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ABSTRACT
Let D be a digraph and A and B two subsets of PD, where PD ¼ {P: P is a non trivial finite path
in D}. A subset N of V(D) is said to be an (A,B)-kernel of D if: (1) for every {u,v} � N there exists
no uv-path P such that P 2 A (N is A-independent), (2) for every vertex x in V(D)nN there exist y
in N and P in B such that P is an xy-path (N is B-absorbent). As a particular case, the concept of
(A,B)-kernel generalizes the concept of kernel when A ¼ B ¼ A(D). A classical result in kernel
theory is Richardson’s theorem which establishes that if D is a finite digraph without odd cycles,
then D has a kernel. In this paper, the original results are sufficient conditions for the existence of
(A,B)-kernels in possibly infinite digraphs, in particular we will present some generalizations of
Richardson’s theorem for infinite digraphs. Also we will deduce some conditions for the existence
of kernels by monochromatic paths, H-kernels and (k,l)-kernels in possibly infinite digraphs.
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1. Introduction

For general concepts we refer the reader to [2, 3]. An arc of
the form (x,x) is a loop. We will say that two digraphs D1

and D2 are equal, denoted by D1 ¼ D2, if A(D1) ¼ A(D2)
and V(D1) ¼ V(D2). A directed walk in a digraph D is a
sequence (v1, v2, :::, vn) of vertices of D such that (vi,viþ1) 2
A(D) for each i 2 {1, :::, n – 1}. We will say that the
directed walk (v1, v2, :::, vn) is closed if v1 ¼ vn. If vi 6¼ vj
for all i and j such that {i, j} � {1, :::, n} and i 6¼ j, it is
called a directed path. A directed cycle is a directed walk (v1,
v2, :::, vn, v1) such that vi 6¼ vj for all i and j such that {i, j}
� {1, :::, n} and i 6¼ j. If D is an infinite digraph, an infinite
outward path is an infinite sequence (v1, v2, :::) of distinct
vertices of D such that (vi,viþ1) 2 A(D) for each i 2 N: In
this paper we are going to write a walk, path, cycle instead
of a directed walk, directed path, directed cycle, respectively.
The union of walks will be denoted by [: Let S1 and S2 be
subsets of V(D), an arc (u,v) of D will be called an S1S2-arc
whenever u 2 S1 and v 2 S2. For S � V(D) we define the
in-neighborhood of S as C�

D(S) ¼ {y 2 V(D): (y,v) 2 A(D)
for some v 2 S}. We define the out-neighborhood of S as
Cþ
D(S) ¼ {y 2 V(D): (v,y) 2 A(D) for some v 2 S}. A

digraph D is strong if for every pair of vertices x and y there
is an xy-path and there is a yx-path in D. A subdigraph G
of D is called a strong component if it is strong and it is
maximal with respect to this property. A strong component
G of D is called initial (respectively terminal) if C�

D(V(G)) �
V(G) (respectively Cþ

D(V(G)) � V(G)). For S � V(D) the

subdigraph of D induced by S, denoted by D[S], has
V(D[S]) ¼ S and A(D[S]) ¼ {(u,v) 2 A(D): {u, v} � S}. For
a nonempty subset B of A(D), the arc-induced subdigraph by
B, denoted by D[B], is the subdigraph of D such that
V(D[B]) ¼ {v 2 V(D): either (v,w) 2 B or (w,v) 2 B for
some w 2 V(D)} and A(D[B]) ¼ B. We shall say that a sub-
set S � V(D) is independent if the only arcs in D[S] are
loops. A digraph D is bipartite if there is a partition (V1, V2)
of V(D) such that D[Vi] is an independent set for each i 2
{1, 2}. A digraph D is transitive whenever (u,v) 2 A(D) and
(v,w) 2 A(D) implies (u,w) 2 A(D). A digraph D is symmet-
ric whenever (u,v) 2 A(D) implies (v,u) 2 A(D). A digraph
D is said to be m-colored if the arcs of D are colored with m
colors. Let D be an m-colored digraph. A path is called
monochromatic if all of its arcs are colored alike. For an arc
(u,v) of D we will denote by c(u,v) its color. Let H be a
digraph possibly with loops and D a digraph without loops.
D is said to be H-colored if its arcs are colored with the ver-
tices of H. A walk (path) W in D is an H-walk (H-path) if
and only if the consecutive colors encountered on W form a
walk in H.

Definition 1.1. Let D be a digraph. A subset K of V(D) is
said to be a kernel if it is both independent (a vertex in K
has no successor in K) and absorbing (a vertex not in K has
a successor in K).

In [14] von Neumann and Morgenstern introduced the
concept of kernel of a digraph in the context of Game
Theory. This concept attracted a lot of attention due to its
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aplications in winning strategies of some combinatorial
games, in Mathematical Logic and in Nim-type games, to
name a few. Moreover, some problems may be modelled by
use of digraph kernels. The main problems when we want
to find a kernel are: first, that not every digraph has a ker-
nel, and that the problem of determining if a given digraph
has a kernel is NP-complete, which was proved by Chv�atal
[4]. Kernels have been widely studied, many sufficient con-
ditions for the existence of a kernel are known. An interest-
ing survey on the subject is [7]. The first works on the
existence of kernels in digraphs were for finite digraphs. In
previous years, some works have been done in the direction
of finding sufficient condition for the existence of kernels in
infinite digraphs but these are very a few. In addition to the
theorical interest that has to consider kernels in infinite
digraphs, some applications have arisen throughout the lit-
erature. For example, in [6] Duchet and Meyniel considered
a two player game on a progressively and locally finite
digraph (no vertex is the origin of an infinite path and only
a finite number of succesors for every vertex, respectively)
and they proved that the first player wins if and only if the
digraph has a local-kernel (a non-empty independent subset
L of V(D) such that every element of Cþ

D(L) has a successor
in L). However, kernel theory in infinite digraphs is still a
relatively unexplored subject, so far there are few results
that guarantee the existence of kernels in infinite digraphs,
see [12, 15, 17].

The first sufficient conditions for a finite digraph to have
a kernel were given on the cycles of the digraph. For
example, in [14] Neumann and Morgenstern proved that
every finite digraph without cycles has a unique kernel. In
[16] Richardson generalized this result and he proved that
every finite digraph without cycles of odd length has a ker-
nel. Indeed, many extensions of Richardson’s theorem have
been found. In this paper we will show some generalizations
of Richardson’s theorem for infinite digraphs.

In the literature we know some generalizations of the con-
cept of kernel in digraphs, manely: kernel by monochromatic
paths ([18] Sands, Sauer and Woodrow [8], Galeana-S�anchez),
(k,l)-kernel ([13] Kwa�snik and Borowiecki), H-kernel ([5]
Galeana-S�anchez and Delgado-Escalante), H-kernel by walks
([1] Arpin and Linek), p-kernel ([9] Galeana-S�anchez and
Montellano-Ballesteros).

Since the previous concepts have some similarity, in [11]
the authors generalized those concepts as follows: Consider
a digraph D and define PD ¼ {P: P is a non trivial finite
path in D}.

Definition 1.2. Let D be a digraph, N a subset of V(D) and
A and B two subsets of PD: N is an (A,B)-kernel of D if

1. For every {u,v} � N there exists no uv-path P such that
P 2 A (N is A-independent).

2. For every vertex x in V(D)nN there exist y in N and P
in B such that P is an xy-path (N is B-absorbent).

When A � A(D) and B ¼ A(D) then we will say that
an (A,B)-kernels is called an A- kernel. From now on we
will write R- kernel instead of A- kernel

When a digraph has no a kernel we can ask the follow-
ing, with respect to A : How large can be a set A such that
D has an A-kernel? If N is an A-kernel with A the max-
imum number of elements, then N is similar to a kernel,
and it is in this sense that such sets are as close as possible
to a kernel.

In this work we will show sufficient conditions for the
existence of (A,B)-kernels in possibly infinite digraphs.
This paper is divided into three parts, the first one studies
the existence of R-kernels and the main result (Theorem
2.6) established that if D is a digraph without infinite out-
ward path and R is a nonempty subset of A(D) such that
every cycle in D has even R-length, then D has an R-kernel.
We can see that this result is a generalization of
Richardson’s theorem. The second part studies the relation
that there exists between an (A,B)-kernel and the R-kernel
of an asociated digraph to D. And in the third part we show
sufficient conditions for the existence of (A,B)-kernels, in
particular we are going to show more generalizations of
Richardson’s theorem. And we will see that we can deduce
as direct consequences some results which guarantee the
existence of kernels by monochromatic paths, (k,l)-kernels
and H-kernels.

We need the following.

Theorem 1.3 ([10]). Let D be a strong digraph (possibly
infinite). Then D is bipartite if and only if every directed cycle
has even length.

Theorem 1.4 ([17]). Let D be a digraph possibly infinite. If
D contains no infinite outward path then D contains at least
one terminal strong component.

Theorem 1.5 ([17]). Let D be a digraph possibly infinite. If
D contains no infinite outward path and contains no odd
cycle then D is a kernel perfect digraph.

2. R-kernels and R-semikernels

In this section, the main result is Theorem 2.6. This result is
an extension of Richardson’s theorem for possibly infinite
digraphs and in order to prove it we need some previous
definitions and results.

Definition 2.1. Let D be a digraph and R be a subset of
A(D). A subset S of V(D) is an R-semikernel of D if

1. S is an R-independent set.
2. S absorbs Cþ(S) \ (V(D)nS).
Definition 2.2. Let D be a digraph and R a subset of A(D).
We will say that D is an R-kernel perfect digraph if every
induced subdigraph H of D has an RH-kernel, with RH ¼
A(H) \ R:

We will use the following notation.
Let D be a digraph, R a subset of A(D), {u, v} a subset of

V(D) and S a subset of V(D). We will write: u ! v if there
exists an arc from u to v in D; u!Rv if there exists an arc
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from u to v in u!Rv; u↛v is the denial of u ! v; u↛Rv is
the denial of u!Rv; u ! S if there exists a {u}S-arc in D;
u!RS if there exists an {ugS-arc in R; u↛S is the denial of
u ! S; u↛RS is the denial of u!RS:

Proposition 2.3. Let D be a digraph (possibly infinite) and
R a subset of A(D). If D has a nonempty R-semi-kernel,
then D has a maximal R-semi-kernel.

Proof. Let S be the set of all nonempty R-semi-kernels of
D. It follows from the hypothesis of Proposition 2.3 that
S 6¼ ;: Clearly the set S with the inclusion relation is a par-
tially ordered set. We will prove that every chain in (S, �)
has an upper bound in S: Let C be a chain in (S, �) and
S1 ¼ [S2C S: It is easy to check that S1 is an upper bound
for C and S1 2 S:

Therefore, it follows from Zorn’s lemma that there exists
a maximal R-semi-kernel in D. w

The following theorem is inspired in a result of V�ıctor
Neumann-Lara [15] which establishes that if D is a digraph
such that every induced subdigraph of D has a nonempty
semi-kernel, then D is kernel perfect.

Theorem 2.4. Let D be a digraph (possibly infinite) and R a
subset of A(D). If every induced subdigraph H of D has a
nonempty RH-semi-kernel, with RH ¼ R \ A(H), then D
has an R-kernel.

Proof. Let S be a maximal R-semi-kernel of D (S exists by
Proposition 2.3) and D ¼ {v 2 V(D)nS : v↛S}.

Consider the following claims.
Claim 1. D ¼ ;:
Proceeding by contradiction, suppose that D 6¼ ;: Then it

follows from the hypothesis that the digraph H¼D[D] has
a non-empty RH-semi-kernel S1, with RH ¼ R \ A(H).

Claim 1.1. S0 ¼ S [ S1 is an R-semi-kernel of D.
We are going to prove that S0 is an R-independent set in

D. Since both S and S1 are R-independent sets in D, then it
remains to prove that {(u,v),(v,u)} \ R ¼ ; for every u 2 S
and for every v 2 S1.

We are going to prove that u↛Rv for each u 2 S and for
each v 2 S1. Proceeding by contradiction, suppose that there
exist u 2 S and v 2 S1 such that u!Rv: Since v 62 S and S
is an R-semi-kernel of D, it follows that there exists w 2 S
such that v ! w, contradicting v 2 D (recall that S1 � D).
Therefore, u↛Rv for each u 2 S and for each v 2 S1.

We will prove that x↛Ry for each x 2 S1 and for each y
2 S. Proceeding by contradiction, suppose that there exist x
2 S1 and y 2 S such that x!Ry: Thus, in particular, we
have that x ! y, contradicting x 2 D: Therefore, x↛Ry for
each x 2 S1 and for each y 2 S.

So, S0 is an R-independent set in D.
We are going to prove that S0 absorbs Cþ(S0) \

(V(D)nS0). Let z be a vertex in V(D)nS0 and u 2 S0 such that
u ! z: If u 2 S, then we have that z ! S (because S is an
R-semi-kernel of D), which implies that z ! S0: Suppose
that u 2 S1. If z 2 ((V(D)nS)nD), then it follows from the
definition of D that z ! S, which implies that z ! S0: If z

2 D n S1, then z ! S1 (because S1 is an R-semi-kernel of
D[D]), which implies that z ! S0:

Therefore, S [ S0 is an R-semi-kernel of D such that S �
S0 (the symbol � denotes a proper subset), which contra-
dicts the choice of S.

So, D ¼ ;:
Thus, S is an R-kernel in D. w

We are ready to prove the main result of this section but
for this we need consider a definition.

Definition 2.5. Let D be a digraph, R a subset of A(D) and
W ¼ (v0, v1, :::, vn) a walk in D. Suppose ei ¼ (vi�1,vi) for
each i in {1, :::, n}. Let I ¼ {k 2 {1, :::, n}: ek 2 R}. We will
say that jIj is the R-length of W.

Theorem 2.6. Let D be a digraph (possibly infinite) without
infinite outward path and R a nonempty subset of A(D).
If every cycle in D has even R-length, then D has
an R-kernel.

Proof. We will prove that every induced subdigraph H of D
has a nonempty RH-semi-kernel, with RH ¼ A(H) \ R: Let
H be an induced subdigraph of D. If RH ¼ ;, then V(H) is
a nonempty RH-semi-kernel of H. Suppose that RH 6¼ ;:

Let HR be the subdigraph arc-induced by the set {(u,v) 2
A(H): (u,v) 2 R} (HR ¼ H[{(u,v) 2 A(H): (u,v) 2 R}]). Let
G be a terminal strong component of HR (G exists by
Theorem 1.4). Suppose that jV(G)j � 2.

Since every cycle in D has even R-length, it follows that
HR has no cycles of odd length. So, G is a bipartite digraph
(by Theorem 1.3). Let (V1,V2) be a partition of V(G) where
V1 and V2 are two independent sets. Consider the set K ¼
{v 2 V(HR)nV(G): Cþ

H(v) \ V2 ¼ ;}. If K ¼ ;, then V2 [
(V(H)nV(HR)) is an RH-semi-kernel of H. Suppose that K
6¼ ;: Since HR[K] has no cycles of odd length, it follows that
HR[K] has a kernel N1 (by Theorem 1.5).

We claim that N ¼ (V2 [ N1 [ (V(H)nV(HR))) is a non-
empty RH-semi-kernel of H.

We will prove that N is an RH-independent set in H.
From the definition of HR we have that both V2 and N1 are
RH-independent sets in H. It follows from the definition of
K and because of that G is a terminal strong component of
HR that there exists no arc of RH between V2 and N1. On
the other hand, from the definition of HR we have that
V(H)nV(HR) is an RH-independent set in H and there exists
no arc of RH between V(H)nV(HR) and V2 [ N1. Therefore,
N is an RH-independent set in H.

We will prove that N absorbs Cþ
H(N) \ (V(H)nN). Let v

be a vertex in V(H)nN such that there exits an N{v}-arc in
H. We consider three cases on v: v 2 V1, v 2 K n N1 or v 2
V(HR)n(V(G) [ K). If v 2 V1, then there exists w 2 V2 such
that (v,w) 2 A(H) (because G is strong and G is bipartite).
If v 2 K n N1, then there exists w 2 N1 such that (v,w) 2
A(H) because N1 is a kernel of HR[K]. If v 2 V(HR)n(V(G)
[ K), then it follows from the definition of K that Cþ

H(v) \
V2 6¼ ;:

Therefore, N is a non-empty RH-semi-kernel of H.
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If jV(G)j ¼ 1, then the proof is similar as the case
jV(G)j � 2. When jV(G)j ¼ 1 we have that N¼V(G) [ N1

[ (V(H)nV(HR)) is a nonempty RH-semi-kernel of H.
Therefore, every induced subdigraph H of D has a non-

empty RH-semi-kernel, with RH ¼ A(H) \R:
So, D has R-kernel. w

Corollary 2.7. [17] Let D be a digraph (possibly infinite)
without infinite outward path and without cycles of odd
length. Then D has a kernel.

3 (A,B)-kernels and B-closure

Consider the following definitions.

Definition 3.1. Let D be a digraph and A and B two sub-
sets of PD: We will say that A and B satisfy the property
P, (A,B)P , if for every uv-path, say P, such that P 2 A we
have that there exists a uv-path, say P0, such that P0 2 B:

Definition 3.2. Let D be a digraph and A and B two sub-
sets of PD such that A and B satisfy the property P: The
B-closure, CB(D), of D is defined as follows:

V(CB(D)) ¼ V(D) and
(u,v) 2 A(CB(D)) if there exists a uv-path in D, say P,

such that P 2 B:

We will use the following notation.
Let {u,v} be a subset of V(CB(D)) and R a subset of

A(CB(D)). We will write: u ) v if there exists an arc from
u to v in CB(D); u)Rv if there exists an arc from u to v
in R:

From now on, D will be a digraph, A and B two subsets
of PD such that A and B satisfy the property P and
CB(D) the B-closure of D.

The following theorem shows how we can found an
(A,B)-kernel from an R-kernel of CB(D).

Theorem 3.3. N � V(D) is an (A,B)-kernel of D if and
only if N is an R-kernel of CB(D), with R ¼ {(x,y) 2
A(CB(D)): there exists an xy-path in D, say P, such that
P 2 A}.

Proof. (Necessity). We will prove that N is an R-independ-
ent set and N is an absorbent set in CB(D).

Proceeding by contradiction, suppose that there exists a
subset {x,y} of N such that x)Ry: Then, from the definition
of R we have that there exists P 2 A such that P is an xy-
path in D, contradicting that N is an A-independent set in
D. Therefore, N is an R-independent set in CB(D).

Let u be a vertex in V(CB(D))nN: Since V(CB(D)) ¼
V(D) and N is a B-absorbent set in D, it follows that there
exist v 2 N and P 2 B such that P is a uv-path in D. So,
u ) v: Therefore, N is an absorbent set in CB(D).

So, N is an R-kernel in CB(D).
(Sufficiency). We will prove that N is an A-independent

set and N is a B-absorbent set in D.
Proceeding by contradiction, suppose that there exist a

subset {x,y} of N and P 2 A such that P is an xy-path in D.
Then, from property P, the definition of (A,B)-closure

and the definition of R we conclude that x)Ry, contradict-
ing that N is an R-independent set in CB(D). Therefore, N
is an A-independent set in D.

Let u be a vertex in V(D)nN: Since V(CB(D)) ¼ V(D)
and N is an absorbent set in CB(D), it follows that there
exists v 2 N such that u ) v, which implies that there exists
P 2 B such that P is a uv-path in D (by definition of
CB(D)). Therefore, N is a B-absorbent set in D.

Thus, N is an (A,B)-kernel in D. w

4. (A,B)-kernels and Richardson’s theorem

Let D be a digraph and T a subset of PD: A sequence W ¼
(v0, :::, vn) of vertices of D is called a T-walk if there exists
a viviþ1-path in D, say P, such that P 2 T for every i in {0,
:::, n – 1}. We will say that n is the T-length of W. If vi 6¼
vj for every i 6¼ j, then W is called a T-path; if v0 ¼ vn,
then W is called a T- closed walk; if v0 ¼ vn and vi 6¼ vj for
every i 6¼ j with {i,j} 6¼ {0,n}, then W is called a T-cycle. An
infinite outward T-path is a sequence (vn)n2N of distinct
vertices of D such that there exists a viviþ1-path in D, say Pi,
with Pi 2 T for every i in N:

Theorem 4.1. Let D be a digraph (possibly infinite) and T a
subset of PD: Every T-closed walk in D with odd T-length
contains a T-cycle with odd T-length.

Proof. Let W be a T-closed walk with odd T-length in D.
We proceed by induction on lT(W), the T-length of W.

If lT(W) ¼ 3, then W is already a T-cycle with
odd T-length.

Assume that the statement holds for every T-closed walk
in D with both odd T-length and T-length less
than 2nþ 1:

Let W ¼ (v0, v1, :::, v2nþ1 ¼ v0) be a T-closed walk in D
with odd T-length. If vi 6¼ vj for every i 6¼ j with {i,j} 6¼
{0,2nþ 1}, then W is the desire T-cycle with odd T-length.
Suppose that there exist i and j, with i 6¼ j and {i,j} 6¼
{0,2nþ 1}, such that vi ¼ vj. Without loss of generality let
us suppose that i < j Consider the following two T-closed
walks W1 ¼ (v0, W, vi ¼ vj) [ (vj, W, v2nþ1 ¼ v0) and W2

¼ (vi, W, vj ¼ vi). Since W has odd T-length and lT(W) ¼
lT(W1) þ lT(W2), then either W1 or W2 must have odd
T-length. Without loss of generality let us suppose that W1

has odd T-length. Then by the induction hypothesis it fol-
lows that W1 contains a T-cycle with odd T-length. w

Theorem 4.2. Let D be a digraph (possibly infinite) and T a
subset of PD. If D has no infinite outward T-path, then
CT(D) has a terminal strong component.

Proof. We will prove that CT(D) has no infinite outward
path and then we will apply Theorem 1.4 in order to con-
clude. Proceeding by contradiction, suppose that CT(D) has
an infinite outward path, say (vn)n2N: It follows from the
definition of CT(D) that there exists a viviþ1-path in D, say
Pi, with Pi 2 T for every i in N, which implies that (vn)n2N
is an infinite outward T-path in D, a contradiction.
Therefore, CT(D) has no infinite outward path. w
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Let D be a digraph, H a subdigraph of D and A and B

two subsets of PD: We will say that a subset S of V(H) is a
B-semikernel of H if (1) S is an A-independent set in D,
and (2) for every v in V(H)nS if there exists an Sv-path in
D, say P, such that P in B, then there exists a vS-path in D,
say P0, such that P0 2 B:

Theorem 4.3. Let D be a digraph (possibly infinite) and A

and B two subsets of PD. If every induced subdigraph H of
D has a nonempty B-semikernel, then D has
an (A,B)-kernel.

Proof. Let R be a subset of A(CB(D)) with R ¼ {(x,y)2
A(CB(D)): there exists P in A such that P is an xy-path}.
We will prove that CB(D) has an R-kernel and for this we
will use Theorem 3.3 and Theorem 2.4; that is, we will prove
that every induced subdigraph G of CB(D) has a nonempty
RG-semikernel, with RG ¼ R \ A(G).

Let G be an induced subdigraph of CB(D) and S a non-
empty B-semikernel of D[V(G)]. We claim that S is a non-
empty RG-semikernel of G. Notice that S is an
RG-independent set in G; otherwise there exists a subset
{x,y} of S, with x 6¼ y, such that (x,y) 2 RG which implies
that there exists P in A such that P is an xy-path in D, in
contradiction with S an A-independent set in D. Therefore
S is an RG-independent set in G. On the other hand, let v
be a vertex in V(G)nS and s in S such that (s,v) 2 A(G),
then there exists P in B such that P is an sv-path in D.
Since S is an B-semikernel of D[V(G)], it follows that there
exist s0 in S and P0 in B such that P0 is a vs0-path in D
which implies that (v,s) 2 A(G). Therefore, S is a nonempty
RG-semikernel of G. Thus, it follows from Theorem 2.4 that
CB(D) has an R-kernel and so Theorem 3.3 implies that D
has an (A,B)-kernel. w

Theorem 4.4. Let D be a digraph (possibly infinite) and A

and B two subsets of PD such that (A,B)P . Suppose that D
has no infinite outward B-path and D has no B-cycle with
odd B-length. Then D has a nonempty B-semikernel.

Proof. It follows from Theorem 4.2 that CB(D) has a ter-
minal strong component, say H. Let v0 be a fixed vertex of
V(H) and consider the following sets V1 ¼ {w 2 V(H): there
exists a v0w-B-path with odd B-length} and V2 ¼ {w 2
V(H): there exists a v0w-B-path with even B-length}.

Remark 1. Consider a vertex w in V1 and let P be a
v0w-B-path with odd B-length; if P0 is a wv0-B-path, then
P0 has odd B-length, this follows from Theorem 4.1 and the
hypothesis that D has no B-cycle with odd B-length.
Similarly it holds for w in V2 that if P is a v0w-B-path with
even B-length and P0 is a wv0-B-path, then P0 has
even B-length.

Remark 2. For every subset {u,v} of V(H) there exists a
uv-B-path in D and there exists a vu-B-path in D. This fol-
lows from the fact that H is strong and the definition
of CB(D).

On the other hand, notice that v0 2 V2. We will prove
that V2 is a nonempty B-semikernel of D. V2 is an A-inde-
pendent set in D, otherwise there exist {x,y} � V2, with x 6¼
y, and P in A such that P is an xy-path in D which implies
that there exists P0 in B such that P0 is an xy-path in D
(because (A,B)P). Since y 2 V2, it follows from the defin-
ition of V2, Remarks 2 and 1 that there exists a yv0-B-path
with even B-length in D, say P1. Also, there exists a
v0x-B-path with even B-length, say P2. Therefore P0[ P1 [
P2 is a B-closed walk, with odd B-length, which contains a
B-cycle with odd B-length (by Theorem 4.1), a contradic-
tion. Thus, V2 is an A-independent set in D. We will prove
that if v is a vertex in V(D)nV2 such that there exist u in V2

and P in B such that P is a uv-path, then there exist w in
V2 and P0 in B such that P0 is a vw-path. Notice that v 2
V(H) because H is a terminal strong component of CB(D),
which implies that v 2 V1 and so by Remark 2 we have that
there exists P0 in B such that P0 is a vv0-B-path. w

Theorem 4.5. Let D be a digraph (possibly infinite) and A

and B two subsets of PD such that (A,B)P . Suppose that D
has no infinite outward B-path and D has no B-cycle with
odd B-length. Then D has an (A,B)-kernel.

Proof. It follows from Theorems 4.3 and 4.4. w

The following results are consequences of the previ-
ous Theorems.

Corollary 4.6 Let D be a digraph (possibly infinite) and A

and B two subsets of PD such that (A,B)P and P has odd
length for every P in B. Suppose that D has no infinite out-
ward B-path and D has no odd cycles, then D has
an (A,B)-kernel.

Proof. We will prove that D has no B-cycle with odd B-length.
Proceeding by contradiction, suppose that D contains a

B-cycle with odd B-length, say c ¼ (v0, :::, v2n, v0). Since
there exists a viviþ1-path in D, say Pi, such that Pi 2 B for
every i 2 {0, :::, 2n} (indices modulo 2nþ 1), then W ¼ P0
[::: [ P2n is a closed walk with odd length in D (because Pi
has odd length for every i 2 {0, :::, 2n}), which implies that
W contains an odd cycle, contradicting the hypothesis. So,
D has no B-cycle with odd B-length. Therefore, it follows
from Theorem 4.4 that D has an (A,B)-kernel. w

Theorem 4.7 is another extension of Richardson’s theorem.
Let D be a digraph and U and T two subsets of PD: If c

¼ (v0,v1, :::, vn ¼ v0) is a U-cycle and I ¼ {i 2 {0, :::, n –
1}: there exists a viviþ1-path, say P, such that P 2 T}, then
we will say that jIj is the UT-length of c.

Theorem 4.7. Let D be a digraph (possibly infinite) and A

and B two subsets of PD such that (A,B)P . Suppose that D
has no infinite outward B-path and every B-cycle in D has
even BA-length. Then D has an (A,B)-kernel.

Proof. We will prove that CB(D) has an R-kernel, with R

¼ {(x,y) 2 A(CB(D)): there exists an xy-path, say P, such
that P 2 A}. We will see that every cycle in CB(D) has
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even R-length. Let c ¼ (v0, :::, vn ¼ v0) be a cycle in
CB(D) and suppose that ai ¼ (vi�1, vi) for every i 2 {1, :::,
n} and {ai1 , :::, aim} � R: From the definition of CB(D) it
follows that there exists a vh�1vh-path, say Ph, such that Ph
2 B for each h 2 {1, :::, n}. On the other hand, since
{ai1 , :::, aim} � R, we deduce from the definition of R that
there exists a vij�1vij-path, say P0

ij , such that P0
ij 2 A for

each j 2 {1, :::, m}. So, c is a B-cycle in D and the
BA-length of c is m, which implies that m is even by the
hypothesis. Therefore, every cycle in CB(D) has even
R-length. So, from Theorem 2.6 we have that CB(D) has an
R-kernel (notice that CB(D) has no infinite outward path
because D has no infinite outward B-path), which implies
that D has an (A,B)-kernel (by Theorem 3.3). w

We are going to show some consequences of Theorem
4.7 and for that we need the following definitions.

Definition 4.8. Let D be a digraph, l a positive integer and
(v0, v1, :::, vn ¼ v0) a sequence of vertices of D such that vj
6¼ vs for each j 6¼ s. (v0, v1, :::, vn ¼ v0) is called a cl-cycle if
for every i 2 {0, :::, n} there exists a viviþ1-path of length
less than or equal to l (indices modulo nþ 1).

Definition 4.9. Let D be a digraph, A and B two subsets
of PD and {k,l} � Nn{0}. An (A,B)-kernel is said to be a
(k,l)-kernel when A ¼ {P 2 PD; the length of P is less than
or equal to k – 1} and B ¼ {P 2 PD; the length of P is less
than or equal to l}.

Corollary 4.10. Let D be a digraph (possibly infinite) without
infinite outward path and k and l two positive integers such
that 1 � k – 1 � l. Suppose that every cl-cycle (v0, v1, :::, vn
¼ v0) holds that j{i 2 {0, :::, n}; d((vi,viþ1) � k – 1}j is even,
then D has a (k,l)-kernel.

Proof. Apply Theorem 4.7 considering the sets A ¼ {P 2
PD : the length of P is less than or equal to k – 1} and B ¼
{P 2 PD : the length of P is less than or equal to l}. w

Corollary 4.11. Let D be a digraph (possibly infinite) without
infinite outward path and k and l two positive integers such
that l¼ k – 1. Suppose that every cl-cycle has an even number
of vertices, then D has a (k,l)-kernel.

Proof. Apply Theorem 4.7 considering the sets A ¼ {P 2
PD : the length of P is less than or equal to k – 1} and B ¼
{P 2 PD : the length of P is less than or equal to l}. w

Consider the following definitions.

Definition 4.12. Let H be a digraph (possibly with loops)
and D an H-colored digraph. A subset N of V(D) is said to
be an H-kernel if for every pair of different vertices in N
there is no H-path between them, and for every vertex u in
V(D)nN there exists an H-path in D from u to N.

Definition 4.13. Let H be a digraph, D an H-colored
digraph and (v0, v1, :::, vn) a walk in D. We will say that
there is an obstruction on vi (or vi is an obstruction) if

(c(vi�1,vi),c(vi,viþ1)) is not an arc of A(H) (if v0 ¼ vn we will
take indices modulo n).

Corollary 4.14. Let H be a digraph (possibly with loops) and
D an H-colored digraph (possibly infinite) without infinite
outward H-path and without odd cycles. Suppose that every
vertex in every closed walk is an obstruction, then D has an
H-kernel.

Proof. Notice that the sets A ¼ B ¼ {P 2 PD : P is an H-
path} satisfy the property P: We are going to prove that
every B-cycle in D has even BA-length.

Claim. Every B-cycle in D is a cycle.
Let W ¼ (v0, :::, vn ¼ v0) be a B-cycle in D. It follows

that there exists a viviþ1-path Pi for each i 2 {0, :::, n – 1}
such that Pi 2 B: Since [n�1

i¼1 Pi is a closed walk and every
vertex of [n�1

i¼1 Pi is an obstruction, it follows that the length
of Pi is 1 for every i 2 {0, :::, n – 1} (because Pi is an H-
walk). Therefore, W is a cycle.

Since A ¼ B and every B-cycle in D is a cycle, it fol-
lows that the BA-length of every B-cycle W ¼ (v0, :::, vn ¼
v0) is n. Since D has no odd cycles, we have that every
B-cycle has even BA-length. Therefore, it follows from
Theorem 4.7 that D has an (A,B)-kernel N, which is an
H-kernel.

Notice that if A(H) ¼ {(x,x): x 2 V(H)}, then N is a ker-
nel by monochromatic paths. w

Corollary 4.15. Let D be an m-colored digraph (possibly
infinite) without monochromatic infinite outward path and
without odd cycles. If every closed walk (v0, :::, vn, v0) is such
that c(vi�1,vi) 6¼ c(vi,viþ1) for every i 2 {1, :::, n} (indices
modulo nþ 1), then D has a kernel by monochromatic paths.
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