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Gallai-Ramsey number of an 8-cycle
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ABSTRACT
Given graphs G and H and a positive integer k, the Gallai-Ramsey number grkðG : HÞ is the min-
imum integer N such that for any integer n � N, every k-edge-coloring of Kn contains either a
rainbow copy of G or a monochromatic copy of H. These numbers have recently been studied for
the case when G ¼ K3, where still only a few precise numbers are known for all k. In this paper,
we extend the known precise Gallai-Ramsey numbers to include H ¼ C8 for all k.

KEYWORDS
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1. Introduction

In this work, we consider only edge-colorings of graphs. A
coloring of a graph is called rainbow if no two edges have
the same color.

Colorings of complete graphs which contain no rainbow
triangle have very interesting and somewhat surprising
structure. In 1967, Gallai [7] first examined this structure
under the guise of transitive orientations. This result was
restated in [9] in the terminology of graphs and can also be
traced back to [2]. For the following statement, a trivial par-
tition is a partition into only one part.

Theorem 1 ([7, 9]). In any coloring of a complete graph with
at least 2 vertices containing no rainbow triangle, there exists
a non-trivial partition of the vertices (called a Gallai parti-
tion) such that there are at most two colors on the edges
between the parts and only one color on the edges between
each pair of parts.

In honor of this result, rainbow triangle-free colorings
have been called Gallai colorings. The partition given by
Theorem 1 is called a Gallai partition or G-partition for
short. Given a Gallai coloring of a complete graph and its
associated G-partition, define the reduced graph of this parti-
tion to be the induced subgraph consisting of exactly one
vertex from each part of the partition. Note that the reduced
graph is a 2-colored complete graph.

When considering 2-colored complete graphs, a very nat-
ural problem to consider is the Ramsey problem of finding
a monochromatic (one-colored) copy of some desired sub-
graph. Given a graph G, let RkðGÞ denote the k-color
Ramsey number of G, namely the minimum integer M such
that for any m � M, any coloring of Km using at most k

colors contains a monochromatic copy of G. We refer to the
dynamic survey [11] for results about Ramsey numbers.

Combining the concepts of Ramsey numbers and rain-
bow triangle free colorings, we arrive at the following defin-
ition of Gallai-Ramsey numbers.

Definition 1. Given two graphs G and H, the k-colored
Gallai-Ramsey number grkðG : HÞ is defined to be the min-
imum integer n such that every coloring of the complete graph
on n vertices using at most k colors contains either a rainbow
copy of G or a monochromatic copy of H.

The general behavior of Gallai-Ramsey numbers when G
is a triangle depends on the chromatic number of H in the
following sense.

Theorem 2 ([8]). Let H be a fixed graph with no isolated
vertices. Let k be an integer with k � 1. If H is not bipartite,
then grkðK3 : HÞ is exponential in k. If H is bipartite, then
grkðK3 : HÞ is linear in k.

With this result in mind, the orders of magnitude in the
following general bounds for cycles should not be surprising.
For the sake of notation, let Cn be the cycle of order n and
let Pn be the path of order n.

Theorem 3 ([4, 10]). Given integers n � 2 and k � 1,

ðn� 1Þkþ nþ 1 � grkðK3 : C2nÞ � ðn� 1Þkþ 3n:

Theorem 4 ([4, 10]). Given integers n � 2 and k � 1,

n2k þ 1 � grkðK3 : C2nþ1Þ � ð2kþ3 � 3Þn log n:

It is commonly believed that the lower bounds in these
results are sharp. For grkðK3 : CnÞ with 3 � n � 6, the exact
numbers are shown below.
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Theorem 5 ([1, 3, 8]).

grkðK3 : K3Þ ¼ 5k=2 þ 1 if k is even,
2 � 5ðk�1Þ=2 þ 1 otherwise:

�

Theorem 6 ([4]). For any positive integer k � 2, grkðK3 :
C4Þ ¼ kþ 4:

Theorem 7 ([5]). For any positive integer k � 2, grkðK3 :
C5Þ ¼ 2kþ1 þ 1 and grkðK3 : C6Þ ¼ 2kþ 4:

These and other related results in the area are collected
in the dynamic survey [6]. Our main result is the following
which extends the known Gallai-Ramsey numbers for even
cycles to include the next open case.

Theorem 8. For k � 1, grkðK3 : C8Þ ¼ 3kþ 5:

The lower bound on the Gallai-Ramsey number in
Theorem 8 follows from Theorem 3. Our proof of Theorem
8, particularly the use of Lemma 1 below, suggests that if
the Gallai-Ramsey numbers were completely understood for
all linear forests, then we may be able to establish the num-
bers for all cycles. This is somewhat complementary to the
results of [10] where the bounds for even cycles were used
to establish bounds for paths.

For more general notation, define grkðG : H1,H2, :::,HkÞ
to be the minimum integer N such that every coloring of Kn

for n � N using at most k colors contains either a rainbow
copy of G or a monochromatic copy of Hi in color i for
some i. For a shorthand version of this, we will also abuse
notation and let grkðG : tH, ðk� tÞKÞ ¼ grkðG : H,H, :::,H,
K,K, :::,KÞ where H appears t times and K appears the
remaining k – t times for some integer t with 0 � t � k:

Lemma 1. For integers k and t with k � 2 and 0 � t � k

grkðK3 : tP5, ðk� tÞP3Þ � t þ 4:

Proof. The proof is by induction on t. If t¼ 0, the result is
trivial since we are looking for a P3 in each color and it is
easy to see that grkðK3 : P3Þ ¼ 3 for all k � 3: So sup-
pose t � 1:

Let G be a Gallai colored Kn where n ¼ t þ 4, consider a
G-partition of G, and let H be a largest part of this partition.
If 3 � jHj � n� 3, then there are three vertices in G n H
such that at least two of them have the same color on all
edges to H. Since this graph contains a monochromatic
K2, 3, this produces a monochromatic P5, so we may assume
that either jHj � 2 or jHj � n� 2: Our first goal is to show
that jHj � n� 2:

If jHj ¼ 1, then G is simply a 2-coloring of Kn for n ¼
t þ 4: This contains the desired monochromatic P5 or P3
since RðP3, P5Þ ¼ 5 and RðP5,P5Þ ¼ 6: So suppose jHj ¼ 2:
If t¼ 1, then to avoid creating a monochromatic P5, there
can be at most two vertices in G nH with all color 1 on
edges to H but since jG n Hj ¼ 3, there must be exactly two
such vertices. The remaining vertex has both edges in
another color, making the desired monochromatic P3. Next
suppose t¼ 2, so n ¼ t þ 4 ¼ 6: With jG n Hj ¼ 4, there

must be precisely two pairs of vertices with each of the
(first) two colors on edges to H, say red and blue. Each edge
between these two pairs of vertices must be either red or
blue, but any such edge would create a monochromatic P5.
Thus, we assume t � 3, so n ¼ t þ 4 � 7: Since jHj ¼ 2,
there are at least 5 vertices in G n H so at least three of these
vertices have the same color on edges to H. This contains a
monochromatic K2, 3, which contains the desired monochro-
matic P5. Together, these observations mean that we may
assume that jHj � n� 2:

Since each vertex in G nH has all one color on edges to
H, the vertices of G nH must have distinct colors on edges
to H to avoid a monochromatic P5. Note that these colors
must be within the first t colors, say t (and t � 1 if there are
two such vertices), since otherwise this is already a mono-
chromatic P3. Also, if H contains a P3 in one of these colors,
then using the vertex of G n H with edges in the same color
to H, we find a monochromatic P5. By induction on t
applied within H, H contains either a monochromatic P5 in
one of the first t � 1 colors (or t � 2 if jG n Hj ¼ 2) or a
monochromatic P3 in one of the remaining k� ðt � 1Þ col-
ors (respectively k� ðt � 2Þ). This monochromatic path is
either the desired path or can be used to construct the
desired path as observed above, completing the proof of
Lemma 1. w

In our arguments, we occasionally use classical Ramsey
numbers. The following case will be helpful.

Theorem 9 ([11]). R2ðC8Þ ¼ 11:
For the sake of our next lemma, we need an extra defin-

ition. Given sets of graphs G and H, define RðG,HÞ to be
the minimum integer N such that any 2-coloring of Kn (say
using red and blue) for n � N contains either a copy of a
graph in G in red or a copy of a graph in H in blue.

Lemma 2. RðfC4, P5g, fC4,P5gÞ ¼ 5:

Proof. If we consider the unique 2-coloring of a K5 with no
monochromatic triangles, then there is a C5 in each color.
Thus, we also have the desired P5 in both colors. We may
therefore assume that all other 2-colorings of K5 have a
monochromatic triangle. Let a1, a2, a3 2 A be a monochro-
matic K3, say in red, and b1, b2 2 B be the two remaining
vertices of the K5. If all the edges from A to B are in one
color, then there exists a monochromatic C4 in that color.
Without loss of generality, let e be a red edge a1b1: To avoid
a C4 in red, we get that the edges a2b1 and a3b1 are blue. To
avoid getting a P5 in red we get that the edges a2b2 and
a3b2 are also blue. Now we can clearly see that these blue
edges make a C4 on b1 � a2 � b2 � a3 � b1: w

2. Proof of Theorem 8

In order to prove Theorem 8, we actually prove the follow-
ing slightly stronger result. For the precise statement, let G3

¼ C8, G2 ¼ P7, G1 ¼ P5, and G0 ¼ P3. Note that all of these
graphs are subgraphs of C8 and represent the results of
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removing vertices from C8. Theorem 8 follows from
Theorem 10 by setting ij ¼ 3 for all j.

Theorem 10. For k � 1, and for 0 � ij � 3 for all 1 � j � k,

grkðK3 : Gi1 ,Gi2 , :::,GikÞ �
Xk
j¼1

ij þ 5:

Proof. Let R ¼ P
ij: The proof is by induction on R. If R ¼

0, the result is trivial since in each color we are only looking
for P3 and it is easy to see that grkðK3 : P3Þ ¼ 3: Thus, sup-
pose R � 1 so n � Rþ 5 � 6: Let G be a k-coloring of Kn

with no rainbow triangle and no monochromatic Gij for any
j. Let T be a largest set of vertices in G with the proper-
ties that

� each vertex in T has one color on all its edges to
G n T, and

� jG n Tj � 4:

Note that T ¼ ; is possible. Let T1,T2, :::,Tk denote the sets
of vertices in T such that each vertex in Tj has all edges in
color j to the vertices in G n T: If jTjj > ij, then Tj [ ðG n TÞ
contains the desired monochromatic copy of a graph Gij in
color j. Thus, jTjj � ij for all j. More generally, suppose T 6¼
;: Then, by induction on R applied within G n T, there exists
a copy, say H, of Gij�a in color j for some j where a ¼ jTjj
with 1 � a � 3: Then the graph consisting of edges of color j
induced on H [ Tj along with a� 1 other vertices of G n
ðTj [ HÞ contains a copy of Gij in color j, the desired sub-
graph. Thus, we may assume that T ¼ ;:

Consider a G-partition of G and let A be a largest part of
this partition. Note that if jAj � 4, we can let T ¼ G n A
and apply induction as above so we may assume jAj � 3: By
the choice of A, the following fact becomes immediate.

Fact 1. Every part of the G-partition has order at most 3.

By Lemma 2, if there are at least five parts of order at
least 2, then there is a monochromatic C8 since the 2-blow-
up of a C4 or a P5, replacing each vertex by a 2-set of verti-
ces, each containing a C8. We now prove several helpful
claims, most of which provide a monochromatic C8 under
certain restrictions.

Claim 1. If there are two parts of order 3 and at least five
more vertices, then there exists a monochromatic C8.

Proof. Let A and B be the two parts of order 3, say with all
red edges between them. Let C ¼ fv1, v2, v3, v4, v5g be a set
of 5 of the remaining vertices in G n ðA [ BÞ: If all edges
between C and A [ B were blue, there is clearly a blue C8,
so suppose there are some red edges, say from v1 to A. To
avoid creating a red C8, all other vertices in C must have
blue edges to B. To avoid creating a blue C8, all of C must
have red edges to A and so, by symmetry, v1 (and so all of
C) must also have blue edges to B. Any two red edges
within C would produce a red C8 and any two blue edges
within C would produce a blue C8 so there can be at most
one red and at most one blue edge within C. Since, by Fact

1, all parts of the G-partition have order at most 3, this is
clearly a contradiction, completing the proof of Claim 1. w

Claim 2. If there is one part of order 3, one part of order at
least 2 and at least six additional vertices, then there exists a
monochromatic C8.

Proof. Let A be the set of order 3 and let B be the set of
order at least 2 and assume all edges between A and B are
red. By Claim 1, we may assume that jBj ¼ 2 and none of
the additional vertices form a part of the G-partition of
order 3. Label the additional vertices as vi where 1 � i � 6:
If there is a vertex, say v1, with red edges to B and two other
vertices, say v2 and v3, with red edges to A, then we have a
red C8 using B� v1 � B� A� v2 � A� v3 � A� B:

Suppose first that no vertex vi has red edges to B, which
means that all vertices vi have all blue edges to B. No three
vertices vi can have blue edges to A since otherwise we
could find a blue C8, so this means that at least four vertices
vi must have red edges to A. Without loss of generality, let
C ¼ fv1, :::, v4g be this set of four vertices. Any two red
edges within C would allow for the construction of a red C8.
Also since no three of the vertices in C form a part of our
G-partition, there can be at most two edges of colors other
than red or blue within C and these must induce a match-
ing. This means that at least three edges within C are blue
and they must contain a blue P4, say v1v2v3v4: If both v5
and v6 have blue edges to A, then v1 � v2 � v3 � B� v5 �
A� v6 � B� v1 is the desired blue C8. Thus, we may
assume, without loss of generality, that v5 also has red edges
to A. By the same argument, the blue graph induced on C [
fv5g contains a blue P5, say P from v1 to v5. Then v1 � P �
v5 � B� v6 � B� v1 produces a blue C8.

The previous argument means that we may assume there
is a vertex, say v1, with red edges to B. As noted, this means
that at most one other vertex, say v2, can have red edges to
A, so all other vertices in fv3, :::, v6g have blue edges to A.
Certainly no two of these vertices may have blue edges to B,
meaning that at least three of them, say v3, v4, v5 have red
edges to B. By the same argument as above with v3 in place
of v1, there can actually be at most one vertex vi with red
edges to A, meaning that there are five vertices with blue
edges to A. Let C be this set of vertices and note that at least
four of the vertices in C also have red edges to B. If there
are two blue edges within C, we may construct a blue C8, so
suppose there is at most one. Since the vertices of C do not
form parts of order 3 in our G-partition, there are at most
two edges of colors other than red or blue within C and
these must induce a matching. This leaves at least 7 red
edges within C. Trivially C contains a red P5, say P, starting
and ending at vertices with red edges to B, say v4 and v5.
Then v4 � P � v5 � B� A� B� v4 is the desired red C8,
completing the proof of Claim 2. w

Claim 3. If there is one set of order at least 3 and at least
nine more vertices, then there exist a monochromatic C8.

Proof. Let A be the part of order 3. We define B to be the
set of vertices with red edges to A, and C to be the set of
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vertices with blue edges to A. By the pigeon hole principle
at least five edges will have the same color edges to A,
say jBj � 5:

If jBj ¼ 5, then A [ B induces a red K3, 5 and jCj ¼ 4 so
A [ C induces a blue K3, 4: To avoid a rainbow triangle, each
edge between B and C must be red or blue. Within this 2-
colored K4, 5, the graph induced on the edges between B
and C, there must be a monochromatic P3. Regardless of the
color or placement, this easily creates a monochromatic C8.

Now suppose jBj � 6: Within B, there is at most one red
edge since otherwise we could easily construct a red C8.
Also the edges that are neither red nor blue induce a match-
ing since there is no part of the G-partition of order at least
3 within B [ C (by Claim 1). In particular, this means that
the minimum degree of the graph induced on the blue edges
within B is at least jBj � 3, so there is a blue Hamiltonian
cycle within B. If jBj ¼ 8, then this is the desired blue C8

and if jBj ¼ 9, we actually have even more blue edges so
the blue graph is pancyclic and we again find a blue C8.
Otherwise, each vertex in C has at most one red edge to B
because otherwise we could construct a red C8. To avoid a
rainbow triangle, this means that all but one edge from each
vertex in C to B must be blue, meaning that each vertex in
C can be absorbed into a blue Hamiltonian cycle of B to
again create a blue C8, completing the proof of Claim 3. w

Claim 4. If there are three sets of order at least 2 and at least
five more vertices, then there exists a monochromatic C8.

Proof. Let A, B and C be the sets of order 2 and label the
remaining vertices as vi where 1 � i � 5: First suppose A, B
and C have all red edges between them. If two of the other
vertices, say v1 and v2, have red edges to at least two of the
sets, say A and B, we can find a red C8, v1 � A� C � B�
v2 � B� C � A� v1: Therefore, we can have either at most
one vertex vi with red edges to the sets or at most one set
with red edges to the vertices vi. This means that at least 4
vertices outside have blue edges to at least two of the sets.
This induces a blue K4, 4 which contains a blue C8.

Thus, we may assume that the edges between A and C
are blue while all edges from B to A [ C are red. If none of
the vertices vi have red edges to A or C, then this induces a
blue K4, 5 which contains the desired blue C8. Thus we may
assume that at least one vertex, say v1, has red edges to
either A or C, say A. To avoid a red C8, all other vertices vi
for i � 2 must have blue edges to C. To avoid a blue C8, no
three of these vertices can have blue edges to A, so that
means at least two of them, say v2 and v3, have red edges to
A. By symmetry, this means that v1 also has blue edges to C.

To avoid a red C8, there can be at most one red edge
within fv1, v2, v3g: Since there is no part of our G-partition
of order 3 among the vertices vi and a part of order 2 within
fv1, v2, v3g would mean that the remaining vertex has two
edges of the same color to the part, this means that there
are at least 2 blue edges within these three vertices, say v1v2
and v2v3: If both v4 and v5 have blue edges to A, then C �
v4 � A� v5 � A� C � v1 � v2 � v3 � C is a blue C8. This
means that one of v4 or v5, say v4, must have red edges
to A.

To avoid a red C8, there can be at most one red edge
within fv1, v2, v3, v4g and since there is no part of order 3
and a 2-part would imply two edges of the same color, we
must have a blue P4 within these vertices, say v1v2v3v4: Now
if v5 has blue edges to A, then C � v5 � A� C � v1 � v2 �
v3 � v4 � C is a blue C8. This means that v5 must also have
red edges to A. By the same logic as above, there are at
most 3 non-blue edges within fv1, :::, v5g, so there is a blue
P5, say v1v2:::v5: Then C � A� C � v1 � v2 � v3 � v4 � v5 �
C is a blue C8, completing the proof. w

By Theorem 9, there are at most 10 parts in our G-parti-
tion. By Fact 1, no part has order larger than 3 and by
Lemma 2, there are at most 4 parts of order at least 2. By
Claim 1, if there are 2 parts of order 3, then n � 10: By
Claim 2, if there is one part of order 3 and at least one part
of order 2, then n � 10 again. By Claim 3, if there is any
part of order 3, then n � 11: Thus, we may assume that
either n � 11 or all parts have order at most 2. By Claim 4,
if there are 3 parts of order 2, then n � 10 so we may
assume there are at most 2 parts of order 2. With at most
10 parts total, this means that n � 12:

To complete the proof of Theorem 10, we consider cases
based on small values of n, and therefore small values
of R ¼ n� 5:

Case 1. R¼ 1.

With loss of generality, suppose G1 ¼ P5 and Gi ¼ P3 for
i � 2: Therefore, we have G ¼ K6 we want to show grkðK3 :
P5,P3, P3, :::,P3Þ ¼ 6: Since red is the only color allowed to
contain adjacent edges, each other color induces only a
matching. In fact, to avoid a rainbow triangle, the edges
induced on all colors other than red together must induce a
matching. The complement of this matching contains a P5
in red to easily complete the proof in this case.

Case 2. R¼ 2.

Subcase 2.1. grkðK3 : P7, P3, :::,P3Þ ¼ 7

In this case, all colors other than red together induce a
matching M. In K7 nM, it is easy to find a P7.

Subcase 2.2. grkðK3 : P5, P5,P3, :::, P3Þ � 7:

This result follows from Lemma 1.

Case 3. R¼ 3.

Subcase 3.1. grkðK3 : C8,P3, P3, :::, P3Þ ¼ 8:

In this case, all colors other than red together induce a
matching M. In K8 nM, it is easy to find a C8.

Subcase 3.2. grkðK3 : P7, P5,P3, :::, P3Þ ¼ 8:

Since R2ðP7, P5Þ ¼ 8, we may assume that there are at
most 7 parts in the partition. Thus, there must exist a part of
the partition of order at least 2. Other than the first two colors
red and blue, all other colors together induce a matching so if
we choose our G-partition to have the most possible parts, we
may assume all parts have order at most 2.

First suppose there exists exactly one part of order 2, call
it A. To avoid creating a blue P5, there can be at most 2
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vertices in G n A with blue edges to A. Call these vertices
Ablue and let Ared denote the remaining vertices of G n A,
those with all red edges to A. Note that jAredj � 4: To avoid
creating a red P7, each vertex of Ablue has at most 2 red
edges to Ared, so all other edges from Ablue to Ared must be
blue. If jAbluej ¼ 2, then we have a blue P5 immediately
using these blue edges to Ared so suppose jAbluej � 1, mean-
ing that jAredj � 5: To avoid creating a red P7, there can be
at most 1 red edge within Ared, so there must be the claimed
blue P5 within Ared.

Next suppose 2 sets have size 2, call them A and B. If
blue appears between A and B then all other edges will be
red to the 2 sets. This gives us a K4, 4 which contains a P7.
Therefore the edges between A and B must be red. If there
are at least 2 vertices outside with red to A and one vertex
to B then there is a P7 in red. On the other hand if there
are 2 vertices outside with blue to A, then we might as
well have blue in between the 2 sets. Therefore we have
found our desired P7 in one color and P5 in the
other color.

Subcase 3.3. grkðK3 : P5, P5,P5, P3, :::P3Þ � 8:

This subcase follows from Lemma 1.
The remaining cases, when R 2 f4, 5, 6, 7g, follow from

similar (albeit tedious) case analysis or by straightforward
computer search. w
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