

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Decomposition of complete bipartite graphs into cycles and stars with four edges

M. Ilayaraja & A. Muthusamy

To cite this article: M. Ilayaraja & A. Muthusamy (2020) Decomposition of complete bipartite graphs into cycles and stars with four edges, AKCE International Journal of Graphs and Combinatorics, 17:3, 697-702, DOI: 10.1016/j.akcej.2019.12.006

To link to this article: https://doi.org/10.1016/j.akcej.2019.12.006

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

0

Published online: 22 Apr 2020.

C	
-	

Submit your article to this journal 🗹

Article views: 496

🜔 View related articles 🗹

View Crossmark data 🗹

Taylor & Francis Taylor & Francis Group

OPEN ACCESS Check for updates

Decomposition of complete bipartite graphs into cycles and stars with four edges

M. Ilayaraja and A. Muthusamy

Department of Mathematics, Periyar University, Salem, Tamil Nadu, India

ABSTRACT

Let C_k , S_k denote a cycle, star with k edges and let $K_{m,n}$ denotes a complete bipartite graph with m and n vertices in the parts. In this paper, we obtain necessary and sufficient conditions for the existence of a decomposition of complete bipartite graphs into cycles and stars with four edges.

KEYWORDS

Cycles; star; graph decomposition

2010 MSC 05B30; 05C38;

1. Introduction

All graphs considered here are finite. For the standard graph-theoretic terminology the reader is referred to [4]. Let C_k , S_k denote a cycle, star with k edges and let $K_{m,n}$ denotes a complete bipartite graph with m and n vertices in the parts. Also we denote the cycle C_k with vertices x_0, x_1, \dots, x_{k-1} and edges $x_0 x_1, x_1 x_2, \dots, x_{k-2} x_{k-1}, x_{k-1} x_0$ as $(x_0, x_1, \dots, x_{k-1}, x_0)$ and a star S_k consists of a centre vertex x_0 of degree k (i.e., $d(x_0) = k$) and k end vertices x_1, x_2, \dots, x_k as $(x_0; x_1, \dots, x_k)$. If there are t stars with same end vertices x_1, x_2, \dots, x_k and different centres y_1, y_2, \dots, y_t , we denote it by $(y_1, y_2, \dots, y_t; x_1, x_2, \dots, x_k)$. Note that S_k is isomorphic to $K_{1,k}$. By a *decomposition* of G, we mean a list of edge-disjoint subgraphs of G whose union is G (ignoring isolated vertices). For the graph G, if E(G)can be partitioned into E_1, \dots, E_k such that the subgraph induced by E_i is H_i , for all i, $1 \le i \le k$, then we say that H_1, \dots, H_k decompose G and we write $G = H_1 \oplus \dots \oplus H_k$. For $1 \le i \le k$, if $H_i \cong H$, we say that G has a H-decompos*ition* and it is denoted by H|G. If G can be decomposed into p copies of H_1 and q copies of H_2 , then we say that G has a $\{pH_1, qH_2\}$ -decomposition or (H_1, H_2) -multidecomposition. If such a decomposition exits for all p and q satisfying trivial necessary conditions, then we say that G has a ${H_1, H_2}_{\{p,q\}}$ -decomposition or complete ${H_1, H_2}$ -decompos*ition*. We denote the number of edges of G by e(G).

Cycle decomposition of graphs and star decomposition of graphs are popular topic of research in graph theory; see [3, 12–14]. The study of (K, H) -multidecomposition has been introduced by Atif Abueida and M. Daven [1]. Moreover, Atif Abueida and Theresa O'Neil [2] have settled the existence of (K, H)-multidecomposition of $K_m(\lambda)$ when $(K, H) = (K_{1,n-1}, C_n)$ for n = 3, 4, 5. Priyadharsini and Muthusamy [9] established necessary and sufficient condition for the existence

of (G_n, H_n) -multidecomposition of λK_n where $G_n, H_n \in \{C_n, \}$ P_{n-1} , S_{n-1} . Lee [7], gave necessary and sufficient condition for the multidecomposition of $K_{m,n}$ into at least one copy of C_k and S_k . Lee and J.J. Lin [8], have obtained necessary and sufficient condition for the decomposition of complete bipartite graph minus a one factor into cycles and stars. Shyu [10] considered the existence of a decomposition of $K_{m,n}$ into paths and stars with k edges, giving a necessary and sufficient condition for k = 3. Jeevadoss and Muthusamy [5] have obtained some necessary and sufficient condition for the existence of a decomposition of complete bipartite graphs into paths and cycles. Recently, Lee [6] established necessary and sufficient conditions for the existence of a decomposition of complete bipartite multigraph into cycles and stars with at least one copy of each. In this paper, we study about the existence of a decomposition of complete bipartite graphs into p copies of C_4 and q copies of S_4 for all possible values of p and q. We abbreviate the notation for such a decomposition as $\{pC_4, qS_4\}$ -decomposition. In fact, we establish necessary and sufficient conditions for the existence of $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$.

To prove our main results, we state the following:

Theorem 1.1. [11] Let m, n and $l \in \mathbb{Z}_+$. There exists an C_{2l} -decomposition of $K_{m,n}$ if and only if m and n are even, $m, n \ge l \ge 2$ and $mn \equiv 0 \pmod{2l}$.

Theorem 1.2. [14] Let k, m and $n \in \mathbb{Z}_+$ with $m \le n$. There exists an S_k -decomposition of $K_{m,n}$ if and only if one of the following holds:

- (i) $k \leq m \text{ and } mn \equiv 0 \pmod{k};$
- (ii) $m < k \le n \text{ and } n \equiv 0 \pmod{k}$.

Remarks.

1. If G_1 and G_2 have a $\{pC_4, qS_4\}$ -decomposition, then $G_1 \oplus G_2$ has a such decomposition.

CONTACT M. Ilayaraja 🖾 ilaya@yahoo.com 🖃 Department of Mathematics, Periyar University, Salem, Tamil Nadu, India.

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. Let $X + Y = \{(x_1 + y_1, x_2 + y_2) \mid (x_1, x_2) \in X, (y_1, y_2) \in Y\}$ and *rX* is the sum of *r* copies of *X*.

2. Necessary conditions

The following Lemmas gives necessary conditions for the existence of a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$.

Lemma 2.1. Let $p, q \ge 0$ and even $n \ge 2$. If $K_{2,n}$ has a $\{pC_4, qS_4\}$ -decomposition, then q must be even.

Proof. Let *D* be an arbitrary $\{pC_4, qS_4\}$ -decomposition of $K_{2,n}$. Then $4(p+q) = e(K_{2,n})$. Let $V(K_{2,n}) = (X_1, X_2)$, where $X_1 = \{x_{11}, x_{12}\}$ and $X_2 = \{x_{21}, \dots, x_{2n}\}$. Since x_{11} and x_{12} must be a centre vertex of each S_4 's in *D* and each C_4 's in *D* must contains both x_{11} and x_{12} . Therefore the number of copies of S_4 centered in both x_{11} and x_{12} are the same.

Lemma 2.2. Let $p,q \ge 0$ and even $n \ge 4$. If $K_{4,n}$ has a $\{pC_4, qS_4\}$ -decomposition, then $p,q \ne 1$.

Proof. Let D be an arbitrary $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$. Then $4(p+q) = e(K_{m,n})$. On the contrary, suppose that q = 1. Let S_4^1 denote the only star in D. It follows that each end vertex of S_4^1 has odd degree in $K_{4,n} \setminus E(S_4^1)$, which cannot have a cycle decomposition and hence a contradiction. On the other hand, let $V(K_{4,n}) = (X_1, X_2)$, where $X_1 =$ $\{x_{11}, \dots, x_{14}\}$ and $X_2 = \{x_{21}, \dots, x_{2n}\}$. Assume that there exist a (4; 1, n - 1)-decomposition of $K_{4,n}$. Without loss of generality, let $C_4^1 = (x_{11}, x_{21}, x_{12}, x_{22}, x_{11})$ be the only C_4 in D. Then by assumption $K_{4,n} \setminus E(C_4^1) = G$ has an S_4 -decomposition. In G, the vertices x_{21} and x_{22} have exactly degree 2. So it could not be a centre vertex of any stars in D. Therefore we have two stars S_4^1 and S_4^2 whose centre vertex is x_{13} and x_{14} respectively, which consist of end vertices. That x_{21} and x_{22} as is, $S_{4}^{1} =$ $(x_{13}; x_{21}, x_{22}, x_{2i}, x_{2j})$ and $S_4^2 = (x_{14}; x_{21}, x_{22}, x_{2i'}, x_{2j'})$ for some $i \neq j$ and $i' \neq j' \in \mathbb{Z}_+$. We define $D' = \{S_4 \in$ $D \mid$ Centre vertex of S_4 is x_{14} ; |D'| = r, where $r \in$ \mathbb{Z}_+ and let $X_2' = \{y \in X_2 \mid y \text{ is an end vertex of } S_4 \in$ D'. Then clearly $S_4^2 \in D'$ and $|X'_2| = 4r$. Every vertex in $X_2 \setminus X'_2$ must be centre vertex of some stars in $D \setminus D'$. Otherwise we cannot use the edges between $x_{14} \in$ X_1 and $X_2 \setminus X'_2$ in any star in *D*, whose centre vertex is not x_{14} .

Now we collect all the stars whose centre in $X_2 \setminus X'_2$ and denote it D''. That is, $D'' = \{S_4 \in D \mid \text{Centre vertex}$ of S_4 in $X_2 \setminus X'_2\}$. Then the new graph $G' = K_{4,n} \setminus \{E(C_4^1) \cup E(D') \cup E(D'') \cup E(S_4^1)\} \cong K_{3,4r-2} \setminus \{x_{13}x_{2i}\} \cup \{x_{13}x_{2j}\}$. Let $V(K_{3,4r-2}) = (Y_1, Y_2)$, where $Y_1 = X_1 \setminus \{x_{14}\}$ and $Y_2 = X_2 \setminus (X_2 \setminus X'_2 \cup \{x_{21}, x_{22}\})$. By our assumption G' has an S_4 -decomposition. In G', $d(x_{11}) = d(x_{12}) = 4r - 2$ and $d(x_{13}) = 4r - 4$ also $d(x_{2i}) = d(x_{2j}) = 2$ and $d(x_{2k}) = 3$, where $x_{2k} \neq x_{2i}, x_{2j}$ and $x_{2k} \in X_2$. It follows that no vertex of Y_2 can be a centre vertex of any stars, so the centre vertices of stars must be in Y_1 . Since $d(x_{11}) = d(x_{12}) = d(x_{12}) = 4r - 2 \neq 0 \pmod{4}$, by Theorem 1.2, the graph G' cannot have S_4 -decomposition, which is contradiction to our assumption.

Lemma 2.3. Let $p, q \ge 0$ and even $m, n \ge 6$ with $m \le n$. If $K_{m,n}$ has a $\{pC_4, qS_4\}$ -decomposition, then $q \ne 1$.

Proof. Let *D* be an arbitrary $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$. On the contrary, suppose q = 1, we obtain a contradiction as in Lemma 2.2.

Lemma 2.4. Let p,q be nonnegative integers, m is odd (resp., n is odd) and $n \equiv 0 \pmod{4}(\operatorname{resp.}, m \equiv 0 \pmod{4})$ such that m < n. If $K_{m,n}$ has a $\{pC_4, qS_4\}$ -decomposition, then $q \geq \frac{n}{4}$ (resp., $q \geq \frac{m}{4}$).

Proof. Let D be an arbitrary $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$. Let the q copies of stars be $S_4^i \in D$, $1 \le i \le q$ and $G = K_{m,n} \setminus E(\sum_{i=1}^q S_4^i)$. By hypothesis, G has a C_4 -decomposition. It follows that every vertex of G must be of even degree. Note that when n is even (resp., m), each vertex of X_2 (resp., X_1) must be either an end vertex or the centre of some S_4^i , $1 \le i \le q$. It implies that $4q \ge n$ (resp., $4q \ge m$).

3. Sufficient conditions

The following sequence of lemmas we show that the above necessary conditions are also sufficient.

Lemma 3.1. If $m, n \in 2\mathbb{Z}_+$ with $2 \le m \le n \le 8$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$.

Proof. Case 1. For m = 2 and n = 2, trivially one C_4 . For n = 4, let $V(K_{2,4}) = (X_1, X_2)$, where $X_1 = \{x_{11}, x_{12}\}$ and $X_2 = \{x_{21}, \dots, x_{24}\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

 p = 2 and q = 0. By Theorem 1.1, we get the required 2C₄'s.
p = 0 and q = 2. By Theorem 1.2, we get the required 2S₄'s.

For n = 6, let $V(K_{2,6}) = (X_1, X_2)$, where $X_1 = \{x_{11}, x_{12}\}$ and $X_2 = \{x_{21}, \dots, x_{26}\}$. Then the required $\{pC_4, qS_4\}$ decompositions are as given below:

 p = 3 and q = 0. By Theorem 1.1, we get the required 3C₄'s.
p = 1 and q = 2. (x₁₁, x₂₁, x₁₂, x₂₂, x₁₁) and (x₁₁, x₁₂; x₂₃, x₂₄, x₂₅, x₂₆).

For n = 8, we can write, $K_{2,8} = K_{2,4} \oplus K_{2,4}$. Then the graph $K_{2,4}$ has a $\{pC_4, qS_4\}$ -decomposition, by the starting of the proof. Hence, by the remark, the graph $K_{2,8}$ has a desired decomposition.

Case 2. For m = 4 and n = 4, let $V(K_{4,4}) = (X_1, X_2)$, where $X_1 = \{x_{11}, \dots, x_{14}\}$ and $X_2 = \{x_{21}, \dots, x_{24}\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

- 1. p = 4 and q = 0. $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13})$ and $(x_{13}, x_{23}, x_{14}, x_{24}, x_{13})$.
- 2. p = 2 and q = 2. The first two C_4 's in (1) and the $2S_4$'s $(x_{13}, x_{14}; x_{21}, x_{22}, x_{23}, x_{24})$ gives the required decomposition.
- 3. p = 0 and q = 4. By Theorem 1.2, we get the required $4S_4$'s.

For m = 4 and n = 6, let $V(K_{4,6}) = (X_1, X_2)$, where $X_1 = \{x_{11}, \dots, x_{14}\}$ and $X_2 = \{x_{21}, \dots, x_{26}\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

- 1. p = 6 and q = 0. $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11}), (x_{11}, x_{25}, x_{12}, x_{26}, x_{11}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13}), (x_{13}, x_{23}, x_{14}, x_{24}, x_{13})$ and $(x_{13}, x_{25}, x_{14}, x_{26}, x_{13}).$
- 2. p = 4 and q = 2. The first four C_4 's in (1) and the $2S_4$'s $(x_{13}, x_{14}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.
- 3. p = 3 and q = 3.

The first three C_4 's in (1) and the $3S_4$'s $(x_{11}; x_{21}, x_{22}, x_{23}, x_{24})$, $(x_{12}; x_{21}, x_{22}, x_{25}, x_{26})$, $(x_{13}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

- 4. p = 2 and q = 4. The 2C₄'s $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13})$ and the 4S₄'s $(x_{11}, x_{12}, x_{13}, x_{14}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.
- 5. p = 0 and q = 6. By Theorem 1.2, we get the required $6S_4$'s.

For n = 8, we can write, $K_{4,8} = K_{4,6} \oplus K_{4,2}$. Both the graphs $K_{4,6}$ and $K_{4,2}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{4,8}$ has a desired decomposition.

Case 3. For m = 6 and n = 6, let $V(K_{6,6}) = (X_1, X_2)$, where $X_1 = \{x_{11}, \dots, x_{16}\}$ and $X_2 = \{x_{21}, \dots, x_{26}\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

- 1. p = 9 and q = 0. $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11}), (x_{11}, x_{25}, x_{12}, x_{26}, x_{11}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13}), (x_{13}, x_{23}, x_{14}, x_{24}, x_{13}), (x_{13}, x_{25}, x_{14}, x_{26}, x_{13}), (x_{15}, x_{21}, x_{16}, x_{22}, x_{15}), (x_{15}, x_{23}, x_{16}, x_{24}, x_{15}), (x_{15}, x_{25}, x_{16}, x_{26}, x_{15}).$
- 2. p = 7 and q = 2.

The first four and last three C'_4 s in (1) and the $2S_4$'s $(x_{13}, x_{14}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

3. p = 6 and q = 3.

The first three and last three C_4 's in (1) and the $3S_4$'s $(x_{11}; x_{21}, x_{22}, x_{23}, x_{24})$, $(x_{12}; x_{21}, x_{22}, x_{25}, x_{26})$, $(x_{13}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

4. p = 5 and q = 4.

The last three C_4 's in (1) along with $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11})$, $(x_{13}, x_{21}, x_{14}, x_{22}, x_{13})$ and the $4S_4$'s $(x_{11}, x_{12}, x_{13}, x_{14}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

5. p = 4 and q = 5.

The 4*C*₄'s $(x_{11}, x_{25}, x_{13}, x_{26}, x_{11}), (x_{12}, x_{23}, x_{14}, x_{24}, x_{12}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13}), (x_{15}, x_{21}, x_{16}, x_{22}, x_{15})$ and the 5*S*₄'s $(x_{11}, x_{12}; x_{21}, x_{22}, x_{25}, x_{26}), (x_{13}, x_{15}, x_{16}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

6. p = 3 and q = 6.

The $3C_4$'s $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{13}, x_{21}, x_{14}, x_{22}, x_{13}), (x_{15}, x_{21}, x_{16}, x_{22}, x_{15})$ and the $6S_4$'s $(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}; x_{23}, x_{24}, x_{25}, x_{26})$ gives the required decomposition.

- 7. p = 2 and q = 7. The 2C₄'s $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11})$ and the 7S₄'s $(x_{13}; x_{21}, x_{22}, x_{23}, x_{26}), (x_{14}; x_{21}, x_{22}, x_{23}, x_{26}),$ $(x_{15}; x_{21}, x_{22}, x_{23}, x_{24}), (x_{16}; x_{21}, x_{22}, x_{23}, x_{24}), (x_{24}; x_{11}, x_{12}, x_{13}, x_{14}), (x_{25}; x_{13}, x_{14}, x_{15}, x_{16}), (x_{26}; x_{11}, x_{12}, x_{15}, x_{16})$ gives the required decomposition.
- 8. p = 1 and q = 8.

 $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11})$ and the 8S₄'s $(x_{15}, x_{16}; x_{23}, x_{24}, x_{25}, x_{26})$, $(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}; x_{11}, x_{12}, x_{13}, x_{14})$ gives the required decomposition.

9.
$$p = 0$$
 and $q = 9$.
By Theorem 1.2, we get the required 9S₄'s.

For n = 8, we can write, $K_{6,8} = K_{6,4} \oplus K_{6,4}$. Then we obtained $(p,q) \in \{(12,0), (10,2), \dots, (2,10), (0,12)\}$. The case (1,11) can be obtain by taking, $K_{6,8} = K_{6,2} \oplus K_{6,6}$, we have (1,11) = (1,2) + (0,9), by the Cases 1 and 3 above procedure. Hence, the graph $K_{6,8}$ has a desired decomposition.

Case 4. For m = 8 and n = 8, we can write, $K_{8,8} = 2K_{4,6} \oplus 2K_{2,4}$. By Case 1 above, we obtained $(p,q) \in \{(16,0), (14,2), \dots, (2,14), (0,16)\}$. The case (1,15) can be obtain by taking, $K_{8,8} = K_{6,8} \oplus 2K_{2,4}$, we have (1,15) = (1,11) + (0,4), by the Case 1 and 3 above procedure. Hence, the graph $K_{8,8}$ has a desired decomposition. \Box

Lemma 3.2. If $m, n \in 2\mathbb{Z}_+$ with $2 \le m \le 8$ and $n \ge 10$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$.

Proof. Case 1. For m = 2, we distinguish two subcases.

Subcase 1. $n \equiv 2 \pmod{4}$, we have n = 4x + 2, where $x \ge 2$.

For x = 2 we have, $K_{2,10} = K_{2,8} \oplus K_{2,2}$. Then the graph $K_{2,10}$ has a (4; p, q)-decomposition, by Lemma 3.1. For $x \ge 3$, we can write, $K_{2,4x+2} = K_{2,10} \oplus (x-2)K_{2,4}$. By the above procedure and Lemma 3.1, both the graphs $K_{2,10}$ and $K_{2,4}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{2,4x+2}$ has a desired decomposition.

Subcase 2. $n \equiv 0 \pmod{4}$, we have n = 4x, where $x \ge 3$. We can write, $K_{2,4x} = xK_{2,4}$. Hence, the graph $K_{2,4x}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.1.

For m = 4, 6 and n = 10, we can write, $K_{m,10} = K_{m,6} \oplus K_{m,4}$. Hence, the graph $K_{m,10}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.1.

Let n > 10, we have n = 4x + y, where $3 \le x \in \mathbb{Z}_+$ and y = 0, 2. We can write, $K_{m,n} = K_{m,4x+y}$.

Case 2. For m = 4, we can write, $K_{4,4x+y} = K_{4,10} \oplus \left(\frac{4x+y}{2} - 5\right)K_{4,2}$. By the above procedure and Lemma 3.1,

both the graphs $K_{4,10}$ and $K_{4,2}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{4,4x+y}$ has the desired decomposition.

Case 3. For m = 6. We distinguish two subcases.

Subcase 1. $n \equiv 2 \pmod{4}$, we have n = 4x + 2, where $3 \leq x \in \mathbb{Z}_+$, we can write, $K_{6,4x+2} = (x-1)K_{6,4} \oplus K_{6,6}$. Hence, the graph $K_{6,4x+2}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.1.

Subcase 2. $n \equiv 0 \pmod{4}$, we have n = 4x, where $3 \le x \in \mathbb{Z}_+$, we can write, $K_{6,4x} = (x-1)K_{6,4} \oplus K_{6,4}$. Hence, the graph $K_{6,4x}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.1. **Case 4.** For m = 8 and n = 2x, where $x \ge 5$, we can write, $K_{8,2x} = K_{8,8} \oplus (x-4)K_{8,2}$. Note that $K_{8,2} \cong K_{2,8}$. Hence, the graph $K_{8,2x}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.1.

Lemma 3.3. If $m \in 2\mathbb{Z}_+$ with $m \equiv 0 \pmod{4} \ge 12$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{\underline{m}}, m$, where $q \neq 1$.

Proof. We distinguish two cases.

Case 1. m = 12 and $q \neq 1$.

We can write, $K_{6,12} = K_{6,6} \oplus K_{6,6}$. By Lemma 3.1, the graph $K_{6,6}$ has a $\{pC_4, qS_4\}$ -decomposition. Hence, the graph $K_{6,12}$ has the desired decomposition

Case 2. m > 12 and $q \neq 1$. We can write,

$$K_{\frac{m}{2},m} = K_{6,12} \oplus K_{6,m-12} \oplus \left(\frac{m-12}{4}\right) (K_{2,12} \oplus K_{2,m-12}).$$

By the Case 1 above and Lemma 3.2, the graphs $K_{6,12}, K_{2,12}$ and $K_{2,m-12}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{\frac{m}{2},m}$ has the desired decomposition.

Lemma 3.4. If $m \in 2\mathbb{Z}_+$ with $m \equiv 0 \pmod{4} \ge 12$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,m}$, where $q \neq 1$.

Proof. For $m \ge 12$ and $q \ne 1$. We can write,

$$K_{m,m} = K_{8,8} \oplus \left(\frac{m-12}{4}\right) K_{4,4} \oplus \left\{\bigoplus_{i=1}^{m-4} K_{i,4}\right\} \oplus \left\{\bigoplus_{j=1}^{m-4} K_{4,j}\right\},$$

where $i \equiv 0 \pmod{4} \ge 4$ and $j \equiv 0 \pmod{4} \ge 8$. Note that $K_{i,4} \cong K_{4,i}$. By Lemmas 3.1 and 3.2, the graphs $K_{4,4}, K_{8,8}, K_{i,4}$ and $K_{4,j}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{m,m}$ has the desired decomposition.

Lemma 3.5. If $m \in 2\mathbb{Z}_+$ with $m \equiv 2 \pmod{4} \ge 10$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,m}$, where $q \neq 1$.

Proof. We can write,

$$K_{m,m} = K_{6,6} \oplus \left(\frac{m-6}{4}\right) K_{4,4} \oplus \{\oplus_i^{m-4} K_{4,i}\} \oplus \{\oplus_j^{m-4} K_{j,4}\},$$

where $i, j \equiv 2 \pmod{4} \ge 6$. Note that $K_{j,4} \cong K_{4,j}$. By Lemmas 3.1 and 3.2, the graphs $K_{4,4}, K_{6,6}, K_{4,i}$ and $K_{j,4}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{m,m}$ has the desired decomposition.

Lemma 3.6. If $m, n \in 2\mathbb{Z}_+$ with $n \ge m \ge 12$ and $m, n \equiv 0 \pmod{4}$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,m}$ where $q \ne 1$.

Proof. We can write,

$$K_{m,n} = K_{m,m} \oplus \left(\frac{n-m}{4}\right) K_{m,4}.$$

Note that $K_{m,4} \cong K_{4,m}$. By Lemmas 3.2 and 3.4, the graphs $K_{m,4}$ and $K_{m,m}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{m,n}$ has the desired decomposition.

Lemma 3.7. If $m, n \in 2\mathbb{Z}_+$ with $n \ge m \ge 12$; $m \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{4}$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$, where $q \ne 1$.

Proof. Let m = 4x and n = 4y + 2, where $x, y \in \mathbb{Z}_+$ and $y \ge x \ge 3$. Hence $K_{m,n} = K_{4x,4y+2}$. We can write, $K_{4x,4y+2} = K_{4x,4(y-1)} \oplus K_{4x,4+2}$. Since the graph $K_{4x,4(y-1)}$ can be viewed as (y - 1) copies of $K_{4x,4}$. Note that $K_{4x,6} \cong K_{6,4x}$. By Lemma 3.2, both the graphs $K_{4x,4}$ and $K_{4x,6}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{m,n}$ has the desired decomposition.

Lemma 3.8. If $m, n \in 2\mathbb{Z}_+$ with $n \geq m \geq 10$; $m \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{4}$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,m}$ where $q \neq 1$.

Proof. By the similar argument as in Lemma 3.7, we get a required decomposition. \Box

Lemma 3.9. If $m, n \in 2\mathbb{Z}_+$ with $n \ge m \ge 10$; $m, n \equiv 2 \pmod{4}$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$, where $q \ne 1$.

Proof. We can write,

$$K_{m,n} = K_{m,m} \oplus \left(\frac{n-m}{4}\right) K_{m,4}.$$

Note that $K_{m,4} \cong K_{4,m}$. By Lemma 3.2 and 3.5, the graphs $K_{m,4}$ and $K_{m,m}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{m,n}$ has the desired decomposition.

Lemma 3.10. If $m \in \{3, 5, 7\}$ and n = 4, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$.

Proof. We distinguish three cases.

Case 1. For m = 3 and n = 4. Let $V(K_{3,4}) = (X_1, X_2)$, where $X_1 = \{x_{11}, x_{12}, x_{13}\}$ and $X_2 = \{x_{21}, \dots, x_{24}\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

1.
$$p = 0$$
 and $q = 3$.
($x_{11}, x_{12}, x_{13}; x_{21}, x_{22}, x_{23}, x_{24}$)

2. p = 2 and q = 1.

 $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11})$ and $(x_{13}; x_{21}, x_{22}, x_{23}, x_{24}).$

Case 2. For m = 5 and n = 4. We can write, $K_{5,4} = K_{4,4} \oplus K_{1,4}$. Note that $K_{5,4} \cong K_{4,5}$. By Lemma 3.1, the graph $K_{4,4}$ has a $\{pC_4, qS_4\}$ -decomposition and trivially the graph $K_{1,4}$ is S_4 . Hence, the graph $K_{5,4}$ has the desired decomposition.

Case 3. For m = 7 and n = 4. We can write, $K_{7,4} = K_{6,4} \oplus K_{1,4}$. By Lemma 3.1 the graph $K_{6,4}$ has a $\{pC_4, qS_4\}$ -decomposition and trivially the graph $K_{1,4}$ is S_4 . Hence, the graph $K_{7,4}$ has the desired decomposition.

Lemma 3.11. If m = 3 and $n \in 2\mathbb{Z}_+$ with $n \equiv 0 \pmod{4} \ge 8$, then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$, where $q \ge \frac{n}{4}$.

Proof. We distinguish two cases.

Case 1. For m = 3 and n = 8, let $V(K_{3,8}) = V(X_1, X_2)$, where $X_1 = \{x_{11}, x_{12}, x_{13}\}$, $X_2 = \{x_{21}, \dots, x_{28}\}$ and $E(K_{3,8}) = \{x_{1i}x_{2j} | i = 1, 2, 3 \text{ and } j = 1, \dots, 8\}$. Then the required $\{pC_4, qS_4\}$ -decompositions are as given below:

- 1. p = 4 and q = 2. The $4C_4$'s $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11}), (x_{11}, x_{25}, x_{12}, x_{26}, x_{11}), (x_{11}, x_{27}, x_{12}, x_{28}, x_{11})$ and the $2S_4$'s $(x_{13}; x_{21}, x_{22}, x_{23}, x_{24}), (x_{13}; x_{25}, x_{26}, x_{27}, x_{28})$ gives the required decomposition.
- 2. p = 3 and q = 3. The $3C_4$'s $(x_{11}, x_{21}, x_{23}, x_{22}, x_{11}), (x_{11}, x_{24}, x_{13}, x_{25}, x_{11}), (x_{12}, x_{26}, x_{13}, x_{28}, x_{12})$ and the $3S_4$'s $(x_{11}; x_{22}, x_{26}, x_{27}, x_{28}), (x_{12}; x_{22}, x_{24}, x_{25}, x_{27}), (x_{13}; x_{21}, x_{22}, x_{23}, x_{27})$ gives the required decomposition.
- 3. p = 2 and q = 4. The 2C₄'s $(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}), (x_{11}, x_{23}, x_{12}, x_{24}, x_{11})$ and the 4S₄'s $(x_{13}; x_{21}, x_{22}, x_{23}, x_{24}), (x_{11}, x_{12}, x_{13}; x_{25}, x_{26}, x_{27}, x_{28})$ gives the required decomposition.
- 4. p = 0 and q = 6. The $6S_4$'s $(x_{11}, x_{12}, x_{13}; x_{21}, x_{22}, x_{23}, x_{24}), (x_{11}, x_{12}, x_{13}; x_{25}, x_{26}, x_{27}, x_{28}).$

Case 2. For m = 3, n > 8 and $q \ge \frac{n}{4}$. We can write,

$$K_{3,n} = K_{3,8} \oplus \left(\frac{n-8}{4}\right) K_{3,4}.$$

By Lemma 3.10 and the Case 1 above, the graphs $K_{3,4}$ and $K_{3,8}$ have a $\{pC_4, qS_4\}$ -decomposition. Hence, by the remark, the graph $K_{3,n}$ has the desired decomposition.

Lemma 3.12. Let *m* be an odd integer and $n \in 2\mathbb{Z}_+$ with 2 < m < n and $n \equiv 0 \pmod{4} \ge 4$. Then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$, where $q \ge \frac{n}{4}$.

Proof. Let m = 4x + s and n = 4y, where $x, y \in \mathbb{Z}_+$ with $y \ge x \ge 1$ and s = 1, 3. We can write, $K_{m,n} = K_{m-1,n} \oplus K_{1,n}$, we have $K_{4x+s,4y} = K_{4x+s-1,4y} \oplus K_{1,4y}$. Since $K_{4x+s-1,4y}$ can

be viewed as *x* copies of $K_{4+s-1, 4y}$. Then the graph $K_{4+s-1, 4y}$ has a $\{pC_4, qS_4\}$ -decomposition, by Lemma 3.2 and trivially the graph $K_{1,4y}$ has an S_4 -decomposition. Hence, the graph $K_{4x+s,4y}$ has the desired decomposition.

Lemma 3.13. Let *n* be an odd integer and $m \equiv 0 \pmod{4}$, $n > m \ge 4$. Then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$, where $q \ge \frac{m}{4}$.

Proof. By the similar argument as in Lemma 3.12, we get a required decomposition. \Box

4. Conclusion

As a consequence of Lemmas 2.1–2.4 and 3.1–3.13, our main result immediately follows.

Theorem 4.1. Let p and q be nonnegative integers, and let m and n be positive integers such that $m \le n$. Then there exists a $\{pC_4, qS_4\}$ -decomposition of $K_{m,n}$ if and only if one of the following holds:

- 1. q is even, when m = 2 and even $n \ge 2$;
- 2. $p, q \neq 1$, when m = 4 and even $n \geq 4$;
- 3. $q \neq 1$ when even $m, n \geq 6$;
- 4. $q \ge \frac{n}{4}$ (resp., $q \ge \frac{m}{4}$), when m (resp., n) is an odd integer and $n \equiv 0 \pmod{4}$ (resp., $m \equiv 0 \pmod{4}$).

Acknowledgments

The authors thank the University Grant Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/2016(SAP-I). Also would like to thank Dr. A. Shanmuga Vadivu (NBHM-PDF) whose contribution was helpful in developing ideas for this paper.

Disclosure statement

The following authors have affiliations with organizations with direct or indirect partial financial support in the subject matter discussed in the manuscript: M. Ilayaraja, Periyar University, Salem, Tamil Nadu, India.

References

- Abueida, A. A, Daven, M. (2003). Multidesigns for graph-pairs of order 4 and 5. *Graphs Combin* 19(4):433-447.
- [2] Abueida, A. A, O'Neil, T. (2007). Multidecomposition of λK_m into small cycles and claws. *Bull. Inst. Combin. Appl.* 49:32–40.
- [3] Alspach, B, Gavlas, H. (2001). Cycle decompositions of Kn and $K_n I$. J. Combin. Theory Ser. B 81(1):77–99.
- [4] Bondy, J. A, Murty, U. R. S. (1976). *Graph Theory with Applications*. New York: The Macmillan Press Ltd.,
- [5] Jeevadoss, S, Muthusamy, A. (2014). Decomposition of complete bipartite graphs into paths and cycles. *Discrete Math.* 331: 98–108.
- [6] Lee, H. C. (2015). Decomposition of the complete bipartite multigraph into cycles and stars. *Discrete Math.* 338(8): 1362–1369.
- [7] Lee, H.-C, Chu, Y.-P. (2013). Multidecompositions of complete bipartite graphs into cycles and stars. Ars Combin. 2013:1–364.

- [8] Lee, H. C, Lin, J.-J. (2013). Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars. *Discret Math.* 313(20):2354–2358.
- [9] Priyadharsini, H. M, Muthusamy, A. (2012). (G_m, H_m) -multidecomposition of $K_{m,m}(\lambda)$. Bull. Inst. Combin. Appl. 66: 42–48.
- [10] Shyu, T.-W. (2013). Decomposition of complete bipartite graphs into paths and stars with same number of edges. *Discret. Math.* 313(7):865–871.
- [11] Sotteau, D. (1981). Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k. J. Combin. Theory Ser. B 30(1):75–81.
- [12] Sajna, M. (2002). Cycle decompositions III; complete graphs and fixed length cycles. J. Combin. Des. 10:27–78.
- [13] Ushio, K., Tazawa, S, Yamamoto, S. (1978). On claw-decomposition of complete multipartite graphs. *Hiroshima Math. J.* 8(1):207–210.
- [14] Yamamoto, S., Ikeda, H., Shige-Eda, S., Ushio, K, Hamada, N. (1975). On claw decomposition of complete graphs and complete bipartite graphs. *Hiroshima Math. J.* 5(1):33–42.