AKCE International Journal of Graphs and Combinatorics

Folding trees gracefully

Christian Barrientos \& Sarah Minion

To cite this article: Christian Barrientos \& Sarah Minion (2020) Folding trees gracefully, AKCE International Journal of Graphs and Combinatorics, 17:3, 796-800, DOI: 10.1016/ j.akcej.2019.10.001

To link to this article: https://doi.org/10.1016/j.akcej.2019.10.001

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 04 Jun 2020.

Submit your article to this journal

Article views: 171

View related articles

View Crossmark data \triangle

Taylor \& Francis

Folding trees gracefully

Christian Barrientos ${ }^{\text {a }}$ and Sarah Minion ${ }^{\text {b }}$

Abstract

When a graceful labeling of a bipartite graph assigns the smaller labels to the vertices of one of the stable sets of the graph, the assignment is called an α-labeling. Any graph that admits such a labeling is an α-graph. In this work we extend the concept of vertex amalgamation to generate a new class of α-graphs obtained by a sequence of k-vertex amalgamations of t copies of an α-tree. This procedure is also applied to any collection of α-trees such that any pair of trees in this collection have stable sets with the same cardinalities. We also use this idea on other types of α-graphs. In addition, we present a family of α-trees of even diameter formed with four caterpillars of the same size.

KEYWORDS

α-labeling; graceful labeling; k-vertex amalgamation

2010 MSC

05C78

1. Introduction

A difference vertex labeling of a graph G of size n is an injective mapping f from $V(G)$ into a set N of nonnegative integers, such that every edge $u v$ of G has assigned a weight defined by $|f(u)-f(v)|$. The labeling f is called graceful when $N=\{0,1, \ldots, n\}$ and the set of induced weights is $\{1,2, \ldots, n\}$. In this case, G is called a graceful graph. Let G be a bipartite graph and $\{A, B\}$ be the natural bipartition of $V(G)$, we refer to A and B as the stable sets of G and assume that $|A|=a$ and $|B|=b$. A bipartite labeling of G is an injection $f: V(G) \rightarrow\{0,1, \ldots, s\}$ for which there is an integer λ, named the boundary value of f, such that $f(u) \leq \lambda<$ $f(v)$ for every $(u, v) \in A \times B$, that induces n different weights. This is an extension of the definition given by Rosa and Širáň [7]. From the definition we may conclude that $s \geq|E(G)|$; furthermore, the labels assigned by f on the vertices of A and B are in the integer interval $[0, \lambda]$ and $[\lambda+$ $1, s]$, respectively. If $s=n$, the function f is an α-labeling and G is an α-graph. If f is an α-labeling of a tree and $f^{-1}(0) \in$ A, then its boundary value is $\lambda=a-1$.

Suppose that $f: V(G) \rightarrow\{0,1, \ldots, n\}$ is a graceful labeling of a graph G of size n :

- $g: V(G) \rightarrow\{c, c+1, \ldots, c+n\}$, defined for every $v \in$ $V(G)$ and $c \in \mathbb{N}$ as $g(v)=c+f(v)$, is the shifting of f in c units. Note that this labeling preserves the weights induced by f.
- $\hat{f}: V(G) \rightarrow\{0,1, \ldots, n\}$, defined for every $v \in V(G)$ as $\hat{f}(v)=\lambda-f(v)$ if $f(v) \leq \lambda$, and $\hat{f}(v)=n+\lambda+1-f(v)$ if $f(v)>\lambda$, is the reverse labeling of f. Thus, \hat{f} is also an α-labeling with boundary value λ.
- $g: V(G) \rightarrow\{0,1, \ldots, n+d-1\}$, defined for every $v \in$ $V(G)$ and $d \in \mathbb{N}$ as $g(v)=f(v)$ if $f(v) \leq \lambda$ and $g(v)=$ $f(v)+d-1$ if $f(v)>\lambda$, is the d-graceful labeling of G obtained from f. The labels assigned by g on the stable sets of $V(G)$ are in the intervals $[0, \lambda]$ and $[\lambda+d, n+d-$ 1] and the set of induced weights is $\{d, d+$ $1, \ldots, n+d-1\}$.

For example, let f be an α-labeling of a tree T of size n with boundary value λ. Suppose that f is transformed into a d-graceful labeling shifted c units. Then the elements of A are labeled with the integers in $[c, \lambda+c]$, the elements of B are labeled with the integers in $[c+\lambda+d, c+n++d-1]$, and the induced weights form the interval $[d, n+d-1]$.

In Section 2, we study α-labelings for graphs that result of k-vertex amalgamations of smaller α-graphs. Section 3 is devoted to α-labelings of trees, there we prove the existence of an α-labeling for trees obatined by amalgamating caterpillars. The reader interested in graph labelings is refered to Gallian' survey [4] for more information about the subject. In this paper, we follow the notation and terminology used in [3] and [4].

2. Folding α-trees

For $i=1,2$, let G_{i} be a graph of order n_{i} and size m_{i}. A graph G, of order $n_{1}+n_{2}-k$ and size $m_{1}+m_{2}$, is said to be a k-vertex amalgamation (or strong vertex amalgamation) of G_{1} and G_{2} if it is obtained identifying k independent vertices of G_{1} with k independent vertices of G_{2}. We use here strong vertex amalgamation of α-graphs to construct new classes of α-graphs.

Figure 1. α-labeling of the 3 -fold of Q_{3}.

Suppose That G is a bipartite graph of order n and size m, with stable sets $A=\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $B=$ $\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$. Let $G_{1}, G_{2}, \ldots, G_{t}$ be disjoint copies of G with $A_{i}=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{a}^{i}\right\}$ and $B_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{b}^{i}\right\}$. If for every even value of $i \in\{1,2, \ldots, t\}$, the vertices of B_{i} are identified with the vertices of B_{i-1}, in such a way that $v_{j}^{i}=v_{j}^{i-1}$ for every $1 \leq j \leq b$, and the vertices of A_{i} are identified with the vertices of A_{i+1}, in such a way that $u_{j}^{i}=u_{j}^{i+1}$ for every $1 \leq j \leq a$, then we obtain a bipartite graph of size $t m$ and order $\frac{t n}{2}+a$ when t is even or $\frac{(t+1) n}{2}$ when t is odd. We call this graph the t-fold of G. We claim that the t-fold of G is an α-graph when G is an α-graph.

Notice that when t is odd, there is only one t-fold of G; that is, the t-fold of G is independent of the stable set of G chosen to be B. On the other hand, when t is even, there are, in general, two non-isomorphic t-folds of G, depending on the stable set chosen to be B. When G is vertex transitive, this selection is irrelevant and there is only one t-fold of G for any value of t.
Theorem 1. If G is an α-graph, then any t-fold of G is an α-graph.

Proof. Suppose that G is an α-graph of order n and size m with stable sets $A=\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $B=\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$. Let f be an α-labeling of G with boundary value λ such that $f^{-1}(0) \in A$. Consider t copies of G, each labeled using f. For every value of $i \in\{1,2, \ldots, t\}$, let f_{i} be the d_{i}-graceful labeling of G_{i}, obtained from f, shifted c_{i} units, where $d_{i}=$ $1+m(t-i)$ and $c_{i}=m\left\lfloor\frac{i}{2}\right\rfloor$.

Thus, the set of weights induced by f_{i} on the edges of G_{i} is $\left[d_{i}, d_{i}+m-1\right]$. This implies that the set of weights on the edges of the t-fold of G is

Figure 2. α-labeling of the 7 -fold of C_{8}.

$$
\begin{aligned}
\bigcup_{i=1}^{t}\left[d_{i}, d_{i}+m-1\right] & =\bigcup_{i=1}^{t}[1+m(t-i), 1+m(t-i)+m-1] \\
& =\bigcup_{i=1}^{t}[1+m(t-i), m(t+1-i)] \\
& =[1, m t]
\end{aligned}
$$

Suppose that $r_{1}<r_{2}<\ldots<r_{a}$ and $\rho_{1}<\rho_{2}<\ldots<\rho_{b}$ are the labels assigned by f on the vertices of A and B, respectively. Thus, f_{i} assigns the labels $r_{1}+c_{i}, r_{2}+c_{i}, \ldots, r_{a}+c_{i}$ to the elements of A_{i} and the labels $\rho_{1}+d_{i}-1+c_{i}, \rho_{2}+d_{i}-1+$ $c_{i}, \ldots, \rho_{b}+d_{i}-1+c_{i}$ to the elements of B_{i}. Note that when i is even, $i=2 s$, the labels on the vertices of B_{i} are $\rho_{j}+m(t-$ $s), 1 \leq j \leq b$, and the labels on the vertices of B_{i-1} are $\rho_{j}+$ $m(t-s)$, as well. Similarly, the labels on the vertices of A_{i} and A_{i+1} are $r_{1}+m s, r_{2}+m s, \ldots, r_{a}+m s$. Therefore, the vertices of the t-fold of G are labeled with integers from $[0, m t]$ that induce the weights $1,2, \ldots, m t$. Since the labelings of the G_{i} are bipartite, the final labeling is an α-labeling with boundary value $m+\left\lfloor\frac{t}{2}\right\rfloor+\lambda$. Hence, the t-fold of G is an α-graph.

In Figure 1, we show an α-labeling of the 3 -fold of the hypercube Q_{3}.

When the graph G in Theorem 1 is the path P_{n}, with $n \geq 4$, the t-fold of G results in a graph that contains as a subgraph a convex Eulerian polyomino, the induced labeling of this polyomino can be transformed into the α-labeling used by Acharya [1] to prove that all convex Eulerian polyominoes are arbitrarily graceful. Another nice family of α-graphs that can be obtained using Theorem 1 is the one containing the fractal type structure constructed by t-folding the cycle $C_{4 m}, m \geq 2$. In Figure 2 we show an example of one of these structures constructed using C_{8} folded 7 times.

Note that the α-labeling of the t-fold of an α-graph G can be also obtained using the labeling scheme of the weak tensor product of G and P_{t+1}, introduced by Snevily [8] and extended by López and Muntaner-Batle [5]. The labeling technique used in the proof of Theorem 1 is applied to

Figure 3. A 3 -vertex amalgamation of an α-graph of size 7.
other types of folded graphs that cannot be explained using the weak tensor product.

In the next proposition we prove that for any $1 \leq k \leq b$, there is an α-graph G that results of a k-vertex amalgamation of two copies of an α-tree. Note that when $k=1, G$ is the well-known vertex amalgamation (or one-point union) of two copies of T. The gracefulness of this type of graph was proven in [2]. When $k=b$, an α-labeling of G can be obtained using Theorem 1 with $t=2$.

Proposition 1. Let T be an α-tree of size m with one stable set of cardinality b. If $k \leq b$ is a positive integer, then there is a k vertex amalgamation of two copies of T that is an α-graph.

Proof. For $i=1,2$, let T_{i} be a copy of T with stable sets A_{i} and B_{i}, where $\left|B_{i}\right|=b$. Suppose that f is an α-labeling of T such that $f^{-1}(0) \in A$; so, its boundary value is $\lambda=$ $|A|-1=a-1$. Let f_{i} be the d_{i}-graceful labeling of T_{i}, obtained from f, shifted c_{i} units, where

$$
\left(d_{i}, c_{i}\right)= \begin{cases}(m+1,0) & \text { if } i=1 \\ (1, \lambda+k) & \text { if } i=2\end{cases}
$$

Thus, the vertices in A_{1} are labeled with the integers in $\{0,1, \ldots, \lambda\}$, the vertices in B_{1} are labeled with the integers in $\{\lambda+m+1, \lambda+m+2, \ldots, 2 m\}$, the vertices in A_{2} are labeled with the integers in $\{\lambda+k, \lambda+k+1, \ldots, 2 \lambda+k\}$, and the vertices in B_{2} are labeled with the integers in $\{2 \lambda+k+1,2 \lambda+k+2, \ldots, m+\lambda+k\}$.

Identifying the vertices of B_{1} and B_{2} labeled $2 \lambda+k+$ $1,2 \lambda+k+2, \ldots, m+\lambda+k$, we obtain a graph G that is a k vertex amalgamation of T_{1} and T_{2}. Since the weights on T_{1} are $m+1, m+2, \ldots, 2 m$ and on T_{2} are $1,2, \ldots, m$, we have that all edges of G have different weights; in addition, the vertices of T_{1} and T_{2}, with the same label, were amalgamated, hence there is no repetition of labels. Observe that the labels assigned to the elements of $A_{1} \cup A_{2}$ are smaller that those assigned to the elements of $B_{1} \cup B_{2}$, so the number $2 \lambda+k$ is the boundary value of the α-labeling of G, therefore G is an α-graph (Figure 3).

Suppose that T is an α-labeled tree of size m, where $A=$ $\{0,1, \ldots, \lambda\}$ and $B=\{\lambda+1, \lambda+2, \ldots, m\}$ are considered ordered sets. By a generalized t-fold of T we mean a graph G obtained using $t \alpha$-labeled copies of T, where for every even value of i, the copy T_{i} is merged with the copies T_{i-1} and T_{i+1} in such a way that the last k_{i} vertices in B_{i} are
amalgamated with the first k_{i} vertices in B_{i-1}, and the last k_{i}^{\prime} vertices in A_{i} are amalgamated with the first k_{i}^{\prime} vertices in A_{i+1}. These amalgamations must be done in ascending order; for example, suppose that x is amalgamated with y and x^{\prime} is amalgamated with y^{\prime}, if $x<x^{\prime}$, then $y<y^{\prime}$.

Theorem 2. If T is an α-tree, then any generalized t-fold of T is an α-graph.

Proof. Suppose that T is an α-tree of size m with stable sets A and B. Let $T_{1}, T_{2}, \ldots, T_{t}$ be disjoint copies of T. Assume that f is an α-labeling of T with boundary value λ. Without loss of generality, suppose that $f^{-1}(0) \in A$. Thus, the labels assigned to the vertices of A and B form the intervals $L_{A}=$ $[0, \lambda]$ and $L_{B}=[\lambda+1, m]$, respectively. For each $i \in$ $\{1,2, \ldots, t\}$, suppose that f is the initial labeling of T_{i}. The final labeling of T_{i}, denoted by f_{i}, is obtained by transforming f into a d_{i}-graceful labeling shifted c_{i} units, where $d_{i}=$ $(t-i) m+1$ and $c_{i}=\sum_{j=1}^{i} \xi_{j}$ with

$$
\xi_{i} \in \begin{cases}{[\lambda+1, m]} & \text { if } n \text { is even } \\ {[0, \lambda]} & \text { if } n \text { is odd }\end{cases}
$$

Consequently, the labels assigned by f_{i} to the vertices of A_{i} and B_{i} are $L_{A_{i}}=\left[c_{i}, c_{i}+\lambda\right]$ and $L_{B_{i}}=\left[\lambda+c_{i}+d_{i}, m+\right.$ $\left.c_{i}+d_{i}-1\right]$. In addition, the weights induced by f_{i} on the edges of T_{i} form the interval $[(t-i) m+1,(t-i) m+m]$. Therefore, $\cup_{i=1}^{t}[(t-i) m+1,(t-i) m+m]=[1, t m]$.

Since $L_{A_{i}}=\left[c_{i}, c_{i}+\lambda\right]$ where $c_{i}=\sum_{j=1}^{i} \xi_{j}$, we have that for every feasible even value of $i, L_{A_{i}} \cap L_{A_{i+1}}=\left[c_{i+1}, c_{i}+\lambda\right]$ and $\quad\left|L_{A_{i}} \cap L_{A_{i+1}}\right|=c_{i}+\lambda-c_{i+1}+1=\lambda+1-\xi_{i+1}=k_{i}^{\prime}$. Thus, the number k_{i}^{\prime}, of vertices shared by A_{i} and A_{i+1} is bounded by $1 \leq k_{i}^{\prime} \leq \lambda+1=a$. Similarly, $L_{B_{i-1}} \cap L_{B_{i}}=$ $\left[\lambda+c_{i-1}+d_{i-1}, m+c_{i}+d_{i}-1\right]$ and $\left|L_{B_{i-1}} \cap L_{B_{i}}\right|=\xi_{i}-\lambda=$ k_{i}. Since $\xi_{i} \in[\lambda+1, m]=[\lambda+1, a+b-1]$, the number k_{i} of vertices shared by B_{i-1} and B_{i} is bounded by $1 \leq k_{i} \leq b$.

Identifying the vertices with the same label, we form the graph G that is a generalized t-fold of T. Since the labelings used on the T_{i} are bipartite, the boundary value of the labeling of G is the largest number in $L_{A_{i}}$, that is, $\lambda+c_{t}$. Therefore, G is an α-graph.

In Figure 4, we show an example of an α-labeling for a generalized 5 -fold of an α-tree of size 10 , where $k_{2}=4, k_{2}^{\prime}=$ $2, k_{4}=5, k_{4}^{\prime}=5, \xi_{1}=0, \xi_{2}=8, \xi_{3}=3, x_{4}=9$, and $\xi_{5}=0$.

Let T_{1} and T_{2} be two α-trees of size m. We say that T_{1} and T_{2} are analogous if $\left|A_{1}\right|=\left|A_{2}\right|$ and $\left|B_{1}\right|=\left|B_{2}\right|$. We use this concept to extend the result of Theorem 2 by replacing any number of copies of T with analogous trees.

Theorem 3. If G is a generalized t-fold of an α-tree T, then any of the copies of T, used to construct G, can be replaced by any tree T^{\prime} analogous to T, and the resulting graph is an α-graph.

Proof. Since T and T^{\prime} are analogous, there exist α-labelings f and g, of T and T^{\prime}, respectively, such that $f^{-1}(0) \in A$ and $g^{-1}(0) \in A^{\prime}$. Let G be a generalized t-fold of T, suppose that the α-labeling of G has been obtained using the procedure in Theorem 2 and T_{i} is a copy of T in G. By transforming g in the same way that the labeling of T_{i} was transformed before, we obtain a labeling of T^{\prime} that assigns the same

Figure 4. α-labeling of a generalized 5 -fold of a tree.

Figure 5. α-labeling of a modified 5-fold of a tree.
labels on the corresponding stable sets of T_{i} and T^{\prime}. Thus, we can replace the edges of T_{i} in G with the edges of T^{\prime} and the resulting graph is still an α-graph. This procedure can be applied as many times as necessary to obtain the desired α-labeling of the aimed graph.

In Figure 5, we show this substitution of edges on the graph shown in Figure 4, where all the copies of T, except T_{2}, were replaced with analogous trees.

3. α-trees of even diameter

A caterpillar is a tree with a single path containing at least one endpoint of every edge. Suppose that T is a caterpillar of size $2 m \geq 4$ such that $m=|A|=|B|-1$. We say that $T \in \boldsymbol{F}_{k}$ if T has diameter $2 k$ or $2 k+1$, for some positive integer $k \geq 2$. For each $i \in\{1,2,3,4\}$, let $T_{i} \in \boldsymbol{F}_{k}$ and T_{5} be the tree consisting of one central vertex, denoted by w, which is attached to $t \geq 0$ pendant vertices, that is, $T_{5} \cong K_{1}$ or $T_{5} \cong K_{1, t}$. Recall that the eccentricity of a vertex in a graph is the maximum distance to other vertices. For each $i \in\{1,2,3,4\}$, let $v_{i} \in V\left(T_{i}\right)$ such that its eccentricity equals $2 k$. Thus, v_{i} is a leaf of T_{i} when diam $T_{i}=2 k$ or v_{i} is adjacent to a vertex of maximum eccentricity when diam $T_{i}=$ $2 k+1$. Consider the tree T of size $4(2 m+1)+t$ obtained by connecting, with an edge, all the vertices v_{i} to the vertex w of T_{5}. By $\boldsymbol{T}_{m, t}$ we understand the family of all trees of size $4(2 m+1)+t$ obtained in the form described above. We claim that all the elements of $\boldsymbol{T}_{m, t}$ are α-trees.

Proposition 2. If $T \in \boldsymbol{T}_{m, t}$, then T is an α-tree.

Proof. Suppose that for every $i \in\{1,2,3,4\}, v_{i}$ is in the largest stable set of T_{i}; let f_{i} be an α-labeling of T_{i} such that $f_{i}\left(v_{i}\right)=$ $2 m$. The existence of this labeling was proven by Rosa [6]. The labeling f_{5} of T_{5} is the α-labeling, also given by Rosa in the same work, that assigns the label 0 to the vertex w. For $i=2$, 4, the initial labeling of T_{i} is the reverse of f_{i}, that is, \hat{f}_{i}.

For each $i \in\{1,2,3,4,5\}$, the initial α-labeling of T_{i} is transformed into a d_{i}-graceful labeling shifted c_{i} units, where

$$
\left(d_{i}, c_{i}\right)= \begin{cases}(6 m+t+5,0) & \text { if } i=1 \\ (4 m+t+4, m) & \text { if } i=2 \\ (2 m+2,2 m+1) & \text { if } i=3 \\ (1,3 m+1) & \text { if } i=4 \\ (4 m+3,2 m) & \text { if } i=5\end{cases}
$$

Hence, the labels assigned to the vertices of T_{i} form the set $\quad[0, m-1] \cup[7 m+t+4,8 m+t+4] \quad$ when $\quad i=1$, $[m, 2 m-1] \cup[6 m+t+3,7 m+t+3]$ when $i=2$, $\quad[2 m+$ $1,3 m] \cup[5 m+2,6 m+2]$ when $i=3, \quad[3 m+1,4 m] \cup[4 m+$ $1,5 m+1]$ when $i=4$, and $\{2 m\} \cup[6 m+3,6 m+t+2]$ when $i=5$. It follows that the labels assigned on the vertices of T form the interval $[0,8 m+t+4]=[0,4(2 m+1)+t]$.

The weights induced on the edges of T_{i} form the interval $[6 m+t+5,8 m+t+4]$ when $i=1,[4 m+t+4,6 m+t+$ 3] when $i=2,[2 m+2,4 m+1]$ when $i=3,[1,2 m]$ when $i=4$, and $[4 m+3,4 m+t+2]$ when $i=5$.

Notice that the labels assigned to v_{i} are $8 m+t+4$ when $i=1,6 m+t+3$ when $i=2,6 m+2$ when $i=3$, and $4 m+1$ when $i=4$. Since the label of w is $2 m$, the edges $v_{i} w$ have weights $6 m+t+4,4 m+t+3,4 m+2$, and $2 m+1$, respectively. Thus, the weighst induced on the edges of T form the

Figure 6. α-labeling of a tree in $\mathscr{T}_{5,4}$.
interval $[1,8 m+t+4]=[1,4(2 m+1)+t]$. The form in which the initial α-labelings are combined guarantees that the final labeling is also an α-labeling; its boundary value is $\lambda=4 m$.

We must observe that the caterpillars used above can be replaced by α-trees for which there exist α-labelings that place the label 0 on vertices u_{i} satisfying the same conditions that the v_{i}. In Figure 6, we show an example of this labeling on a tree with four branches of length 5 .

A rooted tree is a tree with a distinguished vertex r, called the root. The last proposition tells us that any rooted tree T is an α-tree if $T-r$ consists of four caterpillars of equal size and diameter $2 k$ or $2 k+1$ for certain positive integer k. Is it possible to extend this result to trees T such that $T-r$ result in any number of caterpillars of equal size and similar diameters?

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Acharya, B. D. (1984). Are all polyominoes arbitrarily graceful? In: Koh, K. M., Yap, H. P., eds. Proceedings of the First Southeast Asian Graph Theory Colloquium. New York: Springer-Verlag, pp. 205-211.
[2] Barrientos, C. (2002). Graceful labelings of chain and corona graphs. Bull. Inst. Combin. Appl. 34: 17-26.
[3] Chartrand, G., Lesniak, L. (1986). Graphs \& Digraphs, 2nd ed. Monterey: Wadsworth \& Brooks/Cole.
[4] Gallian, J. A. (2018). A dynamic survey of graph labelings. Electron. J. Combin. 16(6): 1-219.
[5] López, S. C., Muntaner-Batle, F. A. (2015). A new application of the \otimes_{h}-product to α-labelings. Discrete Math. 338(6): 839-843.
[6] Rosa, A. (1967). On certain valuations of the vertices of a graph. In Theory of Graphs (Internat. Symposium, Rome, July 1966). New York: Gordon and Breach; Paris: Dunod, pp. 349-355.
[7] Rosa, A, Širáň, J. (1995). Bipartite labelings of trees and the gracesize. J. Graph Theory 19(2): 201-215.
[8] Snevily, H. (1997). New families of graphs that have α-labelings. Discrete Math. 170(1-3): 185-194.

