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Graphs with arbitrarily large adversary degree associated reconstruction number

P. Anusha Devi and S. Monikandan

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India

ABSTRACT
A vertex deleted unlabeled subgraph of a graph is a card. A dacard specifies the degree of the
deleted vertex along with the card. The adversary degree associated reconstruction number of a
graph G, denoted adrnðGÞ, is the minimum number k such that every collection of k dacards of G
uniquely determines G. A strong double broom is the graph on at least 5 vertices obtained from a
union of (at least two) internally vertex disjoint paths with same ends u and v by appending
leaves at u and v. The strong double broom, obtained from a union of m internally vertex disjoint
paths of order k with same ends u and v by appending n leaves at each u and v, is denoted by
Bðn, n,mPkÞ: In this paper, we show that the drn of all strong double brooms is two and we deter-
mine adrnðBðn, n,mPkÞÞ for all n, m, k: For n � 1 and m � 2, usually adrnðBðn, n,mP3ÞÞ ¼ nþ 2
and adrnðBðn, n,mP4ÞÞ ¼ nþmþ 2, except adrnðBð1, 1, 2P3ÞÞ ¼ 4: For n � 1,m � 2 and k > 4,
usually adrnðBðn, n,mPkÞÞ ¼ nþ 2, except adrnðBðn, n,mP5ÞÞ ¼ maxfm, ng þ 2 when ðn,mÞ 6¼
ð1, 2Þ and adrnðBð1, 1, 2P5ÞÞ ¼ 5:
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1. Introduction

All graphs considered in this paper are finite, simple and
undirected. We shall mostly follow the graph theoretic ter-
minology of [4]. A vertex of degree m is called an m-vertex
and a 1-vertex is called an end vertex. The neighbour of a
1-vertex is called a base and a base of degree m is called an
m-base. A neighbour of v with degree k is called a k-neigh-
bour of v. A double broom is a tree obtained from a path by
appending leaves at both ends of the path. A strong double
broom, denoted by B, is the graph on at least 5 vertices
obtained from a union of (at least two) internally vertex dis-
joint (u, v)-paths by appending leaves at u and v. More pre-
cisely, Bðn1, n2,m1Pk1 ,m2Pk2 , :::,mtPktÞ denotes the strong
double broom with n1 leaves at one end u, n2 leaves at the
other end v and there are mi internally vertex disjoint (u,
v)-paths on ki vertices for 1 � i � t, mi � 0 and k1 < k2 <
::: < kt (m1 ¼ 1 when k1 ¼ 2). The vertices u and v are
called the hub vertices and the 2-vertices are called mid-
dle vertices.

We distinguish the dacards of B into three types: a leaf
dacard L, a middle dacard M and a hub dacard K are
obtained, respectively, by deleting a leaf vertex, a middle
vertex and a hub vertex (Figure 1).

A vertex deleted subgraph or a card G – v of a graph G is
the unlabeled graph obtained from G by deleting a vertex v
and all edges incident with v. The ordered pair ðdðvÞ,G� vÞ
is called a degree associated card (or dacard) of the graph G,
where d(v) is the degree of v in G. We denote m copies of
the dacard ðdðvÞ,G� vÞ by mðdðvÞ,G� vÞ or simply by

mðG� vÞ: The deck (dadeck) of a graph G is the collection
of all its cards (dacards). The Ulam’s Conjecture [3], also
called the Reconstruction Conjecture (RC) asserts that every
graph on at least three vertices is determined uniquely (up
to isomorphism) by its deck. Graphs that obey the RC are
called reconstructible.

For a reconstructible graph G, Harary and Plantholt [5]
have defined the reconstruction number rn(G) to be the size
of the smallest subcollection of the deck of G which is not
contained in the deck of any other graph H, H 6ffi G:
Myrvold [11] referred to this number as ally-reconstruction
number of G and also studied adversary reconstruction num-
ber of G, which is the smallest k such that no subcollection
of the deck of G of size k is contained in the deck of any
other graph H, H 6ffi G:

An extension of the RC to digraphs - the Digraph
Reconstruction Conjecture was disproved when Stockmeyer
exhibited [14] several infinite families of counter-examples.
In view of this, Ramachandran [12, 13] studied the degree
(degree triple) associated reconstruction of graphs (digraphs)
and their reconstruction number. For a reconstructible
graph (digraph) G from its dadeck, the degree (degree triple)
associated reconstruction number of G, denoted drnðGÞ, is
the size of the smallest subcollection of the dadeck of G
which is not contained in the dadeck of any other graph
(digraph) H, H 6ffi G: Monikandan and Sundar Raj [10]
introduced the degree associated analogue of arn(G) (attrib-
uting the notion to Ramachandran). When G is reconstruct-
ible from its dadeck, the adversary degree-associated
reconstruction number, denoted adrnðGÞ, is the least k such
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that every set of k dacards determines G. From the defin-
ition, drnðGÞ � adrnðGÞ: Equality holds when G is vertex-
transitive, since then the dacards are pairwise isomorphic.
The value of the adrn is known [6, 10] for complete graphs,
complete bipartite graphs, cycles and wheels. In a subse-
quent paper, Monikandan and Sundar Raj [9] determined
the adrn for double-stars, for subdivisions of stars, and for
the disjoint union of t complete graphs of order n and s
cycles of length m. If G is an r-regular of order n, then
Barrus and West [1] have shown that drnðGÞ � minfr þ
2, n� r þ 1g, which also implies that adrnðGÞ � minfr þ
2, n� r þ 1g: (For elementary results on the edge version of
adversary degree-associated reconstruction, see [8].)

Myrvold [11] showed arn(G) ¼ 3 for almost every graph
G. Since always adrnðGÞ � arnðGÞ, it is thus of some inter-
est to find graphs G where adrn(G) is large. Bowler et al. [2]
constructed infinite families of pairs of graphs in which the
pairs with n vertices have 2bn�4

3 c common dacards, so
adrn(G) can be as large as 2bn�4

3 c þ 1: They conjecture that
this is the largest value for graphs of order n. Among ver-
tex-transitive graphs, G ¼ 2Kn

4,
n
4
in [1] achieves adrnðGÞ ¼

drnðGÞ ¼ 1
4 jVðGÞj þ 2: Recently Ma et al. [7] have proved

that the adrn of most of the double brooms Bðm, n, PkÞ is
minfm, ng þ 2: In this paper, we show that the drn of all
strong double brooms is two and we determine
adrnðBðn, n,mPkÞÞ for all n, m, k: For n � 1 and m � 2,
usually adrnðBðn, n,mP3ÞÞ ¼ nþ 2 and adrnðBðn, n,mP4ÞÞ ¼
nþmþ 2, except adrnðBð1, 1, 2P3ÞÞ ¼ 4: For n � 1,m � 2
and k > 4, usually adrnðBðn, n,mPkÞÞ ¼ nþ 2, except
adrnðBðn, n,mP5ÞÞ ¼ maxfm, ng þ 2 when ðn,mÞ 6¼ ð1, 2Þ
and adrnðBð1, 1, 2PkÞÞ ¼ 5:

2. drn and adrn of strong double brooms

We first determine the drn.

Theorem 1. If G is a strong double broom, then drn Gð Þ ¼ 2:

Proof. Let G ¼ B n1, n2,m1Pk1 ,m2Pk2 , :::,mtPktð Þ: dacards
1, Lð Þ and n2 þ

Pt
i¼1 mi,K

� �
of G. Any leaf dacard forces G

to be connected with
m1

2

� �
cycles of length 2 k1 � 1ð Þ (if

k1 > 2),
m2

2

� �
cycles of length 2 k2 � 1ð Þ (if k2 > 2),

… ,
mt

2

� �
cycles of length 2 kt � 1ð Þ (if kt > 2) and to have

m1m2 cycles of length k1 þ k2 � 2, m1m3 cycles of length
k1 þ k3 � 2, :::,m1mt cycles of length k1 þ kt � 2, m2m3

cycles of length k2 þ k3 � 2, :::,m2mt cycles of length k2 þ
kt � 2, :::,mt�1mt cycles of length kt�1 þ kt � 2: Hence to a
hub dacard, add a new vertex v and join it to all isolated
vertices and to m1,m2, :::,mt end vertices at distance k1 �
2, k2 � 2, :::, kt � 2 respectively from a base of maximum
degree if k1 > 2, and joining v to mj, 2 � j � t end vertices
at distance kj � 2 from a base of maximum degree and to
this base if k1 ¼ 2: The resulting graph thus obtained is iso-
morphic to G. w

We denote the collection of m dacards d vð Þ,G� vð Þ by
m d vð Þ,G� vð Þ or simply m G� vð Þ: An extension of a
dacard d vð Þ,G� vð Þ of G is a graph obtained from the
dacard by adding a new vertex x and joining it to d(v) verti-
ces of the dacard and it is denoted by H d vð Þ,G� vð Þ (or
simply H). Throughout this paper, H and x are used in the
sense of this definition.

Theorem 2. If G ¼ B n, n,mP3ð Þ, then adrn Gð Þ ¼
4 if n,mð Þ ¼ 1, 2ð Þ
nþ 2 otherwise

�

Proof. The dacards of G are 2n 1, Lð Þ, m 2,Mð Þ and 2 nþð
m,KÞ:
Lower bound: For n,mð Þ ¼ 1, 2ð Þ, the graph G shares two
middle dacards and a leaf dacard with a graph obtained
from 1, Lð Þ by annexing a new vertex x and joining it to the
unique leaf vertex and therefore adrn Gð Þ � 4: For n,mð Þ 6¼
1, 2ð Þ, G shares nþ 1 leaf dacards with B nþ 1, n� 1,mP3ð Þ
and therefore adrn Gð Þ � nþ 2:
Upper bound: We proceed by three cases and prove that the
collection of dacards considered under each case determines
G uniquely.

Case 1. Two distinct dacards, except when one is L and the
other is M for n,mð Þ ¼ 1, 2ð Þ:

Case 1.1. K and M (or L).
Since the two dacards K and L determine G uniquely

(Theorem 1), we consider the two dacards K and M. The
dacard M forces G to be connected and G to have every
base with at most n neighbours of degree 1. Hence G can be
obtained uniquely from K by annexing a vertex and joining
it to n isolated vertices and to m vertices of degree 1.

Case 1.2. L and M when n,mð Þ 6¼ 1, 2ð Þ:
The dacard L forces G to have

m
2

� �
cycles of length

2 k� 1ð Þ and to have maximum degree at least nþm:
Hence in M, the newly added vertex x must be joined to the
two nþm� 1ð Þ-vertices. But then the extension is iso-
morphic to G.

Case 2. For n,mð Þ ¼ 1, 2ð Þ, any collection S of four dacards
including at least one L and M.

In view of Case 1, we take S to contain only the dacards
L and M.

Figure 1. A strong double broom.
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The dacard L forces every extension to have C4 and
hence the only possibility to obtain an extension H (6ffiG)
from M is to join the newly added vertex to the 1-vertex
and to a 2-vertex at distance 2. The graph H has exactly one
dacard L (obtained by removing the unique leaf) and exactly
two dacards M (obtained by removing the two 2-neighbours
of the unique 3-vertex). The removal of any other 2-vertex
from K results in a dacard with a 3-vertex or an isolated
vertex but M does not have these vertices. Hence S uniquely
determines G.

Case 3. ‘ nþ 1ð ÞL and D’ or ‘2M and D’ for ðn,mÞ 6¼ ð1, 2Þ.
In view of Case 1, we assume that the dacards of S

are isomorphic.

Case 3.1. nþ 2ð ÞL (this case does not arise when n¼ 1).
Now H(1, L) is obtained by joining x to one vertex of L.

If x is joined to a 1-vertex or a 2-vertex, then H has exactly
one dacard L (obtained by removing x) and the removal of
any other 1-vertex from H results in a dacard with a 2-base
or two adjacent bases but L does not have these. If x is
joined to the nþmð Þ-vertex, then H has exactly nþ 1 leaf
dacards (obtained by removing each 1-neighbour of the
nþmþ 1ð Þ-vertex) and the removal of any other leaf from
H results in a dacard with an nþmþ 1ð Þ-vertex but L does
not have an nþmþ 1ð Þ-vertex.

Case 3.2. 3M (this case does not arise when m¼ 2).
The extension (6ffiG) obtained from M, by joining x to a

1-vertex and its base, has exactly two dacards isomorphic to
M (obtained by removing x and its neighbour) and the
removal of any other 2-vertex results in a dacard having C3

but M does not have C3: For all other extensions, the
removal of any 2-vertex other than x, results in a dacard

having at most
m
2

� �
� 1 cycles of length 2 k� 1ð Þ or two

adjacent bases or a 2-base or a base with nþ 1 neighbours
of degree 1 but L does not have these. Thus, from all pre-
ceding cases, we have adrn B n, n,mP3ð Þð Þ ¼ 4 if n,mð Þ ¼
1, 2ð Þ (Cases 1.1 and 2) and adrn B n, n,mP3ð Þð Þ ¼ nþ 2
otherwise (Cases 1.2 and 3). w

Theorem 3. If G¼ B n,n,mP4ð Þ, then adrn Gð Þ ¼ nþmþ 2:

Proof. The dadeck of G consists of 2n 1, Lð Þ, 2m 2,Mð Þ and
2 nþm,Kð Þ: Let D denote any dacard of G.
Lower bound: The graph G shares nþ 1 leaf dacards and m
middle dacards with B nþ 1, n� 1,mP4ð Þ (Figure 2).
Hence adrn Gð Þ � nþmþ 2:

Upper bound: We proceed by three cases and prove that the
collection of dacards considered under each case determines
G uniquely.

Case 1. M and K when n,mð Þ 6¼ 1, 2ð Þ:
The dacard M forces G to be connected and hence K

forces G to have two vertices of degree at least nþm and
every base with at most n neighbours of degree 1. Hence G
can be obtained from M by joining x to the 1-vertex whose
base has nþ 1 neighbours of degree 1 and to
the nþm� 1ð Þ-vertex.

Case 2. L and K.
Proof follows by Theorem 1.

Case 3. M, K and one more dacard D when n,mð Þ ¼ 1, 2ð Þ:
We take D to be other than L as otherwise D and K

together will determine G by Case 2.
Using M and K, we can say that every base in G has one

1-neighbour. Hence M forces every extension to have at
most two 1-vertices. Therefore the only possible extension H
non-isomorphic to G of K can be obtained by joining x to
the isolated vertex and to the two 1-vertices at distance 3.
The extension H then has exactly one dacard isomorphic
to M (obtained by removing a 2-vertex adjacent to the 2-
neighbour of the 3-base) as the removal of any other 2-ver-
tex results in a dacard having every base with one 1-neigh-
bour or an isolated vertex and exactly one dacard
isomorphic to K (obtained by removing x) as the removal
of any other 3-vertex results in a dacard having two non-
trivial components.

Case 4. The collection S containing aL and bM where
a, b � 1 and aþ b � nþmþ 1, together with one
more dacard.

Let us assume that S contains no K as otherwise, by Case
2, S uniquely determines G. The dacard L forces G to have
m
2

� �
cycles of length 2 k� 1ð Þ: Hence in M, to get an

extension non-isomorphic to G, join x to the unique
nþmð Þ-vertex and to a 1-vertex at distance 2 k� 2ð Þ: The
resulting extension then has exactly nþ 1 dacards iso-
morphic to L (obtained by removing the 1-neighbours of
nþmþ 1ð Þ-vertex), has no more leaf dacards (since there is
no more leaf or the removal of any leaf results in a dacard
having an nþmþ 1ð Þ-vertex), exactly m dacards iso-
morphic to M (obtained by removing the 2-neighbours of
the nþmþ 1ð Þ-base), no more middle dacards (since the
removal of any 2-vertex results in a dacard having an
nþmþ 1ð Þ-vertex) and no hub dacard (since there is
no nþmð Þ-vertex).

Case 5. nþ 2ð ÞL (when n 6¼ 1) or mþ 1ð ÞM:

Case 5.1. nþ 2ð ÞL:
If, in L, vertex x is joined to a 1-vertex or an

nþmð Þ-vertex, then the proof is similar to Case 3.1 of
Theorem 2. If x is joined to a 2-vertex, then the resulting

Figure 2. Bðnþ 1, n� 1,mP4Þ:
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extension non-isomorphic to G has exactly one dacard iso-
morphic to L, since the removal of any other leaf results in
a dacard having two bases at distance at most 2.

Case 5.2. mþ 1ð ÞM:
If, in M, vertex x is joined to an nþmð Þ-vertex and a 1-

neighbour of nþm� 1ð Þ- base, then the resulting extension
has exactly m dacards isomorphic to M (obtained by remov-
ing the 2-neighbours of an nþmþ 1ð Þ-base) and no more
middle dacards, since the removal of any other 2-vertex
results in a dacard with an nþmþ 1ð Þ-base. If x is joined
to a 1-vertex and its base, then the resulting extension has
exactly two dacards isomorphic to M (obtained by removing
x and its 2-neighbour) or if x is adjacent to a 1-vertex and a
2-vertex when n,mð Þ ¼ 1, 2ð Þ, the resulting extension has
two dacards isomorphic to M (obtained by removing the 2-
neighbours of 3-vertex lying on a cycle) and the removal of
any other 2-vertex results in a disconnected dacard (when
n,mð Þ ¼ 1, 2ð Þ) or in a dacard having a cycle C3 or two
bases at distance at most 2 (when n,mð Þ ¼ 1, 2ð Þ). All other
extensions of M has at most two dacards isomorphic to M,
since the removal of any 2-vertex other than x results in a
dacard having two bases at distance at most 2 or at most
m
2

� �
� 1 cycles of length 2 k� 1ð Þ or a 2-base or in a dis-

connected dacard. w

It is clear that all the 2m dacards of B n, n,mPkð Þ
obtained by deleting middle vertices at equal distance i from
the nearest hub vertex are mutually isomorphic; let Mi

denote such a dacard. Then i can be 1, 2, :::, or dk2e � 1:
These dacards will be used in proving the next main result.

Theorem 4. For k > 4,

adrn B n, n,mPkð Þð Þ

¼
5 if n,mð Þ ¼ 1, 2ð Þ
maxfm, ng þ 2 if k ¼ 5 and n,mð Þ 6¼ 1, 2ð Þ
nþ 2 otherwise

8><
>:

Proof. The dadeck of G ¼ B n, n,mPkð Þ consists of 2n 1, Lð Þ,
m k� 2ð Þ 2,Mið Þ and 2 nþm,Kð Þ: Let D denote any dacard
of G.
Lower bound: The graph G shares nþ 1 leaf dacards with
the graph B nþ 1, n� 1,mPkð Þ: Hence adrn Gð Þ � nþ 2:
… … (Eq-1)

For n,mð Þ ¼ 1, 2ð Þ, the graph G shares two leaf dacards
and two middle dacards with a graph obtained from L by

joining x to a 2-vertex at distance k – 4 from the base.
Hence adrn Gð Þ � 5:

For k¼ 5 and n,mð Þ 6¼ 1, 2ð Þ, G shares a leaf dacard and
m middle dacards with a graph obtained from M1 by joining
x to two 1-vertices at distance 2 k� 2ð Þ: Hence from (Eq-
1), adrn Gð Þ � maxfm, ng þ 2:
Upper bound: We proceed by eleven cases and we prove that
the collection of dacards considered under each case deter-
mines G uniquely.

Case 1. L and any dacard D other than L and M1:
The dacard L forces G to be connected and to have
m
2

� �
cycles of length 2 k� 1ð Þ: Hence in K, join x to the n

isolated vertices and to m vertices of degree 1 at distance k
– 2 from the unique nþmð Þ-vertex or in middle dacard
(other than M1) join x to two 1-vertices at distance 2 k� 2ð Þ
and the extension then obtained is G.

Case 2. L, M1 and D when n,mð Þ 6¼ 1, 2ð Þ and k 6¼ 5:

The dacard L forces G to have
m
2

� �
cycles of length

2 k� 1ð Þ: Hence in M1, to get an extension non-isomorphic
to G, join x with a 1-neighbour of the nþm� 1ð Þ-base and
to a vertex at distance 2 k� 2ð Þ: The resulting graph has
exactly one dacard isomorphic to M1 (obtained by removing
x), no middle dacards (since the removal of any other 2-ver-
tex results in a dacard with two bases of degree at least 3 at
distance less than k – 1 or a vertex of degree at least 3
with n – 1 neighbours of degree 1), exactly one dacard L
(obtained by removing the 1-neighbour of the 3-base adja-
cent to x) as the removal of any other 1-vertex results in a
dacard with two bases at distance less than k – 1 and has no
dacards H (since the removal of any nþmð Þ-vertex results
in a dacard with no nþmð Þ-base).
Claim 3. aL, bM1, a, b � 1, aþ b ¼ mþ 1 and D when
n,mð Þ 6¼ 1, 2ð Þ and k ¼ 5:

The dacard L forces every extension to have
m
2

� �
cycles

of length 2 k� 1ð Þ: Hence in the dacard M1, to get an exten-
sion non-isomorphic to G, vertex x must be joined to a 1-
neighbour of the nþm� 1ð Þ-base and to some vertex at
distance 6. If x is joined to a 1-neighbour of an
nþmð Þ-base, the the resulting extension H (Figure 3) has
exactly m dacards isomorphic to M1 (obtained by removing
each 2-neighbour at distance 2 from the nþmð Þ-base lying
on a cycle), has no more middle dacards (since the removal
of any other 2-vertex results in a dacard with a base of
degree at least 3 having n – 1 neighbours of degree 1),
exactly one leaf dacard (obtained by removing 1-neighbour
of the 2-base) as the removal of any leaf results in a dacard
having a 2-base and has no hub dacard (since the removal
of the unique nþmð Þ-vertex results in a dacard with two
nontrivial components). If x is joined to a 2-base, then the
resulting extension has exactly one dacard isomorphic to
each L (obtained by removing the 1-neighbour of the 3-base
adjacent to x) and M1 (obtained by removing x), has no

Figure 3. The extension H.
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more leaf or middle dacards (since the removal of any leaf
or 2-vertex results in a dacard with three vertices of degree
at least 3 or two adjacent vertices each of degree at least 3)
and has no dacards K (since the removal of an nþmð Þ-ver-
tex results in a dacard having no nþmð Þ-vertex).

Case 4. aL, bM1, a, b � 1, aþ b ¼ 4 and one D when
n,mð Þ ¼ 1, 2ð Þ:
The dacard L forces every extension to have a cycle of

length 2 k� 1ð Þ: Hence the only two extensions non-iso-
morphic to G of M1 are obtained by annexing a vertex and
joining it to the 2-base at minimum distance from the 3-
base or the 1-neighbour of the 3-base (when k¼ 5) and to
the 1-vertex at maximum distance from the 3-base. The first
extension has exactly two dacards isomorphic to L (obtained
by removing the two leaves) and has exactly two dacards
isomorphic to M1 (obtained by removing the 2-neighbours
of the bases that are not common neighbours). The second
extension has exactly one dacard isomorphic to L (obtained
by removing the unique leaf) and has exactly two dacards
isomorphic to M1 (obtained by removing the 2-vertices at
distance 2 from the unique 3-vertex). Both of these two
extensions have no more dacards M1 (since the removal of
any other 2-vertex results in a dacard having two 3-bases or
exactly two leaves or having two leaves at distance 2 or 3
from a 3-vertex or in a disconnected dacard or a base with
two 1-neighbours), no more middle dacards

Mi 2 � i � dk2e
� �

(since the removal of 2-vertex results in a

dacard with two 3-bases at distance either less than k – 1 or
greater than k – 1 or with at most one 3-base) and no hub
dacard (since the removal of any 3-vertex results in a dacard
with no 3-base or having a 1-vertex at distance greater than
k – 2 from a 3-base).

Case 5. Mdk2e�1 and K when k ¼ 5:
As in Case 1.1 of Theorem 2, the dacards Mdk2e�1 and K

force G to have every base with at most n neighbours of
degree one. Hence in Mdk2e�1, the newly added vertex x

must be adjacent to a 1-neighbour of each base with nþ 1
neighbours of degree 1 and the resulting extension is iso-
morphic to G.

Case 6. aM1, bK, a,b� 1, aþb¼ 4 and one D when k¼ 5:

Case 6.1. n,mð Þ ¼ 1, 2ð Þ:
The dacard M1 forces every extension to be connected

and hence every extension of K is obtained by joining x to
the isolated vertex in K. If the other neighbours of x are a
2-base and the unique 1-neighbour of the 3-base, then the
resulting extension non-isomorphic to G has exactly two
middle dacards M1 (obtained by removing the two 2-neigh-
bours adjacent to the 3-bases, exactly two hub dacards K

(obtained by removing the two 3-bases) and no other hub
dacards (since the removal of any other 3-vertex results in a
dacard with no isolated vertex) and has no leaf dacards
(since the removal of any leaf results in a dacard with a
cycle of length less than 2 k� 1ð Þ)). If x is joined to the 1-
neighbour of a 2-base and to the other 2-base or to the 1-
neighbour of a 2-base and the 1-neighbour of the 3-base,
then the resulting extension non-isomorphic to G has
exactly one dacard K (since the removal of any 3-vertex
other than x results in a dacard having a base with two 1-
neighbours), exactly one dacard M1 (obtained by removing a
2-vertex adjacent to two 3-bases or a 2-vertex lying on a
cycle at distance 3 from the 3-base). The above extensions
have no more middle dacards and the remaining extensions
non-isomorphic to G have no middle dacards (since the
removal of any other 2-vertex results in a disconnected
dacard or in a dacard having a 1-vertex at distance k – 2
from the nearest 3-base or 4-base or having no 3-base).

Case 6.2. n,mð Þ 6¼ 1, 2ð Þ:
The dacards K and M1 force G to be connected and to

have two vertices of degree at least nþm: Hence in every
extension non-isomorphic to G of M1, one neighbour of the
newly added vertex must be the unique nþm� 1ð Þ-vertex.
If the other neighbour is the 2-base, then the resulting graph
has exactly one dacard M1 (obtained by removing x) and no
more middle dacards (since the removal of any other 2-ver-
tex results in a dacard having two adjacent bases of degree
at least 3), exactly one dacard K (obtained by removing an
nþmð Þ-vertex adjacent to the 3-base) as the removal of any
other nþmð Þ-vertex results in a dacard having a 1-vertex at
distance k – 3 from the nearest nþmð Þ-base). The remain-
ing extensions other than G have no dacard K (since the
removal of any nþmð Þ-vertex results in a dacard having
two nontrivial components having a 1-vertex at distance 2
from an nþmð Þ-base or an nþmþ 1ð Þ-base or a cycle of
length less than 2k� 2).

Case 7. Mi, 1 � i � dk2e � 1, K and D when k 6¼ 5:

Case 7.1. M1, K and D.
The dacards K and M1 force G to be connected and to

have two vertices of degree at least nþm: Hence in every
extension non-isomorphic to G of M1, one neighbour of the
newly added vertex must be the unique nþm� 1ð Þ-vertex.
The extensions H1, H2 (Figure 4), H3 (Figure 5) when
n,mð Þ ¼ 1, 2ð Þ and H4 when n,mð Þ 6¼ 1, 2ð Þ (Figure 5) have
exactly one dacard M1 (obtained by removing x), no more
middle dacards (since the removal of any other 2-vertex
results in a dacard having two 3-vertices at distance less
than k – 1 or no 3-base or two nontrivial components) and
exactly one hub dacard (obtained by removing the unique
3-base in H1 and H2, removing the 3-base adjacent to a 3-
vertex in H3 and removing the nþmð Þ-base adjacent to the
3-vertex in H4). The above extensions H1, H2, H3 and H4

have no more dacards K and the remaining extensions other
than G have no dacards K (since the removal of any other
nþmð Þ-vertex results in a dacard having two nontrivial

Figure 4. The extensions H1 and H2.
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components or no nþmð Þ-base or an nþmð Þ-base with
nþ 1 neighbours of degree 1 or an nþmð Þ-vertex or having
a 1-vertex at distance 2 or less than k� 2 > 1ð Þ or
an nþmþ 1ð Þ-vertex).

Case 7.2. Mi 2 � i � dk2e � 1
� �

, K and D.

Let the middle dacard have 1-vertices at distance l1 > 1
and l2 � 1 such that l1 � l2 from the nearest nþmð Þ-base.
The extension non-isomorphic to G of Mi (obtained by join-
ing x to a 1-vertex at distance l2 (or l1) from the nearest
nþmð Þ-base and to the 2-neighbour of the other
nþmð Þ-base which is at distance l1 � 1 (or l2 � 1 if l2 > 1)
from the other 1-vertex) has exactly one middle dacard
(obtained by removing x) as the removal of any other 2-ver-
tex results in a dacard having two bases of degree at least 3
at distance less than k – 1, no dacard L as the removal of any
leaf results in a dacard having a cycle of length less than
2 k� 1ð Þ and exactly one hub dacard (obtained by removing
the nþmð Þ-neighbour of a 3-base adjacent to x). The above
extensions have no more hub dacard and the remaining exten-
sions non-isomorphic to G has no hub dacard (since the
removal of any nþmð Þ-vertex results in a dacard having two
nontrivial components or a 1-vertex at distance less than k�
1 > 1ð Þ from the nearest nþmð Þ-base or at most nþm� 1
isolated vertices or an nþmþ 1ð Þ-vertex.

Case 8. Mdk2e�1 and Mdk2e�2 when k is even (k 6¼ 6 for
n,mð Þ ¼ 1, 2ð Þ).
Every extension non-isomorphic to G of Mdk2e�1 does not

have the dacard Mdk2e�2 (since the removal of any 2-vertex

other than x results in a dacard having an nþmþ 1ð Þ-ver-
tex or a 1-vertex at distance k

2 � 1 or k
2 � 2 (k � 8) from the

nearest nþmð Þ-base or a cycle of length less than 2 k� 1ð Þ
or exactly one nþmð Þ-base (for k � 8) or results in a dis-
connected dacard).

Case 9. Mdk2e�1 and ‘Mdk2e�2 or Mdk2e�3’ when k is odd (k 6¼ 7
for n,mð Þ ¼ 1, 2ð Þ) but only the first two dacards determine
G when k¼ 7 and n,mð Þ ¼ 1, 2ð Þ:

Every extension non-isomorphic to G of Mdk2e�1 does not

have the second dacard Mdk2e�2, since the removal of any 2-

vertex (other than x) results in a dacard having a base with
nþ 1 or nþ 2 neighbours of degree 1 (when k¼ 5) or a 1-
vertex at distance dk2e � 2 from the nearest nþmð Þ-vertex
or having an nþmþ 1ð Þ-vertex or a cycle of length less
than 2 k� 1ð Þ or exactly one nþmð Þ-base (for k � 9) or
results in a disconnected dacard.

Case 10. Mi, Mj, i 6¼ j, 1 � i < j � dk2e � 1 and D.

We exclude Cases 8 and 9 that come under Case 10.

Case 10.1 Mi has exactly one vertex of maximum degree.
Let the other middle dacard, say Mj, have 1-neighbours

at distance l1 > 1 and l2 � 1 such that l1 � l2, respectively
from the nearest nþmð Þ-base.

Case 10.1.1. m ¼ 2:
The extension (6ffiG) of the dacard Mi (obtained by join-

ing x to the 2-base at a maximum distance from the 3-base
(when n¼ 1) or to the nþm� 1ð Þ-base (when n> 1) and
to a 2-vertex at distance l1 � 2 (if l1 > 3) or l2 � 2 (if
l2 > 3) from the 1-neighbour of another 2-base) has exactly
one dacard Mi (obtained by removing x) and exactly one
dacard Mj (obtained by removing a 2-vertex adjacent to a 3-
neighbour of x which is at minimum distance from an
nþmð Þ-vertex non adjacent to x) and the extension
obtained by joining x to the 1-neighbour of the 2-base
which is at minimum distance from the 3-base and to a 2-
vertex at distance l1 (if l1 > 1) or l2 (if l2 > 1) from the 1-
neighbour of another 2-base) have exactly one dacard Mi

(obtained by removing x) and have exactly one dacard Mj

(obtained by removing a central vertex of a path connecting
two vertices of degree at least 3, disjoint from a path con-
taining x where the central vertex is at minimum distance
from x). The above extensions have no more dacards Mj

(since the removal of any other 2-vertex results in a dacard
having a cycle or two vertices of degree at least 3 at distance
less than k� 1, no more dacards Mi (since the removal of
any other 2-vertex results in a dacard having two bases of
degree at least 3 or a cycle or no nþmð Þ-base or having a
1-vertex at distance less than k� 3 > 1ð Þ from a base of
degree at least 3) and have no leaf dacards (since the
removal of any leaf results in a dacard having a cycle of
length less than 2 k� 1ð Þ) and have no hub dacards (since
the removal of any nþmð Þ-vertex results in a dacard with
no nþmð Þ-base). All other extensions non-isomorphic to G
have either two isomorphic dacards Mi or exactly one
dacard Mi (since the removal of any other 2-vertex results
in a dacard having a cycle or at least 2nþ 2 vertices of
degree 1 or a base with nþ 1 neighbours of degree 1 or a 1-
vertex at distance less than k� 3 > 1ð Þ from a base of
degree at least 3 or having no nþmð Þ-base.

Case 10.1.2. m > 2:
The extension non-isomorphic to G of the dacard Mi,

obtained by joining x to a nþmð Þ-base to a 2-vertex at dis-
tance l1 � 2 (if l1 > 2) or l2 � 2 (if l2 > 2) from 1-neighbour
of another 2-base, has exactly two middle dacards (obtained
by removing x and by removing a 2-neighbour of a 3-base

Figure 5. The extensions H4 and H5.
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adjacent to x) and has no more dacards (because of the
similar reasons described in Case 10.1).

Case 10.2. Mi has two vertices of maximum degree.
Proof is similar to Case 10.1.

Case 11. nþ 2ð ÞL (this case arise when n> 1) or
3Mi 1 �ð i � dk2e � 1Þ:

Proof is similar to Case 4 of Theorem 2.
From all the preceding cases, we conclude that

adrn B n,n,mPkð Þð Þ

¼

5 if n,mð Þ ¼ 1,2ð Þ Cases 1, 3, 5� 11ð Þ
maxfm,ngþ 2 if k¼ 5 and n,mð Þ 6¼ 1, 2ð Þ

Cases 1, 4� 6, 9� 11ð Þ
nþ 2 otherwise Cases 1, 4� 6, 9� 11ð Þ

8>>>><
>>>>:

w

From the full deck of a graph G, it is easy to compute
the degrees of the deleted vertices; hence the RC is equiva-
lent to the reconstruction of graphs from their dadecks.
From the partial deck of a graph, the degree of the deleted
vertex is hard to compute, and the dacard (degree associated
card) provides more information. Hence graphs may be
reconstructible using fewer dacards than cards.
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