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A survey on pairwise compatibility graphs

Md. Saidur Rahman and Shareef Ahmed

Graph Drawing and Information Visualization Laboratory, Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh

ABSTRACT
Let T be an edge weighted tree and dmin, dmax be two non-negative real numbers where dmin �
dmax: The pairwise compatibility graph (PCG) of T for dmin, dmax is a graph G such that each vertex
of G corresponds to a distinct leaf of T and two vertices are adjacent in G if and only if the
weighted distance between their corresponding leaves lies within the interval ½dmin, dmax�: A graph
G is a PCG if there exist an edge weighted tree T and suitable dmin, dmax such that G is a PCG of
T. The class of pairwise compatibility graphs was introduced to model evolutionary relationships
among a set of species. Since not all graphs are PCGs, researchers become interested in recogniz-
ing and characterizing PCGs. In this paper, we review the results regarding PCGs and some of
its variants.
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1. Introduction

Let T be an edge weighted tree and let dmin, dmax be two
non-negative real numbers where dmin � dmax: The pairwise
compatibility graph (PCG) of T for dmin and dmax, denoted
by PCGðT, dmin, dmaxÞ, is a graph G ¼ ðV ,EÞ where each
vertex u0 2 V corresponds to a distinct leaf of T and there is
an edge ðu0, v0Þ 2 E if and only if the weighted distance
between their corresponding leaves lies within the interval
½dmin, dmax�: The tree T is called a pairwise compatibility tree
(PCT) of G. A given graph is a PCG if there exist suitable
T, dmin, dmax such that G ¼ PCGðT, dmin, dmaxÞ: Construction
of a PCG is trivial for a given weighted tree T and two real
numbers dmin, dmax. However, the reverse problem of recog-
nizing a given graph as a PCG is difficult. Figure 1(b) illus-
trates the pairwise compatibility graph G of the edge
weighted tree T in Figure 1(a) for dmin ¼ 4 and dmax ¼ 5.
For a pairwise compatibility graph G, pairwise compatibility
tree T may not be unique. For example, Figure 1(c) shows
another edge weighted tree T

0
such that the graph G in

Figure 1(b) is a PCG of T
0
for dmin ¼ 4 and dmax ¼ 7.

PCGs have applications in modeling evolutionary rela-
tionship among set of organisms from biological data which
is also called phylogeny. Phylogenetic relationships are nor-
mally represented as a tree called phylogenetic tree. The
phylogenetic tree reconstruction problem asks to find a tree
which provides the “best” explanation of the data of a set of
taxa. A variety of biologically motivated heuristics are
known for determining the “goodness” of a phylogenetic
tree for a given data. Under most of the heuristics, phylo-
genetic tree reconstruction problem is known to be an NP-

Complete problem [18, 21]. It is also difficult to find the
heuristic for the optimal tree, hence experimental evalua-
tions of trees generated from different algorithms are done
to measure the relative performance of each algorithm.
Since it is time expensive to find large trees consisting of
many taxa, it is interesting to test a reconstruction algorithm
on a subtree induced by a smaller sample of taxa. Thus it is
important to efficiently find biologically significant samples
of taxa from a large tree. While dealing with such sampling
problem from large phylogenetic tree, Kearney et al. [22]
introduced the concept of PCGs. They also showed that “the
clique problem” can be solved in polynomial time for a
PCG if a pairwise compatibility tree can be constructed in
polynomial time.

Leaf Power Graphs (LPGs), a subclass of PCGs, are a
well-studied class of graphs which is obtained by setting
dmin to 0 [23, 26, 32]. A similar but relatively new subclass
of PCGs named Min-Leaf Power Graphs (mLPGs) are
obtained by setting dmax to 1 [10]. Recently a superclass of
PCGs named multi-interval PCGs are introduced where
more than one intervals are allowed [1]. If the number of
intervals is k then the graphs are called k-interval PCGs. In
Table 1, we provide an overview of graph classes which are
in PCG, LPG, mLPG and 2-interval PCG. In this paper, we
review the current state of art regarding PCGs. In addition
to that, we review some variants of PCGs.

The rest of the paper is organized as follows. In
Section 2, we give some necessary definitions. In Section 3,
we review the results on PCGs. In Section 4, we review
some variants of PCGs. In Section 5, we review the results
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on PCGs of some specific tree topologies. Finally we con-
clude in Section 6.

2. Preliminaries

In this section, we define some terms which will be used
throughout this paper.

Let, G ¼ (V,E) be a simple, undirected graph with vertex
set V and edge set E. An edge between two vertices u and v
is denoted by (u, v). If ðu, vÞ 2 E, then u and v are adjacent
and the edge (u, v) is incident to u and v. The degree of a
vertex is the number of edges incident to it. The comple-
ment graph G of G is the graph with vertex set V and edge
set E, where E consists of the edges that are determined by
the non-adjacent pairs of vertices of G. For a vertex v of a
graph G, NðvÞ ¼ fujðu, vÞ 2 Eg denotes the open neighbor-
hood, while N½v� ¼ NðvÞ [ fvg is the closed neighborhood. A
path Puv in G is a sequence of distinct vertices
w1,w2,w3, � � � ,wn in V such that u ¼ w1 and v ¼ wn and
ðwi,wiþ1Þ 2 E for 1 � i < n: The vertices u and v are called
end-vertices of path Puv. If the end-vertices are same then
the path is called a cycle. A tree T is a connected graph with
no cycle. A vertex with degree one in a tree is called leaf of
the tree. All the vertices other than leaves are called internal
nodes. A weighted tree is a tree where each edge is assigned
a number as the weight of the edge. The weight of an edge
(u, v) is denoted as w(u, v). The distance between two nodes
u, v in T is the sum of the weights of the edges on path Puv
and denoted by dTðu, vÞ: A subtree induced by a set of leaves
of T is the minimal subtree of T which contains those
leaves. We denote by Tuvw the subtree of a tree induced by
three leaves u, v and w. A star graph Sn is a tree on n nodes
with one node having degree n – 1 and all other nodes hav-
ing degree 1. A caterpillar is a tree for which deletion of
leaves together with their incident edges produces a path.
The spine of a caterpillar is the longest path to which all
other vertices of the caterpillar are adjacent. A chord of a
cycle is an edge, not in the cycle, whose end-points lie on
the cycle. An odd chord connects two vertices that have odd
distance between them in the cycle. A graph is chordal if it

does not contain any cycle of length greater than three as an
induced subgraph. A chordal graph is strongly chordal if
every even cycle of length at least six has an odd chord [5].
A vertex is called a cut-vertex if removing it disconnects the
graph. A block of a graph is a maximal biconnected sub-
graph of the graph. A block-cycle graph is a graph with
cycles as its maximum biconnected components. The blocks
and cut-vertices of a graph can be represented by block-cut-
vertex tree of the graph. A graph is bipartite if the vertices
can be expressed as the union of 2 independent sets.

A graph G0 ¼ ðV 0,E0Þ is a k-root of a graph G ¼ ðV, EÞ if
V 0 ¼ V and there is an edge ðu, vÞ 2 E if and only if the
shortest path connecting u and v in G0 is at most k.
Alternatively, G is called the k-power of G0 [23]. A special
case of graph power is tree power which requires G0 to be a
tree. The k-th power of G is represented as Gk. A graph G is
a tree compatible graph if there exists a tree T such that all
leaves and a subset of internal nodes of T correspond to the
vertex set V of G, and for any two vertices u, v 2 V; ðu, vÞ 2
E if and only if kmin � dTðu, vÞ � kmax where kmin and kmax

are real numbers. A ladder graph consists of two path
graphs u1, u2, � � � , un and v1, v2, � � � , vn where ui and vi are
adjacent. A dual graph of a plane graph G is a graph which
has a vertex for each face of G, and an edge for each edge
in G joining two neighboring faces. A weak dual of a plane
graph G is the subgraph of the dual graph of G whose verti-
ces correspond to the bounded faces of G. A graph is outer-
planar if it has a planar embedding where all vertices are on
the outer face. Subdividing an edge (u, v) of a graph G is an
operation to replace the edge (u, v) with a path
u,w1,w2, � � � ,wk, v: A graph G0 is called a subdivision of a
graph G if it can be obtained from G by subdividing some
edges of G. The Dilworth number of a graph is defined as
the size of the largest subset of vertices in which the closed
neighborhood of no node contains the neighborhood of
another [15]. The graphs with Dilworth number one are
called threshold graphs [14]. A split graph is a graph whose
vertex set can be partitioned as the disjoint union of an
independent set and a clique. A split graph is called a split
matching and a split antimatching if the subset of edges not

Figure 1. (a) An edge weighted tree T, (b) a pairwise compatibility graph G of T for dmin ¼ 4 and dmax ¼ 5, and (c) another edge weighted tree T 0 such that G is a
PCG of T 0 for dmin ¼ 4 and dmax ¼ 7.

Table 1. Overview of graphs classes in PCG, LPG, mLPG, and 2-interval PCG.

PCGs Every graph with at most seven vertices [7], Cycles, Single chord cycles [35]; Ladder graphs, Block-cycle
graphs, Triangle-free outerplanar graphs [30]; Graphs with Dilworth number at most two [9]; A restricted
subclass of split matrogenic graphs [11]; A restricted subclass of bipartite graphs, Tree power graphs [34]

LPGs Trees [20], Interval graphs, Ptolemaic graphs [3]; Threshold graphs, Split matching graphs [8], A superclass of
directed rooted graphs [4]

mLPGs Threshold tolerance graphs [12], Split antimatching graphs [8]

2-interval PCGs Wheel graphs, A restricted subclass of series-parallel graphs [1]
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belonging to the clique forms a perfect matching and an anti-
matching respectively [10]. A graph is an intersection graph if
the vertices corresponds to a family of sets and there is an
edge between two vertices if the corresponding sets have
non-empty intersection. Interval graphs, circular arc graphs,
disk graphs, rectangle intersection graphs and rooted path
graphs are intersection graphs of intervals on real line, arcs of
circle, disks in the plane, rectangles on the plane and directed
subpaths of a rooted tree respectively. A graph is a tolerance
graph if each vertex u corresponds to an interval Iu on real
line and a tolerance tu, and two vertices u, v are adjacent if
jIu \ Ivj � minftu, tvg [19]. A graph G is ptolemaic graph if
any four vertices u, v,w, x in the same connected component
of G satisfy dðu, vÞdðw, xÞ � dðu,wÞdðv, xÞ þ dðu, xÞdðv,wÞ:
A wheel graph with n vertices, denoted by Wn, is obtained
from a cycle graph Cn�1 with n – 1 vertices by adding a new
vertex p and joining an edge from p to each vertex of Cn�1:
A graph G ¼ ðV, EÞ is called a series-parallel (SP) graph with
source s and sink t if either G consists of a pair of vertices
connected by a single edge or there exists two series-parallel
graphs GiðVi, EiÞ with source si and sink ti for i¼ 1, 2 such
that V ¼ V1 [ V2,E ¼ E1 [ E2 and either s ¼ s1, t1 ¼ s2 and
t ¼ t2 or s ¼ s1 ¼ s2 and t ¼ t1 ¼ t2 [29].

3. Pairwise compatibility graphs

In this section, we review the results on PCGs.

3.1. Graphs that are PCGs

In 2003, Kearney et al. introduced PCGs while dealing with
a sampling problem from large phylogenetic tree [22]. Since
its inception many graph classes are proved to be PCGs.
Initially, Phillips showed that every graph with at most five
vertices is PCG [27] and later Calamoneri et al. showed that
all graphs with at most seven vertices are PCGs [7]. It is
easy to show that trees are PCGs [30]. The following the-
orem shows that every cycle is a PCG [35].

Theorem 1. Every cycle is a PCG.

Outline of the Proof: Let Cn be a cycle with n vertices
v01, v

0
2, � � � , v0n where ðv0i, v0iþ1Þ are adjacent for 1 � i < n and

ðv01, v0nÞ are also adjacent. We construct an edge weighted
caterpillar T as follows. Let v1, v2, � � � , vn�1 be the leaves of
T and u1, u2, � � � , un�1 be the vertices on the spine of T such
that ui is adjacent to vi. We assign weight d to edge

ðui, uiþ1Þ for 1 � i < n� 1 and weight w to the edges inci-
dent to a leaf where w > ðnþ 1Þ d2 : If n is odd then we put
a vertex un in the middle of the path Pu1un�1 as illustrated in
Figure 2(a). If n is even then we use un

2
as un which is shown

in Figure 2(b). We then place the last vertex vn as a leaf adja-
cent to un. We assign weight wn ¼ w� ðn� 3Þ d2 to the edge
(un, vn). The leaf vi of T corresponds to the vertex v0i of Cn.
The tree T is a PCT of Cn for dmin ¼ 2wþ d and dmax ¼
2wþ d: Note that dTðvi, vjÞ > 2wþ d for j 6¼ i� 1, i, iþ 1
and i, j 6¼ n, and dTðvn, vjÞ < 2wþ d for j 6¼ 1, n� 1: w

Using Theorem 1 we get the following theorem [35].

Theorem 2. Every cycle with a single chord is a PCG.

Using Theorem 1 we can also prove that every block-
cycle graph is a PCG [35].

Theorem 3. Every block-cycle graph is a PCG.

Outline of the Proof: Let G be a block-cycle graph. We give
an outline of the construction of a PCT of G. For each con-
nected component Gi of G we first construct block-cutvertex
tree T i of Gi. Since Gi is a connected block-cycle graph, each
block of Gi is either a cycle or an edge. We start with an
empty tree Ti. We perform e depth first search in T i and for
each node corresponding to a block Bij, we construct a PCT
Tij and add Tij with Ti to construct PCT of the nodes visited
so far. Finally we construct PCT of G by merging PCT of each
connected component of G by adding edge between trees. w

Although not every bipartite graphs are PCGs, some
restricted class of biparite graphs are proved to be PCGs
[34]. Yanhaona et al. showed that a class of graphs called
tree compatible graphs, which contains tree power graphs,
are PCGs [34]. Interval graphs are proved to be PCGs [3].
Calamoneri et al. showed that threshold graphs, split matching
graphs are PCGs [8]. Every graph with Dilworth number at
most two is proved to be PCG [9]. Calamoneri et al. proved
that threshold tolerance graphs and a subclass of split matro-
genic graphs are PCGs [11]. Salma et al. showed that ladder
graphs are PCGs as in the following theorem [30].

Theorem 4. Every ladder graph is a PCG.

Outline of the Proof: Let G be a ladder graph with 2n verti-
ces and u01, u

0
2, � � � , u0n, v01, v02, � � � , v0n be the vertices of G

where there is edges between ðu0i, u0iþ1Þ, ðv0i, v0iþ1Þ and ðu0i, v0iÞ:
We construct an edge weighted tree T as shown in Figure 3.
T is a PCT of G for dmin ¼ 2wþ d þ 1 and dmax ¼ 2wþ 2d:
Note that, dTðui, uiþ1Þ ¼ dTðvi, viþ1Þ ¼ 2wþ 2d and dTðui,

Figure 2. (a) A pairwise compatibility tree of a cycle with odd number of vertices and (b) a pairwise compatibility tree of a cycle with even number of vertices.
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viÞ ¼ 2wþ d þ 1: On the other hand dTðui, ujÞ, dTðvi, vjÞ,
dTðui, vjÞ > 2wþ 2d for j > iþ 1 and dTðui�1, viÞ <
2wþ dþ 1: w

By providing a method to combine PCTs of two cycles of
length at least four, Salma et al. gave the following the-
orem [30].

Theorem 5. Outer subdivision of ladder graphs are PCGs.

Salma et al. provided an algorithm to construct PCT of a
triangle free outerplanar graph. The idea of the algorithm is
to construct PCT of each biconnected component by per-
forming DFS on the weak dual of the biconnected compo-
nent and finally merging the PCTs of biconnected
components. Thus we have following theorem [30].

Theorem 6. Triangle-free outer planar 3-graphs are PCGs.

Despite recent progress, we are far from a complete char-
acterization of PCGs. Hence interesting open problems are
remained open. It is not known whether grid graphs are
PCGs or not [30].

Open Problem 3.1.1. Whether grid graphs are PCGs or not.

The following open problem asks about the largest class
of outerplanar graphs which are PCGs [28].

Open Problem 3.1.2. What is the largest class of outerpla-
nar graphs which are PCGs?

Although a subclass of split matrogenic graphs are PCGs,
It is not known whether all split matrogenic graphs are
included in PCGs [10].

Open Problem 3.1.3. Whether every split matrogenic graphs
are PCGs or not.

3.2. Graphs that are not PCGs

Since there are exponentially increasing number of tree top-
ologies, initially Kearney et al. conjectured that every graph

is a PCG [22]. However the conjecture is refuted by
Yanhaona et al. as stated in the following theorem [34].

Theorem 7. Not all graphs are PCGs.

Yanhaona et al. provided an example of a bipartite graph of
15 vertices, as illustrated in Figure 4(a), which is not a PCG.
The key idea behind the proof of Theorem 7 is the positions of
leaves in a weighted tree put constraint on the distances between
pair of leaves. The following lemma illustrates this idea [34].

Lemma 8. Let T be an edge weighted tree and u, v, w be
three leaves of T such that Puv be the largest path in Tuvw.
Let x be another leaf except u, v, w. Then dTðw, xÞ � dTðu, xÞ
or dTðw, xÞ � dTðv, xÞ:

Outline of the Proof: Let o be the degree 3 vertex of Tuvw.
Then each of the paths Puv, Puw and Pwv is composed of two
of the three subpaths Puo, Pow and Pov. Since dTðu, vÞ is the
largest path in Tuvw, dTðu, vÞ � dTðu,wÞ: This implies that
dTðu, oÞ þ dTðo, vÞ � dTðu, oÞ þ dTðo,wÞ: Hence dTðo, vÞ �
dTðo,wÞ: Similarly, dTðu, oÞ � dTðo,wÞ since dTðu, vÞ �
dTðw, vÞ: Since T is a tree, there is a path from x to o. Let ox
be the first vertex in VðTuvwÞ \ VðPxoÞ along the path Pxo
from x. Then clearly ox is on Puo, Pvo or Pwo. We first
assume that ox is on Puo. Then dTðv, xÞ � dTðw, xÞ since
dTðw, xÞ ¼ dTðx, oÞ þ dTðw, oÞ, dTðv, xÞ ¼ dTðx, oÞ þ dTðv, oÞ
and dTðv, oÞ � dTðw, oÞ: We now assume that ox is on Pvo.
Then dTðu, xÞ � dTðw, xÞ since dTðw, xÞ ¼ dTðx, oÞ þ dTðw,
oÞ, dTðu, xÞ ¼ dTðx, oÞ þ dTðo, uÞ and dTðu, oÞ � dTðw, oÞ:
We finally assume that ox is on Pwo. Then dTðu, xÞ ¼
dTðu, oÞ þ dTðo, oxÞ þ dTðox, xÞ and dTðw, xÞ ¼ dTðw, oxÞ þ
dTðox, xÞ: As dTðw, oxÞ � dTðw, oÞ and dTðu, oÞ � dTðw, oÞ,
dTðu, xÞ � dTðw, xÞ: Likewise, dTðv, xÞ � dTðw, xÞ: Thus, in
each case, at least one of u and v is at a distance from x
that is either larger than or equals to the distance between w
and x. w

Mehnaz and Rahman generalized the counter-example
provided by Yanhaona et al. and showed a subclass of
bipartite graphs are not PCG [24].

Theorem 9. Let G ¼ ðV, EÞ be a bipartite graph with two

partite sets V1, V2 such that jV1j ¼ k and jV2j ¼ k
r

� �
where

3 � r � n� 2. If each vertex in V2 has exactly r neighbors in
V1 and no two vertices in V2 has the same r neighbors in V1,
then G is not a PCG.

Durocher et al. showed a graph of eight vertices, as illus-
trated in Figure 4(b), and a planar graph of sixteen vertices
which are not a PCG [16]. The following lemma illustrates aFigure 3. Pairwise compatibility tree of a ladder graph.

Figure 4. (a) A bipartite graph with 15 vertices which is not a PCG, (b) a graph with 8 vertices which is not a PCG, and (c) the smallest planar graph which is not
a PCG.
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constraint on the distances between pair of leaves based on
which the graph with 8 vertices is proved to be not a PCG [16].

Lemma 10. Let C be the cycle a0, b0, c0, d0 of four vertices. If
C ¼ PCGðT, dmin, dmaxÞ for some tree T and values dmin and
dmax, then dTða, cÞ and dTðb, dÞ cannot be both greater
than dmax.

Calamoneri et al. showed that the graph with eight verti-
ces, which is not a PCG, is a circular arc graph, disk graph
and rectangle intersection graph. Thus the circular arc
graphs, disk graphs and rectangle intersection graphs are
not contained in PCGs [11]. Although split permutation
graphs are PCGs [9], permutations graphs are not PCGs
[11]. Calamoneri et al. also showed that tolerance graphs are
not PCGs [11]. Recently, Baiocchi et al. gave a new proof tech-
nique for a graph to be not PCG, and proved that square of a
cycle with at least 8 vertices are not PCGs [2]. The graph C2

8,
as shown in Figure 4(c), is proved to be a minimal not PCG
and the smallest planer graph known which is not PCG [2].
Although wheel graphs with at most 8 vertices are proved to
be PCGs, wheel graphs with at least 9 vertices are not PCGs
[2]. Moreover, strong product of Cn and P2 are not PCGs [2].
Since many graph classes are not yet proved to be PCGs or
not PCGs, we have the following open problem [13].

Open Problem 3.2.1. Find other graph classes which are
not PCGs.

3.3. Complexity of recognizing PCGs

Given a graph, the PCG recognition problem asks to decide
whether the graph is a PCG or not. Durocher et al. consid-
ered a generalized PCG recognition problem and proved the
hardness of the problem [16]. Given a graph G ¼ ðV ,EÞ and
a set S � E, the generalized PCG recognition problem asks to
find a PCG G0 ¼ PCGðT, dmin, dmaxÞ which contains G as a
subgraph but does not contain any edge of S. If the max-
imum number of edges of S are required to have distance
between their corresponding leaves greater than dmax, then
the generalized PCG recognition problem is NP-hard.
Formally the decision version of the problem is given below.

Problem: MAX-GENERALIZED PCG RECOGNITION PROBLEM.
Instance: A graph G, a subset S of the edges of the comple-
ment graph of G, and a positive integer k.
Question: Is there a PCG G0 ¼ PCGðT, dmin, dmaxÞ such that
G0 contains G as a subgraph but does not contain any edges of
S, and there are at least k edges of S such that the distance
between their corresponding leaves in T is greater than dmax.

Durocher et al. proved that the Max-Generalized PCG
Recognition Problem is NP-hard [16] by reduction from the
Monotone-One-In-Three-3-Sat problem [31]. However the com-
plexity of the PCG recognition problem is still unknown [16].

Open Problem 3.3.1. What is the complexity of PCG recog-
nition problem?

3.4. Necessary and sufficient conditions of PCGs

Hossain et al. gave a necessary condition and a sufficient
condition for a graph to be PCG [20]. The necessary condi-
tion is stated as follows [20].

Theorem 11. Let G be a graph. Let H1 and H2 be two dis-
joint induced subgraphs of G. If each of H1 and H2 is either
a chordless cycle of at least four vertices or Cn for n � 5, then
G is not a PCG.

The graph shown in Figure 5(a) has two disjoint chord-
less cycles and hence by Theorem 11 the complement of the
graph is not a PCG. The correctness of Theorem 11 is
immediate from the following lemmas [20].

Lemma 12. Let G ¼ ðV, EÞ be a graph. Let G1 ¼ ðV1,E1Þ
and G2 ¼ ðV2,E2Þ be two induced subgraphs of G with no com-
mon vertices in G1 and G2. Assume that V2 � Nðu0Þ and V1 �
Nðv0Þ in G for every u0 2 V1 and every v0 2 V2. Let T1 be a
PCT of G1 such that G1 ¼ PCGðT1, dmin1, dmax1Þ and T2 be a
PCT of G2 such that G2 ¼ PCGðT2, dmin2, dmax2Þ. If there exist
two leaves a, c in T1 such that dT1ða, cÞ > dmax1, and two leaves
b, d in T2 such that dT2ðb, dÞ > dmax2, then G is not a PCG.

Lemma 13. Let G be a graph. Let H1 and H2 be two disjoint
subgraphs of Gc. For any H1 ¼ PCGðT1, dmin1, dmax1Þ and
H2 ¼ PCGðT2, dmin2, dmax2Þ, if T1 has a pair of leaves whose
weighted distance is greater than dmax1 and T2 has a pair of
leaves whose weighted distance is greater than dmax2, then G
is not a PCG.

Lemma 14. Let Cn be a cycle of length n � 5, then both Cn

and Cn are in PCG but not in fmLPG, LPGg:
We now state the sufficient condition given by Hossain

et al. [20].

Theorem 15. Let G be a graph. If G has no cycle then G is
a PCG.

By Theorem 15, the complement of the graph shown in
Figure 5(b) is a PCG. Despite being the first necessary con-
dition and first sufficient condition, there is a gap between
the conditions. Hossain et al. identified four interesting
graph classes between these two conditions as follows [20].

G1 : containing graphs whose complement does not con-
tain of any chordless cycle.

G2 : containing graphs whose complement consisting of two
induced chordless cycles which share some common vertices.

G3 : containing graphs whose complement consisting of
two induced chordless cycles where some edges are incident
to both cycles.

Figure 5. (a) A graph with two disjoint chordless cycle (highlighted by dotted
ellipses) whose compliment is not a PCG and (b) a graph no cycle whose com-
plement is a PCG.
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G4 : containing graphs whose complement contain only
one chordless cycle.

Hossain et al. showed that there are some graphs that
belong to G1 and G2 which are not PCGs. Hence following
problems are remained open [20].

Open Problem 3.4.1. Whether every graph that belong to
G2 are PCGs.
Open Problem 3.4.2. Whether every graph that belong to
G4 are PCGs.

4. Variants of PCGs

In this section, we review some subclass and superclass
of PCGs.

4.1. Leaf power graphs

A graph G ¼ ðV, EÞ is called a Leaf Power Graph (LPG) is
there is an edge weighted tree T and a nonnegative real
number dmax such that each vertex of G corresponds to a
leaf of T and there is an edge ðu0, v0Þ 2 E if and only if
dTðu, vÞ � dmax where u, v are the leaves of T corresponding
to the vertices u0, v0 [26]. We denote the LPG of T, dmax by
LPGðT, dmaxÞ: If dmax ¼ k, then LPGðT, dmaxÞ is called a k-
leaf power graph. Thus LPGs are special case of PCGs when
dmin is set to 0. Although every LPG is strongly chordal, not
all strongly chordal graphs are LPGs [17]. Ptolemaic graphs,
interval graphs and a superclass of directed rooted path
graphs are PCGs [3, 4]. Nevries and Rosenke gave a list of
seven graphs which are not LPGs [25], and one of the seven
graphs is shown in Figure 6.

4.2. Min-leaf power graphs

A graph G ¼ ðV, EÞ is called a Min-Leaf Power Graph
(mLPG) is there is an edge weighted tree T and a nonnega-
tive real number dmin such that each vertex of G

corresponds to a leaf of T and there is an edge ðu0, v0Þ 2 E if
and only if dTðu, vÞ � dmin where u, v are the leaves of T
corresponding to the vertices u0, v0 [10]. We denote the mLPG
of T, dmin by mLPGðT, dminÞ: Thus mLPGs are special cases of
PCGs when dmax is set to 1. Threshold tolerance graphs are
proved to be mLPGs [12]. Split matching graphs are not
mLPGs [10].

4.3. Multi-interval PCGs

A graph G a k-interval PCG if there is an edge weighted tree
T for mutually exclusive intervals I1, I2, � � � , Ik of nonnega-
tive real numbers such that each vertex of G corresponds to
a leaf of T and there is an edge between two vertices in G if
the distance between their corresponding leaves lies in I1 [
I2 [ � � � Ik [1]. Figure 7(b) illustrates an edge weighted tree T
and Figure 7(a) shows the corresponding 2-interval PCG
where I1 ¼ ½1, 3� and I2 ¼ ½5, 6�: Note that the graph shown
in Figure 7(b) is not a PCG [16].

Since we are allowed to take as many intervals as needed,
it is conceivable that every graph is a k-interval PCGs for
some k. We have the following theorem [1].

Theorem 16. Every graph is an jEj-interval PCG.

Ahmed and Rahman showed that wheel graphs with at least
9 vertices, which are proved to be not PCGs, are 2-interval
PCGs [1]. They also showed that a restricted class of series-
parallel graphs, called the SQQ series-parallel graphs, are
2-interval PCGs. Being e relatively new graph class, many
questions are yet open as listed below [1].

Open Problem 4.3.1. What is the smallest value of k for
which every graph is a k-interval PCG?

Open Problem 4.3.2. Is every series-parallel graph a 2-inter-
val PCG?

4.4. Relationship among PCGs, k-interval PCGs,
LPGs, mLPGs

It is easy to observe that k-interval PCGs are superclass of
PCGs and both LPGs and mLPGs are subsets of PCGs.
Calamoneri et al. showed that co-LPG class coincides with
mLPG and co-mLPG class coincides with LPG [8]. It is
proved that LPG \ mLPG 6¼ ;, and threshold graphs are
both LPG and mLPG [10]. It is also proved that there are
graphs such as cycles which are PCGs but neither LPGs norFigure 6. A graph which is not an LPG.

Figure 7. (a) A graph G which is not a PCG, (b) a 2-interval PCT G for I1 ¼ ½1, 3�, I2 ¼ ½5, 6�:
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mLPGs [10]. Both the set LPG n mLPG and mLPG n LPG
are non-empty [10]. The following theorem [13] and Figure
8 illustrates the relationship among the four classes.

Theorem 17. For the classes of LPG, mLPG, PCG and k-
interval PCG, the following relationship holds: (a) LPG,
mLPG � PCG � k-interval PCG, (b) LPG \ mLPG 6¼ ;, (c)
LPG n mLPG 6¼ ;, and (d) mLPG n LPG 6¼ ;:

5. PCGs of specific tree topology

In this section, we review the results regarding PCGs of
some specific tree topologies.

In most of the works, different graph classes are proved
to be PCGs by showing a PCT which witnesses a graph of
the graphs class as PCG. Mostly the structure of such PCTs
are simple such as stars, caterpillars. Some researchers con-
sidered the reverse direction where the subclasses of PCGs
of specific tree topologies are investigated.

5.1. PCGs of stars

PCGs of star topology are studied by some researchers.
Threshold graphs are PCGs of stars [10]. Moreover, it is
proved that PCGs of stars are a special superclass of thresh-
old graphs [10]. Recently, Xiao and Nagamochi gave a com-
plete characterization of PCGs of stars [33]. The authors
showed that vertices of PCGs of stars admits a special order-
ing and gave an Oðn6Þ time algorithm to recognize a graph
as a PCG of stars [33].

5.2. PCGs of caterpillars

Different graph classes such as cycles, ladder graphs are
proved to be PCGs of caterpillars [30, 35]. LPGs of unit
weight caterpillars are unit interval graphs [3]. Calamoneri
et al. gave some properties of PCGs of unit weight caterpil-
lars [6]. Wheel graphs with more than 9 vertices are proved
to be 2-interval PCGs of caterpillars [1]. However, complete
characterization of PCGs of caterpillars are not known yet.
Hence we have the following open problem [6].

Open Problem 5.2.1. Characterize PCGs of caterpillars.

It is also interesting to characterize the PCGs of other
tree topologies [13].

Open Problem 5.2.2. Characterize PCGs of other tree topologies.

6. Conclusion

In this paper, we review the current state of art regarding
the graph class PCG and some of its variants. Recent results
show some important characteristics of these graph classes.
However, the complete characterization is not known yet
and some interesting problems are yet open.
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