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ABSTRACT
Let G =

{1,2,..

1. Introduction

Let G be a simple graph with the vertex set V(G) and the
edge set E(G). A covering of G is a family of subgraphs, say
B ={G1,G,,...,G;}, having the property that each edge of
G belongs to at least one of the subgraphs G;, for some i =
L,2,..,t. If all G, i=1,2,...,t, are isomorphic to a graph
H, such a covering is called an H-covering of G. A family
B ={G,,G,,...,G;} of subgraphs of G is an H-decomposition
of G if all subgraphs are isomorphic to graph H, E(G;) N
E(Gj) =0 for i #j, and U;_,E(G;) = E(G). In such a case
G is said to be H-decomposable. If G is an H-decomposable
graph, then we write H|G. Hence an H-decomposition of
the host graph G is a special case of its H-covering.

Suppose that a (p, g)-graph G = (V,E) with p vertices
and g edges admits H-covering, say B = {Gy,Gy,..., G}
The graph G is called (a, d)-H-antimagic if there exists a
bijection f:VUE — {1,2,...,p+q} such that for every
subgraph H' € B, the H-weights,

Z f

> f)

veV(H')

Wtf H,

form an arithmetic progression a,a+d,a+2d,....,a+ (t —
1)d, where a>0 and d > 0 are two integers, and ¢ is the
number of all subgraphs isomorphic to H in B. Such a label-
ing is called super if the smallest possible labels appear on
the vertices. A graph that admits a (super) (a, d)-H-antimagic
labeling is called (super) (a, d)-H-antimagic. An H-covering (or
H-decomposition) of G is said to be a (super) (a, d)-H-antima-
gic covering (or decomposition) of G if G has a (super) (a, d)-
H-antimagic labeling.

(V,E) be a finite simple graph with p vertices and g edges. A decomposition of a graph G
into isomorphic copies of a graph H is called (a, d)-H-antimagic if there is a bijection f: VUE —
,b + q} such that for all subgraphs H' isomorphic to H in the decomposition of G, the sum
of the labels of all the edges and vertices belonging to H' constitutes an arithmetic progression
with the initial term a and the common difference d. When f(V) = {1,2, ...
be super (a, d)-H-antimagic and if d=0 then G is called H-supermagic. In the paper we examine
the existence of such labelings for toroidal grids and toroidal triangulations.
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Toroidal grid; toroidal
triangulation;
H-decomposition;
H-supermagic graph;

H-anti 1 h
,p}, then G is said to antimagic grap
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For d=0, a (super) (a, d)-H-antimagic graph is called H-
magic and H-supermagic, respectively.

The H-(super)magic coverings were first studied by
Gutiérrez and Llad6 [11] as an extension of the edge-magic
and super edge-magic labelings introduced by Kotzig and
Rosa [15] and Enomoto, Lladé, Nakamigawa and Ringel [9],
respectively. In [11] are considered star-(super)magic and
path-(super)magic labelings of some connected graphs and
it is proved that the path P, and the cycle C, are Pj-super-
magic for some h. Lladé and Moragas [16] studied the
cycle-(super)magic behavior of several classes of connected
graphs. They proved that wheels, windmills, books and
prisms are Cj-magic for some h. Maryati, Salman, Baskoro,
Ryan and Miller [20] and also Salman, Ngurah and Izzati
[22] proved that certain families of trees are path-supermagic.
Ngurah, Salman and Susilowati [21] proved that chains,
wheels, triangles, ladders and grids are cycle-supermagic.
Maryati, Salman and Baskoro [19] investigated the G-superma-
gicness of a disjoint union of ¢ copies of a graph G and
showed that the disjoint union of any paths is cP,-supermagic
for some c and h.

The H-magic decomposition and H-antimagic decompos-
ition were first introduced by Inayah, Lladé and Moragas in
[14]. They proved that if T is a graceful tree with m edges
then the complete graph K51 admits an (a, d)-T-antimagic
decomposition for some a and all even differences 0 < d <
m + 1. Moreover they showed that if a tree T with m edges
admits an o-labeling, then the complete bipartite graph
Koy, m admits an (a, d)-T-antimagic decomposition for some
a and all 0 <d < m with the same parity as m. Liang in
[17] gave the conditions for the existence of Cyc-supermagic
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decomposition of the complete n-partite graph as well as of
multiple copies of it. He used Sotteau’s investigation of the
complete bipartite graph decomposition into cycles of some
fixed length given in [24] and results of Cavenagh and
Billington [7] who listed certain necessary conditions for the
existence of a 2k-cycle decomposition of complete n-par-
tite graphs.

The H-supermagic decomposition of antiprisms are
described in [12] and the H-supermagic decompositions of
the lexicographic product of graphs are discussed by Hendy,
Sugeng and Salman in [13].

Let us introduce the following concept. Suppose that B is
an H-decomposition of a (p, g) graph G. Then B is said to
be an (a, d)-H-edge-antimagic if there exists a bijection g :
E—{1,2,...,q} such that for every subgraph H' € B, the

H-weights,
> gle)

ecE(H')

Wf(H/) =

form an arithmetic progression a,a+d,a+2d,....,a+ (t —
1)d, where a>0 and d > 0 are two integers, and ¢ is the
number of all subgraphs isomorphic to H in B. For d=0,
the (a, d)-H-edge-antimagic decomposition is called H-edge-
magic and was introduced in [17].

For H = K,, (super) (a, d)-H-antimagic labelings are also
called (super) (a, d)-edge-antimagic total labelings and have
been introduced in [23]. More results on (a, d)-edge-antima-
gic total labelings, can be found in [5, 18]. The vertex ver-
sion of these labelings for generalized pyramid graphs is
given in [3]. A detailed survey of graph labelings can be
found in [10].

In this paper we mainly investigate the existence of super
(a, d)-H-antimagic decompositions for toroidal grids and
toroidal triangulations. We next summarize the contents of
the forthcoming sections. In Section 2 we recall some useful
facts on the partitions of a set of integers with given differ-
ences which will be used for constructing the requested
labelings. In Section 3 we deal with the existence of super
(a, d)-H-antimagic decompositions of a toroidal square grid,
where H is a m-sun graph. In Section 4 we deal with the
super (a, d)-H-antimagic decomposition of a toroidal tri-
angulation with cycle m-sun graphs as H-subgraphs.

2. Partitions with given differences

For construction of the requested vertex and edge labelings
of considered graphs we will use the partitions of a set of
integers with given differences. This concept was introduced
in [4] and we summarize below important relations for the
convenience of the reader.

Let n, k, d and i be positive integers. We will consider the
partition P} ; of the set {1,2,....kn} into n, n > 2, k-tuples
such that the difference between the sum of the numbers in
the (i 4+ 1) th k-tuple and the sum of the numbers in the ith
k-tuple is always equal to the constant d, where i=
1,2,...,n — 1. Thus they form an arithmetic sequence with the
difference d. By the symbol Py 4(i) we denote the ith k-tuple
in the partition with the difference d, where i = 1,2, ..., n.

Let > Py ,(i) be the sum of the numbers in P} ,(i).
Evidently > P} ,(i+1) — > P} 4(i) = d. It is obvious that
if there exists a partition of the set {1,2,...,kn} with the dif-
ference d, there also exists a partition with the difference -
d. By the notation P} ,(i) © ¢ we mean that we add the con-
stant ¢ to every number in P} ,(i).

If k=1 then only the following partition of the set
{1,2,...,n} is possible

PiL (i) = {i}
If k=2 then we have several partitions of the set

{1,2,...,2n}. Let us define the partitions into 2-tuples in the
following way:

Pro(i) = {i,2n +1— i},

> P5o(i)
P ,(0) = {i,n+i},

> Py (i) =n+2i,
(i)

)

for i=1,2,...,n.

i)=2n-+1, for i=1,2,...,n.

fori=1,2,...,n.

P (0) = {2i — 1,2},

> Py () =4i—1,

Moreover, for 3<n=1 (mod 2)

for i=1,2,..,n.

for i=1 (mod 2),
for i=0 (mod 2),

i—1 i—1
+5hn+14 51
el g)
1

fori=1,2,..,n.

Note that we are able to obtain the partitions into 2-tuples
P4 o(i) and P4 ,(i) as P} (i) U (PT)t(i) ey n), where s,t =
*1. We can use this idea to construct the other partitions.
More precisely,

Piali) = PL(0) U (P, (i) & In),

where k=I+mand d =s+1t.

For example, we are able to obtain 75 ,(i) from the parti-
tions P (i),s = =1 and P} ,(i),t = 0,%2,*4 and also t =
*1 for n odd. It means, P} ; exists for d = *1,+3,+5 and
if n=1 (mod 2) also for d = 0, =2. Moreover, we are able
to construct P54 in the following way

Pio(i) ={3(i—1)+1,3(i— 1) +2,3(i— 1) + 3},
D Piyi)=9i—3, fori=12,.,n
Thus P, exists for d=*1,+3,+5%9 and if n=
1 (mod 2) also for d = 0, 2.

For the partition into 4-tuples we can use the following
fact

Py 4(i) = PL(0) U (P, (i) © In),
where [ =3,m=1or [ =2,m=2. Also
Pii(i) = {4li— 1)+ 1L,4(i— 1) +2,4(i — 1)
+3,4(i — 1) + 4},
S Pl i) =16i—6, for i=12..n.

Thus Py ; exists for d = 0, £2, =4, +6, =8, +10, *16 and if
n=1 (mod 2) also for d = *1,+3, +5.



Let us note that each of the defined partition P} ; has
the property that

D P i) =Cpy+d(i— 1), )

where C{ , = > P} ;(1). For example C; ; =2n+1,C;, =
n+2,C, =3 and C} | = (3n+3)/2 for n odd.

3. H-antimagic decompositions for toroidal grids

Let G, and G, be two graphs. The Cartesian product
GG, of G, and G, is the graph with vertex set V(G;) x
V(G,) where two vertices (x, y;) and (x,, y,) are adjacent if
and only if either x; = x, and y19, € E(Gy) or y; = »»
and x1x; € E(Gy).

If we consider graph G, as the cycle C,, with V(C,) =
{%: 1 <j<m}E(Cp) = {x%541 : 1 <j<m—1} U {xx1}
and graph G, as the cyde C, with V(C,) =
{i:1<i<n}EC)={yyip:1<i<n—-1}U {yan}
then V(C,OC,) = {(xpy:):1<j<m1<i<n} is the
vertex set of C,JC, and E(C,0C,) = {(x5y:) (X1, i) :
1<j<m—1, 1<i<npU{(xmy) (x1,y):1<i<nju
{G,y) (o pin) 1 <j<m, 1<i<n—1}U{(x5yn)(x
1) : 1 <j<m} is the edge set of C,,.1C,. So C,,[1C, is a
toroidal square grid of order mn and size 2mn that can be
embedded in a torus or in other words, the vertices of
C,UC, can be placed on a torus such that no edges cross.
Let T7 be a toroidal square grid, T}, = C, [1C,.

Anitha and Lekshmi [2] and also Marr and Wallis [18]
use the term m-sun graph, say S, to the graph on 2m ver-
tices obtained by attaching m pendant edges to a cycle graph
C,, where one pendant edge is attached at each vertex in C,,.

It is not difficult to see that the toroidal square grid T7,
can be decomposed into m-sun graphs S,, or n-sun graphs
S,. Due to symmetry it is enough to deal with an
Su-decomposition of T7,.

Theorem 1. Let m,n > 3 and S,, be the m-sun graph. Then
the toroidal square grid T} admits a S,-supermagic
decomposition.

Proof. Define the bijection f; :
3mn} as follows:

fil(xg,91)) = m(n — i) +,

for 1<j<m1<i<n,
Ji((x, 1) (X1, 30)) = m(n + i) +1—j,

for 1<j<m1<i<n,
H((x,90) (x5, 1)) = m2n + i+ 1) + 1 —j,

for 1<j<m1<i<n-—1,

Si((x, yn) (x5 1)) = m(2n + 1) + 1 — j,
for 1<j<m.

V(T")UE(T") — {1,2,..,

One can see that the vertices of the toroidal square grid are
labeled by the smallest possible labels 1,2,...,mn.
Since S,,|T" then the family B={S.,S%,...S.} is a
S-decomposition of T, and for every i =1,2,...,n — 1 the
subgraph S’ in T” has 'the vertex set
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V(Sfﬂ) = {(xj’)’i)>(xj’)’i+1) 1< < m},

the edge set
E(S,,) = {(xy:) (%5415 30)> (x5, y1) (3, yi1) 1 1 < j < m}

and the corresponding vertex set and edge set of the sub-
graph S, are as follows

V(Sh) = {(xpyu) (k1) s 1 < j < m},
E(S;,) = { (x5 yn) (5015 ) (5, 90) (x5, 1) + 1 < j < m}.

For the weight of the m-sun graphs S" and S ,i=

1,2,..,n — 1, under the labeling f; we get

Zfl xp}’n +Zf1 xj’}’l

+ Zfl«xj’)’n)(xjﬂ’yn))

j=1

E3 ) () =

wty, (Sy,)

=1

m
(m(n—1)+j)+ Y (2nm+1—j)

j=1
Z}—Fm (n—1)

+

. ~.
Mw

Il
—

J

+
NgE

(m(2n+1) +1—j)

~.
Il
-

NgE

+ j+2nm2+m—2j

1 j=1

~.
I

m
+m2(2n+1)+m72j:5m2n+2m.
=
m

S Al + SR (530)
j=1

j=1

wi; (S),) =

+ Zfl((xj',)/i)(ijrl’yi))
=

m

=3

+ fl((xp)’z x]>)’z+1 (n—i)+j)
j=1 j=1
m
+Z (n—i—1)+4j)
j=1
m m
+Y (mn+i)+1—-j)+> (m2n+i+1)

1

j=1 j

+1—j):m2(n—i)+2j+m2(n—i—1)
=1

m
+Y jAm(nti)+m—
=1

m
+m—Zj:5m2n+2m.
j=1

Zj+m2(2n+i+l)

j=1

Thus the weight for each m-sun graph from the family B is
the same. This implies that f; is an S,,-supermagic labeling
of the toroidal square grid T7,. O



764 (&) HENDY ET AL.

Now we will deal with the super S,,-antimagic decompo-
sitions of the toroidal square grid T}, by using the partitions
of a set of integers with given differences.

Theorem 2. Let S,, be the m-sun graph with m even, m > 4.
Then the toroidal square grid T),,n > 3, admits a super (a,
d)-Sp-antimagic decomposition for some a and all even d,
0 < d < 2m. Moreover, if n is odd, then the same statement
holds for every d, 1 < d < m/2.

Proof. Assume that m is an even integer, m > 4. Consider
the following bijection f, : V(T%) U E(T") — {1,2,...,3mn},
where for every i =1,2,...,n
m(n—i)+j
m(i—1)+j

for jodd,1<j<m—1,
for j even,2 <j<m

S((x5,70)) = {

and for every i =1,2,..,n— 1

wig, ( S’

m/2

+ Zfz((xj,}’i)(xj+layi))
=1

m/2 m/2

(x5 i) (x5 yis1))
{M(n+i—|—1)+1—j for jodd,1 <j<m—1,

m2n —i)+1—j for j even,2 <j<m,

S (55 yn) (%55 1))
mn+1)+1—j for j odd,1<j<m—1,
a 2mn+1—j for j even,2 <j<m

and for every i =1,2,..,nand t =0,1,...,m/2 — 1 we put
{A((x2es1, i) (%2042, i) ) fo ( (X220 i) (K2435 1)) }
=P5 (i) © (2mn + 2tn).

It is not difficult to see that the vertices are labeled by num-

ZfZ x]’yl +Zf2 xJ’)’erl +Zf2 x]>)’1 x])yurl))

bers 1,2,...,mn. Moreover, for the weight of the m-sun
graph S,,,i =1,2,...,n — 1, we have
m/2 m/2

= Zfz((xzj‘—b)/i)) + 3 Al y) + Y (-1 yi1))
j=1 j:1 j:1

m/2

+ ZfZ((ij’yiH)) + Zfz((xzj'—b)’i)(xzj—b)’i+1)) + Z](Z((xZJ’)’i)(XZJ’)’HI))
j=1 j=1 j=1

m/2

(n—i +2]_1)+Z(m(i—l)+2j)

=

m/2

+) (mn—i—1)+2j—1)+ > (mi+2)+ > (m(n+i+1)+1—(2j—1))

> [P ) e

=1
(2mn + 2tn)]|

m/2 m> m/2

== (n—i)+ Z(Z]*l)+7(l*1 +ZZJ+—(n—z—1)+Z(2j—l)

m m/2
+ Zﬁ((xj’yi)(xjﬂ,yz Z
j=1 =
m/2 m/2
j=1 =1
m/2 m/2—1
+> (m2n—i)+1-2j) +
j=1 =0
mz m/2 2
j=1
m/2
—1 + Z 2j + -
m> m/2

Jj= j=1

m/2

ntit)+2 =Y (2 1)

=1

—|——(2n—z -I———ZZ]-I—P (i) @ 2mn+ Py (i) ® (2mn +2n) + ...

j=1

+ P

25/21

(i) ® 2mn +2n(m/2 — 1))

=A+Cy, +so(i—1)+4mn+Cj

m
Fsi(i—1)+ (@dmn+dn)+ ..+ Cy A supa(i-1)+ <4mn +4n (? - 1))

=A+B+C, +C, +..+Cl

25/21

+(s0o+ 51+ oo F5mp)(i—1),



where A = (5m*n +3m)/2 and B = (5m*n)/2 — mn.
For the weight of the m-sun graph S, we have

wty, (Sy,)
m m/2
+ Zﬁ((xj>)’n)(xj+b)’n))
j=1
m/2 m/2
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ZfZ Xj» Vn) JFZfZ Xj> 1) +Z:fZ X ¥n) (%> 1))

m/2 m/2

= Zfz((xzj—l’yﬂ)) + Zfz((xzj’)’n)) + Zfz((xzj—b)’l))
j=1 j=1 j=1

m/2

+ Zfz((xzj))’l)) + ZfZ((ij—l’yﬂ)(ij—l’yl)) + ZfZ((‘ij’yﬂ)(XZj’yl))
j=1 j=1 j=1

m m/2 m/2
+Zf2((xj>)’n)(xj+l’yn)):2 2j—1) +Z (n=1)+2)+Y (m(n—1)+2j—-1)
j=1 j=1
m/2 m/2 m/2
+ZZJ+Z (n+1)+1—(2j—1)+ Y @mn+1-2j
j=1
m/271 m/2 m? m/2
+ ) [Py (n) & (2mn +2tn)] :Z(2]—1)+—(n—1 +3 2
t=0 j=1 j=1
2 m/2 m/2 m? m/2
+ (=1 +JZ 2j—1) +]Zz]+—(n+1)+——;(2j—1)
m/2
—|—mn+——22]+73250()@2mn+732S]() (2mn +2n) + ...

j=

+7325 " l( n) ® 2mn + 2n(m/2 — 1))

=A+C +sn—1)+4mn+C;

m
+si(n—=1)+ (4mn+4n) + ...+ Gy T Smjz—1(n—1) + <4mn +4n (; - 1))

=A+B+Cy +Cy +..+C;

>Sm/2—-1

Under the labeling f, the weights of m-sun graphs S’ ,i =
1,2,..,n, form an arithmetic sequence with the differ-
ence so +$1 + ... + Sp/2-1-

As s;=0,%2,*4 and also s, = *1 for n odd, t=
0,1,...,m/2 — 1, we obtain that f, is a super (a, d)-S,,-anti-
magic labeling of the toroidal square grid T}, for a =
A+B+C +C  +..+C and d=0,2,..,2m,

1 m/2—1
moreover for nodd also d =1,2,...,m/2. 0

Theorem 3. Let S,, be the m-sun graph with m odd, m > 3.
Then the toroidal square grid T),n > 3, admits a super (a,
d)-S-antimagic decomposition for some a and all even d,
0 < d < 2m — 2. Moreover, if n is odd, then the same state-
ment holds for every d, 1 < d < (m —1)/2.

Proof. Define the labeling f; :
3mn} in the following way.

V(T:)UE(T:) — {1,2,..,

Ifi=1,2,...,n then
(m—1)(n—i)+j forjodd,1<j<m-—2,
Hl(xpyi) =9 (m=1)(i=1)+j forjeven,2<j<m—1,
(m—1n+i for j=m,

S (Goms yi) (21, 32)) = (m 4+ D +1 -,

+ (S0 + 51+ oo+ Smpa1)(n = 1).

and if i=1,2,...,n — 1 then
F((x5 i) (x5 yi1))

m—1)(n+i+1)4+3n+1—j forjodd1<j<m-—2,

=d (m—1)(n+4—i)+3n+1—j forjeven2<j<m-—1,
n(im+2) — for j=m,
S((j yn) (5, 1))

m(n+1)+2n—j for j odd,1 <j<m-—2,

=¢(m—-1)(n+4)+3n+1—j for jeven,2 <j<m-—1,
n(m+2) for j=m
Ifi=12,...,nand t =0,1,...,m/2 — 1 we put

{f3((x2t+1,yi)(x2t+2,yi)),f3((xzt+2,yi)(x2t+3>)/i))}
=P, (i) © 2mn + 4+ 2tn).

There is no problem in seeing that under the labeling
f5 the vertices of T/ use integers 1,2,..,mn and this
implies that the labeling f; is super. We observe that for
every i =1,2,...,n— 1 the weight of the m-sun graph S’
is
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Wff3 Sl Zf3 x];yz +Zf3 x])lerl +Zf3 x]>yl x]’thl))

m (m-1)/2 (m-1)/2
+Zf3((xj’yi)(xj+1’yi)) = By + D G 3i) + (s 31)
j=1 j=1 =1
—1)/2 (m—1)/2

Z ((x2j-15yi41)) + J3((x2) yis1))

j=1 J

(m-1)/2 -1)/2
6w yie) + > S ) (-1, yie1)) + Z (225> 1) (%2> yicr1))
= =1
m—1
+ 5 (Coms 1) Goms 1)) + 5 (Goms i) (515 91)) + D> F3((33> 1) (K141, 74)
=1
-1)/2 (m—-1)/2
Z m—1)(n—i)+2—1)+ Y ((m=1)(i-1)+2)+(m—1n+i
j=1 j=1
(m—-1)/2 (m—1)/2
+ > ((m=Dm-i-)+2—D+ > (m—1Di+2)+(m—n+i+]1
=T =1
(m=1)/2
+ (m—=1)(n4+i+1)+3n+1—(2j—1))
j=1
(m—1)/2
+ ) (m=1)(n+4—i)+3n+1-2)+n(m+2)—i+(m+1n+1—i
=1
(m—1)/2—1
+ [P, () © (2mn + 4 4 2tn)]
t=0
_(m—1)2 2 L (m—1y L2
= 5 (n—1i)+ Z: 2j—1)+ 3 I_I+Z: m—1)n+i
(m—1 2 (m=-1)/2 ( (m=1)/2
o (i 1) + ; 2j—1) + z+ Z 2+ (m—1n+i+1
)/2 2
(m—1)° S L (m=1)
S R UR )+— (B3n+1) ; 2=+ (n+4a-i)
m— —1)/2
+— 5 3n+ Z nim+2)—i+(m+1)n+1—i

+ Py, (1) © 2mn+4) + Py (i) © 2mn+4 +2n) + ...
+ P

2, S(m—1)/2-1

(i) ® 2mn+4+2n((m—1)/2-1)) =D+ C5 +s(i—1)
+@4mn+8)+Cy  +s1(i—1)+ (4mn+8+4n) + ...+ C; s T S(m—1)/2-1(i = 1)

+ (4mn+8+4n((m—1)/2—1))=D+F
+C

re TGy Tt G + (S0 + 51+ oo+ Sm—1)/2-1) (i = 1),

—1)/2—1

where D = (m —1)*(4n+3)/2 + (m —1)(14n+m+2)/2 +5n+2 and F = (m — 1)(5mn — 3n + 8)/2.



The weight of the m-sun graph S, is

wi, (Sy,)

—1)/2

+ ZJ% (%5 ¥n) (X1, ) Z

j= j=1

—-1)/2
+f:’, xm)yn + Z x2] 1,)/1 +
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Zf3 Xjs V) +Zf3 X, 1) +Zf3 Xj> Yn) (%> 1))

1)/2
((x2j-159n)) + Z ((x255¥n))

(m=1)/2
Z F((x2i 1)) + f5((xms> 31))

J

-1)/2 (m-1)/2

Z

Jj=

(21> yn) (x2j-1591)) + Z S3((x2)> ) (x2 1))
=1

+ (> ) (%> 1)) + f5((%m> yn) (%1, ¥))

m—1 (m—1)/2 (m—1)/2
+ ) A ) (5115 ) = Q-1+ > (( (n— 1) +2j)
=1 =1 =1
(m=1)/2 (m=1)/2
+(m—Dn+n+ Z Dn—1)+2—1)+ Y 2+ (m—1)n+1
=1
—1)/2 (m-1)/2
Z ) +2n—(2j— 1))+ ((m—1)(n+4) +3n+1—2j)
= =
(m—1)/2-1
+nm+2)+(m+n+1—n+ [P, (n) @ (2mn + 4 + 2tn)]
=0
-1)/2 ( _ 1)2 m—1)/2
Z @-D+5 -1+ 2j+ (m—1)n+n
= =
(m=1)/2 (m=1)/2 2
(m—1) . . (m—1)
(=) + ; 2j—1)+ ; 2+ (m—Dnt 14— (n+1)
(m—1)/2 2
-1 m—1 m—1
+mT(3n+1)_ (2]—1)4—%(114—4)—#7(311—1—1)
=1
(m—-1)/2
- Z 2j+mn+2n+mn+n+1—n+P, (n)©(2mn+4)
=
+ Py (n) @ (2mn+4+2n) + ... + Pg,s(mq)/zfl(") ® (2mn+4+2n(m—1)/2-1))
=D+Cy, +so(n—1)+ (4mn+8)+ Cy  +si1(n— 1)+ (4mn+ 8+ 4n)
+...+ C;’)S(WU/Z?] + Stm-1)/2—1(n — 1) + (4mn 48 + 4n((m — 1)/2 — 1))
=D+F+Cy +Cy  +...+ Cg,swl)/zfl + (so+ 81+ oo FSpmo1)2-1) (1 = 1).

Again one can see that under the labeling f; the weights of
m-sun graphs S',i=1,2,..,n, constitute an arithmetic
sequence with the dlfference S0+ 51+ o+ Sim_1)/2-1-

Since for every t =0,1,...,(m —1)/2 — 1 the value s, =
0,*2,*4 and also s, = *1 for n odd, it follows that f; is a
super (a, d)-S,-antimagic labeling of the toroidal square

grid T, for a=D+F+C; +C)  + ...+ C;"Smil)/zil and
d=0,2,...,2m — 2, moreover for n odd also E(l: 1,2,..,
(m—1)/2. O

The next theorem shows the existence of C,-edge-antima-
gic decomposition of the toroidal square grid T7,.

Theorem 4. Let C,; be the cycle on four vertices. If m and n
are two even integers, m,n > 4, then the toroidal square grid
T! admits an (a, d)-Cy-edge-antimagic decomposition for
some a and differences d € {0,2,4,6,8,10,16}.

Proof. For m, n even the existence of the C;-decomposition
of the toroidal square grid T) is evident. Let
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B= {Ci,Cﬁ,...,Cm"/z} be a C4-decomposition of the tor-
oidal square grid TJ,. the sets E(C)),

E(Cﬁ),...,E(CZ”"/ ?) are pairwise disjoint and g; must be a
bijection from E(T7) into the set {1,2,...,2mn}, the family of
sets {g1(E(C})), g1(E(C2)), ...q1(E(C mn/2)>} will form a parti-
tion of the set {1,2,...,2mn}. From the existence of a partition
Pmn/ ? of the set {1,2,...,2mn} into 4-tuples it follows that
d— 0, *2,*+4,*+6,*8,*10, +16. From Equation (1) it fol-
lows that ZPM”/Z( i) = "m/z +d(i—1), where the param-
m"/ =% Pm"/ 2( ) This concludes the proof. [

Since edge

eter a =

4, H-antimagic decompositions for toroidal
triangulations

The discovery of the fullerene molecules and related forms
of carbon such as nanotubes has generated an explosion of
activity in chemistry, physics, and materials science.
Classical fullerene is an all-carbon molecule in which the
atoms are arranged on a pseudospherical framework made
up entirely of pentagons and hexagons. Deza et al. [8] con-
sidered fullerene’s extension to other closed surfaces and
showed that only four surfaces are possible, namely sphere,
torus, Klein bottle and projective plane. Toroidal fullerenes
contain only hexagons. The family of toroidal six-regular
graphs are the duals of toroidal fullerenes, see [1]. One class
of the family of toroidal six-regular graphs we can obtain
from the toroidal square grid Tj, by adding edges
(o yisr1) Ky 1 Sj<ml<i<n—1, and (x5, y1)(x+1,
¥n)>»1 <j < mn, with indices j taken modulo m. The resulting
graph we call a toroidal triangulation and denote by Tj,.

A complete m-sun graph on 2m vertices (sometimes also
known as a trampoline graph, see [6], page 112) consists of
a central complete graph K, with an outer ring of m verti-
ces, each of which is joined to both endpoints of the closest
outer edge of the central core. Note that when x1,xy, ..., X
are vertices of a cycle C,, in K,,, then for each i =1,2,...,m
there is a vertex y; adjacent to vertices x; and x(;;;) (where
m+1 is replaced by 1).If we replace the central complete
graph K,, by the cycle C,, then the complete m-sun graph
we call a cycle m-sun graph and denote it by R,,.

It is not difficult to see that the toroidal triangulation T},
can be decomposed into cycle m-sun graphs R, or cycle n-
sun graphs R,. Due to symmetry it is enough to deal with
Ru-decomposition of Tj,.

Now we will deal with the super R,,-antimagic decompo-
sitions of the toroidal triangulation T,.

Theorem 5. Let R, be the cycle m-sun graph with m even,
m > 4. Then the toroidal triangulation T, n > 3, admits a super
(a, d)-R-antimagic decomposition for some a and all even, d,
0<d<5mandd=>5m+ 6,5m++ 12, ...,8m. Moreover, if n is
odd, then the same statement holds for all odd d, 1 < d < 5m/2.

Proof. For a construction of a R,-antimagic decomposition
of the toroidal triangulation T/, we will use the existence of
Sn-antimagic decompositions of the toroidal square grid T},

described in the proof of Theorem 2, only we complete the
labels for added edges (xj, yir1)(xj+1, i) and (x5, y1)(%j515¥n)
for corresponding indices j and i.

Let m be even, m > 4. Define a bijection f; :
E(T}) — {1,2,...,4mn} in the following way:

fu((30)) = (x5, 21)),

V(T") U

fori=1,2,...,n,

ﬁ((xj:yi)(xj>yi+1>) :fZ((xj>yi)(xjayi+1)), fori=1,2,...,n—1
and

Ja(Gxo yn) (x5 1)) = fo( (x5 y) (35 1)) -
For every i=1,2,..,nand t =0,1,...,m/2 — 1 we put

{f4(<x2t+1’)’i)(x2t+2’)’i))’f4((x2t+1,)’i+1)(x2t+2>)’i))>
Ja((aes2, yi) (Ka3, ) fa((%2e12, i1 ) (K2e43, 70)) }
— pg)&(i) ® (2mn + 4tn).

Then for the weight of the cycle m-sun graph R!,i=
L,2,..,n—1 we get

Zﬁl Xj> i) "‘Zﬁl Xj>Yit1))

; fjﬂ((xj,y»(xrym))

1

Wtﬂ R’

~.
Il

[z

+ fa (5 i) (15 1))+ fa((x55 yien) (5015 4)) |

1

~.
Il

m/2—1

=A+ > [Pi()

t=0
=A+ Py, (i) ©2mn+ Py (i) © (2mn + 4n) + ...
+ Pl (i) @ (2mn +4n(m/2 — 1))
=A+Cy, tso(i—1)+8mn+Cy +s1(i—1)
+ (8mn + 16n) + ... + CZ’SM?1 + Smp-1(i—1)
+ (8mn + 16n(m/2 — 1))
=A+CHC +Cl, +.+Ch,
+(so+ 51+ oo F5ppn1)(i— 1),

© (2mn + 4tn)|

where C = 6m?n — 4mn.
For the weight of the cycle m-sun graph R}, we get

wty,(R},) Zf4 Xj> Yn) +Zf4 % 31))
LD IICEHICER)
=1
+ Z f4 xjryn x]Jrl)yn)) +f4((xj,y1)(xj+l,yn))]
=1
m/2—1
= A+ >0 [Py (n) @ (2mn+ atm)]
=0
:A+C+CZ,30+CZ,51 4.
Gy, (S0 st S ) (0 = 1),



The weights of the cycle m-sun graphs R ,i=1,2,...n,
under the labeling f;, form an arithmetic progression with
the initial ttrma=A+ C+Cy +Cj  + ...+ C} Syfoct and
difference 5o + 51 + ... + Syj2—1,  Where s, =0,%2,+4,
+6,*+8,+10,*16 and for n odd also s, = =1, *3, %5, for
every t =0,1,...,m/2 — 1.

It means that f; is a super (4, d)-R,,-antimagic labeling for
all even d =0,2,4,....,5m and d =5m+ 6,5m +12,...,8m
and if n is odd then also for all odd d, 1 < d < 5m/2. O

Theorem 6. Let R, be the cycle m-sun graph with m odd,
m > 3. Then the toroidal triangulation T ,n > 3, admits a
super (a, d)-R,,-antimagic decomposition for some a and all
odd d, 1<d<5m—4and d=5m+2,5m+8,...,8m — 7.
Moreover, if n is odd, then the same statement holds for all
evend, 0 <d < (5m—3)/2.

Proof. If m is odd, m > 3, then we define a bijection fs :
V(T?,) UE(T?) — {1,2,...,4mn} in the following way:

(x> 1)) = (x5, 31)) for i=1,2,...,n,
fS((xmayi)(xls}’i)) :f3((xm,)/i)(x1,yi)) fori=1,2,..,n,
Fs((x5,71) (x5 yi41)) = f((x5,3:) (%) yi41))  for i=1,2,..,n—1
and
S5(Cioyn) (o 1)) = (x5 yn) (%5 1))
For every i=1,2,..,n—1 and t=0,1,...,(m—1)/2—1

we give

{fs ((thJrl’yi) (x2t+2’}’i))’f5((x2t+1’yi+1)(x2t+2,yi)),
fs ((xzm,yi) (x2t+3ayi))aﬁ)((xzt+2a)’i+1 ) (x2t+3))’i))}
=P} (i) & (2mn + 4 + 4tn)
and

{fs((oms yisn) (x1,90)) } = P11 (1) @ (2mn — 2n + 4).

Then for the weight of the cycle m-sun graph R!,i=
1,2,..,n — 1 we obtain

ZfS X ¥i) +Zf5 Xj> Yit1))

wi, ( Rl

+ Zf5 xp)’l x]’yi+1))

j=1

+ f5 %> ¥i) (X115 i) +]%((xj,y,-+1)(xj+1,y,»))}

m
j=1

J

+ f5((ms yis1) (1, 31))

(m—1)/2-1

=D+ Y

t=0
+P1, ()@
=D+P (e

[P (i) ® (2mn + 4 + 4tn)]

(4mn — 2n + 4)
(2mn + 4)

+ PZ,Sl(i) (2mn +444n) + ... + Py . 1(i)
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m—1
S <2mn+4+4n( —1))

+ P} (i) @ (4mn — 2n + 4)

=D+ Cj, +so(i—1)+ (8mn+16) + Cj |
+s5(—1)+ (8mn+ 16+ 16n) + ...
+Cy + Stm-1)/2-1(i — 1)
+ (8mn +16 + 16n(m —3)/2) + C{ | + (i — 1)
+ (4mn—2n+4) =D+ K+ Cy  +Cy
+..4+C} +CY |
+ (50 + 51+ oo + S(m_)21 1) (i — 1),

where K = (m — 1)(12mn — 4n + 16/2 + 2n + 4.
For the weight of the cycle m-sun graph R we obtain

Zf5 x]))’n +Zf5 xj’)’l

Zﬁ((xj’yn)(xj’)’l))

1

>S(m—1)/2-1

>S(m—1)/2—1

wty (R;,)

-
Il

NgE

+ [fS((x]’)’n)(xJH’)’n)) +ﬁ((xj’)’l)(xj+l’)’n))]

+f5(Goms y1) (%1, 7))

.
Il

(m—1)/2-1
=D+ [Pi,(0)® @mn+4+4am)
=0
+ Pl (n) ® (4mn — 2n + 4)

=D+K+Cy +Cj  +...+ CZ)S(W +C7

1)/2-1

+ (S0 + 51+ oo F S(mo1)2m1 E1) (1 = 1).

Under the labeling f; the weights of cycle m-sun graphs
R!,i=1,2,..,n, constitute an arithmetic sequence with
a=D+K+Ci +C +..+C, . +C, and dif-
ference so + 51 + ... + S(m—1)2-1 1.

Since for every t=0,1,...,m/2—1 the value s =
0,*2,*+4,+6,*+8,+10,*16 and for n odd also s =
*1,*3,*5, then there exists a super (a, d)-R,,-antimagic
labeling of the toroidal triangulation for all odd d=
1,3,...,5m—4 and d=5m+2,5m+38,..,8m —7 and if n
is odd then also for all even 0 < d < (5m — 3)/2. 0O

The next theorem asserts the existence of C;-edge-anti-
magic decomposition of the toroidal triangulation T7,.

Theorem 7. Let C; be the cycle on three vertices. Then the
toroidal triangulation T, n,m > 3, admits an (a, d)-C;-edge-
antimagic  decomposition for some a and differences
d € {1,3,5,9}. Moreover, if mn is odd, then the same state-
ment holds for d € {0,2}.

Proof. The existence of the C;-decomposition of the toroidal tri-
angulation T, is obvious. Let B = {C},C3,...,C"} be a Cs-
decomposition of the toroidal triangulation T, . Since the edge
sets E(C}),E(C3), ..., E(Cy™) are pairwise disjoint and g, must
be a bijection from E(']I‘” ) into the set {1,2,...,3mn}, the fam-
ily of sets {g(E(C})), £ (E(C3)),....g2(E(Cy™))} will form a
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partition of the set {1,2,...,3mn}. From the existence of a par-
tition P37 of the set {1,2,...,3mn} into mn 3-tuples it follows
that d = =1,+3,+5 +9 and if mn=1 (mod 2) also d =
0,*2. Using the property (1) we have that } Py7(i)
Cy" +d(i — 1), where the parameter a = C}") = > P3"(1).
This concludes the proof.

o~ |l

5. Conclusion

In the foregoing sections we studied the existence of super
(a, d)-H-antimagic decompositions for toroidal grids and
toroidal triangulations. We have shown that the toroidal
square grid T7,n > 3, admits a super (a4, d)-S,-antimagic
decomposition for all even differences 0 < d < 4|m/2] and
if n is odd, then for every difference 1<d < |m/2].
Moreover, we proved the existence of a super (a, d)-
Rm-antimagic decomposition of the toroidal triangulation
T7, for certain differences.
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