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Steiner Wiener index of block graphs

Matja�z Kov�sea , V A. Rasilab, and Ambat Vijayakumarb

aSchool of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India; bDepartment of Mathematics, Cochin University of Science and Technology,
Kochi, India

ABSTRACT
Let S be a set of vertices of a connected graph G. The Steiner distance of S is the minimum size
of a connected subgraph of G containing all the vertices of S. The Steiner k-Wiener index is the
sum of all Steiner distances on sets of k vertices of G. Different simple methods for calculating the
Steiner k-Wiener index of block graphs are presented.
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1. Introduction

All graphs in this paper are simple, finite and undirected.
Unless stated otherwise let n ¼ jVðGÞj and m ¼ jEðGÞj,
hence n denotes the order and m the size of a graph G. If G
is a connected graph and u, v 2 VðGÞ, then the (geodetic)
distance dGðu, vÞ (or simply d(u, v) if there is no confusion
about G) between u and v is the number of edges on a
shortest path connecting u and v. The Wiener index W(G)
of a connected graph G is defined as

WðGÞ ¼
X

fu, vg2VðGÞ
dðu, vÞ:

The first investigation of this distance-based graph invariant
was done by Wiener in 1947, who realized in [21] that there
exist correlations between the boiling points of paraffins and
their molecular structure and noted that in the case of a tree
it can be easily calculated from the edge contributions by
the following formula:

WðTÞ ¼
X
e2EðTÞ

nðT1ÞnðT2Þ, (1)

where nðT1Þ and nðT2Þ denote the number of vertices in
connected components T1 and T2 formed by removing an
edge e from the tree T.

The Steiner distance of a graph has been introduced in
[6] by Chartrand et al., as a natural generalization of the
geodetic graph distance. For a connected graph G and S �
VðGÞ, the Steiner distance dGðSÞ (or simply d(S)) among
the vertices of S is the minimum size among all connected
subgraphs whose vertex sets contain S. Note that any such
subgraph H is a tree, called a Steiner tree connecting vertices
from S. Vertices of S are called terminal vertices of tree H,

while the rest of the vertices of H are called inner vertices of
the Steiner tree H. If S ¼ fu, vg, then dðSÞ ¼ dðu, vÞ coin-
cides with the geodetic distance between u and v. In [8]
Dankelmann et al. followed by studying the average k-
Steiner distance lkðGÞ: In [15], Li et al. introduced a gener-
alization of the Wiener index by using the Steiner distance.
The Steiner k-Wiener index SWkðGÞ of a connected graph G
is defined as

SWkðGÞ ¼
X

S � VðGÞ
jSj ¼ k

dðSÞ:

For k¼ 2, the Steiner k-Wiener index coincides with the
Wiener index. The average k-Steiner distance lkðGÞ is
related to the Steiner k-Wiener index via the equality
lkðGÞ ¼ SWkðGÞ=ð nk Þ: In [15] the exact values of the Steiner
k-Wiener index of the path, star, complete graph, and com-
plete bipartite graph and sharp lower and upper bounds for
SWkðGÞ for connected graphs and for trees have been
obtained. In [11] an application of Steiner k-Wiener index
in mathematical chemistry is reported, and it is shown that
the term WðGÞ þ kSWkðGÞ provides a better approximation
for the boiling points of alkanes than W(G) itself, and that
the best such approximation is obtained for k¼ 7. For a sur-
vey on Steiner distance see [16].

The problem of deciding whether for a given subset of
vertices in a graph G there exist a Steiner tree of size at
most t belongs to the classical NP-complete problems from
[10]. Hence for k> 2 it is not very likely to find an efficient
way to compute the Steiner k-Wiener index for general
graphs. Therefore it becomes interesting to either find effi-
cient procedures to compute the Steiner k-Wiener index or
bounds for particular classes of graphs.
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A vertex v is a cut vertex of graph G if deleting v and all
edges incident to it increases the number of connected com-
ponents G. A block of a graph is a maximal connected ver-
tex induced subgraph that has no cut vertices. A block
graph is a graph in which every block is a clique. Block
graphs are a natural generalization of trees, and they arise in
areas such as metric graph theory, [1], molecular graphs [3] and
phylogenetics [9]. They have been characterized in various ways,
for example, as certain intersection graphs [12], or in terms of
distance conditions [4]. In [3] it has been shown that the deter-
minant of the distance matrix of a block graph depends only on
types of blocks, and not on how they are connected. Steiner dis-
tance, Steiner centers and Steiner medians of block graphs have
been studied in [19].

A vertex of a block graph G that appears in only one
block is called a pendant vertex. Hence there are exacly two
types of vertices in a block graph: cut vertices and pendant
vertices. A block B is called a pendant block if B has a non-
empty intersection with a unique block in G. Any block
graph different from a complete graph has at least two pen-
dant blocks. Pendant vertex from a pendant block of G is
called a leaf of G. For a block graph G with blocks
B1,B2, :::,Bt , let bi ¼ jVðBiÞj, for i 2 f1, :::, tg: We call a
sequence b1 � b2 � ::: � bt the block order sequence of G.

The line graph L(G) of a simple graph G is obtained by
associating a vertex with each edge of the graph and con-
necting two vertices with an edge if and only if the corre-
sponding edges of G have a vertex in common. A graph is a
line graph of a tree if it is a connected block graph in which
each cut vertex is in exactly two blocks, hence they are
claw-free block graphs: no induced subgraph is a claw - a
complete bipartite graph K1, 3: A caterpillar is a tree with the
property that a path remains if all leaves are deleted. This
path is called the backbone of the caterpillar. Line graphs of
caterpillars are called path-like block graphs. These are all
block graphs with precisely two pendant blocks. The wind-
mill graph Wd(r, t) is a block graph constructed by joining t
copies of Kr at a shared vertex, where r, t � 2: If v 2 VðGÞ
is adjacent to all other vertices of G, it is called a universal
vertex. A block graph with a universal vertex is called star-
like block graph.

For v 2 V Gð Þ let N(v) denote the set of all neighbours. The
degree of vertex v 2 V Gð Þ in graph G is defined as the number
of neighbours and denoted with deg(v), i.e., deg vð Þ ¼ jN vð Þj:
Graph G has degree sequence k ¼ d1, :::, dnð Þ, d1 � d2 � ::: �
dk, if vertices of G can be indexed from v1 to vn such that
deg við Þ ¼ di, i ¼ 1, :::, n: Let T kð Þ be the set of trees with
degree sequence k. It is known that T kð Þ is not empty, if and
only if d1 þ :::þ dn ¼ 2 n� 1ð Þ:

The Cartesian product GwH of two graphs G and H is
the graph with vertex set V Gð Þ � V Hð Þ and a, xð Þ b, yð Þ 2
E G w Hð Þ whenever either ab 2 E Gð Þ and x¼ y, or a¼ b
and xy 2 E Hð Þ: Cartesian products of complete graphs are
called Hamming graphs. They can be alternatively described
as follows. For i ¼ 1, 2, :::, t let ri � 2 be given integers. Let
G be the graph whose vertices are the t-tuples a1, a2, :::at
with ai 2 f0, 1, :::, ri � 1g: Two vertices are adjacent if the
corresponding tuples differ in precisely one place. Then it is

straightforward to see that G is isomorphic to
Kr1

wKr2
w � � � wKrt : A subgraph H of G is called isometric

(or distance preserving) if dH u, vð Þ ¼ dG u, vð Þ for all u, v 2
V Hð Þ: Isometric subgraphs of Hamming graphs are called
partial Hamming graphs. The Hamming distance between
two t-tuples is defined as the number of positions in which
these t-tuples differ, in a partial Hamming graph it coincides
with the geodetic distance.

In this paper we obtain several simple methods for calcu-
lating the Steiner k-Wiener index of block graphs. In
Section 3 we present the block decomposition formula of
the Steiner k-Wiener index of block graphs. In Section 4 we
present the edge decomposition formula of the Steiner
3-Wiener index of block graphs. In Section 5 we present the
vertex decomposition formula of the Steiner k-Wiener index
of block graphs and relate it to the k-Steiner betweenness
centrality. In Section 6 we study the graphs which minimize
or maximize Steiner k-Wiener index among all block graphs
with the same set of blocks, and obtain the sharp lower
bound. To describe block graphs that maximize the Steiner
k-Wiener index we introduce a special graph transformation
called generalized block shift, which generalizes the general-
ized tree shift transformation introduced in [7] by Csikv�ari.

2. Block decomposition formula of Steiner k-Wiener
index of block graphs

Let n(G) denote the number of vertices of a graph G. For a
graph G with p, p> 1, connected components G1,G2, :::,Gp

we denote by Nk Gð Þ the sum over all partitions of k into at
least two nonzero parts of products of combinations distrib-
uted among the p components of F:

Nk Gð Þ ¼
X

l1 þ l2 þ :::þ lp ¼ k
0 � l1, l2, :::, lp < k

n G1ð Þ
l1

� �
n G2ð Þ
l2

� �
:::

n Gpð Þ
lp

� �

For a graph G and e 2 E Gð Þ, let G – e denote a graph
obtained by removing edge e from G. Then the following
formula for a tree T has been shown in [11, 14, 15]

SWk Tð Þ ¼
X
e2E Tð Þ

Nk T � eð Þ:

For a given partition l1 þ l2 þ :::þ lp ¼ k, let
a l1, l2, :::, lp
� �

denote the number of nonzero summands
minus 1. For a graph G with p, p> 1, connected compo-
nents G1,G2, :::,Gp, we define N0

k Gð Þ to be the sum over all
partitions of k into at least two nonzero parts of products of
combinations distributed among the p components of G
multiplied by a l1, l2, :::, lp

� �
:

N0
k Gð Þ ¼

X
l1 þ l2 þ :::þ lp ¼ k

0 � l1, l2, :::, lp < k

n G1ð Þ
l1

 !
n G2ð Þ
l2

 !
:::

n Gpð Þ
lp

 !

� a l1, l2, :::, lp
� �

:

For a connected graph G, we define N0
k Gð Þ ¼ 0: Note that

by definition n
0

� �
¼ 1, and n

k

� �
¼ 0 whenever n< k.
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Let G n Bi denote the graph obtained from G by deleting
all edges from block Bi.

Theorem 1. Let G be a connected block graph with blocks
B1,B2, :::,Bt. Then

SWk Gð Þ ¼
Xt
i¼1

N0
k G n Bið Þ:

Proof. Let G1, :::Gp, p> 1 be the components of G n Bi for
some i 2 f1, :::tg: Let l1, :::lp vertices are chosen respectively
from G1, :::Gp such that l1 þ l2 þ :::þ lp ¼ k and a l1, l2, :::,ð
lpÞ denote the number of nonzero summands minus one.

For a given set S of vertices with l1, :::lp of them chosen
respectively from G1, :::Gp, it is easy to see that the contri-
bution of block Bi to its Steiner distance dG Sð Þ is
a l1, l2, :::, lp
� �

, since G is a block graph. Then, N 0
k G n Bið Þ

gives the contribution of block Bi to SWk Gð Þ: Counting the
contribution of all blocks, the result follows. w

Isometric embedding of a graph into Cartesian product of
graphs is well known [13]. If G is a block graph with blocks
B1,B2, :::,Bt of orders b1, b2, :::, bt , then it can be isometrically
embedded into the Hamming graph Kb1

wKb2
w :::wKbt

as follows.
Let Ci 1ð Þ, :::Ci bið Þ be the connected components of G n Bi:

For v 2 Ci jð Þ, denote ai : V ! f0, 1:::bi � 1g the natural con-
traction of components of G n Bi to the vertices f0, 1:::bi � 1g
of Kbi such that each component get different value. Now define
an embedding a : G ! Kb1

wKb2
w :::wKbt by a vð Þ ¼

a1 vð Þ, :::at vð Þð Þ: We can show that the corresponding
Hamming labelling of vertices of G can be further used to calcu-
late the Steiner distance on a subset of more than two vertices.

Theorem 2. Let G be a connected block graph on n vertices
with blocks B1,B2, :::,Bt, of orders b1 � b2 � ::: � bt.
Let S � V Gð Þ, jSj ¼ k, 2 � k � n:

Then

d Sð Þ ¼
Xt
i¼1

‘i Sð Þ � t,

where ‘i Sð Þ denotes the number of different values assigned to
the i-th coordinates of vertices from S.

Proof. If all vertices from S belong to the same connected
component of G n Bi then the contribution of the block Bi
to the Steiner distance between vertices from S is 0 in all

other cases it is equal to ‘i Sð Þ � 1, and hence the formula
follows. w

Corollary 3. Let G be a connected block graph on n vertices
with blocks B1,B2, :::,Bt, of orders b1 � b2 � ::: � bt. Then,

SWk Gð Þ ¼
P

S�V Gð Þ, jSj¼k

Pt
i¼1 ‘i Sð Þ � n

k

� �
t

Illustration 1. Consider the block graph G in Figure 1. Let
‘ vð Þ denote the Hamming labelling induced by an isometric
embedding into K2 wK3 wK4. Then one possible labeling of
vertices of G reads as follows: ‘ v1ð Þ ¼ 0, 0, 0ð Þ, ‘ v2ð Þ ¼
0, 1, 0ð Þ, ‘ v3ð Þ ¼ 0, 2, 0ð Þ, ‘ v4ð Þ ¼ 1, 2, 0ð Þ, ‘ v5ð Þ ¼ 1, 2, 1ð Þ,
‘ v6ð Þ ¼ 1, 2, 2ð Þ and ‘ v7ð Þ ¼ 1, 2, 3ð Þ. Thus for S ¼ fv1, v2,
v5, v6g, we have ‘1 Sð Þ ¼ 2, ‘2 Sð Þ ¼ ‘3 Sð Þ ¼ 3, and hence d(S)
¼ 5.

3. Edge decomposition of the Steiner k-Wiener
index of block graphs

For an edge ab 2 E Gð Þ, we denote Wab ¼ fv 2
V Gð Þ j dG a, vð Þ < dG b, vð Þg, Wba ¼ fv 2 V Gð Þ j dG b, vð Þ <
dG a, vð Þg, and aWb ¼ fv 2 V Gð Þ j dG a, vð Þ ¼ dG b, vð Þg:
Hence for any edge ab 2 E Gð Þ, vertices of G are partitioned
into three sets: Wab - a set of vertices that are closer to a
than to b, Wba - a set of vertices that are closer to b than to
a and aWb - a set of vertices that are at the same distance to
a and b. If G is a bipartite graph, then aWb ¼ ;: If ab is a
cut edge then also aWb ¼ ;: Additionaly we denote Nab ¼
jWabj,Nba ¼ jWbaj and aNb ¼ jaWbj: Note that for a pen-
dant vertex a and its neighbour b in a block graph G, Nab ¼
1, and aNb ¼ jV Gð Þj � 2: For a cut vertex a and its neigh-
bour b in a block graph G, Nab > 1.

Theorem 4. Let G be a connected block graph on n verti-
ces. Then

W Gð Þ ¼
X

ab2E Gð Þ
Nab � Nba:

Proof. Let u, v 2 V Gð Þ: Note that any pair of vertices in a
block graph is connected by a unique shortest path. Edge ab
appears on a shortest path between u and v if and only if
Wab contains one of the vertices u, v and Wba the other ver-
tex. The expression on the right side of the formula thus
counts the number of times edge ab appears as an edge in a
shortest path between a pair of vertices u and v, hence con-
tributing 1 to d(u, v). w

Theorem 5. Let G be a connected block graph on n verti-
ces. Then

SW3 Gð Þ ¼
X

ab2E Gð Þ
Nab � Nba þ

2
3

X
ab2E Gð Þ

Nab � Nba�aNb:

Proof. Let fu, v,wg ¼ S � V Gð Þ: Edge ab appears in some
Steiner tree connecting vertices of S if and only if S \Wab 6¼

Figure 1. A block graph G with vertices v1, v2, v3, v4, v5, v6, v7 and blocks of
orders b1 ¼ 2, b2 ¼ 3 and b3 ¼ 4:
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; and S \Wba 6¼ ;: The expression on the right side counts
the contribution of an edge ab to Steiner 3-Wiener index of
G. We distinguish two cases.

Case 1. S \Wab 6¼ ;, S \Wba 6¼ ; and S\a Wb ¼ ;:

In this case ab appears in any Steiner tree connecting verti-
ces of S, therefore it contributes 1 to d(S), altogether this
happens Nab � Nba times.

Case 2. S \Wab 6¼ ;, S \Wba 6¼ ; and S\aWb 6¼ ;:
In this case each of Wab, Wba and aWb includes one of the ver-
tices from S. Without loss of generality, let u 2 Wab, v 2 Wba

and w2aWb: Let c be a common neighbour of a and b that
lies on a shortest path between a and w (as well on a shortest
path between b and w). Any Steiner tree on S must include a, b
and c. Note that d fa, b, cgð Þ ¼ 2 and there are three different
Steiner trees connecting a, b and c, each of them induced by a
pair of edges among ab, ac and bc. Therefore the contribution
of each edge among ab, ac and bc to the Steiner distance on S
is 2

3 : There are exactly Nab � Nba�aNb number of {u, v, w} sets
with the property that any Steiner tree connecting {u, v, w}
includes a and b and some common neighbour c of a and b.
Since the contribution to the Steiner distance d fu, v,wgð Þ of
each edge among ab, ac and bc is defined to be 2

3 , the common
contribution of ab, ac and bc in the sum 2

3

P
ab2E Gð Þ Nab �

Nba�aNb equals 2
3 þ 2

3 þ 2
3 ¼ 2, which is exactly the contribution

of {a, b, c} to the Steiner distance d fu, v,wgð Þ: w

Theorem 6. Let G be a connected block graph on n vertices. Then

SW3 Gð Þ ¼
X

ab2E Gð Þ

n

3

 !
�

n� Nab

3

 !
�

n� Nba

3

 !"0
@

� aNb

3

 !#!
� 1
3

X
ab2E Gð Þ

Nab � Nba�aNb:

Proof. For ab 2 E Gð Þ, let n3 abð Þ denote the number of sub-
sets S � V Gð Þ, jSj ¼ 3, for which ab appears as an edge in
a Steiner tree connecting vertices of S. Note that an edge ab
will not be contained in any Steiner tree connecting vertices
of S if and only if one of the cases holds: Case 1: S � Wab,
Case 2: S � Wba, Case 3: S � aWb, Case 4: S \ Wab 6¼
;, S \ aWb 6¼ ; and S \ Wba ¼ ;, Case 5: S \ Wba 6¼
;, S \ aWb 6¼ ; and S \ Wab ¼ ;: Therefore it follows

n3 abð Þ ¼
n

3

 !
�

Nab

3

 !
�

Nba

3

 !
� aNb

3

 !

�
NabþaNb

3

 !
�

Nab

3

 !
� aNb

3

 !" #

�
Nba þ aNb

3

 !
�

Nba

3

 !
� aNb

3

 !" #

¼
n

3

 !
�

n� Nba

3

 !
�

n� Nab

3

 !
� aNb

3

 !
:

Note that
P

ab2E Gð Þ n3 abð Þ has to be adjusted because of
the double counting of the common edge contributions of
ab, ac and bc to the Steiner distances of three vertices u, v
and w as in the Case 2 in the proof of Theorem 5. For an
edge ab, the number of such sets equals Nab � Nba�aNb: The
common contribution of ab, ac and bc to the Steiner 3-
Wiener index in

P
ab2E Gð Þ n3 abð Þ is three instead of two. InP

ab2E Gð Þ Nab � Nba�aNb each such triple a, b and c is counted
3 times, hence if we multiply the sum by � 1

3 we get the
common contribution of ab, ac and bc in

P
ab2E Gð Þ Nab �

Nba�aNb is –1 and therefore the altogether contribution of a,
b and c in

P
ab2E Gð Þ n3 abð Þ � 1

3

P
ab2E Gð Þ Nab � Nba�aNb is 2,

hence:

SW3 Gð Þ ¼
X

ab2E Gð Þ
n3 abð Þ � 1

3

X
ab2E Gð Þ

Nab � Nba�aNb:

w

Note that for k � 4 no simple formula for the edge
decomposition of the Steiner k-Wiener index of block graph
G seems to exist. The reason is that there are more and
more different cases which needed to be considered when
more than one common neighbour of a and b is included in
some Steiner tree for a set of k vertices.

4. Vertex decomposition of the Steiner k-Wiener
index of block graphs

For a graph G and v 2 V Gð Þ, let G n v denote a graph
obtained by removing v from G.

Theorem 7. Let G be a connected block graph on n vertices
with the set of cut vertices Vc Gð Þ and k an integer such that
2 � k � n. Then

SWk Gð Þ ¼
X

v2Vc Gð Þ
Nk G n vð Þ þ k� 1ð Þ n

k

� �
:

Proof. Nk G n vð Þ counts the number of times a cut vertex v
is an inner vertex of Steiner tree. Since each such vertex
adds 1 to the Steiner distance of a set of k vertices, Steiner
distance between k vertices is by k� 1 greater than the
number of inner vertices in the corresponding Steiner tree,
adding k – 1 for each set of k vertices, we get the sum of
Steiner distances between all k sets of vertices, and the
equality in formula holds. w

Special case of the Theorem 7 on trees has been proved
in [14] by Kov�se, who also introduced the k-Steiner betwe-
enness centrality Bk vð Þ of a vertex v 2 V Gð Þ as the sum of
the fraction of all Steiner trees connecting k terminal verti-
ces, that include v as its inner vertex, across all Steiner trees
connecting the same set of k terminal vertices:

Bk vð Þ ¼
X

A � V Gð Þ n fvg
jAj ¼ k

rA vð Þ
rA

,

where rA denotes the number of all Steiner trees between
vertices of A in a graph G and rA vð Þ denotes the number of
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all Steiner trees between vertices of A in a graph G that
include v as an inner vertex.

As pendant vertices do not appear as inner vertices of
any Steiner tree of a block graph G, it follows that Bk vð Þ ¼ 0
for any pendant vertex v and Bk vð Þ > 0 for all other vertices,
if k< n. In fact Bk vð Þ ¼ Nk G n vð Þ and we can now restate
Theorem 7 as follows.

Theorem 8. Let G be a connected block graph on n vertices
with the set of cut vertices Vc Gð Þ and k an integer such that
2 � k � n. Then

SWk Gð Þ ¼
X

v2Vc Gð Þ
Bk vð Þ þ k� 1ð Þ n

k

� �
:

Note that in [14] it has been shown that the equality

SWk Gð Þ ¼
P

v2V Gð Þ Bk vð Þ þ k� 1ð Þ n
k

� �
holds for any

graph G.

Corollary 9. Let G be a star-like block graph on n vertices
and blocks B1,B2, :::,Bt of orders b1, b2, :::, bt and k an integer
such that 2 � k � n. Then

SWk Gð Þ ¼ n� 1ð Þ n� 1
k� 1

� �
�
Xt
i¼1

bi � 1
k

� �
:

Proof. Let v be the universal vertex of G. Hence v is the
only cut vertex of G. Then v is not an inner vertex of a
Steiner tree connecting vertices of S if and only if S �
Bi n fvg for some i 2 f1, :::, tg, hence Bk vð Þ ¼ n� 1

k

� �
�Pt

i¼1
bi � 1
k

� �
and by Theorem

SWk Gð Þ ¼ Bk vð Þ þ k� 1ð Þ n

k

 !

¼
n� 1

k

 !
�
Xt
i¼1

bi � 1

k

 !
þ k� 1ð Þ n

k

 !
:

From basic binomial identity n
k

� �
¼ n� 1

k� 1

� �
þ n� 1

k

� �
it follows

that n� 1
k

� �
þ k� 1ð Þ n

k

� �
¼ n

k

� �
� n� 1

k� 1

� �
þ k� 1ð Þ n

k

� �
¼

k n
k

� �
� n� 1

k� 1

� �
¼ n n� 1

k� 1

� �
� n� 1

k� 1

� �
¼ n� 1ð Þ n� 1

k� 1

� �
, hence

the formula follows. w

Corollary 10. Let k be an integer such that 2 � k � n. For
the windmill graph Wd(r, t),

SWk Wd r, tð Þð Þ ¼ n� 1ð Þ n� 1
k� 1

� �
� t

r � 1
k

� �
:

Note that for r¼ 2 the formula from Corollary 10 gives
formula SWk Snð Þ ¼ n� 1ð Þ n� 1

k� 1

� �
for a star Sn on n verti-

ces, already noted in [15].

Corollary 11. Let G be a path-like block graph on n vertices,
with blocks B1,B2, :::,Bt of orders b1, b2, :::, bt ordered from
one pendant block to the other, and k an integer such that
2 � k � n� 1. Then

SWk Gð Þ ¼ k� 1ð Þ n

k

 !
þ t � 1ð Þ n� 1

k

 !

�
Xt�1

i¼1

Pi
j¼1 bj

� �
� i

k

0
@

1
A

0
@

þ
Xt�1

i¼1

nþ i�
Pi

j¼1 bj
k

 !!
:

Proof. Let v1, v2, :::, vt�1 denote cut vertices of G, where vi 2
Bi \ Biþ1 for i 2 f1, :::, t � 1g: Then vi is not an inner vertex
of a Steiner tree connecting vertices of S if and only if S �
B1 [ ::: [ Bi n fviÞg or S � Biþ1 [ ::: [ Bt n fviÞg: Hence

Bk við Þ ¼
n� 1

k

 !
�

Pi
j¼1 bj

� �
� i

k

0
@

1
A

� nþ i�
Pi

j¼1 bj
k

 !
,

and the formula follows. w

Clearly SWn Gð Þ ¼ n� 1 for any graph of order n. For
k ¼ n� 1 we can extend the Theorem on trees from [15]
as follows.

Theorem 12. Let G be a block graph of order n with p pen-
dant vertices. Then

SWn�1 Gð Þ ¼ n2 � n� p:

Proof. If k ¼ n� 1, then subset S contains all but one vertex
from G. If the vertex missing from S is pendant, then the
vertices contained in S form a connected subgraph and its
spanning tree of order n – 1 provides the Steiner tree for S.
Therefore d Sð Þ ¼ n� 2: There are p such subsets, contribu-
ting to SWn�1 by p n� 2ð Þ:

If the vertex not present in S is a cut vertex of G, then
the respective Steiner tree must contain all vertices of G.
Therefore a spanning tree of order n provides the Steiner
tree for S and d Sð Þ ¼ n� 1: There are n – p such subsets,
contributing to SWn�1 by n� pð Þ n� 1ð Þ: Thus SWn�1 Gð Þ ¼
p n� 2ð Þ þ n� pð Þ n� 1ð Þ, which proves the theorem. w

5. Extremal values of Steiner k-Wiener index and
GBS poset of block graphs

Among all trees on n vertices star has the minimal Wiener
index and path has the largest Wiener index. More generally
in extremal problems concerning trees on n vertices it turns
out that the maximal (minimal) value of the examined par-
ameter is attained at the star and the minimal (maximal)
value is attained at the path. While often it is not hard to
prove the extremality of the star, it turns out that to prove
the extremality of the path usually requires some effort.

Let G b1, b2, :::, btð Þ denote the set of all connected block
graphs with block order sequence b1 � b2 � ::: � bt: We
will demonstrate that similar situation, as in the case of the
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extremality of the Wiener index over trees, happens also for
the problem of the extremal values of the Steiner k-Wiener
over G b1, b2, :::, btð Þ: If t � 2 then G b1, b2, :::, btð Þ consist of a
unique block graph, hence in what follows we always
assume that t � 3:

Theorem 13. Let G 2 G b1,b2, :::,btð Þ and 2� k< n� 1. Then

n� 1ð Þ n� 1
k� 1

� �
�
Xt
i¼1

bi� 1
k

� �
� SWk Gð Þ: (2)

The equality is attained for the star-like block graph.

Proof. Note that d Sð Þ � k� 1 for any subset S of k vertices,
with equality if and only if Steiner tree connecting S has no
inner vertices. Note that the only vertices that can appear as
inner vertices of some Steiner trees in a block graph are cut
vertices. Hence SWk Gð Þ will attain the minimum if and only
if G has only one cut vertex, which is then a universal vertex
of G. Therefore we can use Corollary 9 and the lower bound
is proved. w

In [7] Csikv�ari introduced a graph transformation called
generalized tree shift and defined a partially ordered set
(poset) on the set of unlabelled trees with n vertices. The
minimal element of this level poset is the path, and the
maximal element is the star. Among other results, he
showed that going up on this poset decreases the
Wiener index.

Next we introduce a graph transformation called a gener-
alized block shift which defines a poset on G b1, b2, :::, btð Þ:
We will show that going up on this poset does not increase
the Steiner k-Wiener index, which will help us to describe
block graphs with minimal and maximal Steiner k-Wiener
index among all block graphs from G b1, b2, :::, btð Þ:

Let G2 2 G b1, b2, :::, btð Þ and x, y 2 V G2ð Þ, such that all
blocks having nonempty intersection with the path between
x and y (if they exist) have exactly two cut vertices. The gen-
eralized block shift (GBS) of G2 is the block graph G1

obtained from G2 as follows: let z be the neighbor of y lying
on the path between x and y, we erase all the edges between y
and N yð Þ n fzg and add the edges between x and N yð Þ n fzg,
see Figure 2. Note that G1 2 G b1, b2, :::, btð Þ:

We denote the cut vertices on the path between x and y
of length q by c1, c2, :::, cq, where x ¼ c1 and y ¼ cq. The set
A � V G2ð Þ consists of the vertices which can be reached
with a path from cq only through c1, and similarly the set
B � V G2ð Þ consists of those vertices which can be reached
with a path from c1 only through cq. For the sake of simpli-
city we denote the corresponding sets in G1 also with A and
B. Furthermore let A0 ¼ N xð Þ \ A in both G1 and G2, and
let B0 ¼ N xð Þ \ B in G1 and B0 ¼ N yð Þ \ B in G2.

As in [7] we call x the beneficiary and y the candidate
(for being a leaf) of the generalized block shift. Note that if
x or y is a leaf in G2, then G1 and G2 have the same number
of pendant blocks, otherwise the number of pendant blocks
in G1 equals the number of pendant blocks in G2 plus 1. In
the latter case we call the generalized block shift proper.

Let G1,G2 2 G b1, b2, :::, btð Þ: We denote by G1 > G2 if G1

can be obtained from G2 by some proper generalized block
shift. The relation> induces a poset on G b1, b2, :::, btð Þ,
which we call GBS poset.

We can always apply a proper generalized block shift to
any block graph which has at least one non pendant block.
Therefore the only maximal element of GBS poset is the
(unique) star-like block graph from G b1, b2, :::, btð Þ: The fol-
lowing theorem shows that the minimal elements of the
induced poset are path-like block graphs.

Theorem 14. Every block graph from G b1, b2, :::, btð Þ that is
not a path-like block graph is the image of some proper gener-
alized block shift.

Proof. Let G be a block graph from G b1, b2, :::, btð Þ that is
not path-like, i. e., it has at least one cut vertex belonging to
at least 3 blocks. Let v be a leaf of G and w the closest cut
vertex to v which belongs to at least 3 blocks. Then the cut
vertices (if they exist) on the path between v and w belong
to exactly 2 blocks. Vertex w belongs to at least two blocks
different from the one which has a nonempty intersection
with the path between v and w, so we can split N(w) into
two nonempty sets A0 and B0, where vertices of A0 consist
of those that form a block which has nonempty intersection
with the path between v and w. Let G0 be the block graph

Figure 2. Proper generalized block shift transforming block graph G2 on the left to the block graph G1 on the right. Parallelograms denote blocks of G1 and G2, ver-
tices x ¼ c1, c2, :::, cq denote cut vertices.
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obtained by erasing the edges between w and B0 and adding
the edges between v and B0. Then G can be obtained from
G0 by a generalized block shift, where w is the beneficiary
and v is the candidate. Since both A0 and B0 are nonempty
this is a proper generalized block shift. w

Corollary 15. The star-like block graph is the unique max-
imal element of the GBS poset on G b1, b2, :::, btð Þ. The set of
minimal elements consist of all path-like block graphs.

Theorem 16. A proper generalized block shift decreases the
value of the Steiner k-Wiener index if and only if
jA [ Bj � k, otherwise the value remains the same.

Proof. Let G2 be a block graph and G1 its image obtained by a
proper generalized block shift, moreover let 2 � k � n� 2,
where n ¼ jV G1ð Þj ¼ jV G2ð Þj: Let d1 and d2 denote the
Steiner distance in G1 and G2 respectively. For i 2 f1, :::, qg it
follows that d1 fcig [ A1ð Þ þ d1 fcqþ1�ig [ A1

� �
¼ d2 fcig[ð

A1Þþd2 fcqþ1�i [ A1
� �

for all A1 � A and d1 fcig [ B1ð Þ þ
d1 fcqþ1�ig [ B1
� �

¼ d2 fcig [ B1ð Þ þ d2 fcqþ1�i [ B1
� �

for
all B1 � B: Moreover d1 A1ð Þ ¼ d2 A1ð Þ for A1 � A, and
d1 B1ð Þ ¼ d2 B1ð Þ for B1 � B and d2 A1 [ B1ð Þ ¼ d1 A1[ð
B1Þþ q� 1ð Þ for A1 � A and B1 � B: Altogether we have

SWk G2ð Þ ¼
X

S � V G2ð Þ
jSj ¼ k

d2 Sð Þ ¼
X

S � V G1ð Þ
jSj ¼ k

d1 Sð Þ

þ q� 1ð Þ �
X

l1 þ l2 ¼ k

0 < l1, l2 < k

jAj
l1

 !
jBj
l2

 !

¼ SWk G1ð Þ þ q� 1ð Þ �
X

l1 þ l2 ¼ k

0 < l1, l2 < k

jAj
l1

 !
jBj
l2

 !
:

If jA [ Bj � k then the generalized block shift decreases
Steiner k-Wiener index, otherwise the value remains the
same. w

Hence going up the GBS poset never inscreases the
Steiner k-Wiener index. Moreover from the Theorem 16
and the fact that the path-like block graphs are minimal ele-
ments, and the star-like block graph is the only maximal

element of the poset induced by the generalized block shift
on G b1, b2, :::, btð Þ, we get the following corollary.

Corollary 17. Let 2 � k � n. Among all block graphs from
G b1, b2, :::, btð Þ the minimum value of the Steiner k-Wiener
index is attained by the star-like block graph, and the max-
imum value of the Steiner k-Wiener index is attained among
path-like block graphs.

Hence Corollary 17 implies Theorem 13. Finding the
upper bound of the Steiner k-Wiener index over
G b1, b2, :::, btð Þ turns out to be more challenging problem.
Let GCF b1, b2, :::, btð Þ denote the set of all connected claw-
free block graphs with block order sequence b1, b2, :::, btð Þ,
where b1 � b2 � ::: � bt: Recall that claw-free block graphs
are precisely the line graphs of trees. In [4] Buckley has
shown the following result.

Theorem 18. Let T be a tree on n vertices. Then
W L Tð Þð Þ ¼ W Tð Þ � n

2

� �
:

Note that for any G 2 GCF b1, b2, :::, btð Þ, any cut vertex
of G is incident to exactly two blocks, therefore G has max-
imal possible number of cut vertices among all block graphs
from G b1, b2, :::, btð Þ: Hence all graphs from GCF b1,ð
b2, :::, btÞ have the same number of cut vertices, which is
equal to t – 1, and therefore also the same number of pen-
dant vertices, which equals n� t þ 1:

By Theorem 18 finding minimum or maximum value of
the Wiener index over the set GCF b1, b2, :::, btð Þ is equivalent
to finding a minimum or maximum value of the Wiener
index on the set of trees with the degree sequence
b1, :::, bt , 1, 1, :::, 1ð Þ, where 1’s corresponds to pendant verti-
ces in block graphs from GCF b1, b2, :::, btð Þ, hence 1 appears
n� t þ 1 times in the sequence.

Let d1, :::, dnð Þ be a degree sequence of the tree T with
d1 � d2 � ::: � dk � 2 > 1 ¼ dkþ1 ¼ ::: ¼ dn: Then T is
called greedy tree if it can be embedded in the plane
as follows:

1. take the vertex v with degree d1 as the root,
2. each vertex u lies on some line i where i is the distance

between the root v and u,
3. each line is filled up with vertices in decreasing degree

order from left to right.

Figure 3. A greedy tree T and its line graph L(T).
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Next we provide an example of a greedy tree and its
line graph.

Illustration 2. Let 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,ð
1, 1Þ be the given degree sequence. Then its corresponding
greedy tree using the plane embedding from the definition is
shown in Figure 3.

Wang [20] and Zhang et al. [22] have shown independ-
ently the following theorem.

Theorem 19. Let d1, :::, dnð Þ be an integer sequence with
d1�d2� :::�ds�2>1¼dsþ1¼ :::¼dn and

Pn
i¼1di¼2 n�1ð Þ.

Then the greedy tree with degree sequence d1,:::,dnð Þ mini-
mizes the Wiener index among all trees with same
degree sequence.

From Theorem 18 and Theorem 19 we immediately get
the following corollary.

Corollary 20. Then line graph of the greedy tree with the
degree sequence bt , bt�1, :::, b2, b1, 1, 1, :::, 1ð Þ minimizes the
Wiener index over the set GCF b1, b2, :::, btð Þ:

The maximization problem is somewhat more complicated.
It has been proven by Shi in [17] that the problem can be
reduced to the study of caterpillars. Schmuck et al. [18] have
shown that an optimal tree is a caterpillar with vertex degrees
non-increasing from the ends of the caterpillar towards its cen-
tral part. In [5] Schmuck et al. obtained a polynomial time algo-
rithm for finding a caterpillar T that maximizes the Wiener
index among all trees with a prescribed degree sequence
bt , bt�1, :::, b2, b1, 1, 1, :::, 1ð Þ: We call T the optimal caterpillar
for the degree sequence bt , bt�1, :::, b2, b1, 1, 1, :::, 1ð Þ:

Corollary 21. The line graph of the optimal caterpillar for
the degree sequence bt , bt�1, :::, b2, b1, 1, 1, :::, 1ð Þ maximizes
the Wiener index over the set GCF b1, b2, :::, btð Þ:

Although we are not aware of a possible generalization of
Buckley’s theorem which would relate the Steiner k-Wiener
index of a tree to the Steiner k-Wiener index of its line
graph, due to the fact that Steiner distance behaves nicely
on block graphs, as demonstrated throughout this paper, we
propose also the following problem.

Problem 1. Let k be an integer with 3 � k � n. Let
d1, :::, dnð Þ be an integer sequence with d1 � d2 � ::: � ds �
2 > 1 ¼ dsþ1 ¼ ::: ¼ dn and

Pn
i¼1 di ¼ 2 n� 1ð Þ. Is it true

that the line graph of the greedy tree with the degree sequence
d1, :::, dnð Þ minimizes the Steiner k-Wiener index over the set
G d1, :::, dnð Þ, and that the line graph of the optimal caterpillar
for the degree sequence d1, :::, dnð Þ maximizes the Steiner k-
Wiener index over the set G d1, :::, dnð Þ?
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[5] Çela, E., Schmuck, N. S., Wimer, S., Woeginger, G. J. (2011).
The Wiener maximum quadratic assignment problem. Discrete
Optim. 8(3):411–416.

[6] Chartrand, G., Oellermann, O. R., Tian, S. L., Zou, H. B.
(1989). Steiner distance in graphs. �Casopis pro p�estov�an�ı mate-
matiky 114:399–410.

[7] Csikv�ari, P. (2010). On a poset of trees. Combinatorica 30(2):
125–137.

[8] Dankelmann, P., Oellermann, O. R., Swart, H. C. (1996). The aver-
age Steiner distance of a graph. J. Graph Theory 22(1):15–22.

[9] Dress, A., Huber, K. T., Koolen, J., Moulton, V., Spillner, A.
(2016). Characterizing block graphs in terms of their vertex-
induced partitions. Australas. J. Comb. 66:1–9.

[10] Garey, M. R., Johnson, D. S. (1979). Computers and
Intractability – A Guide to the Theory of NP-Completeness,
Freeman. San Francisco, CA: WH Freeman.

[11] Gutman, I., Furtula, B., Li, X. (2015). Multicenter Wiener indi-
ces and their applications. J. Serb. Chem. Soc. 80(8):1009–1017.

[12] Harary, F. (1963). A characterization of block-graphs. Can.
Math. Bull. 6(1):1–6.

[13] Imrich, W., Klavzar, S., Rall, D. F. (2008). Topics in Graph Theory:
Graphs and Their Cartesian Product. Wellesley, MA: AK Peters/
CRC Press.

[14] Kov�se, M. (2016). Vertex decomposition of Steiner Wiener
index and Steiner betweenness centrality. arXiv:1605.00260
[math.CO].

[15] Li, X., Mao, Y., Gutman, I. (2016). The Steiner Wiener index of
a graph. Discuss. Math. Graph Theory 36(2):455–465.

[16] Mao, Y. (2017). Steiner distance in graphs–A survey. Preprint,
arXiv:1708.05779 [math.CO].

[17] Shi, R. (1993). The average distance of trees. Sys. Sci. Math. Sci.
6:18–24.

[18] Schmuck, N. S., Wagner, S. G., Wang, H. (2012). Greedy trees,
caterpillars, and Wiener-type graph invariants. MATCH
Commun. Math. Comput. Chem. 68:273–292.

[19] Yeh, H.-G., Chiang, C.-Y., Peng, S.-H. (2008). Steiner centers
and Steiner medians of graphs. Discrete Math. 308(22):
5298–5307.

[20] Wang, H. (2008). The extremal values of the Wiener index of a
tree with given degree sequence. Discrete App. Math. 156(14):
2647–2654.

[21] Wiener, H. (1947). Structural determination of paraffin boiling
points. J. Am. Chem. Soc. 69(1):17–20.

[22] Zhang, X.-D., Xiang, Q.-Y., Xu, L.-Q., Pan, R.-Y. (2008). The
Wiener index of trees with given degree sequences. MATCH
Commun. Math. Comput. Chem. 60(2):623–644.

840 M. KOVŠE ET AL.


	Abstract
	Introduction
	Block decomposition formula of Steiner k-Wiener index of block graphs
	Edge decomposition of the Steiner k-Wiener index of block graphs
	Vertex decomposition of the Steiner k-Wiener index of block graphs
	Extremal values of Steiner k-Wiener index and GBS poset of block graphs
	Disclosure statement
	References


