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ABSTRACT
To incorporate active learning and cooperative teamwork in statistics classroom, this article introduces
a creative three-dimensional educational tool and an in-class activity designed for introducing the topic
of agglomerative hierarchical clustering. The educational tool consists of a simple bulletin board and
color pushpins (it can also be realized with a less expensive alternative) based on which students work
collaboratively in small groups of 3–5 to complete the task of agglomerative hierarchical clustering: they
start with n singleton clusters, each corresponding to a pushpin of a unique color on the board, and work
step by step to merge all pushpins into one single cluster using the single linkage, complete linkage, or
group average linkage criteria. We present a detailed lesson plan that accompanies the designed activity
and also provide a real data example in the supplementary materials. Supplementary materials for this
article are available online.

KEYWORDS
Hands-on learning; Lesson
plan; Multivariate statistical
analysis; Teamwork

1. Introduction

Multivariate data analysis is a popular second or third course
in the undergraduate statistics curriculum. It can be taught at
different levels with a minimum requirement of introductory
statistics. Among all commonly introduced multivariate data
analysis techniques, clustering analysis is an important unsu-
pervised learning topic in the course due to its wide appli-
cations. Almost all textbooks on this subject devote an entire
chapter to the delivery of different clustering methods (see, e.g.,
Chatfied and Collins 1980; Zelterman 2015; Everitt and Dunn
2001; Everitt and Hothorn 2011; James et al. 2013; Johnson and
Wichern 2008). In recent years, data science, a fast-developing
multidisciplinary field, has received more and more attention
in undergraduate education. Data science emphasizes practical
skills in analyzing big data (De Veaux et al. 2017). Thus, not
surprisingly, clustering analysis is always included in the data
science curriculum (Irizarry 2000; Grus 2015; Kotu and Desh-
pande 2018). In addition, clustering analysis is also a common
topic covered in textbooks on data mining and statistical learn-
ing (James et al. 2013; Hastie, Tibshirani, and Friedman 2016).

There are several different approaches to complete the task
of clustering, among which agglomerative hierarchical cluster-
ing is one of the most intuitive methods. A traditional les-
son on the topic of agglomerative hierarchical clustering often
involves formal mathematical formulation of the methodol-
ogy and some real data implementation by statistical soft-
ware. However, the pure lecture-style lesson may not engage
students well, and therefore could not yield the best learn-
ing outcomes. According to our past teaching experiences, we

CONTACT Xizhen Cai xc2@williams.edu Department of Mathematics and Statistics, Williams College, Bascom House, 33 Stetson Court, Williamstown, MA 01267.
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also found that although the software implementations are
straightforward to most students, some may still have confu-
sion about the clustering process or struggle with the expla-
nations behind the clustering solutions obtained from differ-
ent linkage criteria. Furthermore, in contrast to the traditional
lecture-based “teaching by telling” approach, many statistics
educators have turned to active learning, that is, “learning by
doing,” in recent decades (Garfield 1993; Gnanadesikan 1997;
Schwartz 2013; Eadie 2019). Active learning may take vari-
ous forms. For instance, Green and Blankenship (2015) shared
several strategies and examples to incorporate active learning
into a two-semester sequence course in mathematical statistics.
Wagaman (2016) discussed a case study for teaching an under-
graduate multivariate data analysis course. Past research has
shown that, regardless of the tools, active learning is effective in
improving the recall of short-term and long-term information
(Prince 2004; Misseyanni et al. 2018). More importantly, it
aims to promote critical thinking, encourage student–teacher
interaction and student–student collaboration, and create an
engaging learning environment to help students better master
the knowledge. Many recent studies show that active learn-
ing in STEM disciplines improves student attitudes and their
academic performance (Preszler et al. 2007; Armbruster et al.
2009; Kvam 2012; Freeman et al. 2014; Cudney and Ezzell
2017).

Following the recommendations of the 2016 GAISE College
Report, in particular,

• “Teach statistics as an investigative process of problem-
solving and decision-making,”
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• “Focus on conceptual understanding,”
• “Foster active learning,”

we designed a creative three-dimensional teaching tool that
can be used to complete an active-learning class activity for
learning agglomerative hierarchical clustering. The pedagogical
development aims to enhance students’ mastery of the topic,
promote classroom engagement, and potentially benefit the
larger statistics education community.

The rest of the article is organized as follows: in Section 2,
we start with a brief review of the concept on agglomerative
hierarchical clustering and discuss the motivation of our study.
We then introduce the designed teaching tool and class activity
in Section 3. We conclude our article with some final remarks in
Section 4. An activity worksheet and a real data example are pro-
vided as supplementary materials to accompany the designed
lesson.

2. Background and Motivation

Clustering analysis is a topic in unsupervised learning that aims
to categorize similar units into homogeneous groups based on
the observed features. Given a multivariate dataset, it simplifies
the structure of the full data and helps uncover the underly-
ing relationship between multivariate features. It often serves
as an exploratory data analysis tool to guide the selection of
appropriate methods for statistical inference at the later stage
of a research study. It has wide applications in many different
disciplines, such as market segmentation (Wedel and Kamakura
1999), bioinformatics (Abu-Jamous, Fa, and Nandi 2015), clin-
ical psychiatry (Jiménez-Murcia et al. 2019), environmental
policy (Hu et al. 2019), among many others.

Many clustering methods are derived based on dissimilarity
measures. Given k quantitative features, denoted by Xi

1, . . . , Xi
k

for observation i, a common metric to measure the dissimilarity
between observation i and observation j (i, j = 1, 2, . . . , n) is the
Euclidean distance, defined by

dij =
√√√√ k∑

�=1
(Xi

l − Xj
l)

2.

The agglomerative hierarchical clustering method can be for-
mulated based on the pairwise Euclidean distances. Simply
put, it produces a sequence of n − 1 partitions of the data,
starting with n singleton clusters and ending with one cluster
that consists of all n units. At each step, one chooses to merge
the two “closest” clusters together to reduce the complexity of
the clustering solution at the cost of losing some within-cluster
homogeneity. The “closest” clusters at each step are determined
based on a merging criterion that depends on the pairwise dis-
tances between units from two distinct clusters. In this project,
we consider the three most commonly used merging criteria, all
of which are defined based on the Euclidean distance:

• Single linkage: one merges the two clusters that have the
smallest minimal distance, where the minimal distance
between cluster s and cluster t is given by

min{dij : Xi ∈ cluster s, Xj ∈ cluster t.}

• Complete linkage: one merges the two clusters that have the
smallest maximum distance, where the maximum distance
between cluster s and cluster t is given by

max{dij : Xi ∈ cluster s, Xj ∈ cluster t.}.

• Group average linkage: one merges the two clusters that have
the smallest average group distance, where the average group
distance between cluster s and cluster t is given by

1
nsnt

∑
Xi∈cluster s

∑

Xj∈cluster t

dij,

and ns and nt represent the number of units in cluster s and
cluster t, respectively.

The definition of agglomerative hierarchical clustering and
its associated linkage functions are intuitive and do not require
advanced mathematical knowledge. Therefore, this is a topic
appropriate to introduce in an undergraduate multivariate data
analysis course at all levels. In addition, the implementation
of the method is usually straightforward by using statistical
software or languages, for example, the hclust() function in
the statistical language R (Becker, Chambers, and Wilks 1988).
However, the clustering solutions on a given real dataset derived
from various merging criteria are likely to be different. It may
not be convincing to simply explain it by saying “this is just due
to different linkage criteria.”

From a different aspect, the “chaining effect” of the single
linkage criterion and “crowding effect” of the complete linkage
criterion are commonly seen in practice (see definitions below).
Providing intuitive explanations for these effects helps students
better understand the differences between the merging criteria.

• Chaining effect: Chaining effect is commonly seen with the
single linkage criterion, where single observations are fused
one-at-a-time to existing clusters, yielding extended and
trailing clusters (James et al. 2013).

• Crowding effect, that is, violation of “closeness” property:
Crowding effect is sometimes seen with the complete link-
age criterion, where observations can be much closer in
Euclidean distance to certain points from other clusters than
to some points in its own cluster. As a result, different clusters
may not seem far enough apart (Hastie, Tibshirani, and
Friedman 2016).

To clarify possible confusions associated with the topic of
agglomerative hierarchical clustering and to promote an engag-
ing classroom atmosphere, we designed a hands-on active learn-
ing tool that facilitates students’ understanding of the method-
ology through collaborative teamwork and helps them gain
insights into the comparisons between different linkage solu-
tions. We describe the proposed class activity in details in
Section 3.

3. Developed Class Activity

We have taught two multivariate data analysis courses at two
different private, four-year liberal arts colleges. Both courses
are offered to students who have taken introductory statistics
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and multivariable calculus (one upper-level course also requires
linear algebra and a course on regression analysis), and are
counted as a statistics elective toward the mathematics or statis-
tics major (or minor). Our class sizes are often small, with enroll-
ments of fewer than 15. However, the designed class activity is
suitable for classes of medium size, for example, 20–50 students.
In addition, it does not require students to have advanced math-
ematical background. For instance, the planned lesson does not
involve any calculus knowledge, so it is appropriate for a broader
audience.

The anticipated learning outcomes from the lesson include:

1. Students will develop a clear understanding of agglomerative
hierarchical clustering.

2. Students will be able to apply and distinguish between differ-
ent linkage functions (i.e., merging criteria).

3. Students will be able to recognize the effects that are asso-
ciated with certain linkage functions, for example, chaining
effect and crowding effect, and understand intuitively why
they happen.

3.1. Materials

The three-dimensional educational tool kit includes a square
bulletin board and pushpins of assorted colors (see the left image

of Figure 1). The pushpins are used to display the locations
of observations (i.e., points) on a two-dimensional coordinate
plane, where the color of each point indicates its membership of
a certain cluster. A less expensive alternative, shown in the right
image of Figure 1, replaces the bulletin board and pushpins by
a piece of paper and a sheet of colorful stickers. In the following
discussion, we illustrate a dataset of five observations with two
variables, denoted by X1 and X2. In particular, the coordinates
of the five points are set to be (1, 3), (2, 5), (2, 2), (4.5, 6),
and (5, 3). On the bulletin board in Figure 1, we write down
a digit from 1 to 5 next to each observation for ease of reference
and calculation. Instructors may choose to use a larger number
of observations, but please be aware that the expected time to
complete the activity increases with the sample size.

Initially, all pushpins are of different colors, implying that
each forms its own singleton cluster. In the process of complet-
ing the designed activity, students will change the colors of the
pushpins based on the steps of agglomerative hierarchical clus-
tering, reflecting the adjustments of the cluster memberships
given a merging criterion. See Figure 2 for a simple demonstra-
tion, where the two closest observations (in Euclidean distance)
were merged together to form a four-cluster solution. The same
procedure also applies to the alternative kit using stickers, that is,
students change the colors of certain observations by attaching

Figure 1. Left: The activity kit that each group of students receive. Right: An alternative activity kit.

Figure 2. Demonstration of the first step in agglomerative hierarchical clustering, where point 1 and point 3 were merged together.



4 X. CAI AND Q. WANG

new stickers on top of the previous ones to complete the pro-
cess of agglomerative hierarchical clustering in each step. The
activity is described in more details in Section 3.2.

3.2. Activity Plan

The in-class activity, together with the lesson of the topic on
agglomerative hierarchical clustering, can be completed within
one lecture of 60–75 min. The class starts with an introduction
of clustering analysis and its practical applications. To engage
class discussions, instructors may raise some motivating ques-
tions, such as:

• “Given the set of observations in this plot (shown in a two-
dimensional plot with two features), how would you group
similar objects into two sets?”

• “How would you quantify ‘similarity’ between objects?”
• “What is the total number of groups (clusters) needed?”
• “Comparing the n-cluster solution and the one-cluster solu-

tion, which partition is more homogeneous within each
cluster?”

During the interactive conversation with students, the concept
of Euclidean distance is reviewed and the method of agglomer-
ative hierarchical clustering is introduced, including the formu-
lations of the three linkage functions as shown in Section 2.

Then, the class is divided into small groups of 3–5 to fur-
ther investigate agglomerative hierarchical clustering through
the designed in-class activity. Each group of students is given
activity kit as shown in Figure 1. The five observations presented
in Figure 3 were carefully chosen to yield different clustering
solutions using each of the single linkage, complete linkage,
and group average linkage merging criteria. In addition to the
educational tool, each team is also given a worksheet that guides
them through the entire activity (please see the supplementary
materials for the worksheet and its solution). In the worksheet,
students are first given a 5 × 5 distance matrix that represents

Figure 3. Scatterplot of the dataset.

the pairwise Euclidean distances of the dataset. Alternatively,
instructors may provide students with a ruler and let them mea-
sure the pairwise Euclidean distances and compute the distance
matrix as part of the group activity.

distance matrix =

⎛
⎜⎜⎜⎜⎝

0.0
2.2 0.0
1.4 3.0 0.0
4.6 2.7 4.7 0.0
4.0 3.6 3.2 3.0 0.0

⎞
⎟⎟⎟⎟⎠

.

Following the instructions in the worksheet, each team then
realizes agglomerative hierarchical clustering based on each of
the three linkage criteria. They are asked to record the cluster
solution in each step, starting with “(1), (2), (3), (4), (5)” in
Step 0 that represents a five-cluster solution and ending with
the single-cluster solution “(1,2,3,4,5)” in Step 4. In Steps 1–
3, they need to update the between-cluster distance matrix
and identify the smallest, largest, or average distance between
clusters given the single linkage, complete linkage, or group
average linkage criteria, respectively. Within each team, students
are encouraged to take the lead in different roles: for instance,
one student may be responsible for taking notes (completing
the worksheet questions), and one student may help adjust the
colors of the pushpins. All students are expected to participate in
the group discussions throughout the activity. The entire activity
is expected to be completed within 20 min. In the end, all teams
are expected to reach the following results.

• Based on the single linkage criterion:
Step 0 (5-cluster solution): (1), (2), (3), (4), (5)
Step 1 (4-cluster solution): (1,3), (2), (4), (5)
Step 2 (3-cluster solution): (1,2,3), (4), (5)
Step 3 (2-cluster solution): (1,2,3,4), (5)
Step 4 (1-cluster solution): (1,2,3,4,5)

• Based on the complete linkage criterion:
Step 0 (5-cluster solution): (1), (2), (3), (4), (5)
Step 1 (4-cluster solution): (1,3), (2), (4), (5)
Step 2 (3-cluster solution): (1,3), (2,4), (5)
Step 3 (2-cluster solution): (1,3), (2,4,5)
Step 4 (1-cluster solution): (1,2,3,4,5)

• Based on the group average linkage criterion:
Step 0 (5-cluster solution): (1), (2), (3), (4), (5)
Step 1 (4-cluster solution): (1,3), (2), (4), (5)
Step 2 (3-cluster solution): (1,2,3), (4), (5)
Step 3 (2-cluster solution): (1,2,3), (4,5)
Step 4 (1-cluster solution): (1,2,3,4,5)

Figures 4–6 present the steps of the activity based on the single
linkage, complete linkage, and group average linkage criteria,
respectively.

After the completion of the group activity, the entire class
engages in a follow-up discussion. Instructors may raise leading
questions that encourage students to think actively about the
reasons behind the same or different solutions based on the
three merging criteria. Some possible questions include:

• “Why are the 4-cluster solutions the same given different
linkage functions?”
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Figure 4. Steps of activity based on the single linkage criterion.

• “Among the three 2-cluster solutions, which one is the most
imbalanced? Why would that happen? ”

The above questions may lead to the introduction of the
chaining and crowding effects. To further clarify these concepts,
instructors may present visualization of the chaining and crowd-
ing effects using graphs such as those in Figure 7. The left panel
displays the two-cluster solution following the single linkage
criterion. The relatively large size of the red cluster shows the
chaining effect, that is, single observations tend to merge into
existing clusters in precedent steps. The middle panel presents
the two-cluster solution using the complete linkage criterion. In
this case, the Euclidean distances between point 2 and point 1
and between point 2 and point 3 are 2.2 and 3.0, respectively.
However, point 2 is grouped with points 4 and 5 together, and
the Euclidean distances between point 2 and point 4 is 2.7 and
between point 2 and point 5 is 3.6. In other words, point 2 is
closer in Euclidean distance to members of the other cluster
compared to points of its own group. The right panel is the
2-cluster result based on the group average criterion which
seems to offer a compromise solution between the other two
approaches and potentially alleviates the chaining and crowding
effects.

If the course is taught at a higher level, other merging
criteria such as centroid linkage (Sokal and Mitchener 1958)
and mini-max linkage (Bien and Tibshirani 2011) criteria
may be introduced. These more recent developments aim to

avoid the undesirable chaining and crowding effects that are
often associated with the single linkage and complete linkage
criteria.

Up till now, students should have a thorough understanding
on how clusters are formed using different merging criteria. If
time permits, the lesson may continue with software illustration.
For instance, instructors could introduce commonly used R
functions to realize agglomerative hierarchical clustering, and
discuss how to visualize the clustering results by a dendro-
gram. As an example, instructors may use the following code
to demonstrate how use of the hclust() function to analyze
the aforementioned five-point dataset.

#Creating the coordinates of the points
in the activity

x1 <- c(1,2,2,4.5,5)
x2 <- c(3,5,2,6,3)
data = cbind(x1,x2)
# Fit agglomerative hierarchical

clustering methods and plot
the dendrograms

hc.single <- hclust(dist(data),
method="single")

plot(hc.single)
hc.complete <- hclust(dist(data),

method="complete")
plot(hc.complete)
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Figure 5. Steps of activity based on the complete linkage criterion.

hc.average <- hclust(dist(data),
method="average")

plot(hc.average)

These R commands will produce the dendrograms as shown in
Figure 8.

Remarks. We have the following observations and suggestions
for using the designed activity.

1. When updating the distance matrix between clusters from
step to step (see the worksheet in the supplementary mate-
rials), instructors may provide assistance to certain groups of
students, reminding them of the definition of each merging
criterion.

2. It is not obvious to students what the meaning of “height” is in
a dendrogram. When presenting the dendrogram (Figure 8)
in R, instructors may point out to the class that the “height”
at each merging step corresponds to the optimal distance
given a linkage criterion. For instance, suppose one follows
the complete linkage criterion. At a certain step if cluster s
and cluster t are merged together, the merging point that cor-
responds to the level of “height” in the dendrogram equals to
the maximum distance between observations in cluster s and
cluster t, namely, max{dij : Xi ∈ cluster s, Xj ∈ cluster t}.
Furthermore, such maximum distance (i.e., height) is the
smallest among all maximum distances between pairs of
clusters obtained in the previous step. In this case, the

minimal maximum distance between clusters is the “optimal
distance.”

3. According to our teaching experience, one difficulty that
some students may have in completing the activity is to deter-
mine the maximum distance (minimum distance, or average
distance, depending on the linkage criterion) between clus-
ters. At a given step, students need to first carefully identify
observations in each cluster and then find out the maximum
distance, for example, between each pair of clusters so that
they can correctly determine which two clusters are to be
merged together in the following step. Another important
task in cluster analysis is the selection of the number of
clusters. Although there have been a number of available tools
in existing literature, choosing the optimal number of clusters
is generally regarded as a difficult task. In our real data
example, we illustrate the use of elbow method (Thorndike
1953), based on the within-cluster variations to identify the
number of clusters to use.

4. The designed class activity also provides instructors with
an opportunity to better illustrate chaining and crowding
effects with the help of appropriate visualization. We found
graphical displays, such as those shown in Figures 7 and
8, helped students grasp the seemingly abstract concepts of
chaining and crowding effects more easily.

The aforementioned lesson plan should be sufficient for
one regular class period of 60–75 min. After students have
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Figure 6. Steps of activity based on the group average linkage criterion.

Figure 7. Illustration of the 2-cluster solutions based on the single linkage (with the chaining effect), the complete linkage (with the crowding effect), and the group
average linkage criteria. The last merging rule offers a compromise solution between the previous two criteria.

a thorough understanding of agglomerative hierarchical clus-
tering, instructors may introduce them a more real dataset
where the feature space is of higher dimensions and the num-
ber of observations is larger. When working on the real data
example, instructors can guide students to make connections
to the observations concluded from the simple class activity
in the context of the given dataset. For instance, we use a
facial recognition dataset in our classes. The data consist of
400 images of 40 different individuals. All of these images
were taken between April 1992 and April 1994 at the Olivetti
Research Laboratory in Cambridge, UK. Hence, the dataset is
also known as the Olivetti Faces dataset. The dataset can be

found from the AT&T lab (https://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html). It was also studied in Bien
and Tibshirani (2011) in the context of clustering analysis. In
this example, the primary goal is to correctly group similar
images together. To ease visualization of the clustering results,
we recommend working on a subset of available images. In
the supplementary materials, readers can find a detailed case
study, including sample R commands and the corresponding
clustering results, using all of the 10 images from one individual
of the Olivetti Faces dataset.

Within the broader curriculum, after other clustering meth-
ods are introduced (e.g., k-means clustering, model-based

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 8. The dendrograms produced by R.

clustering, etc.), instructors may further discuss the compar-
isons between various clustering methods. In addition, if the
topic of classification has been taught, there is a good oppor-
tunity to highlight the differences between unsupervised learn-
ing and supervised learning when comparing clustering with
classification.

4. Summary and Discussion

This article introduces an active-learning class activity. It can be
realized by a designed three-dimensional educational tool that
is easy to use by statistics instructors. The developed teaching
tool is appropriate for a multivariate data analysis course or
any course that covers the topic of agglomerative hierarchical
clustering. The use of the educational medium encourages stu-
dents’ in-class participation and active learning, and promotes
collaborative teamwork that enhances the understanding of
the methodology. The teaching tool can be simplified by plain
paper and stickers as a less expensive alternative. In a future
project, we are interested in comparing the efficacy and learning
outcomes of using different educational tools, including the
bulletin board-based three-dimensional tool, the paper-based
alternative tool, and the rudimentary method (i.e., the tradi-
tional lecture-based lesson).

Supplementary Materials

In the supplementary materials, we include the worksheet and its solution
for the activity introduced in Section 3.2. Additionally, a detailed case
study that applies agglomerative hierarchical clustering to a subset of the
Olivetti Faces datasets is also included with sample R commands and the
corresponding clustering results.
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