY IN A HYBRID REPEAT SALES MODEL 

4.1. Introduction 

The focus of the first three chapters of the dissertation is hedonic modeling. Hedonic 

property models represent a popular revealed preference method of environmental valuation. 

However, there have been some critiques of the approach which deserve some attention. This 

chapter uses an alternative method to estimate the value of water quality, which also uses 

property prices: a repeat sales model. A pervasive concern in hedonic property analysis is 

omitted variable bias, which arises when important variables are excluded from the hedonic 

equation. For instance, over the population there may be significant heterogeneity in people’s 

tastes for environmental quality which may cause them to self select into some areas instead of 

others (Chay and Greenstone 2005). Some problems with omitted variables may be muted by the 

use of spatial models that control for spatially correlated omitted variables (Brasington and Hite 

2005), but there is no guarantee that it will be a full solution. Variables may be excluded for a 

variety of reasons, including lack of data, measurement problems or empirical constraints. No 

matter the reason, these omitted variables can result in biased coefficients and implicit prices 

(Palmquist 1982). The repeat sales model controls for omitted variable bias and can be used to 

estimate the value of water quality. 

Due to the size of the data set in this paper, there are a substantial number of homes that 

have sold more than once. By analyzing differences in home price for the same home over repeat 

sales, it is possible to control for the effect of omitted variables (Case and Quigley 1991). This 

type of analysis has only been used to analyze a small number of environmental problems; in 

each case the issue was a discrete event such as the recognition of hazardous waste 

contamination. The present section represents an attempt to investigate a continuously changing 
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environmental amenity using a hybrid repeat sales/hedonic analysis. The goal of this section is to 

see if water quality has an impact on non-waterfront homes after controlling for omitted variable 

bias, and to investigate further the Edge Effect, Proximity Effect, and Area Effect. 

4.2. Literature Review 

There are two main areas where repeat property sales have been used to analyze the 

effect of environmental amenities (or disamenities). The first area deals with the construction of 

real estate price indices, and has evolved to incorporate environmental effects. The second area 

uses repeat sales in ―quasi-experimental‖ analyses. The former has gradually evolved over the 

last 40 years and has recently combined aspects of regular hedonic analysis in order to include 

home attributes that change over time. The latter is a newer approach that uses difference-in-

difference estimators to assess the impact of a quasi-random event, such as the landfall of a 

hurricane. Due to its ability to accommodate changing attributes, this paper uses the price index 

approach to estimate the impact of water quality on repeat home sales.  

 The earliest application of repeat sales was in Bailey, Muth, and Nourse (1963), who 

were interested in controlling for quality differences between homes to obtain a more accurate 

construction of price indices. They proposed a method that uses sales of the same property at 

different time in a simple regression framework. Ordinary least squares regression is used to 

estimate the following equation: 

' '

1

T

itt j j itt

j

r b x u


           (4.1) 

Where ritt’ = ln(pit)-ln(pit’), or the difference between two sales of the same home taking place in 

years t and t’. The xj  variables are non-binary dummy variables for each year, equal to -1 in the 

t-th year (the initial year) and 1 in the t’-th year. This method is attractive because the use of 
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repeat sales controls for many unobserved attributes. A large literature has been spawned from 

this early paper, and most official home price indices now use a variation of this basic approach 

(Shiller 1991). 

Palmquist (1982) is the first paper to combine hedonic analysis with repeat sales in a 

hybrid model. Palmquist recognized the potential efficiency in using repeat sales due to the 

ability to control for omitted variables. He proposed a model that combined the price index 

construction of Bailey, Muth, and Nourse (1963) with environmental variables that change over 

time. The environmental issue analyzed in Palmquist (1982) is traffic noise. In an area north of 

Seattle, Washington a large highway was constructed, rapidly increasing noise levels. Home 

prices that occurred before and after the highway was built were incorporated into the model, and 

corrections were made for error correlation resulting from homes that sold more than twice 

(discussed in the methods section).  

Case and Quigley (1991) were concerned with the drop in sample size resulting from the 

use of repeat sales. They propose an estimation method that allows the use of both repeat sales 

and single sales, in a hybrid variation of Palmquist (1982). This method is shown to produce 

tighter confidence intervals as compared to the hedonic or repeat sales estimates alone. However, 

their sample size is rather small with 418 total property sales and only 47 repeat sales. It is 

therefore no surprise that the repeat sales estimate of the price index has a relatively wide 

confidence interval. 

Shiller (1993) also estimates a hybrid repeat sales/hedonic model that incorporates 

changes in attributes between sales. Shiller was concerned with quality differences between 

observations which may not be recognized in traditional repeat sales measures. An example in 

the derivatives market is used to illustrate the construction of price indices. Shiller’s model 
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focuses on including additional attributes that vary over time into the repeat sales model. This 

was a critical step in bridging the gap between hedonic and repeat sales models, and set the 

foundation for an analysis of environmental issues that change over time. 

Case et al. (2006) use a hybrid repeat sales/hedonic model to analyze environmental 

externalities. Their unique dataset on groundwater contamination in Scottsdale Arizona was the 

result of the court case Baker vs. Motorola, in which many homeowners sued a manufacturer 

after the discovery of long term contamination. They use condominium sales, which limits the 

changes in structural attributes. Their basic model appears in equation (4.2): 

1 1 1 2 2 2 0 82, 82,ln( ) ln( ) ln( ) ln( ) ( ) ( ) ... ( ) ( )i i i i i i n in in i iP P T T T T T T CNTM                  
 

 (4.2) 

In this equation, the T variables represent the year dummy variables from Bailey, Muth, and 

Nourse (1963), where a tilde above the variable indicates the initial sale. The CNTM variable 

represents contamination level, and varied between several models corresponding to different 

risk perception interpretations. These contamination variables distinguish the hybrid model from 

traditional repeat sales methods. After estimating multiple models, results indicate that the 

contaminated groundwater had a negative and significant effect on property prices, varying from 

two percent of home value to 15 percent of home value. Additionally, the effect of the 

groundwater contamination on property prices did not fully mature until several years after 

discovery. 

The other area of the hedonic literature that uses repeat sales is the group of ―quasi-

experimental‖ analyses of environmental amenities. The main goal of these papers is to use a 

―random‖ event as a natural experiment and analyze the effect on property prices. For example, 

Chay and Greenstone (2005) estimate the marginal willingness to pay for air quality in the 
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United States, using a national sample. Under the amendments to the CAA, individual counties 

were designated as either ―attainment‖ or ―non-attainment‖ based on their levels of air quality. 

Using counties that are just near this cutoff, they use the designation of this status as the ―random 

event.‖ The main regression in this paper is a semi-log model that uses first-differenced data 

between the years 1970 and 1980 since the event occurred between these years. Property prices 

are aggregated by county instead of using individual home sales. Several forms of the regression 

are explored that confront endogeneity resulting from both omitted variables and sorting, and 

their results indicate that omitted variable bias is a much bigger issue to control for than 

selectivity bias. 

In a paper about health risk and housing values, Davis (2004) uses a difference in 

difference estimator to examine the effect of an increase in cancer risk. The random event in the 

natural experiment of this paper was a sudden public awareness of a large increase in cases of 

pediatric leukemia. The cause of the leukemia is currently unknown. The difference in difference 

estimator was employed to mitigate concerns with preference-based sorting and omitted variable 

bias. The increased cancer risk was found to decrease home values in the affected area by as 

much as 12-16 percent. 

Hallstrom and Smith (2005) use the landfall of Hurricane Andrew to define a quasi-

random experiment in Lee County Florida. This particular county was a ―near-miss,‖ so was not 

directly damaged by the hurricane. A difference in difference model is used to estimate the effect 

of a perceived increase in hurricane risk on property prices. This model uses repeat sales with an 

initial sale before the event and a final sale after the hurricane passed. Homes both in and out of 

FEMA flooding hazards are used to control for differences in severity, and a fixed effects 
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regression is used. They find that Andrew lead to an average 19 percent decrease in the sale 

prices of homes contained within flood hazard areas.  

Pope (2008) uses a difference in difference analysis with repeat sales to investigate 

airport noise in North Carolina. A regulation was passed in Wake County, North Carolina that 

required home sellers to provide buyers a disclosure about airport noise. The timing of this 

regulation was treated as the random event in the quasi-experiment. In the area classified by high 

noise, Pope finds that the disclosure decreased home values by 2.9 percent. 

Parmeter and Pope (2009) summarize the difference in difference/quasi-experimental 

approach to hedonic analysis. This paper critiques several of the above papers and provides 

recommendations for how to conduct a similar study. Ten steps are provided to ensure the 

consistency and reliability of further quasi-experimental studies. This paper illustrates the value 

of repeat sales analysis in the context of a quasi random event, and also discusses some of the 

important limitations. 

The use of repeat sales can potentially have advantages over a traditional hedonic 

analysis due to its ability to control for omitted factors. However, repeat sales data has several 

problems. Gatzlaff and Haurin (1997) examine issues of sample selection bias in repeat sales 

index construction. They stress that while repeat sales analysis holds constant home quality, the 

sales may have taken place in different economic conditions. They find that bias in repeat sales 

indices is directly related to variance in economic conditions between sales. Another recognized 

problem is that the use of repeat sales restricts the sample to be much smaller than the full group 

of home sales. This smaller sample may be non-random and overrepresented by ―lemons‖ (Case 

and Quigley 1991). Furthermore, the repeat sales model assumes that the implicit prices of 

variables remain constant over time; otherwise the attributes would not cancel out between sales.  



163 

 

 The use of repeat sales in environmental valuation holds significant potential. The ability 

to mitigate omitted variable bias and preference-based sorting is a promising strength of this 

approach. As both the quasi-experimental approach and the hybrid approach are still relatively 

new, they represent two future paths of the hedonic literature. Both types of models have 

performed well in the face of discrete events; the current paper will analyze the model’s ability to 

analyze a non-discrete change in an environmental amenity. 

4.3. Data 

 The Orange County, Florida housing dataset from the past chapters serves as the starting 

point for the data used in this chapter. First, all homes that sold only once are eliminated from the 

database leaving 23,381 properties. Since the time units of the water quality variable is years, 

homes that sold twice within the same year are not used in the analysis. This is a common 

procedure in the repeat sales literature, and may help reduce the number of outliers (Case et al. 

2006). After removing these observations (along with the other home sales that are now no 

longer repeat sales) there are 21,732 observations. The new dataset is obtained by differencing 

between sales, leaving 11,785 observations. After these elimination steps, the proportion of 

waterfront homes in the data drops considerably, leaving only slightly over 1% of the data 

composed of unique waterfront home sales. 

 Summary statistics for the repeat sales data appear in Table 27. Due to the small number 

of waterfront homes, summary statistics for both groups are combined.
19

 The average sale price 

in these data is over $55,000 more than the average non-lakefront home price in the full dataset. 

20
 Conversely, the average home is a similar size and age as those in the full data. The other 

                                                 
19

 Deflated sales prices (2001) are used in these data, as in the previous chapters. 
20

 Excluding the waterfront homes only decreases this average by $7,000, still much larger than before. 
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attributes of the average home in these data are comparable to the attributes of the average non-

lakefront home in the full data. Nonetheless, the difference in average home prices and the 

proportion of waterfront homes is a concern. 

4.4. Methods 

4.4.1. Models 

Of the two types of repeat sales analysis presented in the literature review, the price 

index-based hybrid approach represents the only feasible option for the present analysis. The 

quasi-experimental/difference in difference method requires the occurrence of a discrete random 

event, such as a hurricane, the passage of a law, or a sudden increase in media coverage of a 

health risk. In the present setting the environmental amenity continuously changes over the time 

period, excluding a difference-in-difference analysis from the set of econometric approaches.  

 The original repeat sales model appears in Bailey, Muth, and Nourse (1963), where the 

objective was to create accurate price indices. Their analysis starts with the basic hedonic 

property model appearing in equation (4.3): 

1 1

J T

it j jit t t it

j t

P x c D e
 

             (4.3) 

In this model, Pit represents the natural log of the sales price of home i during the time period t, 

βj is a vector of estimated coefficients corresponding to the property attributes, and ct is a vector 

of coefficients for each of the binary time dummy variables. When repeat sales are introduced, 

the natural log of the initial sale is subtracted from the natural log of the second sale, yielding 

equation (4.4): 

2 1 2 2 1 1 21

1 1 1 1

J T J T

i i j ji t t j ji t t

j t j t

P P x c D x c D e 
   

   
        

   
         (4.4) 



165 

 

 The basic repeat sales model of Bailey, Muth, and Nourse (1963) assumes that property 

attributes do not change over time, so the x variables cancel out, leaving the common repeat sales 

equation (4.5): 

2 1 2 1 21

1

( )
T

i i t i i i

t

P P c D D e


            (4.5) 

To empirically estimate this equation, the dependent variable is the difference in the natural logs 

of the two property prices. For the independent variables, the time dummy variables are set to -1 

for the initial sale date, +1 at the final sale date, and zero otherwise. The simplicity of (4.5) is one 

of its primary advantages (Shiller 1993). Several papers have since updated this model to include 

an intercept (Case et al. 2006), as in: 

1 1 1ln( ) ln( ) ln ( ) ( )i i i i n in inP P T T T T


 


 
       

 
     (4.6) 

where (4.6) uses the notation of Case et al. (2006) illustrated in the literature review. Note that 

this equation contains the intercept term,  ln ˆ



, since these intercepts may not cancel out. 

Case et al. 2006 state that this term should capture nontemporal aspects of home price 

appreciation, which may result from changes in the physical attributes of the property. Equation 

(4.6) will serve as the baseline model for the present section, and is estimated to give an 

illustration of the price changes that occurred during the sample period. As in equation (4.2), a 

tilde above a variable denotes the initial sale. 

 To include water quality in the analysis there are two main options. One basic way is to 

use the difference in SDM between sales as an explanatory variable. This hybrid repeat 

sales/hedonic regression is the second model estimated, which introduces the variables that 

change over time: 
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   (4.7) 

 Two additional variables appear in this regression: the difference in SDM, ( )it itS S , and the 

value of home improvements between sales, I. The difference in SDM is calculated as the 

difference in annual mean SDM between sales. The home improvement variable is provided by 

the Orange County Property Appraisers Office for each home sale. 

 There are some important limitations of this second model that must be acknowledged. 

Since SDM enters as a differenced variable, it omits information about the initial level of SDM. 

As discussed in Chapter 1, a one foot change in SDM may be much less visible in a relatively 

clear lake than a lake with limited visibility. While the use of repeat sales data confronts 

problems of omitted variable bias, there may be other costs related to this loss of information. 

These costs are present in the investigation of the Edge, Proximity, and Area Effects. Initial 

attempts to include these three effects as interaction variables resulted in counter-intuitive or 

insignificant signs.  

 To further investigate the effect of distance and area on implicit prices, several dummy 

interaction terms are used which allow the implicit price to vary over different groups. For 

example, to examine the Proximity Effect, four dummy interaction variables are used:  

1 1 1 1 2 3 4 5ln( ) ln( ) ln ( ) ( ) 300 700 1000i i i i n in in i i i iP P T T T T WFs s s s I


      


 
            

 
 

            (4.8) 

Where 300si equals 1 if the home is within 300 meters of a lake and SDM improved between the 

two property sales.  

 To investigate the Area Effect, homes are split into four groups, based on an equal split of 

the data. These are small lakes (under 30 acres), medium size lakes (between 30 and 100 acres) 
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large lakes (100-250 acres) and extra large lakes (greater than 250 acres). Similar to (4.8), these 

are interacted with a dummy variable that indicates if the level of SDM improved between the 

two sales. This formulation appears in equation (4.9): 

1 1 1 1 2 3 4 5ln( ) ln( ) ln ( ) ( )i i i i n in in i i i iP P T T T T SMs MEDs LGs ELs I


      


 
            

   

            (4.9) 

The use of these interaction terms should allow an analysis of the Edge, Proximity, and Area 

Effects and an isolation of potential nonlinearities in the implicit price gradient.  

4.4.2. Error Corrections 

 When using repeat sales data, it is important to recognize correlations between error 

terms. If there are more than two repeat sales, the errors of these multiple sales will be correlated. 

A simple OLS regression on the differences in home sales will ignore the fact that these multiple 

sales come from the same home and failure to correct for this correlation will result in biased 

estimation (Case et al. 2006). Bailey, Muth, and Nourse (1963) proposed a weighted sales 

regression (generalized least squares) to control for these correlations and showed that the 

weighted method performed better at home price prediction than a regular regression. Under a 

set of assumptions about the correlation in the errors of the multiple sales, the variance-

covariance matrix M of the residuals is known up to a scalar. With this estimator, Bailey, Muth, 

and Nourse (1963) show that the minimum variance linear unbiased estimator is  

1 1 1ˆ ( ' ) ( ' )b x M x x M P            (4.10) 

This correction method is explained in both Palmquist (1982) and Case et al. (2006), and is based 

on Aitken (1935). This weighted regression method is used in the present chapter. 
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The original model of Bailey, Muth, and Nourse (1963) assumed that the variance of the 

error term is constant across homes, and under this assumption their log price index is the best 

linear unbiased estimate of the log of the price level. Case and Shiller (1987) refuted the validity 

of this assumption, and presented evidence that this variance is related to the interval of time 

between sales. Case and Shiller propose the use of a weighted, or generalized least squares 

(GLS), regression procedure, outlined in both Case and Shiller (1987) and Case and Shiller 

(1989). This weighted procedure, which corrects for heteroskedasticity due to the time period 

between sales, is composed of three steps. In the first step, the Bailey, Muth, and Nourse (1963) 

regression is performed, and a vector of regression residuals is computed. In the second step a 

regression of the residuals is performed on a constant and the time interval between sales. The 

third step consists of two parts. First, each observation is divided by the fitted value from the 

second step. Next, a GLS regression of the same form as the first step is performed with these 

transformed observations to obtain the new heteroskedasticity-corrected estimates. 

The impacts of the GLS corrections are explored for each repeat sales model, resulting in 

three variations. The first is a basic OLS model, the second regression corrects for 

heteroskedasticity due to differences in time between sales, and the third uses both the 

heteroskedasticity correction and the Aitken (1935) error adjustment to correct for homes that 

sold more than twice. These variations should illustrate the effect of water quality on home 

prices while controlling for a variety of omitted influences. 
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4.5. Results 

 Results of the OLS regressions appear in Table 28.
21

 The first column contains the basic 

repeat sales model, which only uses the non-binary dummy variables. The adjusted R
2
 is 31.7%, 

and the hypothesis that all annual price changes are zero is rejected (F8, 11776 = 683.55). The 

coefficients on these variables exhibit similar qualitative characteristics as the binary time 

dummy variables in the other chapters; they are negative and significant in each period and 

increase monotonically over time. Again, the 2004 variable was excluded from the equation, so 

the coefficients are expected to be negative to reflect increasing home prices during this time 

period. To interpret the individual coefficients, the particular functional form must be accounted 

for. As the dependent variable is the difference in the natural log of home price, the 1996 

coefficient means that the average home sold in 1996 for 47% less than the average home sold in 

2004 (1 – e
-0.637 

= 47.11%) (Case et al. 2006).
22

 Likewise, the average home sold for 32.9% (1 – 

e
-0.399 

= 32.90%) less in the year 2000 than the average home in 2004. Although this seems like a 

very large difference, the property price bubble that affected the United States during this time 

period was pervasive in the central Florida area.  

 The second column of Table 28 contains the estimates of the hybrid hedonic/repeat sales 

model, where the difference in SDM between sales is used as a variable. The adjusted R
2
 of this 

model increases slightly to 32.7%, and an F test again indicates that the hypothesis that all 

                                                 
21

 All repeat sales models, including the GLS error correction models, are estimated in Stata. 

22
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coefficients are zero is rejected (F10, 11774 = 574.25). The coefficients on the year variables remain 

negative, significant, and increasing in each year, and are similar to the basic repeat sales time 

coefficients. 

The coefficient on the difference in SDM in column two of Table 28 is positive and 

significant. After controlling for omitted variable bias, improvements in water quality still have a 

positive effect on the average home. Furthermore, since 99% of the homes in the sample are non-

waterfront, this model gives further evidence that those homes have a positive implicit price of 

water quality. The coefficient indicates that a one unit increase in SDM between two home sales 

results in an increase in the average home price of 2.33% (e
0.023

-1 = 0.02326). Since the mean 

home sale for the 21,732 repeat sales is $217,836.90, this amounts to an increase in home value 

of $5,068.41. Since the average lake distance is 445 meters and the average lake area is 283 

acres, this represents a significant increase from the implicit prices presented in the first 

chapter.
23

 

 The full coefficient on the home improvement variable in the second column of this table 

is -0.00000236, indicating that a one dollar improvement between home sales will cause a 

0.00000236 1 0.0002359%e   decrease in the home price. This negative result at first seems 

counter-intuitive, that improving homes decreases their value. However, it may be the case that 

the homes that needed improvements were in worse shape. An improvement in the form of an 

additional deck or room is probably much less common than fixing up various depreciated parts 

of an older home.  

 The third column of Table 28 contains the water quality interaction dummies that 

separate water quality by lake distance. The adjusted R
2
 of this regression is 0.326, 0.001 smaller 

                                                 
23

 Significantly different based on a Student’s t-test. 
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than the previous regression, and an F test rejects the hypothesis that all coefficients are zero 

(F12, 11772 = 474.77). The four water quality and distance variables display a positive but 

decreasing trend as lake distance increases, starting at 0.093 for waterfront homes and decreasing 

to 0.001 for homes located 700 to 1,000 meters from a lake. The first three interaction 

coefficients are significant at the 99% level, but the 1000 meter variable is not significant. These 

coefficients indicate that water quality has a larger effect on homes closer to the lake, which 

potentially tapers off beyond 700 meters from the lake. Evidence for the Proximity and Edge 

Effects are therefore found in the repeat sales data, although at a weaker level than in the full 

hedonic model (since they only appeared when the dummy interaction variables were used). 

 The Area Effect is not found in the repeat sales model. The fourth column of Table 28 

contains the repeat sales model with the area and water quality improvement interactions. From 

this model, homes near smaller lakes have higher values than homes on larger lakes, contrary to 

the Area Effect. However, there are some clear non-linearities in the impact of lake size. The 

coefficient on WQImproveMd is smaller than both the WQImproveSm coefficient and the 

WQImproveLg coefficient. This strange behavior is still present when the distance interactions 

are also present (not contained in the table, as it did not add anything to the analysis), and may 

represent the impact of a few outliers. Meese and Wallace (1997) find that the repeat sales model 

is much more susceptible to the influence of outliers than the regular hedonic model. 

Nonetheless, this strange result opposes the previous hedonic results from this study and several 

others in the hedonic literature. 

 The GLS error corrections based on heteroskedasticity due to age appear in Table 29. The 

qualitative results of the basic repeat sales model are maintained in this table, although the 

coefficients on the time variables change slightly. Conversely, the other variables in the hybrid 
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regression do not change very much. The main difference is a drop in the R
2
 for each model. 

Finally, the models with both GLS error corrections appear in Table 30. The main effect of this 

additional error correction is to increase the water quality-related coefficients in all models. Also, 

the R
2
’s rise back to the levels of Table 28. The Area Effect is still not present, although the 

Edge and Proximity Effects remain. 

 After investigating several variations of the hybrid hedonic/repeat sales model, it is clear 

that several issues still need to be confronted before a variable such as water quality can be 

reliably analyzed. First, the average home that sold multiple times had a much higher selling 

price than the full set of home sales. This subset of data may not be a representative sample of 

homes in the central Florida area, particularly heading into the property bubble. Second, the 

proper representation of water quality in the model is not clear. Due to the temporal distance 

between sales, the water quality in the nearest lake may have been characterized by behavior not 

fully captured by the difference in SDM between sales. Future research may benefit from the use 

of water quality trends instead of point observations. Furthermore, while the hybrid repeat 

sales/hedonic model mitigates omitted variable bias, it washes away initial conditions that may 

be an important part of the analysis. For instance, a one foot change in water clarity in a poor 

quality lake is much more noticeable than a one foot change in a lake with an average of 12 feet 

of clarity. Tackling these issues should help with the fit of the model, which is currently quite 

low. Adjusted R
2
 values in all of the repeat sales models were much lower than the full hedonic 

model. Similar results were found in Zabel and Kiel (2000), who attempted to use the hybrid 

repeat sales/hedonic model in an analysis of air quality but ended up not reporting the results of 

the regression due to its poor performance compared to the full hedonic model. 
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4.6. Conclusion 

In order to address issues of omitted variable bias, this section pursues an alternative to 

the hedonic price model. This is done by analyzing differences in property prices between home 

sales. The subsample of homes that sold twice or more are used in a hybrid repeat sales/hedonic 

model. The results of these regressions are somewhat mixed. On a positive note, the model that 

uses the difference in SDM values between sales indicates that this variable is positively related 

to home prices, yielding an implicit price that is higher than the full hedonic models. Since 99% 

of the homes in the sample are non-lakefront, this supports one of the main assertions of this 

dissertation: non-lakefront homes should be included in an analysis of water quality.  

In contrast, when the Edge, Proximity, and Area Effects are investigated, the results are 

not as clear. Attempts to include interactions with the difference in SDM and area and distance 

yielded insignificant and counter-intuitive results. Only the weaker interactions involving an 

indicator of a water quality improvement between sales illustrated the Proximity and Edge 

Effects. The Area Effect was not supported in any of the model variations. Furthermore, the 

repeat sales models were all characterized by low R
2
 values. 

There are several potential explanations for the poor performance of these models, which 

suggest that the hybrid repeat sales/hedonic model is still in need of substantial development. 

First, the sample of homes that sold more than once were characterized by much higher sales 

prices than the full dataset. Also, lakefront homes represented a much smaller proportion of the 

data. The causes for these data differences are unclear, but may have resulted in an over-

representation of ―lemons‖ or home ―flipping.‖ Furthermore, additional techniques may be 

needed to use a continuous variable in a repeat sales model. The two main variations here may 
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not accurately capture differences in water quality from the consumer’s perspective. These 

problems may explain the dearth of studies that use this approach for environmental valuation.  

Future research should use a difference in difference model to estimate the value of water 

quality. A quasi-experimental model would likely have greater success in identifying this value. 

A discrete change in water quality would be needed, with enough of a lasting impact to influence 

the local property market. Since there are billions of dollars spent on water quality improvement 

projects each year, this represents a promising avenue for further research. Additionally, more 

work needs to be done on the use of continuous environmental variables in a hybrid 

hedonic/repeat sales model. Since there has traditionally been more data available on air quality, 

a venture in that field may yield more robust results. 
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Tables and Figures: Section 3.3 

Table 27: Repeat Sales Summary Statistics 

 

 N= 11,785 

Variable Units Mean Std. Dev. 

Property Characteristics  
  

     Sales Price 2002 Dollars 255,628.80 229,761.20 

     Heated Area Square Feet 1,979.87 961.41 

     Area of Parcel Square Feet 11,889.37 15,548.78 

     Number of Bedrooms -- 3.27 0.86 

     Number of Bathrooms -- 2.25 0.92 

     Home Age Years 19.67 13.84 

     % With Pool -- 20.28 40.21 

Spatial Characteristics  
  

     Distance to Nearest Lake Meters 444.40 263.54 

     Area of Nearest Lake Acres 282.82 445.10 

     Distance to CBD Meters 8,709.04 5,244.47 

     Latitude Coordinate Degrees 653,192.90 7,341.98 

     Longitude Coordinate Degrees 505,450.50 6,216.74 

     % In airport noise zone  -- 18.02 38.44 

Census Block Characteristics  
  

     % of Population White -- 81.01 19.21 

     % of Population Black -- 9.84 17.36 

     % of Population > 65  -- 11.64 7.67 

     Median Household Income 2002 Dollars 58,081.30 24,454.32 
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Table 28: Basic Repeat Sales Models 

 

Basic RS Hybrid 1 Distance Area 

 

β/(SE) β/(SE) β/(SE) β/(SE) 

2 1

96 96T T  
-0.637* -0.649* -0.644* -0.643* 

(0.010) (0.010) (0.010) (0.010) 

2 1

97 97T T  
-0.582* -0.595* -0.591* -0.591* 

(0.009) (0.009) (0.009) (0.009) 

2 1

98 98T T  
-0.547* -0.551* -0.551* -0.553* 

(0.008) (0.008) (0.008) (0.008) 

2 1

99 99T T  
-0.486* -0.488* -0.489* -0.491* 

(0.007) (0.007) (0.007) (0.007) 

2 1

00 00T T  
-0.399* -0.402* -0.402* -0.402* 

(0.007) (0.007) (0.007) (0.007) 

2 1

01 01T T  
-0.310* -0.309* -0.312* -0.313* 

(0.006) (0.006) (0.006) (0.006) 

2 1

02 02T T  
-0.222* -0.220* -0.224* -0.224* 

(0.006) (0.006) (0.006) (0.006) 

2 1

03 03T T  
-0.135* -0.137* -0.139* -0.139* 

(0.006) (0.006) (0.006) (0.006) 

Diff SDM  
0.023* 

 
 

 
(0.003) 

 
 

Market Change  
-0.000* -0.000* -0.000* 

 
(0.000) (0.000) (0.000) 

WQImprove WF   
0.093*  

  
(0.020)  

WQImprove300   
0.030*  

  
(0.006)  

WQImprove700   
0.023*  

  
(0.005)  

WQImprove1000   
0.001  

  
(0.007)  

WQImprove Sm    
0.033* 

   
(0.006) 

WQImprove Md    
0.024* 

   
(0.007) 

WQ Improve Lg    
0.033* 

   
(0.007) 

WQ Improve El    
0.001 

   
(0.007) 

Intercept 
0.106* 0.117* 0.108* 0.106* 

(0.004) (0.004) (0.005) (0.005) 
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Adjusted R
2 

0.317 0.328 0.327 0.326 

N 11,785 11,785 11,785 11785.000 
Note: * denotes significance at the 1% level. 

 

 

Table 29: Repeat Sales with Age-Heteroskedasticity Error Correction 

 

Basic RS 

Weighted 

Hybrid 

Weighted 

Distance 

Weighted 

Area 

Weighted 

 
β/(SE) β/(SE) β/(SE) β/(SE) 

2 1

96 96T T  
-0.615* -0.625* -0.621* -0.621* 

(0.011) (0.011) (0.011) (0.011) 

2 1

97 97T T  
-0.563* -0.575* -0.571* -0.572* 

(0.010) (0.010) (0.010) (0.010) 

2 1

98 98T T  
-0.531* -0.534* -0.535* -0.537* 

(0.009) (0.009) (0.009) (0.009) 

2 1

99 99T T  
-0.472* -0.474* -0.476* -0.478* 

(0.008) (0.008) (0.008) (0.008) 

2 1

00 00T T  
-0.388* -0.391* -0.391* -0.391* 

(0.007) (0.007) (0.007) (0.007) 

2 1

01 01T T  
-0.302* -0.300* -0.304* -0.304* 

(0.006) (0.006) (0.006) (0.006) 

2 1

02 02T T  
-0.216* -0.213* -0.218* -0.218* 

(0.006) (0.006) (0.006) (0.006) 

2 1

03 03T T  
-0.132* -0.134* -0.136* -0.136* 

(0.006) (0.006) (0.006) (0.006) 

Diff SDM  
0.023* 

 
 

 
(0.003) 

 
 

Market Change  
-0.000* -0.000* -0.000* 

 
(0.000) (0.000) (0.000) 

WQ Improve WF   
0.091*  

  
(0.020)  

WQ Improve300   
0.033*  

  
(0.006)  

WQ Improve700   
0.022*  

  
(0.005)  

WQ Improve1000   
0.001  

  
(0.007)  

WQ Improve Sm 
   

0.033* 
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(0.006) 

WQ Improve Md    
0.023* 

   
(0.007) 

WQ Improve Lg    
0.032* 

   
(0.007) 

WQ Improve El    
0.000 

   
(0.007) 

Intercept 
0.527* 0.582* 0.536* 0.529* 

(0.020) (0.020) (0.023) (0.023) 

Adjusted R
2 

0.277 0.288 0.286 0.287 

N 11,785 11,785 11,785 11785.000 
Note: * denotes significance at the 1% level. 

 

 

Table 30: Repeat Sales with Heteroskedasticity and Aitken Corrections 

 

Basic RS 

Weighted 

Aitken 

Hybrid 

Weighted 

Aitken 

Distance 

Weighted 

Aitken 

Area 

Weighted  

Aitken 

 

β/(SE) β/(SE) β/(SE) β/(SE) 

2 1

96 96T T  
-0.651* -0.659* -0.653* -0.653* 

(0.010) (0.010) (0.010) -0.01 

2 1

97 97T T  
-0.594* -0.603* -0.599* -0.600* 

(0.010) (0.010) (0.010) -0.01 

2 1

98 98T T  
-0.558* -0.556* -0.556* -0.558* 

(0.009) (0.009) (0.009) -0.009 

2 1

99 99T T  
-0.498* -0.495* -0.496* -0.498* 

(0.008) (0.008) (0.008) -0.008 

2 1

00 00T T  
-0.408* -0.406* -0.405* -0.406* 

(0.007) (0.007) (0.007) -0.007 

2 1

01 01T T  
-0.314* -0.308* -0.311* -0.312* 

(0.007) (0.007) (0.007) -0.007 

2 1

02 02T T  
-0.223* -0.217* -0.220* -0.221* 

(0.006) (0.006) (0.006) -0.006 

2 1

03 03T T  
-0.136* -0.137* -0.138* -0.139* 

(0.006) (0.006) (0.006) -0.006 

Diff SDM 
 

0.025* 

 

 

 

(0.003) 

 

 

Market Change 

 

-0.000* -0.000* -0.000* 
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(0.000) (0.000) (0.000) 

WQ Improve WF 
  

0.094*  

  

(0.019)  

WQ Improve300 
  

0.043*  

  

(0.006)  

WQ Improve700 
  

0.032*  

  

(0.005)  

WQ Improve1000 
  

0.010  

  

(0.007)  

WQ Improve Sm 
   

0.044* 

   

-0.006 

WQ Improve Md 
   

0.031* 

   

-0.007 

WQ Improve Lg 
   

0.043* 

   

-0.007 

WQ Improve El 
   

0.01 

   

-0.007 

Intercept 
0.455* 0.521* 0.456* 0.447* 

(0.019) (0.020) (0.022) -0.022 

Adjusted R
2 

0.302 0.314 0.314 0.314 

N 11,785 11,785 11,785 11,785 
Note: * denotes significance at the 1% level. 
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APPENDIX A: BOX-COX MODEL 
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The following table presents the results of the flexible Box-Cox model. This model is 

estimated in Stata (version 9), using the ―lambda‖ option of the ―boxcox‖ command. The 

variables are split into two groups: transformed and no-transform. The no-transform group is not 

subjected to the Box-Cox transformation because they do not contain strictly positive elements. 

Dummy variables and variables that contain negative values are therefore contained in the no-

transform group. The first row of Table 31 contains the results for the estimated Box-Cox 

parameter ―r‖. The rest of the table contains the coefficients for the independent variables in the 

Box-Cox model. 

 

 

Table 31: Box-Cox Model from Chapters 1 and 2 

  

Coefficient Std. Err. P>|z| 

 

r -0.145 0.004 0.000 

Trans 

    

 

sdm -0.023 

  

 

Dst*SDM 0.057 

  

 

Lake Area*SDM -0.142 

  

 

Lake Dist -0.066 

  

 

bath 0.028 

  

 

Home Age -0.010 

  

 

Heated Area 0.367 

  

 

Parcel Area 0.041 

  

 

Dist to CBD -0.111 

  

 

x_coord -15.401 

  

 

y_coord 7.616 

  

 

Median HH income 0.073 

  

 

/sigma 0.057 

  Notrans 

    

 

waterfront 0.035 

  

 

WF*sdmFT 0.001 

  

 

canalfront 0.016 

  

 

golffront 0.052 

  

 

pool 0.003 

  

 

nearair 0.001 

  

 

Percent white 0.099 

  

 

Percent black 0.060 

  

 

Percent over 65 -0.026 

  

 

BASS_LAKE -0.088 

  

 

BAY_LAKE_B -0.098 

  

 

BEARHEAD_L~E -0.066 

  

 

BIG_SAND_L~E 0.051 

  

 

CLEAR_LAKE -0.084 
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DEEP_LAKE -0.068 

  

 

KASEY_LAKE -0.188 

  

 

KELLY_LAKE -0.182 

  

 

KRISTY_LAKE -0.184 

  

 

LAKE_ADAIR -0.060 

  

 

LAKE_ANDER~N -0.084 

  

 

LAKE_ANGEL -0.203 

  

 

LAKE_ARNOLD -0.068 

  

 

LAKE_BALDWIN 0.020 

  

 

LAKE_BARTON -0.033 

  

 

LAKE_BEARD~L -0.200 

  

 

LAKE_BEAUTY -0.117 

  

 

LAKE_BELL -0.088 

  

 

LAKE_BERRY -0.029 

  

 

LAKE_BESSIE 0.055 

  

 

LAKE_BLANCHE -0.012 

  

 

LAKE_BUCHA~N -0.104 

  

 

LAKE_BUCK 0.145 

  

 

LAKE_BUMBY -0.108 

  

 

LAKE_BURKETT -0.031 

  

 

LAKE_BUTLER 0.021 

  

 

LAKE_C -0.120 

  

 

LAKE_CANE_A -0.036 

  

 

LAKE_CATHE~B -0.051 

  

 

LAKE_CAY_DEE -0.081 

  

 

LAKE_CHARITY -0.007 

  

 

LAKE_CHASE 0.052 

  

 

LAKE_CHERO~E -0.069 

  

 

LAKE_CHRIS~E -0.112 

  

 

LAKE_COMO -0.111 

  

 

LAKE_CONCORD -0.058 

  

 

LAKE_CONWAY 0.030 

  

 

LAKE_COPEL~D -0.087 

  

 

LAKE_DANIEL -0.110 

  

 

LAKE_DESTINY -0.015 

  

 

LAKE_DOT -0.182 

  

 

LAKE_DOVER -0.192 

  

 

LAKE_DOWN 0.025 

  

 

LAKE_DOWNEY -0.048 

  

 

LAKE_DRUID -0.055 

  

 

LAKE_EMERALD -0.064 
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LAKE_EOLA -0.082 

  

 

LAKE_ESTELLE -0.043 

  

 

LAKE_FAIRH~E -0.197 

  

 

LAKE_FAIRV~W -0.052 

  

 

LAKE_FAITH -0.042 

  

 

LAKE_FARRAR -0.067 

  

 

LAKE_FORMOSA -0.055 

  

 

LAKE_FREDR~A 0.032 

  

 

LAKE_GATLIN -0.021 

  

 

LAKE_GEAR -0.038 

  

 

LAKE_GEM_A -0.100 

  

 

LAKE_GEM_M~Y -0.072 

  

 

LAKE_GEORGE -0.003 

  

 

LAKE_GEORGIA -0.017 

  

 

LAKE_GILES -0.075 

  

 

LAKE_GLORIA -0.085 

  

 

LAKE_GREEN~D -0.100 

  

 

LAKE_HART 0.136 

  

 

LAKE_HIAWA~E -0.044 

  

 

LAKE_HIGHL~D -0.054 

  

 

LAKE_HOLDEN -0.082 

  

 

LAKE_HOPE -0.074 

  

 

LAKE_HUNGE~D -0.121 

  

 

LAKE_IRMA -0.027 

  

 

LAKE_ISLEW~H 0.048 

  

 

LAKE_IVANHOE -0.024 

  

 

LAKE_JACKSON -0.066 

  

 

LK_JEN_JEWEL -0.063 

  

 

LAKE_JESSA~E -0.032 

  

 

LAKE_KILLA~Y -0.046 

  

 

LAKE_KOZART -0.162 

  

 

LAKE_LANCA~R -0.055 

  

 

LAKE_LAWSONA -0.080 

  

 

LAKE_LOUIS~B 0.065 

  

 

LAKE_LOVE -0.044 

  

 

LAKE_LOVELY -0.158 

  

 

LAKE_LURNA -0.090 

  

 

LAKE_MABEL 0.055 

  

 

LAKE_MAITL~D 0.040 

  

 

LAKE_MANN -0.091 

  

 

LAKE_MARSHA -0.063 
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LAKE_MINNE~A -0.015 

  

 

LAKE_MIZELL 0.021 

  

 

LAKE_NAN -0.051 

  

 

LAKE_NONA 0.158 

  

 

LAKE_OFWOODS -0.205 

  

 

LAKE_OLIVE -0.140 

  

 

LAKE_OLYMPIA -0.120 

  

 

LAKE_ORLANDO -0.084 

  

 

LAKE_OSCEOLA 0.036 

  

 

LAKE_PAMELA -0.135 

  

 

LAKE_PEARL_B -0.155 

  

 

LAKE_PICKETT 0.070 

  

 

LAKE_PINEL~H -0.048 

  

 

LAKE_PORTER -0.038 

  

 

LAKE_RABAMA -0.081 

  

 

LAKE_RICHM~D -0.133 

  

 

LAKE_ROBERTS -0.075 

  

 

LAKE_ROSE_B -0.079 

  

 

LAKE_ROWENA -0.042 

  

 

LAKE_SANTI~O -0.111 

  

 

LAKE_SARAH -0.106 

  

 

LAKE_SHADOW -0.066 

  

 

LAKE_SHANNON -0.046 

  

 

LAKE_SHEEN 0.067 

  

 

LAKE_SHERW~D -0.118 

  

 

LAKE_SILVER -0.034 

  

 

LAKE_STARKE -0.138 

  

 

LAKE_SUE -0.009 

  

 

LAKE_SUNSET -0.140 

  

 

LAKE_SUSAN~H 0.003 

  

 

LAKE_SYBELIA -0.030 

  

 

LAKE_SYLVAN 0.009 

  

 

LAKE_TENNE~E -0.085 

  

 

LAKE_TERRACE -0.117 

  

 

LAKE_THERESA -0.126 

  

 

LAKE_TIBET 0.068 

  

 

LAKE_UNDER~L -0.041 

  

 

LAKE_VIRGI~A 0.026 

  

 

LAKE_WADE -0.141 

  

 

LAKE_WALKER -0.192 

  

 

LAKE_WARREN -0.006 
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LAKE_WAUNA~A -0.035 

  

 

LAKE_WELDONA -0.104 

  

 

LAKE_WESTON -0.158 

  

 

LAKE_WHIPP~R 0.100 

  

 

LAKE_WINYAH -0.048 

  

 

LAWNE_LAKE -0.105 

  

 

LITTLE_FISH 0.025 

  

 

LIT_LK_FAIR -0.115 

  

 

LITTLE_SAND -0.023 

  

 

LONG_LAKE -0.138 

  

 

MUD_LAKE_C -0.058 

  

 

PALM_LAKE -0.038 

  

 

PARK_LAKE_B -0.080 

  

 

POCKET_LAKE 0.029 

  

 

ROCK_LAKE -0.128 

  

 

SPRING_LK_B -0.060 

  

 

SPRING_LK_C 0.009 

  

 

_cons 51.042 

  Note: Stata does not report standard errors for the Box-Cox model with untransformed variables, except on the r 

variable. 
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APPENDIX B: MATLAB PROGRAMS 
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B.1. SWM Programs 

Note: the spatial lag and spatial error programs used in this paper are from the spatial toolbox, 

available at www.spatial-econometrics.com, and written by James P. LeSage and R. Kelley Pace. 

The following programs are used to create the various spatial weights matrices (SWM) employed 

in the present dissertation.  

B.1.1. Distance/Time SWM 

The following programs are used to create an inverse distance-based SWM, which includes 

distance and time boundaries. Three programs are required to create each SWM. The first 

program creates an N x N matrix that contains the distance between each home and its neighbors 

(as defined by the distance and time boundaries). This code was adapted from a program by 

Shawn Bucholtz at the USDA, the original program did contain time boundaries. The second 

program was written for this dissertation, and simply inverts each element of the N x N matrix. 

The third program row standardizes the SWM, as explained in Chapter 2. An example of how 

these three programs would be computed appears below: 

pdT200_6_3=pdweightT(xc,yc,sale_date,0,200,6,3,0); 
%now, invert each element.  
IpdT200_6_3II=invdist1(pdT200_6_3); 
%To finish SWM, use final file 'normbig' 
ISpdT200_6_3II=normbig(IpdT200_6_3II); 

  

http://www.spatial-econometrics.com/
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B.1.1.1. SWM Program 1: pdweightT 

function g=pdweightT(xcoord,ycoord,date,lower,upper,t1,t2,RowStdOpt); 
% PURPOSE: uses x,y coordinates and dates to produce distance and time-based 

spatial weight matrices 
%          The user is asked to input x and y coordinates, as well as a lower 

and upper 
%          bound cutoff for the neighborhood. 
% ------------------------------------------------------ 
% USAGE: W = pdweightT(xcoord,ycoord,lower,upper,t1,t2,rowstdopt) 
% where:     xcoord = x-direction coordinate 
%            ycoord = y-direction coordinate 
%            date = the sale date transformed into a conutinuous variable, 
%            for example, instead of 199001:199112 denoting year and month, 
%            we have date = 1:24 
%            lower  = lower bound distance cut-off 
%            uppper = upper bound distance cut-off 
%            t1 = the length of time back to consider 
%            t2 = the length of time forward to consider 
%            rowstdopt = 1 for row-standardization 
%                      = 0 for no standardization 
% ------------------------------------------------------ 
% RETURNS:  
%          W = a sparse weight matrix based on distance and time cut-offs 
%              set by lower, upper, t1 and t2 input options  
% ------------------------------------------------------ 

  
% written by: Patrick Walsh 
% PatJwalsh@gmail.com 
% University of Central Florida 
% Department of Economics 
% 
% adapting most of the code 
% written by: Shawn Bucholtz 
% SBUCHOLTZ@ers.usda.gov 
% USDA-ERS-ISD-ADB 

  
%This function builds a sparse spatial weight matrix. 
%The user is asked to input x and y coordinates, as well as a lower and upper 
%bound cutoff for neighborhood, and time limits for neighborhood. 
%The user is given the option of indicating if they would like 
%to Row-standarize the weight matrix (1=Row Standardized, 0=Not Row-

Standardized) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Declare inital values; 
i=1; 
p2=[1 1 -8888]; 
%Begin loop for each observation; 

  
for i=1:(length(xcoord)); 
      j=1; 
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      p1=[1 1 -9999];%Make an inital value; 
        %Begin loop to compute distance from observation i to all other 

observations; 

       
            for j=1:(length(xcoord)); 

  
                if xcoord(i)==xcoord(j) & ycoord(i)==ycoord(j); 
                    D=1;%This ensures that two places with the same x,y 

location will 
                        %be defaulted to 1 distance unit away from eachother. 
                        %This can happen in the case of two condos who are 

assocaited with one building location.    
                else; 
                    Xdist=abs(xcoord(i)-xcoord(j)); 
                    Ydist=abs(ycoord(i)-ycoord(j)); 
                    D = sqrt(Xdist^2 + Ydist^2); 

                     
                end; 
                T = date(i)-date(j); 
                p = [i j D]; 

                                                     
                %A loop to generate a list of neighbors j of current obs i 
                    if D > lower & D <= upper & T < t1 & T > -t2;  %Check to 

see if j meets the neighborhood cutoff criteria 

                         
                        if p1(3) == -9999;  %If this is the first j in the 

list of neighbors, then 
                                            %make it the inital data set; 
                            p1=p; 
                        else; 
                            p1 = [p1;p];%If this is not the first j in the 

list of neighbors, then append this 
                                        %to previous list of all neighbors j 

for observation i. 
                        end; 

                         
                    else; 
                        p1=p1;%If distance between i and j did not meet 

neighborhood cutoff criteria, then 
                                %do not append this to previous list of 

neighbors for obs. i; 
                    end; 
                j=j+1; %Step to next neighbor j of observation i 

                     
            end; 

             
            if p1(3) == 0;%A Check to see if observation i had any neighbors 

within cutoff 
                i=i+1;%If it did not, then pass loop to next i 
            else; 

                     

                 
                    %If observation i had at least 1 neighbor within cutoff, 

then append that data to 
                    %previous data set for i-1 
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                    if RowStdOpt == 1;%Row standardize the weight matrix 
                        p1(:,3) = p1(:,3) ./ sum(p1(:,3)); 
                    end; 
                    if p2(3) == -8888;%If the current observation i is the 

first observationervation to have any neighbors 
                                        %then make it the first data set; 
                        p2=p1; 
                    else; 
                        p2=[p2;p1];%If the current observation i is not the 

first observation to have any neighbors 
                                    %then append current observation i's 

neighbors to all other previous i's neighbors 
                        clear p1; 
                    end; 

                 
                 i=i+1;%pass loop to next i 
            end; 
  end; 

   
  %Generate the sparse matrix 
  g=sparse(p2(:,1),p2(:,2),p2(:,3)); 
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B.1.1.2. SWM Program 2: invdist1 

function S = invdist1(SW); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Purpose: Transforms a distance weights matrix into an inverse distance  
%          weights matrix 
% Inputs: 
%     WD = An n x n spatial weights matrix based on distance 
%     This matrix should NOT be row-standardized. 
%     To row standardize, use the file 'normbig' 
%  
% Returns: Sparse nxn matrix  
% 
% Author: Patrick Walsh 
%         Department of Economics 
%         University of Central Florida 
%         PatJwalsh@gmail.com 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
[n j] = size(SW); 
for i=1:n 
    for j=1:n 
       if i==j; 
            SW(i,j)=0; %make sure the i,i th element =0 
        end;  
    end; 
end;   
for i=1:n; 
    for j=1:n; 
        if (SW(i,j)>0); 
            SW(i,j)=1/SW(i,j); %Turn the distances to inverse distances 
        else 
            SW(i,j)=0; 
        end; 
    end; 
end; 
S = sparse(SW); 
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B.1.1.3. SWM Program 3: normbig 

function SN=normbig(SW); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Purpose: Transforms an unstandardized weights matrix into a standardized  
%          weights matrix, where all rows sum to one. Is useful with large  
%          matrices.  
% Inputs: 
%     W = An n x n spatial weights matrix 
%     This matrix should NOT be row-standardized. 
%      
% 
% Returns: Sparse nxn matrix  
% Author: Patrick Walsh 
%         Department of Economics 
%         University of Central Florida 
%         PatJwalsh@gmail.com 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
[n j] = size(SW); 
L=sum(SW'); 
T=L'; 
Q=logical(T); %make sure we are not dividing by zero if no neighbors 
ones1=ones(n,1); 
Q2=Q-ones1; 
Q3=Q2*-1; 
T2=T+Q3; 
for i=1:n; 
    SW(:,i)=SW(:,i)./T2; 
end; 
SN=sparse(SW); 
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B.1.2. Nearest Neighbor SWM 

The nearest neighbor SWM is created using the program ―make_nnw‖, from the spatial toolbox. 

No additions to this program are made. An example of how it is used appears below: 

W15 = make_nnw(xc,yc,15,4); 
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B.2. Implicit Price Program 

The following program is the Matlab program used to compute the implicit prices of a spatial lag 

model. This program is flexible: it is designed to be used with any of the water quality indicators. 

function 

b=sarimp3(sar,meanwfp,meannwfp,meanWQ,meanwfdist,meannwfdist,lnmeanwfarea,lnm

eannwfarea); 
% PURPOSE: Uses the results from a spatial autoregressive model, from a  
%          specific application with water quality, and calculates implicit 
%          prices 
%          Note that the 3 in the title indicates that this file is to be 
%          used with specification 3, where all 3 interaction terms are 
%          used. 
%          The ordering of the variables in the regression is critical. 
%          It must follow the previous order, or will not work. 
% ------------------------------------------------------ 
% USAGE: W =sarimp3(sar,meanwfp,meannwfp,meanWQ,meanwfdist,        ... 
%                  meannwfdist,lnmeanwfarea,lnmeannwfarea); 
% where: sar = the name of the sar results 
%        meanwfp = The mean waterfront price 
%        meannwfp = The mean nonwaterfront price 
%        meanWQ = The mean of the WQ variable 
%        meanwfdist = The mean waterfront distance to lake 
%        meannwfdist = The mean nonwaterfront distance to lake  
%        lnmeanwfarea = The mean nonwaterfront lake area 
%        lnmeannwfarea = The mean waterfront lake area 
% ------------------------------------------------------ 
% RETURNS: A set of implicit prices at both mean values and at several 
%          distances from the lake 
%           
% 
% ------------------------------------------------------ 
% written by: Patrick Walsh 
% PatJwalsh@gmail.com 
% University of Central Florida 
% Department of Economics 

  

  
lnmeanwfdist=log(meanwfdist); 
lnmeannwfdist=log(meannwfdist); 
lnmeanWQ=log(meanWQ); 

  
%implicit price of WQ 
MP3sarwqwf=1/(1-

sar.rho)*(meanwfp/meanWQ)*(sar.beta(2,1)+sar.beta(3,1)+sar.beta(4,1)*lnmeanwf

dist+sar.beta(5,1)*lnmeanwfarea); 
MP3sarwqnwf=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*lnmeannwfdist+sar.bet

a(5,1)*lnmeannwfarea); 

  
% Implicit price of waterfront 
MP3sarwqLF=1/(1-sar.rho)*meanwfp*(sar.beta(6,1)+sar.beta(3,1)*lnmeanWQ); 
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% Implicit price of distance 
MP3sarwqdist=1/(1-

sar.rho)*(meannwfp/meannwfdist)*(sar.beta(7,1)+sar.beta(4,1)*lnmeanWQ); 

  
% Implicit prices as distance changes 
MP3sarWQnwf100=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*log(100)+sar.beta(5,1

)*lnmeannwfarea); 
MP3sarWQnwf300=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*log(300)+sar.beta(5,1

)*lnmeannwfarea); 
MP3sarWQnwf500=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*log(500)+sar.beta(5,1

)*lnmeannwfarea); 
MP3sarWQnwf700=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*log(700)+sar.beta(5,1

)*lnmeannwfarea); 
MP3sarWQnwf900=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*log(900)+sar.beta(5,1

)*lnmeannwfarea); 

  
% Implicit Prices as Area Changes 
% 100 acres is  404685.643 sq m, and the ln of this is 12.91086585 
% 1000 acres is 4046856.43 sq m, and ln of this is 15.21345095 
ln100ac=12.91086585; 
ln1000ac=15.21345095; 
% Waterfront 
MP3sarwqwfA100=1/(1-

sar.rho)*(meanwfp/meanWQ)*(sar.beta(2,1)+sar.beta(3,1)+sar.beta(4,1)*lnmeanwf

dist+sar.beta(5,1)*ln100ac); 
MP3sarwqwfA1000=1/(1-

sar.rho)*(meanwfp/meanWQ)*(sar.beta(2,1)+sar.beta(3,1)+sar.beta(4,1)*lnmeanwf

dist+sar.beta(5,1)*ln1000ac); 
% Non-Waterfront 
MP3sarwqnwfA100=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*lnmeannwfdist+sar.bet

a(5,1)*ln100ac); 
MP3sarwqnwfA1000=1/(1-

sar.rho)*(meannwfp/meanWQ)*(sar.beta(2,1)+sar.beta(4,1)*lnmeannwfdist+sar.bet

a(5,1)*ln1000ac); 

  
b=[MP3sarwqwf,MP3sarwqnwf,MP3sarwqLF,MP3sarwqdist,MP3sarWQnwf100,MP3sarWQnwf3

00,MP3sarWQnwf500,MP3sarWQnwf700,MP3sarWQnwf900,MP3sarwqwfA100,MP3sarwqwfA100

0,MP3sarwqnwfA100,MP3sarwqnwfA1000 ]; 
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B.3. Standard Error Program 

The following is an example of one of the programs used to calculate the standard errors of the 

implicit prices using the delta method.  

function 

b=sarSE3(p,dhessn,parm,meanwfp,meannwfp,meanWQ,meanwfdist,meannwfdist,lnmeanw

farea,lnmeannwfarea); 
% PURPOSE: Calculates standard errors for the implicit prices from a water 
%          quality hedonic regression. Must be used with a spatial lag 
%          regression. 
%          THE FOLLOWING CODE MUST BE RUN BEFORE THE PROGRAM CAN BE USED: 
%          dbstop at 191 in sar; 
%          sarTSI'SWM'=sar(y,x3TSI,'SWM'); 
%          Note that the 3 in the title indicates that this file is to be 
%          used with specification 3, where all 3 interaction terms are 
%          used. Also, it is critical that the x vector is the exact one 
%          used in the WQ_1996IIb.m file, a version of the "xF3b". If the x 

variables are in a 
%          different configuration, the results will be crap. 
% ------------------------------------------------------ 
% USAGE: W =sarSE3(SWM,y,xF3b,meanwfp,meannwfp,meanWQ,meanwfdist,        ... 
%                  meannwfdist,lnmeanwfarea,lnmeannwfarea); 
% where: SWM = The spatial weights matrix to be used in the sar  
%        y = the indep variable, ln_price 
%        xF3b = the x vector, discussed above 
%        meanwfp = The mean waterfront price 
%        meannwfp = The mean nonwaterfront price 
%        meanWQ = The mean of the WQ variable 
%        meanwfdist = The mean waterfront distance to lake 
%        meannwfdist = The mean nonwaterfront distance to lake  
%        lnmeanwfarea = The mean nonwaterfront lake area 
%        lnmeannwfarea = The mean waterfront lake area 
% ------------------------------------------------------ 
% RETURNS: A set of standard errors for the implicit prices in a water 
%        quality regression, written for my dissertation 
% ------------------------------------------------------ 
% written by: Patrick Walsh 
% PatJwalsh@gmail.com 
% University of Central Florida 
% Department of Economics 

  

  
% dbstop at 191 in sar; 
% sar3=sar(y,xF3b,SWM); 

  
rho=p; 
xpxi1=invpd(-dhessn); 

  
lnmeanwfdist=log(meanwfdist); 
lnmeannwfdist=log(meannwfdist); 
lnmeanWQ=log(meanWQ); 
%Waterfront WQ 
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WFmult=(1/(1-rho))*(meanwfp/meanWQ); 
aWFWQ1=zeros(1,177); 
aWFWQ1(1,2)=1; 
aWFWQ1(1,3)=1; 
aWFWQ1(1,4)=lnmeanwfdist; 
aWFWQ1(1,5)=lnmeanwfarea; 
aWFWQ=aWFWQ1*WFmult; 
seWFWQ=sqrt(aWFWQ*xpxi1*aWFWQ'); 
%check: 
WFWQ=aWFWQ*parm; 
% Now for non-WF WQ 
NWFmult=(1/(1-rho))*(meannwfp/meanWQ); 
aNWFWQ1 = zeros(1,177); 
aNWFWQ1(1,2)=1; 
aNWFWQ1(1,4)=lnmeannwfdist; 
aNWFWQ1(1,5)=lnmeannwfarea; 
aNWFWQ=aNWFWQ1*NWFmult; 
seNWFWQ = sqrt(aNWFWQ*xpxi1*aNWFWQ'); 
NWFWQ = aNWFWQ*parm; 
%now, WQ NWF as distance changes 
%NWF at 100 feet:  
aNWFWQ1001 = aNWFWQ1; 
aNWFWQ1001(1,4)=log(100);  
aNWFWQ100=aNWFWQ1001*NWFmult; 
seNWFWQ100= sqrt(aNWFWQ100*xpxi1*aNWFWQ100'); 
NWFWQ100 = aNWFWQ100*parm; 
NWFWQ100cilow = NWFWQ100-seNWFWQ100*1.96; 
NWFWQ100cihi = NWFWQ100+seNWFWQ100*1.96; 
% now 300 feet 
aNWFWQ3001 = aNWFWQ1; 
aNWFWQ3001(1,4)=log(300);  
aNWFWQ300=aNWFWQ3001*NWFmult; 
seNWFWQ300= sqrt(aNWFWQ300*xpxi1*aNWFWQ300'); 
NWFWQ300 = aNWFWQ300*parm; 
NWFWQ300cilow = NWFWQ300-seNWFWQ300*1.96; 
NWFWQ300cihi = NWFWQ300+seNWFWQ300*1.96; 
% 500 feet 
aNWFWQ5001 = aNWFWQ1; 
aNWFWQ5001(1,4)=log(500);  
aNWFWQ500=aNWFWQ5001*NWFmult; 
seNWFWQ500= sqrt(aNWFWQ500*xpxi1*aNWFWQ500'); 
NWFWQ500 = aNWFWQ500*parm; 
NWFWQ500cilow = NWFWQ500-seNWFWQ500*1.96; 
NWFWQ500cihi = NWFWQ500+seNWFWQ500*1.96; 
%700 feet 
aNWFWQ7001 = aNWFWQ1; 
aNWFWQ7001(1,4)=log(700);  
aNWFWQ700=aNWFWQ7001*NWFmult; 
seNWFWQ700= sqrt(aNWFWQ700*xpxi1*aNWFWQ700'); 
NWFWQ700 = aNWFWQ700*parm; 
NWFWQ700cilow = NWFWQ700-seNWFWQ700*1.96; 
NWFWQ700cihi = NWFWQ700+seNWFWQ700*1.96; 
%900 feet 
aNWFWQ9001 = aNWFWQ1; 
aNWFWQ9001(1,4)=log(900);  
aNWFWQ900=aNWFWQ9001*NWFmult; 
seNWFWQ900= sqrt(aNWFWQ900*xpxi1*aNWFWQ900'); 
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NWFWQ900 = aNWFWQ900*parm; 
NWFWQ900cilow = NWFWQ900-seNWFWQ900*1.96; 
NWFWQ900cihi = NWFWQ900+seNWFWQ900*1.96; 
% Now, WQ as Area changes 
% 100 acres is  404685.643 sq m, and the ln of this is 12.91086585 
% 1000 acres is 4046856.43 sq m, and ln of this is 15.21345095 
ln100ac=12.91086585; 
ln1000ac=15.21345095; 
% Waterfront 100 
aWFWQAr1001=aWFWQ1; 
aWFWQAr1001(1,5)=ln100ac; 
aWFWQAr100=aWFWQAr1001*WFmult; 
WFWQAr100=aWFWQAr100*parm; 
seWFWQAr100=sqrt(aWFWQAr100*xpxi1*aWFWQAr100'); 
% Waterfront 1000 
aWFWQAr10001=aWFWQ1; 
aWFWQAr10001(1,5)=ln1000ac; 
aWFWQAr1000=aWFWQAr10001*WFmult; 
WFWQAr1000=aWFWQAr1000*parm; 
seWFWQAr1000=sqrt(aWFWQAr1000*xpxi1*aWFWQAr1000'); 
% Non-WF 100 
aNWFWQAr1001 = aNWFWQ1; 
aNWFWQAr1001(1,5)=ln100ac; 
aNWFWQAr100=aNWFWQAr1001*NWFmult; 
NWFWQAr100=aNWFWQAr100*parm; 
seNWFWQAr100=sqrt(aNWFWQAr100*xpxi1*aNWFWQAr100'); 
% Non-WF 1000 
aNWFWQAr10001 = aNWFWQ1; 
aNWFWQAr10001(1,5)=ln1000ac; 
aNWFWQAr1000=aNWFWQAr10001*NWFmult; 
NWFWQAr1000=aNWFWQAr1000*parm; 
seNWFWQAr1000=sqrt(aNWFWQAr1000*xpxi1*aNWFWQAr1000'); 
% Now, distance: 
aDst1=zeros(1,177); 
aDst1(1,4)=lnmeanWQ; 
aDst1(1,7)=1; 
aDst=aDst1*(1/(1-rho))*(meannwfp/meannwfdist); 
seDst = sqrt(aDst*xpxi1*aDst'); 
Dst = aDst*parm; 
%finally, waterfront premium 
aW1 = zeros(1,177); 
aW1(1,3)=lnmeanWQ; 
aW1(1,6)=1; 
aW=aW1*(1/(1-rho))*meanwfp; 
seW = sqrt(aW*xpxi1*aW'); 
WFprem = aW*parm; 

  
b=[seWFWQ, WFWQ, seNWFWQ, NWFWQ; 
    seNWFWQ100, NWFWQ100, NWFWQ100cilow, NWFWQ100cihi; 
    seNWFWQ300, NWFWQ300, NWFWQ300cilow, NWFWQ300cihi; 
    seNWFWQ500, NWFWQ500, NWFWQ500cilow, NWFWQ500cihi; 
    seNWFWQ700, NWFWQ700, NWFWQ700cilow, NWFWQ700cihi; 
    seNWFWQ900, NWFWQ900, NWFWQ900cilow, NWFWQ900cihi; 
    seDst, Dst, seW, WFprem; 
    seWFWQAr100, WFWQAr100, seWFWQAr1000, WFWQAr1000; 
    seNWFWQAr100, NWFWQAr100, seNWFWQAr1000, NWFWQAr1000]; 
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