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ABSTRACT  

The purpose of this study was to investigate the impact of an intervention on teaching 

science as argument within a science methods course on elementary preservice teachers’ (PSTs’) 

(a) understandings of the nature of science (NOS), (b) knowledge about argumentation, (c) 

complexity of their written explanations, and (d) ability to incorporate components of the 

framework for teaching science as argument to support students’ literacy and science learning. 

This mixed-methods study utilized an embedded quasi-experimental design with a treatment (n = 

20) and control group (n = 25).  The treatment group instructor, who completed an eight-week 

professional development course, implemented the intervention protocol across a 12-week 

period.  Throughout the intervention, emphasis was placed on three key components of teaching 

science as argument (i.e., argument structure, public reasoning, and the language of science).  

The control group instructor, who did not partake in any professional learning activities, 

implemented business-as-usual instruction.  Results from a repeated measures MANOVA 

revealed that, although the intervention did not have a significant impact on PSTs’ knowledge of 

argumentation, PSTs who received the intervention did demonstrate a significant increase in 

their understanding of the NOS and in the complexity of their written explanations, as compared 

to PSTs who did not receive the intervention.  Furthermore, analysis of PSTs’ written lesson 

plans revealed several themes (i.e., opportunities for students to collect and analyze data, use of 

scaffolds for helping students construct scientific explanations, emphasis on the use of text to 

support scientific inquiry, and attention to developing students’ science vocabulary) consistent 

with the framework for teaching science as argument.  These findings contribute to a growing 

body of evidence illustrating the effectiveness of intentionally designed teacher preparation 
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experiences for developing PSTs’ knowledge, beliefs, and practices for supporting students’ 

engagement in scientific explanation and argument. 
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CHAPTER ONE:  

INTRODUCTION 
 

Background 

This study was conducted to investigate the impact of a one-semester intervention (12 

weeks) focused on teaching science as argument within a science methods course on PSTs’ (a) 

understandings of the nature of science (NOS), (b) knowledge about argumentation, (c) 

complexity of their written explanations, and (d) ability to incorporate components of the 

Teaching Science as Argument Framework (TSAF) when planning for science instruction.  This 

chapter begins with an overview of the research problem and the purpose of the study.  Next, 

both the conceptual and theoretical frameworks are explained.  Following the guiding 

frameworks, the research questions, null hypotheses, and significance of the study are presented.  

This chapter concludes with limitations, delimitations, assumptions and operational definitions.  

Statement of the Problem  

In the rapidly evolving world of the 21st century, the need for a scientifically literate 

populace is greater than ever before.  According to the Science Framework for the 2015 National 

Assessment of Education Progress, a scientifically literate person  

…is familiar with the natural world and understands key facts, concepts, principles, laws, 

and theories of science, such as the motion of objects, the function of cells in living 

organisms, and the properties of Earth materials. Further, a scientifically literate person 

can connect ideas across disciplines; for example, the conservation of energy in physical, 

life, Earth, and space systems. Scientific literacy also encompasses understanding the use 

of scientific principles and ways of thinking to advance our knowledge of the natural 
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world as well as the use of science to solve problems in real-world contexts. (National 

Assessment Governing Board, 2014, p. x)  

Despite the centrality of science to one’s ability to thrive in the 21st century, a troubling 

number of students in the United States are struggling to acquire even the most basic concepts, 

skills, and abilities in science (National Center for Educational Statistics [NCES], 2015).  The 

National Assessment of Educational Progress (NAEP) science assessment measures both 

students’ science content knowledge and the understanding of science practices and is based on 

an understanding on what scientific literacy means.  Results from the NAEP are reported as 

percentages of students performing at or above three achievement levels (Basic, Proficient, and 

Advanced).  According to the descriptions of achievement levels used by the NAEP, students 

performing at or above Proficient “demonstrate solid academic performance and competency 

over challenging subject matter” (NCES, 2012).  In contrast, students who fail to meet the 

criteria for Proficient tend to demonstrate only “partial mastery of prerequisite knowledge and 

skills that are fundamental for proficient work at each grade” (NCES, 2012). 

According to the 2015 NAEP achievement-level results in science, 24% of fourth 

graders, 32% of eighth graders, and 40% of 12th graders perform below the Basic level; 38% of 

fourth graders, 32% of eighth graders, and 22% of 12th graders perform at or above the 

Proficient level; and very few students in Grades 4 (1%), 8 (2%), and 12 (2%) perform at the 

Advanced level (NCES, 2015).  

Results from international tests, such as the Trends in International Mathematics and 

Science Study (TIMMS), also have indicated that students in the U.S. are performing at a “just 

average” level in science.  Although U.S. students still score higher than students in many 
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countries, they continue to lag behind students in the top-performing countries, such as 

Singapore, the Republic of Korea, the Russian Federation, and Japan (Provasnik et al., 2016).  

The troubling state of science education has serious consequences for the preparation of a 

highly skilled scientific workforce, threatening to leave many young Americans unprepared to 

thrive in a global economy and to solve problems of the future.  In response to this issue, a series 

of reform initiatives focused on improving science teaching and learning have surfaced.  

Recommendations promote an inquiry-oriented approach to science teaching (National Research 

Council, 2012; NGSS Lead States, 2013) as well as the use of language and literacy practices to 

support students’ engagement and learning in science (Fang, Lamme, & Pringle, 2010; Hand et 

al., 2003; Wellington & Osborne, 2001).  Developing students’ language and literacy abilities in 

inquiry-based science is viewed as a crucial step in creating a scientifically literate populace who 

can engage in conversations about local, national, and global scientific issues (Fang et al., 2010).  

Two key disciplinary literacy practices in science are constructing explanations and 

engaging in argument from evidence (Krajcik & Sutherland, 2010; National Research Council, 

2012; Osborne, 2010).  Building explanations and engaging in argument are complementary 

discursive practices through which new and reliable scientific knowledge is constructed (Boyer, 

2016).  It has been suggested that engagement in explanation and argument not only helps to 

develop students’ content learning and understandings of the nature of science, but also students’ 

fluency in the language and discourse patterns of science (Jimenez-Aleixandre & Erduran, 2007).  

For these reasons, explanation and argument are considered to be central components of science 

education in terms of the Next Generation Science Standards (NGSS Lead States, 2013) and in 
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the view of various scholars (e.g., Driver, Newton, & Osborne, 2000; Osborne, 2010; Zembal-

Saul, 2009).   

The call to incorporate explanation and argument in science education presents new 

challenges for teachers, especially at the elementary level.  At a time when proficiency in science 

is more important than ever, the average time U.S. students spend learning science in the 

elementary grades has dropped to an all-time low.  On average, students in Grades K-2 receive 

only 18 minutes per day of science instruction while students in Grades 3-5 receive only 22 

minutes per day of science instruction (Trygstad, 2013).  Furthermore, researchers have found 

that the little science instruction that does occur is typically teacher-dominated, with few 

opportunities for students to construct, communicate, or critique evidence-based explanations 

(Osborne, 2010).  Elementary teachers’ lack of knowledge of science content and practices 

(Davis, Petish, & Smithey, 2006), inadequate knowledge of the NOS (R. Duschl, 2000; 

Lederman, 1992), and limited pedagogical skills for supporting students’ construction of 

scientific explanations (Zembal-Saul, 2009) have all been identified as major barriers to the 

inclusion of scientific explanation and argument in elementary school science.  

To overcome these challenges, preservice elementary teachers (PSTs) need to develop 

specific knowledge, beliefs, and practices for supporting students’ engagement in scientific 

explanation and argument.  This involves developing an understanding of how explanation and 

argument contribute to the generation of scientific knowledge, learning about the structure of 

scientific explanations, and acquiring pedagogical skills for using talk and writing activities to 

scaffold students’ construction of evidence-based scientific explanations.  In addition, scholars 

have suggested that teachers must be able to construct evidence-based explanations themselves 
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before they can support students’ successful engagement in explanation and argument (Zohar, 

2008).  Although the barriers are daunting, there is promising evidence that framing teacher 

preparation in science around a coherent conceptual framework can assist PSTs in building 

initial knowledge and practices for teaching science as argument (Barreto-Espino, Avraamidou, 

& Zembal-Saul, 2014; Boyer, 2016; Zembal-Saul, 2009).  

Very few studies have been conducted that explicitly characterized PSTs’ knowledge of 

specific scientific practices, such as constructing evidence-based explanations (Davis et al., 

2006).  This is particularly true at the elementary level.  Without developing sophisticated 

understandings of scientific explanation, prospective elementary teachers are unlikely to be able 

to successfully engage their students in this complex scientific practice.  Therefore, 

investigations are needed that examine how purposefully designed teacher education experiences 

can help PSTs develop their own abilities for constructing evidence-based explanations and 

initial knowledge and practices for teaching science as argument.    

Purpose of the Study  

The purpose of this study was to investigate the impact of a one-semester intervention (12 

weeks) focused on teaching science as argument within a science methods course on PSTs’ (a) 

understandings of the NOS, (b) knowledge about argumentation, (c) complexity of their written 

explanations, and (d) ability to incorporate components of the Teaching Science as Argument 

Framework (TSAF) when planning for science instruction.   

Guiding Frameworks 

The following section includes a discussion of two different frameworks that informed 

this study. The conceptual framework section provides an overview of the Teaching Science as 
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Argument Framework (TSAF) (Zembal-Saul, 2009).  The TSAF was used to guide PSTs’ 

thinking about how to support students’ science and literacy learning in tandem during the 12-

week intervention, as well as a lens through which to interpret the qualitative data.  The 

theoretical framework section discusses how this study was informed by the notion of science as 

argument, sociocultural perspectives on human learning, and schema theory.  

Conceptual Framework  

The conceptual framework, shown in Figure 1, that informed this study “brings together 

the essential elements of scientific inquiry, in particular giving priority to evidence and 

explanation and communicating scientifically, with perspectives on argumentation” (Zembal-

Saul, 2009, pp. 692-693).   

The design of the TSAF was informed by a series of design-based research studies 

focused on understanding how preservice elementary teachers make sense of elementary school 

science as argument and on informing iterations of an elementary science methods course 

(Zembal-Saul, 2009).  Findings from these studies suggest that the framework serves as an 

effective scaffold for enhancing PSTs’ understanding of scientific practices associated with 

explanation and argument.   

The three main features of the framework include (a) using an argument structure to 

support students’ construction of scientific explanations and arguments, (b) reasoning publicly 

about the development of claims from evidence and the evaluation of claims on the basis of 

evidence, and (c) engaging authentically with the language of science (Zembal-Saul, 2009, p. 

693).  Each of these features are described in detail in the following sections.  
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Figure 1. Teaching Science as Argument Framework (TSAF) 
 

Source: from Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. 
Science Education, 93(4), 687–719. Reproduced with permission.  

 

Argument Structure  

 The first important feature of the TSAF involves using the structure of argument to 

support PSTs as they work to construct, communicate, and evaluate scientific explanations.  This 
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component of the framework is intended to call PSTs’ attention to important epistemological 

features of scientific explanations, such as the centrality of evidence in constructing and 

evaluating knowledge claims.  The TSAF explicitly calls for teachers and students to engage in 

discourse using the claims, evidence, reasoning (CER) framework.  The CER framework is a 

simplified version of Toulmin's (1958) six-part model of argumentation and can be used to 

provide a reasonable entry point for PSTs and elementary students to participate in argument 

discourse.  The CER framework provides a guide for how a scientific explanation can be 

organized, as well as the kinds of contributions considered appropriate when participating in 

science talks (Zembal-Saul, 2009).  

Public Reasoning  

The second important feature of the TSAF is making thinking visible though public 

scientific reasoning.  According to Zembal-Saul (2009), “this aspect of the framework is 

intended to call PSTs’ attention to the role of classroom discourse and the importance of the 

process, as well as the product, of argument construction in science leaning” (p. 693).  When 

students are engaged in constructing, communicating, and evaluating scientific explanations, 

they make their thinking public (Bell & Linn, 2000; Michaels, Shouse, & Schweingruber, 2008; 

Zembal-Saul, 2009).  Talking about their own thinking requires students to process their 

understandings as they attempt to coordinate claims with evidence and negotiate meaning 

(Zembal-Saul, 2009).  In addition to considering one’s ideas in relation to those of others, 

making thinking visible and negotiating meaning also supports the establishment of social norms 

for communicating in science.  For example, if a teacher consistently prompts students for 

evidence to support their claims, students will hopefully begin to include evidence as part of their 
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contributions to discussions.  Lastly, when science meaning is negotiated publicly, teachers can 

monitor and assess student thinking and learning.   

The Language of Science  

 The third important feature of the TSAF is authentic engagement with the language of 

science.  According to Zembal-Saul (2009), this aspect of the framework places emphasis “on 

the role of language in learning science, particularly how practices such as coordinating claims 

with evidence and weighing alternatives, contribute to the social negotiation of meaning about 

science concepts” (p. 693).  Language is the key tool for making meaning in science (Gee, 2004; 

Lemke, 1990, 2001).  Scientists use language in conducting scientific inquiries and in explaining 

and interpreting natural phenomena.  They also use language to communicate, evaluate, and 

challenge scientific knowledge, claims, and arguments (Fang, 2006).  Becoming truly literate in 

science requires students to learn the specialized language used to construct and communicate 

scientific knowledge.    

The language of science differs substantially from the language that children use in daily 

social interactions (Schleppegrell, 2004). Scientific writing is characterized by range of 

grammatical features (e.g., technical vocabulary, abstraction, impersonal authoritativeness) that 

present significant decoding and comprehension challenges for students (Fang, 2006). The 

technical vocabulary of science, in particular, is a major source of difficulty for students, 

especially struggling readers and English Language Learners (ELs).  

Many technical words in science are polysemous, meaning they have both a science-

specific meaning and a more common everyday meaning (Cervetti, Hiebert, Pearson, & 

McClung, 2015).  The word “fault,” for example, is used regularly in everyday language to 
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describe responsibility for a mistake or act of wrongdoing.  However, in the context of science, 

the word, fault, refers to a break in the continuity of rock formation.  Scholars (e.g., Pearson, 

Hiebert, & Kamil, 2007) have noted that such words have the potential to create learning 

obstacles for students.  

In order to support students’ ability to cope with the demands of scientific language, it is 

imperative that teachers incorporate explicit language tasks and instruction into their science 

teaching (Yore & Treagust, 2006).  Examples of language-based strategies include using a 

concept of definition word map (Schwartz & Raphael, 1985) to enhance students’ conceptual 

understanding of technical vocabulary in science and using sentence frames (Warwick, 

Stephenson, & Webster, 2003) to scaffold students’ use of scientific language when writing and 

speaking.  Embedding such strategies within inquiry-based science instruction can help students 

learn the vocabulary, functions, syntax, and discourse of scientific language.  

In summary, the TSAF is not intended to encompass all discourses and practices of 

science or all the ways in which teachers can support students’ engagement and learning in 

science.  Instead, the TSAF serves to focus preservice elementary teachers’ attention on 

scientific discourse and reasoning in ways that are likely to support their future students’ 

disciplinary learning in science (Zembal-Saul, 2009).   

The current study was initiated to expand upon the work of Zembal-Saul and her 

colleagues (2009) by exploring ways in which the TSAF can be used, not only to help 

elementary PSTs learn to support students’ science learning, but how it can also be used to help 

them learn to support students’ language and literacy development in the context of inquiry-

oriented science.  As such, the three features of the TSAF (i.e., argument structure, public 
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reasoning, and language of science) were used as a consistent set of concepts for shaping 

participants’ thinking about how to support both young students’ science and literacy learning 

during the 12-week intervention.  A detailed description of how the three core components of the 

TSAF were emphasized throughout the intervention is included in Chapter 3.  

Theoretical Framework 

Several theories of learning informed the focus of this study.  The contributions of the 

following theoretical frameworks are explained in this section:  

• Science as Argument  

• Sociocultural Theory of Human Learning 

• Schema Theory  

Science as Argument  

The main goal of science is to construct new knowledge and understandings about how 

the natural world works.  Two practices crucial to accomplishing this goal are explanation and 

argument (Osborne, 2010).  Professional scientists routinely engage in the construction, 

communication, and evaluation of scientific explanations.  They also engage in evidence-based 

discourse in which they debate scientific ideas, attempt to persuade others of their arguments, 

and use evidence to defend their claims.  It is through these processes that new and reliable 

scientific knowledge is co-constructed among members of the scientific community.  

Furthermore, these processes aid in the revision and refinement of existing scientific knowledge 

in light of new evidence.  For this reason, argument has been viewed as a core discursive practice 

in science (Kuhn, 1993; Osborne, 2010) and a number of scholars have advocated for its 

inclusion in the science classroom.  
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In addition to building students’ science content knowledge, scholars (e.g., Newton, 

Driver, & Osborne, 1999; Osborne, 2010; Zembal-Saul, 2009) and educational reform initiatives 

(National Research Council, 2012; NGSS Lead States, 2013) have called for teachers to engage 

students in science and engineering practices, including the construction of explanations and 

engagement in argument from evidence.  Teaching science as argument requires an instructional 

emphasis on: (a) the role of evidence in the construction of scientific explanations,(b) the 

communication of scientific ideas in both talk and writing, (c) the criteria used in science to 

evaluate the validity of evidence-based claims, and (d) the social negotiation of meaning among 

students through ongoing discussion and debate. Central to teaching science as argument is the 

recognition that language and literacy play a vital role in the learning, and doing, of science.  

Language is the primary medium through which knowledge is constructed and learning occurs as 

students read, write, and communicate in science-specific ways (Fang, 2004; Halliday, 1994; 

Schleppegrell, 2004).   

Various scholars have argued that one of the greatest challenges in learning science is 

learning the specialized language of science itself (Fang, 2004; Lemke, 1990; Wellington & 

Osborne, 2001).  Unlike the everyday ordinary language students are accustomed to, scientific 

language, especially in its written form, is overall particularly dense, technical, abstract, and 

authoritative (Fang, 2004).  The unique grammatical features of scientific language pose a 

variety of comprehension and composition challenges for students.  For these reasons, it has been 

argued that the explicit teaching of scientific language should be a part of science education for 

all students (Wellington & Osborne, 2001).  
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Given the importance of language and literacy in science learning, Schleppegrell (2004) 

reasoned that “Teachers need greater knowledge about the linguistic basis of what they are 

teaching and tools for helping students achieve greater facility with the ways language is used in 

creating the kinds of texts that construe specialized knowledge at school” (p. 3).  Based on this 

need, a primary aim of this study was to help PSTs recognize the fundamental role language 

plays in science leaning through modeling explicit strategies for interacting with science texts 

and teaching the specialized vocabulary of science. 

Sociocultural Theory of Human Learning  

Argumentation is a fundamental discourse of science, consistent with the epistemological 

assumptions of Vygotsky’s theory of human learning (Lave & Wenger, 1991; Vygotsky, 1978).  

Sociocultural perspectives describe learning as a “social and communicative process, whereby 

learners share knowledge and construct understandings in a social context through dialogue, 

conflict, and negotiation” (Aydeniz, Pabuccu, Cetin, & Kaya, 2012, p. 1303).  This perspective 

shifts the focus of study from individual mental processes toward the study of interactions among 

learners in understanding how knowledge is both constructed and displayed (Lee & 

Smagorinsky, 2000).   

An important aspect of Vygotsky’s theory of human learning is the notion of the zone of 

proximal development.  The zone of proximal development refers to the difference between what 

a learner can achieve independently and achieve with support from a more competent other 

(Vygotsky, 1978).  The well-known construct of scaffolding was derived from Vygotsky’s 

notion of the zone of proximal development.  Bruner (1983) defined scaffolding as “a process of 
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setting up the situation to make the child’s entry easy and successful and then gradually pulling 

back and handing the role to the child as he becomes skilled enough to manage it” (p. 60).   

For young children who are new to engaging scientific explanation, science talks can 

serve as an important scaffold.  Science talk has been defined as a “persistent evidence-based 

whole-class dialogue” (Benus, Yarker, Hand, & Norton-Meier, 2013, p. 239).  Science talks 

provide a social environment in which the norms of scientific explanation (e.g., asking questions, 

providing reasons and evidence) can be acquired through apprenticeship by more competent 

others.  During science talks, students and teachers can both serve as more competent others 

through modeling and scaffolding.  Through what Croninger, Li, Cameron, and Murphy (2018) 

referred to as a “discourse apprenticeship,” students gradually come to internalize higher 

cognitive functions, such as coordinating claims with evidence.  

Given the important role of science talk in supporting students’ engagement in scientific 

explanation, the current state of elementary science classrooms, in which teacher talk is often 

dominant and student talk is minimal, must change.  Scholars (e.g., Sadler, 2006) have argued 

that a reasonable place to advocate and promote this kind of change is with prospective teachers 

within teacher preparation programs.  Therefore, a primary goal of this research was to assist 

PSTs in recognizing the important role of science talk as a means for scaffolding elementary 

students’ communication of scientific ideas and evidence in ways that reflect scientific discourse.  

Schema Theory  

Schema Theory has been a driving force in the study of reading processes, specifically in 

relation to reading comprehension, learning, and memory.  According to Anderson and Pearson  
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(1984), schema Theory is “a model for representing how knowledge is stored in human memory” 

(p. 259).  It also provides insight into how learners construct new knowledge.   

A schema is an abstract mental structure of information (Anderson, 1984).  Learners use 

schemata (the plural of schema) to organize current knowledge and provide a framework for 

future knowledge construction.  Through schemata, existing knowledge influences new 

information.  Theorist Jean Piaget (1969) explained that learning occurs through the modification 

of an individual’s schemata as they interact with their environment.  Piaget referred to the 

processes by which schemata are changed or modified as assimilation and accommodation.  In 

assimilation, new information is interpreted and incorporated into the learner’s pre-existing 

schemata.  In accommodation, existing schemata are changed or new schemata are constructed 

as a learner has new experiences.  Without a schema to which new information can be 

assimilated, learning is slow and difficult (Anderson, 1984).   

 Schema Theory is pertinent to this research in that the process of developing elementary 

preservice teachers’ knowledge about scientific explanation is influenced by their own prior 

conceptions about science teaching and learning.  Researchers have found that preservice 

teachers generally hold naïve beliefs about the processes by which scientific knowledge is 

generated (Aydeniz & Ozdilek, 2015).  The knowledge and beliefs that make up preservice 

teachers’ schemata for teaching science are often directly influenced by their own experiences as 

science learners (Davis et al., 2006).  

Thus, preservice teachers need to develop sophisticated understandings of how scientific 

explanation contributes to the construction of scientific knowledge before they can help their 

students build similar knowledge.  For this reason, the primary aim of this study was to challenge 



16 
  

preservice teachers’ prior knowledge and experiences in order to help them develop more 

sophisticated understandings about scientific explanation, consistent with new views of science 

proficiency (National Research Council, 2012; NGSS Lead States, 2013).  It is through this 

initial schema construction that the continued development of preservice teachers’ knowledge 

and appreciation for the role of evidence in the teaching and learning of science can take place.  

Therefore, this study focused on four major research questions.  

Research Questions and Null Hypotheses 

This study was guided by the following research questions:   

1. Does participation in an intervention focused on teaching science as argument 

have an impact on elementary PSTs’ understandings of the NOS, as measured 

by the Nature of Science as Argumentation Questionnaire (NSAAQ)?  

Null Hypothesis: The mean NSAAQ scores for the treatment and control 

group are equal to one another.  

2. Does participation in an intervention focused on teaching science as argument have 

an impact on elementary PSTs’ knowledge of argumentation, as measured by The 

Argumentation Test (ARGTEST)?  

Null Hypothesis: The mean argumentation test scores for the treatment and control 

group are equal to one another.   

3. Does participation in an intervention focused on teaching science as argument have 

an impact on the complexity of elementary PSTs’ written explanations, as measured 

by a researcher-developed written scientific explanation assessment?  
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Null Hypothesis: The mean written explanation assessment scores for the treatment 

and control group are equal to one another.   

4. How do elementary PSTs incorporate components of the Teaching Science as 

Argument Framework to support both students’ literacy and science learning when 

planning for inquiry-based science instruction, as evident in their written lesson 

plans? 

Significance  

The findings of this study contribute to the emerging body of research exploring how to 

support the development of PSTs’ knowledge, beliefs, and practices for teaching science as 

argument in order to support young students’ literacy and science learning in tandem.  Given the 

influence of teachers’ knowledge and beliefs on their pedagogical decisions (Bandura, 1997), 

developing elementary PSTs’ understandings and practices for teaching science as argument is 

critical if teachers are to effectively facilitate elementary students’ engagement in scientific 

reasoning, as called for by recent education initiatives in both science and literacy.  

It is unreasonable to expect elementary teachers to effectively support students’ 

engagement in explanation and argument if they themselves do not develop more sophisticated 

understandings of these science-specific literacy practices (Aydeniz & Ozdilek, 2015; Beyer & 

Davis, 2008; Zembal-Saul, Munford, Crawford, Friedrichsen, & Land, 2002). In the words of 

Zembal-Saul and colleagues, “Teacher education experiences must include opportunities to learn 

science in ways that reflect effective, reform-based pedagogies, as well as transform those 

experiences for the purposes of supporting students’ science learning” (p. 456).  Therefore, it is 

critical that the teacher education community takes directive initiative to help PSTs adopt ways 
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of thinking about science teaching that are more aligned with contemporary views of proficiency 

in science (National Research Council, 2012).  

Limitations  

 The following are limitations that threatened internal and external validity of the study:  

1. Participants were selected using non-probability sampling methods. The sample may 

or may not have accurately represented the target population, thus limiting the 

generalizability of the research findings (Creswell, 2003).  

2. Participants were not randomly assigned to condition. Non-random assignment 

violates the statistical assumption of independence, inhibits the ability to establish 

cause and effect relationships, and reduces the generalizability of the results to the 

wider population (Creswell, 2003).   

3. The sample sizes of PSTs in the treatment condition (n = 20) and control condition (n 

= 25) were small. Small sample size decreases statistical power, thereby increasing 

the likelihood of committing a Type II error (Lomax & Hahs-Vaughn, 2012).  

4. There were some occurrences of missing pretest and posttest assessment data due to 

absences and/or course withdrawals.  Make-up tests were attempted but not always 

successfully completed due to time and scheduling constraints.      

5. A researcher-developed instrument was used to assess the complexity of participants’ 

written scientific explanations.  The measure was not tested for reliability or content 

validity, although it was developed using research-based guidelines for creating 

appropriate explanation assessment tasks (McNeill & Krajcik, 2012).  Similar types 
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of researcher-developed instruments have been used in previous studies (e.g., 

(McNeill & Krajcik, 2008).   

6. The researcher had established a professional relationship with the course instructor 

of the treatment group prior to the study. This had the potential to introduce 

researcher bias.  Steps were taken to control for researcher bias by monitoring fidelity 

of implementation throughout the intervention.   

7. The treatment group and control group were not taught by the same instructor. The 

treatment group instructor was an assistant professor in science education with eight 

years of experience teaching at the post-secondary level. The control group instructor 

was a first-year doctoral student in science education with less than one-year of 

experience teaching at the post-secondary level.  Thus, differences between 

instructors (e.g., experience, level of competency) were possible confounding factors.  

In an attempt to achieve comparability between the treatment and control conditions, 

a graduate teaching assistant, also a first-year doctoral student in science education, 

facilitated all three inquiry-based model lessons with participants in the treatment 

condition. 

8. The group structure of the lesson plan assignment did not allow for individual 

analysis of PSTs’ application of the TSAF components when planning for inquiry-

based science instruction.  Furthermore, this study did not capture the rich 

collaborations that occurred as PSTs worked together to plan instruction.   

9. This study took place within a very specific context, thus restricting the 

generalizability of the findings.  
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Delimitations  

Participants were required to meet the following inclusionary criteria: (a) be enrolled in 

either the treatment or comparison course section of the science methods course during the 

spring 2019 semester, (b) agree to participate in the study, (c) complete all data collection tasks, 

and attend class sessions regularly (i.e., no more than two absences during the semester).   

Assumptions  

The study was guided by the following assumptions, which are based upon findings of 

existing research and theoretical perspectives on scientific explanation and argument:  

1. Scientific knowledge is socially constructed (Driver et al., 2000).  Therefore, talk and 

discourse play a central role in the collective process of making meaning in science 

(Lemke, 1990; Sadler, 2006).   

2. Constructing explanations and forming arguments are complementary discursive 

practices through which scientific knowledge is constructed (Boyer, 2016).  

3. Explicitly teaching the structure of scientific explanation is a vital pedagogical 

practice for supporting students’ explanation construction (McNeill & Krajcik, 2008).   

Operational Definitions  

 The following terms were operationally defined for the purposes of this study:  

Argument – An argument examines the question of whether a scientific 

explanation is valid and whether it is better than competing arguments (Osborne & 

Patterson, 2011). 
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Argumentation – Argumentation refers to the discourse process in which two or 

more people attempt to persuade others of their explanations, defend their ideas, and 

revise them in light of new evidence (Osborne & Patterson, 2011).  

Claim, Evidence, Reasoning (CER) Framework – The CER framework (McNeill 

& Krajcik, 2008) is a simplified version of Toulmin’s 1958 six-part argument structure 

designed specifically to support younger students in constructing both oral and written 

scientific explanation. The framework includes three structural components of a scientific 

explanation: a claim, evidence, and reasoning. These three structural components were 

defined by McNeill & Krajcik (2008) as follows:  

 a. Claim – an assertion that addresses a specific question or problem.  

 b. Evidence – the data used to support the claim.  

c. Reasoning – a justification for how the evidence supports the claim.  

Disciplinary Literacy – Disciplinary literacy refers to “the specialized information 

and organizational patterns, language, vocabulary, syntax, text features, and ways of 

interpreting, evaluating, and conveying evidence and information within a particular 

discipline” (International Literacy Association, 2018).  

Discourse – The term discourse refers to the structures of oral and written 

language and also how the members of a discipline act, talk, write, and engage in 

knowledge construction (Gee, 2004; Sadler, 2006).   

Explanation - A scientific explanation attempts to explain how and why a 

particular scientific phenomenon occurs (Osborne & Patterson, 2011).  



22 
  

Literacy – Literacy is defined as “the ability to identify, understand, interpret, 

create, compute, and communicate using visual, audible, and digital materials across 

disciplines and in any context” (International Literacy Association, 2018)).  

Nature of science (NOS) – NOS refers to the values and beliefs inherent to 

scientific knowledge and its development (Lederman, 1992).  

Scientific inquiry – According to the National Research Council (2000), scientific 

inquiry is… 

a multifaceted activity that involves observation; posing questions; examining 

books and other sources of information to see what is already known; planning 

investigations; reviewing what is already known in light of experimental 

evidence; using tools to gather, analyze, and interpret data; proposing answers, 

explanations and predictions; and communicating the results. (p. 13) 

Scientific literacy – According to the Science Framework for the 2015 National 

Assessment of Education Progress, scientific literacy refers to the understanding of key 

facts, concepts, principles, laws and theories of science and the ability to use that 

knowledge to solve problems in real-world contexts (National Assessment Governing 

Board, 2014).  

Summary  

This chapter began with a rationale and purpose of the study.  The researcher also 

introduced the guiding frameworks and the research questions.  Lastly, the significance of the 

study was explained, as were limitations, delimitations, assumptions, and operational definitions.  
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CHAPTER TWO:  

LITERATURE REVIEW   
 

Introduction 

 To frame this study, multiple areas of research were reviewed.  This chapter contains a 

brief overview of how the definition of literacy has evolved and expanded over the years, 

followed by a description of science as a discipline.  In the third section of this chapter, reform 

recommendations in science and literacy education are presented, as well as a discussion of the 

common emphasis on disciplinary literacy.  The fourth section reviews the role of language and 

literacy in inquiry-based science.  The fifth section reviews research on explanation and 

argument in science education, highlighting the important role teachers play in teaching science 

as argument and the various challenges that teachers, especially those at the elementary level, 

face in giving priority to explanation and argument in their teaching.  The final section 

synthesizes findings from previous studies focused on developing PSTs’ knowledge and beliefs 

of effective science teaching.  

Reading/Literacy in the 21st Century  

In the 1985 report, Becoming a Nation of Readers: The Report of the Commission on 

Reading, Anderson, Hiebert, Scott, and Wilkinson defined reading as “the process of 

constructing meaning from written texts” and argued that, “It is a complex skill requiring the 

coordination of a number of interrelated sources of information” (p. 7).  Furthermore, the authors 

outlined five key principles of skilled reading: (a) reading is a constructive process, (b) reading 

must be fluent, (c) reading must be strategic, (d) reading requires motivation, and (e) reading is a 

continuously developing skill.  This notion of reading was mainly rooted in cognitive and 

psycholinguistic perspectives on reading pertaining to phonological awareness, decoding, word 



24 
  

recognition, and literal comprehension.  Since 1985, this view of reading has continuously 

evolved and expanded in response to new theoretical and empirical developments in the field of 

reading research.   

For example, in 2002, the RAND Reading Study Group defined reading as “the process 

of simultaneously extracting and constructing meaning through interaction and involvement with 

written language” (p. 11).  They argued that reading comprehension occurs through an 

interaction between the following three elements (the reader, the text, and the activity) which 

includes comprehension.  In contrast to Anderson and colleagues’ (1985) definition, the 

definition proposed by the RAND Reading Study Group (2002) reflects a greater emphasis on 

the important role of the text and activity in the process of meaning construction, as well as 

increased attention on the larger sociocultural contexts through which reading takes place.    

 Several scholars (e.g., Brandt & Clinton, 2002; Gee, 1999; Street, 2003) have argued that 

in order to address issues of access and equity in education, one must seek to understand literacy 

as a socially-constructed practice.  Major theoretical perspectives within this paradigm include 

literacy as a social practice, multiliteracies, and multiple literacies (Perry, 2012).  These 

perspectives include an emphasis on culture, activity, identity, power, and the sociocultural 

contexts in and through which reading occurs.  

Frankel, Becker, Rowe, and Pearson (2016) argued that this expanded notion of reading 

requires a shift in focus from reading to literacy.  As such, they revised the definition provided 

by Anderson and his colleagues in 1985 from a definition of reading to a definition of literacy. 

Their revision defines literacy as a “the process of using reading, writing, and oral language to 

extract, construct, integrate, and critique meaning through interaction and involvement with 
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multimodal texts in the context of socially situated practices” (p. 7).  Using this reconstructed 

definition of literacy, Frankel et al. (2016) also updated the five principles of reading originally 

outlined by Anderson and his colleagues in 1985. Their updated principles are as follows: (1) 

literacy is a constructive, integrative, and critical process situated in social practices; (2) fluent 

reading is shaped by language processes and contexts; (3) literacy is strategic and disciplinary; 

(4) literacy entails motivation and engagement; and (5) literacy is a continuously developing set 

of practices (Frankel et al., 2016).  This new conceptualization of reading/literacy encompasses 

several recent theoretical developments in the field, including construction-integration models of 

reading, sociocultural and critical theories of literacy and learning, multimodality, and 

disciplinary literacy.  

Recent publications by the International Literacy Association (ILA), such as the 

Standards for the Preparation of Literacy Professionals 2017, also promote an expanded 

definition of literacy beyond reading to include a broader repertoire of skills reflective of what it 

means to be literate in the 21st century.  These skills include writing, speaking, listening, 

viewing, and visually representing in both print and digital formats.  As 21st century students 

prepare for college and career readiness, they must learn to comprehend and compose 

information using print and nonprint materials across disciplines and in a variety of contexts 

(International Literacy Association, 2012).   

The Discipline of Science 

At the most fundamental level, science is about investigating and explaining how the 

natural world works.  Science is both a body of knowledge that reflects one’s current 

understanding of the world and is also a set of practices used to construct, extend, and refine that 
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knowledge (National Research Council [NRC], 2012).  Although the practices used to construct 

scientific knowledge differ from one domain of science to another, all domains share common 

features.  Among these features is a commitment to data and evidence as the basis for developing 

knowledge claims (Duschl, Schweingruber, & Shouse, 2007).  

 Science is primarily a social endeavor, in that scientific knowledge advances in large part 

through cooperative effort and in the context of a social system with well-developed norms of 

practice and discourse (Michaels et al., 2008).  Members of the scientific community work 

together to build a body of evidence and devise and test scientific theories.  

Science is a central aspect of modern life, and knowing how to think about it, talk about 

it, and write about it, is essential for full democratic participation.  An understanding of science 

and the processes of science is a prerequisite for engagement in discussions and debate about 

scientific issues that affect society (National Research Council, 1996).  For this reason, 

developing proficiency in science is vital for everyone, even those who plan to pursue careers in 

fields other than science or engineering.  As the authors of the 2008 publication, Ready, Set, 

SCIENCE!: Putting Research to Work in K-8 Science Classrooms, explained, “Generating 

scientific productivity requires a workforce, not only of scientists, engineers, medical and health 

professionals, but also of journalists, teachers, policy makers, and the broader network of people 

who make critical contributions to science and the scientific enterprise” (Michaels et al., 2008, p. 

2).  

Reform Recommendations in Science and Literacy Education  

 A Framework for K-12 Science Education (National Research Council [NRC], 2012) and 

the Next Generation Science Standards (NGSS Lead States, 2013) set ambitious goals for K-12 
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students in science.  At the same time, the Common Core State Standards for English Language 

Arts (CCSS-ELA) (National Governors Association [NGA] Center for Best Practices & Council 

of Chief State School Officers [CCSSO], 2010) set equally important ambitious goals for 

students’ language and literacy learning in English language arts and across the disciplines.  A 

description of these new reforms and their implications for classroom instruction are included 

below.  

A Framework for K-12 Science Education and the Next Generation Science Standards  

The new vision of proficiency in science put forward by A Framework for K-12 Science 

Education (NRC, 2012) and the Next Generation Science Standards (NGSS Lead States, 2013) 

is based on earlier reform documents and research syntheses.  These include the National 

Science Education Standards (NRC, 1996), Benchmarks for Science Literacy (American 

Association for the Advancement of Science [AAAA], 1993), Taking Science to School (Duschl,  

et al., 2007), and Ready, Set, Science! (Michaels et al., 2008).  The new framework advocates for 

positioning inquiry at the heart of the science education curriculum and is built around three 

major dimensions of scientific literacy: disciplinary core ideas, crosscutting concepts, and 

scientific practices.  According to the NRC (2000), scientific inquiry is…  

a multifaceted activity that involves observation; posing questions; examining 

books and other sources of information to see what is already known; planning 

investigations; reviewing what is already known in light of experimental 

evidence; using tools to gather, analyze, and interpret data; proposing answers, 

explanations and predictions; and communicating the results. (p. 13) 
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 Inquiry-oriented science shifts the focus of science education from the memorization of 

facts and concepts to experiences that engage students in investigating to seek answers to their 

own questions (Fang, et al., 2010).  In this way, inquiry environments provide students with the 

opportunity “to experience science as a way of knowing and doing” (Beyer & Davis, 2008, p. 

383).  Students who participate in scientific inquiry engage in many of the same practices that 

professional scientists value for constructing scientific knowledge.  As outlined in the 

Framework, these scientific practices include:  

1. Asking questions  

2. Developing and using models  

3. Planning and carrying out investigations  

4. Analyzing and interpreting data  

5. Using mathematics and computational thinking  

6. Constructing explanations  

7. Engaging in argument from evidence  

8. Obtaining, evaluating, and communicating information (NRC, 2012, p. 42)  

The NRC (2012) argued that focusing on science content alone threatens to leave 

students with naïve understandings of the nature of science.  Therefore, the Framework 

intertwines both knowledge and practices in designing learning experiences in K-12 science 

education.  Engagement in the practices of science supports not only students’ knowledge of 

science concepts but also their understanding of the values and beliefs inherent to scientific 

knowledge and its development.  Furthermore, the actual doing of science can pique student’ 

curiosity and increase their interest and motivation in science.  As such, inquiry-oriented science 
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is a powerful vehicle for preparing students as scientific literate citizens. As stated in the 

Framework:  

Seeing science as a set of practices shows that theory development, reasoning, and 

testing are components of a larger ensemble of activities that includes networks of 

participants and institutions, specialized ways of talking and writing, the development of 

models to represent systems or phenomena, the making of predictive inferences, 

construction of appropriate instrumentation, and testing of hypotheses by experiment or 

observation. (NRC, 2012, p. 43)  

The Common Core State Standards for English Language Arts (CCC-ELA) 

The CCCS-ELA (National Governors Association Center for Best Practices & Council of 

Chief State School Officers [NGA & CCSSO], 2010) describe equally important ambitious goals 

for the development of students’ language and literacy learning.  To build a solid foundation for 

college and career readiness, the standards require students to read and comprehend increasingly 

challenging texts, write for a variety of purposes and different audiences, communicate flexibly, 

and use language to effectively convey meaning.  In addition to developing students’ literacy 

knowledge and skills in ELA classrooms, the CCSS also call upon teachers to support students in 

developing advanced abilities to read, write, and communicate in other content areas, including 

science.  The CCSS-ELA for Grades 6-12 includes a section entitled “Literacy in History/Social 

Studies, Science, and Technical Subjects” (NGA & CCSSO, 2010).  The reading standards 

within this section detail grade-specific requirements for helping students meet the specific 

challenges of reading, writing, speaking, listening, and language in the disciplines.  This focus on 



30 
  

developing language and literacy across the disciplines is one unique feature of the CCSS-ELA 

in comparison to earlier standard documents.  

A Common Focus on Disciplinary Literacy 

At the core of both the CCSS-ELA and the NGSS is a focus on disciplinary literacy. 

Disciplinary literacy refers to the specialized literacy practices of a given discipline, such as 

history, science, or mathematics (Moje, 2015; Shanahan & Shanahan, 2008; Zygouris-Coe, 

2012).  The integration of literacy into the content areas is not a new phenomenon.  Reading 

strategy instruction has long been advocated as a way to help students activate and integrate prior 

knowledge, monitor their own comprehension processes, and organize information from texts 

(McKeown, Beck, & Blake, 2009; Palincsar & Brown, 1984; Pressley et al., 1992).  These 

general reading strategies are aimed at encouraging students’ use of cognitive and metacognitive 

skills (e.g., predicting, inferring, visualizing, questioning, synthesizing) necessary for proficient 

reading not only in science, but in other content areas as well.  What is new, however, is the call 

for teachers to engage students in deep disciplinary literacy learning (Moje, 2015), as opposed to 

simply applying general reading strategies across the content areas.  Engaging in disciplinary 

literacy learning involves students not only developing content knowledge in a particular 

discipline but also participating in and understanding how knowledge is created and shared in the 

discipline (Moje, 2008; Shanahan & Shanahan, 2008).  Thus, disciplinary literacy teaching and 

learning focuses on how members of disciplines read, write, think, reason, and communicate 

knowledge (Shanahan & Shanahan, 2008).  Various scholars (e.g., Gillis, 2014; Moje, 2015; 

Zygouris-Coe, 2015) have argued that disciplinary literacy instruction is needed in order to 

adequately prepare students to meet the literacy demands unique to each academic discipline.  
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As students advance grade levels, they must develop more sophisticated but less 

generalizable literacy skills and strategies.  Figure 2 was developed by Shanahan and Shanahan 

(2008) to illustrate how the development of literacy progresses. The base of the pyramid 

represents the highly generalizable basic skills that underlie virtually all reading and writing 

tasks, such as word decoding, recognition of high-frequency words, and basic knowledge of 

writing conventions and text organization.  Ideally, these skills are developed during the primary 

grades and serve as the foundation for future reading success.  As students move beyond these 

foundational aspects of literacy, usually by the intermediate elementary grades (Grades 3-5), they 

begin to develop a more sophisticated repertoire of literacy skills and strategies, represented by 

the middle level of the pyramid.  These include becoming more fluent and automatic when 

reading and gaining knowledge of more complex forms of text organization (e.g., problem-

solution, cause-effect), as well as other generic literacy skills and strategies that can be applied 

across various content areas.   

 

Figure 2. The Increasing Specialization as Argument Framework (TSAF) 
Source: Shanahan, T., & Shanahan, C. (2008). Teaching disciplinary literacy to adolescents:  
 
Rethinking content- area literacy. Harvard Educational Review, 78(1), 40–59. Reproduced with 
permission. 
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The apex of the pyramid represents disciplinary literacy, meaning the skills and strategies 

specialized to history, science, mathematics, or other content areas.  These include knowledge of 

“specialized language conventions, disciplinary norms of precision and accuracy, and higher-

level interpretive processes” (Shanahan & Shanahan, 2008, p. 43). Without developing such 

knowledge, students are left ill-prepared to handle the sophisticated and specialized nature of 

reading in the disciplines and also limited in the depth of content knowledge they can attain. 

Although disciplinary literacy is generally not a focus for students until middle and high 

school, many scholars have argued for its introduction in the elementary grades.  As Shanahan 

and Shanahan (2014) argued, although the CCCS-ELA does not outline specific disciplinary 

goals for students in grades K-5, elementary teachers still have an important role to play if their 

students are to eventually reach college- and career-readiness.  This role for elementary teachers 

includes providing students with scaffolded opportunities to participate in disciplinary ways of 

reading, writing, communicating, doing, and thinking.  In the context of science, this includes 

engaging young students in practices that reflect those engaged in by professional scientists, 

including reading scientific texts, using the norms and conventions of science, forming scientific 

explanations, and engaging in argument from evidence. 

The Role of Language and Literacy in Science 

There has been broad acknowledgement in the research community that literacy practices 

such as reading, writing, and oral discourse are an integral part of scientific inquiry (Hand et al., 

2003; Phillips & Norris, 2009; Wellington & Osborne, 2001).  A Framework for K-12 Science 

Education (NRC, 2012) highlights this relationship, noting that “reading, interpreting, and 
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producing text are fundamental practices of science, and they constitute at least half of 

engineers’ and scientists’ total working time” (p. 3-19).   

On one hand, science is an organized human activity that aims to develop a more 

complete understanding of the natural world through the gathering and analyzing of evidence.  

On the other hand, science is also a form of discourse involving the use of language (Fang & 

Wei, 2010).  Language is fundamental to the practices of science (Norris & Phillips, 2003; 

2009). Scientists use language in science-specific ways when conducting scientific inquiries, 

constructing evidence-based explanations of natural phenomena, and communicating their ideas 

to others. 

Scholars have argued that in addition to embracing inquiry as the cornerstone of science, 

school science instruction should also focus on teaching the specialized language used to 

construct and communicate scientific knowledge (Fang & Wei, 2010; Norris & Phillips, 2003; 

Wellington & Osborne, 2001).  Norris and Phillips (2003) captured this duality of science 

literacy by arguing that students need not only to develop knowledge of science concepts (i.e., 

the “derived” sense of science literacy), but also become fluent in the language and discourse 

patterns of science (i.e., the “fundamental” sense of science literacy).  In this new view of 

scientific literacy, “Reading and writing are inextricably tied to the very nature and fabric of 

science, and by extension, to learning science” (Norris & Phillips, 2003, p. 226).  

In the science classroom, literacy is a powerful vehicle for engaging students’ minds, for 

developing conceptual understanding, and for supporting scientific inquiry (Fang et al., 2010; 

Pearson, Moje, & Greenleaf, 2010).  When literacy is positioned as a tool for investigating 

phenomena, students develop science and literacy knowledge and skills in tandem.  For example, 
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through the construction of scientific explanations and engagement in argument, students will 

learn appropriate language and norms for productive participation in the discourses of science, 

while simultaneously developing scientific knowledge.  Reading and interacting with scientific 

texts enables students to develop rich content knowledge about science and gain familiarity with 

the nature of scientific language, while also stimulating students’ interest in conducting scientific 

inquiries of their own.  A disciplinary literacy approach to science instruction provides an 

opportunity for students to not only develop knowledge about the natural world but also to learn 

about the specialized literacy practices of science (Pearson et al., 2010).  Thus, an early focus on 

supporting students’ disciplinary literacy in inquiry-oriented science is vital for building a solid 

foundation from which future science and literacy learning can be built. 

The current emphasis on making literacy and language vital parts of science education 

has led to the development of several instructional models that aim to integrate literacy and 

inquiry-based science.  Following is a brief description of four longstanding approaches that 

have demonstrated promise of developing elementary students’ science and literacy learning in 

tandem.   

Concept-Oriented Reading Instruction (CORI) 

 Concept-oriented Reading Instruction (CORI), developed by Guthrie and Wigfield, is an 

instructional framework for students in Grades 3-9 that strives to improve students’ reading 

comprehension of scientific texts, support students’ conceptual knowledge building and 

development of scientific inquiry skills, as well as  increase student motivation. It is one of the 

longest-existing programs of literacy and science integration at the elementary level.  The 

program aims to improve students’ reading comprehension by providing explicit reading strategy 
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instruction, such as activating prior knowledge, questioning, searching for information, 

summarizing, and organizing graphically.  In addition to explicit reading strategy instruction, 

CORI involves hands-on investigations, text-based inquiries, working in collaborative groups, 

and writing to share scientific ideas and findings.  Across several studies conducted with students 

in the upper elementary grades, the CORI intervention has been shown to increase students’ 

conceptual understanding in science, motivation, use of reading strategies, and text 

comprehension when compared to students in control classrooms (Guthrie et al., 2004; Guthrie, 

Anderson, Alao, & Reinhart, 1999).  A major focus in the CORI research is the central role that 

motivation plays in learning both science and literacy.  

Guided Inquiry supporting Multiple Literacies (GIsML) 

Guided Inquiry supporting Multiple Literacies (GIsML) is another well-studied approach 

to science and literacy integrated instruction.  In this approach, teachers in grades K-6 learn to 

engage their students in multiple cycles of investigation framed around a guiding question.  The 

primary goal of GIsML instruction is to not only support students’ understanding of science 

concepts, but to “enable students to experience, understand, and appreciate the ways in which 

these understandings have evolved by using tools, language and ways of reasoning that are 

characteristic of scientific literacy” (Palincsar, Collins, Marano, & Magnusson, 2000, p. 242). 

During GIsML instruction, students participate in both firsthand investigations (during which 

students conduct direct investigations of the physical world) and secondhand investigations 

(during which students use text-based information to advance their thinking about the physical 

world).  GIsML promotes the interplay between these firsthand and secondhand experiences 

through the use of simulated scientist notebooks, referred to as notebook texts.  Notebook texts 
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are modeled after the type of notebooks professional scientists use to record their investigative 

activities and findings.  The notebook text models for students how data can be represented (e.g., 

figures, tables, graphs) and how knowledge is refined in response to additional and more precise 

data.  After students engage in direct investigation, they consult the notebook text to explore how 

the fictitious scientist has interpreted similar data.  Thus, the notebook text also provides an 

opportunity for a shared inquiry experience.   The GIsML approach has been shown to advance 

students’ development of conceptual understanding and scientific reasoning.  

For example, during a 10-day instructional unit on motion, second-grade students 

participated in both firsthand and secondhand investigations to develop their understandings of 

the relationship between mass and speed.  As part of this unit, students read and discussed two 

notebook texts, written in the voice of a fictitious scientist.  The notebooks were intended to 

serve as a model for the way professional scientists document their research questions, record 

observations and data, and construct claims from evidence. The teacher guided students in 

reading these texts through a critical lens by discussing whether the investigative methods the 

scientists used were appropriate, what patterns they identified in her data, and if there was 

sufficient evidence to support her claims.  Additionally, the students engaged in related firsthand 

investigations about the motion of objects traveling down inclined planes. Similar to the 

fictitious scientist, they tried to find patterns in their data and develop evidence-based claims to 

explain phenomena, such as how the mass of a ball affects its speed going down a ramp. 

Analysis of pretest and posttest data revealed a significant increase in students' 

conceptual understanding about motion.  Additionally, analysis of students' writing revealed that, 

by the end of the program of study, nearly all students became more adept at their ability to 
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generate knowledge claims supported by evidence and use data tables to organize their findings 

(Hapgood, Magnusson, & Palincsar, 2004).  

In-depth Expanded Application of Science (Science IDEAS) 

The In-depth Expanded Applications of Science (Science IDEAS) is also known for its 

longevity and impact on student learning in both science and literacy.  Developed by Romance 

and Vitale, Science IDEAS is a cognitive-oriented model that replaces traditional language arts 

instruction in Grades 3-5 with a daily two-hour instructional block focused on in-depth science 

instruction integrated with reading comprehension and writing.  The model engages students in a 

variety of inquiry-oriented hands-on, reading comprehension, writing/journaling, and 

prepositional concept-mapping activities, all of which aim to develop students’ in-depth 

understanding of core science concepts.  

 A series of multi-year studies have demonstrated that students who receive Science 

IDEAS instruction outperform comparison students on standardized measures of science and 

reading achievement, as well as display more positive attitudes and self-efficacy toward science 

(Romance & Vitale, 1992, 2001).  Additionally, Romance and Vitale (2017) found that 

schoolwide implementation of the model across Grades 3-5 resulted in not only direct effects on 

student academic achievement in science and reading comprehension, but also complementary 

transfer effects in Grades 6-7.   

Seeds of Science/Roots of Reading 

Seeds of Science/Roots of Reading, developed by the Lawrence Hall of Science at the 

University of California in Berkeley, is an integrated science and literacy program for students in 

Grades 2-5.  The program originated as an attempt to embed authentic uses of reading, writing, 
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and language within an earlier K-8 hands-on science program known as GEMS (Great 

Explorations in Math and Science).  The program strives to increase students’ understanding of 

science concepts, while explicitly teaching students to read, write, and communicate in science-

specific ways.  In the Seeds of Science/Roots of Reading approach, literacy activities support the 

acquisition of conceptual knowledge and inquiry skills, and inquiry-oriented science serves as an 

engaging and authentic context for literacy development. 

Researchers have demonstrated the effectiveness of Seeds of Science/Roots of Reading in 

increasing student achievement in both science and literacy.  For example, across two external 

evaluations comparing Seeds of Science/Roots of Reading instruction with content-comparable 

instruction, Seeds and Roots showed consistently positive effects on elementary students’ 

science vocabulary, writing fluency and science content knowledge (Goldschmidt & Jung, 2011; 

Wang & Herman, 2005).  

These four instructional models share several key ingredients. First, they have involved 

students in scientific inquiry.  That is, their focus has not been on the accumulation of science 

facts, but instead, on science as a process of exploration and discovery.  Second, they have 

engaged students in text-based inquiries along with hands-on science investigation.  Third, they 

were developed through collaboration among experts in both literacy and science.  

Overall, the research findings surrounding these instructional models have demonstrated 

the promise of integrated approaches to literacy and science instruction.  Specifically, these 

efforts have shown how literacy can be used to support rather than replace content learning in 

science.  In the words of Fang and Wei (2010), literacy is “a powerful vehicle for engaging 
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students’ minds, fostering the construction of conceptual understanding, supporting inquiry, and 

cultivating scientific habits of mind” (p. 263).  

Explanation and Argument in Science Education  

Two key disciplinary literacy practices in science are constructing explanations and 

engaging in argument from evidence (Bell & Linn, 2000; Jimenez-Aleixandre & Erduran, 2007; 

NRC, 2012; Osborne, 2010).  There are key differences between these two constructs.  

Explanations use evidence to explain how or why a scientific phenomenon occurs (Osborne & 

Patterson, 2011).  Though similar to explanations, arguments, in contrast, examine whether a 

scientific explanation is valid and if it is better than competing accounts (Osborne & Patterson, 

2011).  Explanations and arguments can exist in different modalities, including both oral and 

written forms (Osborne, 2010).  Although there is a clear distinction between the two, 

explanation and argument can be viewed as complementary discursive practices, because 

argument is essential to the process of validating a scientific explanation.  Lastly, argumentation 

refers to the discourse process in which two or more people attempt to persuade others of their 

explanations (Osborne & Patterson, 2011).  The ability to engage in argumentation is an 

important disposition of professional scientists.  Argumentation is directly related to explanation 

and argument, because the construction of a scientific explanation is a prerequisite for 

engagement in argumentation.  In the classroom, teachers can promote argumentation by 

facilitating rich science talk that focuses on constructing, communicating, and evaluating 

scientific explanations (National Research Council, 2012; NGSS Lead States, 2013).   

Several researchers have supported students and teachers in structuring explanations and 

arguments by drawing upon Toulmin's (1958) argumentation framework (e.g., Bell & Linn, 
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2000; Erduran, Simon, & Osborne, 2004; McNeill & Knight, 2013; Sandoval, 2003; Zohar & 

Nemet, 2002).  The structural definition of an explanation utilized in this study was based on the 

work of McNeill and Krajcik (2012), who have simplified Toulmin’s six-part model of 

argumentation to create an instructional framework designed to support younger students in 

constructing both oral and written scientific explanations.  The framework includes three 

structural components of a scientific explanation: a claim, evidence, and reasoning, which is why 

it is often referred to as the CER framework.  The claim is an assertion that addresses the specific 

question or problem.  The evidence is the data used to support the claim.  Lastly, reasoning 

articulates the justification for how the evidence supports the claim using scientific principles.    

Researchers have identified several reasons for engaging elementary students in scientific 

explanation and argument that are consistent with current views on proficiency in science.  First, 

the construction of evidence-based explanations requires students to design and conduct 

investigations, and to collect, organize, and analyze data – all essential scientific practices 

outlined by the Framework for K-12 Science Education (NRC, 2012).  Second, when students 

construct, communicate, and critique evidence-based explanations, they participate in the norms 

of science and develop fluency in the language and discourse patterns of scientific language – 

what Norris and Phillips (2003) have referred to as the “fundamental” sense of science literacy.  

Finally, teaching science as explanation has been shown to not only have a positive impact on 

student learning of science content (Bell & Linn, 2000; Zohar & Nemet, 2002), but it also helps 

students learn about the NOS (Bell & Linn, 2000; Driver et al., 2000; Sandoval, 2003; Sandoval 

& Reiser, 2004).  NOS refers to the values and beliefs inherent to scientific knowledge and its 

development (Lederman, 1992).  Beyer and Davis (2008) illustrated the relationship between 
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engaging in explanation and learning about the NOS by explaining that, “When students connect 

new science ideas with evidence and to reasoning, they not only learn that something is so but 

also how and why it is so” (p. 383).  Thus, constructing scientific explanations can help students 

develop several skills and abilities that are necessary for scientific literacy and evidence-based 

decision making in a democratic society (Driver et al., 2000; Duschl & Osborne, 2002; Osborne 

& Patterson, 2011).   

Despite these benefits to student learning, explanation and argument are nearly absent 

from science education (Osborne, 2010).  Previous researchers (e.g., Cavagnetto, 2010; Driver et 

al., 2000; Sadler, 2004) have found that current classroom practices provide few opportunities 

for students to develop their ability to construct scientific explanations or engage in argument 

from evidence.  Though social interaction plays a prominent role in the lives of professional 

scientists, students is science classrooms often work independently with little opportunity to 

share ideas, findings, or interpretations (Cavagnetto, 2010).   

A number of reasons may contribute to this de-emphasis on explanation and the role of 

evidence in teaching science.  Research on teachers’ knowledge and understanding of scientific 

explanation suggests that teachers generally possess an inadequate understanding of the NOS 

(Abd-El-Khalick & Lederman, 2000), hold naïve conceptions about how explanations are 

developed and evaluated (Beyer & Davis, 2008; Sampson & Blanchard, 2012), and lack 

pedagogical skills needed to support students in constructing explanations (Sampson, 2009; 

Simon, Erduran, & Osborne, 2006).  Additionally, some teachers do not view the practices of 

constructing scientific explanations or engaging in argument based on evidence as important 

teaching outcomes (Beyer & Davis, 2008).   
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Although giving priority to explanation and evidence in science instruction proves 

challenging for all teachers, preservice and early career elementary teachers face particular 

barriers due to their inadequate knowledge of science content, unsophisticated understandings of 

inquiry and related skills, little pedagogical knowledge for teaching science, and lack of teaching 

experience (Davis et al., 2006).  As a result, new elementary teachers tend to place a greater 

emphasis on fun, hands-on activities during science instruction rather than on the role of 

evidence in developing scientific knowledge (Trygstad, 2013).     

Although it has traditionally been believed that young children are not yet capable of the 

sophisticated reasoning skills required to engage in complex scientific practices and discourse, 

recent researchers have shown that even students in the elementary grades can construct and 

debate evidence-based explanations when provided with adequate support (Duschl et al., 2007).  

The authors of the 2007 National Research Council report, Taking Science to School, have 

argued that “All children bring basic reasoning skills, personal knowledge of the natural world, 

and curiosity, which can be built on to achieve proficiency in science” (Duschl et al., 2007, p. 4).  

Therefore, elementary teachers play an essential role in supporting young students’ 

explanation construction (McNeill & Pimentel, 2010).  Elementary teachers can help students 

develop an understanding of what counts as evidence in science, locate patterns in their data, 

develop evidence-based claims, and consider alternative explanations.  For example, providing 

explicit instruction in the components of explanation (i.e., claim, evidence, and reasoning) can 

support elementary students’ ability to construct scientific explanations in both talk and writing 

(McNeill & Krajcik, 2008).  Elementary teachers can also use specific talk moves during class 

discussion to establish argumentative discourse (Chen, Hand, & Norton-Meier, 2017; Chin, 
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2007) and use writing scaffolds and visual representations to assist students in appropriately 

justifying their claims in writing (Nelson, 2010). 

 Therefore, the successful integration of scientific explanation into the teaching and 

learning of science places new expectations on elementary teachers.  Elementary teachers, for 

example, need to develop a better understanding of the nature of scientific knowledge and the 

purposes for scientific investigations (Aydeniz & Ozdilek, 2015).  They need to develop robust 

disciplinary understandings of science so that they can see the value of disciplinary literacy 

practices such as constructing explanations, engaging in argument from evidence, and obtaining, 

evaluating, and communicating information (Davis & Bricker, 2011).  They need ample practice 

in constructing, critiquing and debating explanations so that they can develop an understanding 

of what counts as strong claims, evidence, and reasoning (Beyer & Davis, 2008).  They need to 

learn how to use effective supports such as the CER framework (McNeill & Krajcik, 2008) to 

scaffold young students’ engagement in explanation and argument.  They also need to recognize 

the vital role classroom discussion plays in promoting elementary students’ communication of 

scientific ideas and evidence in ways that reflect scientific discourse (Driver et al., 2000; Sadler, 

2006).  Most importantly, elementary teachers need opportunities to engage in inquiry as learners 

and experience science as argument for themselves (Beyer & Davis, 2008; Boyer, 2016).  

Teacher Preparation for Teaching Science as Argument  

Because teachers’ pedagogical decisions in science are inextricably tied to their beliefs 

about the nature of scientific knowledge and how it is acquired, researchers within the science 

education community have recognized the need for preservice teacher education programs to 

influence PSTs’ knowledge and beliefs of the fundamental practices essential for science 
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learning.  These scholars have investigated a variety of approaches aimed at accomplishing this 

goal, including the potential of science methods courses for developing PSTs’ knowledge beliefs, 

and abilities surrounding scientific explanation and argument.  Findings from this body of 

research highlight the effectiveness of explicit focus on explanation and argument, within the 

context of science methods courses, for improving PSTs’ conceptual understanding in science 

(Aydeniz et al., 2012), views of the NOS (McDonald, 2010), and their ability to produce sound 

and logical arguments (Robertshaw & Campbell, 2013; Sadler, 2006).  

For example, Sadler (2006) documented PSTs’ argumentation skills as they participated 

in a methods course, with an explicit focus on scientific discourse and argumentation.  

Participants included 17 secondary science PSTs, all enrolled in the same science methods 

course at a large university in the Midwestern region of the United States.  Throughout the 

course, Sadler, who also served as instructor of the course, provided explicit instruction in 

argument structure using the Toulmin Argumentation Protocol [TAP] (Toulmin, 1958).  

Qualitative analysis of participants’ pre-instruction and post-instruction written arguments 

revealed that the majority of participants improved the structure of their arguments (e.g., by 

incorporating counter positions and rebuttals) over the course of the semester.   

In a similar study, Robertshaw and Campbell (2013) also found that explicit instruction in 

argumentation using the TAP had a positive impact on the quality of PSTs’ written scientific 

arguments over the course of a one-semester science methods course.  Participants included 

seven PSTs, all enrolled in the same science methods course within the secondary science 

education program at a university in the Rocky Mountain Region of the United States. 

Quantitative analyses showed a general trend of improvement in scores from pre- to post-
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argumentation instruction.  These findings were further supported by participants’ self- 

reflections about how their arguments had changed from the beginning to the end of the course. 

Findings from both studies illuminated the potential of explicit instruction in argument structure 

for improving PSTs’ argumentation skills.  

The growing body of research on PSTs’ knowledge, beliefs, and abilities surrounding 

scientific explanation and argument also suggests that participation in a teacher education 

program built around a comprehensive conceptual framework can support PSTs’ ability to 

successfully engage elementary students in scientific discourse and practices for evidence-based 

explanation building (Barreto-Espino et al., 2014; Boyer, 2016; Zembal-Saul, 2009).  For 

example, Zembal-Saul conducted a series of three related design-based studies that examined 

elementary PSTs’ developing understandings and practices for teaching science as argument 

within the context of a science methods course and teacher education program.  Within the 

science methods course, PSTs engaged in argumentation practices within the context of inquiry-

based science.  The TSAF (described in Chapter 1) was used to inform the organization of 

methods course content.  

Findings across all three studies have suggested that the use of the TSAF can help PSTs 

improve their science teaching in various ways, such as greater focus on classroom discourse and 

increased attention to monitoring and assessing students’ thinking.  Zembal-Saul’s (2009) work 

revealed the potential for PSTs to “adopt ways of thinking about science that are more aligned 

with reform-based views of science, as opposed to the more superficial, activity-based 

perspectives that dominate the literature on elementary science teaching” (p. 711).  
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Similarly, Barreto-Espino and colleagues (2014) found the TSAF effective in supporting 

PSTs’ development of the understandings and abilities necessary for supporting students in 

meaningful science learning.  Participants included three elementary PSTs, all of whom were 

members of a larger cohort of prospective elementary teachers, enrolled in the same science 

methods course at a large university in the northeastern United States.  Using the TSAF (Zembal-

Saul, 2009) as a guiding framework, the course content placed emphasis on evidence-based 

explanation, reasoning, and discourse in science.  Qualitative analysis of participants’ pre-course 

interviews, continuous weekly reflections, and post-course interviews led the researchers to 

make the following three assertions: (1) the existence of opportunities for interacting with 

phenomena and collecting firsthand data through physical experimentation helped participants 

increase their emphasis on evidence-based explanations; (2) participants came to view scientific 

discourse as an essential tool for meaning making in science; and (3) participants demonstrated 

attention to scientific content, from both students’ and teachers’ perspectives, during instruction 

rather than solely focusing on inquiry processes (Barreto-Espino et al., 2014).  Overall, findings 

contributed to the body of research, suggesting that using a coherent, research-based framework 

in science methods courses can help positively shape PSTs’ thinking about science teaching and 

learning, as well as the role of literacy in science.  

Most recently, Boyer (2016), in an attempt to counter the deficit narrative associated with 

the teaching and learning of science in the elementary grades, explored how a coherent teacher 

education preparation program helped two PSTs plan for and enact science instruction that aligns 

with reform-based views of science.  Boyer followed two elementary PSTs from their science 

methods course into their field placement experiences.  The TSAF (Zembal-Saul, 2009) was 
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used to inform the design of course experiences and served a model for lesson planning and a 

teaching heuristic for the study participants.  Following the semester-long science methods 

course, PSTs participated in a scaffolded cycle of planning, teaching, and reflection enacted in 

their field placement classrooms.  Audio-recordings of lesson planning conferences between the 

methods course instructors and PSTs, videos of the PSTs’ enacted practice, and self-analysis 

videos compiled by the PSTs served as the primary data for the study. Qualitative data analysis 

revealed that although neither participant reached the level of competency of veteran elementary 

science teachers, they were able to engage their students in scientific discourse and practices for 

evidence-based explanation building.  Boyer asserted that the participants were able to achieve 

such successes due to their participation in a teacher education program and field placement, 

designed using a comprehensive conceptual framework.  As Boyer explained, exemplars such as 

those described in her work “are important to examine because they provide insight into what is 

possible to achieve through initial teacher training when traditional barriers, such as the lack of 

coherence between course work and field experiences, are ameliorated” (p. 1013).  

Overall, this body of research suggests that intentionally-designed teacher preparation 

experiences can help PSTs shift from traditional conceptions of science teaching to beliefs and 

understandings better aligned with new views of science proficiency and the call for disciplinary 

literacy in science.  Though it may never be possible for teacher educators to fully equip PSTs 

with all the knowledge and abilities needed for effective disciplinary literacy teaching in science, 

teacher preparation experiences, such as those highlighted in this review, may hold much 

promise for laying the groundwork upon which future progress can be made.  
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Summary 

In the first section of this chapter, a brief description of how the definition of literacy has 

evolved and expanded over the years was provided, followed by a description of science as a 

discipline.  In the next section, an overview of reform recommendations in science and literacy 

education was presented, as well as a discussion of the common emphasis on disciplinary 

literacy.  The fourth section reviewed the role of language and literacy in inquiry-based science.  

The fifth section explained the role of explanation and argument in science, highlighting the 

important role of teachers in teaching science as argument and the various challenges that 

teachers, especially those at the elementary level, face in giving priority to explanation and 

argument in their teaching.  The chapter concludes with a synthesis of research findings from 

previous studies focused on developing PSTs’ knowledge and beliefs of effective science 

teaching.  
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CHAPTER THREE:  

METHODS  
 
This chapter begins with a restatement of the purpose of the study and the guiding 

research questions.  This is followed by a detailed description of the following methods: (a) 

research design, (b) context, (c) participants, (d) sampling and assignment procedures, (e) 

intervention procedures, (f) data collection procedures, and (g) data analysis.   

Purpose  

Very few studies have explicitly characterized preservice teachers’ knowledge of specific 

scientific practices, such as constructing evidence-based explanations (Davis et al., 2006).  This 

is particularly true at the elementary level.  Without developing sophisticated understandings of 

scientific explanation, prospective elementary teachers are unlikely to be able to successfully 

engage their students in this complex scientific practice.  Therefore, investigations are needed 

that examine how purposefully designed teacher education experiences can help PSTs develop 

their own abilities for constructing evidence-based explanations and initial knowledge and 

practices for teaching science as argument.    

 Thus, the purpose of this study was to investigate the impact of a one-semester 

intervention (12 weeks) for PSTs focused on teaching science as argument within a science 

methods course on (a) understandings of the NOS, (b) knowledge about argumentation, (c) 

complexity of their written explanations, and (d) ability to incorporate components of the 

Teaching Science as Argument Framework (TSAF) when planning for science instruction.   
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Research Questions 

1. Does participation in an intervention focused on teaching science as argument 

have an impact on elementary PSTs’ understandings of the NOS, as measured 

by the Nature of Science as Argumentation Questionnaire (NSAAQ)?  

Null Hypothesis: The mean NSAAQ scores for the treatment and control 

group are equal to one another.  

2. Does participation in an intervention focused on teaching science as argument have 

an impact on elementary PSTs’ knowledge of argumentation, as measured by The 

Argumentation Test (ARGTEST)?  

Null Hypothesis: The mean argumentation test scores for the treatment and control 

group are equal to one another.   

3. Does participation in an intervention focused on teaching science as argument have 

an impact on the complexity of elementary PSTs’ written explanations, as measured 

by a researcher-developed written scientific explanation assessment?  

Null Hypothesis: The mean written explanation assessment scores for the treatment 

and control group are equal to one another.   

4. How do elementary PSTs incorporate components of the Teaching Science as 

Argument Framework to support both students’ literacy and science learning when 

planning for inquiry-based science instruction, as evident in their written lesson 

plans? 
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Pilot Study 

 A pilot study, “Learning to Teach ALL Students Including English Language Learners 

through an Integrated Disciplinary Literacy Science Methods Course: Examinations of 

Preservice Teachers’ Lesson Plans and Reflections” (Appendix A) was conducted during the 

spring of 2018.  The purpose of this qualitative exploratory case study was to examine PSTs’ 

understanding of the role of literacy in science teaching to support all students’ learning, 

especially English Language Learners (ELs).  Specifically, this study focused on answering the 

following research questions:  

1. What science-specific literacy strategies did elementary PSTs include in their lesson 

plans about using science-specific literacy strategies to teach science for all, including 

ELs? 

2. What challenges did elementary PSTs report in their reflections about including 

science-specific literacy strategies to teach science for all, including ELs? 

3. What instructional accommodations did elementary PSTs include in their science 

lesson plans to support ELs’ learning needs?  

4. What challenges did elementary PSTs report in their reflections about developing 

instructional accommodations for ELs in their science lesson plan?  

 Participants included 31 elementary education PSTs (8 juniors and 23 seniors) enrolled in 

a science methods course during the spring semester of 2018.  The primary focus of the science 

methods course was preparing PSTs to implement state science teaching standards for all 

students in elementary science classroom settings.  A majority of course time was also dedicated 

to teaching PSTs how to incorporate disciplinary literacy in science.  Starting from the fourth 
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week of the course, a professor of disciplinary literacy and a doctoral student in literacy 

education (i.e., the researcher of the current study) co-taught with the course instructor of the 

science methods course to integrate science-specific literacy teaching and practices within the 

content of the methods course.  The co-teaching took place for 12 consecutive weeks and 

included presentations on disciplinary literacy in science, engaging PSTs in the process of 

interacting with scientific text, demonstration of three inquiry-based science lessons with specific 

disciplinary literacy practices (e.g., engaging students in scientific explanation and 

argumentation using the CER framework), resources for selecting scientific texts, as well as 

literacy strategies to support all students’ science learning.  

 Data analyzed included PSTs’ written inquiry-based science lesson plans and PSTs’ 

written reflections about the lesson planning process.  The inquiry-based science lesson plans, 

developed by PSTs in groups of three to four, included eight components: (a) state science 

standards (b) content and language learning objectives, (c) possible student misconceptions, (d) 

detailed procedures following the 5E instructional model, (e) accommodations/modifications 

within each E phase to support ELs at varying levels of English proficiency (i.e., Beginning, 

Intermediate, and Advanced), (f) science practices, (g) a materials list, and (h) safety precautions.  

After submitting their written lesson plans, PSTs were asked to reflect upon the lesson planning 

process by responding to the following questions:  

1. Were your content and language objectives clearly defined? How did you assess 

students’ learning based on the objectives?  

2. What did you do well for each E phase? What challenges did you encounter in each E 

phase?  
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3. What science-specific literacy practices did you try to incorporate in your inquiry-

based lesson? What did you do well and what challenges did you encounter?  

4. How did you plan the accommodations to meet the language objectives of this lesson, 

especially for ELs? What challenges did you encounter?  

Although PSTs developed their lesson plans in cooperative groups, they were each required to 

submit an individual reflection about the lesson planning process. 

Findings from both data sources indicated that PSTs showed evidence of a developing 

understanding of the role of literacy in science teaching and learning as well as what 

accommodations might look like for supporting ELs’ engagement in scientific inquiry.  All eight 

groups incorporated at least one science-specific literacy strategy into their lesson plans.  These 

strategies included defining science-specific vocabulary terms, engaging students in science-

specific writing supported by evidence, engaging students in written evidence-based explanation 

using the CER framework, providing sentence frames for scaffolding students’ science writing, 

and using science notebooks to help students record and organize information.  Of the different 

science-specific literacy strategies PSTs included in their science lesson plans, using strategies to 

support students’ evidence-based explanation building was the most common.  This is an 

important finding, because scientific explanation has been considered a central component of 

science inquiry  (Driver et al., 2000) and has been advocated in recent reform efforts in both 

science and literacy (NGA & CCSSO, 2010; NGSS Lead States, 2013).  Instructional supports 

incorporated by PSTs to scaffold students’ ability to construct and communicate scientific 

explanations included the use of the CER framework and sentence frames, both of which were 

modeled throughout the semester in the science methods course.  Although these supports can 
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assist all students in the explanation building process, they are especially helpful for ELs who 

can experience difficulties in communicating their scientific ideas (Fang, 2004; Fang & 

Schleppegrell, 2010).   

Although analysis of PSTs’ lesson plans and reflections revealed evidence of PSTs’ 

emerging understandings about the role of literacy in science teaching to support all students’ 

learning, several areas in need of further attention were also identified by the researcher.  First, 

all eight participant groups included a list of related science vocabulary terms at the beginning of 

their lesson plan, but very few groups included appropriate strategies for building students’ 

science-specific vocabulary beyond the definitional level.  This finding indicated a need to better 

support PSTs in developing strategies for supporting students’ vocabulary development in 

science.   

Second, though several groups incorporated strategies for helping students write in 

science-specific ways (e.g., CER framework, sentence frames), only one group provided a 

description of how the teacher would encourage students to talk about their scientific ideas.  

Facilitating scientific talk was also commonly reported as a challenge in participants’ written 

reflections.  This is important to note because researchers have highlighted the critical role of 

classroom discussion in supporting students’ conceptual knowledge building in science (Chen et 

al., 2017; Chin, 2007).  In order to effectively encourage scientific talk in the classroom, PSTs 

must learn how to use questioning techniques and discourse moves to scaffold students’ 

scientific sense making and reasoning abilities.  Examples of these include re-voicing students’ 

contributions, prompting students to provide evidence to support their claims, and asking 

students to compare their reasoning to that of others.    
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Third, although several groups incorporated a science text within their inquiry-based 

science lesson, very few PSTs specified how the read-aloud would be used to support the 

teaching of science as inquiry, nor did they include specific strategies for improving students’ 

comprehension of scientific text.  Due to the complex nature of scientific text, it has been argued 

that students need ample support when interacting with these types of texts (Wellington & 

Osborne, 2001).  To help students become skillful readers in science, teachers must engage them 

in the wide reading of scientific texts, equip them with tools that can be used to cope with the 

language demands of science reading, and scaffold their comprehension of scientific texts 

through strategy instruction.  Thus, this finding indicated the need to better support PSTs in 

developing specific strategies for supporting students’ interaction with science texts.  

The pilot study examining PSTs’ understanding of the role of literacy in science teaching 

informed the current study in the following ways:  

1. PSTs need to acquire strategies for building students’ knowledge of science 

vocabulary beyond the definitional level.  

2. PSTs need support in learning how to facilitate science talk in the classroom.  This 

includes developing questioning techniques and discourse moves to scaffold students’ 

communication of scientific ideas and evidence in ways that reflect scientific 

discourse. 

3. PSTs need to learn how scientific text can be used to support the teaching of science 

as inquiry.  This includes learning how to select quality scientific texts, learning how 

to read texts through a science-specific lens, as well as learning to use reading 
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strategies to help students activate and integrate prior knowledge, monitor their own 

reading processes, and organize information from text.  

Research Design of Current Study 

This mixed-methods study utilized an embedded quasi-experimental design.  According 

to Creswell and Clark (2011), one major rationale for using mixed methods is that “The 

combination of quantitative and qualitative data provides a more complete understanding of the 

research problem than either approach by itself” (p. 11).  In the present study, the qualitative 

component was embedded within the primary quasi-experimental methodology to provide an 

enhanced understanding of the intervention’s influence on PSTs’ understandings about teaching 

science as argument.  Because the qualitative data were collected during the intervention, a one-

phase approach to the embedded quasi-experimental design (see Figure 3) was used (Edmonds & 

Kennedy, 2013). 

 

 

Figure 3. Embedded Quasi-experimental Design (One Phase)  
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Due to the nature of the science methods course, random assignment of participants to 

groups was not be feasible.  To account for selection bias inherent in the nonequivalent nature of 

quasi-experimental research, the design incorporated both pretest and posttest measures (see 

Table 1).  Pretest measures serve multiple purposes, such as allowing the researcher to test for 

group equivalency (i.e., homogeneity between groups) and for providing a baseline against 

which to compare the treatment effects (Edmonds & Kennedy, 2013).  

Table 1 
 
Pretest and Posttest Control Group Design 

 
Assignment Group Pretest Treatment Posttest 

NR 1 O1 X O2 
NR 2 O1 ___ O2 

Time → 
Note. Design notations: NR = Nonrandom; O = Observation, also known as measurement; X = 
Treatment.  

 

An Institutional Review Board (IRB) application was submitted in fall 2018 requesting 

permission to conduct research in the spring of 2019.  Documentation of approval from the IRB 

committee for this study can be found in Appendix B. 

The intervention period spanned a total of 12 consecutive weeks from January to April 

2019.  PSTs assigned to the control group participated only in the pretest and posttest phases of 

the study.  The course instructor of the control group did not receive any training or implement 

the intervention.  The treatment group instructor, however, engaged in multiple preparation 

activities prior to the start of the intervention, including the completion of five online 

professional learning modules.  During the beginning of the Spring 2019 semester (weeks 1-3 of 

the course), the pretests were administered in both conditions.  The consecutive intervention 
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weeks (weeks 4-15 of the course) immediately followed the pretests.  The posttests were 

administered during the final weeks of the course.  

Context 

This research study was conducted at a large, Southeastern university.  The science 

methods course that served as the context for the study was a required course for PSTs enrolled 

in the elementary education (K-6) program.  The overall course focus was on organizing for 

instruction, teaching strategies, and assessment procedures for effective science teaching in the 

elementary grades.  The course met weekly (approximately three hours per week) during the 16-

week semester in spring of 2019.  The treatment group course section met every Wednesday 

afternoon from 1:30 – 4:20 pm, and the control group course section met every Thursday 

evening from 6:00 – 8:50 pm.  

The course typically provides an overview of national and state science teaching 

standards, science practices and inquiry process skills, technology to enhance science instruction, 

procedures for assessing student learning in science, and adapting the science curriculum for 

students with unique learning needs.  In addition to these topics, a series of course components 

were specifically embedded within the treatment section to provide PSTs with opportunities to 

develop and apply their epistemological understandings of the NOS, develop their 

understandings of argumentation, and to engage in both oral and written scientific explanation as 

learners.  In particular, emphasis was placed on the three features of the TSAF (argument 

structure, public reasoning, and language of science) throughout the entire course (Zembal-Saul, 

2009).  An in-depth description of the intervention is included later in this chapter.  
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Participants, Sampling, and Assignment Procedures  

In this study, participants were considered both a purposive and convenience sample 

(Martella, Nelson, Morgan, & Marchand-Martella, 2013).  Both convenience sampling and 

purposive sampling are types of non-probability sampling techniques.  When using convenience 

sampling, participants are drawn from a population that is easily accessible to the researcher.  

When using purposive sampling, participants are selected based on a set of shared characteristics 

as well as the objectives of the study.  In this study, the sample consisted of participants who 

matched the target population (i.e., elementary PSTs enrolled in a science methods course) and 

to whom the researcher had access.  The researcher’s access depended on the number of course 

sections being taught in the spring 2019 semester and instructors’ willingness to participate in the 

study.    

The total sample included 45 elementary PSTs (treatment = 20, control = 25) drawn from 

two sections of a science methods course during the spring 2019 semester.  The two course 

sections of students were non-randomly assigned to groups.  One instructor indicated a special 

interest in improving PSTs’ understanding of science-specific literacy instruction, including the 

construction of scientific explanations.  Therefore, she requested that her course section be 

automatically assigned to the treatment condition.  Participants enrolled in the remaining section 

served as the control group.  

The course instructor of the treatment group was an Assistant Professor of Science 

Education who had previously collaborated on a grant-funded research project with the 

researcher during a previous semester (see earlier description of Pilot Study).  The course 

instructor of the control group was a first-year doctoral student in science education. 
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Demographic and background information were collected from the course instructor of the 

treatment group and the course instructor of the control group, as well as a first-year doctoral 

student in science education who served as a graduate teaching assistant (GTA) in the treatment 

section of the course.  Table 2 contains a summary of the instructors’ self-reported demographics 

and background information, including gender, race, highest degree earned, years of teaching 

experience at the K-12 level, subjects taught at the K-12 level, and years of teaching experience 

at the post-secondary level.       

Table 2  
 
Instructor Demographics and Background Information  
 

Descriptors 
Treatment Group 
Course Instructor  

Treatment Group 
GTA  

Control Group 
Course Instructor  

Gender  Female Female Female 
Race Asian/Pacific 

Islander 
Black or African 

American 
Hispanic 

Highest Degree Earned  Doctorate Degree Education 
Specialist Degree 

Master’s Degree 

Years Teaching K-12  8 13 14 
Grades Levels Taught  6-8, 9-12 6-8, 9-12 6-8 
Subject(s) Taught at K-12  Chemistry Life Science, 

Earth Science, 
Physical Science, 
& Environmental 

Science 

Biology 

Years Teaching at the Post- 
Secondary Level  

8 < 1 < 1 

 

All PSTs enrolled in the two course sections were eligible to participate in the study.  

During Week 1 of the semester, instructors distributed the Explanation of Research form 

(Appendix C) to all PSTs enrolled in both course sections.  This form explained the purpose and 

nature of the study and served as informed consent.  As shown in Appendix B, the university’s 



61 
  

IRB determined the study to be exempt educational research.  Thus, the researcher was not 

required to obtain written consent from participants.  The course instructors emphasized that the 

decision to participate in the study was voluntary and would not have an impact on final course 

grades.  No financial or academic incentives were offered to participants for participation in the 

study.  All PSTs enrolled in the treatment and control sections agreed to take part in the study.   

Intervention Procedures 

Intervention procedures for the treatment condition involved professional learning for, 

and the implementation of, the intervention focused on teaching science as argument.  

Procedures for the control condition involved the course instructor utilizing instructional 

methods typical to their usual instruction.  

Treatment Condition  

The intervention consisted of three phases and was developed using the gradual release of 

responsibility model to scaffold participants’ knowledge and practices for teaching science as 

argument over the course of the semester (See Figure 4).  Phase 1 provided focused instruction, 

as PSTs were introduced to what it means to develop a scientific explanation, how engaging 

students in this complex scientific practice supports both students’ science and literacy learning, 

as well as the three core components of the TSAF.  Phase 2 provided guided practice, as PSTs 

engaged in scientific practices and discourse associated with the TSAF.  Lastly, Phase 3 provided 

independent practice, as PSTs worked to apply their developing understandings of the TSAF to 

plan an inquiry-based science lesson for elementary students.  
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Figure 4. Scaffolding PSTs’ Understanding Through a Gradual Release of Responsibility 
 

A separate protocol was developed for each phase of the intervention.  These protocols 

served as the blueprint for the intervention as well as the guiding steps to facilitate the 

instructor’s fidelity of implementation.  The development of the intervention protocols were 

informed by the TSAF (Zembal-Saul, 2009) and the findings from the Pilot Study (previously 

described) that explored PSTs’ knowledge about science and literacy learning in an elementary 

science methods course.  The TSAF consists of three components (i.e., argument structure, 

public reasoning, and language of science). Each of the protocols (Phases 1-3) consisted of three 

sections: “Materials, Cue, Do, and Review.”  The Cue, Do, and Review sequence is a research-

validated technique for providing responsive instruction that activates prior knowledge and 

promotes meta-cognitive thinking (Bulgren & Lenz, 1996).   

For each protocol, the Cue section provided specific steps for the course instructor to 

“cue” PSTs by bridging from the previous class session, orienting PSTs to the current lesson, and 

sharing the current session’s learning goal(s)/objective(s).  The Do section of each protocol 
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provided specific steps for the course instructor to follow to help develop PSTs’ knowledge and 

practices for teaching science as argument.  The Review section for each protocol prompts the 

course instructor to summarize the class session (e.g., “Today, we learned about a framework 

that can be used to help elementary students construct scientific explanations; let’s review the 

main components of that framework”) and bridge to the next lesson (e.g., “Next week, you will 

engage in a model inquiry-based science lesson and practice constructing your own scientific 

explanation using data you collected through firsthand investigation”).  The Materials section of 

each protocol provided a complete materials list for that specific phase of the intervention.  The 

researcher provided the course instructor of the treatment group with all necessary materials for 

the 12-week intervention.  The researcher met face-to-face with the treatment group instructor 

prior to each week’s class session to review key points related to the intervention protocol and 

share related materials (e.g., PowerPoints, handouts).  A detailed summary of each phase of the 

intervention follows.   

Phase 1 (Weeks 4-5 of the course) 

The overall goal of Phase 1 of the intervention was to build PSTs’ knowledge about what 

it means to develop a scientific explanation and why engaging students in this complex scientific 

practice is vital to both their science and literacy learning.  Furthermore, Phase 1 focused on 

providing PSTs with a framework for explanation-driven science that could be applied 

throughout the semester when engaging in both written and oral explanation tasks.  The protocol 

for Phase 1 of the intervention is included in Appendix D1.  

During Week 4 of the course, the first week of the intervention, the course instructor 

delivered a presentation to the treatment group participants on the importance of engaging 
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elementary students in explanation-driven science instruction.  During this presentation, the 

course instructor discussed contemporary reform-based views of science teaching and learning, 

the connections between literacy and science, and the benefits of engaging students in scientific 

explanation.  This presentation also provided an overview of the three components of the TSAF 

(Zembal-Saul, 2009), including examples of how each component can be employed during 

classroom instruction.  The instructor distributed a handout (Figure 5) displaying three 

fundamentals for teaching science as argument and instructed PSTs to preserve the visual in their 

science notebooks to refer to throughout the remainder of the semester.   

 

 

Figure 5. Fundamentals for Teaching Science as Argument 
 

This visual was co-developed by the researcher, the researcher’s academic advisor, the 

course instructor of the treatment section, and a doctoral student in science education prior to the 

start of the semester during the final face-to-face PL meeting.  The visual was enlarged to poster 
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size and hung in the university classroom for reference purposes all semester long.  The purpose 

of the visual was to emphasize and reiterate how the CER framework can be used as a tool to 

enhance inquiry-based science instruction, develop students’ language, literacy and science 

knowledge and skills in tandem, and to guide students in constructing evidence-based 

explanations.  

During Week 5 of the course, the participants in the treatment group were introduced to 

the CER framework.  The instructor reviewed each component of the framework and distributed 

a handout (Figure 6) with definitions and examples of each component.  PSTs were instructed to 

preserve the handout in their science notebooks so it could be used as a reference when talking 

and writing scientific explanations for the remainder of the semester.   

 

 
Figure 6. CER Framework Handout 

 



66 
  

Beyer and Davis (2008) suggested that PSTs need ample practice in constructing, 

critiquing and debating explanations so that they can develop an understanding of what counts as 

strong claims, evidence, and reasoning.  Therefore, during Week 5, PSTs were also provided 

with five samples of written scientific explanations ranging in complexity.  These sample 

explanations are included in Appendix E.  The PSTs worked in pairs to underline the claim, 

number the evidence, and circle the reasoning within each sample.  The instructor also led the 

class during a discussion on how the samples ranged in complexity, from simple (claim + 

evidence) to complex (claim + evidence + reasoning + rebuttal).   

During this phase, PSTs were also assigned several intervention-related tasks to be 

completed during out-of-class time.  These assignments predominantly focused on helping PSTs 

learn how to incorporate language-based activities into science inquiry instruction.  For example, 

PSTs were asked to read a research article on the semantic feature analysis strategy and how it 

can be used to help students make connections, generate predictions, and develop important 

concepts.  After reading the article, PSTs were required to submit a response providing a specific 

example of how the semantic feature analysis strategy can be used during science instruction to 

support students’ conceptual understanding.  Similarly, PSTs were also asked to read an article 

explaining how to use a concept of definition word map to develop elementary students’ 

knowledge of science-specific vocabulary terms.  Again, after reading, PSTs were required to 

submit a response providing a specific example of how a concept of definition map can be used 

during science instruction to enhance students’ science and literacy learning.  
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Phase 2 (Weeks 5-12 of the course) 

During the second phase of the intervention, participants in the treatment group engaged 

in a series of three model inquiry-based science lessons.  Scholars, such as Zohar (2008), have 

suggested that PSTs need opportunities to engage in explanation and argumentation themselves 

before they can support students’ successful engagement in these complex scientific practices.  

Thus, the rationale for the inclusion of the model inquiry-based science lessons was to provide 

PSTs with opportunities to experience engaging in scientific practices and discourse associated 

with the TSAF.  The protocol for Phase 2 of the intervention is included in Appendix D2.  

All three lessons were co-developed by the researcher and the course instructor of the 

treatment group during the professional learning (PL) phase of the study.  The following steps 

were taken in developing each lesson:  

1. The topic of the lesson was identified along with related science and literacy state 

standards.  

2. A standards-based essential question was developed and ways to provide PSTs with 

opportunities to construct, communicate, and critique scientific explanations was 

discussed (e.g., What data will PSTs collect?; What evidence will they use to support 

their claims; What opportunities will they have to share their evidence and reasoning 

with others?). 

3. A list of science vocabulary words related to the topic was generated.  A and how 

PSTs’ conceptual understanding of these words would be developed was discussed.  

4. A related scientific text was selected for the purpose of expanding PSTs’ content 

knowledge and supporting firsthand exploration. Each text was selected from 
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Newsela (https://newsela.com/), consisted of expository structures using the language 

of science, and was written on an upper elementary grade level. 

5. An appropriate strategy was selected to scaffold PSTs’ reading comprehension and to 

assist them in organizing information they learned from the text.  

Each lesson plan was designed using the 5 E’s instructional model (Biological Sciences 

Curriculum Study [BSCS], 1989) and provided opportunities for PSTs to engage in authentic 

reading, writing, and communicating in the context of inquiry science.  Throughout each lesson, 

PSTs engaged in both text-based inquiry and hands-on science investigation.   

Each inquiry-based lesson also incorporated all three components of the Teaching 

Science as Argument Framework (TSAF).  For example, the first important feature of the TSAF 

involves using the structure of argument to guide students in constructing, communicating, and 

evaluating scientific explanations.  To illustrate this component, writing scaffolds and visual 

representations based on the CER argument structure were used to assist PSTs in appropriately 

justifying their evidence-based claims, both in writing and orally.   

The second important feature of the TSAF is making thinking visible though public 

scientific reasoning.  To illustrate this component, each lesson provided opportunities for PSTs 

to engage in authentic science talk in which they were encouraged to communicate their 

explanations and critique the claims of their peers.  During these whole-class science talks, the 

course instructor utilized a series of talk moves and questioning techniques (e.g., “Would 

someone like to add to that?”) to make PSTs’ thinking visible while also fostering peer-to-peer 

interactions.  These science talks also provided PSTs with an opportunity to engage in classroom 

science discussion that does not follow a traditional turn-taking format.   

https://newsela.com/
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The third important feature of the TSAF is authentic engagement with the language of 

science.  As discussed in Chapter 1, science includes specialized ways of communicating, 

distinct from students’ everyday ways of talking and writing (Fang, 2006; Schleppegrell, 2004).  

To help students tackle the language demands of science, teachers must incorporate language-

based instruction into their science lessons.  To illustrate this feature of the TSAF, each lesson 

provided PSTs with an opportunity to read and interact with expository texts in science, as well 

as develop their knowledge of science-specific vocabulary through engagement in language-

based tasks (e.g., Concept of Definition Map, Frayer Model, Semantic Feature Analysis).  

All three of the model inquiry-based science lessons were taught by the treatment course 

instructor’s GTA, who was a first-year doctoral student in science education.  The decision to 

have the GTA lead all three lessons with participants in the treatment section was made in an 

attempt to achieve comparability between the treatment and control condition, as the course 

instructor of the control group and GTA had similar backgrounds and experiences.  Both were 

former middle school science teachers and first-year doctoral students in science education.  

Neither had any prior experience teaching at the higher education level.  

After engaging in each lesson as learners, PSTs were provided the opportunity to unpack 

the lesson plan from the perspective of the teacher, using the three core components of the TSAF 

as a heuristic.  PSTs were provided with a hard copy of the lesson plan and a lesson plan rubric 

(Appendix F).  The lesson plan rubric was modified by the course instructor and researcher 

during the PL phase of the study to encompass all the three core components of the TSAF (i.e., 

argument structure, public reasoning, and the language of science).  In pairs, PSTs scored the 

lesson according to the criteria specified in the rubric and were encouraged to provide evidence 
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from the lesson plan to justify their scores.  After PSTs scored the lesson plan with the provided 

rubric, the instructor led a whole-group discussion in which PSTs discussed how the lesson 

incorporated the three components of the TSAF to promote both science and literacy learning for 

all students.  

Following is a brief summary of each lesson.  

Lesson 1: Oobleck: Solid or Liquid?  

This physical science lesson was developed to engage PSTs in comparing objects and 

materials based on their physical properties.  PSTs first read an informational text about the 

properties of matter.  While reading in pairs, PSTs were instructed to underline any properties 

and examples of solids in red and underline any properties and examples of liquids in green.  

Next, PSTs used their color-coded text to create two Frayer Models, one for “solids” and one for 

“liquids” (See Figure 7 for example).   

 

Figure 7. Example of Frayer Model  
 

PSTs then engaged in a hands-on investigation in which they followed a recipe to create 

“Oobleck” and conducted a series of tests (e.g., hit the puddle of Oobleck with your fist, place a 

penny on a puddle of Oobleck, try to cut a piece of the Oobleck away) to determine if the 
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substance was a solid or a liquid.  PSTs recorded their procedures and observations in their 

science notebooks (See Figure 8).   

 

Figure 8. Hands-on Inquiry During Oobleck Lesson  
 

The lesson concluded with PSTs using information from the text and their observations 

as evidence to construct a scientific explanation to address whether Oobleck was a solid or a 

liquid.  Figure 9 shows an example of a scientific explanation one PST constructed.  The 

complete lesson plan is included in Appendix G.  
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Figure 9. Scientific Explanation Constructed by PST During Oobleck Lesson 

 

Lesson 2: Muscles, Bones, and the Body   

This life science lesson was intended to help PSTs explore how the muscular and skeletal 

system interact to help the human body work.  PSTs first read an informational science text to 

build background knowledge about the muscular and the skeletal systems.  They then organized 
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what they learned from the text by developing two Concept of Definition maps: one on the 

muscular system and one on the skeletal system (See Figures 10 and 11 for examples).   

 
 
Figure 10. Concept of Definition Map A: The Muscular System  
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Figure 11. Concept of Defintion Map B: The Skeletal System 

 

Next, PSTs worked in teams to build a three-dimensional (3-D) physical model of an 

arm, using only the following materials: rubber bands, straws, pipe cleaners, balloons, Ziploc 

bags, and tape.  Figure 12 shows an example of one team’s 3-D physical model.   
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Figure 12. Physical Model of an Arm 
 

PSTs were asked to share their models with the class, explain the materials they used to 

represent each part of the arm (i.e., joints, ligaments, tendons, voluntary muscle, and skeletal 

muscle), and to discuss how the muscular and skeletal system worked together in their model to 

enable the arm to extend and flex.  

Finally, PSTs were asked to construct a scientific explanation to address the following 

question: “What would happen to the human body if the muscular system or skeletal system did 

not function?”  PSTs were instructed to use information from the science text, as well as 

examples from their physical models as evidence to support their claims.  Figure 13 shows an 

example of a scientific explanation one PST constructed.   

 



76 
  

 

Figure 13. Scientific Explanation Constructed by PST During Human Body Lesson 
 
 
After writing their scientific explanations in their science notebooks, the GTA led the 

PSTs through the process of sharing their explanations and critiquing others’ evidence and 

reasoning.  The complete lesson plan is included in Appendix H.  

Lesson 3: Preventing Soil Erosion  

This Earth science lesson was developed to help PSTs learn about the differences 

between physical weathering (breaking down of rock by wind, water, ice, temperature change, 

and plants) and erosion (movement of rock by gravity, wind, water, and ice) and the effects these 

processes have on the Earth’s surfaces.  PSTs first read an informational article about the 

processes of weathering and erosion.  They were instructed to highlight any differences 

and similarities between the processes of weathering and erosion as they read.  After reading, 
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PSTs were guided in using information from the text to complete a Sematic Feature Analysis 

Relationship Chart identifying similarities and differences between weathering and erosion (See 

Figure 14 for completed example).   

 

 

Figure 14. Comparing Weathering and Erosion using Semantic Feature Analysis 
 

In the next phase of the lesson, PSTs worked in groups to design and build a model 

farmstead to explore the effects of water erosion on land.  When designing their farmstead, PSTs 

were encouraged to think about how they could protect the buildings and crops on the farm from 

the effects of water erosion.  After building their farmstead model, each group was asked to 

simulate a rain shower by pouring a cup of water over their model and to describe the effects of 
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water erosion on their buildings and crops.  Figure 15 contains an example of one group’s 

farmstead model after their rain simulation.  

 

 

Figure 15. Farmstead Model 
 

Following the hands-on investigation, PSTs were challenged to use observations from 

their simulations as well as information from the informational text to explain how to best 
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protect houses on the beach from sand erosion.  Figure 16 presents an example of a scientific 

explanation one PST constructed.   

 

 

Figure 16. Scientific Explanation Constructed by PST During Weathering/Erosion Lesson  
 

The GTA led the PSTs through the process of sharing their explanations and critiquing 

others’ evidence and reasoning after they had written their scientific explanations in their science 

notebooks.  The complete lesson plan is included in Appendix I.  
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Phase 3 (Weeks 12-15 of the course) 

In the final stage of the intervention, participants worked in groups of three to five 

students to develop an inquiry-based science lesson plan.  The rationale for the inclusion of the 

lesson plan assignment was to provide PSTs an opportunity to apply their developing 

understandings of the TSAF when planning a science lesson for elementary students.  Groups 

were instructed to design a lesson focused on teaching a specific life, physical, or earth/space 

science concept, utilizing the 5E instructional model.  A lesson plan rubric (Appendix F), 

constructed from the three fundamentals for teaching science as argument, was used to outline 

required components and expectations for the assignment, to facilitate peer-review and self-

assessment, and to grade PSTs’ final lesson plan submissions.  PSTs were required to include the 

following components within their lesson plans: (a) science teaching standards and content 

objectives, (b) detailed procedures structured by a 5E instructional model, and (c) appropriate 

accommodations to assist all students in developing scientific language and content knowledge 

within each phase. Within their lesson plans, PSTs were also encouraged to select and utilize a 

related scientific text to pique students’ interest and build scientific background knowledge as 

well as incorporate at least one appropriate strategy to help students develop academic 

vocabulary in science.  As such, the lesson plan rubric was used as a scaffolding tool to help 

PSTs implement knowledge gained from the intervention to design a lesson plan supportive of 

both elementary students’ science and literacy learning. 

A list of planning questions related to the framework for teaching science as argument is 

presented in Table 3.  PSTs were encouraged to use these questions as a guide during the lesson 

planning process.   
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Table 3 
 
Questions Used by PSTs When Planning for Inquiry-Based Science Instruction 
 

Framework Foci Planning Questions 
Science concept  
Overarching explanation  

What is the scientific explanation that students will 
construct during the lesson?  

 
Prior knowledge/misconceptions   What do students already know about the phenomena 

under study?  
How might these understandings assist them (or 
interfere) with the development of the scientific 
explanation? 
  

Text-based inquiry  
 

What opportunities will students have to read about the 
phenomena under study? 

 
Hands-on inquiry 
Data collection  

What opportunities will students have to engage 
firsthand with the phenomena and collect data about it 
that will help them construct claims?  

 
Data representation  
Data analysis  

How can the data be organized and represented in such a 
way as to promote the recognition of patterns from 
which claims can be generated?  

 
Coordinating claims and evidence  During the discussion(s) in which students are 

constructing arguments from evidence: 
• What questions will you ask to get students to 

recognize important trends/patterns in the data?  
• What questions will you ask to assist students in 

weighing claims against one another?  
• What questions will you ask to assist students in 

negotiating a scientifically accurate argument from 
evidence?   

 
Testable questions  What opportunities will students have to pursue new 

questions that arise from their investigation?  
 

Predictions  How can students use their developing explanation to 
“predict” and test related interactions with the 
phenomena?  

Note. Adapted with permission from “Learning to Teach Elementary School Science as Argument,” 
by C. Zembal-Saul, 2009, Science Education, 93, p. 687-719.  
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Participant groups utilized both in-class and out-of-class time to work on the creation of 

their lessons.  During Weeks 12 and 13 of the course, the instructor reviewed PSTs’ initial lesson 

plan drafts and provided targeted feedback and suggestions for improvement.  PSTs were also 

given the opportunity to evaluate each other’s lesson plan drafts (using the TSAF as a guide) and 

to offer constructive criticism.  PSTs were encouraged to revise their inquiry-based lesson plans 

based on feedback provided by the course instructor as well as their peers.  

During Weeks 14 and 15 of the course, each participant group presented their inquiry-

based science lesson to their peers using a microteaching technique.  Microteaching is a teacher 

training technique aimed at helping teacher candidates develop and enhance their pedagogical 

skills in a low-risk, simulated classroom environment (Brent, Wheatley, & Thomson, 1996).  

Microteaching provides PSTs opportunities for both self-reflection and peer feedback.   

Each group was allotted 40 minutes for their microteaching session.  Participant groups 

began their microteaching sessions with a brief description of the context of their lesson, 

teaching standards addressed, and learning goals/objectives.  Participant groups then carried out 

the procedures of their lesson plans, with their teacher candidate peers serving as elementary-age 

students.  After each group’s microteaching session, PSTs were guided in providing peer-to-peer 

feedback, including both strengths and weaknesses, using the Group Teaching Observation Sheet 

(Appendix J).  Finally, all PSTs were asked to submit an individual written reflection of the 

lesson planning/microteaching process using the following questions as a guide:  

1. How do learning objectives help to create your lesson plan?  What challenges did you 

have?  
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2. What expectations do you have for all your students, including ELLs, to develop their 

knowledge and skills in literacy and/or science through your lesson?  What is the 

relationship between literacy and science in your lesson?  

3. Is the CER framework effective in guiding your lesson planning in order to engage 

students in constructing scientific explanations and argument from evidence?  Please 

answer this question using the evidences from your lesson. What challenges did you 

have when you implement this tool into your lesson?  

4. What other questions do you have related to lesson planning?  

The protocol for Phase 3 of the intervention is included in Appendix D3. 

Control Condition  

The course instructor assigned to the control group was asked to cover similar science 

topics (i.e., properties of matter, interactions between human body systems, and weathering and 

erosion) during the spring 2019 semester in a manner consistent with her typical instructional 

approach.  The control group instructor did not partake in any professional learning activities 

prior to the start of the semester, nor did the researcher discuss any information pertaining to the 

intervention with the control group instructor.   

Professional Learning Procedures  

The course instructor of the treatment section completed five researcher-designed online 

professional learning (PL) modules and attended three face-to-face sessions prior to the start of 

the intervention.  The PL spanned across a total of eight consecutive weeks, beginning in 

October of 2018 and ending in December of 2018.  The overall goal of the PL was for the 
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researcher and course instructor of the intervention section to co-develop knowledge on the topic 

of helping PSTs learn how to teach science as argument.   

In September of 2018, the researcher led a one-hour introductory meeting with the course 

instructor of SCE AAAA to provide an overview of the online modules and format for the PL.  

At this meeting, the researcher and the course instructor also agreed upon a PL schedule.  A 

detailed schedule of the PL tasks completed by the course instructor can be found in Appendix 

K.  The course instructor began the PL in October of 2018 in preparation to implement the 

intervention during the spring 2019 semester.  

Each online PL module included narrated PowerPoints, related readings, and 

demonstration videos.  The five modules covered the following topics: (a) integrating 

disciplinary literacy and science, (b) connecting science and literacy through scientific 

explanation and argument, (c) supports for writing scientific explanations, (d) scaffolds for 

supporting scientific talk during class discussion, and (e) intervention materials, sequence, and 

timeline.  An overview guide of each of the online modules is presented in Appendix L.  These 

online modules were made available to the course instructor through Webcourses.  Only the 

researcher, the researcher’s academic advisor, and the course instructor of the treatment section 

had access to the five online modules.  

Each module included a check-for-understanding task, which was completed by the 

course instructor after completing each online PL module.  These check-for-understanding tasks 

provided the course instructor an opportunity to reflect on module content, demonstrate 

understanding of intervention procedures and fidelity expectations, and ask questions.  The 

completed check-for-understanding tasks were emailed to the researcher and used to guide the 
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face-to-face sessions.  A summary of the course instructor’s responses to each of the check-for-

understanding tasks is included in Appendix M.  The face-to-face sessions provided an 

opportunity for the researcher to discuss the instructor’s reflections and questions, clarify any 

information, and provide additional learning opportunities, as needed.  The following section 

details the three face-to-face sessions held between the course instructor and the researcher.  

Face-to-Face PL Meeting One  

The first face-to-face session took place on Monday, October 1, 2019. This meeting 

served as the kick-off for the eight-week PL and lasted approximately 1.5 hours. The 

researcher’s academic advisor attended the meeting to take notes.  At this meeting, the researcher 

discussed the three features of the TSAF (i.e., argument structure, public reasoning, and the 

language of science) and how they would be used to inform the intervention for PSTs.  The 

researcher and the course instructor also discussed the development of the three model inquiry-

based science lessons that were taught as part of the intervention.  Together, the researcher and 

course instructor decided on the topics of each of the three inquiry-based lessons (i.e., properties 

of matter, human body systems, and weathering and erosion).  These topics were selected 

because they each represented a different body of knowledge in science (physical science, life 

science, and earth and space science) and were topics that the course instructor had already 

taught during previous semesters of her science methods course.  Finally, the researcher shared 

plans about how the TSAF would be used as a heuristic to analyze preservice teachers' written 

lesson plans at the end of the intervention. A summary of this meeting is included in Appendix 

N.  
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Face-to-Face PL Meeting Two 

The second face-to-face session took place on Monday, November 4, 2019.  This meeting 

lasted approximately 1 hour.  The researcher’s academic advisor was unable to attend due to her 

attendance at a state-wide literacy conference at the time of the meeting. Thus, only the 

researcher and course instructor attended the meeting. 

Prior to this meeting, the course instructor had completed online Modules 1-3.  The 

course instructor been asked to review one of the three researcher-developed model inquiry-

based lesson plans prior to the second face-to-face meeting.  At this meeting, the researcher 

responded to the course instructor’s questions that were posed in the check-for-understanding 

tasks from Modules 1-3.  For example, the researcher provided a more concise definition of 

disciplinary literacy, clarified the distinction between the three features of the TSAF, and 

provided some additional examples of what the three features look like in practice.  The 

researcher and course instructor also devised a plan for engaging PSTs in reflection after they 

participated in each model inquiry-based lesson during the intervention.  See Appendix O for a 

complete summary of this meeting.    

Face-to-Face PL Meeting Three 

The third face-to-face session took place on Tuesday, December 4, 2018.  This meeting 

also lasted approximately 1 hour and served as the wrap-up of the eight-week PL.  The 

researcher’s academic advisor attended the meeting via Skype to take notes.  A summary of this 

meeting is included in Appendix P.  The course instructor had completed online Modules 4-5 and 

was asked to review the remaining two researcher-developed model inquiry-based lesson plans 

prior to this meeting.  At this meeting, the researcher responded to the course instructor’s 
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questions that were posed in the check-for-understanding tasks from Modules 4-5.  Second, the 

researcher reviewed pretest administration protocols and how fidelity of implementation would 

be calculated during the intervention period.  Third, together the researcher and course instructor 

developed a list of three fundamentals for teaching science as argument (described earlier in this 

chapter) and discussed how to integrate these principles into the lesson plan rubric to be used by 

PSTs when developing their own inquiry-based science lesson plans.  Lastly, a course schedule 

for the spring 2019 semester of the science methods course was agreed upon.  This schedule 

(Appendix Q) provides the timeline for all three phases of the intervention.  

Evaluation of Professional Learning  

In order to evaluate the effectiveness of the PL, four critical levels of information 

(Guskey, 2000) were collected and analyzed:  

1. Participant (course instructor) reaction 

2. Participant (course instructor) learning  

3. Participant (course instructor) use of new knowledge and skills  

4. Student learning outcomes  

Due to the limited scope of the study, the fifth level of evaluation (i.e., organization 

support and change) suggested by Guskey (2000) was not considered.  The course instructor’s 

reaction to the provided PL was evaluated using the TSAF Instructor Satisfaction Survey (TSAF 

ISS) which is contained in Appendix R1.  The TSAF ISS, which was developed using evidence-

based principles for survey development (Dillman, Smyth, & Christian, 2014), consists of 12 

four-point Likert scale questions and a comment section.  The questions on the TSAF ISS are 

focused on measuring the participant’s (in this case, the course instructor) initial satisfaction with 
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the PL experience.  In addition, social validity of the TSAF protocol was explored using the 

TSAF Social Validity Questionnaire (TSAF SVQ) which can be found in Appendix R2.  Social 

validity refers to the social acceptability of and satisfaction with intervention goals, procedures, 

and outcomes (Wolf, 1978).  The TSAF SVQ, also developed using evidence-based principles 

for survey development (Dillman et al., 2014), includes two sections: 12 questions (ten 5-point 

Likert scale questions and two open-ended questions) and a comment area.  Both the TSAF ISS 

and TSAF SVQ were completed by the course instructor of the treatment group at the conclusion 

of the eight-week PL.   

The course instructor’s learning and use of the TSAF protocol were evaluated using 

direct observations and the TSAF Fidelity Checklist.  To demonstrate the overall impact of the 

PL, student learning outcomes were evaluated with pre- and post-intervention measures 

(discussed later in this chapter).     

Data Collection Procedures 

Instrumentation  

This section contains detailed information about the instrumentation used to conduct the 

study. Dependent variable measures for PSTs’ outcomes are explained along with the tool used 

to collect participants’ demographic information  

Demographic Information Survey 

A short researcher-developed survey entitled Demographic Information Survey was 

distributed to study participants in both the treatment and control groups during the first class of 

the methods course in January 2019.  The purpose of this survey was to collect participants’ 
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demographic and background information, including gender, race, primary language spoken, and 

university major. The survey can be found in Appendix S1.  

The Nature of Science as Argumentation Questionnaire 

The Nature of Science as Argumentation Questionnaire (NSAAQ), developed by 

Sampson and Clark (2006) was used to determine participants’ epistemological understanding of 

NOS both at the beginning and end of the intervention (RQ1).  Permission to use the NSAAQ 

was granted by Dr. Victor Sampson (see Appendix W2).  The NSAAQ (Appendix S2) contains 

26 items and a 5-point Likert-type scale with a Cronbach’s Alpha reliability coefficient of 0.79, 

calculated in a pilot study with 254 PSTs in five different universities (Kutluca & Aydin, 2017).  

The NSAAQ consists of four subscales: nature of scientific knowledge (6 items); methods that 

can be used to generate scientific knowledge (6 items); what counts as reliable and valid 

scientific knowledge (7 items); and the role scientists play in the generation of scientific 

knowledge (7 items).  Each item presents two contrasting statements (one of the statements 

demonstrates a view of science as a process of explanation and argument, and the other 

demonstrates more naïve understandings about NOS).  Participants are asked to read the pair of 

statements and select a number on a continuum that best describes their position on the issue 

described.  When computing participants’ NSAAQ scores, negatively-phrased items are reversed 

to have higher scores reflect a more consistent view of science as a process of explanation and 

argument. An overall high score on the NSAAQ is accepted as evidence of the participant having 

a more informed understanding of NOS.  
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The Argumentation Test  

The Argumentation Test (ARGTEST), developed by Clark and Sampson (2006), was 

used to determine participants’ understanding of argumentation both at the beginning and end of 

the intervention (RQ2).  Permission to use the measure was granted by Dr. Victor Sampson (see 

Appendix W2).  The ARGTEST (Appendix S3) is comprised of two separate tasks.  In the first 

task, participants are presented with a claim, followed by six different arguments. Participants 

are asked to rank the arguments in order from least convincing to most convincing. This task is 

designed to determine what participants believe counts as a quality scientific argument.  In the 

second task, participants are presented with an argument followed by six different challenges.  

Participants are asked to rank the challenges in order, from the weakest to the strongest 

challenge.  This task is designed to determine what participants perceive to be a good challenge 

to a scientific argument.  The ARGTEST has a Cronbach’s Alpha reliability coefficient of 0.68, 

calculated in a pilot study with 447 students. 

Written Scientific Explanation Assessment  

To measure the effect of the intervention on the quality of participants’ written 

explanations (RQ3), an identical pre- and post-intervention Written Scientific Explanation 

Assessment (WSEA) was administered to participants in both the treatment and control groups 

(See Appendix S4).  The researcher-developed assessment required participants to write a 

scientific explanation using secondhand data (i.e., data that has already been collected).  The 

assessment asked participants to examine a bar graph comparing soil loss among different types 

of crops and to write a scientific explanation to explain which crop is the most resistant to the 
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effects of erosion.  This particular task was chosen because participants learned about the process 

of erosion and its effects on land during one of the three model inquiry-based lessons.  

Participants’ explanations were scored by adapting a base explanation rubric (Appendix 

S5).  The base explanation rubric includes the three components of the CER Framework: claim, 

evidence, and reasoning and is a general rubric that can be used across content areas (McNeill, 

Lizotte, Krajcik, & Marx, 2006a).  However, because constructing a scientific explanation 

requires both an understanding of science content and an understanding of the structure of 

scientific explanation, assessment should combine analysis of both content and structure 

(McNeill et al., 2006; Sandoval & Millwood, 2005).  Therefore, the base rubric was used to 

develop a specific scientific explanation rubric that outlined explicit expectations for 

participants’ explanations in terms of both the CER Framework and the science content.  The 

specific rubric that was used to score PSTs’ pre- and post-intervention WSEA measures is 

included in Appendix S6.   

Each component was scored on a three-point (0-2) scale.  The scores earned on each 

component were then combined to assign an overall score.  As a result, overall scores for the 

WSEA ranged from 0 to 6, with higher scores representing a higher quality explanation.  

Assessment Procedures  

The researcher administered the pretests and posttests to PSTs in both conditions.  The 

testing schedule is displayed in Table 4. 
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Table 4 
 
Pretest and Posttest Administration Schedule 

  

Testing Event Course Week 
Collection of Demographic Information Survey Data  Week 1 
NAASQ - Pretest Week 1 
ARGTEST - Pretest Week 2 
WSEA - Pretest Week 3 
NSAAQ - Posttest Week 14 
ARGTEST- Posttest  Week 15 
WSEA - Posttest Week 15 

 
Pretest Administration  

Pretest administration took place in both conditions during the three-week period prior to 

the start of the intervention phase of the study.  Pretest measures were administered in a whole-

group format, with 20 minutes allotted for each measure.  PSTs were assured that their responses 

and performance on the pretests would not affect their course grades.  During pretest 

administration, course instructors were present but were asked not to view the content of the 

pretest measures.   

Appendices T1 – T3 contain the scripts used for each of the three pretests, as well as the 

Demographic Information Survey.  The Demographic Information Survey and the NSAAQ were 

distributed as a single packet during Week 1 of the course.  The ARGTEST was administered 

during Week 2 of the course, and the WSEA was administered during Week 3 of the course.  The 

pretests were administered during each course section’s regularly scheduled meeting times.  The 

treatment group course met on Wednesday afternoons from 1:30 – 4:20 pm. The control group 

course met on Thursday evenings from 6:00 – 8:50 pm.  During test administration weeks, the 

last 30 minutes of class was set aside for assessment purposes.  Make-up pretests were 
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administered during Week 4 at the beginning of class time, prior to the start of any intervention 

activities.   

After the pretests were administered and collected, the researcher assigned numeric codes 

to participants’ tests and blacked-out participants’ names.  A numeric code range was used for 

each condition.  The codes were assigned based on the order in which the papers were stacked.  

Codes were assigned to PSTs who were absent during pretesting to account for their participation 

in the study.      

Posttest Administration   

The administration of posttests took place during the final two weeks of the semester.  

The researcher arranged the posttesting schedule to accommodate instructors’ preferences, and as 

a result, posttesting in the treatment condition took place over the final two face-to-face class 

sessions (Weeks 14 and 15 of the course) for a total of 60 minutes.  The NSAAQ was 

administered during Week 14 and the ARGTEST and the WSEA were administered together 

during Week 15.   

Posttesting in the control condition occurred over one class session (Week 15) for a total 

of 60 minutes; all three tasks were administered at once.  Because several PSTs were absent in 

the control condition on the posttesting day, the researcher arranged with the course instructor to 

return the following week, final examination week, to administer any make-up tests.  Make-up 

tests were administered to PSTs in a one-on-one setting with the researcher after completing their 

final examination.  

As with the pretests, posttests (except for make-ups) were administered in a whole group 

format, with 20 minutes allotted for each measure to be completed.  The same scripts and 
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procedures were used for the posttests as the pretests. Again, the researcher assured PSTs that 

their responses and performance on the posttests would not affect their course grades. After the 

posttests were administered and collected, the researcher matched the numeric code to the 

participants’ tests, removed participants’ names, and wrote the corresponding codes on 

participants’ tests.  

Data Analysis  

Quantitative Data Analysis 

A multivariate repeated measures MANOVA (RM-MANOVA) was conducted to answer 

Research Questions 1-3.  Table 5 provides a visual model of the research design used in 

analyzing data to respond to these questions.   

Research Question 1:  Does participation in an intervention focused on teaching science 

as argument have an impact on elementary PSTs’ understandings of the NOS, as measured by 

the Nature of Science as Argumentation Questionnaire (NSAAQ)?  

Research Question 2:  Does participation in an intervention focused on teaching science 

as argument have an impact on elementary PSTs’ knowledge of argumentation, as measured by 

The Argumentation Test (ARGTEST)?  

Research Question 3: Does participation in an intervention focused on teaching science as 

argument have an impact on the complexity of elementary PSTs’ written explanations, as 

measured by a researcher-developed written scientific explanation assessment?  
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Table 5 
 
Research Design for Research Questions 1-3 
 

Assignment Group Pretest Treatment Posttest 

NR 1 O1 X O2 

NR 2 O1 ___ O2 

Time → 

Note. Design notations: NR = Nonrandom; O = Observation, also known as measurement; X = 
Treatment.  

 

The RM-MANOVA was used to investigate main effects of a within-group factor, a 

between-group factor, and the interaction between time and group.  In contrast to an RM-

ANOVA, which is appropriate in situations where there is only one dependent variable, an RM-

MANOVA is used when two or more dependent variables are present (Tabachnick & Fidell, 

2014).  The within-group factor was time (pretest to posttest) in both conditions.  The between-

group factor was the condition (treatment or control).  The interaction referred to the interaction 

between time (pretest and posttest) and group (treatment and control conditions).  The dependent 

variables, which were all interval in scale, were the scores on each of the three measures: 

NSAAQ, ARGTEST, and WSEA.  The test was conducted using an alpha of .05.  The RM-

MANOVA was followed by a series of univariate ANOVAs and appropriate post-hoc tests.    

Statistical assumptions were tested for each measure (pretest and posttest), and violations 

were examined to determine if they were in acceptable limits.  Statistical procedures were 

conducted using SPSS (Version 25.0).  
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Qualitative Data Analysis  

Qualitative data analysis was used to respond to Research Question 4:  How do 

elementary PSTs incorporate components of the Teaching Science as Argument Framework to 

support both students’ literacy and science learning when planning for inquiry-based science 

instruction, as evident in their written lesson plans?   

Table 6 provides a visual model of the research designed used to respond to Research 

Question 4.  

 

Table 6 
 
Research Design for Research Question 4 
 

 

Assignment 

 

Group 

 

Treatment 

Collection Method 

Pre Post 

NR 1 X  ✓ 

NR 2 ___ ___ ___ 

Time → 

Note. Design notations: NR = Nonrandom; X = Treatment.  
 

As part of the intervention, participants in the treatment group worked in groups of three 

to five to develop an inquiry-based science lesson plan.  Groups were instructed to design a 

lesson focused on teaching a specific life, physical, or earth/space science concept utilizing the 

5E instructional model.  PSTs were provided with a lesson plan template that they used to 

construct their lessons.  Required lesson plan components included: (a) science teaching 

standards and content objectives, (b) detailed procedures structured by a 5E instructional model, 
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and (c) appropriate accommodations to assist all students in developing scientific language and 

content knowledge within each E phase.   

A lesson plan can serve as an indicator of a teacher’s content and pedagogical knowledge 

(Shulman, 1986).  For this reason, PSTs’ lesson plans were collected and analyzed as an 

additional layer of data to explore how elementary PSTs who participated in the intervention 

applied their developing knowledge of the Teaching Science as Argument Framework (Zembal-

Saul, 2009) when planning for science instruction (RQ4).  

The lesson plans were analyzed using a constant comparative approach (Glaser & 

Strauss, 1967).  The constant comparative method involves dividing the data into discrete 

“incidents” (Glaser & Strauss, 1967) and coding them to categories.  Initial coding involved 

coding each incident in the data using a priori codes based on the three features of the TSAF 

(Zembal-Saul, 2009) which are displayed in Table 7.  The initial coding phase was proceeded by 

two additional rounds, resulting in the addition of six new codes that emerged during analysis.  

The final codebook, shown in Table 8, consisted of three categories (argument structure, 

public reasoning, and language of science) to align with the three main features of the TSAF, as 

well as a fourth category focused on negative instances.  The codes within the first three 

categories encompass different aspects of the three main features of the TSAF and assisted in 

defining how those features were incorporated by the participants when planning for science 

instruction.  In an attempt to minimize the effects of researcher bias, negative instances were also 

examined, rather than merely searching for confirmatory data (Kolb, 2012).  The codes within 

this final category identified instances within PSTs’ lesson plans that did not align with the 

TSAF.  
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Table 7 
 
A Priori Codes Based on the TSAF 
 

Category Codes Definition 

Argument structure Data collection  Providing opportunities for students to 
collect and record data that will help them 
construct claims. 

 
Identify patterns  Prompting students to examine data in order 

to categorize it into repeatable patterns. 
 

Claims and 
evidence  

Prompting students to form claims based on 
the available evidence. 

 
Consider 
alternatives 

Encouraging students to consider additional 
potential explanations for the patterns in the 
evidence. 

 
Constructing 
explanations  

Asking students to form explanations for the 
patterns that they have seen in the evidence. 

 
Public reasoning Explicate reasoning  Asking students to explain their thinking. 

 
Reasoning  Asking students to apply their own reasoning 

to someone else’s statement. 
 

Attention focusing  A question asked to prompt the student to 
examine some aspect of the phenomena. 

 
Comparison Prompt for students to consider the 

similarities and/or differences between two 
or more things. 

 
Student talk  Discussion and questions initiated by the 

student. 
 

Language of science Language of 
science  

Words and phrases used to indicate 
participation in the scientific community. 

Note. Adapted from “Preservice Elementary Teachers’ Instructional Practices and the 
Teaching Science as Argument Framework,” by E. Boyer, 2016, Science and Education, 

25, p. 1040 – 1042. 
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Table 8 
 
Final Code Book 
 

Category Codes Definition 
Argument structure Collecting data* Providing opportunities for students to collect and 

record data that will help them construct claims. 
Identify patterns  Prompting students to examine data in order to 

categorize it into repeatable patterns. 
Claims and evidence  Prompting students to form claims based on the 

available evidence. 
Consider alternatives Encouraging students to consider additional 

potential explanations for the patterns in the 
evidence. 

Constructing explanations  Asking students to form explanations for the 
patterns that they have seen in the evidence. 

 
Public reasoning Explicate reasoning  Asking students to explain their thinking. 

Apply reasoning  Asking students to apply their own reasoning to 
someone else’s statement. 

Attention focusing  A question asked to prompt the student to examine 
some aspect of the phenomena. 

Comparison Prompt for students to consider the similarities 
and/or differences between two or more things. 

Student talk  Discussion and questions initiated by the student. 

 
Language of science Scientific texts*  Exposing students to the language of science 

through reading and discussing science texts   
Vocabulary knowledge*  Engaging students in tasks for building knowledge 

of science vocabulary.   
Discourse* Providing supports that assist students in organizing 

and communicating their scientific ideas in ways 
that reflect scientific discourse. 

 
Negative instances  Recall* Posing factual questions that require simple recall of 

facts 
Lecture* Direct instruction of science content through teacher 

lecture with limited opportunities for student 
interaction 

Note. * Denotes codes that emerged during data analysis 

 

Furthermore, triangulation of data sources was used to enhance the credibility of the 

research findings.  Triangulation involves the use of multiple sources of data in order to produce 

a more complete understanding of the phenomena (Creswell, 2003). Thus, findings from the 
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lesson plan analysis was validated through cross verification with insights gleaned through 

ongoing fidelity of implementation checks as well as participants’ pre and post written scientific 

explanations.  

Fidelity of Implementation    

The collection and assessment of implementation data is critical in evaluating the internal 

and external validity of an intervention (Durlak & DuPre, 2008).  For the purpose of this study, 

fidelity of implementation (FOI) was defined as the level to which the instructor in the treatment 

condition implemented the intervention protocols as intended by the researcher.  

The final module completed by the treatment group instructor during the professional 

learning phase provided an in-depth overview of the components of the TSAF Protocols, TSAF 

Fidelity Checklists (FCs), the TSAF Instructor Fidelity Worksheet (IFW).  The course instructor 

discussed her understanding of the treatment fidelity expectations and had an opportunity to ask 

questions during the third and final face-to-face meeting, prior to the implementation of the 

intervention.  The researcher also discussed possible threats to validity and the importance of 

preventing contamination.  The course instructor verified that she understood that she was not 

permitted to discuss the study with others. 

TSAF Fidelity Checklists  

To track fidelity of implementation, three fidelity checklists (FCs) were developed, one 

for each of the three phases of the intervention.  As with the TSAF Protocol, each checklist 

followed the Cue, Do, Review format.  Each component was worth 1 point in the Cue, Do, and 

Review sections.  Each FC also included a Salient Features and Essential Components section.  

Components in this section were also worth 1 point.  Presence or absence of the component was 
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noted by the researcher with a checkmark in either the Yes or No column.  Scores for each 

section were then tallied and recorded as a section score.  The end of each checklist also included 

an additional information section for the reviewer to note instructional time as well as any 

additional comments (if applicable).  The researcher attended each course session of the 

treatment group to take detailed field notes and complete fidelity checks.  A Phase Fidelity Score 

(PFS) was calculated for each phase of the intervention by adding scores for each section (Cue, 

Do, Review/Reflect, and Salient Features) and recording them in the additional information 

section.  A phase fidelity percentage (PF%) was calculated for each phase of the intervention by 

dividing the PFS by the total maximum point value possible.  The researcher provided feedback 

to the instructor after each week of instruction to inform her about whether she was meeting 

fidelity expectations.  

Phase 1: Fidelity Checklist  

The Phase 1 Fidelity Checklist (P1FC) had a maximum PFS of 17 (See Appendix U1).  

The Cue section of P1FC had a total point value of 3 (bridge from previous class session, orient 

PSTs to current lesson, and share learning goals and/or objectives). The Do section of the P1FC 

had a total point value of 3 (provide overview of importance/benefits of scientific explanation, 

discuss connections between literacy and science, provide overview of the TSAF, introduce the 

CER framework, distribute CER handout, distribute and review scientific explanation base 

rubric, guide PSTs in the process of critiquing sample explanations using the base rubric, and 

discuss how the samples range in complexity). The Review/Reflect section of the P1FC had a 

total point value of 3 (review three features of the TSAF, review all components of the CER 

framework, and review the role of explanation in science). The total score of the P1FC Salient 
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Features section was based on the presence or absence of three essential components: explicit 

connections between literacy and science, explicit connections to elementary students and/or 

classroom practice, and emphasis on the NOS (i.e., what real scientist do and why). A PFS for 

Phase 1 was calculated by adding the scores earned for each section (Cue, Do, Review/Reflect, 

and Salient Features).  A PF% for Phase 1 was calculated by dividing the PFS by 17 and 

multiplying by 100.  

Phase 2 Fidelity Checklist  

The Phase 2 Fidelity Checklist (P2FC), displayed in Appendix U2, had a maximum 

fidelity score of 25.  Three separate P2FC were completed, one for each of the three inquiry-

based science investigations.  The Cue section of P2FC had a total point value of 3 (bridge from 

previous class session, orient PSTs to current lesson, and share learning goals and/or objectives). 

The Do section of the P2FC had a total point value of 11 (encourage PSTs to pursue testable 

questions, provide opportunities for PSTs to read about the phenomena under study, engage 

PSTs in an academic vocabulary building strategy, provide opportunities for PSTs to engage 

firsthand with the phenomena under study, engage PSTs in the process of collecting, recording, 

and representing data, encourage PSTs to identify patterns in their data, review the three 

components of scientific explanation, display visual representation of the CER framework, 

provide writing scaffold to assist PSTs in constructing a scientific explanation, use a series of 

talk moves to make PSTs’ thinking visible, use productive questioning techniques to scaffold 

PSTs’ communication of scientific ideas, and lastly, make connections to be big idea/science 

concept).  The Review/Reflect section of the P2FC had a total point value of 4 (provide PSTs 

with an opportunity to unpack the lesson from the perspective of the teacher, discuss how the 
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lesson supports all students in engaging in scientific explanation, review the components of the 

CER framework, and reiterate the role of explanation in science).  The total score of the P1FC 

Salient Features section was based on the presence or absence of six essential components: 

explicit connections between literacy and science, explicit connections to elementary students 

and/or classroom practice, and emphasis on the NOS (i.e., what real scientist do and why), 

attention on developing academic vocabulary, engagement in science reading, writing, and talk, 

and peer-to-peer talk during whole-group discussion.  A fidelity score for each investigation was 

calculated by adding the scores earned for each section (Cue, Do, Review/Reflect, and Salient 

Features).  A fidelity percentage for each investigation was calculated by dividing the fidelity 

score by 25 and multiplying by 100.  

Phase 3 Fidelity Checklist  

The Phase 3 Fidelity Checklist (P3FC), which appears in Appendix U3, had a maximum 

fidelity score of 15. The Cue section of P3FC had a total point value of 3 (share rationale for 

lesson plan assignment, distribute and discuss planning questions related to the TSAF, and 

review/discuss lesson plan rubric).  The Do section of the P3FC had a total point value of 5 

(provide in-class time for PSTs to work on their group lesson plans, provide instructor support 

during the planning process, engage PSTs in peer-review, allow PSTs to revise their group 

lessons based on instructor and peer suggestions, and provide in-class time for each group to 

present/microteach their final inquiry-based science lesson). The Review/Reflect section of the 

P3FC had a total point value of 3 (engage PSTs in self-reflection of their own lesson plan, 

encourage PSTs to reflect upon how their lesson supports all students in constructing, 

communicating, and debating evidence-based scientific claims, and review the role of 
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explanation in science). The total score of the P3FC Salient Features section was based on the 

presence or absence of four essential components: explicit connections between literacy and 

science, explicit connections to elementary students and/or classroom practice, emphasis on the 

NOS (i.e., what real scientist do and why), and targeted feedback provided to each collaborative 

group. A PFS for Phase 3 was calculated by adding the scores earned for each section (Cue, Do, 

Review/Reflect, and Salient Features).  A PF% for Phase 3 was calculated by dividing the PFS 

by 15 and multiplying by 100. 

TSAF Instructor Fidelity Worksheet  

The TSAF Instructor Fidelity Worksheet (IFW), shown in Appendix U4, served as a 

companion to the FCs and was used to assign the course instructor in the treatment condition a 

total fidelity score (TFS) and a total fidelity percentage (TF%) at the end of the 12-week 

intervention.  The IFW provided a section for the reviewer to note and calculate a PFS and PF% 

for each phase of the intervention.  Phase 1 had a maximum PFS of 17.  Phase 2 had a maximum 

PFS of 75 because a separate P2FC was completed for each of the three inquiry-based science 

investigations.  To calculate a total PFS for Phase 2, the fidelity scores from all three 

investigations (Investigation 1 + Investigation 2 + Investigation 3) were combined.  Phase 3 had 

a maximum PFS of 15. The maximum TFS was 107 (Phase 1 + Phase 2  + Phase 3 PFS).  A 

TF% was calculated by dividing the TFS by 107 and multiplying by 100.  FOI results for the 

course instructor of the treatment group are presented in Chapter 4.  

Interrater Reliability  

Interrater reliability was calculated in four areas: assessment scoring, Fidelity Checklist 

(FC) scores, Instructor Fidelity Worksheet (IFW) scores, and qualitative coding.  The point-by-
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point formula (agreements/agreements + disagreements x 100) was used to calculate interrater 

reliability (Gast, 2010).   

Assessment Scoring  

A CITI certified graduate student research assistant (RA) conducted interrater reliability 

checks for 100% of the pre and post measures.  The researcher reviewed the scoring criteria and 

provided the RA with the necessary answer key or rubric for each assessment.  Using the 

Assessment Interrater Reliability Worksheet (IRW), shown in Appendix V1, the RA rescored all 

pre- and post-assessments (NSAAQ, ARGTEST, and WSEA).  The researcher compared the 

scoring results she recorded with the scoring results of the RA. Every item and the total score 

were reviewed.  Most of the differences in recorded scores were a result of scorer error and were 

corrected.  

Fidelity Checklist Scores  

The RA also conducted interrater reliability checks for the FC scores.  To prepare the RA 

for the inter-rater reliability task, the researcher and RA first listened to a practice recording 

together and the RA completed the FC with support.  During this practice session, the researcher 

provided feedback about any inaccuracies and clarified any confusion. The RA then reviewed 

recordings from each weekly session and independently completed the FCs for all three phases 

of the intervention.   

Instructor Fidelity Worksheet 

Lastly, the RA conducted interrater reliability checks for scores recorded on the IFW. 

The RA recalculated 100% of scores and percentages for the IFW and noted the results on the 

Interrater Reliability Instructor Fidelity Worksheet [IR-IFW] (Appendix V2).   
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Lesson Plan Analysis 

In order to establish inter-rater reliability, the RA, who is experienced in document 

analysis, independently coded all five lesson plans using the final codebook (See Table 8).  Inter-

rater agreement was reached through a process of initial coding, discussion, additional rounds of 

coding, resolution of discrepancies, and final agreement.   

Chapter Summary 

In this chapter, the methodology used to conduct this study was explained.  This mixed-

methods study utilized an embedded quasi-experimental design to investigate the impact of a 

one-semester intervention (12 weeks) focused on teaching science as argument within a science 

methods course on elementary PSTs’ (a) understandings of the NOS, (b) knowledge of 

argumentation, (c) complexity of their written explanations, and (d) ability to incorporate 

components of the Teaching Science as Argument Framework when planning for science 

instruction.  The following methods and procedures were detailed: (a) research design (b) 

context, (c) participants, (d) sampling and assignment, (e) intervention, (f) data collection, and 

(g) data analysis.   

  



107 
  

CHAPTER FOUR:  

RESULTS  
 

Introduction 

The current study was conducted to investigate the impact of a one-semester intervention 

(12 weeks) focused on teaching science as argument within a science methods course on PSTs’ 

(a) understandings of the NOS, (b) knowledge about argumentation, (c) complexity of their 

written explanations, and (d) ability to incorporate components of the Teaching Science as 

Argument Framework when planning for science instruction.  This mixed-methods study 

employed an embedded quasi-experimental design with a control condition and pretest and 

posttest measures (Edmonds & Kennedy, 2013).  A repeated measures MANOVA was used to 

answer the first three research questions.  To answer the fourth research question, PSTs’ science 

lesson plans were analyzed using a constant comparative approach.  

This chapter begins by describing procedures for missing data and descriptive statistics 

by condition.  Following the missing data procedures and descriptive statistics by condition, 

statistical assumptions of the RM-MANOVA are presented, as are the results of the analysis for 

Research Questions 1-3.  Next, four emergent themes, regarding PSTs’ enactment of the TSAF 

components (i.e., argument structure, public reasoning, and the language of science) when 

planning for inquiry-based science instruction, are presented to answer the fourth research 

question.  This chapter concludes with an overview of the effectiveness of professional learning, 

fidelity of implementation and inter-rater reliability.  



108 
  

Missing Data  

There were some occurrences of missing pretest and posttest assessment data due to 

absences and/or course withdrawals. Participants’ pretest and posttest scores for each measure 

are presented in Figures 17 and 18; the missing points in the graphs represent the missing data.  

The points along the dotted line represent each participant’s pretest score.  The dots along the 

solid line represent each participant’s posttest score.  The order of participants is the same in all 

of the graphs displayed in Figures 17 and 18.   

A total of 42 participants (treatment, n = 20; control, n =22) had valid NSAAQ pretest 

and posttest scores; a total of 39 participants (treatment, n = 19 ; control, n = 20 )  had valid 

ARGTEST pretest and posttest scores; and a total of 37 participants (treatment, n = 19 ; control, 

n = 18 )  had valid WSEA pretest and posttest scores.  Only participants with valid pretest and 

posttest scores were included in the RM-MANOVA.  During the data analysis, SPSS (Version 

25.0) removed the participants with missing pretest or posttest scores from the data analysis 

using listwise deletion.  
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Figure 17. Treatment Condition Pretest and Posttest Scores 
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Figure 18. Control Condition Pretest and Posttest Scores 
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Descriptive Statistics by Condition  

Descriptive statistics by condition are displayed in Table 9.  The table includes a 

summary of the number of participants in each condition, participant demographic and 

background information.  

Table 9 
 
Descriptive Statistics by Condition 
 
 

Descriptors 
Treatment Group 

(N = 20) 
Control Group 

(N=25) 
n PSTs 20 25 
Gender   
   n Male 1 1 
   n Female  19 24 
Ethnicity   
   n Caucasian/White 12 13 
   n Hispanic  2 6 
   n Black/African American  5 6 
   n Asian/Pacific-Islander  1 0 
Primary Language Spoken   
   n English  20 22 
   n Other  0 3 
Class Standing    
   Freshman  0 0 
   Sophomore  0 2 
   Junior  15 21 
   Senior  5 2 
Pretest M (SD) NSAAQ: 88.55 (11.07) 

ARGTEST: 13.21 (4.06) 
WSEA: 3.00 (1.70) 

NSAAQ: 84.87 (6.96) 
ARGTEST: 11.95 (5.63) 
WSEA: 2.84 (1.46) 

 

A between subjects ANOVA revealed that there were no significant differences by 

condition in the group pretest scores for the NSAAQ [F(1,41) = 1.751, p = .193], ARGTEST 

[F(1,39) = .656, p = .423], or the WSEA [F(1,36) = .094, p = .761].  
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Research Questions 1, 2, and 3 

Statistical Assumptions  

The following statistical assumptions of the RM-MANOVA were examined: (a) 

independence of observations, (b) linearity between the dependent variables for each group of 

the independent variable, (c) absence of multicollinearity, (d) normality, (e) absence of 

univariate and multivariate outliers, (f) equality of covariance matrices, and (g) homogeneity of 

variances.  In this study, there were only two points of measurement (i.e., pretest and posttest) 

for each dependent variable; thus, the assumption of sphericity did not apply.   

Violations of statistical assumptions increase the possibility for a Type I or Type II error 

(Lomax & Hahs-Vaughn, 2012).  A Type I error occurs when the null hypothesis is rejected 

when it is actually true, and a Type II error occurs when there is a failure to reject the null 

hypothesis when it is actually false.  

The assumption of independence of observations is met when the value of one 

observation is in no way influenced or related to the value of other observations (Lomax & Hahs-

Vaughn, 2012).  Independence is achieved when samples are selected randomly from the 

population.  Due to the quasi-experimental design of the study, the independence assumption 

was violated.  Therefore, scatterplots of the residuals were analyzed for evidence of 

independence. Residuals that fall into some sort of pattern suggest a violation of the assumption, 

whereas a random distribution of above and below zero suggest evidence of independence of 

observations.  The assumption of independence was tested for each measure (pretest and 

posttest).  Results are reported later in this chapter.   
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The assumption of linearity assumes that there is a linear relationship between each pair 

of dependent variables for each group of the independent variable.  If the variables are not 

linearly related, the power of the test to detect differences between groups is reduced 

(Tabachnick & Fidell, 2014).  This assumption was tested by visually inspecting a scatterplot 

matrix for each dependent measure (pretest and posttest).  Results are reported later in this 

chapter.   

Multicollinearity exists when there are very high correlations among the dependent 

variables.  When conducting a RM-MANOVA, the dependent variables should all be moderately 

correlated with each other, but any correlation over .90 can be problematic (Tabachnick & Fidell, 

2014).  Absence of multicollinearity was checked using Pearson correlation coefficients between 

the dependent variables.  There was no evidence of multicollinearity, as assessed by Pearson 

correlation (|r| < 0.9).  

The assumption of normality is met when sample means are normally distributed.  

Normality can be examined by using graphs of difference scores, statistical tests, and skewness 

and kurtosis statistics (Lomax & Hahs-Vaughn, 2012).  Graphs that can be used to examine 

normality include Q-Q plots, box plots, normal probability plots, and histograms.  Statistical tests 

for normality include the Kolmograv-Smirnov Goodness of Fit and Shapiro-Wilk tests.  These 

tests determine the extent to which the sample distribution is statistically different from a normal 

distribution.  A p-value greater than alpha suggests that the sample distribution is not 

significantly different than what would be expected in a normal distribution.  When examining 

skewness and kurtosis statistics, values within a range of +/- 2.0 suggest evidence of normality.  

In this study, normality was examined for each dependent measure (pretest and posttest) using 
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the Shapiro-Wilk test, as well as skewness and kurtosis statistics.  Results are reported later in 

this chapter.  

A univariate outlier is a data point that lies outside the overall pattern of a distribution.  

Whereas, multivariate outliers are cases (e.g., participants in the current study) that have an 

unusual combination of scores on the dependent measures.  Both types of outliers have the 

potential to skew the outcome of statistical analyses (Tabachnick & Fidell, 2014).  Univariate 

outliers were detected by examining boxplots for each dependent measure (pretest and posttest).  

Results are reported later in this chapter. 

Presence of multivariate outliers was examined using Mahalanobis distance.  The 

calculated Mahalanobis distance values were compared against a chi-square (χ2) distribution 

with degrees of freedom equal to the number of dependent variables and an alpha level of .001 

(Tabachnick & Fidell, 2014).  With three dependent variables (each measured at two time 

points), the Mahalanobis distance values were compared against a critical value of 22.46.  There 

were no multivariate outliers in the data, as assessed by Mahalanobis distance (p > .001). 

The assumption of homogeneity of variance-covariance matrices assumes that there are 

similar variances and covariances (Tabachnick & Fidell, 2014).  This assumption was tested 

using Box’s M test.  A statistically significant p-value (i.e., p < .001) suggests a violation of the 

assumption of homogeneity of variance-covariance matrices.  On the other hand, a non-

significant p-value (i.e., p > .001) indicates that the variance-covariance matrices are equal.  

Box’s M (M = 36.464) suggested that the assumption of homogeneity of variance-covariance 

matrices was met, F (21, 4131.664) = 1.401, p = .105. 
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The assumption of homogeneity of variance is met when the population variances are 

equal for all groups (Lomax & Hahs-Vaughn, 2012).  Violations of the assumption of 

homogeneity of variance results in an increased likelihood of a Type I or Type II error.  

However, the effect of this violation is minimal as long as group sizes equal (i.e., the ratio of the 

largest to smallest group is less than 1.5) (Lomax & Hahs-Vaughn, 2012).  In this study, 

homogeneity of variance was determined using Levine’s test of equality of error variances.  The 

Levene’s test produces an F-statistic and a significance value (p-value).  A p-value of less than 

.05 indicates a violation of the assumption of homogeneity of variance.  The assumption of 

homogeneity was tested for each measure (pretest and posttest).  Results are reported later in this 

chapter.         

Research Question 1 

A RM-MANOVA was conducted in order to examine whether or not PSTs who received 

the intervention demonstrated differences in their understanding of the nature of science, as 

measured by the NSAAQ pre and posttest measures, as compared to PSTs who did not receive 

the intervention.  The within-group factor was time (pretest to posttest) in both conditions.  The 

between-group factor was group (treatment or control).  The interaction referred to the 

interaction between time (pretest and posttest) and group (treatment and control conditions).  The 

test was conducted using an alpha of .05.  Partial Eta Squared (η2) effect sizes were generated via 

SPSS and were interpreted as follows: small (η2 = .01), moderate (η2 = .09), and large (η2 = .25).  

Assumptions Testing Results 

The assumption of independence was not met through random assignment to groups. 

Thus, a scatterplot of residuals was examined for evidence of independence.  The analysis of the 
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simple scatterplot at pretest revealed a random distribution of residuals above and below 0 for 

both groups (treatment and control).  The analysis of the simple scatterplot at posttest also 

revealed a random distribution of residuals above and below 0 for both groups (treatment and 

control), thus suggesting evidence of independence of observations.   

The assumption of linearity was tested by generating two scatterplot matrices, one for the 

treatment group and one for the control group.  The scatterplot matrices revealed evidence of a 

linear relationship between NSAAQ pretest and posttest scores in both groups.  

The assumption of normality was tested using residuals of the NSAAQ pretest and 

posttest scores.  At pretest, there were nonsignificant results for the Shapiro-Wilk test (SW = 

.975, df = 43, p = .454), indicating that the residuals were not significantly different from a 

normal distribution.  Additionally, skewness (.266) and kurtosis (.739) statistics were within +/-

2, suggesting normality of distribution for the NSAAQ pretest scores.  The Q-Q plot revealed 

evidence of normality with the majority of the points falling on or close to the diagonal line. 

Examination of the boxplot at pretest revealed one outlier extending above the top whisker.  At 

posttest, there were nonsignificant results for the Shapiro-Wilk test (SW = .987, df = 44, p = 

.898).  Skewness (.208) and kurtosis (.048) statistics were within +/-2, thus suggesting normality 

of distribution for the NSAAQ posttest scores.  The Q-Q plot also suggested normality, with the 

majority of the points falling close to the diagonal line.  Examination of the boxplot at posttest 

revealed one outlier extending beyond the top whisker.   

The Grubbs’ Test for Outliers (1969) was applied to the one pretest outlier and one 

posttest outlier from the box plot visual analysis. The formula for the Grubbs’ Test is:  

Gmax = Mmax – M / SD                                                                                                 (1) 
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where Mmax is the extreme value, M is the mean, and SD is the standard deviation. The extreme 

value at pretest was 113; M = 86.58, and SD = 9.18.  The Grubb’s critical value for an alpha of 

.05 and a sample size of 43 is 2.9.  For the extreme value of 113, G2.88  < 2.9, indicating that the 

observed value was not different from the pretest mean.  Thus, the participant’s pretest NSAAQ 

score was not omitted from the analysis.  The extreme value at posttest was 116; M = 86.95, and 

SD = 11.00.  The Grubb’s critical value for an alpha of .05 and a sample size of 44 was 2.91. For 

the extreme value of 116, G2.64  < 2.91 indicated that the observed value was not different from 

the pretest mean.  Therefore, the participant’s score was not omitted from the analysis. 

Levene’s Test of Equality of Error Variances was not significant at pretest with F(1,41) = 

2.48, and p = .123 and posttest with F(1,42) = 2.90, and p = .096; therefore, the assumption of 

homogeneity of variances was met.   

Repeated Measures MANOVA Results 

Estimated marginal means for the NSAAQ measure and results from the RM-MANOVA 

and follow-up univariate tests are presented in Tables 10 and 11.    
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Table 10 
 
NSAAQ Estimated Marginal Means (N=36) 
 
   95% Confidence Interval 

Group M SE Lower Upper 

Treatment (n = 19)     

     NSAAQ Pretest 88.211 2.203 83.734 92.687 

     NSAAQ Posttest 91.579 2.483 86.533 96.625 

Control (n = 17)     

     NSAAQ Pretest 84.882 2.329 80.149 89.615 

     NSAAQ Posttest 83.176 2.625 77.842 88.511 

 

Table 11 
 
NSAAQ Results from Univariate Tests 
 

Source df MS F p-value η2 
Observed 

Power 

Between Subjects        

     Group 1 617.325 3.516 .069 .094 .445 

     Error 34 175.560     

Within Subjects       

     Time 1 12.400 .367 .549 .011 .091 

     Time*Group 1 115.511 3.418 .073 .091 .435 

     Error 34 33.793     

  

Results from the RM-MANOVA showed that there was a statistically significant 

interaction effect between group and time on the combined dependent variables, F(3, 32) = 

2.894, p = .050, Wilks' Λ = .787 (η2 = .213, POWER = .635).  Based on estimated effect sizes for 

Partial Eta Squared, the size of the effect was considered large.    
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Follow up univariate ANOVAs were conducted.  These tests showed that there was not a 

statistically significant interaction between group and time on the NSAAQ measure with F(1,34) 

= 3.42 and p = .073 (η2 = .091, POWER = .435) (See Table 10).     

However, given the large effect size for the interaction between group and time on the 

NSAAQ measure, tests of simple main effects were conducted.  Simple main effects for group 

were tested by conducting two separate one-way ANOVAs to explore differences in NSAAQ 

scores between groups at both pretest and posttest.  There was not a statistically significant 

difference in NSAAQ scores between the treatment group (M = 88.55, SE = 2.03) and control 

group (M = 84.87, SE = 1.90)  at pretest, F(1,41) = 1.751, p = .193 (η2 = .041, POWER = .253).  

However, there was a statistically significant difference in NSAAQ scores between groups at 

posttest, F(1,42) = 6.977, p = .012 (η2 = .142, POWER = .733).  Mean NSAAQ scores were 

significantly greater at posttest in the treatment group (M = 91.45, SE = 2.30) compared to the 

control group (M = 83.21, SE = 2.10).  Based on estimated effect sizes for Partial Eta Squared, 

the size of the effect was considered moderate.   

Simple main effects for time were tested by conducting two separate repeated measures 

ANOVAs to explore differences in NSAAQ scores between time points for both the treatment 

and control groups.  These tests showed that there was a statistically significant effect of time on 

NSAAQ scores for the treatment group, F(1, 19) = 4.452, p = .048 (η2 = .190, POWER = .517).  

For the treatment group, the NSAAQ posttest mean (M = 91.45, SE = 2.64) was significantly 

greater than the NSAAQ pretest mean (M = 88.55, SE = 2.48).  The size of the effect was 

considered moderate.  On the other hand, there was not a statistically significant effect of time on 

NSAAQ scores for the control group, F(1, 21) = .425, p = .521 (η2 =. 020, POWER = .095). For 
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the control group, there was no difference between the NSAAQ pretest mean (M = 84.77, SE = 

1.52) and the NSAAQ posttest mean (M = 83.36, SE = 1.94).  

In summary, the treatment group made significant gains on the NSAAQ measure from 

pretest to posttest, whereas there was no change between pretest and posttest scores in the control 

group.  Although there was no statistically significant difference in scores between the two 

groups at pretest, the treatment group’s posttest mean was significantly higher than the control 

group’s posttest mean.  The differences based on time and group are represented in the profile 

plot shown in Figure 19.  These results suggest that PSTs who received the intervention 

demonstrated a significant increase in their understanding of the nature of science, as measured 

by the NSAAQ pre and posttest measures, as compared to PSTs who did not receive the 

intervention.   

 
Figure 19. Profile Plot of Interaction between Group and Time on NSAAQ 
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Research Question 2  

A RM-MANOVA was conducted in order to examine whether or not PSTs who received 

the intervention demonstrated differences in their knowledge of argumentation as measured by 

the ARGTEST pre and posttest measures, as compared to PSTs who did not receive the 

intervention.  The within-group factor was time (pretest to posttest) in both conditions.  The 

between-group factor was group (treatment or control).  The interaction referred to the 

interaction between time (pretest and posttest) and group (treatment and control conditions).  The 

test was conducted using an alpha of .05.  Partial Eta Squared (η2) effect sizes were generated via 

SPSS and were interpreted as follows: small (η2 = .01), moderate (η2 = .09), and large (η2 = .25).  

Assumptions Testing Results 

The assumption of independence was not met through random assignment to groups. 

Thus, a scatterplot of residuals was examined for evidence of independence.  The analysis of the 

simple scatterplot at pretest revealed a random distribution of residuals above and below 0 for 

both groups (treatment and control).  The analysis of the simple scatterplot at posttest also 

revealed a random distribution of residuals above and below 0 for both groups (treatment and 

control), thus suggesting evidence of independence of observations.   

The assumption of linearity was tested by generating two scatterplot matrices, one for the 

treatment group and one for the control group.  The scatterplot matrices revealed evidence of a 

linear relationship between ARGTEST pretest and posttest scores in both groups.  

The assumption of normality was tested using residuals of the ARGTEST pretest and 

posttest scores.  At pretest, there were nonsignificant results for the Shapiro-Wilk test (SW = 

.986, df = 41, p = .880), indicating that the residuals were not significantly different from a 
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normal distribution.  Additionally, skewness (.129) and kurtosis (.040) statistics were within +/-

2, suggesting normality of distribution for the ARGTEST pretest scores.  The Q-Q plot revealed 

that majority of the points fell on or close to the diagonal line. Examination of the boxplot at 

pretest also suggested normality, with no outliers.  At posttest, there were nonsignificant results 

for the Shapiro-Wilk test (SW = .976, df = 43, p = .482).  Skewness (.138) and kurtosis (-.561) 

statistics were within +/-2, thus suggesting normality of distribution for the ARGTEST posttest 

scores.  The Q-Q plot also suggested normality, with the majority of the points falling close to 

the diagonal line.  Examination of the boxplot showed no outliers at posttest.  

According to Levene’s Test of Equality of Error Variances, the assumption of 

homogeneity was met at pretest with F(1,39) = 1.85, and p = .182, but not at posttest with 

F(1,41) = 4.95, and p = .032.  The effect of this violation is minimal with roughly equal group 

sizes (i.e., the ratio of the largest to smallest group is less than 1.5).  Overall, the violations to the 

assumptions were not severe, and the researcher decided to proceed with the test.  Violations of 

assumptions, do, however, increase the possibility for a Type I or Type II error; thus, results 

should be interpreted with caution.   

Repeated Measures MANOVA Results 

Estimated marginal means for the ARGTEST measure and results from the RM-

MANOVA and follow-up univariate tests are presented in Tables 12 and 13.    
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Table 12 
 
ARGTEST Estimated Marginal Means (N = 36) 

 
   95% Confidence Interval 

Group M SE Lower Upper 

Treatment (n = 19)     

     ARGTEST Pretest 13.316 1.093 11.094 15.538 

     ARGTEST Posttest 13.368 .894 11.552 15.185 

Control (n = 17)     

     ARGTEST Pretest 11.412 1.156 9.063 13.761 

     ARGTEST Posttest 11.647 .945 9.726 13.568 

 

 

Table 13 
 
ARGTEST Results from Univariate Tests 

 

Source df MS F p-value η2 
Observed 

Power 

Between Subjects        

     Group 1 58.963 2.236 .144 .062 .306 

     Error 34 26.368     

Within Subjects       

     Time 1 .372 .032 .859 .001 .053 

     Time*Group 1 .150 .013 .910 <.001 .051 

     Error 34 11.530     

 

Results from the RM-MANOVA showed that there was a statistically significant 

interaction effect between group and time on the combined dependent variables, F(3, 32) = 
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2.894, p = .050, Wilks' Λ = .787 (η2 = .213, POWER = .635).  Based on estimated effect sizes for 

Partial Eta Squared, the size of the effect was considered large.    

Follow up univariate ANOVAs were conducted.  As shown in Table 12, there was not a 

statistically significant interaction between group and time on the ARGTEST measure with 

F(1,34) = .013 and p = .910 (η2 = <.001, POWER = .051).     

Given the non-significant interaction effect between group and time on the ARGTEST, 

main effects for the between- and within-subjects factors were examined. Regarding the 

between-group factor, there was not a statistically significant difference in ARGTEST scores 

between the treatment and control groups, F(1,34) = 2.236, p = .144 (η2 = .062, POWER = .306).  

Estimated marginal means of the treatment group (M = 13.34, SE = .83) did not differ from the 

control group (M = 11.53, SE = .88).  Based on estimated effect sizes for Partial Eta Squared, the 

size of the effect was considered small.    

Regarding the within-group factor, there was not a statistically significant difference in 

ARGTEST scores based on time (pretest to posttest), F(1,34) = 0.32, p = .859 (η2 = .001, 

POWER = .053).  The ARGTEST posttest estimated marginal mean (M = 12.51, SE = .65) did 

not have statistically significant differences with the pretest estimated marginal mean (M = 

12.36, SE = .80).  Based on estimated effect sizes for Partial Eta Squared, the size of the effect 

was considered very small.  

In summary, there was no difference in ARGTEST scores based on group or time (See 

Figure 20).  These results suggest that PSTs who received the intervention did not demonstrate a 

difference in their knowledge of argumentation, as measured by the ARGTEST pre and posttest 

measures, when compared to those of PSTs who did not receive the intervention.  
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Figure 20. Profile Plot of Interaction between Group and Time on ARGTEST 

 

Research Question 3 

A RM-MANOVA was conducted in order to examine whether or not PSTs who received 

the intervention demonstrated differences in the complexity of their written explanations as 

measured by the WSEA pre and posttest measures, when compared to PSTs who did not receive 

the intervention.  The within-group factor was time (pretest to posttest) in both conditions.  The 

between-group factor was group (treatment or control).  The interaction referred to the 

interaction between time (pretest and posttest) and group (treatment and control conditions).  The 

test was conducted using an alpha of .05.  Partial Eta Squared (η2) effect sizes were generated via 

SPSS and were interpreted as follows: small (η2 = .01), moderate (η2 = .09), and large (η2 = .25).  
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Assumptions Testing Results 

The assumption of independence was not met through random assignment to groups. 

Thus, a scatterplot of residuals was examined for evidence of independence.  The analysis of the 

simple scatterplot at pretest revealed a random distribution of residuals above and below 0 for 

both groups (treatment and control).  The analysis of the simple scatterplot at posttest also 

revealed a random distribution of residuals above and below 0 for both groups (treatment and 

control), thus suggesting evidence of independence of observations.   

The assumption of linearity was tested by generating two scatterplot matrices, one for the 

treatment group and one for the control group.  The scatterplot matrices revealed some evidence 

of a linear relationship between WSEA pretest and posttest scores in both groups. 

The assumption of normality was tested using residuals of the WSEA pretest and posttest 

scores.  At pretest, there were significant results for the Shapiro-Wilk test (SW = .764, df = 38, p 

= <.001), indicating that the residuals were significantly different from a normal distribution.  

However, skewness (-1.093) and kurtosis (.257) statistics were within +/-2, suggesting evidence 

of normality.  Additionally, the Q-Q plot revealed evidence of normality with the majority of the 

points falling on or near the diagonal line. Examination of the boxplot showed no outliers at 

pretest.  At posttest, there were also significant results for the Shapiro-Wilk test (SW = .761, df = 

43, p <.001).  Although the skewness statistic (.208) was within +/-2, the kurtosis statistic was 

not (2.481).  The high kurtosis statistic indicated the presence of outliers.  Examination of the 

boxplot confirmed the presence of two outliers extending below the bottom whisker.  
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The Grubbs’ Test for Outliers and critical values of Grubbs’ Outlier (G) Test (1969) were 

applied to the two posttest outliers from the box plot visual analysis. The formula for the Grubbs’ 

Test is:  

Gmax = Mmax – M / SD 

where Mmax is the extreme value, M is the mean, and SD is the standard deviation. The extreme 

values were 2 and 0; M = 3.53, and SD = 1.39.  The Grubb’s critical value for an alpha of .05 and 

a sample size of 43 is 2.9.  For the extreme value of 2, G-1.10.  < 2.9  indicating that the observed 

value was not different from the postest mean.  Thus, the participant’s posttest WSEA score was 

not omitted from the analysis.  For the extreme value of 0, G-2.54  < 2.91 indicated that the 

observed value was not different from the posttest mean.  Therefore, the participant’s WSEA 

posttest score was not omitted from the analysis.  Levene’s Test of Equality of Error Variances 

was not significant at pretest with F(1,36) = .429, and p = .488 and posttest with F(1,41) = 1.178, 

and p = .284; therefore, the assumption of homogeneity of variances was met.   

Repeated Measures MANOVA Results  

Estimated marginal means for the WSEA measure and results from the RM-MANOVA 

and follow-up univariate tests are presented in Tables 14 and 15.    
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Table 14 
 
WSEA Estimated Marginal Means (N = 36) 

 

   95% Confidence Interval 

Group M SE Lower Upper 

Treatment (n = 19)     

     WSEA Pretest 3.000 .374 2.239 3.761 

     WSEA Posttest 4.053 .321 3.400 4.706 

Control (n = 17)     

     WSEA Pretest 2.824 .396 2.020 3.628 

     WSEA Posttest 2.882 .340 2.192 3.573 

 

 

Table 15 
 
WSEA Results from Univariate Tests 
 

Source df MS F p-value η2 
Observed 

Power 

Between Subjects        

     Group 1 8.137 2.760 .106 .075 .365 

     Error 34 2.948     

Within Subjects       

     Time 1 5.542 3.309 .078 .089 .424 

     Time*Group 1 4.431 2.645 .113 .072 .352 

     Error 34 1.675     

 

Results from the RM-MANOVA showed that there was a statistically significant 

interaction effect between group and time on the combined dependent variables, F(3, 32) = 



129 
  

2.894, p = .050, Wilks' Λ = .787 (η2 = .213, POWER = .635).  Based on estimated effect sizes for 

Partial Eta Squared, the size of the effect was considered large.   

Follow up univariate ANOVAs were conducted.  As shown in Table 14, there was not a 

statistically significant interaction between group and time on the WSEA measure with F(1,34) = 

2.65 and p = .113 (η2 = .072, POWER = .352).      

However, given the moderate effect size for the interaction between group and time on 

the WSEA measure, tests of simple main effects were conducted.  Simple main effects for group 

were tested by conducting two separate one-way ANOVAs to explore differences in WSEA 

scores between groups at both pretest and posttest.  There was not a statistically significant 

difference in WSEA scores between the treatment group (M = 3.00, SE = .36) and control group 

(M = 2.84, SE = .36) at pretest, F(1,36) = .094, p = .761 (η2 = .003, POWER = .060).  However, 

there was a statistically significant difference in WSEA scores between groups at posttest, 

F(1,41) = 5.227, p = .027 (η2 = .113, POWER = .607).  Mean WSEA scores were significantly 

greater at posttest in the treatment group (M = 4.05, SE = .30) compared to the control group 

(M = 3.13, SE = .27).  Based on estimated effect sizes for Partial Eta Squared, the size of the 

effect was considered moderate.   

Sample main effects for time were tested by conducting two separate repeated measures 

ANOVAs to explore differences in WSEA scores between time points for both the treatment and 

control group.  These tests showed that there was a statistically significant effect of time on 

WSEA scores for the treatment group, F(1, 18) = 7.157, p = .015 (η2 = .284, POWER = .716).  

For the treatment group, the WSEA posttest mean (M = 4.05, SE = .29) was significantly greater 

than the WSEA pretest mean (M = 3.00, SE = .39).  The size of the effect was considered large.  
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On the other hand, there was not a statistically significant effect of time on WSEA scores for the 

control group, F(1,18) = .061, p = .807 (η2 =. 003, POWER = .056).  For the control group, there 

was no difference between the WSEA pretest mean (M = 2.84, SE = .34) and the WSEA posttest 

mean (M = 2.95, SE =.34).  

In summary, the treatment group made significant gains on the WSEA measure from 

pretest to posttest, whereas there was no change between pretest and posttest scores in the control 

group.  Although there was no difference in scores between the two groups at pretest, the 

treatment group’s posttest mean was significantly higher than the control group’s posttest mean.  

The differences based on time and group are represented in the profile plot shown in Figure 21.  

These results suggest that PSTs who received the intervention demonstrated a significant 

increase in the complexity of their written explanations, as measured by the WSEA pre and 

posttest measures, when compared to those of PSTs who did not receive the intervention.  

 
Figure 21. Profile Plot of Interaction between Group and Time on WSEA 
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The majority of treatment group participants (11) demonstrated noticeable improvement 

in the complexity of their written explanations, in terms of structure, from pretest to posttest.  

Table 16 illustrates changes in three PSTs’ written explanations before and after receiving the 

intervention.  For example, prior to the intervention, P1 made an accurate claim, but lacked 

evidence and reasoning.  After receiving the intervention, P1 added an element of complexity by 

effectively using evidence to support the scientific claim.  While P10 made appropriate use of 

evidence prior to the intervention, improvement was made post-intervention with the addition of 

accurate and complete reasoning.  Prior to the intervention, P20 made an inaccurate claim, 

possibly due to a lack of content knowledge surrounding the topic of erosion.  After receiving the 

intervention, P20 demonstrated noticeable improvement, with the inclusion of an accurate claim 

and appropriate evidence.    
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Table 16  

Changes in Treatment Group Participants' Written Explanations 

Preintervention  Postintervention  

Judging by the graph, sweet potato is the most 
resisitant to the effects of erosion. (P1) 

Rubric Score:  
     Claim – 2/2 
     Evidence – 0/2 
     Reasoning – 0/2 

Sweet potatoes are the most resistant to the 
effects of erosion because based on the chart, 
it shows crops that have less soil and sweet 
potatoes have the least amount of soil lost. 
Therefore, sweet potatoes are the most 
resistant because they haven’t lost that much 
soil. (P1)  

Rubric Score:  
     Claim – 2/2 
     Evidence – 2/2 
     Reasoning – 1/2 

Sweet potato is the most resistant to the 
effects of erosion because it has the least 
amount of soil loss out of all the crops (P10)  

Rubric Score: 
     Claim – 2/2 
     Evidence – 2/2 
     Reasoning – 0/2 

The sweet potato is the most resistant to the 
effects of erosion. The chart shows that sweet 
potatoes have the less amount of soil loss. 
Therefore, sweet potato is the crop most 
resistant because erosion is defined as soil 
loss and the sweet potato has the less amount 
of soil loss compared to the others. (P10) 

Rubric Score:  
     Claim – 2/2 
     Evidence – 2/2 
     Reasoning – 2/2 

Castor beans are the most resistant to the 
effects of erosion, due to the highest soil loss 
of 4 t/ha. (P20) 

Rubric Score:  
     Claim – 0/2 
     Evidence – 0/2 
     Reasoning – 0/2 

Sweet potatoes are the most resistant to the 
effect of erosion, and I know this because 
there was the least amount of soil loss. (P20) 

Rubric Score:  
     Claim – 2/2 
     Evidence – 2/2 
     Reasoning – 0/2 

 

Research Question 4  

Participants’ lesson plans, written in groups of three to five, were collected and analyzed 

as an additional layer of data to explore how elementary PSTs who participated in the 
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intervention incorporated components of the TSAF (i.e., argument structure, public reasoning, 

and the language of science) when planning for inquiry-based science instruction.  An overview 

of each groups’ lesson plan, including intended grade level, branch of science, and targeted 

science concept(s), is provided in Table 17.   

Table 17 
 
Overview and Foci of PSTs' Lesson Plans 
 

Participant 
Group 

Grade 
Level 

Branch of 
Science Key Concept(s) 

Group 1 2nd Physical 
Science 

1. All objects and substances are made of matter.  
 

2. 2. Objects and substances can be classified by their 
physical and chemical properties.  

Group 2 3rd Life Science 3. 1. Animals can be classified into major groups 
(mammals, birds, reptiles, amphibians, fish, 
arthropods, vertebrates, and invertebrates, those 
having live births and those which lay eggs) 
according to their physical characteristics and 
behaviors.   

Group 3 5th Life Science 4. 1. Plants and animals, including humans, interact 
with and depend upon each other and their 
environment to satisfy their basic needs.  

Group 4 5th Earth and 
Space 

Science 

5. 1. The ocean is an integral part of the water cycle 
and is connected to all of Earth’s water reservoirs 
via evaporation and precipitation processes.  

Group 5 5th Earth and 
Space 

Science 

6. A galaxy consists of gas, dust, and many stars, 
including any objects orbiting the stars. 

7. 2. The Solar System includes the Sun, Earth, 
Moon, and other planets and their moons.   

 
All five lesson plans were analyzed using a constant comparative approach (Glaser & 

Strauss, 1967).  Initial coding involved coding each incident in the data using a priori codes 

based on the three features of the TSAF (Zembal-Saul, 2009).  The initial coding phase was 
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preceded by two additional rounds, resulting in the addition of six new codes that emerged 

during analysis.  The final codebook consisted of three categories (argument structure, public 

reasoning, and language of science) to align with the three main features of the TSAF, as well as 

a fourth category focused on negative instances.  The codes within the first three categories 

encompass different aspects of the three main features of the TSAF and assist to define how 

those features were incorporated by the participants when planning for science instruction.  In an 

attempt to minimize the effects of researcher bias, negative instances were also examined rather 

than merely searching for confirmatory data (Kolb, 2012).  The codes within this final category 

identified instances within PSTs’ lesson plans that did not align with the TSAF.  Table 18 

displays the number of instances found in each coding category per participant group.   

Table 18 
 
Number of Instances Found in Each Coding Category 
 

Group 
Argument 
Structure Public Reasoning 

Language of 
Science 

Negative 
Instances 

Group 1 4 4 5 0 

Group 2 2 1 3 0 

Group 3 14 9 5 0 

Group 4  2 2 1 2 

Group 5  6 1 3 0 

 

The close analysis of participants’ written lesson plans led to four emergent themes 

regarding PSTs’ enactment of the TSAF components (i.e., argument structure, public reasoning, 

and the language of science) when planning for inquiry-based science instruction.  These themes 
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are described in the following section and are supported with examples from participants’ lesson 

plans.  

 
Theme One:  

Opportunities for Students to Collect and Analyze Data Associated with a Driving Question 

Central to all five participant groups’ lesson plans were one or more opportunities for 

students to collect, record, and interpret data.  This critical aspect of scientific inquiry builds the 

foundation for effective explanation construction.  Groups planned meaningful hands-on 

investigations for students to make observations and collect data and planned opportunities for 

students to read about the phenomena under study from secondary sources such as science trade 

books and websites. For example, Group 3 planned three different stations to help students 

explore different representations of how physical adaptations help animals survive in their 

habitat.  The first station was designed to help students investigate how blubber protects animals 

from weather; the second station was aimed at helping students explore how camouflage helps 

keep animals safe; and the third station focused on exploring how webbed feet contribute to 

birds’ survival in their habitat.  A fourth station was focused on providing students the 

opportunity to read about animal adaptations from a wide variety of science texts on the topic.  

Additionally, computers were made available and a list of relevant websites (e.g.,  

https://www.nationalgeographic.org/encyclopedia/adaptation/; 

http://kids.nceas.ucsb.edu/biomes/temperateforest.html) was provided for students to explore.  

Figure 22 shows an image of this station, taken during Group 3’s microteaching session.  At each 

of the four stations, students were expected to observe, record data, and collect evidence to 

support their claims about animal adaptations.  

https://www.nationalgeographic.org/encyclopedia/adaptation/
http://kids.nceas.ucsb.edu/biomes/temperateforest.html
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Figure 22. Book/Computer Station  
 

Group 1 also planned stations to help students explore the physical properties of solids 

and liquids. Each station was intended to provide students with opportunities to interact with and 

make observations of solids and liquids under various conditions. At one station, students were 

to observe as honey was poured from one container to another.  At a different station, students 

were asked to observe as a piece of paper was shredded into smaller pieces.  Throughout the 

lesson, students were provided with the opportunity to share and discuss their observations with 

their peers.  Finally, students were to use their observations as evidence to support a claim about 

whether sand is a solid or a liquid.  

All five participant groups also included in their lesson plans a chart or table to help 

students organize and represent their observations/data. For example, Group 3 provided a 

separate experiment worksheet for each of the four stations the group had designed. Each 
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experiment worksheet listed a guiding question, directions for carrying out the investigation or 

experiment, as well as a table for organizing and representing students’ observations.  Figure 23 

provides an example of an investigation sheet.  

 

Figure 23. Example of Investigation Sheet  
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Theme Two: Emphasis on the Use of Text to Support Scientific Inquiry  

All five participant groups incorporated the use of text within their science lesson plans.  

However, the way in which text was utilized varied across groups. Some groups planned to use 

scientific texts to build students’ background knowledge and stimulate interest about a topic.  For 

example, Group 1, whose lesson plan focused on properties of matter, specified that it planned to 

read-aloud All About Matter by Mari Schuh toward the start of the lesson, prior to having 

students engage in firsthand exploration. Groups 4 and 5 also planned to incorporate a teacher 

read-aloud at the start of the lesson.  However, unlike Group 1 who selected a text with 

expository structures using the language of science, Groups 4 and 5 chose to read-aloud an 

informational storybook.  This type of text presents science topics using the traditional elements 

of story structure (i.e., characters, setting, conflict, solution).   

Other participant groups positioned text not only as a tool for building students’ 

background knowledge and increasing interest, but also as a source of evidence to support 

scientific claims.  For example, Group 5 incorporated the use articles from a Newsela text set 

(see https://newsela.com/text-sets/428954) to build students’ background knowledge about the 

planets and other objects in the solar system. Later in the lesson, this group of PSTs planned to 

encourage students to use evidence from the Newsela articles to make a claim about whether or 

not Pluto should be considered a planet.  This group provided an example of how texts can be 

used to present information (such as exploration of the solar system) that cannot be obtained 

through firsthand investigation.  Other groups, such as Group 3, incorporated opportunities 

within their lesson plans for students to read and discuss related science texts in addition to 

conducting firsthand investigations.  
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Lastly, some participant groups used scientific texts as a way to extend their lessons and 

help students acquire additional information about the topics.  For example, Group 2 included an 

extension activity within its lesson plan that involved students in researching an animal and its 

habitat (using books and websites) and presenting the group’s findings to the class.  

Only two of the five participant groups made attempts to accommodate students’ varying 

reading abilities.  Group 3 noted that it would provide a range of books at different reading levels 

and in multiple languages for students to use at the book/computer station.  Group 5 also noted in 

its lesson plan the use of Newsela to provide students with texts on the same topic written at 

different reading levels.  

 

Theme Three: Use of Scaffolds for Helping Students Construct Scientific Explanations  

All five participant groups’ lesson plans demonstrated PSTs’ attempts to engage students 

in scientific explanation.  Although there was much variation in the quality of these attempts, 

strategies utilized for supporting students’ construction of evidence-based explanations were 

clearly informed by approaches that were modeled in class throughout the semester.  A common 

strategy included using the claim, evidence, and reasoning (CER) framework.  For example, all 

five participant groups included writing scaffolds based on the CER framework to help students 

appropriately justify their claims in writing. Scaffolds designed by PSTs varied in detail, length, 

and structure. Although some groups only provided very general sentence starters, other groups 

provided more detailed and content specific support.  Group 5, for example, designed a handout 

(see Figure 24) including a description and a content specific sentence starter for each 

component of the CER framework to support students in constructing an evidence-based claim 

about the classification of Pluto as a planet. 
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Figure 24. Writing Scaffolds Developed by PSTs 
 

The majority of participant groups also demonstrated a use of talk moves and teacher 

questioning techniques focused on evidence and explanation.  It was evident that PSTs were 

using the CER framework to inform the types of questions they planned to pose to students.  

Teacher questions mainly focused on refocusing students’ attention on the guiding question, 

prompting students to explicate their reasoning (e.g., How do you know?  Why?), and 

encouraging students to consider how a claim aligns with the available evidence (e.g., What 

evidence do you have to support your claim?).  Of the five participant groups, only one group 
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provided an opportunity within its lesson plan for students to consider alternative claims and 

opposing viewpoints.   

 
Theme Four: Attention to Developing Students’ Vocabulary Knowledge in Science 

An emphasis on developing students’ vocabulary knowledge in science was evident in 

participant groups’ lesson plans.  Most groups included an explicit language-based task or 

instruction at the start of the 5E lesson sequence, prior to engaging students in an investigation.  

These instructional tasks/strategies were clearly informed by strategies that were modeled in 

class throughout the semester.  For example, Group 1 included the use of a Frayer “4-square” 

model to encourage students to think more deeply about the differences between solids and 

liquids.  Group 3 included a word sort activity (See Figure 25) to develop students’ 

understanding of how different types of adaptations help animals survive in their environments. 

Group 4 included a vocabulary handout (See Figure 26) to be completed by students after 

discussing a model of the water cycle as a whole-group.  The handout consists of four target 

words (water vapor, evaporation, condensation, precipitation) and their definition, as well as a 

space for students to draw an illustration and write a sentence.  Both Groups 3 and 5 mentioned 

within their lesson plans the availability of a domain-specific word wall to provide reference 

support for students during scientific writing activities. Group 2 included a vocabulary matching 

activity (See Figure 27), but did not make an effort to develop students’ understanding of the 

words beyond the definitional level.  
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Figure 25. Word Sort Activity 
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Figure 26. Vocabulary Handout 
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Figure 27. Vocabulary Matching Activity  
 

Evaluation of Professional Learning  

Teacher Satisfaction Survey Results  

The course instructor’s reaction to the provided PL was evaluated using the TSAF 

Instructor Satisfaction Survey (TSAF ISS).  This survey was completed by the course instructor 

of the treatment group at the conclusion of the eight-week PL.  The TSAF ISS, developed using 

evidence-based principles for survey development (Dillman et al., 2014), consists of 12 four-

point Likert scale questions and a comment section.  The survey results showed that the course 

instructor had an overall positive reaction to the provided PD.  As shown in Table 19, the course 
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instructor rated all questions as a 4 (Strongly Agree) or as a 3 (Agree).  None of the questions 

were rated as a 1 (Strongly Disagree) or a 2 (Disagree). The instructor did not write any 

additional comments in the section provided.  

 

Table 19 
 
Instructor Satisfaction Survey Results 
 

Items 
Strongly 
Disagree 

 
Disagree 

 
Agree 

Strongly 
Agree 

Level 1. Effective professional learning experiences      
L1.1. The objectives of the professional development 
were clearly stated.  

 
 

 
 ✓ 

L1.2 The professional development content was aligned 
to the stated objectives.   

  
 ✓ 

L1.3 The professional development was appropriate 
given my previous level of knowledge.   

  
 ✓ 

L1.4 The professional development delivery was 
engaging.   

  
✓  

L1.5 The professional development content was 
organized.   

  
 ✓ 

L1.6. The professional development content was clearly 
delivered.  

  
 ✓ 

L1.7. The professional development supported me to 
reflect on my own teaching practices for teaching 
science as argument.  

  
 ✓ 

L1.8 The time allotted for the professional development 
was sufficient.   

  
 ✓ 

Level 2. Essential participant knowledge and skills      
L2.1 I have increased my understanding of the role of 
language and literacy in science.  

  
 ✓ 

L2.2 I have increased my understanding of how to use 
the TSAF Framework in my science methods course to 
support PSTs’ developing knowledge and practices 
related to scientific explanation.  

  

 ✓ 

L2.3 I have increased my knowledge on how to use 
writing scaffolds to support PSTs in writing scientific 
explanations.  

  
✓  

L2.4 I have increased my knowledge on how to use 
specific talk moves to scaffold PSTs’ communication of 
scientific ideas and evidence in ways that reflect 
scientific discourse.  

  

✓  
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Social Validity Questionnaire Results   

 
The TSAF Social Validity Questionnaire (TSAF SVQ) was also completed by the course 

instructor of the treatment group at the conclusion of the eight-week PL.  The survey was used to 

obtain instructor feedback regarding acceptability of and satisfaction with intervention goals, 

procedures, and outcomes (Wolf, 1978).  The TSAF SVQ, also developed using evidence-based 

principles for survey development (Dillman et al., 2014), includes two sections: 12 questions (ten 

5-point Likert scale questions and two open-ended questions) and a comment area.  Results, 

shown in Table 20, indicated that the course instructor of the treatment group strongly agreed 

that the TSAF protocol was an appropriate and effective instructional tool for improving PSTs’ 

knowledge of the NOS and knowledge of argumentation.  The instructor did not write any 

additional comments/feedback in the section provided.   
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Table 20 
 
TSAF Social Validity Questionnaire Results 

 

Items 
Strongly 
Disagree Disagree Neutral Agree 

Strongly 
Agree 

1. The TSAF is appropriate for my 
students. 

 
 

  
 ✓ 

2. The TSAF is aligned with the current 
goals of my science methods course.  

   
 ✓ 

3. The TSAF improves mt students’ 
knowledge of the nature of science.  

   
 ✓ 

4. The TSAF improves my students’ 
understanding of argumentation.  

   
 ✓ 

5. The TSAF protocol procedures are 
appropriate for my science methods 
course.  

   
 ✓ 

6. The TSAF protocol procedures are easy 
to implement.  

   
✓  

7. The TSAF protocol is an effective 
instructional tool.  

   
 ✓ 

8. The TSAF protocol is an efficient 
instructional tool.  

   
 ✓ 

9. I would use the TSAF protocol with my 
students.  

   
 ✓ 

10. I would participate in additional TSAF 
professional learning activities.  

   
 ✓ 

 

Fidelity of Implementation Results 

For the purpose of this study, fidelity of implementation (FOI) was defined as the level to 

which the instructor in the treatment condition adhered to the intervention protocols as intended 

by the researcher.  All 12 intervention sessions of the science methods course were observed by 

the researcher.  Fidelity of implementation was tracked across all three phases of the study using 

the three researcher-developed fidelity checklists (FCs). The fidelity checklists are contained in 

Appendices U1-U3.  A phase fidelity percentage (PF%) was calculated for each phase of the 

intervention by dividing the total number of adherence points achieved by the total number of 

adherence points possible and multiplying by 100.  To calculate a PF% for 2, the fidelity scores 
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from all three investigations (Investigation 1 + Investigation 2 + Investigation 3) were combined.  

A total fidelity percentage (TF%) for the entire 12-week intervention was calculated by dividing 

the total number of adherence points achieved across all three phases by the total number of 

adherence points possible and multiplying by 100.   

The science methods instructor of the treatment condition demonstrated moderate to high 

levels of fidelity over the course of the 12-week intervention period.  She achieved 17/17 points 

(100%) for Phase 1 of the intervention.  During Phase 2 of the intervention, the instructor 

achieved 24/25 points (96%) for Model Lesson 1, 24/25 points (96%) for Model Lesson 2, and 

17/25 points (68%) for Model Lesson 3, for a total of 87% fidelity.  During Model Lesson 1, the 

course instructor missed one adherence point during the Do section for failing to display a visual 

representation of the CER Framework.  During Model Lesson 2, she missed one adherence point 

during the Cue section for not sharing the specific learning goal(s)/objective(s) of the lesson with 

PSTs.  Fidelity of implementation was lower for the Model Lesson 3 due to a lack of 

instructional time.  PSTs took longer than expected to design and build their model farmsteads 

during the hands-on investigation portion of the lesson. After engaging in the lesson as learners, 

time did not allow for PSTs to unpack the lesson from the perspective of the teacher.  Thus, the 

course instructor of the treatment condition missed several adherence points during model lesson 

3 in the Review/Reflect section, as well as the Salient Features and Essential Components 

section.   

During Phase 3, the course instructor achieved 13/15 points (87%), and she missed one 

adherence point during the Cue section for failing to distribute and discuss the planning 

questions related to the TSAF.  Additionally, she missed one adherence point in the Salient 
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Features and Essential Components section for failing to emphasize the NOS (i.e., what scientists 

do and why).  

Overall, the course instructor of the treatment condition achieved 89% fidelity for the 

entire 12-week intervention.  According to Durlak and DuPre (2008), 60% or higher adherence 

to the protocol is an appropriate level of fidelity for a new intervention, especially in the early 

stages of implementation.  

Inter-Rater Reliability  

In order to establish inter-rater reliability across several important intersections of the 

study, a graduate student assisted the researcher for the Assessment Scoring, the Fidelity 

Checklist scores, the Instructor Fidelity Worksheet, and the Lesson Plans Analyses.  These 

protocols are described below. 

Assessment Scoring  

A CITI certified graduate student research assistant (RA) conducted interrater reliability 

checks for 100% of the pre and post measures.  Using the Assessment Interrater Reliability 

Worksheet (IRW) displayed in Appendix V1, the RA rescored all pre- and post-assessments 

(NSAAQ, ARGTEST, and WSEA).  The researcher compared the scoring results she recorded 

with the scoring results recorded by the RA. Every item and the total score were reviewed.  Inter-

rater reliability on the pretests was 91% for the NSAAQ, 85% for the ARGTEST, and 95% for 

the WSEA.  Inter-rater reliability on the posttests was 93% for two of the measures (NSAAQ and 

the ARGTEST) and 98% for the WSEA.  Most of the differences in recorded scores were a result 

of scorer error and were corrected.  In a few cases, when scoring the WSEA, the RA assigned a 
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different rubric score than did the researcher.  In those cases, the participant’s written 

explanation was discussed, and consensus was reached using the criteria for scoring. 

Fidelity Checklist Scores  

  The RA also conducted interrater reliability checks for the FC scores.  The RA reviewed 

recordings from each weekly session and independently completed the FCs for all three phases 

of the intervention.  Using the point-by-point method of agreement, percentage of agreement 

between the researcher and RA was 87%.   

Instructor Fidelity Worksheet  

Lastly, the RA conducted interrater reliability checks for scores recorded on the IFW. 

The RA recalculated 100% of scores and percentages for the IFW and noted the results on the 

Interrater Reliability Instructor Fidelity Worksheet (IR-IFW) contained in Appendix V2.  

Percentage of agreement for all fidelity calculations was 100%.   

Lesson Plan Analysis 

In order to establish inter-rater reliability, the RA, who is experienced in document 

analysis, independently coded all five group PST lesson plans using the final codebook (See 

Table 8). Inter-rater reliability was calculated as the number of agreed upon codes divided by the 

total number of codes in each document.  Inter-rater agreement of 92% was reached through a 

process of initial coding, discussion, additional rounds of coding, resolution of discrepancies, and 

final agreement.   

Summary 

The results of the current study have been presented in this chapter.  A RM-MANOVA 

was conducted to answer the first three research questions.  Results from the RM-MANOVA 
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showed that there was a statistically significant interaction effect between group and time on the 

combined dependent variables, F(3, 32) = 2.894, p = .050, Wilks' Λ = .787 (η2 = .213, POWER = 

.635).  Based on estimated effect sizes for Partial Eta Squared, the size of the effect was 

considered large.  Although follow-up univariate ANOVAs revealed no statistically significant 

interaction between group and time on the NSAAQ measure with F(1,34) = 3.42 and p = .073 (η2 

= .091, POWER = .435), tests of simple main effects showed that the treatment group made 

significant gains on the NSAAQ measure from pretest to posttest with F(1, 19) = 4.452 and p = 

.048 (η2 = .190, POWER = .517). In contrast, there was no change between pretest and posttest 

scores in the control group.  Additionally, although there was no statistically significant 

difference in scores between the two groups at pretest, the treatment group’s posttest mean was 

significantly higher than the control group’s posttest mean with F(1,42) = 6.977 and p = .012 (η2 

= .142, POWER = .733).  This suggests that PSTs who received the intervention demonstrated a 

significant increase in their understanding of the nature of science, as measured by the NSAAQ 

pre and posttest measures, as compared to PSTs who did not receive the intervention.   

In regard to the ARGTEST, follow-up univariate ANOVAs showed that there was not a 

statistically significant interaction between group and time on the ARGTEST measure with 

F(1,34) = .013 and p = .910 (η2 = <.001, POWER = .051).  Given the non-significant interaction 

effect between group and time on the ARGTEST, main effects for the between- and within-

subjects factors were examined.  There was not a statistically significant difference in ARGTEST 

scores between the treatment and control groups with F(1,34) = 2.236 and p = .144 (η2 = .062, 

POWER = .306). Neither was there a statistically significant difference in ARGTEST scores 

based on time (pretest to posttest) with F(1,34) = 0.32 and p = .859 (η2 = .001, POWER = .053). 
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This suggests that PSTs who received the intervention did not demonstrate a difference in their 

knowledge of argumentation, as measured by the ARGTEST pre and posttest measures, when 

compared to results of the PSTs who did not receive the intervention. 

In regard to the WSEA, follow-up univariate ANOVAs revealed that there was not a 

statistically significant interaction between group and time on the WSEA measure with F(1,34) = 

2.65 and p = .113 (η2 = .072, POWER = .352).  However, tests of simple main effects showed 

the treatment group made significant gains on the WSEA measure from pretest to posttest with 

F(1, 18) = 7.157 and p = .015 (η2 = .284, POWER = .716), whereas there was no change between 

pretest and posttest scores in the control group.  Although there was no difference in scores 

between the two groups at pretest, the treatment group’s posttest mean was significantly higher 

than the control group’s posttest mean, with F(1,41) = 5.227 and p = .027 (η2 = .113, POWER = 

.607).  These results suggest that PSTs who received the intervention demonstrated a significant 

increase in the complexity of their written explanations, as measured by the WSEA pre and 

posttest measures, when compared to PSTs who did not receive the intervention.  

To answer the fourth research question, PSTs’ science lesson plans were analyzed using a 

constant comparative approach.  The close analysis of participants’ written lesson plans led to 

the following four themes regarding PSTs’ enactment of the TSAF components (i.e., argument 

structure, public reasoning, and the language of science) when planning for inquiry-based 

science instruction: (a) opportunities for students to collect and analyze data, (b) emphasis on the 

use of text to support scientific inquiry; (c) use of scaffolds for helping students construct 

scientific explanations, and (d) attention to developing students’ vocabulary knowledge in 
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science.  The findings from this study have meaningful implications for practice and future 

research. These implications are presented in Chapter 5. 
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CHAPTER FIVE:  

DISCUSSION AND EDUCATIONAL IMPLICATIONS 
 

Introduction 

In the current study, the researcher investigated the impact of a one-semester intervention 

(12 weeks) focused on teaching science as argument within a science methods course on PSTs’ 

(a) understandings of the NOS, (b) knowledge about argumentation, (c) complexity of their 

written explanations, and (d) ability to incorporate components of the Teaching Science as 

Argument Framework when planning for science instruction.  This chapter presents a summary 

and discussion of the findings of study.  Secondly, an overview of implications for teacher 

educators, classroom teachers, and leaders in education is provided.  The chapter concludes with 

limitations of the current study and recommendations for future research.   

Discussion of Findings 

Results from the RM-MANOVA showed that there was a statistically significant 

interaction effect between group and time on the combined dependent variables, F(3, 32) = 

2.894, p = .050, Wilks' Λ = .787 (η2 = .213, POWER = .635).  Based on estimated effect sizes for 

Partial Eta Squared, the size of the effect was considered large.  This finding suggests that, 

overall, the intervention had a significant impact on all three dependent variables (i.e., PSTs’ 

understandings of the NOS, knowledge of argumentation, and complexity of written scientific 

explanations) when considered together.  Based on estimated effect sizes for Partial Eta Squared, 

the size of the effect was considered large.  This is a noteworthy finding given the small sample 

size in the study.  A detailed discussion of the findings for each research question is included 

below.  
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Research Question 1  

Does participation in an intervention focused on teaching science as argument have an 

impact on elementary PSTs’ understandings of the NOS, as measured by the Nature of Science 

as Argumentation Questionnaire (NSAAQ)? 

The results of the RM-MANOVA and follow-up univariate tests indicated that there was 

not a statistically significant interaction between group and time on the NSAAQ measure with 

F(1,34) = 3.42 and p = .073.  The effect size for the interaction between group and time was 

large (η2 = .091) but lacked sufficient power (POWER = .435) to find a significant effect. This 

may have been due to the small sample size (n = 36).    

Given the large effect size for the interaction between group and time on the NSAAQ 

measure, tests of simple main effects were conducted.  Results from these tests revealed that: (a) 

the treatment group made significant gains on the NSAAQ measure from pretest to posttest and 

(b) the treatment group’s NSAAQ posttest mean was significantly higher than the control 

group’s NSAAQ posttest mean.  Although there was no change between pretest and posttest 

NSAAQ scores in the control group, there was a statistically significant effect of time on 

NSAAQ scores for the treatment group, F(1, 19) = 4.452, p = .048 (η2 = .190, POWER = .517).  

For the treatment group, the NSAAQ posttest mean (M = 91.45, SE = 2.64) was significantly 

greater than the NSAAQ pretest mean (M = 88.55, SE = 2.48).  The moderate effect size (η2 = 

.190) suggests that approximately 19% of the variance in the treatment group’s NSAAQ scores 

was attributable to time.  

Additionally, although there was no statistically significant difference in scores between 

the two groups at pretest, there was a statistically significant difference in NSAAQ scores 
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between groups at posttest, F(1,42) = 6.977, p = .012 (η2 = .142, POWER = .733).  Mean 

NSAAQ scores were significantly greater at posttest in the treatment group (M = 91.45, SE = 

2.30) compared to the control group (M = 83.21, SE = 2.10).  The moderate effect size (η2 = 

.142) suggests that approximately 14% of the variance in posttest NSAAQ scores was 

attributable to condition.  

Together, these findings suggest that PSTs who received the intervention demonstrated a 

significant increase in their understandings of the NOS, as measured by the NSAAQ pre and 

posttest measures, when compared to PSTs who did not receive the intervention.  This finding is 

consistent with those of previous researchers investigating the effects of explicit argumentation 

instruction on PSTs’ views of the NOS.  For example, Ogunniyi (2006) examined the 

effectiveness of an argumentation-based, reflective NOS course on in-service teachers’ NOS 

views.  Findings indicated that participants demonstrated positive changes in their perceptions of 

the NOS over the duration of the course, and the author concluded that explicit argumentation 

instruction may be an effective approach for enhancing teachers’ views of the NOS.  

More recently, McDonald (2010) examined the influence of integrating explicit 

argumentation instruction within a science content course on PSTs’ views of the NOS.  Over the 

duration of the course, PSTs engaged in a variety of course activities designed to support the 

development of their NOS understandings and/or their argumentation skills.  Findings revealed 

many improvements in participants’ NOS understandings over the course of the intervention, 

with four of the five participants demonstrating partially informed or informed views in the 

majority of examined NOS aspects at the conclusion of the study.   
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Thus, the findings revealed in the current study contribute to the emerging body of 

research. The findings suggest that explicit instruction in argument structure, combined with 

opportunities to practice constructing, communicating, and critiquing scientific explanations, 

may aid in the development of PSTs’ NOS views.  This is an important finding, given the fact 

that teachers’ inadequate understanding of the NOS has been identified as a major barrier to the 

incorporation of explanation and argument in the classroom (Abd-El-Khalick & Lederman, 

2000).  Teachers who view science as a body of irrefutable facts are unlikely to engage students 

in practices such as constructing, communicating, debating, and evaluating scientific 

explanations and arguments.  For this reason, studies that aim to promote explanation and 

argument in the classrooms should be focused on enhancing prospective teachers’ NOS views.  It 

should be noted, however, that although understanding of the NOS is a necessary condition for 

the successful implementation of reform efforts in science education, it is far from sufficient.  

Researchers have identified several factors that seem to mediate the translation of PSTs’ 

understandings of the NOS into classroom practice, including science content knowledge, 

pedagogical knowledge, teacher autonomy, and instructional time (Gess-Newsome & Lederman, 

1995).  Therefore, in addition to aiming to enhance prospective teachers’ NOS views, teacher 

preparation programs should also focus on developing PST’s own knowledge of explanation and 

argument as well as their pedagogical skills for supporting learners’ engagement in these 

discursive practices.   
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Research Question 2  

Does participation in an intervention focused on teaching science as argument have an 

impact on elementary PSTs’ knowledge of argumentation, as measured by The Argumentation 

Test (ARGTEST)? 

The results of the RM-MANOVA and follow-up univariate tests indicated that there was 

not a statistically significant interaction between group and time on the ARGTEST measure with 

F(1,34) = .013 and p = .910 (η2 = <.001, POWER = .051).  Given the non-significant interaction 

effect between group and time on the ARGTEST, main effects for the between- and within-

subjects factors were examined. There was not a statistically significant difference in ARGTEST 

scores based on group (treatment group vs. control group), F(1,34) = 2.236, p = .144 (η2 = .062, 

POWER = .306).  Neither was there a statistically significant difference in ARGTEST scores 

based on time (pretest to posttest), F(1,34) = 0.32, p = .859 (η2 = .001, POWER = .053).   

These results suggest that the intervention did not have a significant impact on PSTs’ 

knowledge of argumentation, as measured by the ARGTEST pre and posttest measure.  

Participants’ overall low scores on the ARGTEST both before and after the intervention were 

consistent with those found in earlier studies that have assessed teachers’ understanding of 

scientific argumentation.  For example, Sampson (2009) conducted a study of 30 middle and 

high school science teachers.  He concluded that the teachers mostly held naïve understandings 

about scientific argumentation and that their perceptions of what counts as a quality scientific 

argument were not consistent with the conceptions accepted by the science community.  More 

recently, Aydeniz and Ozdilek (2015) explored 40 elementary PSTs’ understandings of scientific 

argumentation.  Similar to Sampson (2009), the researchers found that the majority of 
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participants demonstrated a deficit understanding of scientific argumentation, failing to 

acknowledge the role of evidence and the process of justification in reaching solutions.   

Scholars have argued that developing prospective teachers’ understandings of scientific 

argumentation is vital because teaching science as argument requires teachers who recognize the 

role argumentation plays in constructing scientific knowledge and learning science (McNeill & 

Pimentel, 2010).  If students are expected to construct explanations of natural phenomena and 

engage in argument from evidence (NRC, 2012), they must understand the role of evidence in 

supporting and validating scientific explanations and arguments.  If students are expected to 

develop such knowledge so they can successfully participate in explanation and argument, 

developing prospective teachers’ conceptual understanding of the role of evidence in 

argumentation is crucial.  For example, PSTs must learn to distinguish between opinion and 

scientific evidence, evaluate whether or not the evidence presented is relevant and/or 

trustworthy, and revise an explanation based on available evidence.  Because teachers’ 

knowledge and beliefs about scientific argumentation and explanation influence their 

pedagogical decisions in the science classroom (Beyer & Davis, 2008; McNeill et al., 2006b) 

future efforts should focus on identifying effective methods for improving PSTs’ conceptions of 

argumentation.   

Research Question 3 

Does participation in an intervention focused on teaching science as argument have an 

impact on the complexity of elementary PSTs’ written explanations, as measured by a 

researcher-developed written scientific explanation assessment (WSEA)? 
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The results of the RM-MANOVA and follow-up univariate tests indicated that there was 

not a statistically significant interaction between group and time on the WSEA measure with 

F(1,34) = 2.65 and p = .113 (η2 = .072, POWER = .352).  The effect size for the interaction 

between group and time was moderate (η2 = .072) but lacked sufficient power (POWER = .352) 

to find a significant effect.  This may have been due to the small sample size (n = 36).    

Given the moderate effect size for the interaction between group and time on the WSEA 

measure, tests of simple main effects were conducted.  Results from these tests revealed that: (a) 

the treatment group made significant gains on the WSEA measure from pretest to posttest and 

(b) the treatment group’s posttest WSEA mean was significantly higher than the control group’s 

WSEA posttest mean.  Although there was no change between pretest and posttest WSEA scores 

in the control group, there was a statistically significant effect of time on WSEA scores for the 

treatment group, F(1, 18) = 7.157, p = .015 (η2 = .284, POWER = .716).  For the treatment 

group, the WSEA posttest mean (M = 4.05, SE = .29) was significantly greater than the WSEA 

pretest mean (M = 3.00, SE = .39).  The large effect size (η2 = .284) suggests that approximately 

28% of the variance in the treatment group’s WSEA scores was attributable to time.  

Additionally, although there was no statistically significant difference in scores between 

the two groups at pretest, there was a statistically significant difference in WSEA scores between 

groups at posttest, F(1,41) = 5.227, p = .027 (η2 = .113, POWER = .607).  Mean WSEA scores 

were significantly greater at posttest in the treatment group (M = 4.05, SE = .30) compared to the 

control group (M = 3.13, SE = .27).  The moderate effect size (η2 = .113) suggests that 

approximately 11% of the variance in posttest NSAAQ scores were attributable to condition.  
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Together, these findings suggest that PSTs who received the intervention demonstrated a 

significant increase in the complexity of their written explanations, as measured by the WSEA 

pre and posttest measure, when compared to PSTs who did not receive the intervention.  This 

finding is consistent with those of previous researchers who investigated the impact of explicit 

instruction in argument structure on PSTs’ written explanation and argument skills.  For 

example, Sadler (2006) documented the structure of PSTs’ written arguments as they 

participated in a science methods course with an explicit focus on scientific discourse and 

argumentation.  Throughout the course, participants received explicit instruction in argument 

structure and had various opportunities to construct, communicate, debate, and evaluate scientific 

arguments.  Findings revealed that the majority of participants improved the structure of their 

arguments over the course of the semester.   

More recently, Robertshaw and Campbell (2013) examined the effectiveness of a one-

semester course featuring explicit instruction in argument structure using the Toulmin 

Argumentation Protocol (TAP) on PSTs’ ability to write sound and logical scientific arguments.  

Findings revealed a general trend of improvement in PSTs’ written argument scores from pre- to 

post-TAP instruction.  This finding was further reinforced by PSTs’ reflections on how their 

arguments evolved over the duration of the course.  The majority of participants reported 

positive changes in their argument abilities, noting that the TAP helped them to write more 

organized scientific arguments.  

Thus, the findings of the researcher in the current study further illuminate the potential of 

explicit instruction in argument structure for enhancing PSTs’ written scientific explanation 

skills.  This is an important finding, because it has been argued that teachers must be able to 
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construct evidence-based explanations themselves before they can support students’ successful 

engagement in explanation and argument in the classroom (Zohar, 2008).   

It is important to note, however, that although participants in the treatment group 

demonstrated a significant increase in the complexity of their written explanations from pre-

intervention to post-intervention, there is still room for improvement.  The explicit focus on the 

CER framework throughout the semester seemed to improve PSTs’ ability to generate a 

scientific claim and support it with appropriate evidence.  However, PSTs showed little 

improvement over time in their ability to apply scientific reasoning to establish a relationship 

between the evidence and their claim.  This finding is consistent with findings of prior 

researchers who have found the reasoning component to be much more challenging for learners 

than the claim and evidence components (McNeill, 2011; McNeill & Krajcik, 2007; McNeill et 

al., 2006b; McNeill & Pimentel, 2010).  These researchers found that learners at all grade-levels 

have a difficult time explaining why the evidence supports their claim.  In many cases, students’ 

transcripts of their reasoning are simply a repetition of their claims and evidences. After this one-

semester intervention, room for improvement in participants’ written explanations remains, 

especially in regard to the reasoning component.  Findings from this study suggest that the CER 

framework may be a useful tool for scaffolding PSTs’ explanation abilities.  Efforts to improve 

PSTs’ explanation and argument skills should be initiated and continued, with greater attention 

given to helping prospective teachers justify the connection between claim and evidence.  A 

limitation of this study is that the researcher looked solely at PSTs’ written explanations.  Thus, 

it may be advantageous for future researchers to examine the impact of explicit instruction in 
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argument structure on PSTs’ abilities to construct scientific explanations both orally and in 

writing.   

Research Question 4   

How do elementary PSTs incorporate components of the TSAF to support both students’ 

literacy and science learning when planning for inquiry-based science instruction, as evident in 

their written lesson plans? 

The close analysis of participants’ written lesson plans led to the identification of the 

following four themes regarding PSTs’ enactment of the TSAF components (i.e., argument 

structure, public reasoning, and the language of science) when planning for inquiry-based 

science instruction: (a) opportunities for students to collect and analyze data, (b) emphasis on the 

use of text to support scientific inquiry; (c) use of scaffolds for helping students construct 

scientific explanations, and (d) attention to developing students’ vocabulary knowledge in 

science.   

Central to all five participant groups’ lesson plans were one or more opportunities for 

students to collect, record, and analyze data associated with a driving question.  Groups planned 

meaningful hands-on investigations for students to make observations and record data and 

planned opportunities for students to collect evidence from secondary sources such as science 

trade books and websites.  This finding suggests that PSTs in the study began to view the role of 

scientific investigations as an opportunity for students to collect evidence to support their claims.  

Because elementary teachers historically place little emphasis on the role of evidence in their 

science teaching (Newton et al., 1999), this is a noteworthy finding.  This finding is also 

consistent with the results of the quantitative analysis of data that found that the intervention had 
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a significant impact on participants’ understandings of the NOS, including the view of science as 

a process of exploration and experiment.  

Second, all five participant groups incorporated the use of text within their science lesson 

plans.  Although the ways in which text was utilized varied across groups, all groups positioned 

text as a means for supporting scientific inquiry.  For example, some groups planned to use 

scientific texts to build students’ background knowledge and stimulate interest about a topic.  

Other participant groups positioned text not only as a tool for building students’ background 

knowledge and increasing interest but also as a source of evidence to support scientific claims.  

Lastly, some participant groups used scientific texts as a way to extend their lessons and help 

students acquire additional information about the topic.  This finding suggests that the PSTs in 

this study began to acknowledge the important role text and literacy skills play in the learning 

and doing of science.  Reading and interacting with scientific texts enables students to develop 

rich content knowledge about science and gain familiarity with the nature of scientific language, 

while also stimulating students’ interest in conducting scientific inquiries of their own (Yore, 

Bisanz, & Hand, 2003).    

Although this pattern in participants’ lesson plans appears promising, some limitations 

should be noted.  Two of the five participant groups selected an informational storybook to read-

aloud during their lesson.  This type of text presents science topics using the traditional elements 

of story structure (i.e., characters, setting, conflict, solution).  Although texts of this type can 

pique students’ interest and curiosity, they should not replace purely informational or nonfiction 

science texts with expository structures using the language of science.  A lack of exposure to 

expository texts in the elementary grades has been identified as a primary reason for older 
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students’ struggles with reading and comprehending science texts (Creech & Hale, 2006).  The 

goals of the CCSS to increase the percentages of nonfiction texts sought to remedy this 

weakness.  For this reason, teacher educators should help prospective elementary teachers 

understand the importance of selecting texts with appropriate and accessible expository text to 

prepare students to handle the more demanding science texts required of them in the upper 

grades, as well as narrative nonfiction texts that introduce students to contemporary socio-

scientific issues and portray science with all its moral dilemmas as practiced in the real world.   

Furthermore, while all five participant groups attempted to use scientific text in some 

way during their inquiry-based science lessons, PSTs incorporated few strategies for supporting 

students’ reading comprehension.  As argued in a previous chapter, scientific writing is 

characterized by range of grammatical features (e.g., technical vocabulary, abstraction, 

impersonal authoritativeness) that present unique comprehension challenges for students (Fang, 

2006).  Thus, it is not enough to simply expose young children to text with expository structures 

using the language of science scientific language, but instead, teachers must also equip students 

with discipline-specific tools for tackling the demands of scientific language.  As Wellington and 

Osborne (2001) argue, “Learning to read science from any source requires structured and 

scaffolded interaction with text” (p 117).  This includes helping students to become familiar with 

the format of scientific texts and modeling ways to organize textual information.  

Although strategies for helping students interact with and comprehend scientific texts 

(e.g., text annotation, graphic organizers) were modeled in class throughout the semester, PSTs 

did not incorporate these strategies within their lesson plans.  This finding warrants further 
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attention to assisting PSTs learn about the demands of scientific language and how to use 

strategies for supporting students’ comprehension of scientific texts.  

Third, all five participant groups’ lesson plans demonstrated PSTs’ attempts to engage 

students in scientific explanation.  Though much variation was revealed in the quality of these 

attempts, instructional strategies utilized for supporting students’ construction of evidence-based 

explanations were clearly informed by the approaches modeled in class throughout the semester.  

For example, all five participant groups incorporated the use of instructional strategies that 

reinforced the structure of argument, such as writing scaffolds and visual representations based 

on the CER Framework. This is an important finding, because explicitly teaching the structure of 

argument has been identified as a vital pedagogical practice for supporting the explanation 

building process (McNeill & Krajcik, 2008).  This finding also suggests that participants began 

to connect the instructional strategies modeled throughout the semester with appropriate 

applications in planning for future classroom practice.  Finally, this finding is consistent with the 

results of the quantitative analysis of data that found that the intervention had a significant 

impact on PSTs’ own abilities to construct evidence-based explanations. 

The majority of participant groups also attempted to ask questions consistent with 

teaching science as argument.  It was evident that PSTs were using the CER framework to 

inform the types of questions they planned to pose to students.  For example, teacher questions 

focused on refocusing students’ attention on the guiding question, prompting students to 

explicate their reasoning (e.g., How do you know? Why?) and encouraging students to consider 

how a claim aligns with available evidence (e.g., What evidence do you have to support your 

claim?).  The fact that PSTs incorporated strategies for fostering productive science talk is a 
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promising finding, because talk and discourse play a central role in the collective process of 

making meaning in science (Lemke, 1990; Sadler, 2006).  Furthermore, classroom discussion has 

been identified as an important way to apprentice young children who are not yet proficient 

readers and writers into disciplinary literacy practices (National Research Council, 2012; Wright 

& Domke, 2019).  This finding was also consistent with those of previous researchers examining 

how the TSAF influences PSTs’ developing thinking and practices.  For example, in a case study 

of three prospective elementary teachers, Barreto-Espino and colleagues (2014) found that the 

TSAF helped participants view science talks as a vehicle for engaging students in sense-making.   

Although this pattern in participants’ lesson plans appears promising, noticeable gaps in 

the PSTs’ attention to promoting argumentation were found.  In this study, participants seemed 

to be focused on oral discourse for the purpose of helping students come to a single, agreed-upon 

explanation.  Of the five participant groups, only one group provided an opportunity within their 

lesson plan for students to consider alternative claims and/or opposing viewpoints.  This finding 

was not surprising as other researchers have suggested that elementary PSTs avoid disagreement 

during science talk (Zembal-Saul, 2009).  This finding is also consistent with the results of the 

quantitative analysis of data that found that the intervention did not have a significant impact on 

participants’ knowledge of argumentation.   

Moving forward, it will be imperative for teacher educators to help elementary PSTs 

recognize argumentation as a valuable part of the learning process in science.  This includes 

helping PSTs learn to create a culture of critique in which learners co-construct science 

understandings through continuous dialogue, conflict, and negotiation.  
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Lastly, an emphasis on developing students’ vocabulary knowledge in science was 

evident in all five participant groups’ lesson plans.  This was an important finding, as part of 

disciplinary literacy instruction in science involves supporting students’ understanding of the 

technical words used to construct and communicate knowledge in science (Fang, 2006).  The 

majority of groups included appropriate strategies for building students’ science-specific 

vocabulary, all of which were modeled in class throughout the semester.  These included having 

students sort words into meaningful categories and asking students to generate examples and 

non-examples. Again, this finding suggests that participants began to recognize the role 

vocabulary plays in science teaching and learning as well as began to connect the instructional 

strategies modeled throughout the semester with appropriate applications in an instructional 

context.  

It should be noted, however, that PSTs tended to front load the vocabulary.  In other 

words, PSTs incorporated vocabulary instruction towards the start of their lesson, prior to 

engaging students in an investigation.  Settlage and Sutherland (2012) found that it is easier for 

students to learn science vocabulary when they have had prior experience with the phenomenon.  

This suggests that teachers should use the scientific phenomenon to help students develop the 

vocabulary instead of using the vocabulary to understand the phenomenon.  By first engaging 

students in concrete experiences and investigation, students have the opportunity to develop 

conceptual understanding about the phenomena as well as their understanding of related words.  

This finding warrants further attention to helping PSTs understand how to effectively and 

authentically anchor the development of science vocabulary in investigations of natural 

phenomena.   
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It should also be noted that science texts are known for several linguistic challenges 

beyond technical vocabulary, such as informational density and complex sentence structure 

(Fang, 2006).  Due to time constraints, the intervention did not explicitly attend to developing 

PSTs’ awareness of the syntactic elements of scientific language.  Moving forward, teacher 

educators should provide PSTs with opportunities to develop strategies for promoting students’ 

understanding and use of scientific language beyond just vocabulary building (e.g., noun 

deconstruction/expansion, sentence completion, paraphrasing).  These strategies will assist PSTs 

in learning to support young students’ ability to make coherent and organized arguments in 

science.  

In summary, all three components of the TSAF were incorporated to some degree as 

PSTs planned an inquiry-based science lesson for elementary students.  First, the structure of 

argument informed the ways that PSTs planned to support students during the explanation 

building process.  For example, several references to the CER framework were noted within 

participant groups’ lesson plans.  Second, regarding making thinking visible though public 

scientific reasoning, an evidence and explanation lens appeared to have informed the types of 

questions PSTs planned to pose during their lessons.  That is, they planned to ask questions 

targeted at helping students focus on the guiding question, identify patterns in their data, and 

explicate their reasoning.  Lastly, regarding the language of science, PSTs provided opportunities 

for students to read and interact with scientific texts, as well as incorporated language-based 

tasks to support students’ vocabulary building in science.  Though there is still room for growth, 

these findings revealed the potential of the TSAF for building PSTs’ initial knowledge about 

ways to support elementary students’ science and literacy learning in tandem.  
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A Revised Framework for Using Argument as a Bridge Between Literacy and Science 

The insights gleaned from this study led to the refinement of the TSAF, displayed in 

Figure 28, to focus more explicitly on the role of language and literacy in scientific inquiry.  

These revisions were informed by the findings from this study as well as sociolinguistic and 

sociocultural theories of learning (e.g., Gee, 2004; Halliday, 1994; Lemke, 1990) that view oral 

and written language as critical for science learning and engagement and perspectives on 

disciplinary literacy (Fang & Schleppegrell, 2010; Moje, 2015; Shanahan & Shanahan, 2014).   
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Figure 28. Revised Framework for Using Argument as a Bridge Between Literacy and Science 

Source: Adapted with permission from “Learning to Teach Elementary School Science as 

Argument,” by C. Zembal-Saul, 2009, Science Education, 93(4), p. 687–719. 
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The revised framework, titled A Literacy Guide for Teaching Science as Argument 

(LitTSAF), still consists of the three main features (i.e., argument structure, public reasoning, 

and language of science) as devised by Zembal-Saul (2009).  However, emphasized in the 

revised framework are several key disciplinary literacy teaching practices supportive of 

engagement in science as argument, including extensive reading of scientific texts, explicit 

comprehension instruction, explicit teaching of scientific language, and opportunities for 

scientific writing.  As such, the LitTSAF seeks not only to bring attention to the ways in which 

teachers can support students’ science learning, but also to the ways in which teachers can 

apprentice students into science-specific language and literacy practices.  In alignment with 

policy documents (e.g., NGA & CCSSO, 2010; NGSS Lead States, 2013; NRC, 2012), the 

LitTSAF positions language and literacy as vital for productive engagement in science learning.  

For example, the Framework for K-12 Science Education stated: 

Any education in science and engineering needs to develop students’ ability to read and 

produce domain-specific text. As such, every science or engineering lesson is in part a 

language lesson, particularly reading and producing the genres of texts that are intrinsic 

to science and engineering. (NRC, 2012, p. 76) 

No single framework can address all the challenges teachers face when it comes to 

supporting students’ engagement and learning in science.  However, it is the researcher’s hope 

that the revised framework will help teacher educators increase PSTs’ awareness about the role 

of language and literacy in science and better prepare them for supporting their future students’ 

science and literacy learning in tandem.   
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Limitations of the Study  

 There were several limitations which posed a potential threat to the internal and external 

validity of the study. Limitations and their possible effects follow:  

1. Participants were selected using non-probability sampling methods. The sample may 

or may not have accurately represented the target population, thus limiting the 

generalizability of the research findings (Creswell, 2003).  

2. Participants were not randomly assigned to condition. Non-random assignment 

violates the statistical assumption of independence, inhibits the ability establish cause 

and effect relationships, and reduces the generalizability of the results to the wider 

population (Creswell, 2003).   

3. The sample size of PSTs in the treatment condition (n = 20) and control condition (n 

= 25) was small. Small sample size decreases statistical power, thus increasing the 

likelihood of committing a Type II error (Lomax & Hahs-Vaughn, 2012).  

4. There were some occurrences of missing pretest and posttest assessment data due to 

absences and/or course withdrawals.  Make-up tests were attempted, but were not 

always successfully completed due to time and scheduling constraints.      

5. A researcher-developed instrument was used to assess the complexity of participants’ 

written scientific explanations.  The measure was not tested for reliability or content 

validity, although it was developed using research-based guidelines for creating 

appropriate explanation assessment tasks (McNeill & Krajcik, 2012).  Similar types 

of researcher-developed instruments have been used in previous studies (e.g., 

(McNeill & Krajcik, 2008).   
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6. The researcher had established a professional relationship with the course instructor 

of the treatment group prior to the study, which had the potential to introduce 

researcher bias.  Steps were taken to control for researcher bias by monitoring fidelity 

of implementation throughout the intervention.   

7. The treatment group and control group were not taught by the same instructor. The 

treatment group instructor was an assistant professor in science education with eight 

years of experience teaching at the post-secondary level. The control group instructor 

was a first-year doctoral student in science education with less than one-year 

experience teaching at the post-secondary level.  Thus, differences between 

instructors (e.g., experience, level of competency) were possible confounding factors.  

In an attempt to achieve comparability between the treatment and control conditions, 

a graduate teaching assistant (also a first-year doctoral student in science education) 

facilitated all three inquiry-based model lessons with participants in the treatment 

condition. 

8. The group structure of the lesson plan assignment did not allow for individual 

analysis of PSTs’ application of the TSAF components when planning for inquiry-

based science instruction. Furthermore, this study did not capture the rich 

collaborations that occurred as PSTs worked together to plan instruction.   

9. This study took place within a very specific context, thus restricting the 

generalizability of the findings.  
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Implications for Practice  

Implications for Preservice Teacher Education  

A new vision for science education has emphasized the importance of apprenticing 

students into science-specific language and literacy practices, beginning in the elementary grades 

(National Research Council, 2012; NGSS Lead States, 2013).  These practices include reading 

and comprehending scientific texts, constructing scientific explanations, engaging in argument 

from evidence, and using language to communicate scientific findings and understandings.  

Before they can successfully apprentice students into these practices, PSTs need opportunities to 

engage in disciplinary literacy practices themselves in the context of inquiry-based science.  For 

example, within their science methods courses, PSTs should be provided with ample 

opportunities to interact with scientific phenomena, collect and record data, identify patterns, 

construct claims based on evidence, engage in argumentative discourse, and develop their 

understandings of the NOS.  PSTs also need opportunities to develop the knowledge and 

practices required to support their future students’ engagement in scientific inquiry, including 

how to select appropriate materials; organize students for instruction; and guide students as they 

collect, represent, interpret, discuss data, construct evidence-based explanations, argue from 

evidence, and draw conclusions.  

Teacher educators must also make efforts to raise PSTs’ awareness about the specialized 

language and literacy demands of science.  As argued in a previous chapter, scientific writing is 

characterized by a range of grammatical and semantic features (e.g., technical vocabulary, 

abstraction, impersonal authoritativeness) that present unique linguistic challenges for students 

(Fang, 2006).  In order for PSTs to support their future students in coping with these demands, 
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they must develop a repertoire of appropriate instructional strategies for scaffolding students’ 

interactions with scientific texts, building students’ vocabulary knowledge, and supporting 

students’ communicative competence in science.  As demonstrated in this study, modeling the 

use of such strategies within the context of inquiry-based science is imperative in science 

methods courses.  For example, teacher educators can provide PSTs with opportunities to read 

and interact with expository texts in science, model explicit language-based strategies for 

developing students’ vocabulary knowledge (e.g., Concept of Definition Map, Semantic Feature 

Analysis), as well as introduce frameworks for explanation-driven science (e.g., CER 

Framework) that can be used to help students appropriately justify their evidence-based claims 

both in writing and orally.   

Finally, PSTs need to be provided with ample opportunities to apply their emerging 

understandings through meaningful class activities, assignments and clinical experiences.  This 

includes engaging in lesson planning, teaching, and ongoing reflection.  For example, teacher 

educators should model might ask PSTs to select an informational science text, bring it to their 

science methods course, and discuss with their peers the rationale for their text selection as well 

as how they would utilize the text to build students’ background knowledge, teach students to 

read the texts of science, and support scientific inquiry.  Through these experiences, PSTs will 

hopefully develop an understanding of the role of language and literacy in science and how to 

effectively apprentice their future students into science-specific ways of reading, writing, and 

communicating.    

Preparing prospective teachers to enact the new vision for science education also 

necessitates interactions between members of the literacy and science communities.  In this 
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study, members from the literacy and science education communities came together to 

collaborate and design purposeful teacher education experiences aimed at enhancing elementary 

PSTs’ knowledge, practices, and beliefs for teaching science as argument.  Collaborations such 

as these are absolutely necessary in order to effectively prepare PSTs for supporting students’ 

disciplinary literacy learning in science.  

Incorporating these elements places significant demands on existing teacher education 

programs and requires modifications to courses designed to prepare PSTs as effective teachers of 

science.  When considering course modifications, it is recommended that teacher educators align 

elements of coursework and field experiences with a coherent, research-based framework, such 

as the Teaching Science as Argument Framework (TSAF).  In this study, the TSAF was used as 

a learning tool to guide elementary PSTs’ thinking about how to support students’ science and 

literacy learning in the context of scientific inquiry.  Teacher preparation experiences, like those 

highlighted in this study, may help to develop PSTs’ initial knowledge and practices for effective 

disciplinary literacy teaching in science.  However, ongoing support for novice teachers as they 

begin their teaching careers will be critical for continued growth and development.    

Implications for Classroom Teachers and Professional Development  

The call for disciplinary literacy in science places new demands on current elementary 

teachers.  It requires teachers to not only serve as facilitators of knowledge but also to engage 

students in the kinds of cognitive processes and practices used by professional scientists (Fang, 

Lamme, Pringle, et al., 2010).  Similar to the needs of PSTs, in-service teachers at the elementary 

level also need support in learning how to develop young students’ science and literacy 

knowledge and skills in tandem. Greater proficiency in science and literacy for all students 
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requires knowledgeable teachers who understand the vital role that reading and writing play in 

supporting, rather than replacing, science learning (Pearson et al., 2010).   

Because teacher knowledge is the key to student success, ongoing professional 

development is vital.  Teacher professional development should focus on how to incorporate 

relevant scientific texts that increase students’ interest and curiosity; how to develop questions 

that lead to meaningful inquiry; how to translate these questions into experiments that enhance 

students’ conceptual knowledge; how to guide students to construct explanations from evidence, 

and how to develop students’ ability to communicate their claims and evidence both orally and in 

writing.  Professional development should also focus on assisting teachers in adopting 

appropriate scaffolds for supporting all students’ knowledge, inquiry skills, and habits of mind, 

including students from diverse linguistic backgrounds and students with special needs.  For 

example, professional development can introduce teachers to the CER framework and 

demonstrate how different variations of the framework can be used to individualize instruction 

for students, depending on their level of communicative competence in science.   

One area that warrants particular attention is classroom discourse.  A key component of 

the NGSS is engaging in discourse with a focus on constructing, communicating, and evaluating 

scientific explanations (National Research Council, 2012; NGSS Lead States, 2013).  The NGSS 

requires students in the elementary grades to “ask questions”; “share observations,” “describe 

patterns,” and “construct explanations of phenomena.”  As students take part in scientific 

discourse, they are apprenticed into scientific ways of using language to communicate findings 

and understandings (Fang, 2004; Gee, 2004; Lemke, 1990).  Especially for young children, who 

are not yet proficient readers and writers, oral discourse plays a critical role in supporting young 
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students’ engagement in disciplinary literacy and language practices, such as the construction of 

evidence-based claims.  Wright and Gotwasl (2017) suggested that, with adequate teacher 

scaffolding and support, even children as young as Kindergarten can begin to adopt scientific 

discourse patterns.   

Promoting meaningful science talk among students is not an easy task for teachers.  Thus, 

as the science framework asserts, students “will need support to learn how to facilitate 

appropriate and effective discourse in their classrooms (National Research Council, 2012), p. 

257).  Scaffolding students’ ability to express their ideas through science talk will require that 

teachers shift from the traditional Initiate-Repose-Evaluate (IRE) model of questioning to more 

dialogic discourse aligned with sociolinguistic and sociocultural theories (Gee, 2004; Lemke, 

1990).  To assist teachers in making this shift, professional development should be aimed at 

helping teachers adopt questioning techniques and talk moves to make students’ thinking visible 

while also fostering peer-to-peer interactions.  This includes restating students’ ideas, asking 

students to explicate their reasoning, and encouraging students to consider alternative 

explanations.    

Implications for Leaders in Education  

Supporting young students’ disciplinary language and literacy development in alignment 

with the new vision for science education will require considerable instructional changes in the 

elementary classrooms.  These changes will not only involve classroom teachers but also those 

who administer educational policies, such as district-level leaders, principals, and curriculum 

specialists.  As stated in the science framework, “What ultimately happens in a classroom is 

significantly affected by decision making distributed across the levels and multiple channels of 
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influence” (NRC, 2012, p. 243).  At the school level, principals, team leaders, instructional 

coaches, and other school administrators play an influential role in shaping classroom instruction 

by outlining expectations for learning, providing professional development opportunities, and 

making decisions about time and resources.  Leaders at the school district level are responsible 

for allocating funds, setting instructional priorities, and providing resources and support 

structures that enhance teachers’ ability to implement effective instruction.  The state level also 

plays an instrumental role in regulating funds and administering policies on standards adoption, 

student assessment, and educational accountability.  Together, leaders at the school, district, and 

state levels have a considerable influence on what is taught, when it is taught, and how it is 

taught.    

One critical issue has been the declining time spent on teaching science in the elementary 

grades.  In the current climate of educational accountability, science instruction often takes a 

backseat to helping children prepare for state-wide standardized assessments in mathematics and 

reading.  On average, students in Grades K-2 receive only 18 minutes per day of science 

instruction, and students in Grades 3-5 receive only 22 minutes per day of science instruction 

(Trygstad, 2013).  School, district, and state leaders in education need to understand that rather 

than reducing time on science to focus on reading instruction, students should be engaged in 

disciplinary literacy and language practices during inquiry-based science instruction. The new 

vision for science teaching and learning positions language and literacy as tools for productive 

engagement in disciplinary learning, and views disciplinary learning as an opportunity for 

students to develop discipline-specific literacy skills and practices.  In other words, just as 

literacy practices can enhance knowledge building and inquiry in science, science instruction 
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provides an ideal setting for developing and refining literacy skills that can improve subsequent 

reading and writing efforts (Pearson et al., 2010).  Thus, it is vital that sufficient time is allocated 

to science instruction in the elementary grades.   

In addition to making time for science a priority, school and district leaders should also 

facilitate collaboration between elementary school teachers, science content area teachers, and 

literacy coaches.  As argued earlier, these types of interactions are important for co-constructing 

knowledge about the role of literacy and language in science and identifying best practices for 

supporting students’ disciplinary literacy learning in science. 

Recommendations for Future Research / Next Steps  

Based on the findings and limitations of the current study, there are several 

recommendations for future research.  The sample size of PSTs in the treatment condition (n = 

20) and control condition (n = 25) was small.  Small sample size decreases statistical power, thus 

increasing the likelihood of committing a Type II error (Lomax & Hahs-Vaughn, 2012).  For this 

reason, it may be beneficial to analyze the quantitative data from this study using non-parametric 

statistical techniques.   

Additionally, differences between instructors (e.g., pedagogical content knowledge, 

teaching experiences related to preservice teacher education) were possible confounding factors 

in the current study.  Given these limitations, it would be advantageous to repeat this study using 

a larger sample of PSTs and to assign the same instructor to both the treatment and control 

condition.   

In order to capture the co-construction of knowledge among PSTs, it may be beneficial to 

record and analyze group discussions as PSTs work together to plan a lesson.  
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Throughout the intervention period, several additional sources of data were collected 

including PSTs’ pre- and post-course written reflections.  These data sources were not analyzed 

since they were outside the scope of the current study.  However, analyzing them in the future 

may help to establish a more comprehensive understanding of the impact of the intervention on 

participants’ understandings about how to support students’ science and literacy learning in 

tandem.  Future research should also strive to include measures that better capture participants’ 

understandings about the role of language and literacy in science in addition to the measures 

employed during the current study. Lastly, in addition to analyzing each group’s final lesson plan 

submission, it may also be beneficial to record and analyze group discussions as PSTs work 

together to plan instruction.  This type of data collection and analysis will help capture the co-

construction of knowledge among PSTs as they select scientific texts, design investigations to 

enhance students’ conceptual knowledge, and plan scaffolds for supporting student’ construction 

of scientific explanations and arguments.  

Based on the findings, it is suggested that several revisions be made to the professional 

development modules and intervention prior to study replication.  These changes include:  

(1) addition of resources for helping PSTs select high-quality informational science texts; 

(2) increased attention to helping PSTs learn to support students’ comprehension of 

scientific texts through explicit reading strategy instruction;  

(3) more attention to helping PSTs learn strategies for promoting students’ understanding 

and use of scientific language beyond just vocabulary building (e.g., noun 

deconstruction/expansion, sentence completion, paraphrasing)  
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(4) increased attention to helping PSTs facilitate argumentative discourse   

The findings from this study provided initial evidence that participation in teacher 

preparation experiences grounded by a coherent framework for teaching science as argument 

may contribute to PSTs’ understanding of how to support elementary students’ language and 

literacy development within the context of scientific inquiry.  What remains unknown is how 

PSTs who have participated in such experiences continue to develop their knowledge after they 

complete their science methods courses and teacher preparation program.  For this reason, 

longitudinal studies are needed to investigate the impact of coherent teaching frameworks, such 

as the TSAF, beyond the science methods course context.  For example, how does an 

intervention focus on teaching science as argument impact PSTs’ instructional practices and 

decisions during their clinical and field experiences? Do PSTs who participate in teacher 

education experiences grounded by a research-based conceptual framework apply their 

understandings once they enter into the profession as in-service teachers? Also, what types of 

long-term supports are needed to continue to foster teacher development?  As argued by Zembal-

Saul (2009), “When teacher learning is systematically examined over time, what emerges is a 

learning progression associated with fundamental aspects of the framework being employed” (p. 

714).  Thus, future researchers should aim to track PSTs’ longitudinal development, starting by 

exploring their initial knowledge and practices for teaching science as argument and continuing 

to investigate their ongoing development during student teaching and into their first years of 

teaching.   

Newer standards (NGA & CCSSO, 2010; NGSS Lead States, 2013) require students in 

Grades K-5 to read, comprehend, and evaluate scientific texts, engage in explanation and 
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argumentation and use language to communicate scientific ideas.  A great deal of teacher 

scaffolding and support will be needed in order for young students to effectively engage in such 

practices.  Thus, further research is needed to identify best practices for apprenticing young 

children into disciplinary ways of reading, writing, and communicating in science, especially for 

those who are still developing foundational literacy skills.    

Lastly, with the increased emphasis on the role of language and literacy use in the 

disciplines, greater attention will need to be devoted to examining language as a social practice 

in science (Gee, 2004) as well as how scientific knowledge is constructed and assessed through 

language (Lemke, 2001).  Though the role of language and literacy in the science classroom has 

been previously examined (e.g., Fang, 2006; Freeman & Taylor, 2006; Krajcik & Sutherland, 

2010; Norris & Phillips, 2003), investigation of the impact of specific practices as outlined in the 

TSAF on student learning, including ELLs and students with special needs, requires further 

inquiry.  

Challenges and Solutions  

Some challenges occurred throughout this study.  These challenges were mostly related 

to (a) a lack of instructional time, (b) the need to attend to programmatic goals and/or 

requirements, and (c) participants’ varying levels of prior knowledge and experiences.  

Insufficient time for participant engagement in reflection was a reoccurring challenge 

throughout the intervention.  For example, in Phase 2 of the intervention, the hands-on inquiry 

portion of the model lessons consistently took longer than expected due to student questions and 

whole-class discussions in which the instructor provided additional clarifications and prompted 

students to reflect on their observations and data.  As a result, the review/reflection portion of the 



185 
  

lesson was often condensed or did not take place at all (i.e., as in the case of the third lesson).  

Given the central role which reflection plays in developing teachers’ knowledge, beliefs, and 

practices (Brookfield, 1995; Dewey, 1933), the next iteration of this study will strive to provide 

participants more opportunities to partake in reflective activities. This will include providing 

participants with time to unpack each model lesson from a teaching perspective, to make 

meaningful connections to the three core components of the TSAF, and to reflect upon their 

emerging understandings about the role of language and literacy in science.  

Additionally, a large portion of classroom activities/assignments were dictated by 

programmatic goals outside the researcher and course instructor’s control.  For example, the 

lesson plan rubric utilized by PSTs when developing their own inquiry-based science lesson was 

not only informed by the TSAF, but also reflected programmatic expectations such as the focus 

on the inclusion of appropriate accommodations/instructional supports for ELLs.  In the future, it 

will be beneficial to integrate language and literacy expectations throughout each 5E phase of the 

lesson plan for the purpose of supporting all students’ science and literacy learning, including 

ELLs.  

Lastly, the PSTs in this study came from different backgrounds and had varying levels of 

prior experience working with school-aged children.  For example, while none of the participants 

had yet to engage in student teaching, a few mentioned prior experiences working with young 

children in daycare and camp settings.  Others discussed previous observations they had 

conducted in classroom settings as a requirement for their other method courses.  Participants’ 

prior knowledge and experiences could have impacted the way they constructed knowledge 

during the intervention and their ability to plan effective science instruction.  In any future 
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iterations of this study, it may beneficial to collect more specific information about participants’ 

pre-existing knowledge, skills, and experiences related to teaching science.  Collecting such 

information will help design and differentiate classroom experiences which build upon the 

knowledge, skills, and experiences that PSTs bring to their science method courses.  

Summary  

The purpose of this study was to investigate the impact of a one-semester intervention (12 

weeks) focused on teaching science as argument within a science methods course on PSTs’ (a) 

understandings of the NOS, (b) knowledge about argumentation, (c) complexity of their written 

explanations, and (d) ability to incorporate components of the Teaching Science as Argument 

Framework when planning for science instruction.  Findings revealed that, although the 

intervention did not have a significant impact on PSTs’ knowledge of argumentation, PSTs who 

received the intervention did demonstrate a significant increase in their understanding of the 

NOS and in the complexity of their written explanations, as compared to PSTs who did not 

receive the intervention.  Furthermore, the close analysis of PSTs’ written lesson plans revealed 

several patterns (i.e., opportunities for students to collect and analyze data, use of scaffolds for 

helping students construct scientific explanations, emphasis on the use of text to support 

scientific inquiry, and attention to developing students’ science vocabulary) consistent with the 

framework for teaching science as argument.   

These findings contribute to a growing body of evidence illustrating the effectiveness of 

intentionally designed teacher preparation experiences for improving PSTs’ views of the NOS 

(McDonald, 2010), ability to construct scientific explanations (Robertshaw & Campbell, 2013; 

Sadler, 2006), as well as their initial knowledge and practices for teaching science as argument 
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(Barreto-Espino et al., 2014; Boyer, 2016; Zembal-Saul, 2009).  Given the emphasis on 

disciplinary literacy in the new standards documents NGA & CCSSO, 2010; NGSS Lead States, 

2013), it is absolutely crucial that teacher educators continue to work toward developing 

prospective teachers’ understandings about the role of language and literacy in science and how 

to effectively apprentice their future students into science-specific ways of reading, writing, 

arguing, evaluating, and communicating.   
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Learning to Teach ALL Students Including English Language Learners through an 
Integrated Disciplinary Literacy Science Methods Course: Examinations of Preservice Teachers’ 

Lesson Plans and Reflection 
 

Introduction 

A major instructional and learning challenge in science education in the U.S.A. is the 

achievement gap in the science achievement between English language learners (ELs) and native 

English speaking students.   

New educational standards and 21st century workforce demands have presented a 

renewed urgency for the equitable preparation, including English learners (ELs), and the need for 

all to have access to opportunities to participate in science, technology, engineering, and 

mathematics (STEM) learning.  Supporting ELs to develop disciplinary content and language in 

tandem is not a recent educational focus.  Several educational policies (i.e., the Civil Rights Act 

of 1964, the Bilingual Education Act enacted in 1968, the Equal Educational Opportunity Act of 

1974, the No Child Left Behind Act of 2001, the Every Student Succeeds Act of 2015) have 

highlighted the reciprocal role of language and content learning in all students’ academic 

proficiency (Lee & Fradd, 1996; Lee, 2018; National Academies for Sciences, Engineering, and 

Medicine, 2018).  

The 2009 National Assessment of Educational Progress (NAEP) shows only 12% of 12th 

grade ELs scored at or above basic level in science, compared to 62% of native English speakers 

(NCES, 2010).  Moreover, this gap is persistent (NCES, 2012), and has been attributed to the 

readability of the academic language student assessments (Visone 2009, 2010).  According to the 

Common Core State Standards (CCSS) for English Language Arts and Literacy in History/Social 

Studies, Science, and Technical Subjects (2010) and the Next Generation Science Standards 
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(NGSS Lead States, 2013), students need to develop specialized literacy skills that will help 

them comprehend content texts and develop content knowledge.  These expectations require 

teachers to engage students in science practices, such as making sense of data and discussing 

findings, despite potential language obstacles (Lee, Quinn, & Valdés, 2013; National Research 

Council, 2012).  

Most U.S. fourth-graders spend less than three hours a week in science and one in five 

don't even get two hours based on the 2015 NAEP survey data for fourth-grade science 

(Education Commission of the States, 2018).  In most elementary schools, because elementary 

teachers typically teach both language arts and science, they need to have knowledge of the 

connections between science practices and literacy.   

Language proficiency and content learning are not developed in a vacuum.  Students 

bring language and content knowledge with them and they also develop both types of knowledge 

in science classrooms.  The co-dependency of language and content development are the 

“foundational stones” upon which science instruction is built.  Attention to language in STEM 

instruction is vital to developing all students’ STEM proficiency and preparation (Author, 2015).  

Engaging elementary preservice teachers in questioning their preconceived assumptions and 

developing new understandings about the role of language in science teaching and learning and 

also about what science is and how it is conceptualized in the Next Generation Science 

Standards (NGSS Lead States, 2013) is vital to their pedagogical content knowledge (National 

Academies of Sciences, Engineering, and Medicine, 2018; Shulman, 1986).   

In order to help teachers better meet these demands, science teacher educators should 

prepare elementary preservice teachers (PSTs) to develop science and literacy knowledge in 

https://www.nap.edu/read/25182/chapter/3#chapter01_pz43-16
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tandem.  An instructional framework of disciplinary literacy may help PSTs learn the importance 

of facilitating the teaching of science and literacy in tandem and apprenticing students into how 

science experts construct knowledge and learn (Shanahan & Shanahan, 2008; Author, 2015).   

In virtually every teacher preparation program, PSTs engage in learning about science 

teaching in writing lesson plans (Cerbin & Kopp, 2006; Richards & Rogers, 2014).  A lesson 

plan is teachers’ main tool for instructional planning.  Lesson plans help PSTs to bridge the gap 

between theory and practice and been documented as a significant area (Clark & Peterson, 1986) 

for examining PSTs’ understanding of content and pedagogical strategies (Clark & Dunn, 1991), 

and for linking learning to practice (Johnson, 2000).  However, few studies have been 

documented how PSTs serve ELs through lesson planning (Cervetti, Kulikowich, & Bravo, 

2015).  To address these gaps and contribute to the knowledge base in science teacher 

preparation, this qualitative exploratory case study examined PSTs’ understanding of the role of 

literacy in science teaching, through writing lesson plans and examining PSTs’ reflections, to 

support all students learning in a disciplinary literacy integrated elementary science methods 

course.  

Theoretical Perspectives 

Learning is a sociocultural process 

Most science education research is informed by the sociocultural theory of learning.  

Vygotsky (1978) highlighted the importance of interactions with an experienced other (i.e., adult, 

parent) in scaffolding a novice’s conceptual development.  According to this theory, human 

learning is mediated by culture and the development of individuals is embedded in the culture in 

which they live.  This process allows students in a science classroom setting to develop 
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knowledge and to also become participant of that community (Lave & Wegner, 1991).  From this 

stance, a student in an elementary science classroom needs to have social interactions that will 

allow him or her to learn the language, norms, habits of mind and ways in which knowledge is 

developed, evaluated, and communicated in the broader science community and also in the local 

science class or peer group, sociocultural classroom community.  Language is a core 

sociocultural tool for constructing meaning and knowledge for all students (Lemke, 1990, 2001).  

Without language, students cannot access knowledge.  It is imperative for PSTs to learn how to 

develop and scaffold all students’ language development in the elementary science classroom.  

Scientific concept development cannot be isolated from language development (Driver, 1989).  

Language development is especially important for ELs and other students whose linguistic needs 

may present roadblocks to science learning.   This framework informed our study’s focus on 

preparing PSTs to learn how to develop all learners’ academic language and literacy in ways that 

support all students’ science learning in the elementary classroom. 

Disciplinary literacy and science learning 

According to the sociocultural lens, literacy is developed through the language, the 

practices, and the cultural values of a situated community (Gee, 1996).  Each community has its 

specific language, norms, routines, symbols, and ways of doing and learning (Lave & Wenger, 

1991; Wenger, 1998).  Through this lens, a discipline is a community that has its unique set of 

literacy practices and ways of knowing.  Disciplinary literacy refers to the ways of reading, 

writing, thinking, and reasoning within academic fields (Moje, 2007; Shanahan & Shanahan, 

2008).  Science is not just a body of knowledge; it is also a way of knowing.  Through this lens, 

as members of an elementary science classroom community, all students should learn about the 
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nature of science, the structure of scientific knowledge, and how knowledge is developed and 

communicated (National Reading Council [NRC], 2007).  Viewing language, literacy, and 

science learning through a science-specific disciplinary literacy lens students will learn how to 

read the texts of science, use the norms and conventions of science, form scientific explanations 

and engage in scientific investigations using scientific habits of mind (Moje, 2007; NGSS Lead 

States, 2013; Shanahan & Shanahan, 2008, 2012, 2014; Schleppegrell, 2004, 2007; Author, 

2015).   In this study, we integrated a disciplinary literacy framework in a science methods 

course and engaged PSTs in learning about the benefits of developing students’ literacy and 

science knowledge and skills in tandem.   

Literature Review 

The Role of Literacy in Science Learning 

Reading, writing, reasoning and communicating are authentic components of learning 

and doing science.  According to the NRC (2014), the Common Core State Standards for English 

Language Arts (CCSS) for English language arts and the Next Generation Science Standards 

(NGSS) intersect in the importance they place on students’ ability to make sense of the world 

and developing critical thinking skills.  In the study of science, students need to develop literacy 

skills in science relevant ways to be able to develop their understanding of disciplinary core 

ideas, engage in science and engineering practices (e.g., constructing explanations, engaging in 

argument from evidence), apply crosscutting concepts, and communicate their knowledge 

(NGSS Lead States, 2013).  The focus of science learning is not only on learning core concepts, 

but also on the processes of how knowledge is developed.  Some scholars argue that science 

teaching approaches have to promote students’ deeper engagement into scientific inquiry 
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(Sinatra et al., 2015).  These science-domain specific aspects of engagement include the eight 

science and engineering practices in the NGSS (NGSS Lead States, 2013).   

The foundational principle of content-area literacy instruction is to help students  

engage with texts and develop conceptual understanding.  Literacy strategy instruction 

has been used in the content areas as a way to engage students in the process of attending to text 

ideas before, during, and after reading in the forms of organizing and monitoring their 

understanding of ideas, making connections between new content and prior knowledge, 

summarizing, etc. (e.g., McKeown, Beck, & Blake, 2009; Palinscar & Brown, 1984; Pressley et 

al., 1992).  Strategy instruction that supports the development of students’ prior knowledge is 

key to students’ construction of understanding of content (Krajick & Sutherland, 2010; 

Sutherland et al., 2008).   

 Research findings from three research-based instructional models provide 

evidence about the importance of literacy and science integration.  First, Seeds of Science/Roots 

of Reading was developed by the Lawrence Hall of Science at the University of California, 

Berkeley, and is designed to integrate science and literacy for students in grades 2-5.  The 

program aims to strengthen students’ understanding of science concepts, by instructing teachers 

how to teach students to read, write, and communicate their learning in science-specific ways.  

External evaluations have shown positive effects on elementary students’ science vocabulary, 

writing fluency and science content knowledge (Goldschmidt & Jung, 2011; Wang & Herman, 

2005).  

Second, The Concept-Oriented Reading Instruction (CORI) (Guthrie & Wigfield, 2000) 

combines reading strategy instruction, conceptual knowledge in science, and support for student 
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motivation.  The program provides explicit instruction in reading comprehension strategies such 

as, strengthening and activating students’ background knowledge, questioning, searching for 

information, summarizing, graphic organization of learning, and structuring stories.  Research on 

CORI shows a positive impact on students’ motivation, engagement, and comprehension 

(Guthrie et al., 2004; Guthrie et al., 2007; Guthrie, Klauda, & Ho, 2013).  

Third, The In-depth Expanded Applications of Science (Science IDEAS) is a K-5 

interdisciplinary instructional model that integrates literacy and science through comprehension 

and writing instruction (Romance & Vitale, 1992).  The IDEAS model provides in-depth science 

instruction through six elements: hands-on investigations, reading, journaling/writing, 

propositional concept maps, application activities, and prior knowledge/cumulative review.  

Studies have shown a positive impact on students’ science efficacy, academic achievement, and 

reading comprehension  (Romance & Vitale, 1992, 2001, 2011a, 2011b).   

Disciplinary Literacy in Science 

Integrating literacy in science teaching and learning is not a new phenomenon. However, 

what is new is the call for students to receive explicit instruction in disciplinary practices (NRC, 

2012; NGSS Lead States, 2013) in a way that does not compete with content learning.  

According to Fang and Wei (2010), literacy is “a powerful vehicle for engaging students’ minds, 

fostering the construction of conceptual understanding, supporting inquiry, and cultivating 

scientific habits of mind” (p. 263).  Many content area teachers integrate literacy instruction and 

supports to assist students, especially struggling readers, ELs, and others who are experiencing 

difficulties with reading and comprehending texts, have underdeveloped vocabulary, and need 

assistance with organizing information.  In many cases, literacy is viewed as an instructional 
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add-on or as something teachers will try to carve time to do as the need arises in the classroom.  

Many students still struggle with having the needed literacy and science skills that unlock their 

access to science learning.  Although there are many benefits of literacy integration in science, 

new educational standards call for a need to re-conceptualize the role of literacy in the content 

areas for the purpose of improving all students’ preparation for both the academic and the 

literacy demands of each subject area (Moje, 2010; Shanahan & Shanahan, 2012; Author, 2012).   

Disciplinary literacy offers a different instructional and learning framework in the content 

areas.  It focuses on learning from how the experts in a discipline read, write, think, reason, 

develop, evaluate, and communicate knowledge (Moje, 2008; Shanahan & Shanahan, 2014; 

Author, 2015).  In science, a disciplinary literacy approach will help teachers develop students’ 

science and literacy knowledge and skills in tandem (Shanahan & Shanahan, 2008).  For 

example, while students are learning how to form scientific explanations and arguments orally 

and in writing, they will also be learning about scientific discourse, as well as developing 

scientific knowledge and advanced and science-specific literacy skills (Osborne, 2010).  When 

teachers teach students how to read the texts of science (print or multimodal) using a scientific 

inquiry lens, students will be doing close reading of texts, they will be learning how language is 

used in science texts (Fang, 2004), they will be identifying claims and biases authors make in 

texts, and they will also be learning how to use evidence from the texts to support (or not 

support) a claim and then share their reasoning.  

Other scholars (Lee, Quinn, & Valdés, 2013) propose that providing opportunities to 

engage students, especially ELs, in these practices is beneficial for scientific sense-making and 

academic language development.  Since reading, writing, and communicating are all essential, it 
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is critical that science-specific literacy practices be components (Howes, Lim, & Campos, 2009).  

Integrating disciplinary literacy in science teaching and learning can help students acquire a 

deeper understanding of how knowledge is created, evaluated, and communicated in science.  It 

also presents unique challenges as it requires teachers to provide all students, especially ELs, 

with appropriate instructional supports that will help them to develop and use science-specific 

ways of thinking and communicating (Hammond & Gibbons, 2005; Turkan, de Oliveira, Lee, & 

Phelps (2014).  Improving literacy in science is vital to narrowing the achievement and 

participation gaps of ELs.  

English Language Learners’ Needs in Science 

The US classrooms have become increasingly diverse.  The NRC strongly advocates for 

science education for all students, and especially for ELs who experience unique challenges with 

learning in science.  Students cannot develop their scientific literacy without learning and 

practicing the academic language and discourse of science (NRC, 2012).  Academic language 

represents the language of a discipline.  Students use academic language to develop and express 

their content understanding and participate in content learning.  Without academic language 

students cannot participate or engage in meaningful ways in the content area.  For example, 

without academic language students cannot communicate scientific ideas, form scientific 

explanations, and engage in scientific argumentation (Gee, 2004; Yore, Pimm, & Tuan, 2007).  

Academic language also demands knowledge of vocabulary, language functions, syntax, and 

discourse.  Teachers need to consider how to support students’ academic language learning as 

they plan their instruction (Anstrom et al., 2010).  Vocabulary refers to the general and subject-

specific words of the discipline.  In each discipline, words and phrases have specialized 
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meanings that differ from the meanings used in everyday life (e.g., medium).  General academic 

vocabulary can be used across disciplines (e.g., identify, compare, contrast, analyze, evaluate).  

Discipline-specific words can be defined for use in a discipline (e.g., whelk, isotope, magma) 

(Beck, McKeown, & Kucan, 2013).  Discourse refers to the structures of oral and written 

language and also how the members of a discipline talk, write, and engage in knowledge 

construction.  

The specialized language of science can be challenging to most learners, especially to 

struggling readers, ELs, and students with linguistic and learning exceptionalities.  Science texts 

(a) have text structures that differ from those of fictional text; (b) present information in rich and 

specialized ways, and (c) present explanations using language that differs from the everyday 

language students are accustomed to (Fang, 2004; Schleppegrell & Paliscar, 2013).  Because 

many science words have are polysemous, teachers need to plan for vocabulary instruction, 

supports, and opportunities for students to learn and use science vocabulary in the classroom 

(Cervetti et al., 2015).  ELs can have a wide range of difficulties with science academic 

language.  For example, some many have underdeveloped everyday vocabulary, science 

vocabulary, and also lack in structures that are necessary for them to participate in scientific 

inquiry.   

To provide instructional language supports for ELs, teachers must be aware of their 

students’ English language proficiency, the language demands of the science lesson or hands-on 

inquiry, and the supports they will need to provide to scaffold student learning (National 

Academies of Science, Engineering, and Medicine, 2018).  Planning for science instruction that 

integrates literacy and science content is useful to ELs’ learning (Bruna, Vann, & Escudero, 
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2007).  Research has also shown that ELs benefit from language and communication 

instructional supports that make vocabulary accessible to them (Faggella-Luby et al., 2016), 

illustrated charts that help them to visualize the works (Calderón et al., 2005), use cognates 

(Buxton et al., 2014), vocabulary and comprehension instruction (Symons, 2017), engage in 

experiencing natural phenomena (Lee, Valdés, & Llosa, 2015–2019), create a model of what 

they are learning (Brasser & Fargason, 2013), design an investigation (Cuevas et al., 2005), use 

graphic organizers to learn about concepts and investigations (Beck, McKeown, & Kucan, 2013), 

use notebooks and multimodal forms of expression and communication (Quinn, Lee, &Valdés, 

2012), and participate in collaborative learning (Lee,  Quinn, & Valdés, 2013).  

Research shows that U.S. preservice teachers are not adequately prepared to support ELs 

to meet the academic standards (Ballantyne, Sanderman, & Levy, 2008).  Dong (2004) found 

that preservice teachers had difficulties with aligning language and curricular objectives, 

identifying ELs’ potential learning difficulties, and providing cultural background information to 

help ELs make connections with their learning.   

Lesson Planning and Preservice Teachers’ Pedagogical Capacity 

Lesson plan writing is an integral part of teaching and student learning.  It is a process 

teachers use to organize how they will teach.  A lesson plan is the main tool a teacher uses to 

plan and organize what students will learn and how they will learn within a time period.   Every 

teacher who intends to teach something has to prepare a practical outline of his or her subject or 

topic in written form that is known as a lesson plan.  For  

Lee (2007) defines a lesson plan “…as an organized statement of general and specific 

educational goals together with the specific means by which these goals are to be attained by the 
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learners under the guidance of the teacher on a given day” (p. 72).  In writing a lesson plan, a 

teacher has to apply his or her theoretical, pedagogical and content knowledge (Shulman, 

1986).  A teacher has to apply his or her theoretical knowledge in planning and administering a 

lesson plan.  A lesson plan is a written document for multiple audiences that shows what the 

teacher and the students will do in a specific timeframe (Whitton et al., 2004).  For teachers, a 

lesson plan is an indicator of one’s content and pedagogical knowledge (Shulman, 1986).  In the 

case of PSTs, most of their lesson plans are written for college professors and for inservice 

teachers who supervise and evaluate PSTs in their clinical experiences.  PSTs learn how to write 

lesson plans prior to their clinical internship experiences as part of their teacher preparation 

programs and continue to write them throughout their professional careers.    

Writing a lesson plan is no easy task, especially for PSTs who are developing so many 

types of knowledge about content, pedagogy, and student learning (Johnson, 2000; Sahin-Taskin, 

2017).  An effective lesson plan includes specific steps that should engage students in thinking, 

asking questions, investigating new ideas, and building new knowledge and skills.  

Understanding PSTs perspectives about lesson planning will help teacher educators understand 

how to best prepare them, how they think about subject matter and bridge theory and practice, 

how PSTs view the role of the teacher and the student in the learning process, and how they 

make instructional decisions (Choy et al., (2013; Nilsson, 2009).  

Research on teacher preparation initiatives for linguistic diversity is in its infancy.  Very 

few studies have focused on how PSTs in teacher preparation science course are prepared to 

teach science to ELs (Lee, 2005).  A number of studies have examined impact of the Effective 

Science Teaching for English Learners (ESTELL) intervention model on PSTs’ preparation to 
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teach science to ELs (Bravo et al., 2011; Bunch, 2013; Solis et al., 2011; Stoddart, 2002; 

Stoddart et al., 2011).  The model includes the following practices: integrating science, language, 

and literacy development; engaging students in scientific discourse; developing scientific 

understanding; collaborative inquiry science learning; and contextualized science instruction, to 

help students improve their science learning and language and literacy development.  Only one 

quasi-experimental study (Stoddart et al., 2013) examined the impact of ESTELL on 85 PSTs’ 

instructional practices and compared them with the practice of 50 PSTs who participated in the 

control group.  The results showed a statistical difference between the two groups; the 

experimental group implemented significantly more ELL-responsive practices in their practicum 

experiences than the control group. 

Second, two recent studies directly addressed science PST’s lesson planning through their 

preparation course work and only one of them focused on secondary PSTs.  The first study 

(Kahn, Pgman, & Ottley, 2017) investigated how 26 PSTs planned their 5E (Bybee, et al., 2006) 

science lessons to help all students through an early childhood science methods course and an 

adaptation course for learners with “exceptionalities and diverse needs” and ELs.  The lesson 

plan template included a section entitled “Adaptations for Students with Special Needs.”  The 

study found that PSTs chose more “relying on others strategies,” such as paring up ELs with 

another student who could help them, than developing instructional supports and changed to the 

classroom environment to encourage students to learn.  Because this study did not focus only on 

ELs, there were only a few examples of  PSTs’ instructional adaptations for ELs. 

The second study (Siegal et al., 2014) investigated the development of 23 secondary 

PSTS’ understanding and ability to design Equitable Assessment (EA) for ELs in a science 
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methods course.  Three kinds of data included PST’s teaching philosophies, reflective journals, 

and a science unit that consisted of five inquiry-based lesson plans.  The analysis of self-reported 

learning in PSTs’ journals and teaching philosophy paper showed that PSTs demonstrated 

learning during the course and developed their own knowledge and beliefs in four categories, 

including views of assessment, views of learners, assessment as a learning tool, and ‘benefits and 

drawbacks of EA (Siegal et al., 2014).  However, PSTs had difficulty transferring what they had 

learned to their unit’s lesson plans.  For example, only one participant stated that an assessment 

was specifically designed for ELs and only two of them met all the EA principals individually.  

Since lesson plan analysis was not the focus of the study, only a few data on those outcomes has 

been described and it is not clear how those data were analyzed.   

Reflecting on lesson plans.  Preservice teachers’ conceptions of lesson plans range from 

the belief that experienced teachers neither write detailed lesson plans nor need to implement 

given curriculum materials with fidelity.  Research shows that nowadays there is a shift in 

teacher’s belief about the use of educative curricula—i.e., a good teacher is someone who 

implements materials well (Drake, Land, & Tyminski, 2014).  Current models of teacher 

evaluation also support this current shift (e.g., The Marzano Teacher Evaluation Model; The 

Danielson Framework for Teaching).  Most teacher preparation programs also focus on PSTs 

learning how to use curriculum materials in instructive and flexible ways for the purpose of 

meeting all students’ needs (Drake, Land, & Tyminski, 2014).  Reflecting on and critiquing 

lesson plans is one useful way to engage PSTs in examining their own content and pedagogical 

knowledge, beliefs, and professional identifies.   
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Studies report that a lesson plan critique assignment can provide PSTs with opportunities 

to examine their knowledge, beliefs, orientations, and professional identities (Brown, 2009; 

Forbes & Davis, 2010).  In a methods course, a lesson plan critique assignment involves a close 

examination and reflection, evaluation, and reflection on the following areas: (a) alignment 

between lesson plan objectives and related standards; (b) strengths, (c) weaknesses, and (d) 

challenges with lesson plan writing, and (e) ideas for improvement.  Research shows that PSTs’ 

lesson plan critiques and reflections tend to focus on listing surface-type elements such as listing 

the presence or absence of specific procedures and the affective aspects of lesson plan writing 

(Nelson & Davis, 2009) rather than engaging in a deeper critique of how scientific content is 

presented or how students, including ELs, will be developing scientific knowledge (Davis, 2006; 

Dong, 2004).   

Both the acquisition of science knowledge and literacy-related skills are important to 

promote all students’ participation in science.  However, elementary PSTs tend to see science 

and literacy learning as separate.  As a result, they tend to think about the role of literacy in 

supporting students’ knowledge and skills in isolated ways and focus on it mainly as it relates to 

improving the language skills of ELs (Krajick & Sutherland, 2010).  Our study aims to address 

PSTs’ understanding of the role of literacy in science teaching through writing lesson plans to 

support all students learning in a disciplinary literacy integrated elementary science methods 

course. Specifically, our research questions are as follows: 1. What science-specific literacy 

strategies did elementary PTS include in their lesson plan about using science-specific literacy 

strategies to teach science for all, including ELs?  2. What challenges did elementary PSTs report 

in their reflections about including science-specific literacy strategies to teach science for all, 
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including ELs?  3. What instructional accommodations did elementary PTS include in their 

science lesson plan to support ELs’ learning needs?  4. What challenges did elementary PTS 

report in their reflections about developing instructional accommodations for ELs in their science 

lesson plan? 

Methodology 

Context 

This study is part of a larger study that explored the effectiveness of integrating science-

specific literacy instruction within a science methods course on PSTs beliefs, attitudes towards 

teaching science, and lesson planning practices. This study took place at a large metropolitan 

university in the South Eastern United States.  During the spring semester of 2018, 31 

elementary education PSTs (8 juniors and 23 seniors) attended a science methods course before 

they starting any internship in elementary classrooms. The course instructors who are also 

researchers of this study, include two faculty members from science education and literacy 

education with their two doctoral students as teaching assistants.  This science methods course 

was the only course focusing on teaching science and was designed to prepare PSTs to 

incorporate the state science teaching standards, and implement them to teach all students in 

elementary science classroom settings.  State standards of English for Speakers of Other 

Languages (ESOL) had been infused within the objectives of this course in order to prepare 

PSTs for state ESOL Endorsement and all PSTs had already taken a prerequisite Teaching 

English to Speakers of Other Languages (TESOL) course.  In the previous TESOL course, 

Academic Subjects Protocol (Nutta et al., 2014), a protocol for developing instructional 

accommodations for ELs have been taught.  The protocol is divided into two phases (see Figure 



205 
  

1 and 2) and has been used to guide this study.  It starts with an analysis of the task within 

teaching activities, such as how is nonverbal or verbal communication used within the 

lesson.  SLIDE and TREAD (see Table 1) include verbs for analyzing student and teacher 

actions in the lesson. The SLIDE category requires less language-intensive actions in the class 

while the TREAD category indicates more language intensive actions.  In the second phase, 

SHOW and TELL (see examples from Table 2) accommodation strategies were introduced to 

provide non-verbal and verbal support for different level ELs so that they could implement these 

tasks to meet learning objectives. The key assignment for this science methods course was to use 

5E instructional model (phases include engage, explore, explain, elaborate, and evaluate) (Bybee, 

et al., 2006) to plan an inquiry-based science lesson and provide instructional accommodations 

within each E to support all students learn science.  

A majority of the course time was also devoted to integrate Disciplinary literacy (DL) in 

science in this course (see Table 3).  Starting from the fourth week of the course, a disciplinary 

literacy professor and a doctoral student co-taught with a science education instructor to integrate 

science-specific literacy in the elementary science education course.  The co-teaching took place 

for 12 weeks and included presentations on DL in science, engaging PSTs in the process of 

interacting with scientific text (McKeown, Beck, & Blake, 2009) and introduction of reading 

tools (Author, 2015), demonstration of three science lessons including life science, physical 

science, and earth science lessons with specific DL practices (e.g., engaging student in scientific 

explanation and science arguments through a Claim-Evidence-Resoning (CER) framework), 

resources for selecting informational text and how to teach it, and literacy strategies to support 

all students’, especially ELs, science learning. 
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Table 1. SLIDE and TREAD 

Less Language-Intensive More Language-Intensive 

• Show (watch, pantomime, model, display) 
• Look (smell, taste, feel, & other  

non-verbal senses) 

• Investigate (measure, weigh, categorize, 
classify, connect) 

• Demonstrate (draw, design, act out) 
• Experience (act, move, do, make, create) 

• Tell (also present information, lecture, narrate, 
recount, go over, report out, share) 

• Read (also skim, scan, review) 
• Explain (also listen) 
• Ask/Answer (also solicit, write, respond, 

predict) 
• Discuss(also describe, define, barnstorm) 

 

Table 2. Examples of SHOW and TELL strategies 

SHOW strategies TELL strategies 

• Hands-on activities 
• Demonstrate a process 
• Model tasks 
• Dramatizations 
• Experiential learning 
• Pictures 
• Props 

 

• Word lists 
• Vocabulary/grammar support 
• Graphic organizers to complete 
• Fill-in-the-blank phrases and sentences to 

scaffold language 
• Highlight keywords 
• Scaffold reading comprehension—strategies  
• Scaffold writing development—targeted error 

correction 
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Table 3. Relative Activities and Curriculum Materials in the Science Methods Course 

Activity Curriculum Material 

Discuss teaching standards Ch. 2 The Purpose of Science Teaching  
Guided questions 
CCSS, NGSS, NGSSS, School district 
planning 

Lesson planning 
Write content and Language objective 

Ch. 3 Planning to Teach Science 
Lesson plan template and criteria 

Discuss science practices and 5E instructional model (“Engage”, 
“Explore”, “Explain”, “Elaborate”, and “Evaluation”) 
Teach Science through a Disciplinary literacy lens 

Ch. 8 Inquiry and Science Teaching 
NGSS (Science practices) 
Science text (“Issue Overview: Fracking” 
from Newsela 

Experience a physical science lesson focusing on scientific 
argument 

Science lesson 1_scientific argument using 
Claim-Evidence-Reasoning (CER) framework 

Experience a life science lesson focusing on explanatory model 
 
Experience an earth science lesson focusing on vocabulary 
instruction and communicating like scientists 

Science lesson 2_cell modeling 
 

Science lesson 3_Erosion 

 
Reflect on three science lessons and make explicit connections 
to supporting all students, especially ELs, learning science and 
literacy in tandem.  

 
Revised 5E lesson reflection instrument 
(Goldston et al, 2013) 
Review Academic Subject Protocol (Nutta et 
al., 2015) 
Lesson plan rubric. 

Design an inquiry-based science lesson to teach all students 
including ELs 

NGSS standards 
Lesson plan template and rubric 

Peer evaluation on lesson plan with specific attention to ELs’ 
accommodations 

Lesson plan template and rubric 

Revise the lesson plan based on the feedback provided by 
methods course instructor  
 
Reflect on lesson planning process 

lesson plan draft 
 

Reflection framework 

 

A qualitative exploratory case study (Creswell, 1998) was used to examine our four 

research questions.  A qualitative exploratory case study was useful in building an in-depth and 
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contextualized understanding about complex issues in the social context (Yin, 2003) through 

collecting, describing, interpreting, and triangulating various kinds of data (Tellis, 1997).  

Data collection  

For the purpose of this proposal, we only focused on the analysis of two data 

sources.  First, the final submission of an inquiry-based science lesson plans was collected from 

eight groups, composed by 31 participants.  This lesson plan includes eight components, 

including state science standards and objectives, misconception, detailed procedures structured 

by a 5E instructional model, ESOL accommodations within each E phase to help beginning, 

intermediate, and advanced ELs access the content of the lesson, science practices, materials list 

and safety precaution.  Second, a reflection paper guided by five questions (see Appendix) 

focusing on participants' learning process of planning this science lesson from each PSTs was 

collected after they submit the final lesson plan.  Although as part of the course PTs worked in 

small groups of four to develop a lesson plan, they had to submit an individual reflection on the 

process.   

Data analysis 

Research Question 1: What science-specific literacy strategies did elementary PTS 

include in their lesson plans to teach science for all, including ELs? 

To answer research question 1, PSTs’ inquiry-based science lesson plans were analyzed 

through a series of steps.  The first step in analysis consisted of reading through all eight groups’ 

lesson plans to become familiar with the data and note overall impressions.  The second step 

involved rereading each lesson plan and coding all literacy activities/strategies included by PSTs.  

Codes related to research question 1 included  (1) activating prior knowledge, (2) using graphic 
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organizers, (3) writing predictions, (4) incorporating scientific text, (5) validating or revising 

predictions based on scientific data and observations, (6) using science notebooks to record and 

organize information, (7) defining science-specific vocabulary, (8) engaging in evidence-based 

explanation using the CER Framework, (9) using sentence frames for scaffolding students’ 

science writing, and (10) using teacher questioning to scaffold students’ scientific explanation 

skills. These activities/strategies were then categorized as either science-specific or general.  

Finally, this led to the identification of several themes related to research question 1.  

Research Question 2: What challenges did elementary PSTs report in their reflections 

about including science-specific literacy strategies to teach science for all, including ELs? 

To answer research question 2, PSTs’ individual written reflections were analyzed.  Since 

research question 2 asks “What challenges did elementary PSTs report in their reflections about 

including science-specific literacy strategies to teach science for all, including ELs?”, the 

analysis was focused solely on the second part of question two of the reflection assignment (see 

Appendix).  The first step in analysis involved reading through each participant’s written 

reflection to become familiar with the challenges self-reported by PSTs regarding including 

science-specific literacy strategies within their lesson plans.  The second step in analysis 

involved coding and categorizing all challenges reported by PSTs.  Categories related to research 

question 2 included  (1) difficulties in selecting relevant and age-appropriate scientific texts, (2) 

challenges related to developing students’ science-specific vocabulary, (3) challenges with 

assessing students’ science and literacy learning, (4) difficulties in facilitating meaningful 

science talk, and (5) challenges with providing opportunities for students to write in science-

specific ways.  Finally, from the challenges self-reported by PSTs, several themes related to 
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research question 2 were identified. Categories, codes, and example quotes from PSTs’ written 

reflections are displayed in the Table 4.  

Table 4.  Coding System for PST’ Challenges in Including Science-specific Literacy 

Strategies  

Categories Codes Quote examples # of 
participants 

Selecting relevant and age-
appropriate scientific texts 

·  finding appropriate  
websites 
·  incorporating    
scientific-text  

“The most challenging aspect of this 
was finding websites at a fifth-grade 
reading level that were still based in 
science and related to the content we 
were teaching.”   
 
“Some of the challenges we faced 
was trying to incorporate children’s 
literature into the lesson.” 

4 

Using strategies to develop 
students’ science-specific 
vocabulary knowledge 

·  identifying grade-level 
appropriate vocabulary 
terms 
·  explicit vs. implicit 
vocabulary instruction   
 

“The challenging part was 
maintaining the focus on our 6  
vocabulary terms without talking 
about other organs and systems that 
help our body function.” 
 
“Something that I found challenging 
about it was trying to keep the 
vocabulary on the correct grade level. 
When writing out lesson plans, it is 
easy to forget who it is for so we had 
to make sure to remember the grade 
level it was intended for.” 
 
“We did face challenges in trying to 
integrate this vocabulary throughout 
our lesson. We wanted students to 
have the chance to explore concepts, 
and reach conclusions about rock 
classification on our own. Because of 
this, we were reluctant to explain 
vocabulary such as sedimentary, 
igneous, metamorphic, texture, luster, 
and hardness too early in the lesson, 
worried the lesson would turn into a 
direct teach rather than an inquiry-
based lesson.” 

2 
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Categories Codes Quote examples # of 
participants 

Incorporating appropriate 
methods to assess students’ 
science and literacy learning 

·assessment  “We had challenges in assessing 
students. Luckily, a classmate 
suggested the CER framework.” 
 
“Challenges we faced were figuring 
out of the students should complete 
the assessments aloud or write the 
answers down to submit.” 

2 

Facilitating meaningful 
science talk 

·  time for discussion 
·  using strategies to 
promote talk    

“However, a most significant 
challenge was time to exploit all 
discussions and communication 
phases to consolidate conceptual 
learning by the students.” 
 
“I think our most challenging part of 
that was encouraging meaningful 
conversation.” 

4 

Providing opportunities for 
students to write in science-
specific ways   

·  science journal  
·  using strategies to 
promote talk    
 

“The most challenging for me was 
the science journal, I think we could 
have explained better how to use it 
and what specifically we wanted the 
students to write or do on it.” 

3 

 

Research Question 3: What instructional accommodations did elementary PTS include in 

their science lesson plan to support ELs’ learning needs?   

To answer research question 3, PSTs’ inquiry-based science lesson plans were again 

analyzed, focusing on the types of accommodations PSTs included to support ELs at varying 

levels of English proficiency (i.e., beginning, intermediate, and advanced) within each E phase of 

their lesson plan.  The first step in analysis consisted of summarizing the tasks students would 

engage in during each 5E phase as described by the PSTs’ within their inquiry-based science 

lesson plans.  These tasks were then coded using the SLIDE and TREAD analysis in order to 

determine the language load required for each activity.  SLIDE verbs correspond to tasks with a 

low language load and TREAD verbs correspond to high language load.  Next, EL 
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accommodations PSTs included within each 5E phase were coded using the SHOW and TELL 

framework that students utilized in their TESOL course.  SHOW accommodations include visual 

strategies (e.g., demonstrations, pictures, props) while TELL accommodations include verbal 

strategies (i.e., vocabulary/grammar support, reading comprehension strategies, scaffolded 

writing development).  Table 5 shows one group’s instructional accommodations for ELs for 

each phase of the 5E model and for each level of EL’s English proficiency. 

Table 5. An Example of Coding for Each of the Phase of the 5E Instructional Model 

 
Tasks Beginner Intermediate Advanced 

Phase SLIDE (S) and 
TREAD (T) 

Show (S) and Tell (T) 
* = science specific accommodation, # = general accommodation 

Engage Asking students to 
look (S) at photos and 
verbally (T) answer 
questions about 
erosion. 

Ask simpler questions (T) 
(#) individually while 
looking at the pictures, 
like pointing (S) (#) or 
one word answer (T) (#) 

Same procedure as for a 
beginner, but expecting 
an answer of more than 
one word (T) (#) 

Pair with a native English 
speaker to answer the 
questions during the 
discussion (T) (#) 

Explore Observe (S) a 
demonstration of 
erosion and draw (S) 
pictures of their 
observations using a 
handout that the 
instructor made. 
Students manipulate 

(S) the demonstration 
and then record a final 
observation by 
drawing (S). 

Beginner ELL students 
will be partnered with a 
non-ELL (T)(S) student 
for additional guidance 
with the recording sheet 
(T)(S) (*) 
 
The ELL student will first 
observe another non-ELL 
student (S) (T) doing the 
activity, so that they may 
have a demonstration of 
what is expected. The 
teacher will explain each 
step as the student 
performs the action. (T) 
(#)  All ELL students will 
only be required to draw 
pictures on the recording 
sheet. (S) (#) 

The ELL student will first 
observe another non-ELL 
student (S) (T) (#) doing 
the activity, so that they 
may have a demonstration 
of what is expected. The 
teacher will explain each 
step as the student 
performs the action. (T) 
(#) All ELL students will 
only be required to draw 
pictures on the recording 
sheet. (S) (#) 

The ELL student will first 
observe another non-ELL 
student (S) (T) (#) doing 
the activity, so that they 
may have a demonstration 
of what is expected. The 
teacher will explain each 
step as the student 
performs the action. (T) 
(#) All ELL students will 
only be required to draw 
pictures on the recording 
sheet. (S)(#) 
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Tasks Beginner Intermediate Advanced 

Explain Define (T) wind and 
water erosion after 
listening (T) and 
watching (T) a 
teacher led 
PowerPoint. Then 
talk (T)  and listen 

(T) in a class 
discussion on 
differences between 
weathering and 
erosion. 

Ask students’ simple 
questions (T) (#) that 
require yes or no answers, 
and provide pictures for 
the student to point to (S) 
(#) 

Pair student with 
someone who speaks 
fluent English (T) (#), and 
have 
them both share between 
them during discussion. 

Pair with a student who 
speaks fluently (T) (#) and 
have them share their 
thoughts between 
themselves, then the class 

Elaborate Watch (S) a video 
and then they will be 
verbally ask (T) 

questions about the 
video. 

Stop at certain parts of the 
video to clarify or further 
explain (T)(#) to ensure 
understanding. Explain 
what happened during the 
video using simpler 
language (T)(#) 

Ask about what they saw 
during the video (T)(#) 
and provide further 
explanation (T)(#) if 
needed to. 

Ask questions about what 
they saw (T)(#), and 
ensure understanding. 

Evaluate Discuss (T) with 
partner what they 
learned about erosion. 
Then, write (S) about 
erosion following 
guidelines from a 
rubric. 

Pair the student with a 
speaker of their native 
language (T) (#), or work 
individually with the 
student. The student can 
draw a picture instead 
(S)(#) to show the 
changes occurring for 
both wind and water 
erosion. 

The student will be 
allowed to draw their 
observations (S)(#), and 
insert keywords (T)(#) 
that address the steps. The 
keywords will be 
provided in an illustrated 
word bank (S)(#), and 
sentence frames for “fill-
in-the-blank” (T)(#) can 
be provided as well. 

Provide with a word bank 
(T)(#) to reference when 
writing. 

 

 From this analysis, the following codes emerged: (1) SLIDE and TREAD task-oriented 

accommodations; (2) science-specific and general accommodations framed by SHOW and 

TELL; and (3) same accommodation used for more than one ELL proficiency level.  In order to 

identify patterns across the analyses, the data for research questions 1 and 3 were organized in a 

combined coding table (See Table 6 for example from Group 4).  The combined coding table 

included all literacy strategies coded as either general or science-specific as well as 

accommodations/instructional supports per each 5e phase. 
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Research Question 4: What challenges did elementary PTS report in their reflections 

about developing instructional accommodations for ELs in their science lesson plan? 

To answer research question 4, PSTs’ individual written reflections were analyzed, 

focusing solely on the second part of question four of the reflection assignment. The first step in 

the analysis involved reading through each participant’s written reflection to become familiar 

with the PSTs’ self-reported challenges regarding instructional accommodations for ELs.  The 

second step in the analysis involved coding and categorizing all challenges reported by the PSTs.  

Categories related to research question 4 included (1) difficulties in providing accommodations 

to different level (beginner, intermediate, and advanced) ELs, (2) challenges related to 

vocabulary teaching, (3) challenges related to diverse culture, (4) challenges for accommodations 

for using specific presentation media, and (5) challenges of thinking about accommodations 

through each E phase of teaching.  Lastly, from the PST’s self-reported challenges, we identified 

several themes related to research question 4.  Table 7 includes codes, categories and sample 

quotes from PSTs’ written reflections.  
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Table 7.  Coding System for PSTs’ Challenges in Creating Instructional Accommodations for 

ELs 

Categories Codes Quote examples # of 
participants 

Difficulties in providing 
differentiated accommodations 
for beginners, intermediate and 
advanced ELs. 

·  different level ELs 
·  differentiating 
between the 
intermediate and 
advanced 
·  struggle to come up 
with different 
accommodations for 
each level. 

·  “were having a difficult time 
differentiating between what 
intermediate and advanced levels” 
·  “we were not sure what a beginner 
ELL student was capable of” 

9 

Challenges of vocabulary 
teaching for ELs. 

·  vocabulary teaching 
·  word bank 
·  graphic organizer 
·  advance content 
knowledge 

·   “constantly remind ourselves to use 
the vocabulary words” 
· “Since our lesson was vocabulary 
heavy, I wanted an activity that 
would be able to incorporate visuals 
and colorful graphic organizers to 
assist ELS.” 

4 

Challenges of providing ELL’s 
accommodation when using 
video in their teaching. 

·  video “A challenge we faced was trying to 
find a better way to accommodate 
ELL students through the video.” 

2 

Thinking about 
accommodations for ELs 
through the whole lesson 

·  hinder 
·  diversified culture 
·  every part of lesson 

“There is a challenge when teaching 
a class with students from diversified 
culture, as it requires more effort to 
integrate all learners into a common 
understanding.” 
“The challenges we faced was 
making sure we covered 
accommodation for every part of our 
lesson.” 

3 

 

Findings 

Overall, findings indicated that elementary PSTs began to develop their understanding of 

the role of literacy in science teaching and in supporting all students to learn science, especially 

the needs of ELs, through planning an inquiry-based science lesson.  First, PSTs were able to 
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plan tasks/activities within each phase of an 5E learning model to engage students in an inquiry-

based science learning process.  Second, PSTs were able to provide at least one literacy strategy 

within each phase to help all students learn science.  Third, PSTs were able to provide ELs 

instructional accommodations to help them engage in each activity.  At the same time, and as 

reflected in their written reflections about the lesson writing process, they also reported 

challenges they experience with planning to supporting students’ literacy and science learning.  

Research Question 1: What literacy strategies did elementary PTS include in their lesson 

plans to teach science for all, including ELs? 

Analysis of the lesson plans also revealed that all eight groups incorporated at least one 

science-specific literacy strategy into their lesson plans.  General literacy strategies incorporated 

by PSTs included activating prior knowledge, writing predictions, building background 

knowledge, summarizing learning, using graphic organizers, reading aloud scientific text, 

labeling diagrams, and matching vocabulary words to their definitions.  For example, group 3, 

whose lesson focused on teaching students to classify rocks according to their physical 

properties, included specific questions to be posed to students during the Engage section of the 

lesson in order to activate students’ prior knowledge on the topic.  These questions included: (1) 

What do you already know about rocks?, (2) What steps do you think a scientist needs to take 

before classifying things/objects into different categories and (3) How do you think you might be 

able to classify rocks into different groups?  

Science-specific literacy strategies incorporated by PSTs included recording scientific 

data, defining science-specific vocabulary terms, engaging students in science-specific writing 

supported by evidence, validating or revising predictions and making conclusions based on 
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scientific data and observations, engaging students in written evidence-based explanation using 

the CER Framework, providing sentence frames for scaffolding students’ science writing, and 

using science notebooks to help students record and organize information.   For example, in the 

Evaluation phase of their lesson plan, group 7 included an opportunity for students to construct a 

scientific explanation explaining why a certain object sinks or floats using the CER Framework.   

This group also included sentence frames based on the CER Framework (e.g., The _____ will 

sink/float. I think this because _____________.) to further assist students in writing a complete 

and accurate scientific explanation.   

PSTs Reported the Use of Teacher-Led Read-Alouds of Science Text(s) but they Did 

Not Specify How they Would Guide Students’ Engagement with the Text(s) 

 Following a 5E learning model, PSTs were able to plan tasks/activities within each phase 

to engage students in the inquiry-based science learning process.  Four of the eight groups 

included a teacher read-aloud of a science text to build students’ background knowledge within 

the Engage section of their inquiry-based science lesson.  For example, Group 3, whose lesson 

focused on categorizing rocks based on their physical properties, included a teacher read-aloud 

of If You Find a Rock by Peggy Christian to introduce students to the ways in which rocks are 

classified.  Group 7, whose lesson plan focused on teaching students to distinguish human body 

parts and their basic functions, included a teacher read-aloud of Me and My Amazing Body by 

Joan Sweeney.   Although several groups incorporated a science text within their inquiry-based 

science lesson, very few PSTs specified how the read-aloud would be used to support students’ 

science and literacy development.  For example, what specific questions would be posed before, 
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during, and after the read-aloud to promote student discussion and support students’ active 

involvement in the conceptual knowledge building process?   

Using the CER Framework to Construct Scientific Explanations but Limited 

Support for Promoting Science Talk 

Five of the eight groups incorporated the CER Framework for supporting students’ 

engagement in scientific explanations.  The CER Framework was incorporated most during the 

Explain, Elaborate, and Evaluate phases.  For example, Group 2 included the use of the CER 

Framework in their lesson plan to support students in explaining what time of year would be best 

to vacation to their assigned geographical location, using evidence from a WebQuest to support 

their claim.  Group 7 described how they would use the CER Framework to assist students in 

developing an evidence-based scientific explanation, using evidence such as color, hardness, 

luster, texture, layering, and particle size, to classify a particular rock as either igneous, 

sedimentary, or metamorphic.  Several groups also developed a rubric based on CER Framework 

to assess student’ scientific understanding.  While these groups incorporated strategies for 

helping students write in science-specific ways (e.g., CER Framework, sentence frames), only 

one group provided a description of how the teacher would encourage students to talk about their 

scientific ideas.  Group 4 listed questions the teacher would pose to guide the students in the 

interpretation of their evidence.  These questions included: What is the function of the heart?; Is 

skin an organ?; Do you think the human body would still function if some of these body parts 

weren't there?; Other than thinking, what is the brain responsible for?. None of the groups 

included opportunities for students to critique the scientific explanations of others. 
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 Building Students’ Science Specific-Vocabulary without Specific Strategies to 

Support Students’ Science Learning 

All groups included a list science-specific vocabulary terms related to the topic of their 

inquiry-based science lesson plans.  For example, within their lesson plan, Group 5 specified that 

students would able to define the words brain, heart, lungs, stomach, muscles, and skeleton as 

well as describe the function of each body part.  Group 8 explained that students would be able 

to use scientific terms such as volume, shape, size, measurement, and liquids when recording 

their observations and findings.  However, while several groups included an assessment of 

vocabulary knowledge during the Evaluate phase, very few groups included appropriate 

strategies for building students’ science-specific vocabulary beyond the definitional level.  For 

example, Group 1 explained that they would define content specific vocabulary and describe the 

differences between weather and erosion.  However, they included very few further opportunities 

for students to interact with or develop their knowledge of these vocabulary words. Similarly, 

Group 8 stated that they would discuss vocabulary such as volume, shape, size, measurements, 

and liquids during the Engage phase, but did not include any specific strategy for developing 

students’ knowledge of these technical terms.  

Research Question 2: What challenges did elementary PSTs report in their reflections 

about including science-specific literacy strategies to teach science for all, including ELs? 

Analysis of PSTs’ individual written reflections showed evidence of a developing 

understanding of the role of literacy in science teaching and learning.  For example, one PST 

reported that one of the most important things she learned through the lesson planning process 

was “how imperative it is to incorporate literacy practices with science practices; they are 
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incongruent with one another for true understanding of science concepts.”  However, PSTs also 

noted several challenges within their reflections regarding the inclusion of science-specific 

literacy strategies in inquiry-based science instruction.  These challenges included: (1) selecting 

relevant and age-appropriate text, (2) facilitating meaningful science talk, and (3) providing 

opportunities for students to write in science -specific ways.    

Selecting Relevant and Age-Appropriate Text 

Four PSTs mentioned difficulties with selecting relevant and age-appropriate texts 

within their written reflections.  For example, one PST mentioned that the most challenging 

aspect of this assignment was “trying to incorporate children’s literature into the 

lesson”.  Another PST stated that they had difficulty “finding websites at a fifth-grade reading 

level”. 

 Facilitating Meaningful Science Talk 

Four PSTs expressed challenges with promoting meaningful science talk.  For 

example, one PST noted that it was difficult to find “time to exploit all discussions and 

communication phases to consolidate conceptual learning by the students.”  Another student 

expressed concerns because she had not had any prior experience with leading a classroom 

discussion. 

 

Providing Students with Opportunities to Write in Science-Specific Ways 

Three PSTs described challenges related to providing students with opportunities to 

write in science-specific ways.  For example, one student reflected that the most challenging 

part of the science inquiry lesson was the science journal.  In her reflection, she mentioned that 



222 
  

she could have explained better how students were expected to utilize the science journal and 

she should have outlined more specifically what students need to write in it.   

Research question 3:  What instructional accommodations did elementary PTS include in 

their science lesson plan to support ELs’ learning needs? 

PSTs showed evidence of a developing understanding of what accommodations might 

look like for ELs to learn science.  They were able to follow a 5E learning model and transfer 

their knowledge from a general TESOL course to a specific science lesson planning process and 

provide instructional support for ELs through the whole lesson.   

SHOW and TELL Accommodations for SLIDE and TREAD Tasks Focusing on 

Different Science Practices 

All groups used SHOW and TELL accommodations to help support ELs complete 

SLIDE and TREAD tasks within each E phase in science lessons.  A common SHOW 

accommodation is that six groups planned to allow ELL students to draw their understanding of 

science concepts as an option to writing about them.  For example, one group planned to have 2nd 

grade ELs to draw pictures of their observations about the changes wind makes on a sand hill 

simulated in the “Explore” phase of their lesson, using an “Erosion Observation” handout which 

provided three spots for three observations.  A common TELL accommodations is that six 

groups planned to use sentence frames to support ELs’ in composing scientific explanations. For 

example, one group used sentence frame, “The weather in ______ will warmer in July and cooler 

in January”, to guide 2nd graders to learn how to use evidence to support their claims about when 

will be the best time to visit a place to enjoy winter weather or summer weather.  Also, six 

groups used accommodation, graphic organizers that were categorized as both SHOW and TELL 
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strategy for ELs. For example, a Human Body Parts chart including the body parts (brain, heart, 

skeleton, muscles, lungs, and stomach), functions, and location was used in “Exploration” phase 

to help students organize their data and information obtained from their investigating each body 

part through the resources provided by teacher.  All groups planned to allow ELs work with a 

Native English speaking student. 

Limitations Related to PSTs’ Planned Instructional Accommodations for ELs 

Even though within each E all groups produced accommodations for ELs to be engaged 

in science practices, some of them were not specific enough to support the tasks proposed in the 

activities for two main reasons.  First, some accommodations did not include necessary details 

that would helpful in classroom implementation.  For example, one group of PSTs who planned 

to facilitate a lesson on weathering and erosion used a series of questions to engage students to 

discuss land formations created by wind erosion.  For this task they stated the following for 

beginning EL students, “Ask simpler questions individually while looking at the pictures, like 

pointing, or one word answer.”  However, the group did not list or suggest questions that are 

easier to answer.  Second, none of the differentiate their EL accommodations nor did they 

provide specific accommodations for the three levels (beginning, intermediate, advanced) of EL 

English proficiencies as expected.  All groups used pairing native-English speaking students with 

EL students without explain how Native-English speaking students would assist EL students.  

Furthermore, all groups used the same accommodation for different EL proficiency levels for at 

least one of their 5E phases. Groups did not explain how these accommodations would help ELs 

across phases and language proficiency levels.     
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Research question 4: What challenges did elementary PTS report in their reflections 

about developing instructional accommodations for ELs in their science lesson plan? 

In their individual reflection papers, PSTs mentioned that during lesson planning process, 

they had to rely on some of the accommodations they learned in a previous TESOL course and 

also on what they learned from a modeling lesson (i.e., Oobleck lesson) in their current science 

methods course.  PSTs reported four types of challenges related to developing ELs’ instructional 

accommodations in their science lesson plan. 

First, nine PSTs reported they found it difficult to provide differentiated accommodations 

for beginners, intermediate and advanced ELs.  Some of them “were having a difficult time 

differentiating between what intermediate and advanced levels” while others reported that they 

were not sure “what a beginner ELL student was capable of”. 

Second, four PSTs reported challenges of vocabulary teaching for ELs.  For examples, 

some of them were not sure about how to provide pictures for developing a word bank and others 

reported they had a hard time in providing non-verbal visuals and colorful graphic organizers as 

accommodations to support ELs’ needs. 

Third, two PSTs reported their challenges with providing ELL’s some specific 

accommodations when integrating video in their instruction.  They had a hard time in finding 

appropriate questions or other supports to help ELs understand the content of the video. 

The last type of challenge the PSTs reported in their reflection was related to how hard 

and how much effort it required of them to think about accommodations for ELs through the 

whole lesson, including each E phase within the teaching procedure.  One of PSTs was even 
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wondering if these proposed accommodations throughout the whole lesson might hinder the rest 

of the class in learning science. 

Discussion 

This study provided an in-depth examination of elementary PSTs’ understanding of the 

role of literacy in science teaching and learning of all students, especially ELs, through planning 

an inquiry-based science lesson.  Our findings indicate that elementary PSTs benefited overall 

from the lesson planning process within this situated disciplinary-literacy integrated science 

methods course.  Major findings are summarized below with discussion based on the previous 

literature. 

One important finding was that in planning their science lessons, PSTs were able to 

provide at least one literacy strategy within each phase through a 5E instructional model to help 

all students learn science.  Of the different science-specific literacy strategies PSTs included in 

their science lesson plans, using a CER framework to support students’ constructing their 

scientific explanations were the most common.  This is an important finding because 

constructing scientific explanations is considered a central component of science inquiry 

(Osborne, 2000) and one of eight practices of science in NGSS (NGSS Lead States, 2013).  In 

addition, recent reform efforts in both science and literacy (NGA & CCSSO, 2010; NGSS, 2013) 

advocate for helping students develop scientific explanations.  This finding is also consistent 

with the findings in other research (Stoddart et al., 2013), which indicated that it is helpful to 

integrate literacy in science methods course to support PSTs’ teaching practice.  

Another important finding is that PSTs also used specific literacy strategies to provide 

instructional accommodations to engage ELs in different science practices. Instead of only 
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providing some general “relying on others” strategies (Kahn, Pgman, & Ottley, 2017) PSTs 

identified some science-specific strategies in their lesson plans which that are especially helpful 

for ELs who can experience difficulties in communicating their scientific ideas (Fang, 2004; 

Schleppegrell & Paliscar, 2013).  For examples, the CER framework, graphic organizers, and 

sentence frames were used to support ELs in constructing scientific explanations, carrying out 

investigations, analyzing and interpreting data, and obtaining and evaluating information.  This 

finding enriches research in preparing PSTs working with ELs in science teacher education 

programs and provides some evidence compared to previous studies (e.g., Kahn, Pgman, & 

Ottley, 2017).  More follow-up research is needed to identify what and how the interventions in 

the science methods course contributed to PSTs’ learning to planning.  Due to the study’s 

research design and related research questions, the researchers cannot explain if the literacy 

strategies PSTs incorporated in their lesson plans to scaffold students’ ability to construct and 

communicate scientific explanations was due to the fact that those strategies were taught and 

modeled in the disciplinary-literacy integration in this situated science methods course.  The 

study’s findings show potential for future research on the models for integrating literacy in 

science instruction at the preservice education level (DiCerbo, Anstrom, Baker, & Rivera, 2014). 

A third important finding of the study identified challenges PSTs faced when learning to 

use literacy as a tool to support students’ science learning.  The literacy strategies they provided 

in their lesson plans and reflected upon in their written reflections indicted that PSTs need more 

knowledge in how to (a) engage students during a real aloud time; (b) teach specific strategies 

for learning science vocabulary; (c)  support student science talk; and, (d) guide science writing.  

This is important to note because research has highlighted the critical role of classroom 
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discussion in supporting students’ conceptual knowledge building in science (Chen, Hand, & 

Norton-Meier, 2017; Chin, 2007).  In order to effectively encourage scientific discussion in the 

classroom, PSTs will have to learn how to use questioning techniques and discourse moves to 

scaffold students’ scientific sense-making and reasoning abilities.  This finding provided 

empirical evidence to identify the areas teacher educators, especially science teacher educators, 

need to continue to work on through university courses.  More research is needed to explore 

what adjustments need to be made in science methods courses to provide more appropriate 

interventions to help PSTs learn and apply literacy strategies in a science teaching and learning 

context.  

A fourth important finding of the study identifies some of the specific challenges PSTs’ 

face when learning to support ELs in science classrooms and successfully adapting the 

knowledge base acquired from previous courses to science teaching (Jazen, 2008). Even though 

some specific literacy strategies were being used to support ELs students learning, most still fell 

short of providing specific and differentiated strategies for ELs with varied language 

proficiencies and were simply derived from the PSTs’ previous TESOL training.  For examples, 

in PSTs’ lesson plans, it was not clear how they would plan to use of less complex questions, 

starting from the “Engagement” phase and how native speakers can help different level of ELs 

learn across the whole lesson.  More information is needed to address what specific literacy 

strategies can be used to conduct vocabulary instruction besides providing a word wall.  This 

finding is consistent with a reflection from a middle school science methods course instructor 

which also indicated difficulties in incorporating TESOL content into science methods course 

(Bautista, 2014). This finding also echoes the obstacles that Dong (2004) identified for PSTs to 
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help ELs make connections with their learning.  One reason could be the lack of cohesion and 

collaboration within teacher preparation programs as other studies (Bunch, 2013; Kahn, Pgman, 

& Ottley, 2017) have concluded.  Since a major barrier to science learning is the academic 

language of science, especially for ELs (Fang, 2004; Lemke, 1990; Wellington & Osborne, 

2001), more research is needed to examine how general TESOL instructional strategies can be 

applied in science teaching context and how science teacher educator can collaborate with 

literacy and TESOL experts to prepare PSTs to better serve ELs. 
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Applications 

Case study designs allow for limited generalizations because of the limited sample size 

and bounded context to which the study is connected (Creswell, 2013).  This study was 

conducted using a purposive and convenience sample at a large, Metropolitan University located 

in the Southeastern United States.  Therefore, different preservice student populations may be 

different and unaccounted for in this study.  Additionally, the limited sample size, the length of 

the study, the use of self-reported data, and researcher biases pose related methodological 

limitations that carry implications for the potential design of science methods courses through 

interdisciplinary collaborations (Cervetti, Kulikowich, & Bravo, 2015).  

In order to better prepare elementary PSTs to teach science and meet the need of all 

students, including ELs, it is necessary to reform science methods courses through collaboration 

between science teacher educators, and experts in literacy and TESOL. First, to address 

challenges identified in PSTs science lesson planning and reflection, more research-based 

resources and information, such as specific strategies of teaching science vocabulary, facilitating 

science talk and writing, and differentiating strategies for supporting different level ELs need to 

be integrated into the curriculum of science methods courses.  Second, a disciplinary literacy 

framework needs to be further integrated into the specific curriculum of science methods courses 

to truly help PSTs understand the development of science and literacy knowledge and skills in 

tandem, instead of viewing literacy only as a tool or even an instructional add-on to support 

students’ science learning.  Third, reflections of lesson planning could be more meaningful if 

PSTs are provided opportunities to critique their lesson plans rather than just simply reporting 

what challenges they perceived related to using literacies and instructional accommodations for 
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ELs.  Fourth, instructors of science methods courses need professional development through 

collaborating with experts outside of science education in order to provide explicit connections 

between science methods courses and other general methods courses. 

Follow up research is also needed to explore and examine how to explicitly connect 

university courses to actual teaching practices in classrooms (Jazen, 2008). Beside science 

methods courses, it is necessary to track PSTs experiences of internships in the classroom, and 

even their first year of teaching in order to investigate whether and how they apply the 

knowledge they gained through university courses to real teaching contexts, what supports they 

need, and determine if future students benefit from the PSTs in terms of science learning. 
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EXPLANATION OF RESEARCH 

 
 

Title of Project: Learning to teach science to all students: Integrating literacy in science teaching through an 
elementary science methods course  

  
Principal Investigator: Rebeca Grysko, M.Ed. 
     
Faculty Supervisor: Dr. Zygouris-Coe 
 

You are being invited to take part in a research study because the course you are enrolled in is serving as 
either a treatment or control group. Your participation is entirely voluntary.  

 
The purpose of this study is to examine elementary preservice teachers’ knowledge and practices for 

teaching science as argument.  Findings will hopefully contribute to the understanding of how teacher educators can 
help preservice teachers become effective teachers of science.  
 

The duration of this study is one semester. Participants will be asked to complete two in-class 
questionnaires during the first few weeks of the course (pre-test) and once again at the end of the semester (post-
test).  Participants will also be asked to complete an in-class written scientific explanation task once during the first 
few weeks of the course (pre-test) and once again at the end of the semester (post-test).  The remainder of activities 
are taking place regardless of research, and the researcher is simply asking for access to these assignments on 
Webcourses.  If you agree to participate, a code will be used to identify you as a research participant and ensure your 
anonymity in this study. Your decision to participate in this study is voluntary and will have no impact on your 

course grade. You must be 18 years of age or older to take part in this research study.  
 
Study contact for questions about the study or to report a problem: If you have questions, concerns, or 

complaints, contact Rebeca Grysko, Graduate Student, Reading Education Program, College of Community 
Innovation and Education,  rebeca.grysko@ucf.edu or Dr. Vicky Zygouris-Coe, Faculty Supervisor, College 
of Community Innovation and Educaiton, vzygouri@ucf.edu . 

 

IRB contact about your rights in the study or to report a complaint:  Research at the University of Central 
Florida involving human participants is carried out under the oversight of the Institutional Review Board (UCF IRB). 
This research has been reviewed and approved by the IRB. For information about the rights of people who take part in 
research, please contact: Institutional Review Board, University of Central Florida, Office of Research & 
Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by telephone at (407) 823-2901. 
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Appendix D1: Phase 1 Protocol 

Materials Cue Do Review 

PPT displayed on 

projector screen  

 

CER Framework 

handout (1 for each 

PST) 

 

Base rubric (1 for each 

PST)  

 

Packet of sample 

scientific explanations 

(1 for each pair of PSTs) 

 

Highlighters (three for 

each pair of PSTs)  

Remind PSTs that 

they previously 

discussed the 

importance of 

providing inquiry-

based science 

instruction.  

 

Tell them that 

today’s class session 
will focus on one 

essential practice of 

scientific inquiry: 

constructing 

scientific 

explanations.  

 

Explain that first you 

will provide a PPT 

overview of the 

importance of 

engaging elementary 

students in scientific 

explanation.  Explain 

that after this 

presentation, you will 

introduce a 

framework that can 

help them plan 

effective science 

instruction that 

includes 

opportunities for 

students to engage in 

scientific 

explanation.  

 

Tell them that they 

will also learn to 

critique the quality 

and complexity of 

scientific 

1. Provide PPT overview:  

• Discuss 

importance/benefits of 

engaging elementary 

students in scientific 

explanation 

• Discuss connections 

between literacy and 

science -introduce the TSAF 

and provide examples of 

how each of the three 

components can be 

employed during classroom 

instruction   

 

2. Introduce CER Framework:  

• Explain that the CER 

Framework is designed to 

help elementary students 

construct scientific 

explanations.  

• Distribute handout 

with definitions and 

examples of each 

component.  

• Tell PSTs that they can 

refer to this handout when 

constructing their own 

scientific explanations 

throughout the semester.  

 

 

3. Distribute and provide an 

overview of scientific 

explanation base rubric:  

• Explain that rubric is 

based on the CER 

Framework and can be 

used to assess the quality 

of a scientific explanation.  

“Today, we 
discussed the 

importance of 

engaging 

elementary 

students in 

scientific 

explanation. We 

also learned 

about a 

Framework that 

can be used to 

plan effective 

science 

instruction that 

supports students 

in constructing 

scientific 

explanations.  

What are the 

three core 

components of 

the TSAF?” (Call 
on PSTs to review 

each 

component).” 

 

“You were also 
introduced to a 

framework 

designed to help 

elementary 

students construct 

scientific 

explanations. 

What is the name 

of that 

framework? What 

are the three 

components of 

the CER 

framework?” (Call 
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Materials Cue Do Review 

explanations using a 

rubric.  

  

 

 

 

 

 

• Model how to use the 

rubric to assess a sample 

explanation.  

 

4. Engage PSTs in the process 

of critiquing three sample 

explanations using the base 

rubric.  

• -Distribute a packet of 

sample explanations to 

each pair of PSTs.  

• Provide each pair of 

students with three 

different color highlighters 

(i.e., yellow, blue, and 

green.)  

• Ask PSTs to use their 

highlighters to identify the 

claim, evidence, and 

reasoning in each 

explanation.   

• After pairs have 

highlighted the claim, 

evidence, and reasoning in 

each explanation, ask that 

they use the base rubric to 

assign a total score to each 

explanation. 

• Afterwards, lead a 

whole-class discussion to 

emphasize how the 

samples ranged in 

complexity, from simple 

(claim + 1 piece of 

evidence) to complex 

(claim + multiple pieces of 

evidence + reasoning)   

• Ask: Which scientific       

explanation was the least 

complex? Why?  Which 

scientific explanation was 

the most complex? Why?  

 

on PSTs to review 

each component 

(i.e., claim, 

evidence, and 

reasoning).  

 

Conclude the 

session by 

reminding PSTs 

that supporting 

students in 

constructing 

scientific 

explanations is an 

essential aspect 

of effective 

science teaching.  

For this reason, 

they will have 

opportunities to 

not practice 

constructing 

scientific 

explanations 

themselves 

throughout the 

semester but will 

practice planning 

a science lesson 

using the TSAF 

near the end of 

the semester.  
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Appendix D2: Phase 2 Protocol 

Materials Cue Do Review 

See specific 

inquiry-based 

science lesson 

plan for 

complete 

materials list.  

Introduce the 

topic/bridge 

from previous 

class session.   

 

Access prior 

knowledge.   

 

Share specific 

learning 

goal(s)/objective

s as listed in the 

lesson plan.  

 

 

 

 

 

 

 

 

Introduce the testable question.  

 

Engage PSTs in reading about the 

phenomena under study. See lesson plan 

for name of scientific text as well as before, 

during, and after reading activities.  

 

Introduce, model, and engage PSTs in an 

academic vocabulary building strategy as 

described in the lesson plan.    

 

Engage PSTs firsthand with the 

phenomena under study.   

• Have PSTs record their 

observations and data in their science 

notebooks.  

• As you are circulating, be sure to 

pose questions that encourage PSTs to 

notice patterns in their data (i.e., What 

claim can you make based on the 

evidence?) 

 

Review how scientists make explanations. 

Remind PSTs that a scientific explanation 

has three important components: claim, 

evidence, and reasoning.  

• Review claim. Ask, “What is a 
claim?” [A scientist’s best idea for an 
answer to a question.] Say, “A claim is 
based on evidence.”  
• Review evidence. Remind PSTs that 

the clues a scientist finds during an 

investigation is evidence. Evidence can 

help a scientist make a claim or decide 

if a claim needs to be changed.  

• Review reasoning. Explain that the 

reasoning explains how the evidence 

supports the claim. 

 

Engage PSTs in writing a scientific 

explanation.   

Guide PSTs in 

unpacking the 

lesson from the 

perspective of the 

teacher (using the 

three features of 

the TSAF as a 

heuristic).  

Say, “Now that you 
had an opportunity 

to engage in the 

lesson as learners, 

you will use the 

TSAF to unpack the 

lesson plan from 

the perspective of 

the teacher.”  
 

Provide each pair 

of PSTs with a hard 

copy of the 

Oobleck lesson 

plan and the lesson 

plan rubric.   

Ask PSTs to 

evaluate the lesson 

using the provided 

rubric.  

 

Ask PSTs to 

provide examples 

of how the lesson 

supports all 

students in 

constructing, 

communicating, 

and debating 

evidence-based 

claims (e.g., 

lesson-specific 

supports for ELLs).  
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Materials Cue Do Review 

• Encourage PSTs to use information 

from the text as well as their 

observations from the investigation as 

evidence to support their claim 

• Provide writing scaffolds (see 

complete lesson plan) and post visual 

representation of CER Framework  

 

Facilitate whole-class science talk.  

• Use specific teacher talk moves and 

questioning techniques to promote 

peer interactions and scaffold PSTs’ 
communication of scientific ideas and 

evidence in ways that reflect scientific 

discourse.  

• Examples of teacher talk moves:  

o What claim can you make 

based on the evidence?  

o Do you agree or disagree 

and why?  

o Would someone like to add 

on to that?  

o Why do you think that? 

o What evidence helped you 

to arrive at that answer 

 

Make connections to the big idea/science 

concept as described in the lesson plan.  

Conclude the 

session by 

reminding PSTs 

that supporting 

students in 

constructing 

scientific 

explanations is an 

essential aspect of 

effective science 

teaching. For this 

reason, they will 

have further 

opportunities to  

practice 

constructing 

scientific 

explanations 

throughout the 

semester and will 

also practice 

planning a science 

lesson using the 

TSAF near the end 

of the semester.  
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Appendix D3: Phase 3 Protocol 

Materials Cue Do Review 

Lesson Plan Rubric 
 
Planning Questions 
Related to the TSAF 
Group Teaching 
Observation Sheet (to be 
completed by PSTs 
during each group’s 
lesson plan presentation)   

Share the rationale for 

the lesson plan 

assignment.  Explain 
that the purpose is to 
provide PSTs an 
opportunity to apply 
their developing 
understandings of the 
TSAF to plan effective 
science instruction for 
elementary students.  
Distribute and discuss 

planning questions 

related to the TSAF.  

 

Distribute and discuss 

lesson plan rubric.  

 

 
 
 
 
 
 
 
 

1. Provide in-class time for 

PSTs to work on their lesson 

plans with their group 

members (Week 12 of the 

course). 

• Provide support 
during the planning 
process.  
• Refer to the planning 
questions to help PSTs 
negotiate the content and 
sequencing of their 
lessons.   

2. Have PSTs submit an 

initial draft of their group 

lesson plan (Week 13 of the 

course). 

• During class time, 
engage PSTs in the process 
of reviewing other groups’ 
lesson plans (using the 
TSAF as a heuristic) and to 
offer suggestions for 
improvement.  
• Encourage PSTs to 
use their peers’ 
suggestions to revise their 
lessons.   

3. Schedule time for each 

group to present/microteach 

their final inquiry-based 

science lesson (Weeks 14-15 

of the course).  

• As groups are 
presenting, ask that PSTs 
complete a Group 

Teaching Observation 

Sheet for each of the 
lessons presented. 
    
 

Have PSTs 

complete and 

submit a self-

reflection of their 

own lesson plans. 

PSTs will reflect 
on how their lesson 
supports all 

students in 
constructing, 
communicating, 
and debating 
evidence-based 
explanations in 
science. PSTs will 
also reflect on the 
role of language 
and literacy in 
science.  
Remind PSTs 

that supporting 

students in 

constructing 

scientific 

explanations is an 

essential aspect of 

effective science 

teaching.  
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LESSON PLAN RUBRIC 
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 Target (2 points) Developing (1 point) Unacceptable (0 

point) 

Evidence 

Format Follow the template of inquiry-based 
lesson plan including all components. 

One components is missing. Two or more 
components are 
missing. 

 

Teaching 

Standards 

Three different kinds of science standards 
(content standards, Nature of Science 
standards, and TESOL standards) in the 
Next Generation Sunshine State 
Standards (NGSSS) are identified. 

One kind of standards is 
missing.  

Two kinds of 
standards are 
missing. 

 

Content 

Objectives 

Three components (performance, 
condition, and criteria) are identified in 
each content objective. 

One component is missing.  Two or more 
components are 
missing. 

 

Engage  A clear, complete description of the 
engage component is included.  Engage 
elicits students’ prior knowledge (based 
upon the objectives) and incorporates 
engaging scientific text to accomplish all 
of the following:  
1. Raises student interest/motivation to 
learn 
2. Build student background knowledge 
3. Provides opportunities for student 
discussion/questions 
4. Leads into the exploration 
 
 
 

The lesson includes an 
incomplete description of the 
engage component. The 
engage component 
accomplishes only one or 
two of the following:  
1. Raises student 
interest/motivation to learn 
2. Build student background 
knowledge 
3. Provides opportunities for 
student discussion/questions 
4. Leads into the exploration  
 

Engage component 
is missing.  

 

Explore A clear, complete description of the 
learning activities in the exploration 
phase is included. The exploration phase 
involves hands on/minds on activities 
that are student centered and provide 
opportunities for students to conduct 
science and engineering practices. 
Students do many of the following: make 
observations, collect data, hypothesize, 
predict, and discuss.  

Lesson includes an 
incomplete description of the 
learning activities in the 
exploration phase. Some 
activities are not hands 
on/minds on and student 
centered. Students do one or 
two of the following: make 
observations, collect data, 
hypothesize, predict, and 
discuss.  

Explore component 
is missing.  

 



252 
  

 Target (2 points) Developing (1 point) Unacceptable (0 

point) 

Evidence 

Explain Clearly and completely describes how the 
teacher will provide opportunities and 
facilitate students to construct and 
communicate an evidence-based 
scientific explanation in reasoning 
publicly using the C-E-R Framework to 
illustrate the concept or skill.  
 
 

Lesson fails to specify how 
the teacher will provide 
opportunities and facilitate 
students to construct and 
communicate an evidence-
based scientific explanation 
using the C-E-R Framework 
to illustrate the concept or 
skill 

Explain component 
is missing.  

 

Elaborate/Extend Clearly and completely describes 
activities that will provide students with 
the opportunity to apply the newly 
acquired concepts and skills into new 
areas. The elaborate activities encourage 
students to find real life (every day) 
connections with the newly acquired 
concepts or skills. 

Lesson includes an 
incomplete description of 
activities that will provide 
students with the opportunity 
to apply the newly acquired 
concepts and skills into new 
areas. Activities do not 
encourage students to apply 
scientific concepts to every 
day situations.  

Elaborate/Extend 
component is 
missing.  

 

Evaluation The lesson includes clear and complete 
descriptions of the assessments 
(formative  and /or summative 
assessment) being used to measure 
student learning. The  evaluation  
matches  the 
Objectives of the lesson. The lesson 
includes a variety of forms/ approaches 
of assessment. The evaluation criteria are 
measurable.  

Assessments are not varied 
OR fail to measure student 
achievement of each 
objective.   

Evaluation 
component missing.  

 

Academic 

Vocabulary  

Lesson incorporates at least one 
appropriate strategy to help students 
develop academic vocabulary in science 
(can be included into any of the above 5E 
phases).  

Lesson incorporates at least 
one strategy to help students 
develop academic 
vocabulary in science, but 
strategy is not explicitly 
specified.  

Lesson does not 
incorporate a 
strategy to help 
students develop 
academic 
vocabulary in 
science. 

 

ELL 

Accommodations/ 

Lesson includes appropriate 
accommodations/instructional supports to 

Lesson only includes general 
accommodations/ 

Accommodations/  
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 Target (2 points) Developing (1 point) Unacceptable (0 

point) 

Evidence 

Instructional 

Supports  

assist ELLs in developing scientific 
language and content knowledge within 
each E phase.  

Instructional supports to 
assist ELLs in developing 
scientific language and 
content knowledge within 
each E phase. 

Instructional 
supports for ELLs 
are missing within 
each E phase.  
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APPENDIX G    

OOBLECK LESSON PLAN  
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1. Rationale/Purpose:  
 
Science Standards: 
SC.4.P.8.1: Measure and compare objects and materials based on their physical 

properties including: mass, shape, volume, color, hardness, texture, odor, taste, attraction to 
magnets. 

SC.5.P.8.1: Compare and contrast the basic properties of solids, liquids, and gases, such 
as mass, volume, color, texture, and temperature.  

 
SC.4.N.1.4 : Attempt reasonable answers to scientific questions and cite evidence in 

support. 
SC.4.N.1.7: Recognize and explain that scientists base their explanations on evidence.  
SC.5.N.2.1: Recognize and explain that science is grounded in empirical observations 

that are testable; explanation must always be linked with evidence. 
 
ELA Standards: 
LAFS.4.RL.1.1: Refer to details and examples in a text when explaining what the text 

says explicitly and when drawing inferences from the text. 
LAFS.4.SL.1.1: Engage effectively in a range of collaborative discussions (one-on-one, 

in groups, and teacher-led) with diverse partners on grade 4 topics and texts, building on others’ 
ideas and expressing their own clearly. 

LAFS.K12.W.1.1: Write arguments to support claims in an analysis of substantive topics 
or texts, using valid reasoning and relevant and sufficient evidence. 

LAFS.4.W.1.2: Write informative/explanatory texts to examine a topic and convey ideas 
and information clearly. 

 
English Language Development Standards: 
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and 

concepts necessary for academic success in the content area of Science. 
 
Content Objectives:  
1. Students will be able to classify Oobleck as a solid or liquid based on the physical 

properties of Oobleck (such as mass, shape, volume, hardness, texture) by collecting both textual 
evidence and evidence collected through a firsthand investigation.  

2. Students will be able to construct a scientific explanation (orally and in writing) about 
the state of Oobleck using valid reasoning and relevant and sufficient evidence to support their 
claim. 

 

2. Misconceptions:  
 “It is liquid because it takes the shape of the container.”  
 “It is a liquid because you can pour it.” (Troncale, 2016) 
 
3. Detailed Procedures:  
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Engagement: Physical Properties of Matter 
 

Ask students to suggest some ways they might classify different objects (i.e., shape, 
texture, color, size, and hardness). Present some sample items (such as a marker/pen/pencil, 
water, soda, oil, vinegar, coffee, or piece of fruit, sands in a bottle) and ask students how they 
would classify each one using this method. Students will record the name of the object they are 
observing and provide evidence that supports the property of matter for each of these objects. 

 
Table 1: Property of Matter and Evidence Task 
 

Solids Evidence  Liquids Evidence 
    
    
    
    
    

 

Guided Discussion: Have students to share which items they classified as solids or 
liquids, and what evidence they recorded to support their classification. Explain that as they have 
discussed evidence they collected through their own observation, they can also collect different 
kinds of evidence from what other scientists have done.  

 
Accommodations: Arrange beginning ELL students in small groups and pair them with 

non-ELL students. Provide specific objects, such as marker/pen/pencil, water, soda, tables, 
chairs, oil, vinegar, coffee, fruit, or rulers for the students in the classroom.  Write down terms, 
such as color, smell, shape, size, sounds, state, texture, to help intermediate, and advanced ELLs 
students describe the physical properties of the objects. Provide graph organizers (Table 1). 

 
Text-Based Inquiry 
 

Students will read an informational article about the properties of matter. Students will 
compare and contrast a solid and a liquid. Students will use the information from the text to help 
them determine whether Oobleck is a solid or a liquid. 

 
Place students into collaborative pairs and give each student a copy of the Newsela 

article, titled “Matter and Energy: What is matter?”.  While reading in pairs, students should 
underline any properties and examples of solids in RED and underline any properties and 
examples of liquids in GREEN.   

 

Pose these questions to help students reflect upon the text: What is matter? How are 

solids and liquids the same? How are solids and liquids different? What properties can we use to 

distinguish between a solid and a liquid?  
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Contrasting between “Solid” and “Liquid”  
 
Students will use their color-coded article to create and complete a Frayer Model for the 

vocabulary terms “solid” and “liquid”. Facilitate students to compare these two states of the 
matter. On their Frayer Model, students will circle the different characteristics between solids 
and liquids. (These are scientific principles that they can use later on to decide about the 
difference between them.) 

 

      
 

Accommodations: ELL students and non-ELL students will work in pairs to read the 
article. Articles with images allow ELL students to visualize the concepts. The color-coding will 
focus students on key characteristics and examples of solids and liquids. Students will use the 
article to help them complete the Frayer Model graphic organizer. The complexity of the text can 
be reduced. The teacher can provide the properties and examples on paper for the students to cut 
and glue in the correct column of the graphic organizer.  

 
Explore: Hands-on Oobleck 
 
Hands-on Inquiry 
 
Students will make their own Oobleck using a mixture of about 1 cup of cornstarch to 1/2 

cup of water is a good starting point. They will have to tweak these amounts to get the ideal 
Oobleck texture. 

Accommodations: Beginning ELL student will be grouped with non-ELL students and 
teacher should be available to demonstrate how to make Oobleck. A picture of the recipe will be 
shown through Power Point when students make their Oobleck for intermediate, and advanced 
ELLs. 

 

L
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Students will conduct 7 stretch tests and record their observations about how Oobleck 

responds (Buchanan, 2005) on Table 2.  
1. Pour the Oobleck out of the cup onto a plate or pie pan.  
2. Hit the puddle of Oobleck with your fist.  
3. Pour a small amount of Oobleck onto the lab table.  
4. Pull the Oobleck apart, quickly then slowly.  
5. Roll the Oobleck into a ball.  
6. Place a penny on a puddle of Oobleck.  
7. Try to cut a piece of the Oobleck away.  
 
Accommodations: Beginning ELL students will be grouped with non-ELL students 

during the tests, and they will be allowed to record the observations by drawing. Teacher should 
also make an effort to demonstrate each test for them. A handout as following with a chart 
including 7 tests and questions will be provided for intermediate, and advanced ELLs. They will 
be allowed to record the observations by drawing pictures. 

 

Test Question to consider… Verbal/Visual 

Description of Observation 

1. Pour the Oobleck out of 

the cup onto a plate or pie pan. 

What does it do when it hits 

the plate? 

 

 

2. Hit the puddle of 

Oobleck with your fist. 

What happens to the 

substance? 
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3. Pour a small amount of 

Oobleck onto the lab table. 

Does it stick? 

 

 

4. Pull the Oobleck apart, 

quickly then slowly. 

How does it behave? 

 

 

5. Roll the Oobleck into a 

ball. 

Does it bounce? 

 

 

6. Place a penny on a 

puddle of Oobleck. 

What happens to the penny? 

 

 

7. Try to cut a piece of the 

Oobleck away. 

What do you see? 

 

 

 

Explain: Developing the Oobleck Explanation 
 

Write the prompt, “Is “Oobleck” as solid or a liquid?” on the board and then read it 
aloud. Remind students that a scientific explanation has three important components: claim, 

evidence, and reasoning.  
 

Review claim. Ask, “What is a claim?” [A scientist’s best idea for an answer to a 
question.] Say, “A claim is based on evidence.”  
 
Review evidence. Remind students that the clues a scientist finds during an investigation 

 is evidence. Evidence can help a scientist make a claim or decide if a claim needs to be 
 changed.  

 
Review reasoning. Explain that the reasoning incorporates a scientific principle 

and explains how the evidence supports the claim. 
 

Have students construct a written explanation in their science notebooks. Encourage 
students to use their observations from the investigation as well as textual information as 
evidence to support their claim.  

 
Accommodations: Writing scaffolds utilizing the claim, evidence, and reasoning 

framework will be provided to support students in constructing their scientific explanations. In 
addition to providing writing scaffolds, a visual representation will be displayed for students to 
refer to as a reminder of how to construct a scientific explanation. These supports are especially 
helpful for supporting ELLs.    
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Visual Representation:  

 
 
 
Writing Scaffolds:  

 

Claim: Write a sentence stating whether Oobleck is a solid or a liquid.  
Oobleck is a _____ (solid or liquid).   
 
Evidence: Provide scientific data to support your claim. The evidence should include the 

observations you made when conducting the tests.  
Evidence 1: My evidence to support my claim is that the Oobleck 

________________________.  
Evidence 2: Also, the Oobleck _________________.  
Reasoning: Write a statement of sentences that explains why your evidence supports 

your claim.  
For the substance to be a liquid, it should________________.  
For the substance to be a solid, it should______________.  
Oobleck has the properties of a ______ (solid or liquid), so I conclude that it is a ______ 

(solid or liquid).  
 

Discuss the students’ explanations as a whole class.  
 
Students will present their scientific explanation within a team which is composed of the 

peers who have the similar claims. Student will debate with the “opposing” team and critique the 
reasoning of others. Scaffold students’ communication of scientific ideas and evidence in ways 
that reflect scientific discourse. Examples of teacher talk moves:  

 

What claim can you make based on the evidence?  

Do you agree or disagree and why?  

Would someone like to add on to that?  

Why do you think that? What evidence helped you to arrive at that 

answer?  
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Note: Some students may be especially sensitive to having their explanation evaluated. In 
order to avoid hurt feelings, talk about which explanation is “supported by more evidence” rather 
than which one is “better”. 

 
Accommodations: ELL students will be paired with non-ELL students to complete the 

CER sentence starters. Students may use their color-coded article, the Frayer Model graphic 
organizers, and the observations from the Oobleck tests to help them complete the CER sentence 
starters. Students may use evidence, examples, and pictures from these resources to help them 
present their explanation to their team.     

 
Elaborate/Extend: Scientific Argumentation-Oobleck is a… 
 
Ask students to specify what else they would like to know about this substance. Assist 

students in conducting further research about Oobleck’s properties through the Internet and make 
connections to non-Newtonian fluids. The following video can be used to extend students’ 
understanding of Oobleck (https://www.youtube.com/watch?v=-wiYtoG9kZE) and make 
connections to non-Newtonian fluids. 

 
Accommodations: Teacher will provide extra time for beginning ELLs to ask questions 

individually. Several appropriate resources on internet will be provided for intermediate and 
advanced ELLs. The YouTube Video can be provided to preview independently prior to the 
lesson to create context for the activities of Oobleck for all level ELLs. Closed-captioning will be 
used for viewing the video.   

 

Evaluation: Assessing Understanding of Oobleck’s Properties 
 
Students are formatively evaluated and assessed at the engage, explore, explain, and 

extension stages through classifying Oobleck as a solid or liquid based on its’ physical properties 
and through constructing their scientific explanations and argumentation. The Oobleck CER-
Assessment Rubric can be a specific tool to guide this aspect of evaluation process.   

 
  

https://www.youtube.com/watch?v=-wiYtoG9kZE
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Oobleck CER-Assessment Rubric 
 

CER Element &   Proficient Developing Needs Improvement 

Claim Claim statement 
clearly states the state 
of matter of Oobleck.  

Claim statement lacks a 
specific state of matter.  

Claim statement is not 
present, unclear, 
incomplete in 
structure.  

Evidence The two evidence 
statements provide 

1) appropriate 
and sufficient 
scientific data to 
support the claim, 
and  
2) describe 
evidence of 
Oobleck’s 
property from the 
Stretch Test. 

 

The two evidence 
statements lack the 
appropriate and 
sufficient data to 
support the claim. 
 

OR 
 

The two evidence 
statements lack 
evidence from the 
Stretch Test to support 
the claim. 

The two evidence 
statements are not 
present OR there is 
one evidence statement 
that is incomplete.  

Reasoning  The reasoning 
statement: 

1) appropriately 
describes why the 
data from the 
Stretch Test 
supports the 
claim, and  
2) includes 
established 
scientific rules, 
principles, or 
knowledge that 
justifies the claim.  

The reasoning 
statement lacks a 
description of data from 
the Stretch Test. 
 

OR 
 
The reasoning 
statement lacks a 
reference to or accurate 
understanding of 
established scientific 
rules, principles, or 
knowledge to justify 
the claim. 

The reasoning 
statement is either 

1) not present, 
2) rewords either 
the claim or 
evidence 
statements, or 
3) lacks a 
description of data 
and established 
scientific rule, 
principle, or 
knowledge.  

    

Accommodations: ELL beginning students can use handouts provided during the 
exploration and explanation phases and verbally communicate their scientific argument to the 
teacher. The teacher will provide individual feedback to them. Consider reading and reviewing 
the written report rubric with intermediate ELLs and accept short answers or incomplete 
sentence formation in their essays. For advanced ELLs, allow grammatical errors and provide 
opportunities to correct them. 
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4. Adaptations for ELLs 

See highlighted adaptations throughout procedures.  

 

5. Science Practices: Asking questions, carrying out investigations, constructing 
explanations, obtaining, evaluating, and communicating information 

6. Materials: 
 

For the whole class: 
 Sample items (such as a marker/pen/pencil, water, soda, oil, vinegar, coffee, or piece of 

fruit) 
 

For each student: 
 Science notebook 
 Informational text passage on matter 
 Highlighters/pens/colored pencils (1 green and 1 red)  

 
For each group:  

 Room temperature water 
 Cornstarch 
 Green food coloring 
 Plastic cups (one for water, one for cornstarch, measured beforehand) 
 Table cloth 

 

7. Safety:  
There is no significant safety issue related to this lesson. 
 

8. References:  
 

Brunsell, E. (2012). Designing science inquiry: Claim + evidence + reasoning = 
explanation.  

Edutopia, September 25, 2012. From <https://www.edutopia.org/blog/science-

inquiry-claim-evidence-reasoning-eric-brunsell>  
 

Buchanan, K. (2005). Oobleck and beyond. The Science Teacher, 72(9), 52-54.  
 
Florida Department of Education. (2008). Next Generation Sunshine State Standards (K-12 

Science). Retrieved from http://www.cpalms.org/homepage/index.aspx  
 
Troncale, J.M. (2016). Sensing matter: Is it a liquid or solid? Science and Children, 54(3), 58-63.  

  

https://www.edutopia.org/blog/science-inquiry-claim-evidence-reasoning-eric-brunsell
https://www.edutopia.org/blog/science-inquiry-claim-evidence-reasoning-eric-brunsell
http://www.cpalms.org/homepage/index.aspx
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APPENDIX H    

MUSCLES, BONES, AND THE BODY LESSON PLAN  
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1. Rationale/Purpose: 
 
Science Standards: 
SC.2.L.14.1 Distinguish human body parts (brain, heart, lungs, stomach, muscles, and 

skeleton) and their basic functions. 
SC.5.L.14.1 Identify the organs in the human body and describe their functions, including 

the skin, brain, heart, lungs, stomach, liver, intestines, pancreas, muscles and skeleton, 
reproductive organs, kidneys, bladder, and sensory organs. 

SC.6.L.14.5 Identify and investigate the general functions of the major systems of the 
human body (digestive, respiratory, circulatory, reproductive, excretory, immune, nervous, and 
musculoskeletal) and describe ways these systems interact with each other to maintain 
homeostasis. 

SC.5.N.2.1 Recognize and explain that science is grounded in empirical observations that 
are testable; explanation must always be linked with evidence 

 
ELA Standards: 
LAFS.5.L.3.6 Acquire and use accurately general academic and domain-specific words 

and phrases as found in grade level appropriate texts, including those that signal contrast, 
addition, and other logical relationships (e.g., however, although, nevertheless, similarly, 

moreover, in addition).  
LAFS.5.SL.1.1 Engage effectively in a range of collaborative discussions (one-on-one, in 

groups, and teacher-led) with diverse partners on grade 5 topics and texts, building on others’ 
ideas and expressing their own clearly. 

 
English Language Development Standards: 
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and 

concepts necessary for academic success in the content area of Science. 
 
Content objectives:  

1. Students will be able to identify structures (joint, tendons, ligaments, voluntary muscles, and 
skeletal muscles) of the muscular system and skeletal system through analyzing a text and a 
modeling activity. 

2. Students will be able to describe how the muscular and skeletal systems function in the 
human body for movement, structure, protection, and support through text analysis and a 
modeling activity. 

3. Students will be able to use the CER Framework to develop an explanation of how the 
muscular and skeletal systems work together (interact) to help the human body function 

through individual writing and group sharing.  
 

2. Misconceptions:  
• Body systems operate in isolation from one another (National Institutes of Health). 
• Bones are not living things (National Institutes of Health). 
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• Muscles are only for physical movements like walking, throwing, and swimming (CK-
12; National Institutes of Health). 
 

3. Detailed Procedures:  
 

ENGAGE: Let’s Get Moving! 
 
Guiding questions: 

1. What makes the human body move? 
2. What body parts are involved in moving? 

 
“Simon Says” (Head, Shoulder, Knees, and Toes) 
Play “Simon Says” with the students. For each direction, “Simon” will tell students to 

complete several physical movements. Following this activity, students will work in pairs to 
complete the Body Movement Table identifying which parts of the body are moving during each 
physical activity. 

 
• Walk/jog in place 
• Clap your hands 
• Wave your arms 
• Jump up and down 
• Pretend to kick a ball 
• Dance around  

 
Body Movement Table 

Physical activity Body parts that were moving 
1. Throwing a ball  
2. Jumping rope/jumping up and down  
3. Kicking a ball  
4. Bouncing a basketball  
5. Sitting on a chair   

 

Accommodations: Modeling the physical movements will help ELL students understand 
the rules of “Simon Says”. Images on the Body Movement Table sheet will help ELL students 
visualize the movement. Pair ELL and non-ELL students together to complete the Body 
Movement Table.  

 

EXPLORE: Building Body Concepts  
Building Body Concepts through Text-Based Inquiry  
Students will read about the muscular and the skeletal systems from the article “Learning 

how the bones and muscles work together”. In groups of two, students will use what they read in 
the article to define and describe aspects of each of the two systems on the concept of definition 
maps. 
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             Structures of the Muscular 

System 

                                                                                                        

 

 

 

 

 

 

   Types of Muscles 

 

 

 

 

 

 

 

What are examples (or drawings)? 

Smooth muscle-  

Skeletal muscle –  

Tendons-  

Muscle fibers–  
Muscular 

System 

Involuntary 

muscles–  

Voluntary 

muscles–  

Cardiac muscle –  

 

What is it? What is it? 
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     What is it?  

               

 

                                   Structures of the Skeletal 

System 

                                                                                                        

 

 

 

 

 

 

   Functions of Bones 

 

 

 

 

 

 

 

     

 

 

Minerals-   

Ligaments–  

Protect____________

____ 

______________________ 

__________________

________ 

Give______________

______ 

__________________

______ 

Skeletal 

System 

Make_____________

________________________

______ 

__________________

________ 

Joints–  

Marrow–  

Store______________

________________________

Cartilage–  
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What are examples (or drawings)? 

 
 
 
 
Accommodations: ELL 

students may use a dictionary and 
work with partner to read the article. 
The graphic organizer handouts will help students define or describe the terms.  Allow ELL 
students to use drawings or short phrases to complete the concept of definition maps.  

 
Building Body Concepts through Hands-on Inquiry: “Make a Muscle”   
 
Pose this question for students to think about as they continue through the lesson: “How 

do the muscular and skeletal system interact (work together) to help the human body work?” 

 

In this activity, student teams will use the following items to build a 3-D physical model 
of an arm, focusing on the structures of the muscles and bones. Have students extend and flex 
their arm (referencing the article). The arm models will need to move from an extended position 
to a flexed position as if “making a muscle”. Students will need to label and identify the 
following five vocabulary terms on their model: joints, ligaments, tendons, voluntary muscle, 

and skeletal muscle. Students will use what they now know about how muscles and bones 
interact to build their arm model.  

 

 
 

 

 

 

Materials 

Rubber bands 
Straws 

Pipe cleaners 
Balloons 

Ziploc bags 
Tape 
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Accommodations: Modeling the flex and extend arm movement will help ELL students 
connect these terms to the physical movement. The images will help students understand what 
specific actions they are trying to model. Highlighting the key words from the concept of 
definitions maps will help them identify and label the specific structures on their arm model.  

 

EXPLAIN: Using CER to Explain the Connection Between Systems 
 

CER Framework 

 
Read through and briefly describe the three components of the CER Framework. Students 

will formulate an explanation about the muscular and skeletal system utilizing the CER 
Framework to answer the question “What would happen to the human body if the muscular 
system or skeletal system did not function?”. Write the prompt on the board and then read it 
aloud. Tell students to think silently for a few minutes about the question. 

 
 

 
 

Muscle and Skeletal Teams: Divide the class into two different groups. One group will 
address the muscular system and one group will address the skeletal system. Divide each of these 
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groups into teams of three or four. Students will remain in these teams throughout the remainder 
of the lesson. 

 

Constructing Explanations: CER Building Blocks Guide 

 
Give each student a CER Building Blocks Guide. Read and identify each part of the 

graphic organizer. Explain that like the body systems of the human body, each part of CER 
supports each other to develop an explanation.  

 
Each student will individually consider the question “If a scientist wanted to discuss this 

question with you, what claim would you make and what evidence would you present to support 
your claim?” Tell students that the prompts on the sheet will guide them in completing their 
claim, evidence, and reasoning statements. Students may use the article reading, Concept of 
Definition maps, their arm models, or other sources to gather and record evidence to support 
their claim. After each student has completed his/her CER Building Blocks Guide, team 
members share what they recorded to compare and develop consensus as a team.  
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Public Reasoning 

 
Select one muscular system team and one skeletal system team to share their CER from 

their completed CER Building Blocks Guide aloud to the whole class. Direct the student 
audience to listen and critique the team’s evidence and reasoning to determine if these 
components adequately support the team’s claim and answer the question. 

 
Accommodations: The teacher will remind students to use their arm model to help them 

visualize the how the two systems interact to help them understand the question. The sentence 
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starters and examples will help students answer the question. Students will work in teams of 
three or four to complete the CER Building Blocks Guide. The document camera will be used to 
present the team’s CER statements. Presenters will point to each part of the graphic organizer 
when telling the class about their team’s work. ELL students may use examples to present their 
evidence and reasoning statements.   

 

ELABORATE/EXTEND: Rachel’s Winning Toe? 
 
Given the connection between the muscular and skeletal systems, consider this scenario: 
 
Rachel is a soccer player. As she kicked the winning goal during the championship game, 

she also injured her toe. During the doctor’s examination, the x-ray showed that her big toe was 

broken. 

 
Team Talk 

 
Tell students to discuss how Rachel’s muscular and skeletal systems were affected by her 

injury. Encourage students to use the vocabulary terms from their Concept of Definition maps to 
specifically address the structures and functions of muscles and bones.  

 
Challenge students to discuss other body systems that may be affected by Rachel’s injury. 

Students can use the CER Building Blocks Guide to help them develop an explanation of how 
these systems may interact with the muscular and skeletal systems.  

 

Accommodations: Allow ELL students to use the Concept of Definition maps, the CER 
Framework, and the CER Building Block Guide to help students speak and explain this real-life 
scenario. The team discussion helps students to understand and share examples and evidence of 
their explanations. 

 

EVALUATE: Assessing Throughout the Lesson 
 
The teacher evaluates students’ understanding of the structures and functions of the 

muscular and skeletal systems throughout the engagement of students’ prior knowledge and the 
exploration of the written text by gathering and recording information and through the hands-on 
modeling. Students were also evaluated by their utilization of the CER Framework and the CER 
Building Blocks Guide to develop an explanation of their claim. As students critiqued their 
peers’ explanations and discussed the extension scenario in their teams, teachers evaluated 
students’ understanding of the CER tools to develop evidence-based explanations. 

 
4. Adaptations for ELLs 

See the green highlighted adaptations throughout procedures.  
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5. Science Practices: Asking questions, carrying out investigating, analyzing and 
interpreting data, constructing explanations, engaging in argument from evidence, obtaining, 
evaluating, and communicating information  

 

6. Materials: Rubber bands, straws, pipe cleaners, balloons, Ziploc bags, tape, interactive 
notebook, writing utensil 

 

7. Safety:  
There is no significant safety issue related to this lesson. 
 

8. References:  
 
CK-12. “The Muscular System”. https://www.ck12.org/section/The-Muscular-System/ 

National Institutes of Health (US); Biological Sciences Curriculum Study. Bethesda 
 (MD):  National Institutes of Health (US); 2007. 
 https://www.ncbi.nlm.nih.gov/books/NBK20361/#A760 
  

file:///C:/Users/Regina/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/5IUHDR57/National%20Institutes%20of%20Health%20(US)
https://www.ncbi.nlm.nih.gov/books/NBK20361/#A760
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APPENDIX I    

PREVENTING SOIL EROSION LESSON PLAN 
 

 

  



276 
 

1. Rationale/Purpose:  
 

Science Standards:  
SC.4.E.6.4 Describe the basic differences between physical weathering (breaking down 

of rock by wind, water, ice, temperature change, and plants) and erosion (movement of rock by 
gravity, wind, water, and ice). 

SC. 4. N.3.1 Explain that models can be 2D, 3D or a computer model 
 
SC.4.N.1.4 : Attempt reasonable answers to scientific questions and cite evidence in 

support. 
SC.4.N.1.7: Recognize and explain that scientists base their explanations on evidence.  
SC.5.N.2.1: Recognize and explain that science is grounded in empirical observations 

that are testable; explanation must always be linked with evidence. 
 
ELA Standards: 
LAFS.4.RI.3.7 Interpret information presented visually, orally, or quantitatively (e.g., in 

charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and 
explain how the information contributes to an understanding of the text in which it appears. 

LAFS.4.L.3.6 Acquire and use accurately general academic and domain-specific words 
and phrases as found in grade level appropriate texts, including those that signal precise actions, 
emotions, or states of being (e.g., wildlife, conservation, and endangered when discussing animal 
preservation). 

LAFS.4.SL.1.1 Engage effectively in a range of collaborative discussions (one-on-one, in 
groups, and teacher-led) with diverse partners on grade 4 topics and texts, building on others’ 
ideas and expressing their own clearly. 

LAFS.4.SL.1.3 Identify the reasons and evidence a speaker provides to support particular 
points 

 
English Language Development Standards:  
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and 

concepts necessary for academic success in the content area of Science. 
 
Content Objectives:  

1.  Students will be able to distinguish between the processes of weathering and erosion 
based upon their features through a text-based inquiry. 

2. Students will be able to examine the process and effects of erosion by rain (water) on a 
farmland model.   

3. Students will be able to use data from a farmland model and the text to explain how to 
prevent soil erosion from rain (water) using CER Framework.  
 

4. Misconceptions: (Fries-Gaither, 2008). 
• Weathering and erosion mean the same thing. 
• Erosion happens very quickly.  
• Erosion is never a good thing.  
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2. Detailed Procedures:  
 

Engagement: Disappearing Cliffs 
 
Access prior knowledge by showing weathering and erosion video. In groups of four, 

have students discuss what they observed occurring to the cliff by asking the following 
questions: 

 
1. What happened to the cliff over the course of the year? 
2. What factors contributed to the cliff’s structure over time?  
3. What processes were involved?  
4. Is there are pattern or cycle that you observed?  

 
Discuss that what students observed are examples of weathering and erosion.  
 
Accommodations:  
Beginning Labeled visual images of the landforms will be presented and 

pointed out to the students. Questions about the weathering and erosion 
video will be simplified requiring only a “yes/no” response or one-
word answers. (“Does the cliff look different now?” or “What made 
the cliff change?”) Students will work in groups of two, pairing ELL 
students with non-ELL students.  

Intermediate  Questions about the weathering and erosion video will be 
require students to provide a simple sentence response (“How does the 
cliff look at the end of the video?” or “How did the cliff change?”) 
Teacher will check for comprehension and participation. Students will 
work in groups of two, pairing ELL students with non-ELL students. 

Advanced Students will work in groups of two, pairing ELL students with 
non-ELL students. 

 

 

Explore: How Weathering and Erosion Work 

 
Text-Based Inquiry—Break It, Move It” 
 
Give each student the article “Break It, Move It”. While reading in groups of two, 

students are to complete a Venn Diagram to compare and contrast the processes of “weathering” 
and “erosion”. Indicate that students may use color-coded underlining/highlighting on the article 
to identify characteristics of each or both processes.  

https://youtu.be/ChEHQUMEkXw
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After students complete the Venn Diagram, allow them to complete the Semantic Feature 

Analysis using the Venn Diagram and their text as a guide to help them identify relationships 
between weathering and erosion as well as specific features of each process. 

 
Accommodations: 
Beginning Students may use pictures to compare and contrast these 

processes on the Venn Diagram. The bold-faced terms in the article 
and the color-coded underlining/highlighting will help students focus 
on key words and ideas while reading the text. Students may work in 
pairs to complete the Semantic Feature Analysis. Students will work in 
groups of two, pairing ELL students with non-ELL students.  

Intermediate  Students may also use their color-coded article and Venn 
Diagram to help them complete the Semantic Feature Analysis. 
Students will work in groups of two, pairing ELL students with non-
ELL students. 

Advanced Students will work in groups of two, pairing ELL students with 
non-ELL students. 
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Hands-on Inquiry—Farmland Foundation Model 
 
Tell students that they will design and build a model farmstead to explore how rain 

affects erosion on the land. Ask students, “What is a model?” and “What is the purpose of using 
a model?” After student responses, emphasize that a model is a representation of an object and 
that scientists use models to explain phenomena. Inform students that they will simulate a rain 
shower to explore rain’s effect on the land. 

 
Phase 1: Farmland on a Hill  

a) Design a Blueprint: Students will draw a blueprint of a farmstead to help prevent erosion 
by rain. Use the materials listed to incorporate into your design.  

 
b) Make a model :Using their blueprint, students will build a model of the 

farmland/farmstead and simulate erosion by rain (water). Provide each group of students 
with a plastic shoebox partially filled (two-thirds full) with moist sand (sand is easier to 
work with and easier to clean up than soil or potting material).  

 
To test their design, students will place one end of their shoebox “farm” on a text 

book. The uphill end is where students will pour their “rainwater”. Students will record 
the results of erosion of their farmland model in their science notebooks. Provide each 
group of students the following landscape objects:  
 

• 5 Monopoly houses to represent different buildings on a farm  
• 8 to 10 rocks of different sizes to represent boulders 
• 2 to 3 pieces of Spanish moss 
• 6-7 small trees/plants from plastic floral arrangements  
• Water (500 mL) 
• Cup  
• Aluminum tray to catch water  
• Paper towels for cleanup  

 
Phase 2: A Better Farmland Design 
a.) Design a Blueprint: Tell students that now their job is to protect the buildings and 

crops on the farm so that they are not flooded or washed away. Instruct students to think about 
which material would best protect their buildings and crops from washing away.  Provide time 
for students to re-design their farmstead based upon other groups’ success with their initial 
farmland. Students will draw a diagram of their design in their science journals prior to building. 
Students will make predictions of what will happen when water is poured. Ask, “What will stay 
where it is placed? What will move?” 

b.) Make a model: Using their blueprint, students will build a new model of the 
farmland/farmstead and simulate erosion by rain (water).  
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c.) Test the Design: To test their design, students will place one end of their shoebox 
“farm” on a text book as in the first phase. The students will draw an “after” diagram of the 
farmstead in their science notebooks.  

 
After students test their design, lead students to discuss what they believed worked and 

did not work. Tell students to describe their model and how each part helps prevent rain erosion 
of their farmland. 

 
Accommodations:  
Beginning Provide Power Point slides with the directions and read each 

step orally. Stop at key points when delivering directions, explanations, 
and instructions to determine student comprehension. Provide a copy 
of the directions for each group, using a visual key to identify what 
each item of the materials represents. Students will draw their designs 
in their science notebooks to share their ideas. Students will work in 
groups of two, pairing ELL students with non-ELL students.  

Intermediate  Ask questions about what she/he needs to do. Students can 
draw their designs in their science notebooks to share their ideas. 
Students will work in groups of two, pairing ELL students with non-
ELL students. 

Advanced Students will work in groups of two, pairing ELL students with 
non-ELL students. 

 

Explain: Using CER to Explain Erosion 
 
Ask students to describe what happened to the land when water was poured over their 

farmstead.    
• What was the process that was modeled? 
• What factor impacted the process and how?  

Explain from the data they collected how the factor of rain impacted erosion.  
 

Pose this question prompt to the students: “What is the best way to protect houses on the 
beach to prevent sand erosion?”  

 
Visual Representation:  
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Constructing Explanations: CER Building Blocks Guide 

 
Give each student a CER Building Blocks Guide. Read and identify each part of the 

graphic organizer. Tell students that the prompts on the sheet will guide them in completing their 
claim, evidence, and reasoning statements. Students may use information the article reading, the 
Venn diagram, the Semantic Feature Analysis, and the farmland model to gather and record 
evidence to support their claim. After each student completes his/her CER Building Blocks 
Guide, group members share what they recorded to compare and develop consensus as a group.  
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Accommodations: Writing scaffolds utilizing the claim, evidence, and reasoning 
framework will be provided to support students in constructing their scientific explanations. In 
addition to providing writing scaffolds, a visual representation will be displayed for students to 
refer to as a reminder of how to construct a scientific explanation. These supports are especially 
helpful for supporting ELLs.    

 

Public Reasoning 

 
Select one student per group to share their CER from their completed CER Building 

Blocks Guide aloud to the whole class. Direct the student audience to listen and critique the 
group’s evidence and reasoning to determine if these components adequately support the claim 
and answer the question. 

 
Accommodations: The teacher will remind students to use article reading, the Venn 

diagram, the Semantic Feature Analysis, and the farmland model the help them provide evidence 
to support their claim. The sentence starters and examples will help students answer the question. 
Students will work in groups of three or four to complete the CER Building Blocks Guide. The 
document camera will be used to present the team’s CER statements. Presenters will point to 
each part of the graphic organizer when telling the class about their team’s work. ELL students 
may use examples to present their evidence and reasoning statements.   

 

Elaborate/Extend: It’s Not Just Raining Anymore! 
 
Tell students to consider a similar scenario from their farmland simulation, except they 

need to add another weather factor (wind, hurricane, etc.) Tell students to think about and discuss 
these questions: 

• How would this added factor affect their farmland? 
• How does this factor affect the design of the farmland model they developed?  

 
Allow the students to redesign their farmland models considering this new factor and 

conduct a simulation testing their new design. (A fan may be used to help develop windy 
conditions if needed.) In their interactive notebooks, students will record how they redesigned 
their farmland and the effects the new factor had on their farmland model.  

 

Evaluation: Assessing Throughout the Lesson 
 
Students are formatively assessed throughout each of the 5Es of the lesson. The teacher 

evaluates students’ understanding of the weathering and erosion from the images and video used 
to engage and access students’ prior knowledge and the exploration of the written text by 
gathering and recording information on the Venn Diagram and Semantic Feature Analysis and 
through the hands-on farmland simulation. Students were also formatively evaluated by their 
utilization of the CER Framework and the CER Building Blocks Guide to develop an 
explanation of their claim. As students critiqued their peers’ explanations and discussed the 
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extension scenario in their groups, teachers evaluated students’ understanding of the CER tools 
to develop evidence-based explanations. 

Accommodations: Provide extended time to complete formative assessment, if needed. 
For example, students may be permitted to speak their responses into a recorder in lieu of 
providing a written response.    

 

3.  Adaptations for ELLs 

See highlighted accommodations throughout procedures 
 

4. Science Practices: Developing and using models, carrying out investigations, 
obtaining, evaluating, and communicating information  

 

5. Materials:  

   

     For each student:  
 “Break It and Move It” Article 
 Semantic Features Analysis Sheet 
 CER Building Blocks Guide  

  
    For each group:  

 4 to 5 Monopoly houses to represent different buildings on a farm  
 10 rocks of different sizes to represent boulders 
 2 to 3 pieces of Spanish moss 
 7 to 8 small trees from plastic floral arrangements  
 3 plastic toy farm animals 
 1 plastic shoebox filled with moist sand  
 Water (500 mL)  
 Tray to catch water  
 Cup or container to hold water 
 Paper towels for cleanup  

 

6. Safety:  
There is no significant safety issue related to this lesson. 
 

7. References:  
 
Fries-Gaither, J. (2008). “Common Misconceptions about Weathering, Erosion, 

Volcanoes, and Earthquakes”. Beyond Penguins and Polar Bears. 
https://beyondpenguins.ehe.osu.edu/issue/earths-changing-surface/common-misconceptions-
about-weathering-erosion-volcanoes-and-earthquakes 
https://betterlesson.com/lesson/633928/erosion-and-deposition 

https://beyondpenguins.ehe.osu.edu/issue/earths-changing-surface/common-misconceptions-about-weathering-erosion-volcanoes-and-earthquakes
https://beyondpenguins.ehe.osu.edu/issue/earths-changing-surface/common-misconceptions-about-weathering-erosion-volcanoes-and-earthquakes
https://betterlesson.com/lesson/633928/erosion-and-deposition
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 Group _____ 
 

Group _____ 
 

Group _____ 

Teaching procedures tie 
to objectives of the 
lesson  
 

 

   

Discpline Literacy (e.g., 
CER framework, 
vocabulary teaching 
strategies…) in science 
teaching  
 

 

   

ELL Accommodations 
for teaching science  
 

 

   

Other  
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APPENDIX K    

PROFESSIONAL LEARNING TASKS 
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Week Focus Tasks to Be Completed Course Implementation 

Week 1 

Oct. 8 -12 
Integrating Disciplinary 
Literacy and Science   

 Online 
Professional 
Learning Module 
1  
 Check-
for-Understanding 
Task (Module 1) 

-A focus on disciplinary 
literacy will be threaded 
throughout the entire 
intervention.  

Week 2 

Oct. 15 - 19 
Connecting Science and 
Literacy through Scientific 
Explanation and Argument  

• Teaching 
Science as 
Argument 
Framework 
(TSAF) 
• C-E-R 
Framework  

  

 Online 
Professional 
Learning Module 
2 
 Check-
for-Understanding 
Task (Module 2) 

-The TSAF will be used to 
will be used to guide PSTs’ 
thinking about effective 
science teaching throughout 
the intervention.  
 
-During each of the three 
investigations, the CER 
Framework will be used to 
assist PSTs in constructing 
evidence-based explanations 
in both talk and writing. 
 
- After participating in each 
investigation, PSTs will 
analyze the lesson from a 
teacher’s perspective using 
the TSAF.  
  
- PSTs will also use the 
TSAF to inform the 
development of their 
inquiry-based science 
lessons (see planning 
questions related to the 
TSAF) 
 

Week 4 

Oct. 22 – Oct 

26 

Supports for writing 
scientific explanations  

• Writing 
scaffolds  

 
Overview of Investigation 
#1 

 Online 
Professional 
Learning Module 
3 
 Check-
for-Understanding 
Task (Module 3) 

-During each of the three 
investigations, the instructor 
will use writing scaffolds 
based on the CER 
Framework to help PSTs 
appropriately justify their 
claims in writing.  
 
-The instructor will also 
make explicit the 
importance of using writing 
scaffolds as an effective 
strategy for supporting 
ELLs.   
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Week Focus Tasks to Be Completed Course Implementation 

Week 4 

Oct. 29- Nov. 

2 

Answer questions, clarify 
any missed items on the 
check-for-understanding 
tasks, and provide 
additional practice 
opportunities  

 Attend 
first interactive 
session with 
researcher either 
face-to-face or via 
Skype  

 

Week 5  

Nov. 5 - 9 
Scaffolds for supporting 
science talk  

• Teacher 
questioning 
• Teacher 
talk moves  

 
Overview of Investigation 
#2  

 Online 
Professional 
Learning Module 
4 
 Check-
for-Understanding 
Task (Module 4) 

-During each of the three 
investigations, the instructor 
will use talk moves based on 
the CER Framework to 
scaffold PSTs’ 
communication of scientific 
ideas and evidence in ways 
that reflect scientific 
discourse. The intent is to 
help PSTs recognize the 
importance of science talk 
as a forum for public 
reasoning and engagement 
in the language of science.  

Week 6 

Nov. 12 - 16 

Answer questions, clarify 
any missed items on the 
check-for-understanding 
tasks, and provide 
additional practice 
opportunities 

 Attend 
second interactive 
session with 
researcher either 
face-to-face or via 
Skype 

 

Week 7 

Nov. 26 - 30 

Overview of Investigation 
#3  
Overall Intervention 
Sequence and Timeline  
Pre & Post Intervention 
Assessments  

 Online 
Professional 
Learning Module 
5 
 Check-
for-Understanding 
Task (Module 5) 

 

Week 8  

Dec. 3 -7  

Answer questions, clarify 
any missed items on the 
check-for-understanding 
tasks, provide additional 
practice opportunities, and 
distribute any materials 
needed for the intervention  

 Attend 
final interactive 
session with 
researcher either 
face-to-face or via 
Skype 
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Module 1 

• Topic: Integrating Disciplinary Literacy and Science   

• Objective(s):   
o Gain an understanding of the pedagogical basis for incorporating disciplinary 

literacy in the elementary science classroom.    
o Learn about five instructional and curricular features that can support students in 

developing literacy as they engage in scientific inquiry.   

• Content:  
o What is disciplinary literacy?  

▪ The specialized skills and strategies needed for disciplinary learning:   

• Academic vocabulary  

• Kinds of text features  

• Ways of reading  

• Structure of information  

• What kind of evidence is privileged  
o Problem: Many activities in content area learning assume that students know the 

literacies that are specific to the discipline, such as:  
▪ Reading science text  
▪ Writing science text  
▪ Participating in science talk  
▪ Interpreting visual representations 

o Science texts often pose a variety of challenges for students. These challenges 
include:  

▪ Academic and scientific language  
▪ Logical connectives 
▪ Polysemy  

▪ Nominalization  
▪ Lexical Density  
▪ Multimodality 
▪ Passive Voice  

o Supporting Students in Developing Disciplinary Literacy in Science (see Krajcik 
& Sutherland, 2010)  

▪ Connect science ideas with students’ everyday experiences and with 
previous classroom experiences  

▪ Pose questions that are meaningful and important to the lives of learners  
▪ Explicitly reference visual elements in written text, and teach students to 

use graphics and text to support meaning making  

▪ Provide students with time, opportunities, and guidance to apply science 
learning to new contexts  
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▪ Engage students in constructing explanations and arguments, which are 
essential components of scientific discourse  

o Summary  
▪ Teachers must provide explicit instruction as well as scaffolded 

opportunities for practice in using disciplinary literacy skills!  
▪ Literacy should be positioned as a tool to support knowledge acquisition 

in science rather than as an independent curriculum goal. 
▪ Preservice teachers need opportunities to examine the texts of science, to 

plan instruction that integrates authentic uses of text into inquiry, and to 
learn how to teach students how to read, write, and communicate like 
scientists. 

• Resources: 
o  http://serpmedia.org/rtls/index.html 

▪  Project website on Reading to Learn in Science 

o http://scienceandliteracy.org/teachersupport/strategyguides 
▪ Link to 81 Elementary Strategy Guides (2-5) to accompany science texts  

• Related Readings:  
o Pearson, D., Moje, E., & Greenleaf, C. (2010). Literacy and science: Each in 

service of the other. Science, 328 (5977), 459-463.  
o Krajcik, J. & Sutherland, L. (2010). Supporting students in developing literacy in 

science. Science, 328 (5977), 456-459.  
o Cervetti, G. & Pearson, D. (2012). Reading, writing, and thinking like a scientist. 

Journal of Adolescent & Adult Literacy, 55(7), 580-586.  

• Check-for-Understanding:  
o This module discussed how connecting literacy activities to inquiry-based science 

instruction can enhance the learning of both by creating a meaningful and 
motivating context. Describe at least one way you can create this kind of 
connection within your science methods course for preservice elementary 
teachers.  

o What questions do you have about integrating disciplinary literacy and inquiry-
based science?  

Module 2  

• Topic: Connecting Science and Literacy through Scientific Explanation and Argument  

• Objective(s):  
o Gain an understanding of how to support students’ science and literacy learning 

through scientific explanation and argument.  
o Learn about the role of the CER Framework in supporting students in constructing 

scientific explanations in both talk and writing. 

• Content:  

http://serpmedia.org/rtls/index.html
http://scienceandliteracy.org/teachersupport/strategyguides
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o Science includes specialized ways of communicating, which can differ from 
students’ everyday ways of talking and writing (Zembal-Saul, McNeil, & 
Hershberger, 2013).  

o Written and oral communication in the context of science inquiry depend on the 
use of data as evidence for explanation and argumentation (Krajcik & Sutherland, 
2010). 

• Benefits of Engaging Students in Scientific Explanation  
o Develops science content knowledge 
o Participation in scientific practices  
o Participation in the norms of science and scientific language  
o Improves understanding about the nature of science  

• Duschl (2008) and Jimenez-Aleixandre (2008, 2014) argue that argumentation for 
school science should emphasize two related facets: 

o social negotiation (e.g., how to critique, debate, and evaluate an argument) 
and 

o epistemic understanding of argument (e.g., what counts as data, evidence, and 
claim, and the relationships between these components). 

• Interplay between talk and writing  
o Talking and writing scientific explanations are complementary activities!  

▪ Examples –  

• Students talk about their ideas first (e.g., predictions) in 
preparation for an investigation in which they will record 
observations and data in their science notebooks, which will 
later serve as evidence for scientific claims.  

• Students attempt to identify patterns in evidence and/or draft an 
initial explanation in writing before engaging in a science talk 
in which students co-construct claims from evidence.  

• A Framework for Explanation-Driven Science  
o The C-E-R framework can be used to support students in constructing 

scientific explanations in both talk and writing.  
▪ Claim  
▪ Evidence  
▪ Reasoning  

o Watch video clip 2.1 Introducing the CER Framework   

• Videos: Video Clip 2.1 Introducing the CER Framework   
o In this video, Ms. Hershberger, a third-grade teacher, reviews the components 

of scientific explanation with students and supports them in constructing 
working definitions for each component.  She then creates a poster using 
students’ language for explanation, which is displayed in the classroom for the 
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rest of the year and used by the class as a reference when talking and writing 
scientific explanations.  

• Related Readings:  
o Chen, Y., Hand, B., & Park, S. (2016). Examining elementary students’ 

development of oral and written argumentation practices through argument-
based inquiry. Science & Education, 25, 277-320.  

o Zembal-Saul, C. (2009). Learning to teach elementary school science as 
argument. Science Education, 93(4), 687–719.  

• Check-for-Understanding: 
o In what ways does talk serve as a scaffold for younger children as they move 

towards writing scientific explanations?  
o What questions do you have about how engaging students in scientific 

explanation supports their literacy and science learning in tandem?  

Module 3  

• Topic: Scaffolds for supporting scientific writing  

• Objective(s) 
o Learn how to use a variety of supports to help students in writing scientific 

explanations.  

• Content 
o Written scaffolds and visual representations that utilize the CER Framework can 

be used to help students justify their claims in writing.  

o Writing scaffolds for scientific explanations include:  
▪ Sentence starters  
▪ Questions  
▪ Prompts  

o There are four characteristics to consider when designing writing scaffolds. These 
include:  

▪ General and content support  
▪ Detail and length  
▪ Fading  
▪ Structure (explanation, sentence starter, or question)  

o Watch video clip 4.1 Writing Explanations  

o Visual representations can help remind students how to construct a scientific 
explantion.  

▪ Include classroom poster examples 

• Videos:  
o Video Clip 4.1 Writing Explanations  

▪ In this video, Mrs. Kur asks students to work in small groups to write 
claims and evidence based on data collected from an investigation. This 
video demonstrates how the progression from small-group writing to large 
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group discussion helped prepare students to come to the science talk ready 
to share their data and idea.    

• Check-for-Understanding  
o What writing scaffolds or visual representations do you currently use during 

classroom instruction to help preservice teachers write scientific explanations? 
o What questions do you have about how to support students’ communication of 

scientific ideas in writing? 
Module 4 

• Topic: Scaffolds for supporting science talk 

• Objective(s) 
o Learn how to use talk moves to scaffold students’ communication of scientific 

ideas and evidence in ways that reflect scientific discourse.  

• Content 
o Science talks provide students with an opportunity to engage in scientific 

discourse, as well as receive oral support from their teacher and classmates.  
o Supporting Whole-Class and Small-Group Discussion  

▪ The talk moves that a teacher uses during class discussion can play an 
important role in supporting the explanation building process.  

• Examples include revoicing student ideas and asking questions that 
prompt students to include evidence  

▪ See talk moves outlined in Ready, Set, Science! (Michaels et al., 2008) 

▪ The CER framework can be used to guide teacher questions and supports 
in a number of ways.  

• Examples –  
o What patterns are you beginning to notice in your data?  
o What claim can you make based on the data you have so 

far?  
▪ Watch video clip 4.2 Talk Moves    

o Critique, Debate, & Co-Construction of Knowledge   
▪ Debating a peer explanation includes having students share their scientific 

explanations with the class, critique the different components of the 
explanations, and come to a consensus as a class on what should be 
included in the strongest explanation.  

▪ Engaging in this process can support students in improving the quality of 
their own scientific explanations.   

▪ Watch video clip 5.8 Critiquing Peer Explanation  

• Videos:  
o Video Clip 4.2 Talk Moves    

▪ In this video, Ms. Hershberger, a third-grade teacher, gives a paper cup 
with six battery/bulb diagrams to her third-grade and fourth-grade students 
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and asks them to predict whether the diagram will work to light the bulb. 
The students discuss their ideas during whole-class discussion. Ms. 
Hershberger uses a series of talk moves to address multiple students and 
elicit their thinking.  

o Video Clip 5.8 Critiquing Peer Explanation  
▪ In this video, Ms. Hershbergers’ third-grade students work in small groups 

to collect data about different types of pulleys using force meters. 
Following the investigation, the children work in their groups to write 
claims and evidence based on their data. As the class gathers for a science 
talk, the students are asked to critique the claims and evidence written by 
others.  

• Related Readings 
o Chen,Y., Hand, B. & Norton-Meir, L. (2017). Teacher roles of questioning in 

early elementary science classrooms: A framework promoting student cognitive 

complexities in argumentation. Science Education, 47, 373-405. 
o Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific 

argumentation in classrooms. Science Education, 84, 287-312.   

• Check-for-Understanding 
o What talk moves do you currently use during classroom instruction to facilitate 

preservice teachers’ engagement in scientific explanation?  
o What questions do you have about how to scaffold students’ communication of 

scientific ideas and evidence during whole-class and small-group discussion? 
Module 5 

Topic: Intervention Materials, Sequence, & Timeline   

• Review the overall sequence, timeline, and format of the scientific explantion-based 
intervention 

o Three total inquiry experiences each consisting of two components:  
1. firsthand (hands-on) inquiry  

2. secondhand (text-based) inquiry   
o Each inquiry experience will involve:  

▪ Searching for evidence through firsthand experiences and text in order to 
construct a more accurate and complete understanding of the natural world  

▪ Engaging in written and oral discourse with the goal of communicating 
evidence-based explanations and evaluating and revising the explanations.  

• Review the procedures and protocols for pretest administration  
• Learn about how fidelity of implementation will be calculated.  
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CHECK-FOR-UNDERSTANDING TASKS  
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Module Topic Check-for-Understanding 

Module 1 

Integrating 

Disciplinary 

Literacy and 

Science 

Describe at least one way you 

can create this kind of 

connection within your science 

methods course for preservice 

elementary teachers. 

 

What questions do you have about 

integrating disciplinary literacy and 

inquiry-based science? 

 

Provide a science lesson in 
science methods course, 
which integrates science talk, 
reading science text, and 
writing in an inquiry-based 
activity based on a specific 
science content standard. 
 

What are specific curriculum available 
for teachers to integrate disciplinary 
literacy in science teaching?  

Module 2 

Connecting 

Science and 

Literacy through 

Scientific 

Explanation and 

Argument 

What are 3 interesting things 

from the module that stood out 

to you? 

What are 2 

changes you will 

make within your 

science methods 

course? 

 

What is 1 

question you still 

have? 

 

1) The TESSA framework is 
intended to inform the user of 
activities associated with other 
6 kinds of science practices 
listed in NGSS, from asking 
questions to obtaining, 
evaluating, and communicating 
information. 
2) Questions Used by 
Preservice Teachers When 
Planning for Inquiry-Based 
Science Instruction 
3) “Although the findings of 
Study 2 portrayed an 
encouraging picture of 
preservice teachers’ 
developing understandings of 
teaching science as argument, a 
number of limitations 
persisted.  
 

1) Explicitly 
make 
connections 
between the 
TESSA 
framework with 
science practices 
and literacy 
practices. 
2) Trying to 
develop 
modeling lesson 
using TESSA 
framework. 
 

What do those 
three features 
look like in 
practice? For 
example, what 
does it look like 
when you use 
KLEW as an 
argument map to 
support argument 
construction?  

Module 3 

Scaffolds for 

Supporting 

Scientific Writing 

What are 3 interesting things 

from the module that stood out 

to you? 

What are 2 

changes you will 

make within your 

science methods 

course? 

 

What is 1 

question you still 

have? 
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Module Topic Check-for-Understanding 

No answer No answer  I am unclear on 
some elements of 
the lesson plan. 
For example, I am 
not clear about 
how students will 
select evidence to 
support their 
claim.  

Module 4 

Scaffolds for 

Supporting 

Scientific Talk 

What are 3 interesting things 

from the module that stood out 

to you? 

What are 2 

changes you will 

make within your 

science methods 

course? 

 

What is 1 

question you still 

have? 

1) Teachers lay multiple roles 
to tackle different situations by 
considering student ownership 
of ideas and activities 
2) The relationships between 
the roles teachers adopt and 
students cognitive responses 
3) Argument can be seen to 
take place as an individual 
activity, through thinking and 
writing, or as a social activity 
taking place within a group-a 
negotiated act within a specific 
community. 
 

 I might want to 
include two 
perspectives of 
defining 
argument, 
including 
individual 
activity and 
social activity. 

When argument is 
seen as an 
individual 
activity, through 
thinking and 
writing, does it 
equal/ related to 
scientific 
explanation? 

Module 5 

Intervention 

Materials, 

Sequence, & 

Timeline   

What are 3 interesting things 

from the module that stood out 

to you? 

What are 2 

changes you will 

make within your 

science methods 

course? 

 

What is 1 

question you still 

have? 

No answer  1) Incorporate 
concept mapping  
2) Engage PSTs 
in text-based 
inquiry   

What evidence 
will students use 
to support their 
claims in the 
erosion lesson?  
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FACE-TO-FACE MEETING ONE SUMMARY 
  



301 
 

Face-to-Face Meeting One  

 
o Model Inquiry-Based Lessons 

o Discussed Goal of the Inquiry-Based Lessons: The goal is to engage preservice 
elementary teachers as learners to experience learning through scientific inquiry for 
themselves.    

o Three total investigations each consisting of two related components:  
1. firsthand (hands-on) inquiry  
2. secondhand (text-based) inquiry 

o Each investigation will be researcher-developed using the 5E Model.  
▪ Digestion & Body Systems Investigation (Life Science)  
▪ Oobleck Investigation (Physical Science)  
▪ Earth and Space Science?  

o Each inquiry experience will involve:  
▪ Searching for evidence through firsthand experiences and text in order to 

construct a more accurate and complete understanding of the natural world  

▪ Engaging in written and oral discourse with the goal of communicating 
evidence-based explanations and evaluating and revising the explanations 
using the CER Framework (i.e., claim, evidence, reasoning). 

o After each investigation, preservice teachers will be guided to unpack the lesson 
from the perspective of the teacher (using the three main features of the TSAF). 

▪ Teaching Science as Argument Framework (Zembal-Saul, 2009) 
▪ The Structure of Argument (claims, evidence, reasoning) for 

scaffolding explanation construction 
▪ Public reasoning (i.e., making thinking visible  
▪ Language of Science (i.e., norms of productive participation in 

scientific discourse)  

▪ Note – The preservice teachers will be introduced to the TSAF at the start 
of the intervention.  

▪ Discussed using the TSAF as a heuristic to analyze preservice teachers’ 
written lesson plans at the end of the intervention.  

Next Steps  

 Complete remaining PD modules:  
o Module 3 – by 10/5 
o Module 4 – by 10/12 
o Module 5 – by 11/2 

 Develop three inquiry-based investigations  
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APPENDIX O    

FACE-TO-FACE MEETING TWO SUMMARY 
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Face-to-Face Meeting Two 

o Discussed Disciplinary Literacy (DL) Definition 

o DL is engaging students “in not just learning about the discipline, but actually in 
using reading and writing in the same way the historian or scientist does.”  

o In the context of science, this means learning to read like a scientist, write like a 
scientist, and communicate like a scientist.   

o Clarified Three Features of the TSAF 

o The first important feature of the TSAF involves using the structure of 

argument to guide students work to construct, communicate, and evaluate 

scientific explanations.  To illustrate this component, writing scaffolds and visual 
representations based on the CER argument structure will be used to assist 
students in appropriately justifying their evidence-based claims both in writing 
and orally.   

o The second important feature of the TSAF is making thinking visible though 

public scientific reasoning.  To illustrate this component, each lesson will 
involve the course instructor facilitating a science talk in which PSTs will be 
encouraged to communicate their explanations and critique the claims of their 
peers.  During these whole-class science talks, the course instructor will use a 
series of talk moves (e.g., “Would someone like to add to that?”) to make PSTs’ 
thinking visible while also fostering student-student interactions.  These science 
talks will also provide PSTs with an opportunity to engage in classroom 
discussion that does not follow the traditional turn-taking format.   

o The third important feature of the TSAF is authentic engagement with the 

language of science.  Science includes specialized ways of communicating, 
district from students’ everyday ways of talking and writing. Thus, teachers must 
make efforts to model classroom norms of discourse and provide students with 
opportunities to practice using the language of science. To illustrate this feature of 
the TSAF, throughout each lesson, the course instructor will use productive 
questioning techniques (e.g., “Do you agree?”;” What evidence helped you arrive 
at that conclusion?”) to scaffold PSTs’ communication of scientific ideas and 
evidence in ways that reflect scientific discourse. 

o Discussed How PTs Will Reflect After Each Inquiry-Based Lesson  

o After engaging in each lesson as learners, PSTs will unpack the lesson plan from 

the perspective of the teacher (using the three core components of the TSAF as a 
heuristic).  To do this, we can provide PSTs with a hard copy of the lesson plan 
and have them work in pairs to highlight aspects of the lesson as they relate to the 
three components of the TSAF (i.e., argument structure, making thinking visible, 
and the language of science).  Once PSTs have had the opportunity to highlight 
the lesson plan, you can guide a whole-group discussion in which PSTs discuss 
how the lesson supports all students’ in constructing, communicating, and 
debating evidence-based scientific claims.  
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FACE-TO-FACE MEETING THREE SUMMARY 
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Face-to-Face Meeting Three 

 

o Finalized Intervention Sequence and Timeline  

o Before Intervention:  
▪ Pretest administration will take place in both conditions during the first two 

weeks of the science methods course.   
o During Intervention (Note: The Intervention does not actually begin until week 3 of 

the course.): 
▪ Phase 1 (weeks 3-4) 
▪ Phase 2 (weeks 5-10 of the course)  

• Lesson 1: Oobleck: Solid or Liquid?    
• Lesson 2: Making Explanations about Body Systems  

o Revisions needed!!  
• Lesson 3: Preventing Soil Erosion  

▪ Phase 3 (weeks 11-14 of the course) 
o After Intervention  

▪ After the intervention, the posttests will be administered in both conditions.   
o Reviewed Pretest Administration Protocols   

o Week 1 – Distribute Explanation of Research forms & provide very brief 
description of study  

▪ Administer Demographic Survey and NSAAQ (15 mins)  
o Week 2  

▪ Administer The Argumentation Test (15 mins)  
o Week 3 

▪ Administer the Written Scientific Explanation Assessment (15 mins)  
o Week 4  

▪ Pretest Measure Make-ups for Absent Participants  

o Developed Fundamental Lesson Principles  

o Intended to provide more practical building blocks for PSTs' knowledge 
development 

o Suggestions:   
▪ Post in Webcourses as a constant reminder to students 
▪ Add to weekly PPTs (by Dr. Gao) as a continuous reminder 
▪ Add to the course syllabus for lesson plan assignment  
▪ List at the top of each model-inquiry based lesson plan 

o Discussed/Reviewed Three Model-Inquiry Based Lesson Plans 
 (to be taught by GTA)  

o Oobleck (Weeks 5-6)  

▪ Vocab Strategy: Frayer Model 
o Human body system (Weeks 7-8)  
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▪ Semantic Feature Analysis  
o Soil Erosion (Weeks 9 & 11)  

▪ Vocab Strategy: Concept of Definition Map  
o Discussed Plan for Lesson Plan Reflection/Debrief   

o After engaging in each model lesson, PSTs will work together to text-code a hard-
copy of the lesson plan according to the Questions Used by PSTs When Planning 

for Inquiry-Based Science Instruction  
o Share instructor-coded lesson plan and lead whole-group discussion  

o Discussed Lesson Plan Rubric  

o Must revise to incorporate lesson plan fundamentals  
o 10 categories at 3 pts. each  

o Fidelity of Implementation  

o Researcher will attend each week in-person to take field notes and complete FOI 
checklists (phases 1-3).  

o GRA will also conduct FOI checks.  
▪ GTA is unable to attend in-person each week due to a course conflict. 

• For the weeks that GTA is unable to attend in-person, researcher 
will use phone to audio-record the session.  

• GTA will then use the audio-recording to complete the FOI 
checklists for those weeks.  

      Next Steps  

 Design and print TSAF poster  

 Make any final revisions to three inquiry-based investigations  
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Please note that assignment formats, course readings and this outline may be adjusted over 

the course of the semester. 

Week Class 

Date 

Topic Assignment 

Due 

1 1/9  Self-Introduction 
Syllabus Review  
APA format  
Demographic Survey 
NSAAQ (pretest) 

APA  

2 1/16 
 

Science Teaching 
Standards 
The Argumentation Test 
(pretest) 

Online reading 
response 1 
Belief Paper  
 

3  
1/23  

 
Concept map/misconception 
Vocabulary Teaching 
Written Scientific Explanation 
(pretest) 

Online reading 
response 2 
(Vocabulary 
Teaching) 
Resource Review 1 

4 1/30 Ch. 1 Inquiy 
Ch. 3 Planning Units and 
Lessons 
TSAF Overview Presentation 

Online reading 
response 3 
Resource Review 
Presentation starts 

5  
2/6 

Ch. 2 Science Practices and 
Inquiry Process Skills 
Physical Science Lesson 
(Oobleck) 
CER Framework 

Online reading 
response 4 
Resource Review 2 

6 2/13 Ch. 11 Matter and Motion 
Oobleck (cont) 
Ch. 5 Assessment of 
Understanding and Inquiry 
Reflection and Practices 

Online reading 
response 5 

7 2/20  Ch. 10 The Human Body  
Life Science Lesson (Human 
body system) 
Teaching Disciplinary-
Specific Literacy 
Reflection and Practice 

Online reading 
response 6 

8 2/27  Human body system lesson 
(Cont) 
Ch. 2 Science Practices and 
Inquiry Process Skills 
Reflection and Practice 

Online reading 
response 7 
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9 3/6 Ch. 7 Earth and Space 
Science 
Earth/Space Sciences lesson 
(Preventing Soil Erosion) 
Teaching Disciplinary-
Specific Literacy 

Online reading 
response 8 
 

10 3/11-3/16 
Spring Break 

11  
3/20 

Preventing Soil Erosion 
(Cont) 
 

Online reading 
response 9 
Inquiry Lesson 
draft  

12 3/27 
 

Integrating Science and 
Engineering 
  

Online reading 
response 10    

Inquiry Lesson 

Plan Due on 

Webcourses  

Resource Review 
Presentation ends 

13 4/3 
 

 
Lesson Plan 
Review/Feedback  

Revised Lesson 
Plan 
Due on 
Webcourses  

14 4/10 Group Teaching Inquiry-
based Lesson 
NSAAQ (Posttest) 
Argumentation Test (Posttest) 

  
Reflection on an 

Inquiry-Based 

Lesson Due on 

Webcourses  

Science Notebook 
15 4/17  Group Teaching Inquiry-

based Lesson 
Written Scientific Explanation 
Assessment (Posttest) 

 

16 4/24 Class ends (No class 

meeting) 
Inquiry-based 

Lesson Plan and 

Reflection Due on 

Via (4/24) 

 

Final Paper (4/27) 
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APPENDIX R    

PROFESSIONAL LEARNING EVALUATION TOOLS 
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Appendix R1: Instructor Satisfaction Survey 

Instructions: To what extent do you agree with the following statements?  
Please use the following scale:  
 
4 = Strongly Agree               3 = Agree               2 = Disagree               1 = Strongly 

Disagree 

Level 1. Effective professional learning experiences  

 

Item# Statement 4 3 2 1 

L1.1 The objectives of the professional 
development were clearly stated. 

    

L1.2 The professional development 
content was aligned to the stated 
objectives. 

    

L1.3 The professional development was 
appropriate given my previous 
level of knowledge.   

 

 

   

L1.4 The professional development 
delivery was engaging.  

    

L1.5 The professional development 
content was organized.  

 

 

   

L1.6 The professional development 
content was clearly delivered.  

 

 

   

L1.7 The professional development 
supported me to reflect on my own 
teaching practices as related to 
supporting PSTs’ knowledge and 
practices for teaching science as 
explanation.  
 

    

L1.8 The time allotted for the 
professional development was 
sufficient.  
 
 

 

 

   

PLEASE CONTINUE ON THE BACK 
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Level 2. Essential participant knowledge and skills 

 

Item# Statement 4 3 2 1 

L2.1 I have increased my understanding of the role of language and 
literacy in science.   

    

L2.2 I have increased my understanding of how to use the Teaching 
Science as Argument (TSAF) Framework in my science methods 
course to support PSTs’ developing knowledge and practices related 
to scientific explanation.   

    

L2.3 I have increased my knowledge on how to use writing scaffolds to 
support PSTs in writing scientific explanations 

 

 

   

L2.4 I have increased my knowledge on how to use specific talk moves 
to scaffold PSTs’ communication of scientific ideas and evidence in 
ways that reflect scientific discourse.   
 

    

 
 

Comments:  

 

 

 

 
 

 

  

Thank you for completing the questionnaire!  
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Appendix R2: Social Validity Questionnaire 

 
TSAF Social Validity 

Questionnaire 
 

Rebeca Grysko, M.Ed. 
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g
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Instructions: Please circle one answer for each statement 
below.  
 

START HERE SD D N A S

A 

1. The TSAF is appropriate for my students.  

 

 

1 2 3 4 5 

2. The TSAF is aligned with the current goals of my science 

methods course. 

  

 

1 2 3 4 5 

3. The TSAF improves my students’ knowledge of the nature of 
science.  

 

 

1 2 3 4 5 

4. The TSAF improves my students’ knowledge of 
argumentation.  

 

 

1 2 3 4 5 

5. The TSAF protocol procedures are appropriate for my 

science methods course.  

 

1 2 3 4 5 

6. The TSAF protocol procedures are easy to implement.   

 

 

1 2 3 4 5 

7. The TSAF protocol is an effective instructional tool.  

 

 

1 2 3 4 5 

8. The TSAF protocol is an efficient instructional tool.  

 

 

1 2 3 4 5 

9. I would use the TSAF protocol with my students.  1 2 3 4 5 
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10. I would participate in additional TSAF professional learning.   

 

1 2 3 4 5 

 

 

 

Please share any comments/feedback you may have in the box below. 

 

 
 

 

 

 

 

 

 

 

 

  

 

11. How many years have you taught at the K-12 level? _________ 

 _____________________ 

 

12. How many years have you taught at the post-secondary level?

 _____________________ 

 

 

Thank you for completing the questionnaire!  



315 
 

APPENDIX S    

INSTRUMENTATION 
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Appendix S1: Demographic Information Survey 

 

Name: _______________________________ 

Course/Instructor: ____________________ 

What is your major? ____________________ 

What is your gender? 

 Female  

 Male  

 

Which best describe you? (Check all that apply) 

 American Indian / Alaskan Native 

 Asian 

 Black / African American  

 Caucasian / White  

 Hispanic 

 Native Hawaiian / Other Pacific Islander 

 Other  

 

What is your primary language?  

 English  

 Other  ____________________ 

 

What is your student level?  

 Junior 

 Senior  
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Appendix S2: The Nature of Science as Argumentation Questionnaire 
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Appendix S3: The Argumentation Test 

 

Name:       
 
Gender:    Age:     Year in School:                   Language Spoken at Home:                 
 

 

Part I: Making a Scientific Argument 

 

Introduction:  Once a scientist develops an explanation for why something happens, he or she must support their 
claim with some type of reason.  The explanation and the supporting reason is called an argument.  Scientists use 
arguments to convince others that their claim is indeed true. How do you think scientists create a convincing 
argument?   
 
Directions:   The first three questions are designed to determine what you think counts as a good scientific 
argument. In each question you will be given a claim.  Following the claim are 6 different arguments. Your job is 
to rank the arguments in order using the following scale: 
 

   1 = This is the most convincing argument 
   2 = This is the 2nd

 most convincing argument 
   3 = This is the 3rd

 most convincing argument 
   4 = This is the 4th

 most convincing argument 
   5 = This is the 5th

 most convincing argument 
   6 = This is the least convincing argument 

 
Your task is to rank the 6 different arguments in terms of how convincing you think they are.  Remember that you 

can only rank one argument as 1, one argument as 2, one argument as 3, and so on. 
 

 

 

Question #1. Objects sitting in the same room often feel like they are different temperatures.  Suppose someone 
makes the following claim about the temperature of various objects sitting in the same room, which reason makes 
the most convincing argument? 
 
Claim: Objects that are in the same room are the same temperature even though they feel 

different because… 
Your 

Ranking 

  
…when we measured the temperature of the table, it was 23.4OC, the metal chair leg was 23.1OC, 
and the computer keyboard was 23.6OC.  

 

  
…good conductors feel different than poor conductors even though they are the same temperature.   
  
…objects that are in the same environment gain or lose heat energy until everything is the same 
temperature. Our data form the lab proves that point: the mouse pad and plastic desk were both 
23OC.  

 

  
…objects will release and hold different amounts of heat energy depending on how good of an 
insulator or conductor it is.  

 

  

…the textbook says that all objects in the same room will eventually reach the same temperature.   
  
…we measured the temperature of the wooden table and the chair leg and they were both 23OC 
even though the metal chair leg feels colder.  If the metal chair leg was actually colder it would 
have been a lower temperature when we compared it to the temperature of the table.  
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Question #2. A pendulum is a string with a weight attached to one end of it. Suppose someone makes the 
following claim about pendulums, which reason makes the most convincing argument? 
 
Claim: The length of the string determines how fast a pendulum swings back and forth 

regardless of the weight on the end of the string because… 
Your 

Ranking 

  
…the weight on the end of a long string has a longer distance to travel when compared to a weight 
on a short string.  As a result, pendulums with shorter swings make more swings per second than 
pendulum with longer strings.  

 

  
…pendulums with different string length have different swing rates. We measured the swing rate of 
a pendulum with a 10 cm string and a pendulum with a 20 cm string, The 10 cm pendulum had 
swing rate of 2 swings per second and the 20 cm pendulum has a swing rate of 1 swing per second.   

 

  
…a pendulum with a 14 cm string had a swing rate of 1 swing per second and a pendulum with a 
15 cm string had a swing rate of 1 swing per second.   

 

  
…a pendulum with a 10 cm string had a swing rate of 2 swings per second and a pendulum with a 
15 cm string had a swing rate of 1 swing per second.  

 

  
…our textbook says that the weight on the end of the string has nothing to do with how fast a 
pendulum swings.  

 

  
…we tested the swing rate of three pend ulums, one with a 10 gram weight and 10 cm string, one 
with a 10 gram weight and 20 cm string, and one with 20 gram weight and a 20 cm string.  The two 
pendulums with the 20 cm string had the same swing rate (1 swing per second) and were slower the 
pendulum with the shorter string (2 swings per second).  If the weight on the end of the string 
mattered these two pendulums would have had different swing rates but they were the same. 

 

 
 
 
 

Question #3. Scientists often use animals in their research. Suppose someone makes the following claim about 
the use of animals in scientific research, which reason makes the most convincing argument? 
 

Claim: Scientists should be allowed to use animals for research because… 
Your 

Ranking 
  
…a computer or other non animal model can be used instead.   
  
…animals are susceptible to many of the same bacteria and viruses as people, such as anthrax, 
smallpox, and malaria. Even though animals differ from people in many ways, they also are very 
similar to people in many ways. An animal is chosen for research only if it shares characteristics 
with people that are relevant to the research.  

 

  
…public opinion polls have consistently shown that a majority of people approve of the use of 
animals in biomedical research that does not cause pain to the animal and leads to new treatments 
and cures.  

 

  
…animal research was essential in developing many life-saving surgical procedures once thought 
impossible. For example the technique of sewing blood vessels together was developed through 
surgeries on dogs and cats by Alexis Carrel, for which he was awarded a Nobel Prize in 1912.  

 

  
…infecting animals with certain microbes allows researchers to identify the germs that cause 
different types of diseases. Once discovered scientists can develop vaccines to test the effectiveness 
of these vaccines without harming any people in the process.  

 

  
…humans have 65 infectious diseases in common with dogs, 50 with cattle, 46 with sheep and 
goats, 42 with pigs, 35 with horses, and 26 with fowl.  
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Part II. Challenging an Argument 

 

Introduction: Once a scientist develops an explanation for why something happens, he or she must support the 
explanation with there reasons for why they think their explanation is correct.  The explanation along with its 
supporting reasons is called an argument. Sometimes other scientists agree with the argument; sometimes they do 
not.  When they disagree, they challenge the accuracy of the argument.  How do you think scientists challenge the 
arguments of other scientists?  The last three questions on this test are designed to determine what you think 
counts as a good challenge to a scientific argument. 
 
Directions: In each question you will be given an argument.  Following the argument are 6 different challenges. 
Your job is to rank the challenges using the following scale:  
 

   1 = This comment is the strongest challenge to this argument 
   2 = This comment is the 2nd

 strongest challenge to this argument  
   3 = This comment is the 3rd 

strongest challenge to this argument 
   4 = This comment is the 4th

 strongest challenge to this argument 
   5 = This comment is the 5th

 strongest challenge to this argument 
   6 = This comment is the weakest challenge to this argument 

 
 

Question #4—Jason, Angela, Sarah, and Tim are in physics class together.  Their teacher asked them to design an 
experiment to determine if all objects in the same room are the same temperature even though they feel different.  
After they designed and carried out an experiment to answer this question on their own, they met in a small group 
to discuss what they have found out. Suppose Jason suggests that:  

“I think that all objects in the same room are always different temperatures because they feel 

different and when we measured the temperature of the table, it was 23.4OC, the metal chair leg 

was 23.1
O
C, and the computer keyboard was 23.6

OC.” 

Angela disagrees with Jason. Your task is to rank the 6 different challenges given by Angela in terms of how 
strong you think they are.  
 

Angela: I disagree… 
Your 

Ranking 
  
…because your evidence does not support your claim.  All of the objects that you measured were 
within one degree of each other.  That small of difference is just measurement error.   

 

  
…I think that all objects in the same room are the same temperature even though they feel different   
  
…if those objects were really different temperatures their temperature would have been much 
different.  For example, when I measured the temperature of my arm it was 37OC while the 
temperature of the table was 23OC that is a difference of 14 degrees.  Everything else was right 
around 23OC.  

 

  
…I think all objects become the same temperature even though they feel different because objects 
that are good conductors feel colder than objects that are poor conductors because heat transfers 
through good conductors faster.  

 

  
…because I know you always rush through labs and never get the right answer.   
  
…I think all objects become the same temperature because the temperatures of all those objects 
you measured were within 1 degree. 
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Question #5—Tiffany, Steven, and Yelena are in the same science class.  Their teacher asked them to design an 
experiment to determine what makes some objects floats and some objects sink.  After they designed and carried 
out an experiment to answer this question on their own, they met in a small group to discuss what they have found 
out. Suppose Steven suggests that:  

“I think heavy objects sink and light objects float.  This is true because when I put the 10 gram 

plastic block in the tub of water it floated while the 40 gram metal block sank.” 

Tiffany disagrees with Steven. Your task is to rank these 6 different challenges given by Tiffany in terms of how 
strong you think they are.  

 

Tiffany: I disagree… 
Your 

Ranking 

  
…because Yelena is always right and she disagrees with you.   
  

…because you did not test enough objects.  How can you be sure that it is the weight of an object 
that makes it sink or float if you only tested two things?  

 
  

…the metal block sank because it is very dense not because it is heavy and the plastic block floated 
because it has density that is less than water not because it is light. 

 
  

…because light objects can sink too.  A paper clip only weighs one gram and it sinks. According to 
you claim all light objects should float.  How can a paper clip that is lighter than a piece of plastic 
sink while the heavier piece of plastic floats?   

 

  

…The plastic block may have been lighter than the metal block but that is not why it floated.  The 
metal block has a density of 2.5 g/cm3, which is more than water so it sinks. The plastic block has a 
volume 16 cm3 which means its density is .6 g/cm3 which is less than water so it floats.   

 

  

…I think objects that have a density greater than water sink and objects that have a density less 
than water float. 

 

 

Question #6— Elana, Shauna, and Sam are in a science class together.  At the beginning of class, their teacher 
poses the following question: “Should scientists be able to use animals in medical research?” The teacher then 
asked Elana, Shauna, and Sam to discuss what they think about the issue in a small group. Suppose Shauna begins 
the conversation by saying:  

“I think using animals in medical is a bad idea because people and animals suffer from different 

disease and the bodies of animals and humans are completely different.  So how can scientists 

justify performing painful experiments on animals if they are so different?’

Sam disagrees with Shauna. Your task is to rank these 6 different challenges given by Sam in terms of how 
strong you think they are.  
 

Sam: I disagree… 
Your 

Ranking 
  

…even though animal and human bodies are completely different like you say, I think using 
animals in medical research is a good idea because it would be impossible to prove that a specific 
germ is responsible for a disease without the use of laboratory animals.  

 

  

…I think using animals in medical research is good idea and very useful.  
  

…animals are not that different from humans.  Animals and humans have similar organs and 
animals suffer from many of the same diseases that we do.  

 
  

…because you don’t know what you are talking about.  You just care more about animals then you 
do about people.   

 
  

…an animal is only chosen for research if it shares characteristics with people that are relevant to 
the research. For example; animals share many of the same organs as people so they can be used to 
develop new surgical techniques.  Organ transplants, o pen heart surgery, and many other 
procedures that are common today were developed by experimenting with animals. 

 

  

…how can using animals in research be a bad idea if it allows scientists to do research without 
having to conduct painful experiments on people? 
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Appendix S4: Written Scientific Explanation Assessment 

Examine the following bar graph.  

 

 

 

 

 

 

 

 

 

 

 

 

Write a scientific explanation that answers the question:  Which crop is the most 
resistant to the effects of erosion?  

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

________________________________________________________________________

______ 
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Appendix S5: Scientific Explanation Base Rubric 

 

Source: McNeill, Lizote, Krajcik, & Marx (2006), p. 189 

 

 

 

 

 

 

 

 

 

Component 
Levels 

0 1 2 
Claim  

A statement or 

conclusion that 

answers the 

original 

question/problem. 

Does not make a claim, or 
makes an inaccurate claim.  

Makes an accurate but 
incomplete claim.  

Makes an 
accurate and 
complete 
claim.  

Evidence 

Scientific data that 

support the claim. 

The data need to be 

appropriate and 

sufficient to 

support the claim.  

Does not provide evidence, or 
only provides inappropriate 
evidence (evidence that does 
not support claim).  

Provides appropriate but 
insufficient evidence o support 
claim. May include some 
inappropriate evidence.  

Provides 
appropriate 
and sufficient 
evidence to 
support claim.  

Reasoning 

A justification that 

connects the 

evidence to the 

claim. It shows why 

the data count as 

evidence by using 

appropriate and 

sufficient scientific 

principles.   

Does not provide reasoning, or 
only provides inappropriate 
reasoning.  

Provides reasoning that 
connects the evidence to the 
claim. May include some 
scientific principles or 
justification for why the 
evidence supports the claim, 
but it is not sufficient.  

Provides 
reasoning that 
connects the 
evidence to the 
claim. Includes 
appropriate 
and sufficient 
scientific 
principles to 
explain why 
the evidence 
supports the 
claim.  
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Appendix S6: Specific Rubric for Scientific Explanation Assessment 

 

 

Component 

Levels 

0 1 2 
Claim  

A statement or 

conclusion that 

answers the original 

question/problem. 

Does not make a claim, or 
makes an inaccurate claim. 

Does not apply to this 
assessment task. 

Makes an accurate 
and complete claim. 

Exemplars “Castor bean is the most 
resisitant to the effects of 
erosion.” 

“Sweet potato is the 
most resistant to the 
effects of erosion.” 

Evidence 

Scientific data that 

support the claim. 

The data need to be 

appropriate and 

sufficient to support 

the claim.  

Does not provide evidence, 
or only provides 
inappropriate evidence or 
vague evidence.  

Provides appropriate, but 
insufficient evidence to 
support the claim. May 
include some inappropriate 
evidence.    

Provides appropriate 
and sufficient 
evidence to support 
the claim. Includes 
no inappropriate 
evidence.  

Exemplars  “The bar graph shows me it 
is true.” 

“The bar graph shows that 
sweet potato did not lose a lot 
of soil.”  

“The bar graph 
shows that sweet 
potato had the least 
amount of soil loss 
out of all the crops.” 

Reasoning 

A justification that 

links the claim and 

evidence and 

includes appropriate 

and sufficient 

scientific principles 

to defend the claim 

and evidence.    

Does not provide reasoning, 
or only provides reasoning 
that does not link evidence 
to the claim.  

Repeats evidence and links it 
to the claim. May include 
some scientific principles, but 
not sufficient.   

Provides accurate 
and complete 
reasoning that links 
evidence to claim. 
Includes appropriate 
and sufficient 
scientific principles.  

                   
Exemplars 

“Castor bean has the tallest 
bar on the bar graph.” 

“Since sweet potato had the 
least amount of soil loss, it is 
the most resisitant to the 
effects of erosion.”  

“Erosion is the 
movement of 
weathered rock and 
soil from one place 
to another. Since 
sweet potato had the 
least amount of soil 
loss out of all the 
crops, it is the most 
resisitant to the 
effects of erosion.”  
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APPENDIX T    

ADMINISTRATION SCRIPTS 
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Appendix T1: Script for the Demographic Information Survey and the NSAAQ 

Cue 

 
“You are going to complete two questionnaires today.  The questionnaires have been stapled 
together to form one packet.  I want to ensure you that your responses to these questionnaires 
will not affect your course grade in any way.” 
 
“You’ll only need a pencil or pen. I’m going to hand out the questionnaire packets now. You 
may begin completing the Demographic Information Survey on the front page of the packet.  
However, please wait for me to explain the directions before you begin the other questionnaire in 
the packet.   
 
Do 

 

Pass out the questionnaire packets.  Once all participants have a packet, say the following:  
 
Cue  

 

“After you complete the Demographic Information Survey, you will begin The Nature of Science 

as Argument Questionnaire. Please turn to page 2 in your packet as I explain the directions for 
completing this questionnaire.   
 

“You will read the following pairs of statements and then circle the number on the continuum 
that best describes your position on the issue described. The numbers on the continuum mean:  
1 = I completely agree with viewpoint A and I completely disagree with viewpoint B  
2 = I agree with both viewpoints, but I agree with viewpoint A more than I agree with viewpoint B  
3 = I agree with both viewpoints equally  
4 = I agree with both viewpoints, but I agree with viewpoint B more than I agree with viewpoint A  
5 = I completely agree with viewpoint B and I completely disagree with viewpoint A”  

 
“Please circle only one number for each pair of statements. Remember to complete all 26 items 
as honestly as possible.”  
 
 “You may get started now.  Please remember to take your time, read each item carefully, and 
respond as honestly as possible.  Once you’re done, raise your hand and I’ll come by and pick up 
your completed packet.  
 
Do 

 
When a participant is done, make sure that there is a first and last name on the first page of the 
packet, then review all the responses to make sure the participant hasn’t missed any items.  If 
there aren’t any missing responses, put the completed packet into the original envelope.  If there 
is a missing response, return it to the participant and ask them to complete the missing item(s).  
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Please list the names of any absent students here:  
  
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
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Appendix T2: Script for The Argumentation Test 

Cue 

 
“You are going to complete The Argumentation Test today.  I want to ensure you that your 
responses to this assessment will not affect your course grade in any way.” 
 
“You’ll only need a pencil or pen. I’m going to hand out the assessment now. Please write your 
first and last name on the front of the assessment. You may also fill in the demographic 
information, such as your gender, age, year in college, and primary language spoken.  However, 
please wait for me to explain the directions before you begin the assessment.” 
 
Do 

 

Pass out the assessment.  Once all participants have an assessment, say the following:  
“Please follow along as I explain the directions for completing this assessment.”  
 
Cue 

 
“Part I is titled Making a Scientific Argument. The questions in this section are designed to 
determine what you think counts as a good scientific 

argument. In the first three questions, you will be given a claim. Following the claim are 6 
different arguments. Your job is to rank the arguments in order using the following scale: 
1 = This is the most convincing argument 
2 = This is the 2nd most convincing argument 
3 = This is the 3rd most convincing argument 
4 = This is the 4th most convincing argument 
5 = This is the 5th most convincing argument 
6 = This is the least convincing argument” 
 
“For each question, you can only use each ranking once.” 
 
“Part II is titled Challenging Arguments.  The questions in this section are designed to determine 
what you think counts as a good challenge to a scientific argument. In questions 4-6, you will be 
given a claim supported by an argument. Following the claim are 6 different challenges. Your 
job is to rank the arguments in order using the following scale:  
1 = This comment is the strongest challenge to this argument 
2 = This comment is the 2nd strongest challenge to this argument 
3 = This comment is the 3rd strongest challenge to this argument 
4 = This comment is the 4th strongest challenge to this argument 
5 = This comment is the 5th strongest challenge to this argument 
6 = This comment is the weakest challenge to this argument” 
 
Again, for each question, you can only use each ranking once.” 
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“You may get started now.  Please remember to take your time, read each item carefully, and 
respond as honestly as possible.  Once you’re done, raise your hand and I’ll come by and pick up 
your completed assessment.  
 

Do 

 
When a participant is done, make sure that there is a first and last name on the first page of the 
assessment, then review all the responses to make sure the participant hasn’t missed any items.  
If there aren’t any missing responses, put the completed packet into the original envelope.  If 
there is a missing response, return it to the participant and ask them to complete the missing 
item(s).  
 
Please list the names of any absent students here:  
  
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
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Appendix T3: Script for the Written Scientific Explanation Assessment 

Cue 

 
“You are going to complete a Written Scientific Explanation Assessment today.  I want to ensure 
you that your performance on this assessment will not affect your course grade in any way.” 
 
“You’ll only need a pencil or pen. I’m going to hand out the assessment now.  Please write your 
first and last name on the top and then wait for me to review the directions before you get 
started.”   
 
Do 

 

Pass out the assessment.  Once all participants have a packet, say the following:  
 
Cue  

 

 “This assessment consists of one open-ended items. You will examine the secondhand data 
displayed and then write a scientific explanation to answer the question presented.”  
 
“You may get started now.  Please remember to take your time, read the item carefully, and write 
as neatly as possible.  Once you’re done, raise your hand and I’ll come by and pick up your 
assessment.” 
 
Do 

 
When a participant is done, make sure that there is a first and last name on the first page of the 
packet and place the completed assessment into the original envelope.   
 
 Please list the names of any absent students here:  
  
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
 
_______________________________________ 
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APPENDIX U    

FIDELITY OF IMPLEMENTATION 
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Appendix U1: Phase 1 Fidelity Checklist 

TSAF Implementation 
Phase 1 Fidelity Checklist  

Instructor name: 

 
Weeks   4    5    6    7    8    9    11    12    13    14    15 

Reviewer name: Date Began:  Date Completed:  

 

 PFS: PF%: 

CUE 

Instructions: Please check “Yes” or “No” for the following components and then score each section.  

Yes = 1   No = 0 Points 

 YES NO 

Bridged from previous class session   

Oriented PSTs to current lesson (i.e., 

introduced topic, accessed/reviewed 

prior knowledge) 

  

Shared learning goal(s)/objective(s)    

Section score:       /3 

DO 

 YES NO 

Instructor provided PPT overview of 

importance/benefits of engaging 

elementary students in scientific 

explanation  

  

Instructor provided PPT overview of the 

connections between literacy and science  

  

Instructor provided PPT overview of the 

TSAF, including examples of how each of 

the three components can be employed 

during classroom instruction     

  

Instructor provided PPT overview of the 

CER Framework   

  

Instructor distributed CER handout to be 

used by PSTs as a reference for the 

remainder of the semester 

  

Instructor distributed and provided an 

overview of the scientific explanation 

base rubric  

  

Instructor guided PSTs in the process of 

critiquing three sample explanations 

using the base rubric  
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Instructor discussed how the samples 

ranged in complexity, from simple (claim 

+ 1 piece of evidence) to complex (claim 

+ multiple pieces of evidence + 

reasoning)   

  

Section score:       /8 

REVIEW/REFLECT 

 YES NO 

Instructor reviewed the three features of 

the TSAF (i.e., argument structure, 

making thinking visible, and language of 

science)  

  

Instructor reviewed components of CER 

Framework (i.e., claim, evidence, and 

reasoning)  

  

Instructor reviewed the role of 

explanation in science   

  

Section score:       /3 

SALIENT FEATURES AND ESSENTIAL COMPONENTS 

 YES NO 

Made explicit connections between literacy and science    

Made connections to elementary students and/or classroom 

practice  

  

Emphasized the nature of science (i.e., makes explicit what 

scientists do and why, talks about the work of real scientists) 

  

Section Score:      /3   

ADDITIONAL INFORMATION 

Weekly Fidelity Score (WFS):  

Cue _______ + Do _______ + Review _______ +  

Salient _______ = _______ / 17 

 

PFS ________ /17  = _______ PF % 

Total time of instruction:  

 

Reviewer comments:  
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Appendix U2: Phase 2 Fidelity Checklist 

 

TSAF Implementation 
Phase 2 Fidelity Checklist  

Instructor name: 

 
Weeks  4   5    6    7    8    9    11    12    13    14    15 

Reviewer name: 

 

Date Began:  

 

Date Completed:  

 

Investigation    1     2     3 

 

PFS: PF% 

CUE 
Instructions: Please check “Yes” or “No” for the following components and then score each section.  
Yes = 1   No = 0 Points  

  YES NO 

Bridged from previous class session     

Oriented PSTs to current lesson (i.e., 

introduced topic, accessed/reviewed 

prior knowledge)  

  

Shared learning goal(s)/objective(s)   

Section score:       /3 

DO 

 YES NO 

Instructor encouraged PSTs to pursue 

testable questions  

  

Instructor provided opportunities for 

PSTs to read about the phenomena 

under study 

  

Instructor engaged PSTs in an academic 

vocabulary building strategy (e.g., Frayer 

Model, Concept of Definition Map, 

Semantic Feature Analysis)   

  

Instructor provided opportunities for 

PSTs to engage firsthand with the 

phenomena under study   

  

Instructor engaged PSTs in the process of 

collecting, recording, and representing 

data 

  

Instructor encouraged PSTs to identify 

patterns in their data (i.e., What claim 

can you make based on the evidence?) 

  

Instructor reviewed the three 

components of scientific explanation (i.e., 

claim, evidence, and reasoning)  
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Instructor displayed visual representation 

of CER Framework  

  

Instructor provided writing scaffolds to 

assist PSTs in constructing a scientific 

explanation 

  

Instructor used a series of talk moves 

(e.g., Would someone like to add to 

that?) to make PSTs’ thinking visible and 
foster peer interactions.   

  

Instructor used productive questioning 

techniques (e.g., What evidence helped 

you arrive at that conclusion?) to scaffold 

PSTs’ communication of scientific ideas 
and evidence in ways that reflect 

scientific discourse. 

  

Instructor made connections to the big 

idea/science concept  

  

Section score:       /12 

REVIEW/REFLECT 

 YES NO 

PSTs were provided with an opportunity 

to unpack lesson from the perspective of 

the teacher (using the three features of 

the TSAF as a heuristic).  

  

PSTs discussed how the lesson supports 

all students in constructing, 

communicating, and debating evidence-

based scientific claims.  

  

Instructor reviewed components of CER 

Framework  

  

Instructor reviewed the role of 

explanation in science  

  

Section score:       /4 

SALIENT FEATURES AND ESSENTIAL COMPONENTS 

 YES NO 

Made explicit connections between literacy and science    

Made connections to elementary students and/or classroom 

practice  

  

Emphasized the nature of science (i.e., makes explicit what 

scientists do and why, talks about the work of real scientists) 

  

Placed attention on developing academic vocabulary     

Engaged PSTs in science reading, writing, and talk    

Several talk turns between PSTs not directly involving instructor 

during whole-group discussion  

  

Section Score:      /6   
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ADDITIONAL INFORMATION 

Weekly Fidelity Score (WFS):  

Cue _______ + Do _______ + Review _______ +  

Salient _______ = _______ / 25 

 

PFS ________ /25  = _______ PF % 

Reviewer comments:  
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Appendix U3: Phase 3 Fidelity Checklist 

TSAF Implementation 
Phase 3 Fidelity Checklist  

Instructor name: 

 
Weeks  5    6    7    8    9    11    12    13    14    15 

Reviewer name: 

 
Date Began:  

 
Date Completed:  

 

 PFS: PF%: 

CUE 

Instructions: Please check “Yes” or “No” for the following components and then score each 
section.  Yes = 1   No = 0 Points 

 YES NO 

Shared rationale for lesson plan 
assignment (i.e., to provide PSTs an 
opportunity to apply their developing 
understandings of the TSAF when 
planning for science instruction) 

  

Distributed and discussed planning 
questions related to the TSAF 

  

Reviewed/discussed lesson plan rubric   

Section score:       /3 

DO 

 YES NO 

Instructor provided in-class time for 
PSTs to work on their group lesson 
plans  

  

Instructor provided support during the 
planning process (i.e., referred to the 
planning questions to help PSTs 
negotiate the content and sequencing 
of their lessons) 

  

Instructor engaged PSTs in the 
process of reviewing other groups’ 
lesson plans (using the TSAF as a 
heuristic) and to offer suggestions for 
improvement   

  

Instructor allowed PSTs to revise their 
group lessons based on peer 
suggestions  
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Instructor provided class time for each 
group to present their final inquiry-
based science lesson  

  

Section score:       /5 
REVIEW/REFLECT 

 YES NO 

Instructor engaged PSTs in self-
reflection of their own lessons (using 
the three features of the TSAF as a 
heuristic) 

  

PSTs reflected upon how their lesson 
supports all students in constructing, 
communicating, and debating 
evidence-based scientific claims. 

  

Instructor reviewed the role of 
explanation in science   

  

Section score:       /3 
SALIENT FEATURES AND ESSENTIAL COMPONENTS 

 YES NO 

Made explicit connections between literacy and science    

Made connections to elementary students and/or classroom 
practice  

  

Emphasized the nature of science (i.e., makes explicit what 
scientists do and why, talks about the work of real scientists) 

  

Provided targeted feedback to each collaborative group     

Section Score:      /4   

ADDITIONAL INFORMATION 

Weekly Fidelity Score (WFS):  

Cue _______ + Do _______ + Review _______ +  

Salient _______ = _______ / 15 
 

PFS ________ /15 = _______ PF 

% 

Reviewer comments:  
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Appendix U4: Instructor Fidelity Worksheet 

TSAF Implementation 
Instructor Fidelity Worksheet 

 

Teacher name: 

 

TFS:  TF %:  

 

Reviewer name:  

 

Worksheet completion date:  

INTERVENTION PHASE 1 

 

P1 FS ________ /17  = _______ PF % 

 

INTERVENTION PHASE 2 

 

P2 FS (Investigation 1) ________ /25  = _______ PF % 

P2 FS (Investigation 2) ________ /25  = _______ PF % 

P2 FS (Investigation 3) ________ /25  = _______ PF % 

P2 Total FS = Investigation 1 _______+ Investigation 2 _______+ Investigation 3 _______=        /  75 

 

INTERVENTION PHASE 3 

 

P3 FS ________ /15 = _______ PF % 

 

TOTAL FIDELITY SCORES 

 

Total Fidelity Score (TFS): P1 FS _________ + P2 Total FS _________ + P3 FS _________ =           / 107 

 

 

Total Fidelity %: TFS ___________ / 107 = __________ TF% 

 

 

  



343 
 

APPENDIX V    

INTERRATER RELIABILITY  
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Appendix V1: Assessment Interrater Reliability Worksheet 

 

Rater Name:  Date: 
NSAAQ PRETEST 

Participant Code Score 1 Score 2 

 
 

 
 

 
 

 

NSAAQ POSTTEST 

Participant Code Score 1 Score 2 

   

   

THE ARGUMENTATION PRETEST 

Participant Code Score 1 Score 2 
   

   

THE ARGUMENTATION POSTTEST 

Participant Code Score 1 Score 2 

   

   

SCIENTIFIC EXPLANATION PRETEST 

Participant Code Score 1 Score 2 

   

   

SCIENTIFIC EXPLANATION POSTTEST 

Participant Code Score 1 Score 2 
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Appendix V2: Interrater Reliability Instructor Fidelity Worksheet 

P1 Fidelity Score: ________ /17 P1 FS: ________ /17  = _______ PF % 

P1 Interrater Score: ________ /17 P1 FS: ________ /17  = _______ PF % 

INTERVENTION PHASE 2 

Investigation 1  

 

P2 Fidelity Score: __________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

 

P2 Interrater Score: ________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

Investigation 2 

 

P2 Fidelity Score: __________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

 

P2 Interrater Score: ________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

Investigation 3 

 

P2 Fidelity Score: __________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

 

P2 Interrater Score: ________ /25 Investigation 1 FS: _______ /25  = _______ PF % 

P2 Total FS = 

Investigation 1 ______+ Investigation 2 ______+ Investigation 3 ______=        / 75 

P2 Interrater Total FS = 

Investigation 1 ______+ Investigation 2 ______+ Investigation 3 ______=        / 75 

INTERVENTION PHASE 3 

 

P3 Fidelity Score: __________ /15 P3 FS: ________ /15  = _______ PF % 

 

P3 Interrater Score: ________ /15 P3 FS: ________ /15  = _______ PF % 

TOTAL FIDELITY SCORES 

 

Total Fidelity Score (TFS): P1 FS _________ + P2 Total FS _________ + P3 FS _________ =           / 107 

 

Interrater TFS: P1 FS _________ + P2 Total FS _________ + P3 FS _________ =           / 107 

 

Total Fidelity %: TFS ___________ / 107 = __________ TF% 

 

Interrater Total Fidelity %: TFS ___________ / 107 = __________ TF% 
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APPENDIX W    

COPYRIGHT PERMISSIONS 
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Appendix W1: John Wiley and Sons Permission 
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Appendix W2: Harvard Education Publishing Group Permission 

Dear Rebeca Grysko,  
 
Greetings from the office of Harvard Education Publishing Group. My name is Laura and 

I assist the editors with rights and permissions. I am in touch with you today on behalf of HEPG, 
regarding your request to include a figure from Harvard Educational Review in your doctoral 
dissertation. 
  
In reply to your request of March 26, 2019, I am pleased to grant permission to reprint the 
following material for use in your doctoral dissertation. Permission is granted for non-exclusive, 
non-transferable use, in print and electronic media, in English, for scholarly purposes only. Any 
other uses will require an additional request. 
  
Please give credit to the authors and the Review in this, or a similar, manner on all copies made: 
Figure 1, page 44, from “Teaching Disciplinary Literacy to Adolescents: Rethinking Content-
Area Literacy” by T. Shanahan, C. Shanahan, 2008, Harvard Educational Review, 78(1), pp. 40-
59.  Copyright © President and Fellows of Harvard College. All rights reserved. Used 
with permission. 
    
We waive our customary fee for this purpose. 

 
 

Please let me know if you have any questions or if I may assist you in any way. 
  
With all best wishes, 
  
Laura Clos 
Rights and Permissions 
Harvard Education Publishing Group 
A part of the President and Fellows of Harvard College 

Laura Clos 
Harvard Education Publishing Group 
8 Story Street, 1st Floor, Cambridge, MA 02138 USA 
617-495-3432 (ph) 
617-384-7257 (vm) 
617-496-3584 (fax) 
laura_clos@harvard.edu 
www.hepg.org 
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Appendix W2: NSAAQ and The Argumentation Test Permission 
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