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Complement of the generalized total graph of fields

T. Tamizh Chelvam and M. Balamurugan

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India

ABSTRACT
Let R be a commutative ring and H be a multiplicative prime subset of R. The generalized total
graph GTHðRÞ is the undirected simple graph with vertex set R and two distinct vertices x and y
are adjacent if x þ y 2 H: For a field F, H ¼ f0g is the only multiplicative prime subset of F and
the corresponding generalized total graph is denoted by GTðFÞ: In this paper, we investigate sev-
eral graph theoretical properties of GTðFÞ, where GTðFÞ is the complement of the generalized
total graph of F. In particular, we characterize all the fields for which GTðFÞ is unicyclic, split,
chordal, claw-free, perfect and pancyclic.
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1. Introduction

Let R be a commutative ring with identity, Z(R) be its set of
all zero-divisors, Z�ðRÞ ¼ ZðRÞ n f0g and U(R) be the set of
all units in R. Anderson and Livingston [3] introduced the
zero-divisor graph of R, denoted by CðRÞ, as the (undirected)
simple graph with vertex set Z�ðRÞ and two distinct vertices
x, y 2 Z�ðRÞ are adjacent if and only if xy ¼ 0: Subsequently,
Anderson and Badawi [1] introduced the concept of the total
graph of a commutative ring. The total graph TCðRÞ of R is
the undirected graph with vertex set R and for distinct x, y 2
R are adjacent if and only if xþ y 2 ZðRÞ: Tamizh Chelvam
and Asir [4, 5, 15–19] have extensively studied about the
total graph of commutative rings. Tamizh Chelvam and
Balamurugan [22] studied about the complement of the gen-
eralized total graph of Zn: For a complete detail about total
graphs, one can refer the survey [6, 14].

Recently, Anderson and Badawi [2] introduced the con-
cept of the generalized total graph of a commutative ring R.
A nonempty proper subset H of R to be a multiplicative
prime subset of R if the following two conditions hold: (i)
ab 2 H for every a 2 H and b 2 R; (ii) if ab 2 H for a, b 2
R, then either a 2 H or b 2 H: For a multiplicative prime
subset H of R, the generalized total graph GTHðRÞ of R is
the simple undirected graph with vertex set R and two dis-
tinct vertices x and y are adjacent if and only if xþ y 2 H:
For example, every prime ideal, union of prime ideals and
H ¼ R n UðRÞ are some of the multiplicative-prime subsets
of R. One may note that total graphs cannot be studied for
integral domains, where as the generalized total graph gives
the scope to associate graph with even fields and integral
domains. In a field F, {0} is the only multiplicative prime
subset of F. When R is the field F and H ¼ f0g, we desig-
nate the graph as the generalized total graph of the field F

and denote the same by GTðFÞ: Tamizh Chelvam and
Balamurugan [20, 21] have studied about the generalized
total graph and its complement of commutative rings.
Further they have studied domination properties of the gen-
eralized total graph of a field and its complement in [20]. In
this paper, we study several other properties of the comple-
ment of the generalized total graph of fields.

Let G ¼ ðV ,EÞ be a graph with vertex set V and edge set
E. We say that G is connected if there is a path between any
two distinct vertices of G. The complement G of the graph
G is the simple graph with vertex set V(G) and two distinct
vertices x and y are adjacent in G if and only if they are not
adjacent in G. For a vertex v of a graph G, deg(v) is the
degree of the vertex v. dðGÞ and DðGÞ denote the minimum
and maximum degree of vertices in G respectively. Kn

denotes the complete graph of order n and Km, n denotes the
complete bipartite graph. For the terms in graph theory
which are not explicitly mentioned here, one can refer [8,
23], for the terms regarding algebra one can refer [13]. Note

that if R is finite, then GTZðRÞðRÞ is the unit graph [12].
Throughout this paper F denotes a finite field. In this

paper, we continue our study on graph theoretical properties

of the complement GTðFÞ: In Section 2, we study the graph
theoretical properties namely pancyclic, unicyclic, split,

claw-free and perfectness of GTðFÞ: Also we obtain edge cli-

que covering number of GTðFÞ: In Section 3, we obtain a

characterization for GTðFÞ to be planar and outerplanar.

2. Properties of GTðFÞ
In this section, we prove that GTðFÞ is unicyclic, split, claw-
free, perfect and pancyclic. Further we prove that when
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GTðFÞ is a path or bipartite or chordal. Also we discuss

obtain the edge clique covering number of GTðFÞ: We make
use the following theorem, which gives the structure of the
generalized total graph of a commutative ring.

Theorem 2.1. ([2, Theorem 2.2]) Let H be a prime ideal of
a finite commutative ring R, and let jHj ¼ k and j RH j ¼ l:

(i) If 2 2 H, then GTHðR nHÞ is the union of l� 1 dis-
joint Kk’s;

(ii) If 2 62 H, then GTHðR nHÞ is the union of l�1
2 dis-

joint Kk, k’s.

Since H ¼ f0g is the only prime ideal in a field F, we
have the following lemma which gives the structure for the
generalized total graph GTðFÞ: Of course, the structure
depends upon the characteristic of the field F. In fact if
charðFÞ ¼ 2, then xþ x ¼ 0 for every x 2 F: When the
charðFÞ > 2, for any 0 6¼ x 2 F, x 6¼ �x and xþ ð�xÞ ¼ 0:

Lemma 2.2. Let F be a finite field. Then

GTðFÞ ¼
[jFj
i¼1

K1 if charðFÞ ¼ 2;

K1[
jFj�1
2

i¼1
K1, 1 if charðFÞ > 2:

8>>>><
>>>>:

In view of the above Lemma 2.2, we have the following

lemma for the complement GTðFÞ:

Lemma 2.3. Let F be a finite field. Then the following
are true:

(i) If charðFÞ ¼ 2, then GTðFÞ ¼ KjFj;
(ii) If charðFÞ > 2, then GTðFÞ is a connected bi-regular

graph with D ¼ jFj � 1 and d ¼ jFj � 2:

Note that, a graph G is said to be unicyclic if G contains
exactly one cycle.

Theorem 2.4. Let F be a finite field. Then the following hold:

(i) GTðFÞ is bipartite if and only if either F ffi Z2

or F ffi Z3;
(ii) GTðFÞ is neither a cycle nor an unicyclic graph.

Proof. (i) If F ffi Z2 or F ffi Z3, then GTðFÞ is trivially a

bipartite graph. Conversely assume that GTðFÞ is bipartite.
If char(F) ¼ 2 with jFj � 4, then jFj ¼ 2n for some n 2 Z

þ

and n � 2: By Lemma 2.3(i), GTðFÞ is a complete graph of

order � 4: This implies GTðFÞ contains a K3 as a subgraph

and so GTðFÞ is not a bipartite graph. Hence F ffi Z2

when charðFÞ ¼ 2:
Suppose char(F) > 2 with jFj > 3: Then jFj � 5: Let S ¼

f0, x, yg where x, y 2 F n f0g, x 6¼ y and x 6¼ �y: Then the
induced subgraph < S > is K3 and K3 is a subgraph of

GTðFÞ: Therefore GTðFÞ is not bipartite. Hence F ffi Z3

when charðFÞ > 2:

(ii) Suppose GTðFÞ is a cycle. Then jFj � 3:

If charðFÞ ¼ 2, by Lemma 2.3(i), GTðFÞ is a complete
graph of order � 4, which is a contradiction.

If charðFÞ > 2, by Lemma 2.3(ii), GTðFÞ is bi-regular
which is a contradiction.

Suppose GTðFÞ is unicyclic. Then jFj � 3: If charðFÞ ¼
2, then GTðFÞ contains K4 as a subgraph, which is not uni-

cyclic. Suppose charðFÞ > 2: If F ffi Z3, then GTPðFÞ ¼ P3
which is not unicyclic. Suppose jFj > 3: Then jFj � 5: Let
S1 ¼ f0, x, yg where x, y 2 F n f0g, x 6¼ y and x 6¼ �y: Let
S2 ¼ f0, u, vg where u, v 2 F n S1, u 6¼ v and u 6¼ �v: Then
the induced subgraphs < S1 > and < S2 > are two different

cycles of length 3 in GTðFÞ and so GTðFÞ is not unicy-
clic. w

Recall that, a chordal graph is a simple graph G in which
every cycle in G of length four and greater has a cycle chord.
Also, a split graph [9] is a graph in which the vertices can
be partitioned into a clique and an independent set. The fol-
lowing characterization for split graphs is used to character-

ize when GTðFÞ is split.

Theorem 2.5. ([10, Theorem 6.3]) Let G be a connected
graph. Then G is a split graph if and only if G contains no
induced subgraph isomorphic to 2K2, C4 and C5:

Theorem 2.6. Let F be a finite field. Then the following
are equivalent:

(i) Either char(F) ¼ 2 or F ffi Z3;
(ii) GTðFÞ is a split graph;
(iii) GTðFÞ is a chordal graph.

Proof. 1 ) 2. Assume that either char(F) ¼ 2 or F ffi Z3: To

prove that GTðFÞ is a split graph. If charðFÞ ¼ 2, then by

Lemma 2.3(i) and Theorem 2.5, GTðFÞ is a split graph. If

F ffi Z3, then by Lemma 2.3(i), GTðFÞ is P3 and so by

Theorem 2.5, GTðFÞ is a split graph.
2 ) 3. Note that every split graph is a chordal graph and

proof is trivial.

3 ) 1. Assume that GTðFÞ is a chordal graph. Suppose
char(F) > 2 with jFj > 3: Then jFj � 5: Let S ¼
fx, y, u, vg � F where y ¼ �x and v ¼ �u: Then < S >¼ C4

is a chordless cycle in GTðFÞ and so GTðFÞ is not a chordal
graph. Hence either char(F) ¼ 2 or F ffi Z3: w

A graph G is a claw-free if G does not have the claw K1, 3

as the induced subgraph of G. Now we prove that GTðFÞ is
claw-free.

Theorem 2.7. Let F be a finite field. Then GTðFÞ is a claw-
free graph.

Proof. If char(F) ¼ 2, then GTðFÞ is complete and hence it
is a claw-free graph. Suppose charðFÞ > 2: If F ffi Z3, then
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GTðFÞ ¼ P3 which is claw free. When jFj � 5, consider a

subset S � VðGTðFÞÞ with jSj ¼ 4: By Lemma 2.3(ii),

deg<S>ðuÞ � 2 for every u 2 S: Hence GTðFÞ contains no

vertex of degree 1 and so GTðFÞ is not a claw-free graph. w

A graph G is perfect if and only if no induced subgraph
of G is an odd cycle of length at least five or the comple-
ment of one.

Theorem 2.8. Let F be a finite field. Then GTðFÞ is a per-
fect graph.

Proof. By Lemma 2.2, GT(F) have no induced subgraph that
is an odd cycle of length at least 5. If charðFÞ ¼ 2, then, by

Lemma 2.4(i) GTðFÞ is complete and so GTðFÞ have no
induced subgraph that is an odd cycle of length at least 5.
Assume that charðFÞ > 2: If F ffi Z3, by Lemma 2.4(i)

GTðFÞ ¼ P3 which is not a cycle. If jFj ¼ 5, the graph

GTðFÞðZ5Þ is given in Figure 1 and is perfect. When jFj �
7, consider a subset S � VðGTðFÞÞ with jSj � 5: By Lemma

2.3(ii), deg<S>ðuÞ � 3 for every u 2 S: Hence GTðFÞ con-

tains no vertex of degree 2 and so GTðFÞ is a perfect
graph. w

A graph G of order m � 3 is pancyclic ([7, Definition
6.3.1]) if G contains cycles of all lengths from 3 to m. Also
G is called vertex-pancyclic if each vertex v of G belongs to a
cycle of every length ‘ for 3 � ‘ � m:

Theorem 2.9. Let F be a finite field. Then GTðFÞ is a pancy-
clic if and only if jFj > 3:

Proof. Let GTðFÞ be a pancyclic graph. Note that GTðZ2Þ ¼
K2 and GTðZ3Þ ¼ P3: In both cases GTðFÞ is not a cycle,
which is a contradiction to our assumption.

Conversely assume that jFj > 3: If charðFÞ ¼ 2, then

GTðFÞ is complete and so GTðFÞ is a pancyclic. If
charðFÞ > 2, then jFj � 5: Let F ¼ f0, x1, :::, xjFj�1

2
,

y1, :::, yjFj�1
2
g where each xi is the additive inverse of yi for

1 � i � jFj�1
2 : Note that < f0, x1, :::, xjFj�1

2
g >¼< f0, y1, :::,

yjFj�1
2
g >¼ KjFjþ1

2
: Note that P : 0� x1 � � � � � xjFj�1

2
� y1 �

� � � � yjFj�1
2
� 0 is a spanning cycle in GTðFÞ: By removing

the vertices one by one from the set S ¼ fyjFj�1
2
, yjFj�3

2
, :::,

y1, xjFj�1
2
� � � , x4, x3g, we get cycles of lengths jFj � 1, jFj �

2, :::, 4, 3 as subgraphs in GTðFÞ: From this, we get cycles of

length from 3 to F as subgraphs in GTðFÞ: Hence GTðFÞ is
pancyclic. w

Corollary 2.10. Let F be a finite field. Then GTðFÞ is a ver-
tex-pancyclic if and only if jFj > 3:

Note that, an edge clique cover of a graph G is a collec-
tion of cliques L1, L2, :::, Lk such that EðGÞ ¼ [k

i¼1EðLiÞ: The
minimum cardinality of an edge clique cover of G is called
the edge-clique covering number of G and is denoted
by h1ðGÞ:

The following lemma provides the clique number of

GTðFÞ [20].

Lemma 2.11. ([20, Lemma 3.3]) Let F be a finite field. Then

xðGTðFÞÞ ¼
jFj if charðFÞ ¼ 2;

jFj þ 1
2

if charðFÞ > 2:

8<
:

In the following lemma, we obtain the edge clique cover-

ing number of GTðFÞ:
Theorem 2.12. Let F be a field. Then

h1ðGTðFÞÞ ¼
1 if charðFÞ ¼ 2;

2 if F ffi Z3;

2þ jFj�1
2 otherwise:

8>><
>>:

Proof. If charðFÞ ¼ 2, then GTðFÞ is complete and so

h1ðGTðFÞÞ ¼ 1: If F ¼ Z3, then GTðFÞ ¼ P3 and so

h1ðGTðFÞÞ ¼ 2: Assume that charðFÞ > 2 and jFj > 3: List
the elements of F as F ¼ f0, x1, :::, xjFj�1

2
, y1, :::, yjFj�1

2
g where xi

is the additive inverse yi for all 1 � i � jFj�1
2 : Let S ¼

f0, x1, :::, xjFj�1
2
g,T ¼ f0, y1, :::, yjFj�1

2
g and Si ¼ ðS n fxigÞ [

fyig for 1 � i � jFj�1
2 : Then < S >¼< T >¼< Si >¼ KjFjþ1

2

in GTðFÞ: By Lemma 2.11, < S > , < T > and < Si > are

cliques in GTðFÞ for all 1 � i � jFj�1
2 :

Also [
jFj�1
2

i¼1Eð< Si >Þ [ Eð< S >Þ [ Eð< T >Þ ¼ EðGTðFÞÞ
and so h1ðGTðFÞÞ ¼ 2þ jFj�1

2 : w

3. When GTðFÞ is planar or outerplanar

In this section, we discuss about planarity and outerplanarity

of GTðFÞ: The following two results are used for character-

ization of planar and outerplanar nature of GTðFÞ:
Theorem 3.1. [8, Theorem 9.7] A graph is planar if and
only if it does not contain a subdivision of K5 or K3, 3:

Theorem 3.2. [11, Theorem 11.10] A graph G is outerplanar
if and only if it does not contain a subdivision of K4 or K2, 3:

Theorem 3.3. Let F be a finite field. Then the following hold:

Figure 1. GTPðZ5Þ:
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(i) GTðFÞ is planar if and only if jFj � 5;
(ii) GTðFÞ is outer planar if and only if jFj � 3:

Proof. (i) Assume that jFj � 5: If F is either Z2, or Z3 then

the graph GTðFÞ is either K2, or P3: If F ffi F4, then GTðFÞ
is K4 and so GTðFÞ is planar. If F ffi Z5, then the planar

embedding of GTðZ5Þ is given in the above Figure 1.

Conversely, assume that GTðFÞ is planar. Let us consider
jFj � 7: If charðFÞ ¼ 2, then jFj � 8: By Lemma 2.4(i),

GTðFÞ is complete which is not planar.
Consider charðFÞ > 2: Let F ¼ f0, x1, :::, xjFj�1

2
, y1, :::, yjFj�1

2
g

where xi is the additive inverse yi for all 1 � i � jFj�1
2 : Since

jFj � 7, we can choose a set S ¼ f0, x1, x2, x3, y1, y2g: Then
< S > contains a subdivision of K3, 3 in GTðFÞ and so

GTðFÞ is not planar.
(ii) If F is either Z2 or Z3, the proof is trivial.

Conversely, if F ffi F4 then GTðFÞ ¼ K4 which is not out-

erplanar. For F ffi Z5, from the Figure 1, GTðFÞ contains a

subdivision of K2, 3 and so GTðFÞ is not outerplanar. For
jFj � 7, the proof follows as in (i) above. w
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