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ABSTRACT 
 

Purpose: To examine the effect of three muscle potentiation protocols on changes in muscle 

architecture and the subsequent effect on jump power performance.   

Methods: Maximal (1RM) squat strength (Mean SD=178.3 ± 36.6kg), vertical jump power, and 

muscle architecture were obtained in 12 resistance trained men (25.2±3.6y; 90.67±12.7kg).  

Participants randomly completed three squatting protocols at 75% (3 x 10 reps), 90% (3 x 3 reps) 

or 100% (1 x 1) of their 1RM, or no workout (CON), with each protocol being separated by one 

week.  During each testing session ultrasound and vertical jump testing were assessed at baseline 

(BL), 8min post (8P) and 20min post (20P) workout. Ultrasound measures of the rectus femoris 

(RF) and vastus lateralis (VL) muscles included; cross sectional area (CSA) and pennation angle 

(PNG). Following each ultrasound, peak (PVJP) and mean (MVJP) vertical jump power (using 

hands for maximum jump height) were measured using an accelerometer.   

Results: Magnitude based inferences analysis indicated that in comparison to CON, 75% resulted 

in a likely greater change in RF-CSA and VL-CSA (BL-8P and BL–20P), 90% resulted in a 

likely greater RF-CSA and VL-CSA (BL–20P), and 100% resulted in a very likely or likely 

decrease in VL-PNG at BL-8P and BL–20P, respectively).  Meanwhile, changes in PVJP and 

MVJP for the 75% trial was likely decreased at BL-8P and BL–20P; and for the 90% trial MVJP 

was likely decreased at  BL-8P and BL–20P. Analysis of the magnitude of the relationships 

indicated a likely negative relationship between VL-PNG and MVJP (r = -0.35; p < 0.018) at 

BL-8P, while at BL–20P, a negative relationship was observed between PVJP and RF-CSA (r = -

0.37; p < 0.014).   
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Conclusion: Acute increases in muscle size and acute decreases in pennation angle did not result 

in any potentiation in vertical jump power measures. Although the inverse relationships observed 

between muscle architecture variables and power suggests a potential effect, the change in 

position (i.e. movement from standing to supine for ultrasound measures) may negate, as a result 

of potential fluid shifts or muscle relaxation, the potentiating effects of the exercise.   It is also 

possible that the fatiguing nature of the squat protocols in trained but not competitive participants 

may have also contributed to the results.   
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CHAPTER ONE: INTRODUCTION 
 

Post-activation potentiation (PAP) is a phenomenon by which the force exerted by a 

muscle is increased due to its previous contractions (Robbins, 2005). Potentiation appears to be 

dependent on an appropriate training stimulus and a proper rest interval to ensure fatigue is not 

instigating performance impairments (Goosen and Sale, 2000).  Many studies show conflicting 

results regarding rest intervals and training intensity (Wilson, 2013). The conflicting results 

reported amongst studies are highly dependent upon the individual performing the task. There 

are many differences between untrained, trained and competitive athletes residing within their 

muscle physiology and architecture that can and has influenced the PAP response. Consequently, 

the variability between subjects makes administering an optimal PAP protocol difficult, as 

potentiation is not a “one size fits all” phenomena.  It has even been argued that PAP is more of a 

muscle phenomenon or an observation rather than something that can be trained or altered (Sale, 

2002).  Potentiation has been induced in many different ways.  The most common method is 

from the use of maximum voluntary contractions (Mitchell and Sale, 2011), but PAP has also 

been prompted by submaximal efforts.   Previous studies examining PAP determined that loads 

of 80% or more of 1RM are needed to elicit a potentiation effect to facilitate short term power 

increases (Gouvea et al., 2012; Matthews, O’Conchuir and Comfort, 2009; Weber, Brown, 

Coburn & Zinder, 2008).   However, a recent meta-analysis by Wilson et.al (2013) has suggested 

that intensities of 60-84% 1RM are optimal for inducing PAP.   

Rest period length is also considered very important in stimulating muscle potentiation.  

Fatigue seems to be dominant in the early stages of recovery, potentially diminishing subsequent 
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power performance (Tillin and Bishop, 2009).  Studies have examined rest intervals from 

immediately post stimulus to 20 min. post stimulus.  Gullich and Schmistbleicher (1996) 

reported no change, or a decrease in the rate of force development, when power was assessed 

immediately following the potentiation stimulus.   However, as the rest interval increases from 4- 

to 18 min. post-exercise, improvements in power or jump height are seen (Mcann, Flanagan, 

2010).   Based on previous study outcomes, recommendations for a 7-10 or 8-12 min. recovery 

interval is recommended to be used to enhance the potentiation response to exercise (Gouve et 

al., 2012; Wilson et al. 2013).     

The mechanism responsible for muscle potentiation has not been fully elucidated.   It has 

been suggested that priming the neurological system by enhancing motor unit activation is one 

possible mechanism (Tillin and Bishop, 2009).   However, acute changes in muscle architecture 

may also contribute to the potentiation response (Tillin and Bishop, 2009).  Changes in muscle 

pennation angle appear to have a significant role on muscle power performance (Earp, et al., 

2010).   Larger pennation angles are reported to be associated with a greater potential for 

generating power (Earp, et al., 2010), yet the force per cross section has been reported to 

decrease (Ikegawa et. al, 2008). In contrast, a smaller pennation angle has been associated with 

faster sprinting ability (Kumangi et. al, 2000).  Mahlfeld and colleagues (2004) reported that a 

decrease in pennation angle occurs for 3-6 minutes following maximal voluntary contractions.  

Furthermore, increased muscle thickness measures have also been correlated highly with the 

ability to produce force (Seyennes, Boer and Narici, 2007).   A greater fascicle length represents 

longer sarcomeres or more sarcomeres in line (Earp, et al., 2010).  Thus, as fascicle length 

increases, so does the velocity of the movement and the force that can be applied at higher 
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velocities.  However, acute changes in muscle architecture and its role in muscle potentiation are 

not fully understood.   Thus, the purpose of this study was to examine the effect of three muscle 

potentiation protocols on changes in muscle architecture and the subsequent effect on jump 

power performance.   
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CHAPTER TWO: LITERATURE REVIEW 
 

Post-Activation Potentiation 
 

Post- activation potentiation (PAP) is a phenomenon by which, the contractile history of 

skeletal muscle influences subsequent contractions of the same muscle group, typically 

increasing peak force and rate of force development (Tillin and Bishop, 2009). The mechanisms 

responsible for eliciting the PAP response reside either within the muscle; increasing Ca2+ 

sensitivity and rate of cross bridge attachment, or an acute change in muscle architecture, or at 

the spinal cord by enhancing neural drive to increase higher end motor unit recruitment. An 

optimal protocol for inducing this response has yet to be determined. This is likely related to the 

high degree of inter-individual variability attributed to differences in training status and the 

potentiation stimulus (i.e., exercise type, intensity, volume, rest interval).  The purpose of this 

review is to focus on the mechanisms of the PAP, as well as what are the most optimal variables 

for maximizing its response. 

Mechanisms Attributed to Post-Activation Potentiation 
 

Muscle Phosphorylation 
 

As discussed, there are several mechanisms that have been attributed to PAP.  Acute changes 

within the muscle resulting from previous exercise have been suggested to have a potentiating 

effect.  One of these mechanisms enhancing PAP is related to muscle contraction induced 

myosin regulatory light chain phosphorylation (Cabrera, Morales, Greer, & Pettitt, 2009). It is 

suggested that previous muscle activity can enhance the sensitivity of the actin and myosin 
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myofilaments to Ca2+ released from the sarcoplasmic reticulum, resulting in greater force output 

for each successive twitch contraction (Lorenz, 2011). A myosin molecule is composed of two 

heavy chains, the amino termini of each chain, classified as the myosin head, contains two 

regulatory light chains (MRLC) (Vandenboom, Grange, Houston, 1993; Szczesna, 2003). Each 

MRLC contains a specific site for phosphate to bind to. The enzyme, myosin light chain kinase 

(MLCK) is activated by increases in Ca2+ concentration, and is responsible for phosphorylation 

of the MRLC. Upon muscle activation, Ca2+ concentrations elevate, activate MLCK and increase 

MRLC phosphorylation. The phosphorylation of  MLCK increases  the rate at which myosin 

cross bridges move from a non- force producing state to a force producing state (Grange, 

Vandenboom, Houston, 1993 and Sweeney Bowman,  and Stull, 1993).  Enhanced force 

production as a result of MRLC phosphorylation is due to the increased Ca2+ sensitivity, and the 

increased rate of attachment of cross bridges (Rassier and MacIntosh,  2000), thereby improving 

the ability of the sarcomere to produce more force within a smaller window of time (Sweeney 

and Stull, 1990). Several studies have demonstrated a positive relationship between the 

magnitude of potentiation and the magnitude of MRLC phosphorylation (Klug et al., 1982; 

Manning & Stull, 1989; 1982; Moore & Stull, 1982). Still, others have been unable to support 

the effect of MRLC phosphorylation and muscle potentiation.  Smith and Frye (2007) reported 

no significant difference in leg extension performance or change in muscle phosphorylation 7-

min following a 10-sec isometric maximal voluntary contraction. Whether this was a sufficient 

PAP stimulus is debatable, yet it does suggest that other mechanisms may contribute to PAP. 
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Muscle Architecture 
 

The ability of a muscle to generate maximal power appears to be influenced by a series of 

morphological factors, one of the most important being the architecture of the muscle fibers 

(Cormie, McGuigan and Newton, 2011).  These architectural variables include pennation angle 

(PANG) and cross sectional area (CSA). Irrespective of fiber type, the maximal force generated 

by a single muscle fiber is directionally proportional to its CSA (Gollnick & Bayley, 1986; 

Edgerton, Roy, Gregor, et al, 1986; McComas, 1996; Bodine, Roy, Meadows, et al. 1982; 

Partridge & Benton, 1981). An increase in muscle fiber CSA is generally attributed to an 

increase in the size and number of myofibrils within each muscle fiber (Komi, 1973; 

MacDougall, 1986; MacDougall, 1992).  Muscle fibers with greater CSA can generate a higher 

maximal power output than muscle fibers with smaller CSA (Jones, Rutherford, Parker, 1989; 

MacIntosh & Holash, 2000; Malisoux, Francaux, Nielens, et al.2006; Rutherford & Jones, 1986; 

Widrick, Stelzer, Shoepe et al., 2002, Herbert & Gandevia , 1995; Shoepe, Stelzer, Garner, et al. 

2003). 

In addition to a training response, which would have little effect on PAP, acute changes 

in muscle CSA have also been reported (Jajtner, Hoffman, Gonzalez, et al., unpublished data; 

Storey, Wong, Smith, and Marshall, 2012).   The mechanism responsible for these acute changes 

are likely related to the post-exercise hyperemic response following the acute training stimulus 

(Collier et al., 2010; Fahs et al., 2011).  Whether this mechanism is contributing to an enhanced 

PAP is not well-understood.  To date, there are no studies found that have examined this specific 

question.  Interestingly, if muscle CSA is enhanced by an acute exercise response, it would likely 

alter muscle pennation angle as well. 
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The pennation angle (PANG) of a muscle is formed by the fascicles and the inner 

aponeurosis (Folland and Williams, 2007), and is defined as the angle between the muscles’ 

fascicles and the line of action (Spector, Gardiner, Zernicke, et al. 1980; Huijing, 1985; Powell, 

Roy, Kanim, et al. 1984).  PANG will physiologically affect the force- velocity relationship and 

force transmission from the muscular contraction to the tendons and bones (Folland and 

Williams, 2007; Fukunanga & Ito et al., 1997).  PANG has been shown to be related to force and 

power ability within a muscle.  A larger PANG is associated with greater force capability, while 

decreases in PANG are associated with greater improvements in speed or power performance 

(Abe et al., 1998; Earp, Kraemer, Newton, Comstock, Fragala, Lewis, Hill & Penwell, 2010). 

Increases in force capability with a larger PANG is related to a decreased length the muscle has 

to shorten to produce the same amount of force (Muhl, 1982), but a slowed contraction velocity 

from an increase in PANG may imply a negative impact on power production (Spector, 

Gardiner, Zernicke, et al. 1980). On the other hand, a small PANG operates at a biomechanical 

advantage, allowing more sarcomeres to be aligned in series, resulting in a rapid transmission of 

force from the muscle to the tendon, thus increasing contractile RFD and contractile impulse 

(Storey, Wong, Smith, & Marshall, 2012).   

Acute change in PANG resulting from an acute bout of exercise is not well understood.  

Considering the potential hyperemic response associated with resistance exercise, it would stand 

to reason that changes in muscle CSA would also alter muscle PANG as well.  Mahlfield, 

Franke, and Awiszus (2004) reported a significant decrease (~11%) in PANG 3-6 minutes after a 

3-sec isometric maximal voluntary contraction. However, the change in PANG was associated 

with only a 0.9% increase in force transmission to the tendons, but no effects on power were 
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reported. Nevertheless a decrease in PANG was related in an increase in force transmission, and 

these types of changes to muscle architecture are postulated to contribute to the PAP response 

(Tillin and Bishop, 2009).  However, to date there does not appear to have been any studies 

examining acute changes in PANG and its potential role in PAP. 

Neurological Adaptation 
 

Although much of the existing literature suggests that the mechanism responsible for 

PAP is localized within the muscle, others have indicated that PAP may also be a function of 

acute neural adaptation (Gullich & Schmidtbleicher, 1996; Kitago, Mazzocchio, Luizzi et al., 

2004; Trimble & Harp, 1998;; Van Boxtel, 1986; and Zucker & Regehr; 2002).  By performing 

heavy loaded exercises right before a light power exercise, it is thought that there would be 

greater activation and preparation for maximal effort with the lighter load (Verkhoshansky, 

1983).  A mechanism termed the Hoffman reflex (H-reflex) is considered to be the electrical 

analogue of the stretch reflex (Brooke et al., 1997; and Scheppati, 1987). The amplitude of the 

H- reflex is a function of the number and size of recruited motor neurons (Hugon, 1973). 

Variation in the H- reflex amplitude is relative to the constant intensity of stimulation and 

constant efferent motor response (M-wave), indicating synaptic modification occurring at the 

spinal cord (Misiaszek, 2003).  The H-reflex is thought to occur by altering the excitability of the 

motor neurons, varying the amount of neurotransmitter released by afferent terminals, or varying 

the intrinsic properties of the motor neurons (Misiaszek, 2003).  It is thought that the H-reflex 

works in a similar manner to the size principle and would be most beneficial to the type II or fast 

twitch fibers (Zehr, 2002; Henneman, Somjen & Carpenter, 1965).  
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In the presence of a potentiated reflex response an individual can optimize the reflex 

contribution to neural drive, thus increasing the efficacy of subsequent voluntary contractions 

(Hodgson, Docherty and Robbins, 2005). Heavy resistance training prior to a plyometric exercise 

may increase synaptic excitability within the spinal cord, which in turn results in increased post-

synaptic potentials and subsequent increased force generating capacity of the involved muscle 

groups (Rassier, and Herzog, 2002).  Gullich and Schmidtbleicher (1996) demonstrated a 

significant potentiation response, as a result of the H-reflex in elite speed- strength trained 

athletes, but not in physical education students (untrained) following isometric maximal 

voluntary plantarflexions.   

Variability in Post-Activation Potentiation 
 

In attempt to maximize PAP, many studies have been conducted in order to define an 

optimal stimulus for a given individual.  Collectively, the studies conducted report 

inconsistencies in their findings, which can be attributed to the high degree of inter-individual 

variability. The number of combinations that can be made between subject characteristics and the 

potentiation stimulus (i.e., exercise type, intensity, volume, rest interval) complicates this matter 

even further.    

Muscle Fiber Type Distribution: 
 

There are many variables suggested to affect PAP. The most important variable may be 

the distribution of muscle fiber type within a given muscle (Lorenz, 2011). Muscle fiber type can 

affect the magnitude of post activation potentiation. The highest magnitudes of PAP have been 

recognized in muscles that are predominantly type II muscle fibers (Hamada, Sale, and 

9 
 



 

MacDougall, 2000; Miyamoto, Fukunaga , and Kawakami, 2009). Hamada and colleagues 

(2000) reported significant differences in PAP in participants with differing percentages of fast 

twitch fibers.  Those participants with a higher percentage of type II muscle fibers experienced a 

greater PAP compared to participants with a lower percentage of type II muscle fibers. Type II 

muscle fibers display the greatest increase in MRLC phosphorylation following a contraction 

(Moore and Stull, 1984).  MRLC is a mechanism in which potentiation can be achieved through 

increased Ca2+ sensitivity and increased rate of cross bridge attachment (Hodgson, Docherty and 

Robbins, 2005). Thus, it would appear that athletes with a higher percentage of type II fibers 

would be more sensitive to the potential ergogenic effects of PAP.  In an examination of NCAA 

Division I track and field, strength/power athletes, Weber and colleagues (2008) reported on 

significant improvements in jump performance following a 5-RM squat protocol.  Considering 

that these were likely athletes with a high percentage of type II fibers, these athletes may have 

been optimal to experience a PAP response.   

Training Status 
 

Studies have shown athletes who participate in sports that demand maximal intensity, 

strength/powerful movements (sprinting, jumping, and throwing) would elicit the greatest 

magnitude of PAP as well as reap the greatest benefits (Lorenz, 2011).  The potential for PAP 

appears to differ between trained and untrained individuals.  However, the optimal PAP response 

may be seen in trained, competitive athletes (Wilson, Duncan, Marin, Brown, Loenneke, Wilson, 

S., Jo, and Lowrey, 2013).  A trained athlete is one that can be defined as having years of 

experience, but not necessarily be of a high level of performance, whereas a trained, competitive 

athlete is one that is experienced but is also competing.  In a review, Wilson and colleagues 
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(2013) compared several studies examining individuals of varying training experiences; 

untrained (sedentary), recreationally trained (active, but not resistance training), resistance 

trained (at least 1 year training experience) and competitive athletes (>3 years resistance training 

experience) and suggested PAP is most effective in resistance trained and competitive 

strength/power athletes with at least one year of resistance training experience. Others have 

suggested that competitive strength/power athletes with at least 3 years of resistance training 

experience would be most sensitive to the effects of PAP (Chiu, Fry, Weiss, Schilling, Brown, 

and Smith, SL 2003). 

One study compared the effects of a heavy load back squat training program (5x1 with 

90% 1RM, 5-7 min rest between sets) on subsequent jump power performance on competitive 

and recreationally trained athletes (Chiu et al., 2003).  They found significantly greater power 

potentiation (1-3% increase in countermovement jump (CMJ) performance and depth drop 

height) in the competitive athletes, but a 1-4% decline in performance was noted in the 

recreationally trained athletes.   

Muscular Strength 
 

There appears to be a relationship between strength level and potential for CMJ 

potentiation.  Kilduff, Bevan, and Kingsley, (2007) reported a moderate correlation (r=0.63) 

between 1 RM strength and CMJ potentiation after a high intensity activity (1x3RM back squat).  

The potential potentiating effect related to strength levels was also supported by Gourgoloulis 

Aggeloussis, and Kasimatis (2003), who compared individuals who could squat >160kg to those 

who squatted <160kg. A 4% increase (p< 0.05) was reported in CMJ height following 5 sets of 
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back squats in the stronger group, while the group who squatted < 160kg only increased 0.4% in 

CMJ height (p>0.05).   

There is evidence that suggests that the power to strength ratio may also play a role in 

inducing PAP (Schneiker et al., 2006).  In a comparison of two groups, Schneiker and colleagues 

compared one group with a power/strength ratio <19 W/kg to a second group with a 

power/strength ratio >19W/kg.  Each group performed one set of a 6RM back squat and then 

performed a loaded CMJ 2-4 minutes following the squat exercise.   The group with the lower 

power/strength ratio was shown to have a negative significant correlation (r2 = -0.91), while the 

group with the higher power/strength ratio showed no relationship (Schneiker, 2006). These 

results suggest that athletes who are powerful and strong may be experience greater potentiating 

effects from previous exercise than athletes who were powerful and less strong.   

Methods for Potentiation 
 

PAP has typically been induced by using a near maximal, or maximal, voluntary dynamic 

or isometric contractions, and has been shown to increase peak force and rate of force 

development during subsequent contractions (Tillin and Bishop, 2009). Sale (2002) suggests the 

degree in which the PAP response is realized is likely related to its prior contractions. However, 

inconsistent findings have been reported with the administration of different contraction types. 

Research on isometric MVC’S have shown significant increases in subsequent explosive activity 

(French DN, Kraemer WJ, Cooke CB, 2003; Gullich, Schmidtbleicher. 1996) while others report 

no change in performance (Behm, Button, Barbour et al. 2004; Gossen, Sale, 2000; Robbins, 

Docherty, 2005). Similar to isometric contractions, dynamic contraction protocols also show 
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conflicting results, some report significance in subsequent power performance (Gourgoulis, 

Aggeloussis, Kasimatis, et al., 2003; Rahimi, 2005; Saez Saez de Villarreal, Gonzalez-Badillo, 

Izquierdo, 2007; Batista, 2007; Chatzopoulos, Michailidis, Giannakos, et al., 2007; Kilduff, 

Bevan, Kingsley, et al., 2007; Young, Jenner, Griffiths, 1998) while others do not (Chiu, Fry, 

Weiss, et al., 2003; Ebben, Jenson RL, Blackard, 2000; Hanson, Leigh, Mynark, 2007; Jensen, 

Ebben, 2003;  Mangus, Takahashi, Mercer, et al., 2003). 

An isometric contraction is one in which muscle remains contracted for a period of time 

but there is no movement. In contrast, during a dynamic contraction, there is rhythmical 

contraction and relaxation of a muscle which does result in movement. Rixion, Lamont and 

Bemben (2007) were one of the few studies to compare isometric (maximal voluntary 

contraction back squat) to dynamic movements (1 x 3RM of the back squat) on subsequent CMJ 

performance.  They reported that isometric contractions elicited a greater PAP response in CMJ 

height than the dynamic contraction (2.9% versus no change, respectively), while no differences 

were seen between contraction types in peak CMJ power (8.7% and 8.0% improvements, 

respectively).    

Differences in contraction type on PAP may also be related to muscle proprioception 

activation.  For instance, dynamic exercise includes an eccentric phase, while isometric exercises 

do not. The eccentric phase increases muscle spindle firing, which activates group 1a neural 

fibers (Taylor Butler, and Gandevia, 2000).  This could lead to enhanced neural volley at the 

spinal cord and consequently a decrease in transmission failure from 1a neural fibers to adjacent 

α- motor units, and thus activation of higher end motor units for subsequent activity (Tillin and 

Bishop, 2009). Isometric contractions activate a greater number of motor units than dynamic 
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contractions (Duchateau and Hainaut, 1984), consequently, activating a greater number of motor 

units, resulting in a greater percentage of MRLC phosphorylation, as well as potentially greater 

changes to muscle architecture (Tillin and Bishop, 2009). Unfortunately the interactions of these 

mechanisms with PAP have not been clearly defined, and further research is necessary.  

Exercise Type 
 

Acute increases in explosive force in the upper and lower body have been observed with 

the use of maximal voluntary contractions.  Dynamic, multi-joint, strength exercises (i.e., back 

squat) are used in the majority of potentiation studies.  However, the use of exercises that elicit a 

greater power output (cleans versus squats) may produce differing results.  McCann and 

Flanagan (2010) compared the back squat to a power exercise (hang clean) to determine if a 

greater velocity movement would induce a better PAP response. Their results indicated that the 

hang clean was not as effective in eliciting PAP as the back squat.  This supports the work of 

McBride and colleagues (2005) who reported that a loaded CMJ was unable to potentiate 40m 

sprint performance.   In contrast, others have suggested that integration of power exercises into a 

warm-up (4 sets of 4 power snatches with 75% -85% of the subjects 1RM) can increase the 

standing long jump by 3.9 cm (Radcliff and Radcliff, 1996), while Gilbert and Lees (2005) 

reported improvements in vertical jump height following a heavy back squat of 1RM.  Weber 

Brown, Coburn, and Zinder, (2008) reported that performing a heavy back squat (85% 1RM) 

before a set of squat jumps significantly enhanced acute jump performance and ground reaction 

forces compared to a five-repetition squat jump. Similarly, Young, Jenner, and Griffiths, (1998) 

observed significant acute enhancement of power performance (2.8%) in 10 resistance trained 

men during the loaded CMJ, following a 5RM half squat protocol. Considering the contrasting 
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results from these studies, it appears that both traditional strength and power exercises are 

effective in eliciting a PAP response.  It may be dependent upon specific athletes or athlete 

preference. 

Volume/ Intensity: 
 

The greatest augmentation of power performance in trained individuals appears to occur 

when multiple sets are used compared to a single set for PAP (Wilson et al., 2013).  However, 

this may be mediated by training experience.  In untrained individuals, the use of multiple sets 

may decrease subsequent power output, while in the experienced trained individuals multiple 

sets appears to augment power output (Wilson et al., 2013).  This is likely related to the lack of 

conditioning in individuals with limited training resulting in greater fatigue and likely negates 

the potentiating effect.   Gouvea, Fernandes, Cesar, Silva, and Gomes, (2013) examined 14 

studies including 165 participants who were training for at least 6 months, and suggested that 

single sets (lower volume) with higher intensities (80-100% 1RM) produced greater potentiation 

effects than the multiple set moderate volume protocols, especially in the well trained- 

competitive athlete population.  These contrasting conclusions from recent reviews are difficult 

to explain, but may be related to differences in study selection between the two meta-analyses. 

In studies examining trained athletes, Weber et al. (2008) reported an acute potentiating effect in 

lower body muscular power following a squat protocol of 1x5RM (85% 1RM) in twelve NCAA 

D1 track and field athletes. In addition, Hoffman, Ratamess, Faigenbaum , Mangine, and Kang 

(2007) observed a 3% increase (p < 0.05) in vertical jump height and significant improvements 

in peak power 5 minutes following a 1RM (maximal) squat exercise in American college football 
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players.  Others have shown significant improvements in jump performance 8-min following a 

squat protocol (3x3 at 87% 1RM) in professional rugby players (Kilduff, 2008).  Multiple set 

protocols using exercise intensities exceeding 80% 1RM have leading to PAP have also been 

shown in volleyball, and other non-described athletes (Chiu, 2003; Crewther, Kilduff, Cook, 

Middleton, Bunce, and  Yang, 2011; Saez Saez de Villarreal, Gonzalez-Badillo, and Izquierdo, 

2007). The efficacy of multiple versus single set potentiation protocols may be similar to the 

differences observed and discussed between trained and untrained individuals.  It is likely that 

the trained athlete can perform more efficiently following a multi-set protocol due to 

physiological adaptations associated with training such as: increased buffering capacity and 

resistance to muscle damage (Kendrick, 2008; Skulachev, 2000; McHugh, 1999).    

Exercise intensity is an important variable that also contributes to the potentiating effect. 

A recent meta-analysis concluded that individuals with less than 1 year training experience 

should only perform a single set (vs. multiple) with moderate intensities (60-84% 1RM). While, 

individuals with more than 1 year of training experience, will benefit from the same intensity 

(60-84% 1RM), but with the use of multiple (vs. single) sets prior to performing a criterion 

power task (Wilson et al, 2013). In contrast, a meta-analysis by Gouvea and collegues (2012), 

suggested that intensities ranging from 80- 100% 1RM elicits the greatest performance 

enhancements.  Although these studies have reported increases in jump performance, following 

interventions with loads ranging from 80- 100% 1RM, there were also several studies, using 

similar loads that produce no significant difference in jump performance (Kilduff et al., 2007; 

Jones and Lees, 2003; Esforme., Cameron, and Bampouras, 2010; Khamoui, Brown, Coburn, 

Judelson, Uribe, Nguyen, Tran, and Eurich, 2009; Deutsch and Lloyd, 2008). The 
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inconsistencies in the literature regarding training intensity are likely attributed to the differences 

in training status among the studies.  Similar to what was discussed before, differences in 

training status likely contributes to a greater fatigue in multi-set, high intensity training in less 

experienced or non-competitive or non-conditioned individuals (regardless of training 

experience) than athletes that are highly conditioned and competitive. 

Rest Intervals 
 

Investigations examining PAP have been conducted using rest intervals between the 

exercise stimulus and performance measure as soon as immediately post (Jensen and Ebben, 

2003) up to six hours post-stimulus with equivocal results.  Gourgoulis et al. (2003) reported a 

significant increase in CMJ height immediately following two back squats performed with 90% 

1RM (Gourgoulis et al., 2003). These results suggest that PAP can be achieved immediately after 

the stimulus, however Tillin and Bishop (2009) suggest that potentiation declines within the first 

60 seconds following the stimulus followed by a slow, more gradual decline in potentiation. In 

contrast, others have suggested a decrease in performance when the actual performance measures 

occur between 10 - 15 seconds following the potentiating stimulus (Crewther et al., 2011; Gilbert 

et al. 2001; Gullich and Schmidtbliecher, 1996; Jensen & Ebben, 2003; Kilduff et al., 2008).  

Even recovery periods lasting between 3 – 7 minutes may not be sufficient to see a potentiating 

effect in competitive athletes (Comyns, Harrison, Hennessy, Jensen, 2006; Jensen et al., 2003; 

Weber et al., 2008).  However, when recovery time is extended the potentiating response is 

observed with more consistency.   
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It appears that a rest intervals of 8 - 12 minutes elicits the greatest potentiating responses 

(Gouvea et al., 2012), while others recommend 7 – 10 minutes (Wilson et al., 2013). One study 

compared CMJ power performance at 0.25, 4, 8, 12, 16, and 20 minutes post stimulus (3RM 

back squat) (Kilduff et al., 2007).  These investigators demonstrated a window of opportunity 

regarding potentiation effects following 8 minutes of recovery (Kilduff, 2007). These 

investigators followed up with a subsequent study and reported similar results (Kilduff et al., 

2008).   Crewther and colleagues (2011) administered a squat protocol (1 x 3RM) and measured 

CMJ performance at 0.25, 4, 8, 12, and 16 minutes post-squat. Significant performance 

improvements were noted at 4, 8 and 12 minutes post, but a significant decrement in 

performance was noted 16 minutes post.  This study suggested that the potentiation response 

may be diminished by 16 minutes post-stimulus. Wilson et al. (2013) in their meta-analysis 

concluded that PAP dissipates likely with rest intervals longer than 30 minutes.  However, there 

was little to no data to support that extended recovery period.   

PAP and Fatigue: 
 

 During repetitive stimulation, two opposing processes are ongoing inside a muscle cell; 

one that enhances muscular performance (PAP), and one that decreases muscle performance 

(fatigue). Optimal performance enhancements occur when fatigue is minimized and potentiation 

is optimal (Hodgson, 2005). The challenge is in creating a protocol that optimizes the balance 

between fatigue and potentiation. If the rest interval is too short the effects of fatigue may 

outweigh the effects of potentiation, on the other hand, if the rest interval is too long, 

potentiation effects may be diminished. Both situations will produce less than optimal results. To 

18 
 



 

date, an optimal rest interval for PAP remains elusive. An important aspect of skeletal muscle 

properties found regarding both fatigue and PAP is the differing time courses of recovery.   

Considering the cascade of events associated with muscle contraction, failure could occur 

in a number of different steps. Primarily, a decrease in peak or mean free calcium (Ca2+) in the 

myoplasm has been observed as a consequence of fatigue from previous activity (Allen, 1989; 

Westerblad and Allen, 1996; and Westerblad, duty and Allen, 1993).  In addition, a decrease in 

Ca2+ sensitivity may occur of repetitive contraction (Westerblad, Lee, Lännergren and Allen 

1991).  This may occur due to a decrease in the Ca2+ / troponin binding affinity or a decrease in 

force produced by each cross bridge during contraction (Rassier, 2000). The decrease in Ca2+ 

sensitivity and Ca2+/ troponin binding affinity consequently, results in a decrease in force 

production for subsequent power performance, as muscular contraction depends on the presence 

of Ca2+.  For a given submaximal contraction, the contrasting effects of fatigue and potentiation 

acting synchronously, may result in enhanced, decreased or no change in subsequent contractions 

depending on the relative change in increased Ca2+ sensitivity and decreased Ca2+ concentration 

(Rassier, 2000). Clearly, fatigue and potentiation have opposing effects on force production and 

it is the net balance between the processes that determines potentiating potential (Hodgson, 

2005). As discussed earlier, volume (multiple versus single sets), intensity and rest intervals 

contribute to varying degrees to both fatigue and potentiation.  These factors appear to be 

dependent upon the subjects’ training status (untrained, trained, and competitive trained).  It does 

appear that fatigue abates at a faster rate than PAP, and thus the optimal rest interval will be 

defined as the point where the processes that enhance force remain existent while the processes 

that diminish force dissipate. 
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CHAPTER THREE: METHODS 

Participants 
 

Eleven men (25.18 ± 3.60 y; 90.67 ± 12.70 kg) with an average 1RM squat of 178.3 ± 

36.7 volunteered to participate in this study.   Following an explanation of all procedures, risks, 

and benefits, each participant gave his informed consent prior to participation in this study.  The 

Institutional Review Board of the University approved the research protocol.  For inclusion in 

the study, participants must have had no positive risk factors on the administered PAR-Q; had at 

least one year of resistance training experience; and have been able to back squat at least their 

body weight.  Participants were instructed not to perform any lower body exercise for at least 72 

hours prior to testing sessions.   In addition, subjects were instructed not to consume any energy 

or caffeine supplements prior to each testing session. 

Study protocol 
 

 The study protocol is depicted in Figure 1.   Participants reported to the Human 

Performance Lab (HPL) on five separate occasions separated by at least one week.  During the 

first visit, participants became familiar with the technique required to perform the vertical jumps 

(counter movement jump and vertical jump for height), as well as obtain baseline ultrasound 

measures and images. Participants reported back to the HPL on four additional occasions 

separated by at least one week to complete testing trials.  During the second visit (1st testing 

visit) participants were tested on their one repetition max (1RM) squat protocol. The reason for 

having this trial in advance was to determine loads for percentages of the later visits.  During the 

three subsequent visits, participants were randomly assigned to one of the three protocols: 1) a 
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moderate intensity (MI) squat protocol using 75% of the participant’s 1RM; 2) a high intensity 

(HI) squat protocol using 90% of the participant’s 1RM; 3) no workout which served as a control 

session (CTL).    

Upon arrival at the HPL, participants rested in the supine position for 15 min. to account 

for any fluid shifts.  Baseline (BL) ultrasound measures of the vastus lateralis and rectus femoris 

were then performed.  Immediately following BL ultrasound measures, participants performed a 

standardized dynamic warm-up consisting of 5-min. on a cycle ergometer, ten body weight 

squats, ten body weight walking lunges, ten dynamic walking hamstring stretches, and ten 

dynamic walking quadriceps stretches.    Participants then performed their first vertical jump 

testing (VJPRE), followed by their designated squat protocol.   Following the squat protocol, 

participants rested supine for 8 min. during which ultrasound measures were again measured.   

Participants then performed the vertical jump testing protocol (VJ8P).  A third ultrasound 

measure was performed following the second jump protocol.  Participants then perform an 

additional jump test (VJ20P) at 20 min post exercise intervention. All testing occurred at the 

same time of day and was monitored by a Certified Strength and Conditioning Specialist.  

Maximum Strength Testing 
 

The 1RM squat assessment was performed using methods previously described 

(Hoffman, 2006).   Each participant performed a warm-up set using a resistance that was 

approximately 40-60% of their perceived maximum, and then performed 3-4 subsequent 

attempts to determine the 1RM.   A 3-5 min. rest period was provided between each attempt.  

Trials not meeting the range of motion criteria for each exercise were discarded.  The squat 

21 
 



 

exercise required the participant to place an Olympic weightlifting bar across the trapezius 

muscle at a self-selected location.  Each participant descended to the parallel position (that was 

monitored closely by the certified staff), which was attained when the greater trochanter of the 

femur reached the same level as the knee.   The participant then lifted the weight until full knee 

extension.   

Potentiation Protocols 
 

During the moderate intensity protocol (MI), participants performed 3 sets of 10 

repetitions at 75% 1RM.   During the high intensity protocol (HI), participants performed 3 sets 

of 3 repetitions at 90% 1RM.   A rest interval of 3-min occurred between each set for both MI 

and HI trials.   During the 1RM protocol, participants performed the 1 repetition maximum 

(1RM) testing protocol previously described, and during the control protocol (CTL) participants 

performed the same testing routine with the exception of the squat intervention.  The squat 

protocols that were administered were chosen based off of previous potentiation studies that 

elicited the greatest potentiation results using those intensities (Wilson et al, 2013).  
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  Figure 1: Study Design 

 

Visual Analog Scale 
 

Before every vertical jump testing series, participants were instructed to assess their 

subjective feelings of power using a 15-cm visual analog scale (VAS) at the time points; BL, 

VJ8P, and VJ20P. The scale was anchored by the words “Lowest” and “Highest” to represent 

extreme ratings where the greater measured value represented the greater feeling.  The question 

was structured as “My level of power is”.  The validity and reliability of VAS has been 

previously established (Lee et al., 1991).   

 

11  
Male 
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Vertical Jump Testing 
 

Vertical jump height was assessed using a Vertical Jump Testing station (Uesaka Sport, 

Colorado Springs, CO).   Before testing, each participant’s standing vertical reach height was 

determined by colored squares located along the vertical neck of the device.   These squares 

correspond with similarly colored markings on each horizontal tab, which indicate the vertical 

distance (in inches) from the associated square.   Vertical jump height was determined by the 

indicated distance on the highest tab reached following 3 maximal countermovement jump 

(CMJ) attempts.  Peak (PVJP) and mean (MVJP) vertical jump power was determined from a 

TendoTM Power Output Unit (Tendo Sports Machines, Trencin, Slovak Republic) that was 

attached at the waist of the participant during the vertical jump assessment.  The TendoTM unit 

consists of a transducer that measured velocity (m/s), defined as linear displacement over time.   

Subsequently, the velocity of each jump was calculated and power determined.  

Following vertical jump height testing, participants performed 3 additional CMJ’s with 

their hands remaining on their hips through the entire range of motion.   PVJP and MVJP was 

recorded for each jump using the TendoTM unit and used for subsequent analysis.   Test-retest 

reliability for the TendoTM unit in our laboratory has consistently shown r > 0. 90.  

Ultrasonography 
 

Measurements of pennation angle (PANG), and cross sectional area (CSA), were 

collected via non-invasive ultrasonography.   All measures were collected on the rectus femoris 

(RF) and vastus lateralis (VL) of the dominant leg.  This technique uses sound waves at fixed 

frequencies to create in vivo, real time images of the deep limb musculature. For all visits, 

24 
 



 

participants were instructed to wear shorts to expose the superficial dermis of the anterior and 

lateral thigh.  Participants rested in a supine position for 15 min. to with a rolled towel beneath 

the knee to allow for a 10-15° bend as measured by a goniometer.  A 12 MHz linear probe 

scanning head (General Electric LOGIQ P5, Wauwatosa, WI, USA) was used to optimize spatial 

resolution (Thomaes et al., 2012).  The probe was coated with water soluble transmission gel 

(Aquasonic 100 ultrasound transmission gel, Parker Laboratories, Inc.  Fairfield, New Jersey) 

and positioned on the surface of the skin to provide acoustic contact without depressing the 

dermal layer to collect the image.  Measures of muscle cross-sectional area (CSA) were obtained 

using a sweep of the muscle in the extended field of view mode with gain set to 50 dB and image 

depth to 5cm, while longitudinal images of pennation angle (PANG) were taken using B-mode 

ultrasound (Cadore et al., 2012).   Following scanning, all images were analyzed offline using 

ImageJ (National Institutes of Health, Bethesda, MD, USA, version 1.45s), an image analysis 

software available through the National Institute of Health.  For these analyses, a known distance 

of 1cm shown in the image was used to calibrate the software program (Chapman et al., 2008).  

The anatomical location for all ultrasound measures was standardized for each muscle in 

all participants.  For RF measurements, the participant was placed supine on an examination 

table, according to the American Institute of Ultrasound in Medicine, with the legs extended but 

relaxed and with a rolled towel beneath the popliteal fossa allowing for a 10° bend in the knee as 

measured by a goniometer (Bemben, 2002).  For VL measurements, the participant was placed 

on their side with the legs together and relaxed allowing for a 10° bend in the knee as measured 

by a goniometer.  CSA was determined using the same images for the RF and VL muscles.  

Measurements of the RF was taken in the sagittal plane parallel to the long axis of the femur and 
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scanning occurred in the axial plane, perpendicular to the tissue interface at 50% of the distance 

between the anterior, inferior iliac to the proximal border of the patella.  VL was measured at 

50% of the distance from the most prominent point of the greater trochanter to the lateral 

condyle.  Three consecutive images were analyzed and averaged using the polygon tracking tool 

in the ImageJ software to obtain as much lean muscle as possible without any surrounding bone 

or fascia for CSA.  The ICCs for rectus femoris and vastus lateralis CSA were 0.98 (SEM = 0.52 

cm2) and 0.99 (SEM = .33 cm2), respectively.   

Measures of PANG were taken at the same site described for CSA (Abe et al., 1998), but 

with the probe oriented longitudinal to the muscle tissue interface for both the RF and VL.  

Within each muscle, three consecutive images were analyzed and averaged offline (Thomaes et 

al., 2012). Muscle fiber PANG was determined as the intersection of the fascicles with the deep 

aponeurosis.  ICCs for RF and VL PANG were 0.99 (SEM = .20°) and 0.81 (SEM = 1.28°), 

respectively.  

Statistical Analysis 

A Kolmogorov-Smirnov test was used to test the normal distribution of the data. 

Significance was set at p ≤ 0.05. In addition, data were analyzed using magnitude based 

inferences, interpreted through the analysis of the magnitude of the relationships (Batterham & 

Hopkins, 2006; Cohen, 1988).  Statistical Software (SPSS; V. 20.0, SPSS Inc., Chicago, IL) was 

used to calculate Pearson product-moment correlation coefficients, which along with the sample 

size were input into the correlation coefficient statistic on a published spreadsheet (Batterham & 

Hopkins, 2006) to determine the magnitude of the effect. The threshold values for positive or 
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negative correlations were set at 0.1, which was previously reported to be the smallest clinically 

important correlation (Cohen, 1988).  Inferences on correlations were determined as positive, 

trivial, or negative according to methods previously described (Batterham & Hopkins, 2006) and 

were based on the confidence interval range relative to the smallest clinically meaningful effect 

to be positive, trivial, or negative.  The percent chances of a positive or negative outcome was 

evaluated with the following scale: <1%, almost certainly not; 1–5%, very unlikely; 5–25%, 

unlikely; 25–75%, possible; 75–95%, likely; 95–99% very likely; and >99% almost certain.  If 

the likely range substantially overlapped both positive and negative values, it was inferred that 

the outcome was unclear (Hopkins, Batterham, Marshall, & Hanin, 2009).  In the event of a 

positive or negative result, the correlation was re-examined at 0.3 and 0.5 threshold values to 

determine if the low correlation was in fact, a moderate or high correlation respectively (Cohen, 

1988).   
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CHAPTER FOUR: RESULTS 
 

Comparisons of vertical jump height, power and countermovement jump power can be seen in 

Table 1.  No performance improvements were noted in any of the potentiation protocols.  

Interestingly, performances at 8 minutes and 20 minutes post-exercise tended to decline or not 

change following these different exercise protocols.    

Table 1: Vertical Jump Performance Comparisons between All Testing Protocols 

  MI HI CON 1RM 
VJ Height 

(cm) 
  

Pre 26.06 ± 4.41 25.81 ± 4.18 26.25 ± 4.76 26.01 ± 4.94 
8P 24.58 ± 4.04 25.03 ± 4.33 26.12 ± 4.86 25.43 ± 4.76 

  20P 24.67 ± 4.05 24.72 ± 4.27 25.76 ± 4.74 25.44 ± 4.92 
PVJP (w) 

  
  

Pre 2506 ± 689 2423 ± 599 2579 ± 890 2900 ± 916 
8P 2342 ± 631 2439 ± 654 2584 ± 991 2792 ± 916 
20P 2449 ± 629 2470 ± 602 2565 ± 1190 2831 ± 913 

MVJP (w) 
  
  

Pre 1323 ± 359 1500 ± 730 1225 ± 282 1280 ± 306 
8P 1220 ± 257 1307 ± 330 1253 ± 308 1251 ± 309 
20P 1256 ± 284 1347 ± 360 1223 ± 289 1247 ± 316 

VJ = vertical jump; PVJP = peak vertical jump power; MVJP = mean vertical jump power. 

Magnitude based inferences comparing the change (∆) scores in vertical jump height 

from baseline to 8-min post exercise are depicted in Table 2.  Changes in jump height between 

these time points were likely decreased in MI compared to HI and 1RM, and very likely 

decreased compared to CTL.  Changes in CTL were possibly greater at this time than that seen at 

HI.  Similarly, changes in vertical jump height at HI and 1RM were likely decreased compared to 

CTL.  No other changes were noted.    

Magnitude based inferences comparing the ∆ scores in vertical jump height from baseline 

to 20-min post exercise are shown in Table 3.  Changes in jump height between these time points 
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were very likely decreased in MI and HI compared to CTL.  In addition, changes in jump height 

were likely decreased at MI and HI compared to 1RM.  No other changes were noted.    

Table 2: Magnitude Based Inferences on Changes in Vertical Jump Height between Baseline and 
8-Min Post-Exercise 

Jump 
height

  
Group 

1 
Group 

2 
P - 

Value 

Ind. 
SE 

Diff/ 
Thre
sh 

Posi
tive 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
-1.5 ± 

1.5 
-0.7 ± 

0.7 
0.127 0.21 3 9.6 87.4 -0.8 ± 

0.8 
Likely 

Decreased 

MI vs 
CTL 

-1.5 ± 
1.5 

-0.1 ± 
0.6 

0.014 0.21 0.3 1.3 98.4 -1.4 ± 
0.9 

Very Likely 
Decreased 

MI vs 
1RM 

-1.5 ± 
1.5 

-0.7 ± 
0.7 

0.101 0.21 2.2 8.7 89.2 -0.8 ± 
0.8 

Likely 
Decreased 

HI vs 
CTL 

-0.7 ± 
0.7 

-0.1 ± 
0.6 

0.011 0.21 0.1 4.1 95.9 -0.6 ± 
0.4 

Very Likely 
Decreased 

HI vs 
1RM 

-0.7 ± 
0.7 

-0.7 ± 
0.7 

0.044 0.21 0 100 0 0 ± 0 Almost 
Certainly 
Trivial 

CTL 
vs 

1RM 

-0.1 ± 
0.6 

-0.7 ± 
0.7 

0.076 0.21 88.1 10.9 1 0.6 ± 
0.6 

Likely 
Increased 
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Table 3:  Magnitude Based Inferences on Changes in Vertical Jump Height between Baseline 
and 20-Min Post-Exercise 

PVJP Grou
p 1 

Grou
p 2 

P - 
Value 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 

Interpretati
on 

MI vs 
HI 

-1.4 ± 
1.2 

-1.1 ± 
0.8 

0.492 0.19 13.1 27.3 59.6 -0.3 ± 
0.74 

Unclear 

MI vs 
CTL 

-1.4 ± 
1.2 

-0.3 ± 
0.9 

0.025 0.19 0.5 2.5 97 -1.1 ± 
0.78 

Very Likely 
Decreased 

MI vs 
1RM 

-1.4 ± 
1.2 

-0.7 ± 
0.7 

0.092 0.19 1.8 8.9 89.3 -0.7 ± 
0.68 

Likely 
Decreased 

HI vs 
CTL 

-1.1 ± 
0.8 

-0.3 ± 
0.9 

0.025 0.19 0.3 3.7 95.9 -0.8 ± 
0.57 

Very Likely 
Decreased 

HI vs 
1RM 

-1.1 ± 
0.8 

-0.7 ± 
0.7 

0.044 0.19 0.2 13.9 85.9 -0.4 ± 
0.32 

Likely 
Decreased 

CTL vs 
1RM 

-0.3 ± 
0.9 

-0.7 ± 
0.7 

0.313 0.19 70 23.1 7 0.4 ± 
0.67 

Unclear 

 

Magnitude based inferences comparing the ∆ scores in PVJP from baseline to 8-min post 

exercise are depicted in Table 4.  Changes in PVJP between these time points were likely 

decreased in MI compared to HI, 1RM and CTL.  Changes in CTL were possibly greater at this 

time than that seen at HI.   
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Table 4:  Magnitude Based Inferences on Changes in Peak Vertical Jump Power between 
Baseline and 8-Min Post-Exercise 

PVJP Group 1 Group 
2 

P - 
Value 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 

Interpretati
on 

MI vs 
HI 

-402.2 ± 
735.8 

90.8 ± 
758.6 0.14 

116.
7 3.50 9.10 87.40 

-490 ± 
550 

Likely 
Decreased 

MI vs 
CTL 

-402.2 ± 
735.8 

105.4 
± 

259.8 0.04 
116.

7 0.80 4.90 94.40 
-510 ± 

410 
Likely 

Decreased 

MI vs 
1RM 

-402.2 ± 
735.8 

-32.1 
± 

308.9 0.147 
116.

7 3.20 
12.3

0 84.50 
-370 ± 

430 
Likely 

Decreased 

HI vs 
CTL 

90.8 ± 
758.6 

105.4 
± 

259.8 0.05 
116.

7 0.00 
100.
00 0.00 

-15 ± 
12 

Most 
Likely 
Trivial 

HI vs 
1RM 

90.8 ± 
758.6 

-32.1 
± 

308.9 0.953 
116.

7 50.10 4.50 45.40 
120 ± 
3600 Unclear 

CTL vs 
1MR 

105.4 ± 
259.8 

-32.1 
± 

308.9 0.272 
116.

7 56.70 
40.8

0 2.50 
140 ± 
210 

Possibly 
Increased 

PVJP = peak vertical jump power 

Magnitude based inferences comparing the ∆ scores in PVJP from baseline to 20-min 

post exercise can be seen in Table 5.  Changes in PVJP between these time points were likely 

decreased in MI compared to 1RM and CTL.  All other comparisons were unclear or trivial.   
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Table 5: Magnitude Based Inferences on Changes in Peak Vertical Jump Power between 
Baseline and 20-Min Post-Exercise 

PVJP  Group 1 
Group 

2 
P - 

Value 

Ind. 
SE 
Diff

/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretati

on 
MI vs 

HI 
-302 ± 
680.3 

97.5 ± 
764.4 

0.21 111.
6 

5.70 12.4
0 

81.90 -400 ± 
530 

Unclear 

MI vs 
CTL 

-302 ± 
680.3 

58.2 ± 
242.1 

0.11 111.
6 

2.10 11.2
0 

86.60 -360 ± 
380 

Likely 
Decreased 

MI vs 
1RM 

-302 ± 
680.3 

53.1 ± 
346.7 

0.14 111.
6 

3.10 12.3
0 

84.70 -360 ± 
400 

Likely 
Decreased 

HI vs 
CTL 

97.5 ± 
764.4 

58.2 ± 
242.1 

0.12 111.
6 

0.50 99.5
0 

0.00 39 ± 
42 

Very 
Likely 
Trivial 

HI vs 
1RM 

97.5 ± 
764.4 

53.1 ± 
346.7 

0.87 111.
6 

40.50 30.6
0 

28.90 44 ± 
480 

Unclear 

CTL 
vs 

1RM 

58.2 ± 
242.1 

53.1 ± 
346.7 

0.97 111.
6 

20.70 60.7
0 

18.60 5.1 ± 
220 

Unclear 

PVJP = peak vertical jump power 

Magnitude based inferences comparing the ∆ scores in MVJP from baseline to 8-min post 

exercise can be observed in Table 6.  Changes in MVJP between these time points were likely 

decreased in both MI and HI compared to CTL.  Changes in 1RM were possibly less than that 

seen at HI.  All other comparisons between groups for this measure were unclear or possibly 

trivial. 
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Table 6: Magnitude Based Inferences on Changes in Mean Vertical Jump Power between 
Baseline and 8-Min Post-Exercise 

 MVJP 
Group 

1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 

MI vs 
HI 

-200.3 
± 

478.8 
-161.1 
± 545.8 0.86 

74.0
5 30.50 

25.7
0 43.80 

-39 ± 
380 Unclear 

MI vs 
CTL 

-200.3 
± 

478.8 
31.2 ± 
92.7 0.13 

74.0
5 2.50 

12.3
0 85.10 

-230 ± 
250 

Likely 
Decreased 

MI vs 
1RM 

-200.3 
± 

478.8 
-13.7 ± 
110.3 

0.23
4 

74.0
5 5.30 

17.9
0 76.80 

-190 ± 
270 Unclear 

HI vs 
CLT 

-161.1 
± 

545.8 
31.2 ± 
92.7 0.13 

74.0
5 2.10 

15.2
0 82.80 

-190 ± 
210 

Likely 
Decreased 

HI vs 
1MR 

-161.1 
± 

545.8 
-13.7 ± 
110.3 

0.26
3 

74.0
5 4.90 

23.7
0 71.40 

-150 ± 
220 

Possibly 
Decreased 

CTL vs 
1MR 

31.2 ± 
92.7 

-13.7 ± 
110.3 

0.31
4 

74.0
5 25.50 

73.9
0 0.60 

45 ± 
75 

Possibly 
Trivial 

MVJP = mean vertical jump power 

Magnitude based inferences comparing the ∆ scores in MVJP from baseline to 20-min 

post exercise are depicted in Table 7.  Changes in MVJP between these time points were likely 

decreased in MI compared to CTL, and possibly decreased in HI compared to CTL.  All other 

comparisons between groups for this measure were unclear or possibly trivial. 
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Table 7: Magnitude Based Inferences on Changes in Mean Vertical Jump Power between 
Baseline and 20-Min Post-Exercise 

 MVJP 
Group 

1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
-166.2 

± 
471.5 

-80.6 ± 
643.6 

0.72
6 

79.1
2 

25.10 23.9
0 

51.10 -86 ± 
420 

Unclear 

MI vs 
CTL 

-166.2 
± 

471.5 

21.7 ± 
77.9 

0.21 79.1
2 

3.90 19.0
0 

77.00 -190 ± 
250 

Likely 
Decreased 

MI vs 
1RM 

-166.2 
± 

471.5 

-24.9 ± 
93.6 

0.35
1 

79.1
2 

7.90 25.9
0 

66.20 -140 ± 
260 

Unclear 

HI vs 
CTL 

-80.6 ± 
643.6 

21.7 ± 
77.9 

0.22 79.1
2 

2.10 36.5
0 

61.40 -100 ± 
140 

Possibly 
Decreased 

HI vs 1 -80.6 ± 
643.6 

-24.9 ± 
93.6 

0.61
2 

79.1
2 

11.70 46.8
0 

41.50 -56 ± 
190 

Unclear 

CTL vs 
1RM 

21.7 ± 
77.9 

-24.9 ± 
93.6 

0.21
9 

79.1
2 

19.30 80.6
0 

0.10 47 ± 
63 

Likely 
Trivial 

MVJP = mean vertical jump power 

Comparisons of muscle architecture changes in the RF and VL muscles can be seen in Table 8.   
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Table 8: Muscle Architecture Comparisons between All Testing Protocols 

    MI HI CTL 1RM 
RFCSA 

(cm2) 
  
  

Pre 16.8 ± 3.0 17.2 ± 2.9 17.5 ± 3.0 16.9 ± 2.7 
8P 17.4 ± 3.1 17.6 ± 3.2 17.8 ± 3.2 17.4 ± 2.6 

20P 17.3 ± 2.9 17.5 ± 2.9 17.5 ± 3.0 17.1 ± 2.7 
RFPNG 

(°) 
  
  

Pre 15.4 ± 2.2 15.5 ± 2.1 15.5 ± 2.3 15.3 ± 2.8 
8P 15.4 ± 2.6 15.1 ± 3.3 16.1 ± 4.0 14.8 ± 3.0 

20P 16.8 ± 3.29 14.8 ± 1.5 16.7 ± 4.3 15.4 ± 2.9 
VLCSA 

(cm2) 
  
  

Pre 40.0 ± 6.7 39.6 ± 6.5 40.2 ± 6.3 38.2 ± 7.4 
8P 41.6 ± 7.0 40.6 ± 6.5 40.6 ± 6.2 39.5 ±  7.4 

20P 41.5 ± 7.2 40.2 ± 6.7 39.9 ± 6.5 39.3 ± 7.2 

VLPNG 
(°)  

  

Pre 14.6 ± 2.4 14.1 ± 3.3 14.1 ± 2.2 15.6 ± 3.8 
8P 15.3 ± 2.6 15.3 ± 3.5 15.8 ± 2.7 15.1 ± 3.6 
20P 16.1 ± 3.4 15.3 ± 2.9 14.8 ± 2.6 14.4 ± 3.9 

RFCSA = rectus femoris cross-sectional area; RFPNG = rectus femoris pennation angle; VLCSA 

= vastus lateralis cross-sectional area; VLPNG = vastus lateralis pennation angle. 

Magnitude based inferences comparing the ∆ scores in CSA of the RF from baseline to 8-

min post exercise are depicted in Table 9.  Changes in CSA between these time points were 

likely greater in MI compared to CTL.  All other comparisons between groups for this measure 

were unclear. 
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Table 9: Magnitude Based Inferences on Changes in Cross-Sectional Area of the Rectus Femoris 
Muscle between Baseline and 8-Min Post-Exercise  

 CSA-
RF 

Group 
1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
0.6 ± 
0.6 

0.3 ± 
0.6 

0.42 0.12 68.90 18.2
0 

13.00 0.3 ± 
0.62 

Unclear 

MI vs 
CTL 

0.6 ± 
0.6 

0.3 ± 
0.3 

0.16 0.12 81.00 16.3
0 

2.70 0.3 ± 
0.35 

Likely 
Increased 

MI vs 
1RM 

0.6 ± 
0.6 

0.4 ± 
0.8 

0.70 0.12 56.10 16.7
0 

27.20 0.2 ± 
0.89 

Unclear 

HI vs 
CTL 

0.3 ± 
0.6 

0.3 ± 
0.3 

0.15 0.12 0 100 0 0 ± 0 Almost 
Certainly 
Trivial 

HI vs 
1RM 

0.3 ± 
0.6 

0.4 ± 
0.8 

0.67 0.12 17.50 35.8
0 

46.70 -0.1 ± 
0.4 

Unclear 

CTL vs 
1RM 

0.3 ± 
0.3 

0.4 ± 
0.8 

0.50 0.12 7.30 47.9
0 

44.80 -0.1 ± 
0.25 

Unclear 

CSA-RF = cross-sectional area of the rectus femoris 

Magnitude based inferences comparing the ∆ scores in CSA of the RF from baseline to 

20-min post exercise can be observed in Table 10.  Changes in CSA between these time points 

were likely greater in HI compared to CTL.  All other comparisons between groups for this 

measure were unclear. 
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Table 10: Magnitude Based Inferences on Changes in Cross-Sectional Area of the Rectus 
Femoris Muscle between Baseline and 20-Min Post-Exercise  

 CSA - 
RF 

Group 
1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
0.5 ± 
0.6 

0.2 ± 
0.6 

0.24 0.11 77.00 17.3
0 

5.70 0.3 ± 
0.43 

      Unclear 

MI vs 
CTL 

0.5 ± 
0.6 

0 ± 0.5 0.09 0.11 90.90 7.00 2.00 0.5 ± 
0.48 

Likely 
Increased 

MI vs 
1RM 

0.5 ± 
0.6 

0.2 ± 
0.5 

0.27 0.11 75.90 17.5
0 

6.60 0.3 ± 
0.45 

Unclear 

HI vs 
CTL 

0.2 ± 
0.6 

0 ± 0.5 0.09 0.11 77.90 21.5
0 

0.60 0.2 ± 
0.19 

Likely 
Increased 

HI vs 
1RM 

0.2 ± 
0.6 

0.2 ± 
0.5 

0.59 0.11 0 100 0 0 ± 0 Almost 
Certainly 
Trivial 

CTL vs 
1RM 

0 ± 0.5 0.2 ± 
0.5 

0.44 0.11 11.70 25.0
0 

63.30 -0.2 ± 
0.44 

Unclear 

CSA-RF = cross-sectional area of the rectus femoris 

Magnitude based inferences comparing the ∆ scores in CSA of the VL from baseline to 

8-min post exercise are depicted in Table 11.  Changes in CSA between these time points were 

likely and possibly greater in MI and HI, respectively compared to CTL.  All other comparisons 

between groups for this measure were unclear. 
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Table 11:  Magnitude Based Inferences on Changes in Cross-Sectional Area of the Vastus 
Lateralis Muscle between Baseline and 8-Min Post-Exercise 

 CSA-
VL 

Group 
1 

Group 
2 

P - 
Val
ue 

Ind. 
SE 
Diff

/ 
Thr
esh 

Positi
ve 

Triv
ial 

Negati
ve 

Mean 
Differ
ence 

Interpretati
on 

MI vs 
HI 

1.6 ± 
2.4 1 ± 0.6 0.47 0.47 56.30 

33.4
0 10.20 

0.6 ± 
1.4 Unclear 

MI vs 
CTL 

1.6 ± 
2.4 

0.5 ± 
1.4 0.22 0.47 76.10 

19.6
0 4.30 

1.1 ± 
1.5 

Likely 
Increased 

MI vs 
1RM 

1.6 ± 
2.4 

1.1 ± 
3.9 0.73 0.47 50.80 

23.9
0 25.30 

0.5 ± 
2.5 Unclear 

HI vs 
CTL 1 ± 0.6 

0.5 ± 
1.4 0.23 0.47 52.90 

45.7
0 1.40 

0.5 ± 
0.69 

Possibly 
Increased 

HI vs 
1RM 

1 ± 0.6 
1.1 ± 
3.9 0.29 0.47 0.00 

100.
00 0.00 

-0.1 ± 
0.16 

Most 
Likely 
Trivial 

CTL vs 
1RM 

0.5 ± 
1.4 

1.1 ± 
3.9 0.64 0.47 20.70 

25.4
0 54.00 

-0.6 ± 
2.2 Unclear 

CSA-VL= cross-sectional area of the vastus lateralis 

Magnitude based inferences comparing the ∆ scores in CSA of the VL from baseline to 

20-min post exercise can be seen in Table 12.  Changes in CSA between these time points were 

likely greater in both MI and HI compared to CTL.  Comparison between changes in MI and HI 

revealed possible greater changes in MI compared to HI.  All other comparisons between groups 

for this measure were unclear. 
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Table 12: Magnitude Based Inferences on Changes in Cross-Sectional Area of the Vastus 
Lateralis Muscle between Baseline and 20-Min Post-Exercise  

 CSA - 
VL 

Group 
1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
1.5 ± 
2.1 

0.7 ± 
0.9 

0.24 0.43 70.70 25.4
0 

4.00 0.8 ± 
1.1 

Possibly 
Increased 

MI vs 
CTL 

1.5 ± 
2.1 

-0.2 ± 
1.5 

0.04
3 

0.43 93.90 5.50 0.70 1.7 ± 
1.4 

Likely 
Increased 

MI vs 
1RM 

1.5 ± 
2.1 

1 ± 3.3 0.66 0.43 52.40 26.6
0 

21.00 0.5 ± 2 Unclear 

HI vs 
CTL 

0.7 ± 
0.9 

-0.2 ± 
1.5 

0.04
3 

0.43 86.30 13.5
0 

0.20 0.9 ± 
0.72 

Likely 
Increased 

HI vs 
1RM 

0.7 ± 
0.9 

1 ± 3.3 0.13 0.43 0.10 75.1
0 

24.90 -0.3 ± 
0.33 

Likely 
Trivial 

CTL vs 
1RM 

-0.2 ± 
1.5 

1 ± 3.3 0.30 0.43 8.30 17.0
0 

74.70 -1.2 ± 
2 

Unclear 

CSA-VL= cross-sectional area of the vastus lateralis 

Magnitude based inferences comparing the ∆ scores in PANG of the RF from baseline to 

8-min post exercise can be observed in Table 13.  Changes in PANG between these time points 

were unclear. 
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Table 13: Magnitude Based Inferences on Changes in Pennation Angle of the Rectus Femoris 
Muscle between Baseline and 8- Min Post-Exercise 

PANG-RF = pennation angle of the rectus femoris 

 

Magnitude based inferences comparing the ∆ scores in PANG of the RF from baseline to 

20-min post exercise can be seen in Table 14.  Changes in PANG between these time points were 

likely greater in MI compared to HI.  In addition, changes in PANG at these time points for HI 

was possibly lower than that seen at 1RM.  All other comparisons between groups for this 

measure were unclear. 

 PANG
-RF 

Group 
1 

Group 
2 

P - 
Val
ue 

Ind. 
SE 
Diff

/ 
Thre

sh 
Positi

ve 
Triv
ial 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 0 ± 2.5 
-0.4 ± 

2.3 
0.72

9 0.51 46.20 
32.1

0 21.70 0.4 ± 2 Unclear 

MI vs 
CTL 0 ± 2.5 

0.6 ± 
3.5 0.63 0.51 18.80 

28.3
0 52.90 

-0.6 ± 
2.1 Unclear 

MI vs 
1RM 0 ± 2.5 

-0.5 ± 
1.8 

0.61
5 0.51 49.70 

34.6
0 15.80 

0.5 ± 
1.7 Unclear 

HI vs 
CTL 

-0.4 ± 
2.3 

0.6 ± 
3.5 0.63 0.51 23.40 

17.2
0 59.40 

-1 ± 
3.5 Unclear 

HI vs 
1RM 

-0.4 ± 
2.3 

-0.5 ± 
1.8 

0.43
7 0.51 0.20 

99.8
0 0.00 

0.1 ± 
0.22 

Most Likely 
Trivial 

CTL vs 
1RM 

0.6 ± 
3.5 

-0.5 ± 
1.8 

0.35
8 0.51 69.20 

21.6
0 9.30 1.1 ± 2 Unclear 
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Table 14: Magnitude Based Inferences on Changes in Pennation Angle of the Rectus Femoris 
Muscle between Baseline and 20-Min Post-Exercise  

 PANG 
- RF 

Group 
1 

Group 
2 

P - 
Val
ue 

Ind. 
SE 
Diff

/ 
Thre
sh 

Positi
ve 

Triv
ial 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
1.4 ± 
3.1 

-0.7 ± 
1.9 

0.06
9 0.60 90.80 8.00 1.10 

2.1 ± 
1.9 

Likely 
Increased 

MI vs 
CTL 

1.4 ± 
3.1 

1.2 ± 
3.5 0.86 0.60 36.40 

39.2
0 24.40 

0.2 ± 
1.9 Unclear 

MI vs 
1RM 

1.4 ± 
3.1 0 ± 3.1 0.30 0.60 72.70 

20.1
0 7.20 

1.4 ± 
2.3 Unclear 

HI vs 
CTL 

-0.7 ± 
1.9 

1.2 ± 
3.5 0.86 0.60 40.90 4.30 54.80 

-1.9 ± 
19 Unclear 

HI vs 
1RM 

-0.7 ± 
1.9 0 ± 3.1 0.14 0.60 0.50 

40.6
0 59.00 

-0.7 ± 
0.78 

Possibly 
Decreased 

CTL vs 
1RM 

1.2 ± 
3.5 0 ± 3.1 0.42 0.60 65.80 

22.5
0 11.70 

1.2 ± 
2.5 Unclear 

PANG-RF = pennation angle of the rectus femoris 

Magnitude based inferences comparing the ∆ scores in PANG of the VL from baseline to 

8-min post exercise are depicted in Table 15.  Changes in PANG between these time points were 

likely and very likely greater in MI and CTL, respectively compared to CTL.  All other 

comparisons between groups for this measure were unclear. 
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Table 15:  Magnitude Based Inferences on Changes in Pennation Angle of the Vastus Lateralis 
Muscle between Baseline and 8-Min Post-Exercise 

 PANG-
VL 

Group 
1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
0.7 ± 
1.6 

1.3 ± 
1.7 

0.46 0.34 12.60 24.5
0 

62.90 -0.6 ± 
1.4 

Unclear 

MI vs 
CTL 

0.7 ± 
1.6 

1.1 ± 
1.7 

0.58 0.34 15.40 31.0
0 

53.60 -0.4 ± 
1.2 

Unclear 

MI vs 
1RM 

0.7 ± 
1.6 

-0.5 ± 
1.5 

0.07
9 

0.34 90.10 8.40 1.40 1.2 ± 
1.1 

Likely 
Increased 

HI vs 
CTL 

1.3 ± 
1.7 

1.1 ± 
1.7 

0.58 0.34 35.20 57.7
0 

7.20 0.2 ± 
0.6 

Unclear 

HI vs 
1RM 

1.3 ± 
1.7 

-0.5 ± 
1.5 

0.85
8 

0.34 55.80 2.60 41.60 1.8 ± 
17 

Unclear 

CTL vs 
1RM 

1.1 ± 
1.7 

-0.5 ± 
1.5 

0.02
7 

0.34 96.30 3.20 0.50 1.6 ± 
1.2 

Very Likely 
Increased 

PANG-VL= pennation angle of the vastus lateralis 

Magnitude based inferences comparing the ∆ scores in PANG of the VL from baseline to 

20-min post exercise can be seen in Table 16.  Changes in PANG between these time points were 

likely greater in MI and CTL, respectively compared to CTL.  All other comparisons between 

groups for this measure were unclear. 
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Table 16: Magnitude Based Inferences on Changes in Pennation Angle of the Vastus Lateralis 
between Baseline and 20-Min Post-Exercise  

PANG-
VL 

Group 
1 Group 2 

P - 
Val
ue 

Ind. 
SE 

Diff/ 
Thre
sh 

Positi
ve 

Trivi
al 

Negati
ve 

Mean 
Differe

nce 
Interpretatio

n 
MI vs 

HI 
1.5 ± 
2.5 

1.3 ± 
2.2 0.85 0.55 36.90 

39.4
0 23.80 

0.2 ± 
1.8 Unclear 

MI vs 
CTL 

1.5 ± 
2.5 

1.4 ± 
2.6 0.92 0.55 31.70 

43.7
0 24.70 

0.1 ± 
1.6 Unclear 

MI vs 
1RM 

1.5 ± 
2.5 

-1.1 ± 
3.2 

0.04
6 0.55 94.50 4.60 0.90 

2.6 ± 
2.1 

Likely 
Increased 

HI vs 
CTL 

1.3 ± 
2.2 

1.4 ± 
2.6 0.92 0.55 24.70 

43.7
0 31.70 

-0.1 ± 
1.6 Unclear 

HI vs 
1RM 

1.3 ± 
2.2 

-1.1 ± 
3.2 

0.93
9 0.55 52.30 1.40 46.30 

2.4 ± 
54 Unclear 

CTL vs 
1RM 

1.4 ± 
2.6 

-1.1 ± 
3.2 

0.05
9 0.55 93.30 5.50 1.20 

2.5 ± 
2.2 

Likely 
Increased 

PANG-VL= pennation angle of the vastus lateralis 

Magnitude based inferences on Pearson correlation analyses are shown in Table 17.  A 

likely negative relationship (r= -0.30) was observed between changes in CSA of the VL between 

baseline and 8-min post-exercise and changes in vertical jump height at the same time points.  A 

likely negative relationship (r = -0.369) and a possible negative relationship (r = -0.229) was 

seen between changes in peak vertical jump power and changes in the CSA of the RF and VL, 

respectively between baseline and 20-min post-exercise.  A likely negative relationship (p = -

0.354) was observed between changes in PANG between baseline and 8-min post-exercise and 

mean vertical jump power.  No other meaningful correlations were observed. 
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Table 17: Magnitude Based Inferences on Pearson Correlation Measures on Comparisons 
between Changes in Muscle Architecture and Jump Performance 

 Vertical Jump Height Baseline-8-Min Post Vertical Jump Height Baseline-20-Min Post 

Varia
ble r 

p-
val
ue 

Positi
ve 

Triv
ial 

Negat
ive Interpret. r 

p-
valu

e 
Posit
ive 

Triv
ial 

Negat
ive 

Interpret
. 

RCS
A 

-
0.05

5 

0.7
21 

4.9 77.
8 

17.3 Likely 
trivial 

-
0.18

8 

0.22
1 

0.6 52.
6 

46.8 Possibly 
trivial 

RPN
G 

-
0.16

8 

0.2
77 

0.9 57.
6 

41.5 Possibly 
trivial 

-
0.17

6 

0.25
2 

0.7 55.
6 

43.7 Possibly 
trivial 

VCS
A 

-
.300

* 

0.0
48 

0.1 24.
7 

75.3 Likely 
Negative 

-
0.19

5 

0.20
4 

0.5 50.
8 

48.7 Possibly 
trivial 

VPN
G 

-
0.23

9 

0.1
18 

0.2 39.
4 

60.4 Possibly 
Negative 

0.02
4 

0.87
5 

12.6 80 7.3 Unclear 

 Peak Vertical Jump Power Baseline – 8 min 
Post 

Peak Vertical Jump Power Baseline – 20 min 
Post 

RCS
A 

-
0.15

6 

0.3
12 

1.1 60.
4 

38.6 Possibly 
trivial 

-
.369

* 

0.01
4 

0 11.
9 

88.1 Likely 
Negativ

e 

RPN
G 

0.09
8 

0.5
26 

25.2 72.
1 

2.7 Possibly 
trivial 

-
0.03

5 

0.82
1 

6.4 79.
5 

14.1 Unclear 

VCS
A 

-
0.09

7 

0.5
33 

2.7 72.
3 

25 Possibly 
trivial 

-
0.22

9 

0.13
5 

0.3 42 57.7 Possibly 
Negativ

e 

VPN
G 

0.09
1 

0.5
57 

23.8 73.
2 

3 Possibly 
trivial 

-
0.04

6 

0.76
7 

5.6 78.
7 

15.8 Unclear 

 Mean Vertical Jump Power Baseline – 8 min 
Post 

Mean Vertical Jump Power Baseline – 20 
min Post 

RCS
A 

-
0.00

4 

0.9
77 

9.3 80.
6 

10.2 Unclear 0.08
5 

0.58
3 

22.6 74.
2 

3.3 Possibly 
trivial 

RPN
G 

0.04
6 

0.7
65 

15.8 78.
7 

5.6 Unclear 0.01
3 

0.93
5 

11.2 80.
4 

8.4 Unclear 

VCS
A 

-
0.05

8 

0.7
11 

4.7 77.
5 

17.7 Likely 
trivial 

0.00
3 

0.98
5 

10 80.
6 

9.4 Unclear 

VPN
G 

-
.354

* 

0.0
18 

0 14.
2 

85.8 Likely 
negative 

-
0.03

5 

0.82
1 

6.4 79.
5 

14.1 Unclear 

44 
 



 

CHAPTER FIVE: CONCLUSION/ DISCUSSION 

 

The primary purpose of this study was to compare recommended potentiation protocols 

on subsequent jump performance, and to relate how acute changes in muscle architecture 

influence these effects in experienced, resistance trained participants.  The main findings of this 

study showed that none of the potentiation protocols (MI, HI, and 1RM) resulted in any jump 

performance improvements.  Interestingly, performances at 8 minutes and 20 minutes post-

exercise tended to decline or not change following all three protocols.  However, muscle 

architecture responses did appear to be sensitive to the different potentiation protocols.  The MI 

potentiation protocol did appear to have the greatest effects on changes in CSA and PANG in 

both the RF and VL muscles.  Although no potentiation was noted in any of the protocols, results 

did indicate likely negative relationships between changes in CSA and PANG and changes in 

vertical jump performance.  This suggests that greater increases in acute muscle swelling reduced 

the magnitude of performance decrements.  Considering the acute changes observed in muscle 

architecture, the lack of any performance improvements may be related to either the conditioning 

level of the subjects, or possibly to the methodology employed in this study.  

The lack of a response to any of the potentiation protocols contrasts with previous 

recommendations emanating from several meta-analyses (Gouvea et al., 2012; Wilson et al., 

2013).  In addition, previous research has also demonstrated a significant increase in vertical 

jump performance following 1-RM testing (Hoffman et al., 2007).  These studies were the basis 

behind the development of the potentiation protocols employed in the present study.  Although 

existing evidence does indicate that potentiation is more sensitive to the experienced individual 
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(Gouvea et al., 2012; Wilson et al., 2013), there also appears to be a difference between 

experienced and those who are experienced and competitive (Wilson et al., 2013).  The present 

study recruited experienced resistance trained men, many of whom were former strength/power 

athletes.  Although all were lifting weights on a regular basis, none of the participants were 

presently competing.  Competitive athletes appear to have an advantage for performance 

potentiation that is related to their level of conditioning (Chiu et al., 2003; Khamoui et al., 2009; 

Kilduff et al., 2007).  

The potentiation protocols used appeared to have fatigued the participants far greater than 

anticipated.  Anecdotally, many of the subjects expressed their fatigue following all of the 

protocols.  One participant, a former competitive athlete with a 1-RM squat of 238.6 kg even 

remarked that he was “spent” following the 1RM protocol, and that he felt that he would have 

experienced a greater potentiation effect when he was competing.  It has been suggested that 

highly conditioned athletes have a greater ability than recreationally trained athletes to recover 

from a potentiating exercise protocol, likely related to the greater buffering capacity and 

resistance to muscle damage seen in the competitive athlete (McHugh, Connolly, Eaton, and 

Gleim, 1999; Wilson et al., 2013).  In addition, the competitive athlete may benefit from the PAP 

due to a more efficient high end motor unit recruitment (Tillin and Bishop, 2009).  Although 

potentiation and fatigue can occur within the same stimulus, Rassier and MacIntosh, (2000) 

suggest that there may be an optimal recovery period to reduce fatigue and for potentiation to be 

realized. In consideration of the importance of appropriate recovery time, we incorporated the 

most widely accepted rest interval time for potentiation (7-12 minutes) (Gouvea et al., 2012; 

Wilson et al., 2013).   Despite this recovery time incorporated between all protocols, no PAP 
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response was observed.  This may be a function of a high degree of variability among individuals 

using PAP.  McCann and Flannagan (2010) examined rest intervals of 4 and 5 minutes following 

the squat (5RM) and power clean (5RM) exercises on vertical jump performance. Although 

significant improvements were noted at 4 minutes post-exercise for the group, when the data was 

analyzed separately the 5 minute rest interval was superior for many subjects compared to the 4 

min rest interval.    

Many factors such as training volume and intensity can increase fatigue and decrease the 

PAP response.  The high volume, low intensity protocol used in MI may have resulted in a 

volume overload, while the high intensity, low volume used in the HI and 1RM protocols may 

have resulted in an intensity overload.  Although all protocols appeared to result in a fatigue 

response that did not dissipate in time to enhance potentiation, the mechanisms generating the 

fatigue may have differed between the protocols.  It is likely that the recreational resistance 

training that all subjects were presently performing was not sufficient to stimulate physiological 

adaptation that could result in a potentiation response.   

The protocols did appear to stimulate acute changes in muscle architecture.  Both MI and 

HI did appear to result in a greater increase in CSA of both the RF and VL muscles.    This is 

consistent with others that reported significant elevations in muscle size following acute 

resistance exercise (Csapo et al., 2011).  However, changes in PANG were not consistent 

between the protocols.  PANG did appear to decline in 1RM compared to MI and CTL in the 

VL, which would be consistent with a potential for improved power output (Abe et al., 2000).  

However, the magnitude of change may not have been sufficient to cause performance 

improvements.  Mahlfield, Franke, and Awiszus (2004) reported a significant decrease (~11%) 

47 
 



 

in PANG 3-6 minutes after a 3-sec isometric maximal voluntary contraction, which was 

associated with a greater power output.  The changes in PANG reported by Mahlfield and 

colleagues (2004) did exceed the changes observed in this present study.   

As discussed earlier, the protocols employed in this present study were based upon the 

recommendations from two separate, recently published meta-analyses (Guovea et al., 2012; 

Wilson et al., 2013).  Although we have discussed several issues regarding the lack of 

potentiation observed that has support in literature, there are two additional factors that may have 

also contributed to the results.  This is the first study that we are aware of that used muscle 

ultrasound measures to explain potential mechanisms resulting in PAP.  However, the 

methodology employed in using the ultrasound may have potentially contributed to the lack of 

effect.  Upon arrival each subject was instructed to lay supine for 15-min on an examination 

table prior to the baseline ultrasound images being taken. Following the squat intervention at 8 

and 20 min post squat more ultrasounds images were again taken in the same supine position. It 

is likely that the movement from a standing position to a supine position for each measurement 

resulted in a fluid shift skewing the ultrasound data, and possibly affecting subsequent jump 

performance.  Evidence does show that changes in body position from standing to supine can 

lead to changes in intra-muscular fluid levels which may influence the accuracy of muscle 

measures when using an ultrasound (Berg, Tedner, and Tesch, 1993).  Fluid shifts have been 

shown to affect acute changes in skeletal muscle size (Berg et al., 1993), and these changes 

appear to relative to the time spent in the supine position, with the most profound decreases in 

size occurring within the first 15–20 min of lying down (Berg et al., 1993; Cernigliam 
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Delmonico, Lindle, Hurley, Rogers, 2007). This may provide some partial explanation to the 

minimal changes observed in muscle architecture compared to baseline values.  

In conclusion, although the results of this study demonstrate little to no significant PAP 

response, we did observe some acute muscle architectural changes. The lack of potentiation 

reported could be attributed to high intra-individual variability, and the sensitivity of the PAP 

response to the potentiating stimulus. These findings suggest more information on which 

stimulus is appropriate for a given population is imperative in understanding this phenomenon. 

In the future perhaps a different training stimulus or different subject population would 

augment a greater PAP response. In addition, it is possible a greater change in muscle 

architecture would have been observed with the use of alternate methodology regarding the 

positioning of the participants during ultrasound scanning.  It is clear that further investigation 

is warranted concerning acute muscle architecture changes and how those changes affect PAP. 
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