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ABSTRACT

INTRODUCTION: Ultrasound assessment of the lower body typically encompasses 10-15
minutes of supine rest prior to examination because of the potential influence of gravitational
fluid shifts on tissue size and composition. However, examination of the vastus lateralis (VL)
muscle requires individuals to lay in the lateral recumbent position, and this change in position
may influence muscle morphological characteristics and their ability to predict muscle function.
PURPOSE: The purpose of this investigation was to examine the effect of rest position on
ultrasound-derived morphological characteristics of the VL and to determine whether or not rest
position affects the relationships between muscle morphological characteristics of the VL and
lower-body force and power production.

METHODS: Thirty-one resistance-trained males (age: 23.0 £+ 2.1 years; height: 1.79 + 0.08 m;
body mass: 87.4 + 11.7 kg) participated in this investigation. Muscle morphological
characteristics, including cross-sectional area (CSA), muscle thickness (MT), pennation angle
(PA), echo intensity (UnCorEI), subcutaneous adipose tissue thickness (SFT), and EI corrected
for SFT (CorEI) of the VL were assessed in the dominant limb after 15 minutes of rest in 3
recumbent positions: supine (SUP), dominant lateral recumbent (DLR), non-dominant lateral
recumbent (NDLR), as well as after 15 minutes of standing (ST) and immediately after laying
down (IP). Following ultrasound assessments, participants completed unilateral performance
assessments, including vertical jumps (UVJ), isometric/isokinetic testing, and a 1-repetition
maximum (1-RM) leg press.

RESULTS: A repeated-measures analysis of variance revealed significantly different (p < 0.05)

CSA, MT, PA, UnCorEl, and SFT in ST compared to recumbent positions after 15 minutes of
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rest (NDLR, DLR, and SUP). Additionally, significant differences were observed between
recumbent positions for CSA, CorEl, and UnCorEI; however, no differences were observed for
MT, PA, and SFT. Different magnitudes of relationships were observed between muscle
morphological characteristics measured after rest in different positions and performance
variables. However, muscle morphology after IP generally appears to be the best predictor of
performance for most variables, although utilizing the NDLR and DLR positions may provide
comparable, or potentially stronger results for variables such as IsokPF. The relationship
between muscle morphology and various performance variables in ST were weaker compared to
the recumbent positions examined, specifically for IsokPF, 1-RM leg press, and for all UVJ
variables, except total work.

CONCLUSIONS: Muscle morphology differs depending on the rest position utilized prior to
ultrasound analysis. These rest positions also affect the ability for muscle morphology to predict
lower-body force production. Future research should consider evaluation of muscle morphology
of the VL after IP in the prediction of muscle function; however, NDLR and DLR may also be
used. SUP and ST provide significantly weaker relationships for some performance variables

compared to the other recumbent positions.
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CHAPTER ONE: INTRODUCTION

The assessment of muscle morphology in vivo has been used to evaluate muscle function
in response to various exercise and nutritional interventions, as well as in disease and other
clinical conditions. Previously, the use of computerized tomography (CT), magnetic resonance
imaging (MRI), and dual-energy x-ray absorptiometry (DEXA) have been considered the gold
standards in the assessment of muscle size and composition. However, ultrasonography has
gained significant attention due to its ability to provide valid and reliable measures of both
muscle size and fiber orientation (Ahtiainen et al., 2010; Esformes, Narici, & Maganaris, 2002;
Lixandrao et al., 2014; Noorkoiv, Nosaka, & Blazevich, 2010; Reeves, Maganaris, & Narici,
2004; Scott et al., 2012; Thomaes et al., 2012). Ultrasonography is portable, versatile, and does
not produce ionizing radiation (Mourtzakis & Wischmeyer, 2014; Pillen & van Alfen, 2011), and
thus represents a robust non-invasive method of skeletal muscle imaging.

Muscle force-producing capability is largely a result of the cross-bridge interaction of
actin and myosin. Accordingly, a muscle that has a greater amount of contractile tissue and is
larger in size characteristically has an increased ability to produce force (Finer, Simmons, &
Spudich, 1994; Miller, Bedrin, Ades, Palmer, & Toth, 2015). As such, quantification of muscle
size, including cross-sectional area (CSA) and muscle thickness (MT) is critical for predicting
muscle strength and force production (Fukunaga et al., 2001; Mangine, Fukuda, et al., 2014;
Mangine et al., 2015; Moreau, Simpson, Teefey, & Damiano, 2010). Conversely, the ability to
produce force quickly, i.e., the rate of force development (RFD), appears to be related primarily
to muscle fiber orientation, i.e., pennation angle (PA) and fascicle length (FL), and secondarily,

muscle size (Maffiuletti et al., 2016; Zaras et al., 2016). Echo intensity (EI) has also been
1



previously investigated as a surrogate measure of muscle quality during ultrasonography and is
thought to provide a measure of muscle composition by delineating between contractile and non-
contractile tissue through the greyscale analysis of pixels within the image (Pillen & van Alfen,
2011). Given that measures of muscle size, fiber orientation, and quality directly impact strength
and power performance, these parameters are often quantified in conjunction with functional
strength and power assessments (Burkholder, Fingado, Baron, & Lieber, 1994).
Ultrasonography of the lower-body is typically completed while the subject is recumbent
on an examination table, however the transition from an upright to recumbent position has been
shown to induce rapid fluctuations in blood flow and resulting tissue volume (Berg, Tedner, &
Tesch, 1993; Cerniglia, Delmonico, Lindle, Hurley, & Rogers, 2007; Maw, Mackenzie, &
Taylor, 1995; Tan, Wilmshurst, Gleason, & Soeldner, 1973; Thoirs & English, 2009; Wagle et
al., 2017). Specifically, a redistribution of blood out of the lower extremities and a decrease in
hydrostatic pressure of the lower body result in a net absorption of fluid from the interstitial fluid
into the capillaries, decreasing tissue volume (Fawcett & Wynn, 1960; Hagan, Diaz, & Horvath,
1978; Maw et al., 1995; Taylor, Halliwill, Brown, Hayano, & Eckberg, 1995; Thompson, Alper,
& Thompson, 1928; Waterfield, 1931a, 1931b). Research has demonstrated that changes in body
position result in alterations in muscle morphology of the lower body (Arroyo et al., 2018; Berg
et al., 1993; Cerniglia et al., 2007; Lopez, Pinto, & Pinto, 2019; Shea, 2017; Thoirs & English,
2009; Tomko et al., 2018). Based off of these findings, ultrasonography is typically
accomplished after a 10 to 15 minute period of rest in the supine position to allow for
gravitational fluid shifts (Ahtiainen et al., 2010; Jajtner et al., 2015; Jajtner et al., 2013; Mangine,

Fukuda, et al., 2014; Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Scanlon et al., 2014;
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Varanoske et al., 2017a, 2017b; Wells et al., 2014). However, Wagle and colleagues (2017)
observed stronger relationships between standing measures of muscle size and architecture with
lower body strength and power than measures taken while recumbent, which was attributed to
discrepancies between the position during examination and the position in which many sporting
activities occur. As muscle morphological characteristics obtained via ultrasonography appear to
differ depending on whether they are obtained while standing or while recumbent (Thoirs &
English, 2009; Tomko et al., 2018; Wagle et al., 2017), the ability of these characteristics to
predict muscle function during athletic activities may be compromised if ultrasound images are
captured in the recumbent position.

Although there is research to support the use of standing measures of muscle morphology
in the assessment of muscle function (Wagle et al., 2017), this positioning requires an additional
level of difficulty on the subject as well as the technician. The ability to compare measures of
muscle morphology obtained from standing ultrasounds to CT, MRI, and DEXA is also
diminished because these techniques require participants to remain in the recumbent position
during examination. Furthermore, ultrasound images captured while in the recumbent position
may be altered by the rest position prior to assessment, affecting the ability of these images to
predict muscle function. The VL is a muscle that is commonly examined in the evaluation of
lower body strength and power, and it is located on the lateral side of the thigh. Typical
ultrasound assessment of the VL reports that the subjects are instructed to lay in the supine
position for fluid shifts to occur and then flip over onto their lateral side for assessment (Jajtner
et al., 2015; Jajtner et al., 2013; Mangine, Fukuda, et al., 2014; Mangine et al., 2015; Mangine,

Hoffman, et al., 2014; Scanlon et al., 2014; Varanoske et al., 2017a, 2017b; Wagle et al., 2017,



Wells et al., 2014). However, changes in hydrostatic pressure and blood distribution may also be
induced with changes in recumbent positions (Bryan, 1974; Kallet, 2015), and a change in
position (from rest in a supine position to examination in a lateral recumbent position) may alter
muscle morphological characteristics, which may not reflect true changes in muscle function.

Measurements obtained during ultrasonography may further be influenced by
compression of body tissues as a result of changes in body position. In the examination of
bilateral asymmetries in muscle size and architecture via ultrasonography, previous
investigations do not report a return to the supine position for the same duration prior to
examination of the opposing muscle (Mangine, Fukuda, et al., 2014; Mangine, Hoffman, et al.,
2014). Thus, the leg that was previously compressed against the examination table under the
weight of the body in the lateral recumbent position is then examined without the potential for
additional fluid shifts to occur. Compression of a tissue increases the interstitial hydrostatic
pressure, which reduces filtration of fluid out of the capillaries, therefore minimizing changes in
muscle size (Nehler et al., 1993). It remains unknown whether compression of a limb under the
weight of the body would affect muscle morphological characteristics.

Therefore, it is possible that changes between recumbent positions affect muscle
morphological characteristics of the lower body. Further, if differences in muscle morphology
exist after rapid changes in body position, this may affect the ability for these characteristics to
predict muscle function. Consequently, the purpose of this study was to examine the effect of
rest position on ultrasound-derived morphological characteristics of the VL and to determine

whether the rest position that is used prior to ultrasound assessment affects the relationships



between muscle morphological characteristics of the VL and lower-body force and power

production.

Purpose of the Study

The primary purpose of this study was to examine the effect of rest position on
ultrasound-derived morphological characteristics of the VL. A secondary purpose of this
investigation was to examine whether the rest position that is used prior to ultrasound assessment
affects the relationships between muscle morphological characteristics of the VL and lower-body

force and power production.

Research Questions

The research questions for this investigation were as follows:
1. Does rest in different positions prior to ultrasound analysis of the VL affect muscle
morphological characteristics, including CSA, MT, UnCorEI, CorEl, PA, and SFT?
2. Does rest in different positions impact the relationships between VL muscle morphology

and lower-body force and power production?

Hypotheses

The hypotheses for this investigation were as follows:
1. Muscle morphological characteristics of the VL, including CSA, MT, UnCorEI, CorEl,

PA, and SFT, will differ between rest positions.



The relationships between muscle morphological characteristics of the VL and lower-
body force and power production will differ between different rest positions, and
therefore certain rest positions should be utilized prior to analysis of muscle morphology

for specific purposes.

Delimitations

Inclusion Criteria

Participant is a male between the ages of 18 and 35 years old.

Participant was free of physical limitations as defined by medical history and activity
questionnaire (MHAQ) and physical activity readiness questionnaire (PAR-Q+).
Participant was required to be resistance-trained, which was defined as performed
resistance training at least 3 times per week for at least the previous year.

Participant was willing come into the laboratory for all visits and was willing to perform
all requirements of the study.

Participant understood the study procedures and signed a form providing informed

consent to participate in the study.

Exclusion Criteria

Participant did not provide consent to participate in the investigation.
Participant was unable to come into the laboratory for all visits.
Participant was unable to perform physical exercise as determined by the MHAQ or

PAR-Q+.



10.

Participant had previously taken performance-enhancing drugs (as determined by
MHAQ).

Participant was regularly taking any type of prescription or over-the-counter medication
or had any chronic illnesses requiring medical care.

Participant was unable to complete any of the exercise performance testing on the
familiarization day.

Participant was an amputee.

Participant regularly smoked cigarettes.

Participant had a pacemaker.

The entire VL muscle could not be viewed at a depth of 5 cm on the ultrasound.

Limitations

Muscle morphological characteristics obtained via ultrasonography may be influenced by
skill and speed of technician.

There was no inclusion criteria for body composition, so EI values obtained from
participants with larger amounts of subcutaneous fat mass (SFT) may have inaccurately
resulted in lower EI values due to non-systematic reflection of ultrasound waves with
increasing amounts of adipose tissue (Pillen & van Alfen, 2011; H. J. Young, Jenkins,
Zhao, & McCully, 2015).

Leg dominance was self-indicated by each respective participant.



Assumptions

Participants completed all performance assessments to their maximal capabilities.
Participants did not engage in vigorous lower-body exercise for at least 72 hours prior to
the testing session.

Participants did not engage in a new exercise training program or dietary regime
throughout the duration of their enrollment in the study.

All equipment used in the study was properly calibrated and maintained.
Participants answered all surveys (MHAQ and PAR-Q+) honestly regarding health
history, exercise habits, nutritional supplementation, etc.

Self-reported leg dominance reflects true leg dominance.

Participants visited the laboratory for the testing session well-rested.

A skilled, experienced, and reliable technician completed all ultrasound imaging and
ensured proper pressure and placement of the ultrasound probe upon the muscle of

interest.



CHAPTER TWO: REVIEW OF LITERATURE

The Use of Ultrasonography in the Assessment of Skeletal Muscle Morphology

The prevalence of ultrasonography as an imaging technique is often limited to its use in
medical and clinical settings, specifically in the field of obstetrics, or during pregnancy and
childbirth. However, due to the versatility of ultrasonography, in addition to its relatively low
cost and quicker time of assessment in comparison to other imaging techniques such as MRI,
CT, and DEXA, its use in research has grown exponentially, specifically throughout the past 20
years (Mourtzakis & Wischmeyer, 2014; Pillen & van Alfen, 2011). Furthermore, ultrasounds
are a much safer alternative to these other imaging devices, as they do not emit radiation or other
electromagnetic waves.

Because ultrasounds are non-invasive, relatively inexpensive, safe, and easy to use, they
have been used widely in previous research to assess properties of various types of tissues in the
human body (Bricker et al., 2000). Of particular interest to the field of exercise physiology is the
examination of skeletal muscle due to the structure-function relationship of muscle tissue.
Ultrasonography can provide insight into the function of skeletal muscle by examination of
structural attributes of the muscle. For example, muscle morphological characteristics derived
from ultrasound images, including CSA, MT, PA, FL, and EI can help researchers predict the
functional capabilities of the muscle that is examined (Pillen & van Alfen, 2011). The following

section details how ultrasonography can be used as a tool to assess skeletal muscle morphology.



The Fundamentals of Ultrasonography

Ultrasonography is typically used in medical fields to produce digital images of internal
body structures, including tendons, ligaments, muscles, blood vessels, and organs. Ultrasounds
emit sound waves through a probe at frequencies above those that are audible to humans
(Ihnatsenka & Boezaart, 2010). When the ultrasound probe is placed on the surface of the skin,
these sound waves are sent into the body and reflect differently off each type of body tissue.
When the sound waves encounter tissues with different densities, some of the waves are reflected
back to the probe. These reflected ‘echoes’ create digital images on a screen based off of the
degree of reflectance of the tissues examined as well as the total time it took for the echo to be
received (Ihnatsenka & Boezaart, 2010).

Many different types of ultrasounds and imaging techniques are used in medical and
research settings, the most common of which is the use of a brightness-mode (B-mode)
ultrasound device. B-mode imaging produces a black-and-white, two-dimensional image of a
cross-section of a tissue on screen, based off of the acoustic impedance of the tissue (Pillen &
van Alfen, 2011). In non-pathological cases, skeletal muscle can be easily distinguished from
other surrounding structures including bone, tendons, ligaments, and subcutaneous fat, due to the
distinct appearance of these tissues on screen. Each type of tissue has a different echogenicity
(also known as EI), which refers to the degree of reflectance of the ultrasound waves off of body
tissues, therefore also affecting the image that is produced on screen. Tissues that are
hyperechoic are those that reflect sound waves with a greater amplitude, resulting in a brighter
image that is produced (Ihnatsenka & Boezaart, 2010). Tissues that are anechoic do not reflect

sound waves and therefore result in a darker image. For example, during ultrasound imaging,
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bones are characterized by an anechoic center, surrounded by a hyperechoic rim, which can be
attributed to the inability of the ultrasound waves to penetrate past the outer surface of the bone.
Blood vessels also appear anechoic due to the low reflectivity of fluid within the vessels.
Subcutaneous fat has a relatively low EI; however, several sections of hyperechoic connective
tissue often exist throughout this layer (Pillen & van Alfen, 2011). In healthy individuals,
skeletal muscle also tends to have a low EI because of the low presence of fibrous tissue.
However, skeletal muscle is naturally striated, and the appearance of these striations can be
visualized in an ultrasound image due to the hyperechoic connective tissue surrounding muscle
fascicles and intramuscular fascia. Additionally, although healthy skeletal muscle generally
appears hypoechoic (low echogenicity), the degree of muscle echogenicity can be influenced by
various factors. Specifically, an increase in fat or fibrous tissue content within a muscle will
result in an ultrasound image with higher echogenicity (Pillen et al., 2009), a typical indicator of
a muscle with “poor” quality. However, muscle quality is a subjective measurement and can
differ depending on the individual goals and conditions (Fukumoto et al., 2012; Pillen et al.,
2009; Pillen & van Alfen, 2011). Furthermore, skeletal muscle EI can be also be influenced by
several other factors, including collagen infiltration (Arts, Pillen, Schelhaas, Overeem, & Zwarts,
2010), glycogen depletion (J. C. Hill & Millan, 2014), exercise (Jajtner et al., 2015), training
status (Watanabe et al., 2013), age (Fukumoto et al., 2012; Watanabe et al., 2013; Wilhelm et al.,
2014), and disease (Arts et al., 2010; Scholten, Pillen, Verrips, & Zwarts, 2002).

Ultrasound assessment of skeletal muscle can provide a practitioner or researcher with
different information and attributes about the muscle of interest depending on the anatomical

plane that the image is captured in, due to the non-uniform characteristics of muscles in different
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planes. For example, when ultrasound images are captured perpendicularly to the long axis of the
muscle (often termed a “transverse scan’), a cross-sectional image of the muscle with a speckled
appearance is produced, due to the reflection of perimysial connective tissue throughout the
muscle (Pillen & van Alfen, 2011). These types of images are especially useful for quantifying
aspects of muscle size, including the CSA of a muscle. In contrast, when ultrasound images are
captured parallel to the long axis of the muscle (often termed a “longitudinal scan” or “sagittal
scan”), the fascicular arrangement of the muscle becomes visible. These types of images are
useful for quantifying aspects of muscle architecture, such as PA and FL. An important
consideration to take into account is that differences in muscle fiber architecture on a
macroscopic level will affect the muscle characteristics that can be viewed on an ultrasound
image (Pillen & van Alfen, 2011).

Typical ultrasound imaging of skeletal muscle utilizes a linear probe with still imaging, in
which a sonogram is captured while the probe remains still on the surface of the skin, and the
size of the image is equal to the width of the transducer. However, this type of imaging often
lacks topographical information if the entire muscle is unable to fit in the still image, which is
commonly the case with larger muscles (Reeves et al., 2004). Because of this, panoramic
ultrasound imaging has been used in recent years, in which the ultrasound probe is moved along
the surface of the skin while multiple still images are captured. These still images are then
compiled onto one another, creating one large comprehensive image. Panoramic imaging has
been used widely in previous research to quantify muscle morphological characteristics,
especially for larger muscles (Ahtiainen et al., 2010; Jajtner et al., 2015; Jajtner et al., 2013;

Mangine, Fukuda, et al., 2014; Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Noorkoiv
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et al., 2010; Reeves et al., 2004; Varanoske et al., 2017a, 2017b; Wells et al., 2014). Panoramic
imaging has also been shown to be a valid and reliable tool in comparison to still imaging
(Ahtiainen et al., 2010; Jenkins et al., 2015; Varanoske et al., 2017b). However, this type of
imaging places a greater emphasis on the technique of the practitioner and requires significantly
more time, expertise, and cost than traditional still imaging does. Additionally, there is an
increased possibility of error with panoramic imaging, due to the overlapping of images upon
one another (Noorkoiv et al., 2010), which may limit the applicability of this type of imaging.
Nevertheless, in order to examine some specific aspects of muscle morphological characteristics
in larger muscles, panoramic imaging may be necessary.

Previous research has demonstrated that ultrasonography is a valid and reliable tool to
assess skeletal muscle morphology in comparison to other imaging techniques such as magnetic
MRI, CT, and DEXA, especially for quantification of muscle size and quality (Ahtiainen et al.,
2010; Esformes et al., 2002; Lixandrao et al., 2014; Noorkoiv et al., 2010; Reeves et al., 2004;
Scott et al., 2012; Thomaes et al., 2012). MRI has often been considered the gold standard in the
assessment of muscle CSA and volume, as it discriminates between different body tissues by
creating drastic levels of contrast, and it can capture both superficial and deep tissue in a single
image, making the assessment of each tissue relatively simple (Ahtiainen et al., 2010; Pillen &
van Alfen, 2011; Reeves et al., 2004). Additionally, in contrast to CT, MRI and ultrasonography
do not emit ionizing radiation, and therefore may be preferred in most cases for the
quantification of muscle morphology (Pillen & van Alfen, 2011). Furthermore, MRI and
ultrasonography appear to be more sensitive at detecting changes in neuromuscular function than

CT, making CT of limited use when MRI and ultrasonography are available. However, both MRI
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and CT devices are not easily accessible for use in research due to their high cost, limited
availability, and lack of portability. In addition, ultrasonography is capable of visualizing muscle
architecture, allowing for quantification of measures such as FL and PA, making it an attractive

tool for both researchers and clinicians.

Relationship between Muscle Morphology and Strength and Power Production

The non-invasive assessment of skeletal muscle morphological characteristics obtained
via ultrasonography can provide a researcher or practitioner with important information about the
functionality of a muscle because of the relationship that muscle structure has with its function
(Burkholder et al., 1994). Specifically, measures of muscle fiber arrangement, muscle size, and
muscle quality acquired through ultrasonography can help predict how a specific muscle
functions and its ability to produce force. This section will detail the measurements of muscle
CSA, MT, EI, PA, and SFT and how each of these measurements can be used to evaluate

skeletal muscle function.

Measures of Muscle Size: Muscle Thickness (MT) and Cross-Sectional Area (CSA)

Measures of muscle size typically reported in the ultrasound literature include CSA,
defined as the area of a two-dimensional cross-section of a muscle, and MT, defined as the
perpendicular distance between the superficial and deep aponeurosis of a muscle (Ahtiainen et
al., 2010; Esformes et al., 2002; Lixandrao et al., 2014; Mangine, Fukuda, et al., 2014; Mangine
et al., 2015; Mangine, Hoffman, et al., 2014; Noorkoiv et al., 2010; Reeves et al., 2004; Scanlon

et al., 2014; Scott et al., 2012; Thomaes et al., 2012; Varanoske et al., 2017b; Wells et al., 2014).
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If measurements of muscle CSA are desired and the muscle of interest is larger than the width of
the ultrasound probe, panoramic imaging is required to capture the entire cross-section of a
muscle in a single ultrasound image. On the other hand, quantifying MT usually only requires
still ultrasound images and is, therefore, easier, less technical, and more time-efficient to
complete. However, a recent investigation by Varanoske et al. (2017b) observed significant
differences in both CSA and MT of the VL muscle measured from still ultrasound images and
panoramic ultrasound images and demonstrated that values obtained from both types of images
were significantly correlated (p < 0.001). Additionally, MT measurements were significantly
correlated with CSA measurements from both types of images (p < 0.001), indicating that both
MT and CSA may be used as measures of muscle size (Varanoske et al., 2017b).
Quantification of muscle size is a critical component of the ability to predict muscle
strength and force production, and previous research has shown that measures of muscle size
assessed via ultrasonography, including CSA and MT, are positively associated with maximal
force production (Fukunaga et al., 2001; Mangine, Fukuda, et al., 2014; Mangine et al., 2015;
Moreau et al., 2010). As muscle force-producing capability is largely a result of the cross-bridge
interaction of actin and myosin, a muscle that is larger in size with greater myofilaments
characteristically has an increased ability to produce force. In accordance with this notion,
previous research has also demonstrated that resistance training significantly increases muscle
size, and CSA in particular, through the addition of contractile protein as a result of increased
muscle myofibrillar protein synthesis (Glass, 2003a, 2003b; Scanlon et al., 2014; Seynnes, de
Boer, & Narici, 2007; Wells et al., 2014; J. C. Young, Chen, & Holloszy, 1983). However, an

investigation by Wells and colleagues (2014) suggested that increases in lower-body muscle
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strength following a resistance training program may be better elucidated by changes in VL MT
rather than changes in CSA. Furthermore, research has shown that MT of the VL accounts for
over 90% of the variance in maximal knee extensor torque after controlling for age and gross
motor function in children and adolescents (Moreau et al., 2010). Therefore, although ultrasound
measures of CSA and MT both quantify muscle size and appear to be related (Varanoske et al.,
2017b), evaluating both may be necessary for a comprehensive understanding of muscle function

and force production (Wells et al., 2014).

Measures of Muscle Architecture: Pennation Angle (PA) and Fascicle Length (FL)

Measures of muscle architecture that can be obtained via ultrasonography include PA,
defined as the angle between the muscle fascicles and the deep aponeurosis of the muscle, and
FL, defined as the length of an individual fascicle along the distance of the muscle. A unique
inverse relationship typically exists between PA and FL within a muscle, as muscles with greater
PA are usually associated with shorter FL (Blazevich, Gill, & Zhou, 2006). Pennate muscles
within the body exhibit these characteristics, having shorter FL and greater PA, allowing for a
greater amount of contractile protein to be arranged in parallel within a given volume, resulting
in an increased ability of the given muscle to produce force. On the other hand, parallel muscles
typically contain fibers with longer FL and lower PA, resulting in a decreased ability to produce
force. However, muscles with a greater number of fibers arranged in series (as in parallel
muscles) often allow for a greater range of motion at the joint and a greater velocity of muscle

contraction, offering them a unique advantage over pennate muscles (Aagaard et al., 2001).
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Inconclusive research has shown that muscle architectural characteristics may change
with resistance training, which have been associated with changes in muscle strength and power.
Although some investigations have reported no change in FL after exercise training (Blazevich,
Gill, Deans, & Zhou, 2007; Ema, Wakahara, Miyamoto, Kanehisa, & Kawakami, 2013; Erskine,
Jones, Williams, Stewart, & Degens, 2010; Nimphius, McGuigan, & Newton, 2012), most
research has demonstrated that FL increases after either resistance training, isokinetic training, or
marathon training (Alegre, Jimenez, Gonzalo-Orden, Martin-Acero, & Aguado, 2006; Baroni et
al., 2013; Blazevich, Cannavan, Coleman, & Horne, 2007; Franchi, Atherton, Maganaris, &
Narici, 2016; Franchi et al., 2014; McMahon, Morse, Burden, Winwood, & Onambele, 2014;
Murach, Greever, & Luden, 2015; Reeves, Maganaris, Longo, & Narici, 2009; Seynnes et al.,
2007). Furthermore, although some studies have observed that exercise training does not change
PA (Alegre et al., 2006; Rutherford & Jones, 1992), others have reported that PA significantly
increases after resistance training (Aagaard et al., 2001; Ema et al., 2013; Kawakami, Abe,
Kuno, & Fukunaga, 1995). It has been suggested that the discrepancies in these findings may be
related to the type of contraction the muscle endures (Franchi et al., 2014). Specifically, Franchi
and colleagues (2014) proposed that changes in FL are promoted by eccentric training, whereas
changes in PA are promoted by concentric training. Pre-clinical studies have previously reported
that muscle lengthening actions, including passive and intermittent stretch, cause skeletal muscle
to respond by adding new sarcomeres in series (i.e., increasing FL) (Goldspink, 1985; Holly,
Barnett, Ashmore, Taylor, & Mole, 1980; Williams, Catanese, Lucey, & Goldspink, 1988). This
phenomenon has also been observed after eccentric exercise and overload (Butterfield, Leonard,

& Herzog, 2005; Goldspink, 1999; Lynn & Morgan, 1994; Proske & Morgan, 2001), which is
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thought to be a protective mechanism acting after eccentric muscle damage (Morgan & Talbot,
2002). On the other hand, concentric exercise tends to promote increases in PA through the
addition of sarcomeres in parallel as a result of increased muscle myofibrillar protein synthesis
(Atherton & Smith, 2012; Glass, 2003a, 2003b), increasing the thickness of each fascicle
(Franchi et al., 2014). Therefore, an exercise-induced change in PA may be partially attributed to
the degree of muscle hypertrophy experienced (Ema et al., 2013). Previous research has
demonstrated that a significant relationship between MT and PA exists (Ema et al., 2013;
Kawakami et al., 1995), and that this relationship was still present after exercise training eliciting
hypertrophy (i.e., an increase in MT was also associated with an increase in PA) (Azizi &
Brainerd, 2007; Ema et al., 2013). Furthermore, it has been suggested that an increase in FL does
not necessarily accompany an increase in muscle hypertrophy (Fukutani & Kurihara, 2015).
However, research has shown that in muscles with very large PA (<45°), contractile forces may
not be transmitted to the tendon as effectively, which may be accompanied by a decrease in
specific tension (Kawakami, 2005). Taken together, it is possible that the type of contraction that
a muscle experiences affects the changes in muscle architecture with training.

In addition to force production, another vital aspect of sporting performance is the ability
to produce force quickly, i.e., the RFD. Mirkov and colleagues (2004) suggested that the ability
to produce strength is largely correlated with RFD and that the magnitude of this relationship
increases especially during the later phases of muscle contraction. Therefore, it is sensible to
propose that the main factors influencing maximal strength probably also influence the RFD
(Aagaard et al., 2001; Andersen & Aagaard, 2006; Maffiuletti et al., 2016). As greater PA

typically allow for greater physiological CSA for a given muscle size, this may be associated
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with a greater ability of the muscle to produce force (Maffiuletti et al., 2016). In contrast to the
later phases of muscle contraction, research has demonstrated that the rise in force measured
early in a contraction is largely a result of the requirement of the muscle to take up the series
elastic component (Edman & Josephson, 2007). Muscles with longer fascicles typically contain a
greater amount of series elastic material, and therefore may display a slower rise in force because
of the time it takes to take up the series elastic slack prior to true muscle contraction (Blazevich,
Cannavan, Horne, Coleman, & Aagaard, 2009; Maffiuletti et al., 2016). It is generally well-
known that muscles capable of high rates of force development, including the VL, soleus, and
gastrocnemius possess shorter FL. and accompanying high PA (Lieber & Ward, 2011).
Therefore, it is apparent that muscle architecture may affect both maximal strength as well as

rate of force production.

Measures of Muscle Quality: Echo Intensity (EI)

In additional to muscle size and architecture, EI can provide useful information about
muscle composition and functionality. EI, previously introduced as the degree of reflectance of
the ultrasound waves off of body tissues, is quantified by averaging the grayscale value of each
individual pixel within a region of interest using an image analysis software (Jenkins et al., 2015;
Pillen et al., 2009; Pillen & van Alfen, 2011; Scanlon et al., 2014). Higher EI values within a
muscle are representative of a tissue with a higher degree of reflectance of sound waves and
correspond with a brighter overall image (Pillen & van Alfen, 2011). Muscles with greater EI
values typically contain greater amounts of non-contractile tissue, including intramuscular

fibrous tissue, connective tissue, and/or fat, as these tissues increase the number of reflections
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within the muscle (Pillen & van Alfen, 2011; Watanabe et al., 2013). Therefore, in healthy
populations, a muscle with lower EI is characteristic of a greater proportion of contractile tissue
and lower amounts of non-contractile tissue, thus signifying a muscle with a greater efficiency at
producing force, potentially indicating higher muscle quality.

Previous research has demonstrated that muscle EI values differ depending on various
factors, some of which include age, gender, and training status. Specifically, EI values are
positively correlated with age (Li et al., 2012; Scanlon et al., 2014; Watanabe et al., 2013), which
may reflect the increased infiltration of intramuscular fat, fibrous tissue, and connective tissue
that usually accompanies aging. Additionally, research has shown that EI differs between
genders, with females typically possessing greater muscle EI (Arts et al., 2010; Caresio,
Molinari, Emanuel, & Minetto, 2015; H. J. Young et al., 2015), which may be due to differences
in body composition or the physiological consequences of hormone concentration differences
between genders (H. J. Young et al., 2015). EI values have also been shown to be negatively
correlated with strength and power as well as anaerobic sporting performance (Cadore et al.,
2012; Fukumoto et al., 2012; Jajtner et al., 2015; Mangine, Fukuda, et al., 2014; Mangine et al.,
2015; Mangine, Hoffman, et al., 2014; Scanlon et al., 2014; Watanabe et al., 2013; H. J. Young
et al., 2015). Additionally, there is evidence to suggest that chronic resistance training can also
influence EI values (Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013;
Watanabe et al., 2013; Wilhelm et al., 2014), potentially reflecting an increased proportion of
contractile tissue within the muscle, and therefore increased fluid retention. As water reflects
ultrasound waves poorly, a greater fluid content of the muscle typically results in lower

echogenicity (Pillen & van Alfen, 2011).
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Muscle glycogen content and muscle damage may also affect EI values (J. C. Hill &
Millan, 2014; Jajtner et al., 2015; Nosaka & Sakamoto, 2001). Previous research conducted in
trained cyclists indicated that lower muscle EI values in the rectus femoris muscle were
associated with increased intramuscular glycogen content quantified via muscle biopsy (J. C. Hill
& Millan, 2014). Maximizing intramuscular glycogen content is beneficial for endurance
performance, as decreased muscle glycogen is associated with fatigue, hypoglycemia, decreased
muscle contractility, and decreased calcium release (Bangsbo, Graham, Kiens, & Saltin, 1992;
Chin & Allen, 1997; Hargreaves, Meredith, & Jennings, 1992). It is generally well-known that a
greater intramuscular glycogen content is associated with increased water retention (MacKay &
Bergman, 1932; Olsson & Saltin, 1970). In accordance with this, EI values measured after a bout
of exhaustive exercise have been shown to increase (J. C. Hill & Millan, 2014; Jajtner et al.,
2015; Nosaka & Sakamoto, 2001), potentially reflecting glycogen depletion. Additionally, the
increase in EI observed after exercise has been shown to be associated with increased muscle
damage and edema (Fujikake, Hart, & Nosaka, 2009; Jajtner et al., 2015; Longo, Jacobson,
Fessell, & Mautner, 2016; Nosaka & Clarkson, 1996; Nosaka & Newton, 2002; Nosaka,
Newton, & Sacco, 2002; Radaelli, Bottaro, Wilhelm, Wagner, & Pinto, 2012). Fujukake et al.
(2009) suggested that the increase in EI following muscle damage in mice, as induced via an
injection of bupivacaine hydrochloride, was characterized by interstitial edema and associated
with a significant increase in muscle size and weight. Specifically, these researchers suggested
that a large difference in acoustic impedance between the muscle fibers and increased volume of
interstitial spaces induced by edema may have resulted in an increase in EI (Fujikake et al.,

2009), however other researchers have suggested that infiltration of inflammatory cells and

21



cytokines may be responsible for the increases in echogenicity (Nosaka & Clarkson, 1996;
Nosaka & Sakamoto, 2001). Furthermore, research has shown that exercise-induced muscle
damage may cause EI values to remain elevated for 72 hours or more, indicating that it may be
an adequate marker of muscle damage and edema (Jajtner et al., 2015; Nosaka & Newton, 2002;

Nosaka et al., 2002; Nosaka & Sakamoto, 2001; Radaelli et al., 2012).

Measures of Adiposity: Subcutaneous Adipose Tissue Thickness (SFT)

In addition to muscle morphological characteristics, ultrasonography has also been used
as a tool to assess SFT (Pineau, Filliard, & Bocquet, 2009; Pineau et al., 2010; Selkow,
Pietrosimone, & Saliba, 2011; H. J. Young et al., 2015). Subcutaneous adipose tissue is the layer
of fat that lies between the dermis and the muscle (Selkow et al., 2011), and accurate assessment
of adiposity can provide vital information about body fat percentage and composition in the
evaluation of disease risk and health status. The use of ultrasonography in the assessment of SFT
has been proven to be valid and reliable in comparison to MRI, CT, bioelectrical impedance
analysis (BIA), arm circumference analysis, and skinfold thickness (Fanelli & Kuczmarski,
1984; Fukumoto et al., 2012; Jenkins et al., 2015; Selkow et al., 2011). However, previous
research has suggested that the SFT adjacent to the muscle of interest may affect the EI of that
tissue (Pillen & van Alfen, 2011; H. J. Young et al., 2015). Previous research with MRI and CT
has demonstrated that an increase in total body adiposity is associated with an increased
accumulation of intramuscular fat (Goodpaster et al., 2001; A. S. Ryan & Nicklas, 1999; Sinha et
al., 2002). Based off of these findings, it may be expected that an increase in SFT would be

related to an increase in EI values. However, some previous research has found no significant
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correlations between EI and SFT (Fukumoto et al., 2012; Melvin et al., 2014; Scholten et al.,
2002; Trexler, Smith-Ryan, Roelofs, & Hirsch, 2015; Varanoske et al., 2017b; Wu, Darras, &
Rutkove, 2010). Some of these authors have suggested that a measure of total body adiposity
may not be representative of the intramuscular fat contained within individual muscles, and
therefore a limb-specific measure of body fat may be more related to limb-specific intramuscular
fat (E. D. Ryan et al., 2016). Others have suggested that the SFT above the muscle may affect the
EI values obtained from the ultrasound images (Pillen & van Alfen, 2011; H. J. Young et al.,
2015). As ultrasonography is based on the ability of sound waves to penetrate different body
tissues and reflect off of them, tissues with greater thicknesses may affect the ultrasound beam in
a way that does not allow the image to accurately affect true muscle composition (Pillen & van
Alfen, 2011). In support of this theory, Young and colleagues (2015) reported a negative
correlation between SFT and EI values, proposing that an underestimation of EI may occur when
SFT increases due to the non-systematic reflection of ultrasound waves. These researchers
suggested that SFT should, therefore, be accounted for when assessing muscle EI, and thus they
developed an equation with a correction factor for SFT in the assessment of EI. To further
validate this correction factor, Ryan and colleagues (2016) examined the relationship between EI
and body composition prior to and after accounting for SFT. The uncorrected EI values
(UnCorEl) suggested that muscle quality improved with increasing adiposity (r = -0.329 — -
0.224; p = 0.038 — 0.165), whereas the corrected echo intensity values (CorEl) suggested that
muscle quality significantly decreased with increasing adiposity (r =0.711 — 0.798; p < 0.001)
(E. D. Ryan et al., 2016). Therefore, it is evident that adjusting EI values for SFT may be

necessary for the assessment of skeletal muscle morphology.

23



Specific Considerations during Ultrasound Assessment of Skeletal Muscle

Due to its highly-technical nature, ultrasonography is a procedure that requires stringent
guidelines on the part of the technician, as well as the subject, in order for accurate
measurements of muscle morphology to be made. For example, ensuring that the technician is
applying consistent pressure to the probe on the surface of the skin is essential for precise
measurement of muscle morphological characteristics (Ihnatsenka & Boezaart, 2010). Changes
in the pressure applied to the probe on the skin may compress the underlying tissue, therefore
altering muscle and SFT, as well as EI. Additionally, ensuring that other characteristics of probe
manipulation, including probe tilt and rotation, are consistent, is imperative in the accurate
measurement of muscle morphology (Ihnatsenka & Boezaart, 2010). Previous research has
shown that tilting the probe as little as 2% can produce significant changes in EI of muscle
(Dankel et al., 2018). Additionally, changes in the rotation, or clockwise/counterclockwise shift
of the probe, will affect the orientation of muscle fibers and therefore muscle morphological
characteristics (Ihnatsenka & Boezaart, 2010). Furthermore, when performing panoramic
ultrasonography, additional consideration must be taken to ensure that the probe is moved along
the skin while maintaining a constant pressure and sliding speed throughout the entire sweep
(Ihnatsenka & Boezaart, 2010). Because technical abilities and methodologies during
ultrasonography may differ between examiners, values obtained from one technician may vary
from those of another, with no real change in the properties of the muscle. Therefore, it is
important to use the same technician when performing ultrasound imaging in the quantification

of muscle morphology, particularly in research settings.
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In addition to the skills of the technician that can affect ultrasound images, different
ultrasounds have different adjustable features (i.e., gain, frequency, depth) that result in drastic
changes to the image presented on screen (Ihnatsenka & Boezaart, 2010). For example, altering
the gain, or brightness, of the image will have a direct effect on the EI values generated by an
image analysis software. Additionally, altering the depth of the image will change how much of
the tissue of interest can be viewed in a single image, affecting the overall quality of the image.
Specifically, increasing the depth will result in a decreased overall image quality due to more of
the surrounding musculature being included in the image. This will affect the pixilation within
the image, also influencing EI. Ultrasound probes can also emit sound waves of different
frequencies, which will affect the ability of the waves penetrate tissues. Higher-frequency probes
are preferred when examining superficial tissues at a maximum of 4 cm from the surface of the
skin, whereas lower-frequency probes are useful when viewing much deeper tissues, 10 or more
centimeters from the surface of the skin. Higher-frequency probes, therefore, provide better
image resolution than low-frequency probes; however, low-frequency probes permit a greater
image depth (Ihnatsenka & Boezaart, 2010). Additionally, different researchers use different
methodologies for image capture (i.e., panoramic vs. still imaging) and examine tissues in
different planes. Research has shown that the type of image and the plane of movement in which
the image is captured can influence muscle morphological characteristics and the reliability of
ultrasound procedures (Caresio et al., 2015; Jenkins et al., 2015; Varanoske et al., 2017b).
Therefore, direct comparisons of muscle morphological characteristics in different research

studies may not be practical due to differences in ultrasound settings.
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Because valid measurements of ultrasonography are also highly dependent on the subject,
it is important to standardize certain subject requirements prior to ultrasound assessment. For
example, subjects should not participate in exercise that utilizes the muscle of interest for at least
72 hours prior to testing, as exercise has been shown to result in significant changes in muscle
morphology, including CSA, MT, PA, and EI (Jajtner et al., 2015; Nosaka & Newton, 2002;
Nosaka et al., 2002; Nosaka & Sakamoto, 2001; Radaelli et al., 2012). Additionally, it is
essential to ensure that the muscle-specific joint angles are standardized and are kept consistent
across subjects because research has demonstrated that changes in joint angle alone can affect
muscle morphology (Hacker, Peters, & Garkova, 2016; Maganaris, 2001; Myers et al., 2013;
Narici et al., 1996). For example, Hacker and colleagues (2016) revealed that a change in hip
angle of 20° (from supine to 20° of bed elevation) resulted in a significant increase in rectus
femoris CSA. Rectus femoris CSA also continued to significantly increase with every 20°
increase in bed elevation (Hacker et al., 2016). In addition, previous research has demonstrated
that changes in body position (from a standing to supine position) induces significant changes in
blood flow and hydrostatic pressure throughout the body (Maw et al., 1995). This postural
change prompts gravitational fluid shifts, which have been shown to result in alterations in
muscle size and architecture (Cerniglia et al., 2007; Thoirs & English, 2009; Wagle et al., 2017).
Therefore, changes in the proximity of exercise, joint position, and body posture alone may
result in changes in muscle structure, without concomitant changes in muscle function. Thus,
these represent just a few of the specific requirements that must be considered prior to ultrasound

assessment of skeletal muscle. Due to the significance of posture on measures muscle
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morphology, the remainder of this review will focus on physiological responses to postural

changes.

Cardiovascular Responses to Changes in Posture

Blood pressure measured at different anatomical locations within the human body is
impacted by various factors; one of the most influential being gravity. For a standard adult male
180 cm tall resting in the supine anatomical position, the mean arterial pressure (representing the
average blood pressure within the arteries during one cardiac cycle) is about 95 mmHg at the
level of both the feet and the head; on the venous side, the pressure is approximately 3 mmHg at
the level of both the feet and the head (Martin-Du Pan, Benoit, & Girardier, 2004). Thus, in the
recumbent position, pressures and blood volumes within similar vessels tend to be equal
throughout all parts of the body because gravitational forces act similarly in the same horizontal
plane (Martin-Du Pan et al., 2004). However, when transitioning from a recumbent to erect
position suddenly, the pressures within similar vessels differ drastically due to the influence of
gravity on changes in blood flow and hydrostatic pressure throughout the body (Martin-Du Pan
et al., 2004). Theoretically, in a microgravity environment, changes in body posture do not result
in changes in blood flow, other than what is caused by muscular contraction. However, on upon
transitioning from a supine to upright position on Earth, the force of gravity causes a change in
the fluid distribution throughout the body. Within seconds of standing, blood accumulates in the
lower extremities, specifically in the venous system due to the high compliance of veins (Smith,
Porth, & Erickson, 1994). This causes the venous volume and pressure of the lower body

increase drastically, which reduces venous return back to the heart (Martin-Du Pan et al., 2004).
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The decreased right ventricular filling therefore reduces stretching of the heart, thereby resulting
in a decrease in stroke volume by the Frank-Starling mechanism and a decrease in
parasympathetic stimulation (Frey, Tomaselli, & Hoffler, 1994; Smith et al., 1984; Sprangers,
Wesseling, Imholz, Imholz, & Wieling, 1991). This causes a reduction in cardiac output and
mean arterial pressure within the arterial system, the latter of which is sensed by the arterial
baroreceptors to increase activation of the sympathetic nervous system (Smith et al., 1984). This
sympathetic stimulation acts to increase heart rate and contractility, increase systemic vascular
resistance, and decrease venous compliance to maintain cardiac output and mean arterial
pressure (Borst et al., 1982; Ewing, Campbell, Murray, Neilson, & Clarke, 1978). Additionally,
operation of other important compensatory mechanisms, including neurogenic vasoconstriction
of veins, the respiratory pump, the muscle pump, and the release of neurohormones help to
maintain moderate increases in the capillary and venous pressures in the feet (Smith et al., 1984).
Without these compensatory mechanisms, orthostatic hypotension, edema of the feet, and
syncope would be inevitable.

Hydrostatic pressure, defined as the pressure that is exerted by a fluid due to the effects
of gravity, increases in proportion to depth from the surface of the fluid (i.e., reference point) due
to the weight of the fluid exerting a force above it. The effects of gravity and distance from the
reference point on pressure is demonstrated in the equation for positional hydrostatic pressure
(Equation 1) (Martin-Du Pan et al., 2004),

Positional Hydrostatic Factor =p X g X h (1)
where p is the blood density, g is the acceleration due to gravity, and £ is the distance from the

reference point. Since blood density and the acceleration due to gravity are stable, the hydrostatic
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factor is solely influenced by the distance from the reference point. In this equation, the
positional hydrostatic factor is negative for distances above the reference point and is positive for
distances below the reference point. In the human body, the reference point referred to is the
heart; therefore, during standing, the pressure is decreased in any vessel above the level of the
heart and is increased in any vessel below the level of the heart (Martin-Du Pan et al., 2004).
These changes in pressures are even more pronounced in vessels further from the reference
point, as demonstrated by the feet having the greatest pressure during standing.

Upon return to a recumbent position after a duration of standing, the hydrostatic pressures
within similar vessels in different parts of the body begin to equilibrate, and blood redistributes
throughout the body. Because gravitational forces act similarly in the same horizontal plane,
venous volume and pressure decline, increasing venous return to the heart. This results in an
increased right ventricular filling and stroke volume, increasing cardiac output and mean arterial
pressure. The increase in mean arterial pressure is sensed by the arterial baroreceptors, which
decrease sympathetic stimulation of the cardiovascular system, allowing heart rate and
contractility to decline.

Although the magnitude of disparity in hydrostatic pressures between different parts of
the body are very pronounced during standing, postural changes within the horizontal plane may
also induce variations in hydrostatic pressure and blood flow, but to a lesser extent. As
hydrostatic pressure in the body is based on the vertical height from the heart (Martin-Du Pan et
al., 2004), transitioning from a supine to lateral recumbent position alters the positioning of body
parts relative to the heart and therefore may alter blood flow. In the supine position, the posterior

side of the body is vertically positioned at a height below the heart, whereas the anterior side of
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the body is vertically positioned at a height above or equal to the heart, which may result in a
greater hydrostatic pressure and increased accumulation of blood in the posterior vessels
compared to the anterior vessels (Bryan, 1974; Kallet, 2015). When transitioning from a supine
to a lateral recumbent position, a similar change in hydrostatic pressures may occur. For
example, in the left lateral recumbent position, the right side of the body will be vertically
positioned at a height above the heart, which may result in a lower hydrostatic pressure and
decreased accumulation of blood in the vessels in the right side of the body compared to those in
the left side. Although there is conflicting research on hemodynamic changes induced by
recumbent postural changes (Atkins, Watt, Milan, Davies, & Crawford, 1981; Ueland & Hansen,
1969; Whitman, Howaniak, & Verga, 1982), there is a possibility for these recumbent postural

changes to affect blood distribution.

Effects of Changes in Posture on Blood Volume, Distribution, and Composition

Immediately after transitioning from a recumbent to upright position, the distensibility of
the venous system allows for an accumulation of blood in the lower extremities. This blood
accumulation begins rapidly, and within 2-3 minutes, about 10% of total blood volume is
displaced to the lower body, although the total amount of redistributed blood is dependent on net
lower body vascular compliance (Smith et al., 1984). Because a substantial amount of blood has
been displaced to the lower body, cerebral blood flow, splanchnic blood flow, and blood flow to
the upper extremities decreases significantly (Sjostrand, 1953). The accumulation of blood in the
lower extremities results in an increased hydrostatic effect of blood within the vessels of the

lower body, increasing hydrostatic pressure within these capillaries. At the level of the capillary,
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Starling’s law applies: when hydrostatic pressure is greater than plasma oncotic pressure, net
filtration of fluid occurs; when plasma oncotic pressure is greater than hydrostatic pressure, net
absorption occurs (Thompson et al., 1928; Waterfield, 1931b). Although upright rest results in
vasoconstriction of blood vessels in the lower body to maintain cardiac output, which tends to
decrease capillary pressure, the increase in hydrostatic pressure within these vessels, specifically
within the non-constricted capillaries, overrides the decrease in capillary pressure (Stick, Hiedl,
& Witzleb, 1993). Therefore, with an increase in hydrostatic pressure, the rate of capillary
filtration of fluid into the interstitial space increases, resulting in a decrease in plasma volume
(Fawcett & Wynn, 1960; Hagan et al., 1978; Taylor et al., 1995; Thompson et al., 1928;
Waterfield, 1931b). Previous research has demonstrated that there is a decrease in blood volume
after transitioning from a recumbent to upright position, with losses originating from the plasma
(Hagan et al., 1978; Lundvall, Bjerkhoel, Quittenbaum, & Lindgren, 1996; Taylor et al., 1995;
Thompson et al., 1928; Waterfield, 1931b). Specifically, Hagan et al. (1978) discovered an
average loss blood volume loss of 9.5% and a corresponding plasma volume loss of 16.2% after
transitioning from a supine to standing position. Additionally, Thompson et al. (1928) discovered
a net plasma volume loss of 11% after standing for 20-30 minutes. Similar findings have also
been reported when transitioning from a seated to standing position, as Maw et al. (1995)
reported a 6% loss in blood volume 30 minutes after transitioning from a seated to standing
position, which was accounted for by a significant decrease in plasma volume and a significant
increase in interstitial fluid volume. Additionally, these researchers discovered elevated
concentrations of plasma protein, which is in line with previous research (Fawcett & Wynn,

1960; Hagan et al., 1978; Thompson et al., 1928; Waterfield, 1931b). Decreases in plasma

31



volume after transitioning to a standing position have also been associated with significant
increases in hemoconcentration (Eisenberg, 1963; Eisenberg & Wolf, 1965; Fawcett & Wynn,
1960; Hagan et al., 1978; Tan et al., 1973; Waterfield, 1931b) and increases in concentrations of
other plasma constituents, including hormones, ions, and metabolites (Husdan, Rapoport, &
Locke, 1973; Stoker, Wynn, & Robertson, 1966; Tan et al., 1973). Due to the pressure increases
that occur specifically within the venous system, changes in blood composition observed while
maintaining an upright posture appear to be more pronounced in venous blood than arterial blood
(Thompson et al., 1928). However, transitioning from the supine to sitting position, or from the
sitting to upright position, appears to result in smaller magnitudes of change in blood volume,
plasma volume, and blood composition than transitioning from the supine to standing position
(Tan et al., 1973).

In contrast to the physiological responses observed when transitioning from a recumbent
to upright position, the opposite has been observed when transitioning from an upright to
recumbent position. Due to the gravitational forces acting on the body in the same horizontal
plane, blood no longer accumulates in the lower body and is instead redirected back to the thorax
and head (Baccelli et al., 1995; Hildebrandt et al., 1994; Yadollahi, Singh, & Bradley, 2015).
Additionally, vessels begin to dilate, and the hydrostatic pressure within vessels of the lower
extremity declines, allowing for net absorption of fluid from the interstitial space into the
capillaries (Maw et al., 1995). Previous research has demonstrated that blood volume and plasma
volume increase when transitioning from a standing to supine position, reflecting the fluid
absorption of fluid from the interstitial space into the capillaries (Eisenberg, 1963; Fawcett &

Wynn, 1960; Hagan et al., 1978; Hinghofer-Szalkay & Moser, 1986; Maw et al., 1995; Tan et
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al., 1973). Hagan and colleagues (1978) reported a 6.4% increase in blood volume and 11.7%
increase in plasma volume after movement from the upright position to the supine position,
which was associated with significant hemodilution, decreased hematocrit and hemoglobin
levels, and significantly decreased concentrations of plasma proteins. Similar results have been
reported when transitioning from a seated to supine position (Maw et al., 1995; Tan et al., 1973).
Maw et al. (1995) reported an increase in blood volume and plasma volume 30 minutes after
transitioning from a seated to supine position, which was accompanied by a decrease in
interstitial fluid volume, although these values did not reach statistical significance. These
findings align with those of Maxfield et al. (1941) who reported a lower magnitude of change in
blood composition when transitioning from the supine to sitting position, or from the sitting to
upright position, compared to transitioning from the supine to standing position.

Postural changes within in the recumbent position affect hydrostatic pressures within
opposing sides of the body (Bryan, 1974; Kallet, 2015), which therefore may induce changes in
blood distribution. Previous research has suggested that, in the recumbent position, pressures and
blood volumes within similar vessels tend to be equal throughout all parts of the body because
gravitational forces act similarly in the same horizontal plane (Martin-Du Pan et al., 2004). This
is based on the assumption that the hydrostatic pressure is measured in vessels at the same
vertical position relative to the heart; thus it does not account for vessels in different vertical
positions. In the supine position, the accumulation of blood towards the posterior side of the
body may increase capillary hydrostatic pressure enough to cause a fluid shift out of the
capillaries and into the interstitial space of the posterior tissues. Likewise, in the left lateral

recumbent position, the accumulation of blood towards the left side of the body may increase
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capillary hydrostatic pressure enough to cause a fluid shift out of the capillaries and into the
interstitial space of the tissues on the left side of the body. Therefore, based on the changes in
hydrostatic pressures during postural changes within the recumbent position, blood distribution
throughout the body may increase fluid shifts into specific tissues. Future research is necessary
to determine whether or not changes in total blood volume, plasma volume, or blood constituents
occur with postural transitions in the recumbent position, although this seems unlikely because

the postural changes are occurring within the same vertical plane.

Effects of Changes in Body Posture on Intracellular and Extracellular Water

When postural shifts are made, changes in cardiovascular function, hemodynamics, and
blood composition occur within a relatively short period. The transition from a supine to upright
position elicits rapid decreases in plasma volume due to net filtration of fluid out of capillaries,
specifically within the lower body (Fawcett & Wynn, 1960; Hagan et al., 1978; Taylor et al.,
1995; Thompson et al., 1928; Waterfield, 1931b). Despite the gravitational effect of fluid shifts
upon the modification of body posture, previous research has suggested that the transition from a
supine to standing position does not affect total body water (Gibson, Beam, Alencar, Zuhl, &
Mermier, 2015; Maw et al., 1995), but rather the distribution of fluid throughout the body, as
most of the blood volume is shifted to the lower body. Cerniglia and colleagues (2007) suggested
that moving from a standing to recumbent position and the resultant decrease in hydrostatic
pressure within the lower body may allow intracellular water to move out of muscle cells of the
lower body, into the interstitial space, and finally into the vascular system. This, in theory,

implies that there is movement of fluid from the intracellular fluid compartment to the
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extracellular fluid compartment upon attaining the supine position. However, previous research
has demonstrated that 30 minutes after transitioning from a seated to standing position resulted in
a significant increase in interstitial fluid volume and significant decreases in blood volume and
plasma volume, with no significant changes in intracellular or extracellular fluid volumes (Maw
et al., 1995). These findings propose that postural manipulations result in a loss of plasma filtrate
from the intravascular space, which is eluted only into the extracellular interstitial space and not
into the extravascular intracellular compartment (Maw et al., 1995). Similar increases in
interstitial fluid volume have also been observed in other investigations upon postural changes
from the supine to standing position (Eichler et al., 2000; Husmann, Barton, Amann-Vesti, &
Franzeck, 2006). Additionally, transitioning from a standing to a supine 5% head-down tilt
position resulted in significantly decreased interstitial fluid pressure and volume of the leg;
however, no significant changes were observed in the areas of Type I and Type II muscle fibers
(Hargens, 1983). Scharfetter and colleagues (1997) suggested that a fluid shift from the
extracellular compartment to the intracellular compartment would only occur as a result of
changes in osmolality between the extracellular and intracellular fluid. Because of the ability of
sodium to transfer easily between the plasma and interstitial fluid, an increase in interstitial fluid
volume with postural changes likely does not change the osmolality of the plasma or interstitial
fluid. This has been confirmed in previous research demonstrating no change in plasma
osmolality or plasma sodium concentrations after postural changes, despite significant changes in
plasma volume (Hagan et al., 1978; Lippi et al., 2015; Shirreffs & Maughan, 1994).
Confounding research has observed significant changes in whole body and segmental

extracellular and intracellular fluid volume with positional changes as measured by BIA and
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bioelectrical impedance spectroscopy (BIS) (Fenech & Jaffrin, 2004; Gibson et al., 2015;
Scharfetter et al., 1997; Zhu, Schneditz, Wang, & Levin, 1998). Zhu and colleagues (1998)
suggested that upon transitioning positions, regional fluid shifts are likely to affect the measured
extracellular fluid volume as assessed using a whole-body technique because of the changes in
bioimpedance with blood accumulation in the lower body, therefore increasing extracellular fluid
volume measurements upon transitioning from a supine to standing position. In the same
investigation, total body extracellular fluid volume was also measured as the sum of segmental
extracellular fluid volumes; these researchers observed no changes in the sum of segmental
extracellular fluid volumes with changes in posture, although leg extracellular fluid volume
significantly decreased upon changing from a standing to supine body position, reflecting fluid
redistribution to the head and thorax (Zhu et al., 1998). In agreement with these findings,
Scharfetter and colleagues (1997) discovered significant decreases in segmental leg extracellular
fluid volume upon transitioning from a standing to supine body position, reflecting fluid
redistribution to the head and thorax, however, this was also accompanied by a decrease in total
body extracellular fluid volume and increase in intracellular volume. These researchers
suggested that the method of measuring whole body impedance that was utilized was not very
sensitive to fluid changes in the trunk, head, and neck, and therefore fluid shifts in the legs and
arms completely determined the changes in total body impedance, therefore resulting in spurious
changes in compartment fluid volume with changes in position (Scharfetter et al., 1997).
Similarly, Shea et al. (2017) observed significant decreases in extracellular water and increases
in intracellular water in both older and younger individuals after transitioning from a standing to

supine position. Likewise, Gibson and colleagues (2015) observed significant increases in
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extracellular water after transitioning from a supine to standing position. Additionally, these
researchers found no significant change in intracellular water when maintaining an upright
position, indicating that the change in extracellular water may be due to fluid moving out of the
torso into the lower body, rather than fluid shifts between the extracellular and intracellular
compartments. However, when transitioning from a standing to supine position, extracellular
fluid volume decreased, and intracellular fluid volume increased, which may be attributed to the
change in impedance and resistance of the body when large fluid shifts occur (Gibson et al.,
2015). Furthermore, it appears that the time course for increases in extracellular fluid and
decreases in intracellular fluid when changing from a supine to standing position may not mirror
each other (Gibson et al., 2015; Scharfetter et al., 1997). Therefore, although some researchers
suggest that fluid shifts between the intracellular and extracellular compartments may occur with
postural changes (Cerniglia et al., 2007; Kose, Hur, Taskin, Bicak, & Duman, 2014), changes in
osmolality between the intracellular and extracellular compartments is the underlying stimulus of

fluid transfer between compartments, which does not appear to occur with positional changes.

Time Course of Postural Fluid Shifts

Previous research has demonstrated that switching from a supine to upright position, and
vice versa, elicits changes in fluid distribution and composition throughout the body (Fawcett &
Wynn, 1960; Hagan et al., 1978; Taylor et al., 1995; Thompson et al., 1928; Waterfield, 1931a,
1931b). Hematological variations upon attaining a new posture seem to follow an asymptotic
behavior, with initial changes in blood constituents occurring rapidly, followed by a decrease in

the rate of change (Hagan et al., 1978; Husdan et al., 1973; Stoker et al., 1966; Tan et al., 1973).
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Tan and colleagues (1973) observed significant decreases in serum cholesterol, triglycerides, and
hematocrit after 5 minutes of transitioning from an upright to recumbent position, and blood
concentrations of these elements continued to fall until they reached a maximum decrease of
about 10-12% after 20-30 minutes of recumbency. Upon return to the upright position, these
changes were reversed at a similar rate. Additionally, these researchers noted that the transition
from an upright to sitting position resulted in a smaller magnitude of change in blood variables
than the transition from an upright to recumbent position; however, the changes followed the
same asymptotic pattern that transitioning from an upright to supine position did (Tan et al.,
1973). Similarly, Thompson et al. (1928) suggested that the maximum fluid loss occurs after 20-
30 minutes of transitioning from the recumbent to standing positions. In alignment with these
findings, Hagan et al. (1978) observed significant changes in plasma volume, hemoglobin,
hematocrit, and plasma protein concentration 20 minutes after transitioning from a standing to
supine position, with a stability appearing to occur 20 minutes after recumbency, as no
statistically significant differences in blood constituents were observed between the 20" and 35%
minutes of recumbency. However, these researchers noted that maximal fluid shifts may not yet
have been accomplished even after 35 minutes of recumbency, as changes in blood variables
continued to progress even after 35 minutes, albeit not significantly. In a follow-up test of 2
subjects, these researchers examined the effects of 1 hour of recumbency on fluid shifts and
reported that maximal hemoconcentration occurred between 40 and 60 minutes after
transitioning to the supine position. Therefore, although fluid shifts may be approaching stability
20 minutes after changing positions, complete stabilization of fluid shifts may require an hour to

complete (Hagan et al., 1978). Additionally, Maw and colleagues (1995) observed a significant
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5.1% decrease in plasma volume 15 minutes after transitioning from a seated to standing posture,
which increased only to 6.0% after 30 minutes of standing; however, there was no significant
difference in plasma volume between the 15™ and 30" minute of standing. Although these
authors report that it is unknown whether or not plasma volume would have continued to
decrease after 30 minutes of standing, other authors have also suggested that complete stability
may take at least 40 minutes to complete (Waterfield, 1931b; Youmans, Wells, Donley, Miller,
& Frank, 1934).

Maw and colleagues (1995) suggested that the extent of plasma fluid shifts into the
interstitial space after transitioning from a supine to standing position may be limited by the
increases in both interstitial hydrostatic pressure (Aratow, Fortney, Watenpaugh, Crenshaw, &
Hargens, 1993; Husmann et al., 2006) and plasma oncotic pressure (Hinghofer-Szalkay &
Moser, 1986), due to fluid efflux out the plasma into the interstitial space. As the increased
capillary hydrostatic pressure and plasma oncotic pressure begins to equilibrate with the increase
in interstitial hydrostatic pressure after standing, further movement of fluid into the interstitium
may be prevented. Therefore, this equilibration period may require at least 20 minutes to
complete for complete stability to be attained (Hagan et al., 1978; Maw et al., 1995; Tan et al.,
1973; Thompson et al., 1928; Waterfield, 1931b), which will result in a corresponding increase
in interstitial fluid volume and pressure (Husmann et al., 2006; Maw et al., 1995).

Previous research utilizing BIA and BIS to monitor fluid shifts between extracellular and
intracellular fluid with changes in position has demonstrated that extracellular water may
increase, and intracellular water may decrease, when transitioning from a supine to upright

position (Fenech & Jaffrin, 2004; Gibson et al., 2015; Scharfetter et al., 1997; Zhu et al., 1998).
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However, researchers have suggested that these findings may be a result of fluid redistribution
from the head and thorax to the lower body, which results in changes in resistance and
impedance between different body parts, therefore resulting in changes in artificial changes in
intracellular and extracellular fluid volumes, rather than a true movement of fluid between the
extracellular and intracellular spaces because of the lack of osmotic change with changes in
posture (Scharfetter et al., 1997). Despite these findings, data from these investigations show that
the time course for fluid shifts to occur is similar to those directly assessing blood volume and
blood constituents (Hagan et al., 1978; Maw et al., 1995; Tan et al., 1973; Thompson et al.,
1928). Specifically, when transitioning from a supine to standing position, a rapid increase in
extracellular fluid volume and decrease in intracellular fluid volume occurs, followed by a more
progressive increase and decrease in extracellular and intracellular fluid volume, respectively
(Scharfetter et al., 1997; Zhu et al., 1998). The initial rapid phase implies a redirection of venous
blood from the lower body to the abdomen and head, whereas during the second phase, a
reabsorption of interstitial fluid occurs (Berg et al., 1993). Gibson et al. (2015) observed
significant changes in extracellular and intracellular fluid volume within only 5 minutes of
transitioning from an upright to recumbent position. However, even after 30 minutes of
transitioning to a new position, extracellular fluid volume was still unstable (Gibson et al., 2015).
These findings align with those of other researchers (Scharfetter et al., 1997; Zhu et al., 1998),
who observed that a steady state in extracellular and/or intracellular fluid volume could not be
reached within 30 minutes of changing positions. Taken together, these results may indicate that
fluid shifts occur within the body rapidly after transitioning to a new position, although complete

redistribution of fluid may take at least 30 minutes to accomplish.
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Effects of Changes in Posture on Measurements of Muscle Size and Composition

Previous research has shown that the rapid changes in blood flow and composition that
occur upon moving from a supine to upright position are associated with a decrease in plasma
volume and increase in interstitial fluid volume (Maw et al., 1995). Although interstitial fluid is
part of the extracellular compartment, due to its anatomical extravascular location surrounding
cells, an increase in interstitial fluid volume would likely result in an increase in tissue size. In
accordance with this hypothesis, Waterfield (1931a) observed that 40 minutes after transitioning
from a recumbent to upright position resulted in an increase in leg volume of 60-120 mL, and the
greatest swelling occurred within 20-25 minutes. Similarly, Yadollahi and colleagues (2015)
suggested that, upon attaining a recumbent position, rapid changes in fluid distribution and leg
volume (as assessed by BIA) occurred, followed by shower changes over time. However, these
researchers observed that longer periods of time may be required for complete fluid shifts to
occur, as they observed that 80% of the fluid would be redistributed out of the leg after 2 hours
in the supine position (Yadollahi et al., 2015). Furthermore, Berg and colleagues (1993)
discovered significant decreases in calf (5.5%) and thigh (1.9%) CSA 2 hours after transitioning
from a standing to supine position (as assessed by CT), which was associated with the changes in
limb fluid volume in the calf (10.9%) and thigh (2.5%) (as assessed by BIA). The change in calf
CSA was about 66% complete, and the change in thigh CSA was about 99% complete after 1
hour in the recumbent position. This was explained by a significant fluid loss in the calf from 60
and 120 minutes in the supine position, whereas the thigh showed no change between 60 and 120
minutes. Additionally, a significant increase in radiological density was observed in the calf after

60 minutes in the supine position, whereas a small but non-significant increase was observed in
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the thigh. Radiological density refers to the ability of electromagnetic radiation to pass through
certain materials, which results in varying levels of opaqueness on a radiograph. Air has a very
low radiological density, appearing black on a radiograph, whereas metal has a very high
radiological density, appearing white on a radiograph. Body tissues have varying levels of
radiological densities, with bone appearing the whitest, followed by soft tissue, and finally fat,
that appears dark on a radiograph. Therefore, radiological density of skeletal muscle is reduced
in individuals with greater amounts of intramuscular fat and is increased in individuals with
lower amounts of intramuscular fat (Termote, Baert, Crolla, Palmers, & Bulcke, 1980). In the
investigation by Berg et al. (1993), a significant increase in radiological density of the calf after
supine rest appeared to be associated with the decrease in muscle CSA, indicating that the loss of
fluid with a low radiological density during supine rest had an effect on both muscle size and
apparent composition. Although the change was not significant for the thigh, a small increase in
radiological density was observed after 2 hours of recumbency; however, no significant
differences in radiological density were observed in either the calf or the thigh between 60 and
120 minutes of supine rest. These researchers stated that the potential discrepancy in the
magnitude of change between the calf and the thigh was due to a greater hydrostatic pressure in
the calf than the thigh when in the erect position, therefore leading to a greater fluid
accumulation in the calf. Interestingly, subcutaneous fat CSA in the thigh and calf also
significantly decreased during recumbency, which is in alignment with previous research
following simulated weightlessness (Hargens, 1983). Although fat has a relatively low water
content, research has shown that fluid movement through adipose tissue may be equal to or

greater than that in skeletal muscle (Lundvall & Lanne, 1989; Oberg & Rosell, 1967). Therefore,
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rest in the supine position may not only affect muscle tissue size, but also adipose fat thickness
and apparent measures of muscle composition.

In another investigation utilizing CT to assess changes in muscle size after changing
positions, Cerniglia and colleagues (2007) attempted to compare thigh CSA after 5, 10, and 15
minutes of transitioning from a standing to recumbent position. They proposed that an
equilibration period of 60 minutes prior to each CT scan, as supported by Berg et al. (1993), may
tax important resources and potentially introduce error into the measurement of CSA, and
therefore wanted to examine the changes in muscle size with shorter rest durations. Additionally,
these researchers compared the time courses of changes in low-density muscle, which was
characterized by a lower radiological density and therefore higher amounts of intramuscular fat
and non-contractile tissue, with those of normal-density muscle, which was characterized by a
higher radiological density and therefore lower amounts of intramuscular fat and non-contractile
tissue. Cerniglia et al. (2007) observed a significant decrease (1.6%) in normal-density muscle
when CT scans were taken after 5 minutes of supine rest compared to 15 minutes; however, no
differences were observed between 5 and 10 minutes, 10 and 15 minutes, or between any time
periods for low-density muscle. These researchers hypothesized that, because fat tissue is
relatively anhydrous in comparison to skeletal muscle, low-density muscle, characterized by
greater amounts of intramuscular fat, is likely less affected by posture changes than normal-
density muscle. Additionally, in contrast to the findings of Berg et al. (1993), Cerniglia and
colleagues (2007) discovered no significant changes in SFT for any time interval. A potential
explanation for the discrepancies in these findings are that the methods used to evaluate SFT in

both studies differed, as Berg et al. (1993) used a manual technique to define the borders of the
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areas of interest, whereas Cerniglia et al. (2007) used an automated technique based off of
radiological attenuation. Another potential explanation is that fluid flux through adipose tissue
may take longer than 15 minutes to occur due to the low water content of adipose tissue, despite
Berg et al. (1993) reporting that fluid flux through adipose tissue may be comparable to that of
skeletal muscle (Lundvall & Lanne, 1989; Oberg & Rosell, 1967). Therefore, Cerniglia et al.
(2007) suggested that the potential measurement error associated with fluid shifts after
transitioning from a standing to supine position in the measurement of muscle size via CT may
be minimized when scans are completed within 10 minutes, as longer durations of rest result in

significant changes in muscle size.

Effects of Changes in Posture on Measurements of Muscle Size and Composition Assessed via

Ultrasonography

Based off of the recommendations of Berg et al. (1993) and Cerniglia et al. (2007) using
CT to assess changes in muscle size with changes in body position, most previous research
utilizing ultrasonography to assess muscle morphology of the lower body has encompassed a 10
to 15 minute period of supine rest prior to ultrasound imaging in order for fluid shifts to occur
(Ahtiainen et al., 2010; Jajtner et al., 2013; Mangine, Fukuda, et al., 2014; Mangine et al., 2015;
Mangine, Hoffman, et al., 2014; Scanlon et al., 2014; Varanoske et al., 2017a, 2017b; Wells et
al., 2014). However, because ultrasonography utilizes different technology and has different
methodological considerations than CT, fluid shifts and the effects that they have on muscle

morphology may appear differently on ultrasound images.
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Time Course of Postural Fluid Shifts Assessed via Ultrasonography

In an investigation similar to that of Cerniglia et al. (2007), Lopez et al. (2019) examined
changes in total quadriceps femoris MT and rectus femoris CSA immediately, 5 minutes, 10
minutes, and 15 minutes after transitioning from a standing to supine position. These researchers
observed no change in any measures of muscle size between any time points. Similarly, Tomko
et al. (2018) observed no change in the CSA of the rectus femoris 5 minutes after transitioning
from a supine to seated position or 5 minutes after transitioning from a seated to supine position.
In contrast to these findings, Arroyo and colleagues (2018) observed a significant decrease in VL
CSA between 0 and 10 minutes and 0 and 15 minutes after transitioning from a standing to
recumbent position, although these changes in CSA did not exceed the technician’s standard
error of measurement (SEM). However, no changes in VL MT were observed between any time
points (Arroyo et al., 2018). Likewise, an investigation by Shea (2017) observed significant
decreases in CSA of the VL muscle after supine rest; however, the changes occurred between 20
and 30 minutes of supine rest, with no significant differences in CSA between other time points.

The discrepancy between the findings of Lopez et al. (2019), Tomko et al. (2018), Arroyo
et al. (2018), and Shea (2017) may be a result of a multitude of factors. Specifically, the
investigations of Lopez et al. (2019) and Tomko et al. (2018) examined the CSA of the rectus
femoris, whereas the investigations of Arroyo et al. (2018) and Shea (2017) examined the CSA
of the VL. Differences in muscle size, structure, origin and insertion, and function may result in
different physiological responses upon postural changes. Although speculative, the larger size of
the VL in comparison to the rectus femoris may partially explain the different responses of these

muscles to changes in posture. The VL contains a greater amount of contractile tissue than the
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rectus femoris because of its size, which therefore may provide a greater potential for fluid shifts
to occur. It is also possible that the differences in muscle architecture between the VL and rectus
femoris results in different responses to positional changes. The VL is a unipennate, uniarticular
muscle that assists in knee extension, whereas the rectus femoris is a bipennate, biarticular
muscle that assists in hip flexion and knee extension. The rectus femoris has two distinct origins,
one at the anterior inferior iliac spine and the other at the ilium above the acetabulum, which
converge into an aponeurosis in the center of the muscle and create its bipennate structure. It
may be possible that the bipennate structure of the rectus femoris and its aponeurosis are less
sensitive to fluid shifts than the VL.

Additionally, Lopez et al. (2019) suggested that the discrepancies in findings may be a
result of the populations investigated, as Arroyo et al. (2018) observed significant changes in
CSA in healthy, young adults (24.3 + 3.4 y), whereas Lopez et al. (2019) did not observe
changes in CSA in older adults (men: 68.1 £ 4.6 y, women: 66.8 £ 4.1 y). With aging, it is
expected that sarcopenia may result in a decrease in contractile tissue within skeletal muscle and
an increase in the proportion of intramuscular fat and fibrous tissue. Although speculative, the
loss of muscle mass in older adults may lead to a decline in fluid storage within the muscle
(Hooper, Bunn, Jimoh, & Fairweather-Tait, 2014), therefore potentially affecting the ability for
fluid shifts to occur with changes in posture (Lopez et al., 2019). This conjecture aligns with the
findings of Cerniglia et al. (2007), as they observed no change in the CSA of low-density muscle
after 15 minutes of supine rest, which was characterized by lower contractile tissue and greater
non-contractile tissue. The findings of Shea (2017) also seem to align with this hypothesis, where

significant changes in CSA of the VL were observed only between 20 and 30 minutes after
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recumbency, in contrast to those of Arroyo et al. (2018), who observed significant changes after
10 minutes. The subjects recruited in the investigation by Shea (2017) engaged in low amounts
of physical activity, which has been shown to be related to a lower intracellular to extracellular
fluid ratio (Riley et al., 1990; Wang et al., 2004). Therefore, in an untrained population, fluid
shifts from the intracellular compartments to extracellular compartments may be dependent on
fluid efflux capacity. However, it is unlikely that fluid shifts from the intracellular space to the
extracellular space occur with postural changes because changes in plasma osmolality are not
induced with changes in position (Lippi et al., 2015; Scharfetter et al., 1997; Shirreffs &
Maughan, 1994), although significant changes in thigh extracellular and intracellular water were
observed in the investigation of Shea (2017), as assessed via BIS. In contrast, the findings of
Tomko et al. (2018) do not seem to support the population difference hypothesis because no
difference in rectus femoris CSA was observed after changes in position in physically-active,
young males and females. However, an important point of consideration is that CSA was only
measured 5 minutes after changing position. Although fluid shifts have been shown to occur
rapidly upon changes in posture (Hagan et al., 1978; Husdan et al., 1973; Stoker et al., 1966; Tan
et al., 1973), Arroyo et al. (2018) did not report significant changes in VL CSA until after 10
minutes recumbency in young individuals. Therefore, a longer time frame may be necessary to
observe changes in muscle CSA, specifically within the rectus femoris. Furthermore, the subjects
in the Tomko et al. (2018) investigation transitioned from a seated to supine position, whereas
the subjects in the investigations by Arroyo et al. (2018), Lopez et al. (2019), and Shea (2017)
transitioned from a standing to supine position. Previous research has demonstrated that the

transition from the supine to sitting position, or from the sitting to upright position, appears to
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result in smaller fluid shifts than transitioning from the supine to standing position (Maxfield et
al., 1941; Tan et al., 1973). Consequently, the lack of significant changes in rectus femoris CSA
in the study by Tomko and colleagues (2018) may be partially explained by the time frame as
well as type of postural change induced.

In addition to examining the time course of changes in muscle size measured via
ultrasonography after supine rest, researchers have also examined changes in EI after postural
transitions (Arroyo et al., 2018; Lopez et al., 2019; Shea, 2017; Tomko et al., 2018). Lopez et al.
(2019) observed a significant increase in EI of the rectus femoris, vastus intermedius, and total
quadriceps femoris between 0 to 5 minutes and 10 to 15 minutes of supine rest, however, no
changes in the EI of the vastus medialis or VL was detected. Similarly, Arroyo et al. (2018) did
not find significant changes in EI in the VL after 15 minutes of supine rest. Contradicting
findings by Tomko et al. (2018) demonstrated no significant changes in rectus femoris EI after 5
minutes of supine rest, although EI was significantly increased after 5 minutes in the seated
position. An important point of consideration in these investigations is that they lack correcting
for possible alterations in SFT with postural changes. Previous research has suggested that an
attenuation of ultrasound waves may occur in tissues that are examined at a greater depth (Pillen
& van Alfen, 2011; H. J. Young et al., 2015). This attenuation can decrease the acoustic
reflectivity of the ultrasound waves, therefore artificially decreasing EI values in deeper tissues
(Pillen & van Alfen, 2011). With a postural change from the standing to supine position, research
has demonstrated that SFT may decrease over time due to fluid shifts out of the subcutaneous
layer (Berg et al., 1993; Hargens, 1983). Therefore, with all other things being equal, a decrease

in only SFT should result in a decreased EI. However, with a postural change from the standing
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to supine position, fluid shifts from the muscle also accompany fluid shifts from the
subcutaneous layer, which results in a lower water content of the muscle, hypothetically
increasing EI values. Although speculative, the EI values obtained after a postural change from
the standing to supine position may, therefore, reflect the combination of the decreased thickness
of subcutaneous layer and content of muscle, which both act to increase EI. Consequently, a
maintenance of EI values with changes in position (Arroyo et al., 2018; Lopez et al., 2019) may
indicate that fluid shifts from the muscle have the same effect on EI as fluid shifts from the
subcutaneous tissue, or may indicate that fluid shifts with postural changes do not affect EI
values. On the other hand, an increase in EI values during supine rest (Lopez et al., 2019) may
indicate that greater fluid shifts are occurring in the muscle, relative to the subcutaneous layer.
Nevertheless, the findings of Tomko et al. (2018), who observed significant increases in EI
values 5 minutes after transitioning from a supine to sitting position, cannot be explained by this
hypothesis, and therefore further research in this area is warranted.

In an investigation examining postural fluid shifts on both UnCorEI and CorEI, Shea
(2017) observed significant increases in UnCorEI of the VL after transitioning from a standing to
recumbent position, which was followed by a subsequent decline back to original values. These
researchers discovered that, when EI values were corrected for SFT, older individuals (69.3 + 8.3
y) had significantly elevated CorEI values over the first 20 minutes of supine rest, with values
peaking 10 minutes after recumbency, whereas the CorEI values in younger individuals (21.4 +
2.5 y) did not change over time. This is counterintuitive, considering that previous research has
demonstrated that gravitational fluid shifts occur to a lesser extent in older individuals compared

to younger individuals (Fu et al., 1999). However, these researchers attributed the group
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differences to changes in SFT, as fat thickness was significantly decreased in the older group
from 15 minutes to 30 of recumbency, whereas no change was observed in the younger
individuals (Shea, 2017).

In the investigations mentioned above, the association between changes in muscle EI and
muscle size with postural shifts does not appear to exhibit a linear relationship (Arroyo et al.,
2018; Lopez et al., 2019; Shea, 2017; Tomko et al., 2018). This contradicts previous research
demonstrating that fluid shifts and increases in muscle size reported in the case of muscle
damage or glycogen depletion is typically associated with changes in echogenicity (J. C. Hill &
Millan, 2014; Jajtner et al., 2015; Nosaka & Clarkson, 1996; Nosaka & Sakamoto, 2001;
Radaelli et al., 2012). From these findings, is apparent that changes in muscle EI may not
directly reflect absolute changes in muscle fluid shifts, but may be more sensitive to the rate of
change in fluid within the muscle (Lopez et al., 2019), SFT (Shea, 2017), intramuscular adipose

tissue content (Strasser et al., 2013), or another unknown factor.

Effects of Position on Muscle Morphology Assessed via Ultrasonography

Most previous research utilizing ultrasonography to assess skeletal muscle morphology of
the lower body has been completed while the subject is recumbent on an examination table
because of the ability to directly compare variables obtained from ultrasound images to those
from CT, MRI, and DEXA. Ultrasounds performed in this position have demonstrated high
reliability and validity in comparison to CT, MRI, and DEXA for quantification of muscle size
(Ahtiainen et al., 2010; Esformes et al., 2002; Lixandrao et al., 2014; Noorkoiv et al., 2010;

Reeves et al., 2004; Scott et al., 2012; Thomaes et al., 2012). Additionally, this positioning

50



warrants few physical requirements for subject, as there is little need for balance, strength, and
coordination while recumbent. The high stability of the subject may also help to provide
improved reliability of variables obtained from ultrasound images. Furthermore, this positioning
is easy for technician because the subject is usually placed on a table at waist-height in front of
the technician, allowing for simultaneous viewing of the ultrasound monitor as the image is
being captured. However, previous research has demonstrated that changes in body position
(from a standing to supine position) may induce large variations in muscle morphology (Arroyo
et al., 2018; Berg et al., 1993; Cerniglia et al., 2007; Lopez et al., 2019), which may change the
ability for muscle morphological characteristics to predict muscle function. Ultrasonography
provides greater positional versatility than CT, MRI, and DEXA; therefore, practitioners and
researchers have the capability of examining muscle morphology via ultrasonography in
different positions with ease.

Thoirs & English (2009) were one of the firsts to compare muscle size in different
positions via ultrasonography. These researchers compared the reliability of measures of MT of 9
bilateral measurement sites in the body when participants were standing to when they were
supine. They observed significantly smaller MT values in the supine position compared to
standing in 7 of the 9 sites assessed, with no differences observed in the lateral forearm and
subscapular measurements upon changes in position. An interesting finding in this investigation
was that the two measurement sites that did not exhibit changes in MT after positional changes
were located in the upper body, indicating that gravitational fluid shifts may have a greater effect
on tissue size in the lower body due to increased hydrostatic pressure, which is consistent with

previous research (Berg et al., 1993). In addition, these researchers indicated that, in contrast to
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previous research (Berg et al., 1993; Cerniglia et al., 2007), the time spent in recumbency did not
have an effect on MT measurements, as there were no significant differences between those
taken immediately after laying down and 1 hour later. However, it was noted that the total
assessment protocol required approximately 15 minutes to perform, and therefore, fluid shifts
may have already occurred within the muscle by the time the first round of assessments in the
supine position were complete. This aligns with previous research showing that the greatest fluid
shifts occur within the first few minutes of recumbency (Berg et al., 1993; Cerniglia et al., 2007;
Hagan et al., 1978; Husdan et al., 1973; Stoker et al., 1966; Tan et al., 1973). Nevertheless,
measures of MT in both the standing and supine positions exhibited high test-retest reliability;
however, this also may be a factor of the longer total assessment time and the stabilization of
fluid shifts that were allowed to occur (Thoirs & English, 2009).

In another investigation examining the influence of position on muscle morphology,
Tomko et al. (2018) observed a significantly greater CSA of the rectus femoris when subjects
were in a seated position compared to a supine position. These findings align with those of
Thoirs & English (2009) who found significantly greater anterior thigh musculature thickness
while standing compared to laying down. Although postural fluid shifts may account for much of
the change in muscle size during positional changes, a simple change in joint position may also
have resulted in significant changes in rectus femoris muscle morphology (Hacker et al., 2016;
Maganaris, 2001; Myers et al., 2013; Narici et al., 1996). Because the rectus femoris is a
biarticular muscle that crosses both the hip and knee joint and aids in knee extension and hip
flexion, a change in either hip or knee angle may result in changes in muscle shortening, and

therefore, muscle size. For example, Hacker and colleagues (2016) demonstrated that when the
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knee is kept at full extension, rectus femoris CSA significantly increases for every 20° decrease
in hip angle, which can be attributed to a shortening of the muscle. More specifically, the rectus
femoris is maximally shortened when the hip is flexed and the knee is extended, and is
maximally lengthened when the hip is extended and the knee is flexed. However, Tomko et al.
(2018) reported that the rectus femoris is shortened in the sitting position when both the knee and
hip are flexed and is lengthened in the supine position when the knee and hip are extended. This
assumption was based on an investigation reporting that the rectus femoris is shortened while in
a seated position compared to a recumbent position (Maffiuletti & Lepers, 2003); however, in
this study, knee flexion was fixed at 90° during both the sitting and recumbent positions. In this
case, the transition from a sitting to supine position undoubtedly lengthens the rectus femoris, as
the knee angle is kept consistent and the hip is extended (Maffiuletti & Lepers, 2003). In
contrast, the investigation by Tomko et al. (2018) utilized a fixed knee flexion of 90° during the
sitting position, which was extended to 180° during the supine position. In this study, the
transition from a sitting to supine position results in both knee and hip extension, therefore
resulting in a simultaneous shortening and lengthening of the rectus femoris, potentially resulting
in negligible changes in overall muscle length (Tomko et al., 2018). Consequently, while it is
possible that changes in joint position resulted in changes in CSA of the rectus femoris, the
overall shortening of the muscle in the sitting position compared to the supine position may be
insignificant, as an increase in hip flexion is also coupled with an increase in knee flexion. A
more plausible explanation for the differences in muscle size observed in this investigation may
be a result of the change in position and shape of muscles during changes in joint angle and

posture (Thoirs & English, 2009). Although all measurements of the muscle were obtained at the
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same marked sites, it is possible that these sites marked on the skin were not consistent with the
same locations on the underlying muscle following positional changes, therefore potentially
affecting muscle size and EI (Thoirs & English, 2009). It was noted that the shape of the rectus
femoris appeared flatter in the supine than seated images, indicating that changes in joint
position can result in changes in underlying muscle location and shape (Tomko et al., 2018).
However, the differences in muscle size may also be attributed to postural fluid shifts, which
have been shown to occur with transitioning from a supine to seated position (Maw et al., 1995).
In addition to the differences in CSA between different positions, Tomko et al. (2018)
observed a significantly lower EI in the seated position compared to the standing position. The
authors suggest that this difference may be attributed to the alterations in the shape and curvature
of the thigh upon positional changes (Tomko et al., 2018), where the researchers noted that the
rectus femoris appeared flatter in the supine position compared to the seated position (Tomko et
al., 2018). This caused the deep aponeurosis of the muscle to be located more proximally to the
ultrasound probe, which may have reduced the attenuation of sound waves that occurs with
deeper tissues (Pillen & van Alfen, 2011). Previous research has suggested that, when ultrasound
settings are kept constant, tissues that are examined at a greater depth experience a greater
attenuation of sound waves, and thus lower EI (Pillen & van Alfen, 2011; H. J. Young et al.,
2015). Tomko et al. (2018) observed significantly greater EI values in the supine compared to
seated positions, which may be due to a reduced attenuation in the supine position. Nevertheless,
the potential for postural fluid shifts to affect EI values along with CSA cannot be discounted.

Furthermore, these researchers indicated that the test-retest reliability of CSA and EI measured in
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both positions and after all time points was high and did not depend on the position or time at

which the images were taken (Tomko et al., 2018).

Effects of Position on the Relationship between Muscle Morphology Assessed via

Ultrasonography and Performance

There has been a recent research interest in the use of ultrasonography as a way to
evaluate skeletal muscle morphology in an attempt to predict athletic performance and muscle
function. Most of these studies have examined muscle morphology while subjects remain in the
recumbent position (Jajtner et al., 2015; Jajtner et al., 2013; Mangine, Fukuda, et al., 2014;
Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Scanlon et al., 2014; Varanoske et al.,
2017a, 2017b; Wells et al., 2014), however this positioning induces a discrepancy between the
position in which the muscles are assessed and the position in which many sporting activities
occur (Wagle et al., 2017). Previous research has shown that muscle morphological
characteristics obtained via ultrasonography differ depending on position (Thoirs & English,
2009; Tomko et al., 2018), however these changes in characteristics do not reflect true changes
in muscle function. Therefore, the ability of characteristics to predict muscle function during
athletic activities may be compromised.

An investigation by Wagle et al. (2017) compared the relationships between muscle
morphology of the VL assessed in both the recumbent and standing positions to lower-body
force production. These researchers observed significantly greater measures of muscle size and
architecture, including MT, CSA, and PA during the standing position in comparison to the
recumbent position, which is in alignment with previous research (Thoirs & English, 2009;
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Tomko et al., 2018). However, the magnitude of change in muscle size was greater for MT than
for CSA, indicating that changes in the size of the muscle belly may be greater than those
throughout the entire muscle area. This was reported as a potential result of muscle gearing,
where muscle fibers shorten in the longitudinal direction and expand in the transverse direction,
causing them to rotate to a greater PA, thus creating a bulging effect in the center of the muscle
(Azizi & Brainerd, 2007; Wakeling & Randhawa, 2014). Muscle gearing is typically reported in
the case of muscle contraction, when a change in the length of the muscle is induced (Azizi &
Brainerd, 2007); however, it is apparent that changes in position can create a similar muscle-
bulging effect due to the influence of gravity on muscle shape (Thoirs & English, 2009; Tomko
et al., 2018). In addition, standing measures of muscle size exhibited overall stronger
relationships with performance than the lying measurements. Specifically, standing CSA and MT
yielded stronger relationships with isometric squat peak force (PF), RFD, and impulse (IMP)
than lying measurements. Standing CSA was also more strongly associated with 1-repetition
maximum (1-RM) squat than lying CSA; however, MT values in the different positions yielded
similar correlations. Furthermore, muscle PA was also significantly greater in the standing
compared to recumbent position, and standing measures of PA exhibited overall stronger
relationships with performance than the lying measurements except for 1-RM squat. These
findings may indicate that the strengths of the relationships between standing and recumbent
muscle morphology and force production may be dependent on the type of test administered.
Measures of standing muscle size exhibited stronger relationships with all isometric variables
than lying measurements; however, this positional relationship difference subsided during

dynamic 1-RM squats. Dynamic activities involve changes in joint angle, muscle length, and
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force-producing capabilities throughout the entire movement, whereas isometric activities
involve force production at a constant joint angle and muscle length. Due to the influence of joint
angle and muscle length on muscle size (Hacker et al., 2016; Maganaris, 2001; Myers et al.,
2013; Narici et al., 1996), the ability of muscle morphology to predict performance may be
related to the position in which the muscle is analyzed. This may explain why stronger
relationships were observed between standing muscle characteristics and isometric squat
variables, as the isometric squat was performed in the upright position with no change in joint

angle.

A Proposition for Further Exploration

Although there is research to support the use of standing measures of muscle morphology
in the assessment of muscle function (Wagle et al., 2017), this positioning requires an additional
level of difficulty on the subject as well as the technician, which may be unappealing for its use
in research settings. Additionally, some limitations to the investigation of Wagle et al. (2017)
should not be discounted. For example, all strength assessments in this investigation involved the
use of both limbs; however, muscle morphology was assessed only in the right VL muscle,
without consideration of leg dominance on performance measures. Additionally, the duration of
time in each position was not reported, and this has been demonstrated to affect muscle
morphology of the VL (Arroyo et al., 2018; Shea, 2017). Although the authors report that joint
angle was standardized for both the standing and recumbent positions, the standing position did
not involve resting the leg against a device or plinth, and therefore some degree of muscle

contraction may have been required to retain the joint angle during the assessment (Wagle et al.,
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2017). Also, despite the report of the interpretation of the magnitude of correlation coefficients
between muscle morphology and performance, over 60% of the correlations did not reach
statistical significance; thus the results should be reported with caution.

Traditional ultrasonography in the assessment of muscle morphology of the lower body
typically reports that subject are required to lay on an examination table for a period of 10 to 15
minutes in the supine position (Jajtner et al., 2013; Mangine, Fukuda, et al., 2014; Mangine et al.,
2015; Mangine, Hoffman, et al., 2014; Scanlon et al., 2014; Varanoske et al., 2017a, 2017b;
Wells et al., 2014) to allow for fluid shifts to occur when transitioning to a new position (Berg et
al., 1993; Cerniglia et al., 2007). However, ultrasound assessment of certain muscles requires
subjects to lay in other recumbent positions during examination, which induces a discrepancy
between the rest position and the position in which the muscle is examined. For example, the VL
is a muscle that is commonly examined during ultrasonography in the evaluation of lower body
strength and power due to its extensive involvement in knee extension, its larger size in
comparison to the other quadriceps muscles, and its superficial location. However, due to the
anatomical position of this muscle on the lateral side of the body, ultrasound assessment of the
VL requires the subject to lay on their lateral side and not in the supine position. Previous
research has shown that differences in hydrostatic pressure and blood distribution as a result of
changing from a standing to recumbent position result in fluid shifts to tissues of the lower body,
thereby increasing muscle size and altering muscle composition (Berg et al., 1993; Cerniglia et
al., 2007; Maw et al., 1995). Because changes in hydrostatic pressure and blood distribution may

also be induced with changes in recumbent positions (Bryan, 1974; Kallet, 2015), a change in
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position (from rest in a supine position to examination in a lateral recumbent position) may alter
muscle morphological characteristics, which may not reflect true changes in muscle function.
Furthermore, the use of ultrasonography in the examination of bilateral asymmetries in
muscle size and composition is an important component in the evaluation of athletic performance
(Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Sanders, Boos, Shipley, & Peacock,
2018). However, if the examination of the VL muscle on the opposing limb to detect for bilateral
asymmetries is desired, the subject must flip over to the opposite lateral recumbent side. Previous
reports of bilateral differences in muscle morphology of the VL do not report a return to the
supine position prior to examination of the opposing muscle (J. C. Hill & Millan, 2014; Mangine
et al., 2015; Mangine, Hoffman, et al., 2014; Sanders et al., 2018). Therefore, the leg that was
previously compressed against the examination table is examined without the potential for fluid
shifts to occur in another plane. Previous research has suggested that muscle compression may
reduce blood flow, swelling, and muscle size during and after exercise (J. Hill, Howatson, van
Someren, Leeder, & Pedlar, 2014; Kraemer et al., 2010; Kraemer et al., 2000; Sperlich, Born,
Kaskinoro, Kalliokoski, & Laaksonen, 2013). Additionally, muscle compression has been shown
to reduce venous pooling in the lower body when standing (Mills, Scurr, & Wood, 2011; Partsch,
Flour, Smith, & International Compression, 2008; Redolfi, Arnulf, Pottier, Bradley, &
Similowski, 2011). Investigations involving ultrasonography assessments of the lower body have
previously reported that subjects should avoid wearing tight shorts to reduce compression of the
thigh musculature (Scanlon et al., 2014; Varanoske et al., 2017a, 2017b; Wells et al., 2014).
Compression of a tissue increases the interstitial hydrostatic pressure, which reduces filtration of

fluid out of the capillaries, therefore minimizing changes in muscle size (Nehler et al., 1993).
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Although these assumptions are primarily concerned with the use of compression garments, it
remains unknown whether a similar effect would occur following compression of a limb under
the weight of the body. Therefore, it is possible that changes in recumbent positions affect
muscle morphological characteristics of the lower body. Further, if differences in muscle
morphology exist after rapid changes in body position, this may affect the ability for these

characteristics to predict muscle function.
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CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY

Experimental Design

Participants reported to the Human Performance Laboratory at the University of Central
Florida on three separate occasions. During visit one (T1), participants completed a written form
of consent, an MHAQ, and a PAR-Q+ to establish eligibility. During visit 2 (T2), participants
underwent a familiarization session with all physical performance assessments to minimize any
learning effect of the assessments on outcome variables. At least 72 hours after T2, participants
visited the laboratory for their final visit (T3), which consisted of hydration status assessment,
anthropometric testing, body composition assessment, ultrasound assessments, and physical
performance testing. A depiction of all visits to the laboratory and associated assessments is

presented in Figure 1.
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Figure 1: Study Design
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Participants

Thirty-five recreationally-active males between the ages of 18 and 35 years old were
recruited for this study. Participants were instructed to maintain normal dietary and exercise
habits throughout the duration of enrollment in the study. Following an explanation of all
procedures, risks, and benefits, each participant provided their written informed consent to
participate (T1). All participants were required to be free of any physical limitations (as
determined by the MHAQ and PAR-Q+) and were deemed as resistance-trained, having
participated in resistance training at least three times per week for at least the previous year.
Furthermore, participants were required to be non-smokers and be free from previous use of any
performance-enhancing drugs. All performance assessments and ultrasounds were performed on
the dominant leg, which was designated by each participant. This investigation was approved by
the University of Central Florida Institutional Review Board for human subjects, and all
procedures were in accordance with the ethical standards of the 1964 Helsinki Declaration and

its later amendments.

Procedures

Familiarization (T2)

During T2, participants were familiarized with all of the physical performance
assessments used in this investigation to minimize any learning effect of the assessments on
dependent outcome variables. Prior to all physical performance assessments, participants were
required to complete a standardized dynamic warm-up including: pedaling on a cycle ergometer

for 5 minutes at a self-selected pace, 10 body-weight squats, 10 body-weight walking lunges, 10
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dynamic walking hamstring stretches, 10 dynamic walking quadriceps stretches, 10 squat jumps,

10 arm circles, and 10 arm swings.

Unilateral Vertical Jump Assessment (UVJ)

During T2, participants became familiar with performing maximal unilateral vertical
jumps (UV]). Participants were instructed to stand on a force plate (AccuPower, AMTI
Watertown, MA, USA, 1000 Hz) with their hands placed on their hips throughout the duration of
each UV/J. Participants were instructed to stand on one leg and perform a maximal
countermovement jump. Participants were instructed on proper landing mechanics (e.g., no
tucking) as not to affect flight time. To decrease the risk of injury, participants were instructed
that they could land on two legs. A series of maximal UVJ were completed until the participant

felt comfortable with the exercise.

Isometric and Isokinetic Knee Extension Assessments

Participants were seated in an isokinetic dynamometer (S4, Biodex Medical System, Inc.,
New York, NY, USA), strapped into the chair at the waist, shoulders, and across the thigh to
complete a series of isometric and isokinetic strength assessments. Chair and dynamometer
settings were adjusted for each participant to properly align the axis of rotation with the lateral
condyle of the femur. All participants were tested on their dominant leg, which was secured to
the dynamometer arm just above the medial and lateral malleoli. The range of motion was
assessed for each participant, and isokinetic dynamometer settings for each participant were

consistent throughout testing. Participants first completed isometric and isokinetic warm-up sets
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at 50% of their perceived maximum. The isometric warm-up sets were performed while the knee
remained positioned at angle of 110°, considering full extension is 180°. The isometric warm-up
sets consisted of three consecutive repetitions of leg extension, which incorporated 10 seconds of
contraction, with a 10 second rest in between each repetition. Participants then completed an
isokinetic warm-up, consisting of three sets of three isokinetic contractions of the knee extensor
muscles at different angular velocities (60°-s7!, 180°-s7!, and 240°-s!). Each isokinetic set
consisted of concentric knee extension and passive knee flexion. Sixty-seconds of rest were
provided between each set, and 3 minutes of rest were provided after the last set.

Participants were then instructed to perform two maximal voluntary isometric
contractions (MVIC) at a knee angle of 110°, which was held for 6 seconds. Additionally,
participants then performed three sets of three isokinetic contractions at different angular
velocities (60°-s™!, 180°-s7!, and 240°-s!). Participants were required to achieve an acceptable
range of motion (~90°-170°) from to knee flexion to extension for each contraction. Between

MVIC and isokinetic testing sets, 3 minutes of rest were provided to each participant.

Unilateral Leg Press Assessment

Participants were seated in a unilateral leg press machine (Uni/Bi-Lateral Leg Press,
PowerLift, Jefferson, IA) and were familiarized with the unilateral leg press assessment.
Participants were provided with proper instruction and technique for optimal exercise form and
were instructed to complete unilateral leg presses with the dominant leg only. The seat position
on the leg press apparatus was kept consistent for each participant for all testing days. Due to the

unfamiliarity of a 1-RM unilateral leg press, participants underwent a 3-RM protocol on T2,
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which was then used to predict their 1-RM for T3. Each participant performed three warm-up
sets before attempting a 3-RM lift. Following each warm-up set, additional weight was added to
the leg-press based upon the subject’s perceived difficulty. Repetition ranges for each of the
three warm-up sets were 8-10 repetitions, 6-8 repetitions, and 4-6 repetitions, followed by 1, 2,
and 3 minute rest periods, respectively. Following the warm-up sets, additional weight was
added to the leg-press, and a 3-RM was attempted. Two to four subsequent trials were performed
to determine each participant’s 3-RM. Trials not meeting the range of motion criteria for each
exercise were discarded. Each participant’s 1-RM was then predicted using Equation 2 (Brzycki,

1993) for use during T3.

1—RM = Weight/[1.0278 — (0.0278 - Number of Repetitions)] (2)

Testing Day (T3)

After a period of at least 72 hours, participants returned to the laboratory for their testing
visit (T3), which consisted of a hydration status assessment, anthropometric and body
composition testing, ultrasound assessments, and physical performance testing. Participants were
instructed to wear loose-fitting shorts during T3 to avoid compression of the upper leg
musculature. All participants were required to have refrained from vigorous lower-body exercise
for 72 hours prior to the testing visit and from consuming alcohol and caffeine for at least 24
hours prior to the testing visit. Participants were required to arrive for T3 in a hydrated state and
having been fasted for a period of 4 hours. A standardized snack (total energy: 260 kcal;
carbohydrates: 48 g; protein: 3.1 £ 0.7 g; fat: 6 g) was provided to all participants after the

ultrasound assessments and before physical performance assessments were completed.
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Hydration Status Assessment

Hydration status was assessed upon arrival at T3 to ensure that each participant was in a
state of euhydration prior to testing. Each participant was asked to provide a urine sample in a
sterile container. Urine samples were analyzed for hydration status via refractometry by placing a
drop of urine on a refractometer (Human Urine Refractometer, MISCO Refractometer,
Cleveland, OH, USA) and digitally inspecting its osmolarity. Participants were considered
euhydrated if the osmolarity of the urine was less than or equal to 1.020. If the participant was
not properly hydrated at the time of assessment, they were asked to drink water and provide
another urine sample until properly hydrated. Participants could not continue with the

assessments until properly hydrated.

Anthropometric and Body Composition Assessments

After the participant was confirmed to be in a state of euhydration, participants were
asked to remove their footwear, socks, and jewelry. Body mass (£0.1 kg) and height (0.1 cm)
were assessed using a Health-O-Meter Professional scale (Patient Weighing Scale, Model 500
KL, Pelstar, Alsip, IL, USA). Body composition (percent body fat, fat-free mass) was assessed
via multi-frequency BIA (InBody770, InBody, Cerritos, CA), as previously described (Arroyo et
al., 2017). Participants were asked to stand on the platform with their heels placed on the circular
rear sole electrode and the forefoot on the front sole electrode. Participants then picked up the
handles of the BIA device, ensuring that the surface of the hand electrode was placed in contact

with each of the five fingers. The BIA device then sent a small electrical current through the
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electrodes, which was transferred into the body in order to calculate the proportion of lean tissue

to fat mass contained within the body.

Ultrasound Assessments

Ultrasound Technical Procedures

The ultrasound imaging techniques utilized in this investigation to assess the VL muscle
have been previously described (Jajtner et al., 2015; Jajtner et al., 2013; Mangine, Fukuda, et al.,
2014; Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Scanlon et al., 2014; Varanoske et
al., 2017a, 2017b; Wells et al., 2014). However, due to the primary research question of this
investigation, the rest position that was utilized prior to ultrasound image capture was altered to
examine the effects of the rest position on ultrasound characteristics. All anatomical locations of
interest were identified using standardized landmarks for the VL muscle in the participants’ self-
reported dominant limb. The landmarks for the VL were identified along the longitudinal
distance over the femur at 50% of the distance from the greater trochanter to the lateral border of
the patella (Scanlon et al., 2014; Wells et al., 2014). To ensure proper probe placement and
consistent image capture location, a semi-permanent marker was used to draw a dotted line
transversely and longitudinally along the surface of the skin at the aforementioned location. The
anatomical measurements for the VL were taken prior to anthropometric measurements on T3 to
minimize the effect of time required to mark the leg during ultrasound assessment. All measures
of muscle morphology were obtained using a B-mode, 12-MHz linear probe (General Electric
LOGIQ P5, Wauwatosa, WI, USA), coated with transmission gel (AquasonicVR 100, Parker

Laboratories, Fairfield, NJ, USA) to provide acoustic contact without depressing the dermal
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layer of the skin (Scanlon et al., 2014; Wells et al., 2014). Ultrasound settings remained fixed for
examination of each participant to minimize instrumentation bias, to optimize spatial resolution,
and to ensure consistency (Scanlon et al., 2014; Wells et al., 2014). Image gain was set at 50 dB,
dynamic range was set at 72, and image depth was set at 5 cm. Ultrasound images were captured
in the transverse and sagittal planes, utilizing panoramic and still imaging (Figures 2 and 3,
respectively). For each round of assessment, three panoramic images were captured in the
transverse plane, perpendicular to the long axis of the muscle. Extended-field-of-view
ultrasonography (LogiqView™) was used to capture panoramic images, which utilized a sweep
of the probe along the VL from the anterior portion of the muscle to the posterior portion of the
muscle in order to capture the entire area of the muscle in a single image. Additionally, three still
images were captured in the sagittal plane, parallel to the long axis of the muscle (Varanoske et
al., 2017b). All ultrasound assessments were performed by the same examiner and were captured

from the same anatomical locations.
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Figure 2: Panoramic Ultrasound Image Assessment

A sample participant laying down for panoramic ultrasound image assessments. Panoramic
images were captured in the transverse plane, perpendicular to the force-generating axis of the
muscle, using extended-field-of-view ultrasonography (LogiqView™). The yellow box
represents the probe head orientation, and the solid yellow line represents the direction of probe
manipulation along the leg during image capture.
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Figure 3: Still Ultrasound Image Assessment

A sample participant laying down for still ultrasound image assessments. Still images were
captured in the sagittal plane, parallel to the force-generating axis of the muscle, using a still
image. The yellow box represents the probe head orientation and image capture location.
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Each participant underwent five rounds of non-invasive ultrasound assessment of the VL.
in the dominant leg. In the first assessment, participants were positioned on an examination table
on the non-dominant side in the non-dominant lateral recumbent position. Participants were
required to have their legs stacked together, and a foam pad was placed between their ankles.
The legs were positioned to allow a 10° bend in the knees, as measured by a goniometer.
Ultrasound images of the VL were captured immediately after the participant was positioned
(IP). IP assessments took, on average, 113.9 £ 12.6 seconds to complete. In the next assessment,
participants were instructed to remain in the non-dominant lateral recumbent (NDLR) position
for a period of 15 minutes. After the 15-minute duration had elapsed, additional ultrasound
images were captured. Following the first two rounds of ultrasound assessments, each participant
was asked to stand for a period of 15 minutes. After the 15-minute duration elapsed, participants
were asked to lay supine (SUP) on an examination table for a period of 15 minutes. After the 15-
minute duration elapsed, participants were instructed to quickly flip over onto their non-
dominant side for another round of ultrasound assessments. Following the third round of
assessments, the participant was asked to stand for another period of 15 minutes. After the 15-
minute duration elapsed, participants were asked to lay on an examination table in the dominant
lateral recumbent (DLR) position for a period of 15 minutes. After this 15-minute duration
elapsed, participants were instructed to quickly flip over onto their non-dominant side for another
round of ultrasound assessments. Following the fourth round of assessments, participants were
asked to stand for a period of 15 minutes. After the 15-minute duration elapsed, participants were
asked to stand on an elevated platform to obtain standing ultrasound images. Participants were

instructed to bear weight only on their non-dominant limb, while the shin of the dominant limb
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rested against a higher platform to allow for a 10° bend in the knee. Participants were instructed
to completely relax the dominant leg against the higher limb to avoid muscle contraction of the
VL. Ultrasound images were captured while participants remained in the standing position (ST),
and were identical to those used during the recumbent positions. The order of all assessments
except ST were randomized for each participant. Ultrasound rest positions are depicted in

Figures 4a-d.
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Figure 4: Ultrasound Rest Positions Utilized

An example participant in different rest positions prior to ultrasound analysis of the vastus lateralis (VL) muscle. A: Participant
laying in the non-dominant lateral recumbent (NDLR) position with the dominant limb exposed. This was the position that all
ultrasound images were captured in (except for standing), however, the rest position utilized beforehand differed. The participant
utilized this rest position for immediately post (IP) analysis and rest for 15 minutes in the NDLR position. B: Participant laying in the
supine (SUP) position. After 15 minutes in this position, the participant was instructed to flip over to the NDLR position and an
ultrasound image was captured immediately following. C: Participant laying in the dominant lateral recumbent (DLR) position with
the dominant leg compressed. After 15 minutes in this position, the participant was instructed to flip over to the NDLR position and
an ultrasound image was captured immediately following. D: Participant in the standing (ST) position. The ultrasound images were
captured while the participant remained standing. Participants were instructed to bear weight on the non-dominant leg while resting
the dominant leg against a platform to allow for a bend in the knee.
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Ultrasound Image Analysis

All ultrasound images were analyzed offline by an experienced researcher using an image
analysis software (ImageJ, National Institutes of Health, USA, version 1.45s) to quantify muscle
morphological characteristics. A known distance shown in each ultrasound image was used to

calibrate the image analysis software.

Cross-Sectional Area (CSA) Quantification

CSA of the VL was quantified using panoramic images captured in the transverse plane.
The outline of the VL was located in each image and was traced using the polygon function tool
in ImageJ, ensuring to include as much lean tissue as possible without including any surrounding
bone or fascia (Wells et al., 2014). The total area of each traced polygon was then calculated and
reported in centimeters®. The average CSA of the three images taken in each rest position was
then used for further analysis. A sample image for CSA analysis is presented in Figure 5.

Inter-day reliability for the quantification of the CSA of the VL using ultrasonography
following rest in the SUP position were completed on a separate sample of participants, with at
least 24 hours between examinations. The intraclass correlation coefficient using model “3,1”
(ICCs,1), SEM, minimal difference (MD), and coefficient of variation (CV) for CSA between
ultrasound images taken on two separate days were determined to be: ICC3,; = 0.997; SEM =

0.423 cm? MD = 1.173 cm?; CV = 1.027%.
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Figure 5: Cross-Sectional Area (CSA) Quantification

A sample panoramic ultrasound image of the vastus lateralis (VL) captured in the transverse
plane used for CSA analysis. The outline of the VL muscle was located in the image and traced
using the polygon function tool in ImageJ, which included as much lean mass as possible without
including any surrounding bone, muscle, or fascia. The CSA value is highlighted in red and
recorded in centimeters? (cm?).
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Uncorrected Echo Intensity (UnCorEI) Quantification

UnCorEI was quantified within the region of interest previously demarcated for CSA
determination. UnCorElI of the traced polygon was determined using the standard histogram
function in ImageJ. Quantification of the grayscale of each individual pixel in the region of
interest was expressed as a value between 0 and 255 arbitrary units (AU) (0: black; 255: white)
(Pillen & van Alfen, 2011; Scanlon et al., 2014; Wells et al., 2014). The grayscale of each
individual pixel was then projected on a histogram plot, and UnCorEI was quantified as the mean
grayscale of the entire region of interest (Pillen & van Alfen, 2011; Scanlon et al., 2014; Wells et
al., 2014). The average UnCorEI of the three images taken in each rest position was then used for
further analysis. A sample image for UnCorEI analysis is presented in Figure 6.

Inter-day reliability for the quantification of UnCorEI of the VL using ultrasonography
following rest in the SUP position were completed on a separate sample of participants, with at
least 24 hours between examinations. Reliability values were determined to be: ICC3 1 = 0.935;

SEM =3.679 AU; MD = 10.199 AU; CV =5.509%.
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Figure 6: Uncorrected Echo Intensity (UnCorEI) Quantification

A sample panoramic ultrasound image of the vastus lateralis (VL) captured in the transverse
plane used for UnCorEI analysis. The same region of interest used for cross-sectional area (CSA)
analysis is again used for UnCorEI analysis. The UnCorEI value is highlighted in red and
recorded in arbitrary units (AU).
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Subcutaneous Adipose Tissue Thickness (SFT) Quantification

In order to examine the potential influence of SFT (SFT) on EI, SFT superficial to the VL
was assessed in the images previously used for CSA and UnCorEI quantification. SFT is defined
as the perpendicular distance between the inferior border of the epithelium and the superior
border of the superficial aponeurosis (H. J. Young et al., 2015). Quantification of SFT was
determined as the average SFT adjacent to the lateral, mid-line, and medial portions of the VL.
using the line tool in ImageJ and is reported in centimeters (E. D. Ryan et al., 2016; H. J. Young
et al., 2015). The average SFT of the three images taken in each rest position was then used for
further analysis. A sample image for SFT analysis is presented in Figure 7.

Inter-day reliability for the quantification of SFT of the VL using ultrasonography
following rest in the SUP position were completed on a separate sample of participants, with at
least 24 hours between examinations. Reliability values were determined to be: ICC3 1 = 0.999;

SEM =0.022 cm; MD = 0.061 cm; CV =3.044%.
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Figure 7: Subcutaneous Adipose Tissue Thickness (SFT) Quantification

A sample panoramic ultrasound image of the vastus lateralis (VL) captured in the transverse
plane used for SFT analysis. SFT is defined as the distance between the inferior border of the
epithelium and the superior border of the superficial aponeurosis. SFT was determined as the
average of the lateral, mid-line and medial SFT values, highlighted as the yellow lines in the
above image. One SFT value is highlighted in red and recorded in centimeters (cm).
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Corrected Echo Intensity (CorEl) Quantification

In order to examine the effect of SFT on EI, the UnCorEI values for each panoramic
image were then corrected for SFT (averaged from the SFT at the medial, mid-line, and lateral

portions of the muscle) using Equation 3 previously established by Young et al. (2015):

Corrected EI = Uncorrected EI + (SFT x 40.5278) (3)

The average corrected EI (CorEI) values of the three images taken in each rest position
was then used for further analysis.

Inter-day reliability for the quantification of CorEI of the VL using ultrasonography
following rest in the SUP position were completed on a separate sample of participants, with at
least 24 hours between examinations. Reliability values were determined to be: ICC3 1 = 0.980;

SEM =4.308 AU; MD =11.942 AU; CV =4.747%.

Muscle Thickness (MT) Quantification

MT was assessed using still images captured in the sagittal plane. MT was measured as
the perpendicular distance from the superficial aponeurosis to the deep aponeurosis (Mangine et
al., 2015). MT was quantified using the straight-line tool in ImagelJ at 50% of the horizontal
distance of the image length and was reported in centimeters (Figure 3). The average MT of the
three images taken in each rest position was then used for further analysis. A sample image for
MT analysis is presented in Figure 8.

Inter-day reliability for the quantification of MT of the VL using ultrasonography

following rest in the SUP position were completed on a separate sample of participants, with at
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least 24 hours between examinations. Reliability values were determined to be: ICC3 1 = 0.995;

SEM = 0.029 cm; MD = 0.081 cm; CV =1.071%.
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Figure 8: Muscle Thickness (MT) Quantification

A sample still image of the vastus lateralis (VL) captured in the sagittal plane with MT
measurement highlighted in yellow. MT is defined as the distance between the inferior border of
the superficial aponeurosis and the superior border of the deep aponeurosis. MT was quantified
using the line tool at the midpoint of the horizontal distance between the left and right sides of
the vastus lateralis (VL). The MT value is highlighted in red and reported in centimeters (cm).
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Pennation Angle (PA) Quantification

PA was assessed using the same images that were used for MT quantification. PA is
defined as the angle of the intersection of the fascicles with the deep aponeurosis. PA was
quantified using the angle tool in ImageJ and is reported in degrees (°). The PA of three fascicles
was measured in each image, and the average of the three were used for that image. The average
PA of the three images taken in each rest position was then used for further analysis. A sample
image for PA analysis is presented in Figure 9.

Inter-day reliability for the quantification of PA of the VL using ultrasonography
following rest in the SUP position were completed on a separate sample of participants, with at
least 24 hours between examinations. Reliability values were determined to be: ICC3 1 = 0.998;

SEM = 0.272°; MD = 0.754°; CV = 2.103%.
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Figure 9: Pennation Angle (PA) Quantification
A sample still image of the vastus lateralis (VL) captured in the sagittal plane with PA
measurement highlighted in yellow. PA was quantified using the angle tool at the intersection of

the fascicles with the deep aponeurosis. The PA value is highlighted in red and reported in
degrees (°).
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Physical Performance Assessments

Prior to all physical performance assessments, participants were required to complete a
standardized dynamic warm-up including: pedaling on a cycle ergometer for 5 minutes at a self-
selected pace, 10 body-weight squats, 10 body-weight walking lunges, 10 dynamic walking
hamstring stretches, 10 dynamic walking quadriceps stretches, 10 squat jumps, 10 arm circles,
and 10 arm swings. Each participant then performed the same physical performance assessments
that they completed on the familiarization day, with minor adjustments. All physical
performance assessments were administered to each participant by the same researcher.
Instructions for each assessment were provided to the participants through reciting a script.
Verbal encouragement was given during each physical performance assessment. All assessments
were supervised by a Certified Strength and Conditioning Specialist (CSCS) through the

National Strength and Conditioning Association (NSCA).

Unilateral Vertical Jump (UVJ) Assessment

Participants were instructed to stand on the force plate on their dominant leg, with their
hands placed on their hips. Participants performed a total of three maximal UVJ, with 3 minutes
of rest between each jump. Participants were instructed that they could land on two feet if they
preferred. Flight time was calculated as the time interval from toe-off to landing, and UVJ height
was calculated using flight time. Furthermore, PF was measured, and peak power, the rate of
power development (RPD), total work, and peak velocity were calculated for each UVJ. The
greatest values for each variable from the three UVJ were then used for further analysis. An

example participant completing UV]J assessment is presented in Figure 10.
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Figure 10: Unilateral Vertical Jump (UVJ) Assessment

An example participant completing UVJ assessment. Three total countermovement jumps were
completed on the dominant leg, while the participants’ hands remained on their hips throughout
the duration of the UVJ. Each UVJ was separated by three minutes of rest.
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Isometric and Isokinetic Knee Extension Assessments

Following the UV] assessment, participants underwent the same unilateral isometric and
isokinetic testing protocol that was completed during the familiarization day. An example

participant completing isometric and isokinetic assessments is presented in Figure 11.
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Figure 11: Isometric and Isokinetic Knee Extension Assessments

An example participant completing unilateral isometric and isokinetic knee extension
assessments. Two maximal voluntary isometric contractions (MVIC) were performed, with three
minutes of rest between each MVIC. Three maximal voluntary isokinetic contractions were
performed at different angular velocities (60°- s, 180°-s7!, and 240°-s!), with three minutes of
rest between each set.
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For each test, torque signals were sampled at 1 kHz with a data acquisition system (MP150
BIOPAC Systems, Inc., Santa Barbara, CA, USA), recorded on a personal computer, and
processed offline. For each MVIC, a torque-time curve was created. Due to the influence of
dynamometer arm length on torque, a correction was applied to the torque values to
independently examine the effects of muscle morphology in different rest positions on isometric
and isokinetic force. The torque values obtained from the isokinetic dynamometer were divided
by the dynamometer arm length setting of the Biodex for each participant to account for the

influence of moment arm on torque (Equation 4).
Torque = Moment Arm X Force (4)

Therefore, muscle force production was examined after accounting for dynamometer arm setting
length. For each MVIC, the onset of torque was determined when the torque signal crossed the
value equal to 10% above the baseline. PF, RFD over 50 ms (RFD50), 100 ms (RFD100), 200
ms (RFD200), and impulse over 50 ms (IMP50), 100 ms (IMP100), and 200 ms (IMP200) were
recorded for each MVIC. PF was identified as the greatest force achieved on the force-time curve
for each repetition. RFD was defined as the greatest rate of change of force development over
time between sampled data points. IMP was defined as the average force generated over time.
For each set of isokinetic kicks, PF was recorded: isokinetic PF at 60°-s! [IsokPF (60°-s™)],
isokinetic PF at 180°-s™' [IsokPF (180°-s)], and isokinetic PF at 240°-s! [IsokPF (240°-s™)].
The greatest values for each variable was used for further analysis.

In support of the correction for moment arm in the examination of muscle morphology
and its relationship with force production, Biodex dynamometer arm length was found to be a

significant predictor of performance on all isometric and isokinetic torque variables [peak torque
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(PT), rate of torque development (RTD) over 50 ms, (RTD50), 100 ms (RTD100), 200 ms
(RTD200), and impulse over 50 ms (IMP50), 100 ms (IMP100), and 200 ms (IMP200)] except
RTD100 (Table 1). Therefore, torque values obtained via isokinetic dynamometry may not

reflect true muscle force-producing capabilities unless the dynamometer length is accounted for.

91



Table 1: Associations between Biodex Dynamometer Arm Length Setting and Unilateral
Isometric and Isokinetic Knee Extension Performance Variables

Biodex Variable r p-value
MVIC PT 0.400 0.026*
MVIC RTD50 0.471 0.008*
MVIC RTD100 0.344 0.058
MVIC RTD200 0.364 0.044*
MVIC IMP50 0.588 0.001*
MVIC IMP100 0.492 0.005*
MVIC IMP200 0.472 0.007*
IsokPT (60°-s) 0.496 0.005*
IsokPT (180°-s) 0.429 0.016*
IsokPT (240°-s") 0.504 0.004*

r: Pearson’s correlation coefficient; R’: Shared variance; SEE: Standard error of the estimate;
MVIC: Maximal voluntary isometric contraction; PT: Peak torque; RTDS50: Rate of torque
development over 50 ms; RTD100: Rate of torque development over 100 ms; RTD200: Rate of
torque development over 200 ms; IMP50: Impulse over 50 ms; IMP100: Impulse over 100 ms;
IMP200: Impulse over 200 ms; IsokPT (60°-s): Isokinetic peak torque at 60° per second;
IsokPT (180°-s™!): Isokinetic peak torque at 180° per second; IsokPT (240°-s™!): Isokinetic peak
torque at 240° per second.

*Statistically significant correlation (p < 0.05)
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Unilateral Leg Press Assessment

To determine the maximal strength of each individual, participants then completed a
unilateral leg press assessment according to guidelines published by the NSCA. Each participant
performed three warm-up sets before attempting a 1-RM lift. The external loads used during the
warm-up sets and the 1-RM attempts were determined based off of a percentage of the estimated
1-RM from the familiarization day. Following each warm-up set, additional weight was added to
the leg-press based upon the subject’s perceived difficulty. Repetition ranges for each of the
three warm-up sets were 8-10 repetitions, 4-6 repetitions, and 2-3 repetitions, followed by 1, 2,
and 3 minute rest periods, respectively. Following the warm-up sets, additional weight was
added to the leg-press, and a 1-RM was attempted. Two to four subsequent trials were performed
to determine a 1-RM. Trials not meeting the range of motion criteria for each exercise were
discarded. An example participant completing a 1-RM unilateral leg press is presented in Figure

12.
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Figure 12: 1-Repetition Maximum (1-RM) Unilateral Leg Press Assessment

An example participant completing a 1-RM unilateral leg press assessment. Following a warm-
up, two to four trials were used to determine 1-RM. Trials not meeting the range of motion
criteria were discarded. Each attempt was separated by three minutes of rest.
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Statistical Analyses

Intra-examiner precision between three consecutive panoramic and still images captured
from each subject was analyzed using the SEM for CSA, UnCorEl, CorEIl, MT, PA, and SFT
(Varanoske et al., 2017b). The SEM indicates how precise a measurement is compared to its true
value and it is not sensitive to within- or between-subject variability (Vincent & Weir, 2012).
The CV and ICC3,; for each muscle morphological characteristic was also calculated (Weir,
2005). Lower CVs and higher ICCs indicate greater reproducibility between measurements.
Additionally, the MD was calculated for each muscle morphological characteristic, which refers
to the minimum difference between values that reflects a true change. Prior to statistical
procedures, all data was assessed for normality and sphericity. If the assumption of sphericity
was violated, a Greenhouse-Geisser correction was applied. To analyze within-subject
differences in ultrasound-derived morphological characteristics of the VL (CSA, UnCorEI,
CorEl, MT, PA, SFT), a repeated-measures analysis of variance (ANOVA) was used. In the
event of a significant interaction, least significant differences (LSD) post-hoc tests were used for
pairwise comparisons. Rest position effects were further analyzed using partial eta squared (1,2).
Interpretations of > were evaluated in accordance with Cohen (1988) at the following levels:
small effect (0.01-0.058), medium effect (0.059-0.137), and large effect (>0.138). Comparisons
between rest positions were further analyzed using 95% confidence intervals (CI) and Cohen’s d.
Magnitudes of the standardized effects were interpreted using thresholds of <0.2, 0.2-0.6, 0.6-
1.2, 1.2-2.0, 2.0-4.0. These values corresponded to trivial, small, moderate, large, and very large

effect sizes (ES), respectively.
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Associations between muscle morphological characteristics (CSA, UnCorEI, CorEI, MT,
PA, and SFT) and physical performance variables were examined using Pearson’s r.
Additionally, stepwise linear regression was used to assess the shared variance (R?) between
muscle morphological characteristics and physical performance variables. Entry into the model
occurred if the significance of the F value was p < 0.05, and the independent variable with the
highest correlation to the dependent variable was included into the regression equation.
Correlation magnitudes were quantified using the following descriptors: 0.00-0.10: trivial; 0.11-
0.30: small; 0.31-0.50: moderate; 0.51-0.70: large; 0.71-0.90: very large; 0.91-1.00: almost
perfect (Hopkins, Marshall, Batterham, & Hanin, 2009). For all analyses, a criterion alpha level
of a < 0.05 was used to determine statistical significance, and statistical software (Statistical
Package for the Social Sciences [SPSS] V.23.0, Chicago, IL, USA) was used. All data are
reported as mean + standard deviation.

Differences between two dependent correlation coefficients with one variable in common
were tested using the Williams modification of the Hotelling test (Kenny, 1987). This method
was used to determine if one correlation was significantly different than another correlation with

one common variable, using the following equation (Equation 5):

t (n _ 3) — (7‘12—7‘23)\/ (n_l)(1+r12) ( 5 )

(n-1) | (ra3+r13)% . 3
\/ZK(n—3)+ 4 (1-712)

where

_ 2 2 2
K =1—-r —rf3—133 +2r,;r30;
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The two correlation coefficients to be compared (i.e., ;2 and r;3), along with the correlation
coefficient between the two unshared variables (i.e., 723), and the sample size were inputted into
a published spreadsheet (“Comparing Pairs of Correlations,” University of Cambridge,

accessible at http://imaging.mrc-

cbu.cam.ac.uk/statswiki/FAQ/WilliamsSPSS?action=AttachFile&do=view &target=Williams-

test.xIsx . The p-value associated with a two-tailed test of significance was then computed.

Results were considered significant at an alpha-level of a < 0.05.
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CHAPTER FOUR: RESULTS

Participants
One participant withdrew from the investigation after the familiarization day due to
reasons unrelated to the study. Two participants were removed from the final data analysis due to

issues related to ultrasound image analysis. Therefore, a total of 31 participants were included in

the final analysis.

Anthropometric Measurements

The anthropometrics (age, height, body mass, body fat percentage) of participants

included in the final analysis are presented in Table 2.
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Table 2: Anthropometric Measurements of Participants Included in the Final Data Analysis

. Body Fat
N Age (yrs) Height (m) Body Mass (kg) Percen 1132,1 ae (%)
31 23.0+2.1 1.79 £ 0.08 87.4+11.7 180+5.2

Values are presented as mean + standard deviation.
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Ultrasound Assessments

The majority of ultrasound morphological variables exhibited normality, and therefore,
comparisons of mean differences in muscle morphological characteristics after rest in different
positions was assessed using parametric analysis.

Reliability and precision values for all muscle morphological characteristics are presented
in Table 3. These results indicate high reliability and precision between images for each variable
after rest in all positions; however, PA consistently provided the lowest reliability and precision

values, regardless of rest position.
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Table 3: Reliability and Precision Values for Ultrasound-Derived Morphological Characteristics
of the Vastus Lateralis after Rest in Different Positions

P(ﬁftsi:m Variable  ICCay Ccv SEM MD
CSA 0.996 1.054 0.404 1.120

UnCorEI 0.976 2316 1.059 2.934

P CorEl 0.994 1.162 1.197 3317
MT 0.990 1.643 0.045 0.123

PA 0.811 11.216 2.270 6.293

SET 0.996 2.826 0.018 0.049

CSA 0.995 1.186 0.486 1.346

UnCorEl 0.967 2.186 1.206 3.342

CorEl 0.992 1.594 1.376 3.815

NDLR MT 0.988 1.735 0.049 0.135
PA 0.861 8.838 1.752 4.859

SET 0.997 2.235 0.015 0.043

CSA 0.995 1.300 0.473 1310

UnCorEl 0.957 2.947 1.444 4.004

SUp CorEl 0.988 2.072 4512 1.628
MT 0.989 1.787 0.044 0.123

PA 0.857 9.358 1.755 4.865

SFT 0.998 2111 0.014 0.038

CSA 0.972 1.515 1.081 2.996

UnCorEl 0.940 3216 1.552 4301

DLR CorEl 0.989 2.157 1.525 4227
MT 0.991 1.739 0.044 0.123

PA 0911 8.570 1511 4.187

SET 0.998 2.303 0.015 0.041

CSA 0.995 1.205 0.494 1.369

UnCorEI 0.959 2784 1.309 3.629

o1 CorEl 0.994 1.666 1210 3.354
MT 0.970 2.302 0.063 0.174

PA 0.801 8.782 2.192 6.076

SET 0.995 3.431 0.023 0.065

CSA 0.991 1.252 0.588 1.628

UnCorEI 0.960 2.690 1314 3.642

Average CorEl 0.991 1.730 1.964 3.268
MT 0.986 1.841 0.049 0.136

PA 0.848 9.353 1.896 5.256

SET 0.997 2.581 0.017 0.047
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CSA: Cross-sectional area; UnCorEI: Uncorrected echo intensity; CorEl: Corrected echo
intensity; MT: Muscle thickness; PA: Pennation angle; SFT: Subcutaneous adipose tissue
thickness; IP: Assessments taken immediately post laying down in the non-dominant lateral
recumbent position; NDLR: Assessments taken 15 minutes after laying down in the non-
dominant lateral recumbent position; SUP: Assessments taken 15 minutes after laying down in
the supine position; DLR: Assessments taken 15 minutes after laying down in the dominant
lateral recumbent position; ST: Assessments taken 15 minutes after standing up; ICC: Intraclass
correlation coefficient; CV: Coefficient of variation; SEM: Standard error of measurement; MD:
Minimal difference.
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Values for ultrasound-derived muscle morphological characteristics between different
rest positions are presented in Table 4. A significant main effect for rest position was observed
for CSA (Fa.041, 83238 = 7.206, p < 0.001, 1> = 0.194). CSA was significantly greater after rest in
ST compared to NDLR (p < 0.001; d =0.12; 95% CI = 0.442 to 1.147), SUP (p < 0.001; d =
0.12; 95% CI = 0.392 to 1.156), and DLR (p = 0.009; d = 0.10; 95% CI = 0.171 to 1.107),
although a trend towards a significant difference was observed between ST and IP (p = 0.070; d
=0.06; 95% CI =-0.036 to 0.861). Additionally, CSA was significantly greater after rest in IP
compared to NDLR (p = 0.010; d = 0.06; 95% CI = 0.099 to 0.665) and SUP (p = 0.007; d =
0.06; 95% CI =0.106 to 0.617), but was not significantly different from DLR (p =0.167; d =
0.04; 95% CI = -0.100 to 0.554). No other differences in CSA existed between rest positions (p >
0.05).

A significant main effect for rest position was observed for UnCorEI (F2311,69.345 =
18.196, p < 0.001, np> = 0.378). UnCorEI was significantly lower after rest in ST compared to all
other positions: IP (p < 0.001; d = 0.50; 95% CI = -4.455 to -2.057), NDLR (p < 0.001; d = 0.47,
95% CI =-4.176 to -1.814), SUP (p < 0.001; d = 0.37; 95% CI = -3.577 to -1.263), and DLR (p
=0.001; d =0.30; 95% CI = -2.896 to -0.805). Additionally, UnCorEI was significantly greater
after rest in IP compared to SUP (p =0.017; d = 0.12; 95% CI = 0.163 to 1.509) and DLR (p <
0.001; d =0.22; 95% CI = 0.789 to 2.021), but was not significantly different from NDLR (p =
0.359; d =0.04; 95% CI =-0.310 to 0.831). UnCorEI was significantly greater after rest in
NDLR compared to DLR (p =0.001; d =0.18; 95% CI = 0.517 to 1.772). A trend towards a

significant difference was observed after rest in NDLR compared to SUP (p = 0.092; d = 0.09;
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95% CI =-0.100 to 1.250). Additionally, a trend towards a significant difference was observed
after rest in DLR compared to SUP (p = 0.083; d = 0.09; 95% CI =-1.218 to 0.079).

A significant main effect for rest position was observed for CorEl (F2.522, 69.345 = 5.046, p
=0.005, np? = 0.144). CorEI was significantly lower after rest in ST compared to IP (p = 0.019; d
=0.11; 95% CI = -3.141 to -0.306), and NDLR (p = 0.037; d = 0.09; 95% CI = -2.590 to -0.085),
but was not significantly different from SUP (p = 0.983; d = 0.00; 95% CI =-1.258 to 1.231) or
DLR (p =0.649; d = 0.02; 95% CI = -1.544 to 0.976). Additionally, CorEI at was significantly
greater after rest in IP compared to SUP (p =0.001; d =0.12; 95% CI = 0.721 to 2.700) and DLR
(»p =0.001; d =0.10; 95% CI = 0.670 to 2.209), but was not significantly different from NDLR
(p=0.182; d =0.03; 95% CI = -0.190 to 0.963). CorEI was significantly greater after rest in
NDLR compared to SUP (p = 0.008; d = 0.09; 95% CI =0.377 to 2.271) and DLR (p = 0.004; d
=0.07;95% CI =0.357 to 1.750). No significant differences in CorEI were observed rest in DLR
compared to SUP (p =0.510; d = 0.02; 95% CI =-0.557 to 1.099).

A significant main effect for rest position was observed for MT (Fi 891, 56.723 = 85.671, p <
0.001, np? = 0.741). MT was significantly greater after rest in ST compared to all other positions:
IP (p <0.001; d =0.99; 95% CI = 0.321 to 0.465), NDLR (p <0.001; d =0.97;95% CI = 0.311
to 0.461), SUP (p <0.001; d =1.02; 95% CI = 0.322 to 0.475), and DLR (p < 0.001; d = 0.98;
95% CI =0.322 to 0.481). No other differences in MT existed between rest positions (p > 0.05).

A significant main effect for rest position was observed for PA (F2.577,77.3220=35.621, p <
0.001, np? = 0.543). PA was significantly greater after rest in ST compared to all other positions:

IP (p <0.001; d=1.17; 95% CI =3.953 to 6.974), NDLR (p < 0.001; d = 1.22; 95% CI = 3.862
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t0 6.991), SUP (p < 0.001; d = 1.32; 95% CI = 4.357 to 7.300), and DLR (p < 0.001; d = 1.33;
95% CI =4.491 to 7.917). No other differences in PA existed between rest positions (p > 0.05).
A significant main effect for rest position was observed for SFT (F1.978, 59.335 = 12.660, p <
0.001, np? = 0.297). SFT was significantly greater after rest in ST than in all other positions: IP
(p <0.001; d=0.13; 95% CI = 0.018 to 0.057), NDLR (p < 0.001; d =0.14; 95% CI =0.021 to
0.061), SUP (p < 0.001; d =0.12; 95% CI = 0.019 to 0.053), and DLR (p < 0.001; d =0.13; 95%

CI =0.020 to 0.057). No other differences in SFT existed between rest positions (p > 0.05).
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Table 4: Values for Ultrasound-Derived Muscle Morphological Characteristics of the Vastus Lateralis after Rest in Different Positions

Rest

Position CSA (cm?) UnCorEI (AU) CorEI (AU) MT (cm) PA (°) SFT (cm)
IP 3491 +6.48 49.93 £ 6.76* 74.58 £ 14.87%  2.077 £ 0.445* 17.45 £ 4.89% 0.608 + 0.294*
NDLR 34.52 £ 6.58*1 49.67 £ 6.52* 74.19 £ 15.19%  2.083 +0.443* 17.49 £ 4.48* 0.605 + 0.289%*
SUP 3454 £6.38*L  49.09 £6.85*%L  72.87+14.69.+ 2.071 +0.428%* 17.09 +4.41* 0.610 = 0.298*
DLR 34.68 £ 6.42% 4852 +6.21*4r  73.14 £ 14491+  2.068 £0.463* 16.71 +4.92* 0.607 +0.293*
ST 35.32+6.72 46.67 £ 6.39 72.86 + 15.67 2.470 £0.360 22.92 +4.57 0.646 + 0.318

Values are presented as mean + standard deviation. CSA: Cross-sectional area; UnCorEIl: Uncorrected echo intensity; CorEI:
Corrected echo intensity; MT: Muscle thickness; PA: Pennation angle; SFT: Subcutaneous adipose tissue thickness; IP: Assessments
taken immediately post laying down in the non-dominant lateral recumbent position; NDLR: Assessments taken 15 minutes after
laying down in the non-dominant lateral recumbent position; SUP: Assessments taken 15 minutes after laying down in the supine

position; DLR: Assessments taken 15 minutes after laying down in the dominant lateral recumbent position; ST: Assessments taken 15

minutes after standing up.
*Significantly different from ST (p < 0.05).
LSignificantly different from IP (p < 0.05).
tSignificantly different from NDLR (p < 0.05).
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Association between Muscle Morphology and Physical Performance

All physical performance data exhibited normality except for UVJ RPD and leg press 1-
RM. However, the associations between muscle morphological characteristics after rest in
different positions and physical performance was assessed using parametric analysis due to the

majority of the variables exhibiting normality.

Unilateral Vertical Jump (UVJ) Performance

Associations between UVJ performance and ultrasound morphological characteristics are
presented in Table 5. CSA after rest in all positions was a significant predictor of UVJ PF, UV]J
peak power, and UVJ total work. CSA was the best predictor of UVJ PF after rest in DLR, and
the best predictor of both UVJ peak power and UV]J total work after rest in IP. Nevertheless,
CSA was also significantly correlated with UVJ PF after rest in all other rest positions (r = 0.551
—0.571, p =0.001), as well as with peak power (r =0.510 — 0.531, p = 0.002 — 0.003) and total
work (r =0.385-0.418, p = 0.019 — 0.032) after rest in all other positions. The correlation
between CSA and PF after rest in DLR (r = 0.592, p < 0.001) was significantly greater than that
after rest in SUP (r = 0.551, p =0.001) (z =-2.126, p = 0.042). No other statistically significant
differences were observed between rest positions for CSA and UV]J peak power, or CSA and
UVI total work correlation coefficients (p < 0.05). Additionally, no other statistically significant
differences were observed between rest positions for CSA and PF correlation coefficients. CSA
did not significantly predict UV] height, peak velocity, or RPD after rest in any position.

CorEI after rest in all positions was a significant predictor of UVJ height and peak

velocity. CorEl was the best predictor of UVJ height after rest in NDLR and the best predictor of
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peak velocity after rest in IP. Nevertheless, CorEl was also significantly correlated with UVJ
height after rest in all other rest positions (r = -0.555 — -0.497, p = 0.001 — 0.004), and with UVJ
peak velocity after rest in all other positions (r = -0.479 — -0.419, p = 0.006 — 0.019). Neither the
correlation between CorEI and UV]J height in IP, nor the correlation between CorEI and peak
velocity in IP were significantly different from any other rest position (p < 0.05). CorEI did not
significantly predict PF, peak power, total work, or RPD after rest in any position. Additionally,
UnCorEI was not a significant predictor of any UVIJ performance variable.

MT was a significant predictor of PF and peak power. MT was the best predictor of PF
after rest in IP, and the best predictor of peak power after rest in ST. Nevertheless, MT was
significantly correlated with PF after rest in all other positions (r = 0.394 — 0.423, p = 0.018 —
0.028) and with peak power after rest in all positions, except SUP (IP: r = 0.385, p = 0.032;
NDLR: r=0.391, p = 0.030; DLR: r = 0.373, p = 0.039; SUP: r = 0.345, p = 0.058). Neither the
correlation between MT and PF after rest in IP, nor the correlation between MT and peak power
after rest in ST were significantly different from any other rest position (p < 0.05). MT was not a
significant predictor of UV] height, peak velocity, total work, or RPD after rest in any position.

PA was a significant predictor of UVJ height, UVJ PF, UV]J peak power, UV]J peak
velocity, and UVJ RPD. PA was the best predictor of UVJ height, peak power, peak velocity,
and RPD after rest in IP. PA was also significantly correlated with RPD after rest in all other
positions (r = 0.363 — 0.568, p = 0.001 — 0.045). The correlation between PA and RPD after rest
in IP (r = 0.646, p < 0.001) was significantly greater than that after rest in ST (r = 0.363, p =
0.045) (r =2.244, p = 0.033). Although PA was also the best predictor of peak power after rest in

IP, it was also significantly correlated with peak power after rest in NDLR and DRL, but not
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SUP or ST (NDLR: r=0.428, p =0.016; DLR: r = 0.415, p = 0.020; SUP: r=0.317, p = 0.082;
ST: r=0.106, p = 0.571). The correlation between PA and peak power after rest in IP (r = 0.475,
p =0.007) was significantly greater than that after rest in ST (r =0.106, p = 0.571) (t =2.652, p
=0.013). No other statistically significant differences were observed between rest positions for
PA and peak power correlation coefficients (p > 0.05).

PA was the best predictor of PF after rest in DLR. Nevertheless, PA was significantly
correlated with PF after rest in all positions, except ST (IP: r =0.414, p = 0.021; NDLR: r =
0.417, p=0.019; SUP: r=0.419, p = 0.019; ST: r = 0.091, p = 0.625). The correlation between
PA and PF after rest in in NDLR, IP, DLR, and SUP was significantly greater than that after rest
in ST (IP: r =2.221, p = 0.035; NDLR: t = 2.045, p = 0.050; DLR: r = 2.221, p = 0.035; SUP: r =
2.193, p = 0.037). No other statistically significant differences were observed between rest
positions for PA and peak UVIJ PF correlation coefficients (p > 0.05).

PA was not significantly correlated with UVJ height (r = 0.107 — 0.271, p = 0.140 —
0.565) or UVJ peak velocity (r =0.108 — 0.255, p = 0.167 — 0.563), except for after rest in IP
(UVJ height: r=0.363, p = 0.045; UV] peak velocity: r = 0.360; p = 0.047). The correlation
between PA and UV] height was significantly greater after rest in IP than that after rest in SUP (¢
=-2.250, p =0.032) and DLR (¢ = 2.206, p = 0.035), but no statistically significant differences
were observed between IP and NDLR, or IP and ST (p > 0.05). The correlation between PA and
peak velocity was significantly greater after rest in IP than that after rest in SUP (r = -2.208, p =
0.036), but no significant differences were observed between IP and NDLR, DLR, or ST (p >

0.05). PA alone did not significantly predict total work after rest in any position.

109



SFT did not significantly predict PF, peak power, total work, or RPD after rest in any
position. However, SFT was a significant predictor of UVJ height and peak velocity. SFT was
the best predictor of both UV]J height and peak velocity after rest in IP. Nevertheless, SFT was
also significantly correlated with UVJ height and peak velocity after rest in all other positions
(UVIJ height: NDLR: r =-0.561, p = 0.001; DLR: r =-0.562, p = 0.001; SUP: r =-0.540, p =
0.002; ST: r=-0.555, p = 0.001; peak velocity: NDLR: r =-0.497, p = 0.004; DLR: r = -0.496, p
=0.005; SUP: r=-0.479, p = 0.006; ST: r =-0.484, p = 0.006). Neither the correlation between
SFT and UV]J height or SFT and peak velocity were significantly different from any other

position (p < 0.05).
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Table 5: Associations between Ultrasound-Derived Muscle Morphological Characteristics after
Rest in Different Positions and Unilateral Vertical Jump (UVJ) Outcome Measures

Morphf) logical UV] Variable Best P?sition R? SEE p-value Other Potential Positions
Variable Predictor
Height None - - - - -
PF DLR/¢ 0.592 0.350 191.44 <0.001 IP., NDLRJ, SUPL, STL
Peak Power IPL 0.537 0.288 403.65 0.002 NDLRJ, SUP., DLRY, ST
C5A Peak Velocity None - - - - -
Total Work Ip* 0.425 0.181 94.06 0.017 NDLR*, SUP*, DLR*, ST*
RPD None - - - - -
Height None - - - - -
PF None - - - - -
UnCorEl Peak Power None - - - - -
Peak Velocity None - - - - -
Total Work None - - - - -
RPD None - - - - -
Height NDLR{ -0.556 0.309 2.61 0.001 IP., SUPL, DLRI, ST*
PF None - - - - -
CorEl Peak Power None - - - - -
Peak Velocity Ip* -0.484 0.235 0.15 0.006 NDLR*, SUP*, DLR*, ST*
Total Work None - - - - -
RPD None - - - - -
Height None - - - - -
PF Ip* 0.449 0.202 212.12 0.011 NDLR*, SUP*, DLR*, ST*
Peak Power ST* 0.433 0.187 431.25 0.015 IP*, NDLR*, DLR*
MT Peak Velocity None - - - - -
Total Work None - - - - -
RPD None - - - - -
Height [ped 0.363  0.132 2.93 0.045 None
PF DLR*® 0.453 0.205 211.67 0.010 IP*¢, NDLR*®, SUP**
Peak Power Ip*® 0.475 0.226 420.85 0.007 NDLR*, DLR*
A Peak Velocity [p#d 0.360 0.129 0.16 0.047 None
Total Work None - - - - -
RPD PL® 0.646 0.418 2295.56 <0.001 NDLRJ, SUP/, DLRY, ST*
Height IPL -0.565 0.319 2.60 0.001 NDLRJ, SUPL, DLRY, STL
PF - - - - - -
Peak Power - - - - - -
SFT Peak Velocity IP* -0.503 0.253 0.15 0.004 NDLR#*, SUP*, DLR*, ST*
Total Work - - - - - -
RPD - - - - - -




Associations between ultrasound-derived morphological characteristics and UVJ outcome
measures based on the rest position having the greatest shared variance with the outcome
variable. The morphological variable is presented first, followed by the rest position that best
predicts the dependent variable. “Other Potential Positions” denotes rest positions also having a
significant association with the dependent variable. “None” indicates that the specific measure of
morphology was not a significant predictor of jump performance after rest in any position. r:
Pearson’s correlation coefficient; R’: Shared variance; SEE: Standard error of the estimate; CSA:
Cross-sectional area; UnCorEl: Uncorrected echo intensity; CorEl: Corrected echo intensity;
MT: Muscle thickness; PA: Pennation angle; SFT: Subcutaneous adipose tissue thickness; PF:
Peak force; RPD: Rate of power development; IP: Assessments taken immediately post laying
down in the non-dominant lateral recumbent position; NDLR: Assessments taken 15 minutes
after laying down in the non-dominant lateral recumbent position; SUP: Assessments taken 15
minutes after laying down in the supine position; DLR: Assessments taken 15 minutes after
laying down in the dominant lateral recumbent position; ST: Assessments taken 15 minutes after
standing up.

Statistically significant (p < 0.05) correlation magnitudes were quantified using the following
descriptors (Hopkins et al., 2009):

*Moderate

LLarge

Differences between correlation coefficients were examined using the Williams modification of
the Hotelling test (Kenny, 1987):

aSignficantly stronger than IP (p <0.05)

bSignficantly stronger than NDLR (p < 0.05)

“Signficantly stronger than DLR (p < 0.05)

dSignficantly stronger than SUP (p < 0.05)

“Signficantly stronger than ST (p < 0.05)
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Unilateral Isometric and Isokinetic Performance

No significant associations existed between uncorrected isometric and isokinetic
performance values and muscle morphological characteristics after rest in any position.
Associations between muscle morphological characteristics and isometric and isokinetic
performance values after adjusting for dynamometer arm length with their best rest position
predictor, along with their practical interpretation, are presented in Tables 6 and 7, respectively.

UnCorEI was a significant predictor of MVIC IMP50. UnCorEI was the best predictor of
MVIC IMP50 after rest in IP. Nevertheless, UnCorEI was significantly correlated with MVIC
IMP50 after rest in SUP and ST, but not after rest in NDLR or DLR (NDLR: r=0.276, p =
0.132; DLR: r=0.309, p = 0.091; SUP: r =0.356, p = 0.049; ST: r = 0.359, p = 0.047). The
correlation between UnCorEI and MVIC IMP50 was significantly greater after rest in IP than
that after rest in ST (r = 2.373, p = 0.025). No other statistically significant differences were
observed between rest positions for UnCorEI and MVIC IMP50 correlation coefficients (p >
0.05).

MT was a significant predictor of IsokPF (180°-s™") and IsokPF (240°-s!), but was not a
significant predictor of any of the isometric variables. MT was the best predictor of IsokPF
(180°-s!) and IsokPF (240°-s™!) after rest in DLR. Nevertheless, MT was significantly correlated
with IsokPF (180°-s™!) after rest in all other positions (IP: r =0.394, p = 0.028; NDLR: r = 0.427,
p =0.017; SUP: r = 0.401, p = 0.025; ST: r = 0.421, p = 0.018), and with IsokPF (240°-s!) after
rest in [P and NDLR, but not after rest in SUP and ST (IP: r = 0.362, p = 0.045; NDLR: r =

0.373, p =0.039; SUP: r=0.349, p = 0.054; ST: r =0.331, p = 0.069). No other statistically
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significant differences were observed between rest positions for MT and IsokPF (180°-s™') or MT
and IsokPF (240°-s™!) correlation coefficients (p < 0.05).

PA was a significant predictor of IsokPF (60°-s!), IsokPF (180°-s!), and IsokPF (240°-s"
1, but was not a significant predictor of any of the isometric variables. PA was the best predictor
of IsokPF (60°-s™!) after rest in DLR, but was not significantly correlated with IsokPF (60°-s™)
after rest in any other position (IP: » =0.261, p = 0.156; NDLR: r = 0.201, p = 0.279; SUP: r =
0.102, p =0.587; ST: r=0.210, p = 0.257). The correlation between PA and IsokPF (60°-s7)
after rest in DLR was significantly greater than that after rest in SUP (# =-2.489, p = 0.019). No
other statistically significant differences were observed between rest positions for PA and IsokPF
(60°-s™") correlation coefficients (p > 0.05).

PA was the best predictor of IsokPF (180°-s™) after rest in ST. Nevertheless, PA was
significantly correlated with IsokPF (180°-s™!) after rest in all other positions, except for SUP
(IP: r=0.435, p =0.014; NDLR: r = 0.370, p = 0.040; SUP: r=0.311, p = 0.088; DLR: r =
0.370, p = 0.040). No other statistically significant differences were observed between rest
positions for PA and IsokPF (180°-s!) correlation coefficients (p < 0.05).

PA was the best predictor of IsokPF (240°-s™) after rest in DLR, but was not significantly
correlated with IsokPF (240°-s™!) after rest in any other position (IP: r = 0.347, p = 0.056;
NDLR: r = 0.340, p = 0.061; SUP: r = 0.339, p = 0.062; ST: r =0.321, p = 0.079). No other
statistically significant differences were observed between rest positions for PA and IsokPF
(240°-s™") correlation coefficients (p < 0.05).

CSA, CorEl and SFT were not significant predictors of any isometric or isokinetic

variables after rest in any position.

114



Table 6: Associations between Muscle Morphological Characteristics after Rest in Different
Positions and Isometric Variables after Correcting for Biodex Dynamometer Arm Length.

Morph.ological Ison}etric Best P?sition R? SEE p-value Other P(.)tential
Variable Variable Predictor Positions
PF None - - - - -
RFD50 None - - - - -
RFD100 None - - - - -
CSA RFD200 None - - - - -
IMP50 None - - - - -
IMP100 None - - - - -
IMP200 None - - - - -
PF None - - - - -
RFD50 None - - - - -
RFD100 None - - - - -
UnCorEI RFD200 None - - - - -
IMP50 p#b 0.366 0.134 2.28 0.043 SUP*, ST*
IMP100 None - - - - -
IMP200 None - - - - -
PF None - - - - -
RFD50 None - - - - -
RFD100 None - - - - -
CorEI RFD200 None - - - - -
IMP50 None - - - - -
IMP100 None - - - - -
IMP200 None - - - - -
PF None - - - - -
RFD50 None - - - - -
RFD100 None - - - - -
MT RFD200 None - - - - -
IMP50 None - - - - -
IMP100 None - - - - -
IMP200 None - - - - -
PF None - - - - -
RFD50 None - - - - -
RFD100 None - - - - -
PA RFD200 None - - - - -
IMP50 None - - - - -
IMP100 None - - - - -
IMP200 None - - - - -
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Morphological  Isometric  Best Position Other Potential

R? SEE p-value

Variable Variable Predictor Positions
PF None
RFDS50 None
RFD100 None
SFT RFD200 None
IMP50 None
IMP100 None
IMP200 None

Associations between ultrasound-derived morphological characteristics and isometric and
isokinetic outcome measures based on the rest position having the greatest shared variance with
the dependent variable after correcting for dynamometer arm length. The morphological variable
is presented first, followed by the rest position that best predicts the dependent variable. “None”
indicates that the specific measure of morphology was not a significant predictor of isometric or
isokinetic performance after rest in any position. “Other Potential Positions” denotes rest
positions also having a significant association with the dependent variable. r: Pearson’s
correlation coefficient; R?: Shared variance; SEE: Standard error of the estimate; CSA: Cross-
sectional area; UnCorEI: Uncorrected echo intensity; CorEl: Corrected echo intensity; MT:
Muscle thickness; PA: Pennation angle; SFT: Subcutaneous adipose tissue thickness; PF: Peak
force; RFD50: Rate of force development over 50 ms; RFD100: Rate of force development over
100 ms; RFD200: Rate of force development over 200 ms; IMP50: Impulse over 50 ms;
IMP100: Impulse over 100 ms; IMP200: Impulse over 200 ms; IP: Assessments taken
immediately post laying down in the non-dominant lateral recumbent position; NDLR:
Assessments taken 15 minutes after laying down in the non-dominant lateral recumbent position;
SUP: Assessments taken 15 minutes after laying down in the supine position; DLR: Assessments
taken 15 minutes after laying down in the dominant lateral recumbent position; ST: Assessments
taken 15 minutes after standing up. Statistically significant (p < 0.05) correlation magnitudes
were quantified using the following descriptors (Hopkins et al., 2009):

*Moderate

LLarge

Differences between correlation coefficients were examined using the Williams modification of
the Hotelling test (Kenny, 1987):

aSignficantly stronger than IP (p <0.05)

bSignficantly stronger than NDLR (p < 0.05)

“Signficantly stronger than DLR (p < 0.05)

dSignficantly stronger than SUP (p < 0.05)

“Signficantly stronger than ST (p < 0.05)
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Table 7: Associations between Muscle Morphological Characteristics after Rest in Different Positions and Isokinetic Variables
after Correcting for Biodex Dynamometer Arm Length.

Moéggggi cal Is,(;l;ii:;tlic B;s:el(;(i)cstizi:n R? SEE p-value Other Potential Positions
IsokPF (60°-s7!) None - - - - -
CSA IsokPF (180°-s7!) None - - - - -
IsokPF (240°-s) None - - - - -
IsokPF (60°-s") None - - - - -
UnCorEI IsokPF (180°-s") None - - - - -
IsokPF (240°-s) None - - - - -
IsokPF (60°-s7!) None - - - - -
CorEI IsokPF (180°-s7!) None - - - - -
IsokPF (240°-s") None - - - - -
IsokPF (60°-s") None - - - - -
MT IsokPF (180°-s7) DLR* 0.457 0.209 84.88 0.010 IP*, NDLR*, SUP*, ST*
IsokPF (240°-s7) DLR* 0.398 0.158 72.32 0.027 IP*, NDLR*
IsokPF (60°-s7) DLR*d 0.358 0.129 139.81 0.048 None
PA IsokPF (180°-s7) ST* 0.447 0.200 85.35 0.012 IP*, NDLR*, DLR*, SUP*
IsokPF (240°-s7) DLR* 0.379 0.144 72.95 0.035 None
IsokPF (60°-s7!) None - - - - -
SFT IsokPF (180°-s7!) None - - - - -
IsokPF (240°-s7) None - - - - -

Associations between ultrasound-derived morphological characteristics and isometric and isokinetic outcome measures based on
the rest position having the greatest shared variance with the dependent variable after correcting for dynamometer arm length. The
morphological variable is presented first, followed by the rest position that best predicts the dependent variable. “None” indicates
that the specific measure of morphology was not a significant predictor of isometric or isokinetic performance after rest in any
position. “Other Potential Positions” denotes rest positions also having a significant association with the dependent variable. r:
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Pearson’s correlation coefficient; R’: Shared variance; SEE: Standard error of the estimate; CSA: Cross-sectional area; UnCorEI:
Uncorrected echo intensity; CorEl: Corrected echo intensity; MT: Muscle thickness; PA: Pennation angle; SFT: Subcutaneous
adipose tissue thickness; IsokPF (60°-s™!): Isokinetic peak force at 60° per second; IsokPF (180°-s™): Isokinetic peak force at 180°
per second; IsokPF (240°-s™!): Isokinetic peak force at 240° per second; IP: Assessments taken immediately post laying down in
the non-dominant lateral recumbent position; NDLR: Assessments taken 15 minutes after laying down in the non-dominant lateral
recumbent position; SUP: Assessments taken 15 minutes after laying down in the supine position; DLR: Assessments taken 15
minutes after laying down in the dominant lateral recumbent position; ST: Assessments taken 15 minutes after standing up.
Statistically significant (p < 0.05) correlation magnitudes were quantified using the following descriptors (Hopkins et al., 2009):
*Moderate

LLarge

Differences between correlation coefficients were examined using the Williams modification of the Hotelling test (Kenny, 1987):
aSignficantly stronger than IP (p < 0.05)

®Signficantly stronger than NDLR (p < 0.05)

‘Signficantly stronger than DLR (p <0.05)

4Signficantly stronger than SUP (p < 0.05)

“Signficantly stronger than ST (p <0.05)
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Unilateral Maximal Strength

Associations between maximal strength values and ultrasound-derived morphological
characteristics are presented in Table 8. CSA, MT, and PA were significant predictors of
maximal strength. CSA was the best predictor of 1-RM unilateral leg press after rest in NDLR.
Nevertheless, CSA was significantly correlated with 1-RM after rest in all other positions (IP: r
=0.712, p < 0.001; DLR: r = 0.690, p < 0.001; SUP: r=0.703, p < 0.001; ST: r =0.698, p <
0.001). PA was the best predictor of 1-RM unilateral leg press after rest in NDLR. Nevertheless,
PA was significantly correlated with 1-RM after rest in all other positions, except ST (IP: r =
0.371, p = 0.040; DLR: r =0.359, p = 0.047; SUP: r =0.385, p =0.032; ST: r=0.244,p =
0.187). MT was the best predictor of 1-RM unilateral leg press after rest in IP. Nevertheless, MT
was significantly correlated with 1-RM after rest in all other positions (NDLR: r = 0.698, p <
0.001; DLR: r=0.676, p < 0.001; SUP: r=0.703, p < 0.001; ST: r = 0.662, p < 0.001). No other
statistically significant differences were observed between rest positions for CSA, PA, or MT
and 1-RM correlation coefficients (p < 0.05). UnCorEI, CorEIl, and SFT were not significant

predictors of unilateral 1-RM.
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Table 8: Associations between Ultrasound-Derived Morphological Characteristics after Rest in Different Positions and Unilateral
Strength

Morphological Strength Best Position

Variable Variable Predictor r R? SEE p-value Other Potential Positions
CSA NDLR# 0.713 0.508 80.54 <0.001 IP+, SUPL, DLRY, ST
UnCorEI None - - - - -
CorEI 1-RM Leg None - - - - -
MT Press 1P+ 0.722 0.522 79.42 <0.001 NDLRJ, SUPL, DLRY, ST.
PA NDLR* 0.427 0.182 103.83 0.017 IP*, SUP*, DLR*
SFT None - - - - -

Associations between ultrasound-derived morphological characteristics and maximal unilateral strength based on the rest position
having the greatest shared variance with the dependent variable. The morphological variable is presented first, followed by the rest
position that best predicts the dependent variable. “None” indicates that the specific measure of morphology was not a significant
predictor of maximal strength after rest in any position. “Other Potential Positions” denotes rest positions also having a significant
association with the dependent variable. r: Pearson’s correlation coefficient; R?: Shared variance; SEE: Standard error of the
estimate; CSA: Cross-sectional area; UnCorEI: Uncorrected echo intensity; CorEl: Corrected echo intensity; MT: Muscle
thickness; PA: Pennation angle; SFT: Subcutaneous adipose tissue thickness; IP: Assessments taken immediately post laying down
in the non-dominant lateral recumbent position; NDLR: Assessments taken 15 minutes after laying down in the non-dominant
lateral recumbent position; SUP: Assessments taken 15 minutes after laying down in the supine position; DLR: Assessments taken
15 minutes after laying down in the dominant lateral recumbent position; ST: Assessments taken 15 minutes after standing up.
Statistically significant (p < 0.05) correlation magnitudes were quantified using the following descriptors (Hopkins et al., 2009):
*Moderate

LLarge

tVery Large
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CHAPTER FIVE: DISCUSSION

Measurements of muscle morphology in the present study demonstrated high reliability
and precision in all positions measured, although PA consistently provided the lowest reliability
values, regardless of position. The main findings of this study suggest that CSA, UnCorEI, and
CorEI of the VL differ significantly between NDLR, DLR, and SUP; however, MT, PA, and
SFT appear to remain consistent. Additionally, CSA, MT, PA, and SFT were significantly
greater in ST compared to NDLR, DLR, and SUP. The magnitude of the relationships between
muscle morphology and performance differed between rest positions. Muscle morphology
measured in the IP position appears to be the best overall predictor of performance for the
majority of variables, although utilizing the NDLR and DLR positions may provide comparable,
or potentially stronger results for variables such as IsokPF. Although standing measures of VL
morphology have previously been reported to exhibit stronger relationships with physical
performance than recumbent measures (Wagle et al., 2017), our results suggest that the
relationship between muscle morphology and various performance variables in ST are weaker
compared to the recumbent positions examined, specifically for IsokPF, 1-RM leg press, and for
all UV] variables except total work. ST was the best predictor of performance for only two
performance variables examined: UVJ peak power (through MT) and IsokPF (180°-s™!) (through
PA), whereas the remaining significant relationships between muscle morphology and
performance were better elucidated in recumbent positions.

The current investigation demonstrated that MT of the VL was significantly greater in ST
compared to all recumbent positions, and CSA was significantly greater in ST compared to all

recumbent positions except IP, although a trend was observed between IP and ST. Despite the
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statistical significance of these findings, a smaller percentage of change was observed in CSA
compared to MT, and only the changes in MT exceeded the MD. These findings align with those
of Wagle et al. (2017), indicating that measurements of muscle size taken at the muscle belly
may be highly influenced by changes in position in the absence of changes in CSA of the muscle
as a whole. This may be a result of muscle gearing, whereby muscle fibers shorten in the
longitudinal direction and expand in the transverse direction, causing the muscle fibers to rotate
to a greater PA, creating a bulging effect in the center of the muscle (Azizi & Brainerd, 2007;
Wakeling & Randhawa, 2014). Consistent with this, we observed a significantly greater PA in
ST compared to all other positions. However, muscle gearing is typically reported during muscle
contraction, when a change in the length of the muscle is induced (Azizi & Brainerd, 2007), and
in the present study, careful consideration was taken to ensure that joint angle remained constant
and the muscle was relaxed in all positions examined. It is apparent that changes in position can
create a similar muscle-bulging effect due to the influence of gravity on muscle shape and size
(Thoirs & English, 2009; Tomko et al., 2018) that may not be due to true muscle gearing.
Anecdotally, we noted that the VL appeared flatter and longer in the recumbent positions when
compared to ST, which may have allowed for only modest changes in CSA as compared to the

larger changes in MT (Tomko et al., 2018) (Figure 13).
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Figure 13: Standing (ST) Versus Supine (SUP) Rest Ultrasound Images

Sample ultrasound images captured from the same participant after 15 minutes of rest in SUP
and during ST. All ultrasound settings were kept consistent throughout testing for each
participant.
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In the present study, we observed a significant decrease in CSA after 15 minutes of rest
in the recumbent position (from IP to NDLR), with no significant change in MT, which is
consistent with other studies (Arroyo et al., 2018; Shea, 2017). Previous research has
demonstrated that changes in body posture induce rapid fluctuations in blood flow and resulting
tissue volume (Cerniglia et al., 2007; Maw et al., 1995; Tan et al., 1973; Thoirs & English, 2009;
Wagle et al., 2017). Specifically, the transition from a standing to supine position causes a
substantial decrease in hydrostatic pressure of the lower body and redistribution of blood out of
the lower extremities to the abdomen and head, resulting in a net absorption of fluid from the
interstitial fluid into the capillaries, decreasing tissue volume (Fawcett & Wynn, 1960; Hagan et
al., 1978; Maw et al., 1995; Taylor et al., 1995; Thompson et al., 1928; Waterfield, 1931a).
Arroyo and colleagues (2018) observed a significant decrease in VL CSA between 0 and 10
minutes and 0 and 15 minutes after transitioning from standing to recumbent positions in the
absence of changes in MT, while Shea (2017) observed a similar decrease in VL CSA following
20 and 30 minutes of supine rest. These findings suggest that VL CSA may be more sensitive to
fluid shifts than MT, whereas MT appears to be influenced more by changes in posture (from ST
to IP) and muscle shape. Therefore, the fluid shifts may induce a change in the transverse size of
the muscle rather than a change in the thickness of the muscle. However, contrasting research by
Lopez et al. (2019) showed no change in rectus femoris CSA or total quadriceps femoris MT 15
minutes after transitioning from standing to a supine position. Similarly, Tomko et al. (2018)
observed no change in the CSA of the rectus femoris 5 minutes after transitioning from a supine
to a seated position, or from a seated to a supine position. The discrepancy in these findings may

be related to the muscle examined. Specifically, Lopez et al. (2019) and Tomko et al. (2018)
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examined the rectus femoris, whereas the present study and the investigations of Arroyo et al.
(2018) and Shea (2017) examined the VL. Speculatively, the larger size and different structure of
the VL may allow for a larger quantity of fluid shifting into and out of the muscle, or perhaps
within the muscle. However, it is unlikely that fluid shifts from the intracellular space to the
extracellular space occur with postural changes because changes in plasma osmolality are not
induced with changes in position, and therefore fluid shifts occur primarily throughout the
extracellular space (Lippi et al., 2015; Maw et al., 1995; Scharfetter et al., 1997; Shirreffs &
Maughan, 1994). The discrepancies in findings may also be related to differences in populations
investigated. The present study and the work of Arroyo et al. (2018) utilized young, healthy
adults (24.3 + 3.4 y), whereas Lopez et al. (2019) utilized older adults (men: 68.1 4.6y,
women: 66.8 + 4.1 y). With aging, a decrease in contractile tissue along with an increase in the
relative proportion of intramuscular fat and fibrous tissue is often expected. This age-related
decline in muscle mass may lead to a decrease in fluid storage within the muscle (Hooper et al.,
2014), which may lessen the likelihood of fluid shifts occurring in response to changes in posture
(Lopez et al., 2019). This is consistent with the findings of Cerniglia et al. (2007) and Shea
(2017). Cerniglia and colleagues (2007) observed no change in the CSA of low-density muscle
after 15 minutes of supine rest, and Shea (2017) reported no changes in CSA of the VL in
individuals who engaged in low amounts of physical activity until between 20 and 30 minutes
following recumbency. In contrast, Arroyo et al. (2018) observed significant changes in VL CSA
after only 10 minutes of recumbency in a sample of young healthy adults. Nevertheless, Tomko
et al. (2018) observed no change in rectus femoris CSA in physically-active, young males and

females. However, in this study, CSA was only measured only 5 minutes after changing position.
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Although fluid shifts have been shown to occur rapidly upon changes in posture (Hagan et al.,
1978; Husdan et al., 1973; Stoker et al., 1966; Tan et al., 1973), these changes may not become
evident within 5 minutes of position change (Arroyo et al., 2018). Additionally, participants in
the Tomko et al. (2018) investigation transitioned from a seated to supine position, whereas the
subjects in the current investigation and those by Arroyo et al. (2018), Lopez et al. (2019), and
Shea (2017) transitioned from a standing to supine position. Previous research has demonstrated
that the transition from the supine to sitting position, or from the sitting to upright position,
appears to result in smaller fluid shifts than transitioning from the supine to standing position
(Maxfield et al., 1941; Tan et al., 1973), which may explain the differences in these findings.

CSA was significantly lower in NDLR compared to IP in the present study, and in SUP
compared to IP; however, no differences were observed between IP and DLR. These findings
may indicate that fluid shifts occur to a greater extent after 15 minutes of rest in the NDLR and
SUP positions, whereas rest in the DLR position may minimize fluid shifts in the dominant limb.
Since hydrostatic pressure within a body part is based on its vertical height from the heart
(Martin-Du Pan et al., 2004), transitioning from a supine to lateral recumbent position alters the
positioning of the dominant leg relative to the heart, which may alter blood flow. For example, in
the DLR position, there will be an increased hydrostatic pressure and accumulation of blood in
the vessels on the dominant side of the body (Bryan, 1974; Kallet, 2015). This may allow for a
greater accumulation of fluid in the tissues on the dominant side, resulting in a larger CSA in the
DLR position.

We found that UnCorEI was significantly lower in ST compared to all recumbent

positions, which aligns with the findings of Tomko et al. (2018), who observed a significantly
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lower UnCorEI of the rectus femoris in the seated position compared to supine rest. These
authors suggest that the difference in UnCorEI values may be solely attributed to the alterations
in the shape and curvature of the thigh, as well as changes in joint angle upon positional change,
causing the muscle to appear flatter in the supine position compared to the seated position
(Tomko et al., 2018). This would have caused the deep aponeurosis of the muscle to be located
more proximally to the ultrasound probe, which may have reduced the attenuation of sound
waves that occurs with deeper tissues (Pillen & van Alfen, 2011; H. J. Young et al., 2015).
Although the knee and hip angles were kept consistent throughout positions in the present study,
previous research has suggested that an attenuation of ultrasound waves may occur in tissues that
are examined at a greater depth (Pillen & van Alfen, 2011; H. J. Young et al., 2015). This
attenuation can decrease the acoustic reflectivity of the ultrasound waves, therefore artificially
decreasing EI values in deeper tissues (Pillen & van Alfen, 2011). With a postural change,
research has demonstrated that SFT may change over time due to fluid shifts out of the
subcutaneous layer (Berg et al., 1993; Hargens, 1983). The current investigation demonstrated
that SFT values were significantly lower in all recumbent positions compared to ST, which
supports this notion. Therefore, the greater SFT in ST may have contributed to a greater overall
depth of the muscle, which may account for the decreased UnCorEI that was observed in ST.
Notwithstanding, a postural change from the ST to SUP position would also result in fluid shifts
from the muscle, which would likely result in a lower muscle water content, and a pursuant
increase in EI (Pillen & van Alfen, 2011). A postural change from the ST to SUP position may,
therefore, combine the decreased SFT and water content of muscle, which both act to increase

El In the present study, when correcting for SFT, CorEI values obtained in ST remained
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significantly lower than those obtained during IP and NDLR but were not different from SUP
and DLR. These findings indicate that small and insignificant changes in SFT may have large
implications for CorEI values.

The present study demonstrated that UnCorEI did not change after 15 minutes of rest in
the recumbent position (from IP to NDLR), which aligns with the findings of others (Arroyo et
al., 2018; Lopez et al., 2019) in the VL. In contrast, Shea (2017) observed significant increases in
UnCorEI of the VL after transitioning from a standing to recumbent position, which was
followed by a subsequent decline back to original values. However, when UnCorEI values were
corrected for SFT, older individuals (69.3 + 8.3 y) had significantly elevated CorEI values over
the first 20 minutes of supine rest, with values peaking 10 minutes after recumbency, whereas
the CorEI values in younger individuals (21.4 + 2.5 y) did not change over time (Shea, 2017).
This is counterintuitive, considering that previous research has demonstrated that gravitational
fluid shifts occur to a lesser extent in older individuals compared to younger individuals (Fu et
al., 1999). However, these researchers attributed the group differences to changes in SFT, as SFT
was significantly decreased in the older group from 15 to 30 minutes of recumbency, whereas no
change was observed in the younger individuals (Shea, 2017). In the present investigation, SFT
did not change after 15 minutes of rest in any recumbent position, which is in alignment with
Shea (2017) in the younger individuals, and may explain the lack of change in both UnCorEI and
CorEI over time (from IP to NDLR).

Both CorEI and UnCorEI differed between recumbent positions. UnCorEI values were
significantly lower in DLR and SUP as compared to IP, and in DLR as compared to NDLR,

while CorEI values were significantly lower in DLR and SUP as compared to IP and NDLR.
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Previous research has suggested that fluid shifts and water content of the muscle affect EI (Pillen
& van Alfen, 2011). It appears that a decrease in CSA of the muscle as a result of gravitational
fluid shifts would also accompany an increase in EI (Pillen & van Alfen, 2011). Of the three
measurements taken in the recumbent positions after 15 minutes of rest (NDLR, SUP, and DLR),
we reported that DLR exhibited the lowest UnCorEI and the greatest CSA values. However, the
greatest EI values (both UnCorEI and CorEI) were observed in IP, which had the greatest CSA
of all of the recumbent positions. These findings are counterintuitive, especially considering that
the IP measurements were taken immediately after transitioning from a standing position to
recumbent position, and ST had the lowest EI values. Notably, the differences in UnCorEI and
CorEI values did not exceed the MD. Additionally, previous research has reported that UnCorEI
may increase within the first 5 minutes after changing from a standing to recumbent (Shea, 2017)
or seated (Tomko et al., 2018) position, followed by a decline over time (Tomko et al., 2018),
which may be a result of the rapid redistribution of body fluid out of the lower body that occurs
with changes in position. Further research is necessary to elucidate these findings, but based on
the current study and others (Arroyo et al., 2018; Lopez et al., 2019; Shea, 2017; Tomko et al.,
2018), the association between changes in muscle EI and muscle size with postural shifts may
not appear to exhibit a linear relationship, and changes in muscle EI may not directly reflect
absolute changes in muscle fluid shifts, but may be more sensitive to the rate of change in fluid
within the muscle (Lopez et al., 2019), SFT (Shea, 2017), or probe handling (Dankel et al.,
2018). Previous research has demonstrated that tilting an ultrasound probe as little as 2° can
produce significant changes in EI (Dankel et al., 2018) although all reliability values for EI were

high in the present study. Furthermore, although differences in SFT between positions did not
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reach statistical significance, when correcting for SFT, CorEI in SUP and DLR were not
significantly different from ST, indicating that small changes in SFT can have large impacts on
CorEL

The relationship between measures of muscle size and maximal strength-producing
capabilities have been well established (Andersen & Aagaard, 2006; Fukunaga et al., 2001;
Hakkinen & Keskinen, 1989; Wells et al., 2014). In the present investigation, both CSA and MT
were significantly correlated with UVJ PF and PP, as well as 1-RM leg press. However, only MT
was significantly correlated with IsokPF, and only CSA was significantly correlated with UV]J
total work. Although measures of MT and CSA appear to be highly correlated (Varanoske et al.,
2017b), an investigation by Wells and colleagues (2014) suggested that increases in lower-body
strength following a resistance training program may be better elucidated by changes in MT
rather than changes in CSA, and therefore quantification of both may be necessary for a
comprehensive understanding of muscle function. However, neither CSA nor MT was a
significant predictor of UV] height, peak velocity, or RPD in the present study, which is
consistent with research indicating that peak velocity and RPD are related primarily to muscle
architecture, fiber-type distribution, and efferent neural drive rather than muscle size (Andersen,
Andersen, Zebis, & Aagaard, 2010; Bottinelli, Canepari, Pellegrino, & Reggiani, 1996; Harridge
et al., 1996; Maffiuletti et al., 2016; Zaras et al., 2016). In the present study, PA was significantly
associated with all jump variables except for total work, all isokinetic variables, and 1-RM leg
press. Muscles with greater PA contain greater amounts of contractile protein arranged in parallel
within a given volume, resulting in an increased ability muscle to produce force (Blazevich et al.,

2006). Additionally, muscles with longer FL (and concomitant lower PA) typically contain a
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greater amount of series elastic material, and therefore may display a slower RFD because of the
time it takes to take up the series elastic slack prior to true muscle contraction (Blazevich et al.,
2009; Maffiuletti et al., 2016). Therefore, it is apparent that muscle architecture may affect both
maximal strength as well as RFD.

In addition to muscle size and architecture, EI has been shown to be related to force
production (Cadore et al., 2012; Fukumoto et al., 2012; Jajtner et al., 2015; Mangine, Fukuda, et
al., 2014; Mangine et al., 2015; Mangine, Hoffman, et al., 2014; Melvin et al., 2014; Scanlon et
al., 2014). Muscles with lower EI values typically contain lower amounts of non-contractile
tissue, including intramuscular fibrous tissue, connective tissue, and/or fat, as these tissues
increase the number of reflections within the muscle (Pillen et al., 2009; Pillen & van Alfen,
2011; Watanabe et al., 2013). In the present investigation, CorEI was significantly correlated
with UV]J height and peak velocity, whereas UnCorEI was not a significant predictor of any UV]J
variable, which may indicate that CorEI may be preferred over UnCorEI when examining jump
performance. However, neither CorEI nor UnCorEI was associated with isometric performance
or 1-RM leg press, indicating that other factors may underlie the quantification of EI.

In contrast to previous research stating that stronger relationships may be observed
between standing measures of muscle morphology and performance (Wagle et al., 2017), the
majority of performance variables measured in the present investigation demonstrated greater
relationships with recumbent measures of muscle morphology than during ST. A potential
explanation for the discrepancy in these findings is that the types of performance tests
administered in each study differed: the tests in the study of Wagle et al. (2017) were all

conducted in the upright position, whereas in the present investigation, the UVJ was conducted
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in the upright position, the isometric/isokinetic measures were completed while the participant
was seated, and the 1-RM leg press was completed while the participant was in a reclined seated
position. Wagle et al. (2017) suggested that the ability of muscle morphology to predict
performance may be a factor of how the muscle is analyzed relative to the position in which the
muscle is utilized. Therefore, measurements taken during ST may reflect muscle function only
during upright activities. However, in the current study, ST was the greatest predictor of only
UVIJ peak power through MT. Further, ST measurements of CorEI provided only moderate
relationships with UVJ height, whereas CorEl in all other positions provided large relationships
with UV]J height. Similarly, IP measurements of PA were significantly more correlated with UV]J
peak power and RPD than in ST, and DLR measurements of PA were significantly more
correlated with UVJ PF than in ST. ST did not provide significant correlations with UVJ height,
PF, or peak velocity; however, PA in select recumbent positions did. In the seated position, no
measure of morphology in ST was a significant predictor of IsokPF (240°-s™), although other
measures in recumbent positions were. Also, despite the report of the interpretation of the
magnitude of correlation coefficients between muscle morphology and performance in the
investigation by Wagle et al. (2017), many of the correlations did not reach statistical
significance; thus the results should be reported with caution.

Wagle et al. (2017) reported stronger relationships between standing measures of
muscle size with all isometric variables compared to supine measurements; however, this
positional difference subsided during dynamic 1-RM squats. Due to the influence of joint angle
and muscle length on morphology (Hacker et al., 2016; Maganaris, 2001; Myers et al., 2013;

Narici et al., 1996), the ability of muscle morphology to predict performance may be related to
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the type of exercise assessment utilized and the actions of the muscle during the test. Although
we did not administer a test of upright isometric strength, no measures of muscle size in any
position were significantly related to any of the isometric variables analyzed while seated. As the
ultrasound assessments were completed while in the recumbent position or while standing and
were not completed while seated, this may support the findings of Wagle et al. (2017), who
suggested that the ability of muscle morphology to predict performance may be related to the
position in which the muscle is analyzed. Additionally, previous research has shown that, while
the rectus femoris contributes to only modest amounts of knee extension torque, changes in
muscle length (as induced by a seated position in comparison to a supine position with knees
flexed) have a considerable effect on increasing knee extension torque (Maffiuletti & Lepers,
2003). Therefore, the isometric and isokinetic variables examined in this investigation may have
been better elucidated by examining both rectus femoris and VL muscle morphology. Further, all
strength assessments in the investigation of Wagle et al. (2017) involved the use of both limbs,
however only right VL morphology was assessed, whereas the present investigation examined
muscle morphology and performance in the dominant limb. Additionally, although Wagle et al.
(2017) reported that the joint angle was standardized for both the standing and recumbent
positions, the standing position did not involve resting the leg against a device or plinth, and
therefore some degree of muscle contraction may have been required to retain the joint angle
during the assessment, which may have affected measures of muscle morphology.

In general, morphology of the VL assessed after IP appears to be the best predictor of
physical performance. All muscle morphological characteristics that were significant predictors

of UV] performance and 1-RM leg press included IP as a rest position. Although IP provided
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comparable relationships with UVJ performance variables to DLR and NDLR, PA after rest in IP
was the only significant predictor of UVJ height and peak velocity, and MT in IP provided very
large relationships with 1-RM leg press, whereas the other positions provided large relationships.
Additionally, although PA after rest in DLR was the only significant predictor of IsokPF (60°-s
1Y and IsokPF (240°-s!), the magnitude of these relationships were not different from those
provided by IP. Therefore, it is evident that waiting for fluid shifts to occur prior to ultrasound
assessment of the VL may not be necessary when predicting performance, and instead may
rather diminish the ability of muscle morphological characteristics to predict function (Arroyo et
al., 2018; Cerniglia et al., 2007). Further research is necessary to elucidate whether similar
positioning is necessary to accurately evaluate changes in muscle morphology and concomitant
changes in muscle function throughout the course of a training program.

Notably, VL morphology taken after rest in SUP was not the best predictor of any of the
performance variables. As this is typically the rest position utilized in most previous reports of
ultrasonography, (Jajtner et al., 2013; Mangine, Fukuda, et al., 2014; Mangine, Hoffman, et al.,
2014; Scanlon et al., 2014; Varanoske et al., 2017a, 2017b; Wells et al., 2014), future
investigations may want to avoid using this position prior to ultrasound assessment in order to
obtain the best prediction of VL muscle function. Nevertheless, many researchers wish to
analyze more than just the VL in the assessment of lower-body muscle morphology, which often
require subjects to lay in different positions. Specifically, during the analysis of the rectus
femoris, subjects are typically positioned in the SUP position. As rest in the SUP position has
been shown to diminish the relationships between VL morphology and performance to a greater

extent than rest in the NDLR and DLR positions, researchers may wish to analyze both the right
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and left VL muscles immediately after transitioning to a recumbent position, followed by
analysis of the rectus femoris muscles. Although previous research has demonstrated that the
recuts femoris may be less sensitive to postural-induced fluid shifts (Lopez et al., 2019; Tomko
et al., 2018), future research may seek to examine the effects of changes in position on the rectus
femoris and its relationship with performance. The weaker relationships between the recumbent
measures of muscle morphology compared to standing measures as reported by Wagle et al.
(2017) may also be a factor of the SUP position utilized prior to testing, although they do not
directly report which position subjects were instructed to lay in prior to ultrasound assessments.
In conclusion, VL CSA, UnCorEl, and CorElI differ after rest in different recumbent
positions; however, MT, PA, and SFT appear to remain consistent. All measures of muscle
morphology in ST are different from those obtained after 15 minutes of rest in the recumbent
positions except for CorEl. Although different magnitudes of relationships were observed
between muscle morphological characteristics measured after rest in different positions and
performance variables, muscle morphology in IP most consistently provides the best predictor of
unilateral lower-body performance. Additionally, some measures of muscle morphology in ST
provided significantly weaker relationships with IsokPF, 1-RM leg press, and all UV] variables
except total work when compared to the recumbent positions. Thus, researchers and practitioners
should consider evaluation of muscle morphology of the lower-body immediately after laying
down to predict force and power production. This positioning also necessitates fewer
requirements on the technician and the subject and therefore may be preferred over standing

ultrasounds in many settings.
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Wiy am I being invited to take part in a vesearch study?

We invite vou fo take part in a research study becanse you are an apparently healthy. resistance-frained
male aged 18-35. For this study. resistance-trained is defined as traming at least 3 times/week for at
least 1 vear. Additionally, vou are not an amputee, have a pacemaker. have any chronic illness cansing
you to seek medical care, are not sedentary, have not taken performance-enhancing drugs in the last §
months. can complete all of the testing visits, are able to complete all of the testing visits, and can
complete all of the exercise assessments on the fannliarization day.

What sheuld I knoew about a research study?

Someone will explain this research study to vou.

Whether or not you take part 1s up to you

You can choose not fo take part.

You can agree to take part and later change your mund.
Your decision will not be held against you.

You can ask all the questions you want before you decide.

Whe can I talk to?

If wou have questions, concemns, or complaints. or think the research has hurt vou, talk to Alvssa
Varanoske (Co-Investigator) at (407) 823-2367 or by e-mail at Alvssa Varanoske@ucfedu, or Dr.
Adam Wells (Principal Investigator) at {(407) §823-3906 or by e-mail at Adam Wells@ucf edu.
This research has been reviewed and approved by an Institutional Review Board ("IRE™). You may
talk to them at 407-823-2001or irtb@uct edu ift

Your questions. concerns. or complaints are not being answered by the research feam
You cannot reach the research team.

You want to talk to someone besides the research team.

You have questions about your nghts as a research subject.

You want fo get information or provide input about this research.

Wiy is this reseavch being done?

Ultrasounds have been used to measure nmscle size and quality. Ultrasound imaging of the lower body
usually requires individuals to Iay down for a period of 15-mimutes. However., there is no consensus on
which position to lay in. and this may affect the muscle mage, Therefore, the relationship between
ulirasound and athletic performance may also be affected. The purpose of this study 15 to exanune 1f
mmscle charactenistics of the lower body change after laving on different sides of the body and fo
determine which position has the greatest association with athletic performance.

How long will the research last?

We expect that vou will be in this research study for approximately 1-2 weeks. consisting of 3 visits to
the Human Performance Laboratory. The first visit will consist of filling out paperwork. The second
visit will consist of a familiarization with all of the exercise testing assessments. The familiarization
visit should last approximately 1-2 hours, You will then be asked to come in for a third visit at least 72
hours after your fammlianzation visit, which will consist of anthropometric measurements, ultrasound
image analysis, and exercise testing assessments. The assessments completed on testing day will Iast
approximately 4 hours.

d g -
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How many people will be stndied?
We expect about 36 people here will be in this research study. with a maxinmm of 44 people enrolled.

What happens if I say ves, I want to be in ihis research?

You will be asked to report o the University of Central Flonida's Human Performance Laboratory on
three separate occasions. Thie first visit will be a preliminary visit to complete the informed consent
form and determine eligibility through completion of a Medical History and Activity Questionnaire
(MHAD), Physical Activity Readimess (Juestionname (PAR-()+), and to address any questions that vou
may have.

The second visit to the Human Performance Laboratory will be a familiarization session. During
familianzation vou will become acquainted with all exercise testing assessments. Duning this wisit,
you will complete a standardized wamm-up. followed by the assessments that you will complete during
your testing session (Vertical Jump. Isometric Tsokinetic Foree, Unilateral Leg Press).

Following a period of at least 72 howurs from the faniliarization session andor 72 hours from any other
vigorous lower-body exercise. you will then return 1o the Human Performance Lab for a testing
session, which will consist of the same tests completed during the familiarization day. In addition, you
will complete anthropometric testing (height, weight, body composition) and we will take images of
your leg nscles using ultrasound.

Specific Procedures:

+ Familiarization Visit: During the familiarization. you will become familianized with the
exercise assessment protocols that will be used durmg the testing session

Prior to the exercise assessments. vou will be required fo complete a standardized dymamie warm-
up. You will first pedal on a cycle ergometer for S-minufes at a self-selected pace. You will then
complete ten bodv-weight squats. ten body-weight wallang lunges. ten dvonamic walking hamstring
stretches. ten dynamic walkang quadriceps stretches. ten arm circles, and ten arm swings.

= Vertical Jump (VI) Assessment:

=  You will be asked to perform a unilateral countermovement jumyp on a force
plate, while standing on vour dominant leg. You will be instructed to perform a
counfermovement junp whereby vou will be required to bend at the knee and
extend to maxinize the height of each jump while keeping vour hands on your
hips. You will perform three consecutive unilateral countermovement jumps
with three minutes of rest in between each jump.

o Biodex Assessments:

=  You will be seated in an isokinetic dynamometer and strapped into the chair at
the watst. shoulders. and across the thigh to complete a senies of solanefic
strength assessments. You will be tested on your dominant leg, which will be
secured to the dynamometer arm. Your range of motion will be assessed. You
will then complete three wamm-up repetitions. After the wamm-up, you will be
instructed fo perform two maximal veluntary confractions while your leg stays
in place, and you will be instructed fo hold the contraction for 6 seconds. You
will also be asked to perform three sets of three isokinefic confractions while the
dynamometer arm moves at different but constant speeds. Each isokinetic
testing set will consist of maximal concentrnic knee extension and passive knee
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flexion Between testing sefs, 3-munuies of rest will be provided. A sample
depiction of the Biodex assessment is included below.

-'al_ujq‘ =

o Unilateral Leg Press Assessment:
= Youwill be familiarized with the leg press assessment through proper

mstruchion and fechmique. You will be asked to complete a umlateral leg press
with the domunant leg. using a weight that you can successfully lift no more than
10 times. You will perform two warm-up sets. Two to four subsequent trials will
be performed to deternune a repetition maxinuun (RM). If you complete more
than 10 repetitions of the exercise with a grven external load, vou will be
provided with 3-minutes of rest, and weight will be added to the external
apparatus until vou can complete only 10 or fewer repetitions m one set. If you
do not the range of motion critena. the trial will be discarded.

& Testing Visit:
o Hydration Starus:

= Youwill be instructed to be properly hydrated prior to coming to the Iaboratory
prior to your testing visit. Upon arnival to the laboratory. you will be asked to
provide a small urine sample in a sterile container. Unine samples will be
analyzed for hydration stafus. If you are not properly hydrated at the time of
assessment, you will be asked to drink water and will then asked to provide
another urine sample until properly hydrated. There are no risks associated with
the measurement of hydration status.

o Anthropomeiric Measurements:

= Body Mass and Height: Body mass and height will be measured using a scale.
There are no risks or discomforts associated with the measorement of body
weight and height.

= Body Composition: Body composition will be assessed via bioelectrical
impedance analysis (BIA), i which a small cumrent will be sent through the
body to measure electnical impedance. You will be asked fo refrain from
Docemant Reviion Do, Seplapber 17, 218
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consunung food for 4 hours and caffeine/alcohol for 24 howrs prior to the visit.
Upon testing, you will be asked to remove yvour footwear, socks, and jewelry.
You will be asked to stand on the platform with your heels placed on the circular
tear sole electrodes and pick up the handles of the device. The whole procedure
will take approximately 2-mimites, and there are no risks or discomforts
associated with the use of BIA

o Ultrasound Assessments:

=  Durnng the testing visit. five rounds of non-invasive muscle ulirasound images
will be captured from the dominant leg vastus lateralis (VL) nwscle, which isa
mmscle of the thigh by a Graduate student who has been trained in
ultrasonography fechniques and assessment. Of the five rounds of ultrasound
assessments completed, the order of rounds 12, 3. and 4 will be randonuzed In
the first round. you will be asked fo lay on a table on your left or right side for
examination of the opposite leg, with your legs stacked together. Your legs will
be positioned to allow a bend m the knees. Prior fo image collection. all
anatomical locations of interest will be identified using standardized landmarks.
A mark will be made on the surface of your skin. and ultrasound gel will be
apphied fo vour leg o help capture the image. You will then be asked to remizin
in this pesition for a period of 15-minutes. After the 13-nunute duration has
elapsed. the ultrasound assessments from the first round will be repeated.
Following the first two rounds of ultrasound assessments, vou will be asked to
stand for a period of 15 minutes. After the 15-nunute duration has elapsed. you
will be asked to lay on vour back on a table for a period of 15-punutes. After
this 15-mimite duration has elapsed, you will be instructed to lay on your left or
right side to go through another round of ultrasound assessments. identical to
those used in the first round. Following the third rovnd of assessments, vou will
be asked to stand for a period of 15 minutes. After the 15-minute duration has
elapsed. you will be asked to lay on the opposite side that vou were onginally
positioned on an exanunation table for a period of 13-minutes. After fhus 15-
nunute duration has elapsed. vou will be instructed to lay back on the oniginal
side to go through another rovnd of ultrasound assessments. identical to those
used i the first round. Following the fourth round of assessments, vou will be
asked to stand for a peried of 15 minutes. After the 15-minufe duration has
elapsed. you will be asked to stand on vour non-dominant limb for nltrasound
analvsis of the VL of the donunant limb 1n the standing position. Ulirasound
assessments will be captured while you are standing on the non-dommnant limb
that are identical to those captured in the first rovnd. Ultrasound images will be
later analvzed for nmscle characteristics. There are no potential risks associated
with ultrasonographv. A sample depiction of ultrasound image caphure is
meluded below.

Docmment Revision Date; Septepher 17 08 10 10
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Prior to the exercise assessments, you will be provided with a standardized snack (keal: 150;
protein” g carbobydrates: 23g; fat- 5g) to prevent the effects of low blood sugar on exercise
performance. You will then be required to complete a standardized dynamic warmi-up. You will
first pedal on a cyele ergometer for S-minutes at a self-selected pace. You will then complete
ten body-weight squats, ten body-weight walking lunges. ten dynamic walking hamstring
stretches, ten dynamic walking quadrniceps stretches. fen anm circles, and ten arm swings.

o Vertical Jump Assessment:

= The VI assessments to be completed duning the testing sesston will be idenfical
1o those completed during the familiarization session.

- Biodex Assessments:
= The isokinetic and isomefric assessments to be completed during the testing
session will be identical to the familiarization session
= Unilareral Leg Press Assessment:

= Theumilateral leg press assessment to be completed durmg the testing session
will utilize the external apparatus weight that was established in the
famuliarization session.

IRA NUMBER: BID-18-14303
IRB APPROVAL DATE: 058/21/2018
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A sample figure detailing the assessments involved is included below:
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Informed Consant
Urrileteral Leg
Prais
Farmmillarization

PAR-TE

MHAQ

l:nmul.rir:.."

Hydration Statu
Anthropometries (belght, welght, body composition)

Uitrastrund Assessments ol VL
L: Lay downon sida, ultrapound
2. Sray laying on slde far 15 min, ultrasound
Stand for 15 min
3, Loy supine for 15 min, Mg & utrasound
Srand for 15 min
4, Layon opposng fide for 15 min, fip & ultradoind
Stand far 15 min
5: Standing ultrasound

FandordizedSrech
Warm-Lip
Vi Asgessmants:

Linifataral jump ]l
Rest 3 min

Ti+ hours

Page 7 of 0

Izokinetic
Familiarization

Unilateral Leg Prass Assessment:
Warrn-Up st
1-RM attampt

Isometric/lsokinetlc Assessmsnta:
Wintrrr-Lip s&f
hAYIC
3 min rest
MVIC
3 min rest
isskinetic (3607 fasc
3 min rest
akinglle @ 1807 faes
3 riin reesr
Eokinetic @ 2007 faas

Whar happens if I do not wanr 1o be in this research?
Parficipation in research is completely voluntary. You can decide to participate or not to participate.
You are free to withdraw your consent and discontinue participation in flus study at any time without
prejudice or penalty. Your decision to patticipate or not participate in this study will in no way affect
your continued enrollment, grades, employment or your relationship with the individuwals who may
have an mferest in this siudy.

What happens if I say yves, but I change my mind larer?

You can leave the research at any time it will not be held against you. If you decide to leave the
tesearch, confact the investigator so that the investigator can remove you from the study schedule.
Discontinuation of participation may occur at any time. You have the right to discontinue participation
without penalty. regardiess of the status of the study. If you decide fo leave the study. your data will

s i
Docmment Revitian "B

&'LEF' IRE NUMBER: BI0-18-14303
IRE ASEROVAL DATE: 0S/21/2018
IRB EXPIRATION DATE: DS/04/2018
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Permission to Take Part in a Human Research Study Page § of @

not be imncluded in analyses for publication. Data that is collected prior to withdrawal from the study
will be discarded and not used or distributed to anyvone.

Is there any way being in this smdy conld be bad for me?

No risks are associated with anthropometric or ultrasonography testing. The exercise assessments carmy
the same inherent risks as parficipating in any physical activity. such as muscle soreness and fatigue
and possibly muscle strains, and/or joint sprains. To minimize these risks. you will be instmucted on
appropriate fechnique for the performance assessments. and vou will be required to complete a warm-
up prior to completing the assessments. Although rare, there 1s a possibility of a more serious mjury
when perfornung umlateral assessments, and individuals with pre-existing, undiagnosed jomt
conditions niay be more prone to these events. However, individuals with known joint conditions will
be excluded from participation in the study per the PAR-0Q+ and MHAQ. Additionally, all personnel
nvolved i this study are Masters and Doctoral Research Assistants in the University of Central
Florida’s Human Performance Laberatory. All personnel are CPR certified through the Amenican Red
Cross, and many have First Aid cerfifications throngh the Amencan Red Cross: Furthermore. all
research personnel involved in data collection are expenenced in the adminsstration of the proposed
assessments, and all Doctoral students inveolved in this study are Certified Strength and Conditioning
Specialists through the National Strength and Conditioning Association You will be instructed fo
immediately stop and report any injury or discomfort associated with the performance assessments to a
member of the investigative team The extent of the mjury/discomfort. as well as your ability to
continue with the study. will be subsequently be determined by the investigative feam. If1f is deemed
that the discomfort/injury will prevent you from complefing the stdy, or if the injury/discomfort may
be exacerbated by further participation in the study. the investigative team will suspend your
participation in the study.

What happens to the informarion collecred for the research?

Efforts will be made to linut the use and disclosure of your personal information including research
study and medical records. to people who have a need to review this information We cannot promise
complete secrecy. Organizations that may inspect and copy your information include the IRB and other
representatives of this organization.

All paperwork related to fhis study will be stored m a locked cabinet during and following the
investigation. and all electronically-entered data will be saved in an encrypted file.

Yiour participant folder and ultrasound images will be marked with an ID number to protect against a
breach of confidentiality; your name and ID mumbers will be stored separately and apart.

Aceess to research-related data, paperwork. and records will be linuted to appropriate laboratory
personnel only.

Can I be removed from the researcl withour my OK?

The person in charge of the research study of the sponsor can remove you from the research study
without your approval. Possible reasons for removal include:

* Inability to adhere to the study protocol (ex: exercize tests)

= Failure to adhere to any requirements

+ Failure to complete all visits to the Human Performance Lab

+ You refiuse to take part in either fandlianization or expenmental trial assessment measures

i i 5
D"’f’{""mm"“ Dte; Sepbember 17, 208, 2 vn
WS UCKF o numBER: Bic-18-14303
: IRD APEROVAL DATE: 08/21/2018
IRB EXFIRATION DATE: D8/04/2019

151
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Whart else do I need to know?

If you need medical care because of taking parf in this research study. 1t will be provided by your
primary care physician or the emerpency medical system Generally. this care will be billed to vou,
your insurance, of other third parfy. The University of Central Florida™s Institote of Exercise
Plivsiology and Wellness has no program to pay for medical care for research-related injury,

If you believe vou have been iyjured durmg participation in this research project. vou may file a claim
with UCF Environmental Health & Safety. Risk and Insurance Office. P.O. Box 163500, Orlando, FL
32816-3500, (407) 823-6300. The University of Central Florida 1s an agency of the State of Flonda for
purposes of sovereign smnminity and the university’s and the state’s lability for personal iy or
property damage is extremely limited under Florida law. Accordingly, the university”s and the state’s
ability to compensate you for any personal injury or property damage suffered during this research
project is very limited.

No individual results will be published or shared with amy third person or party, including the

study sponsor. Individual results will remain confidential and only be relaved to participants

upon request following the conclusion of all data collection and analyses.

Signamre Block for Capable Adult
Your signature documents vour pernussion fo take part in this research.

Signature of subject Date
Printed name of subject
Signature of person obtaiming consent Date

Pnnted name of person obtainng consent

My sipnamre below documents that the information in the consent document and any other wntten informahon was
accurately explaived to, and apparently undesstood by, the subject, and that consent was frealy given by the zubzect.

Signature of witness to consent process Date

Printed name of person witnessing consent process

- : i
D“:'E;"'“'““"E b septeber 1T 38 e 1re
SV LICF B NUMBER: BID-18-14303
: IRB APPROVAL DATE: 08/21/2018
IRB EXPIRATION DATE: D9/04/2019
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2017 PAR-Q+

The Physical Activity Readiness Questionnaire for Everyone

The health benefits of regular physical activity are clear; more people should engage in physical
activity every day of the week. Participating in physical activity is very safe for MOST people. This
questionnaire will tell you whether it is necessary for you to seek further advice from your doctor

OR a qualified exercise professional before becoming more physically active.

GENERAL HEALTH QUESTIONS

Please read the 7 questions below carefully and answer each one honestly: check YES or NO.

YES

1) Has your doctor ever sald that you have a heart condition (] OR high blood pressure (]

2) Do you feel pain in your chest at rest, during your daily activities of living, OR when you do
physical activity?

3) Do you lose balance because of dizziness OR have you lost consclousness in the last 12 months?
Please answer NO if your dizziness was associated with over-breathing {incduding during vigorous exerciss).

4) Have you ever been diagnosed with another chronic medical condition (other than heart disease
or high blood pressure)? PLEASELIST CONDITION(S) HERE:

5) Are you currently taking prescribed medications for a chronic medical condition?
PLEASE LIST CONDITION(5} AND MEDICATIONS HERE:

B |8 8|80
O|ajo|o|o

6) Do you currently have (or have had within the past 12 months) a bone, joint, or soft tissue
{muscle, ligament, or tendon) problem that could be made worse by becoming more physically

active? Please answear NO if you had a problem in the past, but it does not limit your current ability to be physically active.
PLEASE LIST CONDITION(S) HERE:

7) Has your doctor ever sald that you should only do medically supervised physical activity?

O

0

rﬁ If you answered NO to all of the questions above, you are cleared for physical activity.

Go to Page 4 to sign the PARTICIPANT DECLARATION. You do not need to complete Pages 2 and 3.

N

(B Start becoming much mare physically active - start slowly and build up gradually.

#® You may take part in a health and fitness appraisal.

consult a qualified exercise professional before engaging in this irftensity of exercise.
\ (® If you have any further questions, contact a qualified exercise professional.

i# Follow International Physical Activity Guidelines for your age (www.whoint/dletphysicalactivity/en/).

i@ Ifyou are over the age of 45 yr and NOT accustomed to regular vigorous to maximal effort exercise,

o=

(@ 1f you answered YES to one or more of the questions above, COMPLETE PAGES 2 AND 3.

/i Delay bacoming more active If:
< You have a temporary illness such as a cold or fever; it s best to wait until you feel better.

You are pregnant - talk toyour health care practiliuner,g:f:r physician, a gualified exercise professional, and/or

complete the ePARmed-X+ at www.epa rmedx.com be becoming more physically active.

Your health changes - answer the questions on Pages 2 and 3 of this document and/or talk to your doctor ora

qualified exercise professional before continuing with any physical activity program.

Vosue S

o1-01-2007
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2017 PAR-Q+

FOLLOW-UP QUESTIONS ABOUT YOUR MEDICAL CONDITION(S)

Do you have Arthritis, Osteoporosis, or Back Problems?
If the above conditionis) is/are presant, answer guestions 1a-1c IfND[:] go to gquestion 2

1a, Do you have difficulty l:un!'ru‘lﬁn;hym.u condition with medications or other physician-prescribed therapies? YES[] N[}
iAnswer NO if you are not currently taking medications or other treatments)
b Do you have joint problems causing pain, a recent fracture or fracture caused by osteoporosis or cancer,
displacad vertebra (e.g., spondylofisthesis, and'or spondylolysis/pars defect (@ crack in the bany ring on the YES[] mo[J
back of tha spinal column}?
ic Have you had steroid injections or taken steroid tablets regularly for more than 3 months? ves[J wo[)
2 Do you currently have Cancer of any kind?
If the above condition(s) is/are present, answer guestions 2a-2b IFND D oo to question 3
1a. Does your cancer diagnosis include 2ny of the following types: lung/bronchogenic, multiple myeloma (cancer of
piasma calls), head, and.'or neck? ves(] noQ)
b, Are you currently receiving cancer therapy (such as chemotheraphy or radiotherapy)! YES[ ] mo[J
3. Do you have a Heart or Cardiovascular Condition? This includes Coronary Artery Disease, Heart Failure.
Diagnosed Abnormality of Heart Rhythm
If the above condition(s) Is/are present, answer guestions 3a-3d ITND [:] go to question 4
1a, Do you have difficulty controlling yYour cendition with medications or other physician-prescribed therapias? ves(J wo[)
(Answer NO if vou are not currently taking medications or other reatments)
3b, Da you have anirregular heart beat that requires medical management! YES[] MO
(2. atrial fibrillation, premature veniricular contraction) = o
3C Do vour have chrondic heart faffure? YES[) WO
3d. Do you have di sed coronary artery (cardiovasculan disease and have not participated in Ear physical
activity in the last 2 months? ‘ f FATERs e vesi) mop)
4, Do you have High Blood Pressure?
If the above condition(s) is/are present, answer guestions 4a-4b irno ] go to gquestion 5
4a. Do you have difficulty controfling your condition with medications or other physician-prescribed thesapies? YES[) MO[]
(Answer MO if you are not currently taking medications or other treatmenis)
4b. Do you have 3 resting blood pressuse equal to o greater than 160/30 mmHg with or without medication?
(Answer YES if you do not know your resting bload pressura) ves(] wa()
5. Do you have any Metabolic Conditions? This includes Type 1 Digbetes, Type 2 Digbetes, Pro-Digbates
If the above condition(s) is/are presant, answer guestions 5a-5e If NO [) go to question 6
La. Do you often have difficulfy controfling your bloed sugar levels with foeds, medications, or other physician-
prescribad therapias? = g P ves(] No(g
5k Do you often suffer from signs and sym of low blood su%ar [hzgogrytam'a}fﬂ}owing exercise and/or
duning activities of daily livina? Signs of I yoomia may include shakiness, nervousness, unusual irritability,  yes[] mo[J
abniormal sweating, dizziness or light-hea mental confusion. difficulty speaking, weaknass, or skeepinass,
5 Do you have any signs of symptoms of diabates complications such as heart or vasoular disease and’or ves[J wo[]
complicaticns affecting your eyes, kidneys, OR the sensation in your toes and feet?
5d. Do you have other metabaolic conditions (such as current pregnancy-refated diabetes, chronic kidney disease; o ves(J wo[J
iver problems)]
te. Are you planning to engage in what for you is unusuzlly kigh (or vigorous) intensity exercise in the near future?  YES[] NO[T)

OsHF Lopyrgf & 2717 ARG {olaboation
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2017 PAR-Q+

FOLLOW-UP QUESTIONS ABOUT YOUR MEDICAL CONDITION(S)

Do you have Arthritis, Osteoporosis, or Back Problems?
If the above conditionis) is/are present, answer guestions 1a-1c IfHD[:l go to gquestion 2

1a, Do you have difficulty l:un!'ru‘lﬁn;l_lrm.lr condition with medications or other physician-prescribed therapies? YEs[] o)
phnswer NO if you are not currently taking medications or other treatments)
b Do you have joint problems causing pain, a recent fracture or fracture caused by osteoporosis oF cancer,
displaced vertebra (a.g., spondylofisthesisy, and/or spondylolysis/pars defect (3 crack in the bony ring on the Yes(] no[j
back of the spinal column}?
([ Have you had steroid injections or taken steroid tablets regularly for more than 3 manths? Yes[] wo[]
2. Do you currently have Cancer of any kind?
If the abowe condition(s) is/are present. answer guestions 2a-2b IFNO D oo to question 3
2a, Does your cancer diagnosis include any of the following types: lung/bronchogenic, multiple myelema (cancer of
piasma callsy, head, and/or nack? ves(] noQ)
b, Arp you currently receiving cancer therapy (such as chemotheraphy or radiotherapy)? yes(] mo(J
3. Do you have a Heart or Cardiovascular Condition? This includes Coronary Artery Disease, Heart Failure,
Diognosed Abnormality of Heart Rhythm
If the above condition(sh is/are present, answer guestions Ja-3d If ND [:] oo to question 4
1a, Do you have difficulty controlling your condition with medications or other physician-perescribed therapias? Yes(] wo[]
{Answer NO if you are not currently taking medications or other treatments)
£ Do vou have an irmegular heart beat that reguires medical managament? YES[] MO
{e:g. atrial fibrillation, premiature veniricular contraction) = o
E Do you have chronic heart fafure? YES[T] Mo
3d. Do you have di sed coronary artery (cardiovascular) diseass and have not participated in far physical
activity in the last 2 months? ‘ " Fartieps s vis() mop)
4, Do you have High Blood Pressura?
If the above condition(s) is/are present, answer questions 4a-4b IFNO D go to guestion 5
4a. Do you have difficulty controfling your condition with medications or other physician-prescribed thesapies? YES[) MO
(Answer MO if you are not currently taking medications or other treatments)
4b D you have 2 resting blood pressure equal to or greater than 160490 mmHg with or without medication?
(Answer YES if you do not know your resting blood pressura) ves(] wo(]
5. Do you have any Metabolic Conditions? This includes Type | Diabetes, Type 2 Digbetes, Pre-Digbetes
If the above conditionis) is/are present, answer guestions 5a-5e If NO[_] goto question &
La. Do you often have difficulty controlling your blood sugar levels with foods, medications, or other physician-
prascribad therapias? = g P w0 m0)
5h Do you often suffer from signs and sym of low blood su%ar [h:ﬁogtytemia}fdlowing exercise and/or
duning activities of daily living? Signs of by yoemia may include shakiness, nervousniess, unusual irtability,  yES[] M0
abnormal sweating, dizziness or light-hea mental confusion, difficulty speaking, weaknass, of sheepingss,
5C Do wou have any signs of symptoms of diabetes complications such as heart of vasoular disease and'or ves[] wa[jJ
complications affecting your eyes, kidnays, OR the sensation in your toes and feet?
5d, Do you have ather metabolic conditions (such as current pregnancy-related diabates, chronic kidney disease; or ves[] mo[]
fiver problems?
e, Are you planning to engage in what for you is unusuzlly high (or vigorous) intensity exercise in the near futare?  YES(] NO[T]

OsSHF Lopyrgf & 271 T PAR-g- (oliaboration

e 01-01-2017

214

156




2017 PAR-Q+

M If you answerad NO to all of the follow-up questions about your medical condition
]

you are ready to become more physically active - sign the PARTICIPANT DECLA RATION below:

It is advised that you consult a qualified exercise professional to hel develop a safe and effective ical
activity plan to m?:et your health needs. REs 5 phys

You are encouraged to start sbw%raﬂd buwild up gradually - 20 to 60 minutes of low to moderate intensity exerciss,
3-5 days per weekincluding aerobic and muscle strengthening exercises.

As you progress, you should alm to accumulate 150 minutes or more of moderate intensity physical activity perwesk.

If you are over the age of 45 yr and NOT accustomed to regular gfgorous to maximal effort exercise, consult a
qualified exercise professional before engaging in this intensity of exercise. y,

r@ @ ®

P m Kin
rg Ifyou answered YES to one or more of the follow-up questions about your medical condition:
You should seek further information before becoming more physically active or engaging in a fitness appraisal. You should complete
the specially designed online screening and exercise recommendations program - the ePARmed-X+ at www.eparmedx.com and/or
visit a gualified exercise professional to work through the ePARmed-X+ and for further information.

&

A Delay bacoming more active if:
g You have a termporary illness such as a cold or fever; it is best to walt until you feel better.

. 'You are pregnant - talk to your health care practitioner, your ician, a qualified exercise professional,
“ and/or complete the ePARmMed-X+ at www.eparmedx.com re becoming more physically active.

.+ Your health changes - talk to your doctor or qualified exercise professional before continuing with any physical
¥ activity program.

@ You are encouraged to photocopy the PAR-O+, You must use the enfire guestionnaire and NO changes are permitted.
@ The authors, the PAR-C+ Collaboration, partner organizations, and their agents assume no liability for persons who

undertake physical activity and/ar make use of the PAR-Q+or ePARmed-X+ If in doubt after completing the questionnaire,
consult your doctor prior to physical activity.

PARTICIPANT DECLARATION
@ All personz who have completed the PAR-Q+ please read and sign the deciaration below.

® if you are less than the legal age required for consentor require the assent of a care provider, your parent, guardian or care
provider must also sign this form.

I, the undersigned, have read, understood to my full satisfaction and completed this questionnaire. | acknowledge that this
physical activity clearance Is valid for a maximum of 12 months from the date it s completed and becomes Invalid if my
condition changes. | also acknowledge that a Trustee {such as my employer, community/fitness centre, health care provider,
orather designate) may retain a copy of this form for thelr records. In these instances, the Trustee will be required to adhere
tolocal; national, and international guideline s regarding the storage of personal heaith informatton ensuring that the
Trustee maintains the privacy of the information and does not misuse orwrongfully disclase such information.

PARTICIPANT ID DATE

SIGMNATURE OF PARENT/GUARDIAN/CARE PROVIDER

— For more information, please contact

The PAR-0+ was created using the evidence-basad AGREE process (1) by the PAR-CH
Em:ﬂw:pm“l'ﬂ;:'l}.‘mm Collabaration chalred by De Darren £ R Warburtan with D Morman Gedhill, oo ercnica
Cibation for PAR- G o g Jamnik, and Dr. Donald C. McRerde (2). Production of this docurment has been made possible
Warkurizn DER, Jserwdk VE, Erecin 530, and Glarhd 1M o kahalf of tha FAR-0+ Claborrtian. through financial contibutions from the Public Health Agency of Canads and the BC Ministry
L.m h—f.:.'. M;mm’arﬁm;'ﬂm’ :;';?nT’ of Health Services. The views expressed harsin do not necessarnly represent the views of the

iz Radarancsn Public Health Agency of Canada or the BC Minkstry of Health Servces.

1. barerik W, Warburton DEY, Wekernbi | MeKarcia D, Sraphard Bl St | nd Glodhil KL Enhancing the sacivenam of dearanca far physical acivity parkcipatioss hackgrourd and owerall procar, APMM 3651153512, 2011,
L. Warburton DER, Ghadhill, lamnik VK, Brdin 350, Mcargia 0, Store |, Charlesmorth 5, and Shephand AL Bvidaros-hased risk o e emant and meommandaiions for physical acivity clearanos: Consersus Doamant. APNW
36{51 864296, 2001,

3, Chishol mCi, Collis ML, Kulok LL, Dovan partW, and Gruber M. Phyeical activity naadingss. Brtish Columbia Medicl oumal. 15751 773

4 Thema: 5, Reading J ard Shaphard L Revision of the Physical Activiby Read neess Duation raira |PAR- 0. Canadior bourral of Sport Scianes 1992174 326-345,

.DSHF Copyright €) 208 7 PAR-Q+ Colaboration & (4
s 01-01-2017
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APPENDIX D: MEDICAL HISTORY AND ACTIVITY QUESTIONNAIRE
(MHAQ)
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Human Performance Laboratory
Unnversity of Central Florida

Confidential Medical and Activity History Questionnaire
Parficipant # Date:
What is your age? ‘What is your birth month/vear?

Are vou willing to maintain the same dietary, supplement, and exercise habifs (besides what 1s done in
the study) for the entire time that vou are enrolled in the study?

Are you currently involved in resistance training (lifting weights, using machines) that you consistently
perform? List all activities in the past vear.

Please list any sports/ activities that you have a lustory of and are currently involved with. List all
activities i the past year.

When was your last physical examination?
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Human Parformance Laboratory
Umversity of Central Flonda

List any medications. herbals. or supplements (vitamins. ergogenic aids, performance-enhancing drugs)
you currently fake or have faken the Iast two months:

Medication/Supplement Reason for medication/supplement

Are you allergic to any medications? If yes, please list medications and reaction.

Please list any allergies, including food allergies that vou may have.

Have you ever been hospitalized? If ves. please explain.
Year of hospitalization Beason

List any chronic (long-term) illnesses that have caused you to seek medical care

Have you undergone major surgery within the previous 16 weeks? If ves, please explain.

(]
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Human Performance Laboratory
Umversity of Cenmral Flonda

Have you ever had (or do you have now) active nialipnant disease or cancer. If ves. please explain.

Have you ever had (or do you have scheduled) any procedure Todine. Bariun. or Muclear Medicine
Isotopes? (CT and PET scans are examples) If yes, please specify the date of the procedure.

Have you ever had (or do you have now) any of the following? If “ves™, please provide an explanation
next to the question. Please circle questions that vou do not know the answer to.

Cystic fibrosis yes no
Water refention problems yes no
Epilepsy es no
Commlsions es no
Dizziness/fainting inconsciousness ves 1o
Chronic headaches Ves no
Chromic cough ves no
Chronic sinus problem ves no
High cholesterol ves no
Rheumatic fever ves no
Bronchitis ves no
Hepatitis yes no
Bladder problems yes no
Tuberculosis (positive skin test) Ves no
Yellow jaundice yes no
Anemia Ves no
Endotoxemia Ves no
Hyperprolactinenia yes o
Anorexia nervosa Ves no
Bulinia Tes o
Stomach/intestinal problems VEs no
Inflammatory bowel disease Ves no
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Human Parformance Laboratory
Unzversity of Central Florada

Arthritis

Back pam

Gout

Dementia

Alzheimer’s

Uncontrolled diamhea/nausea/vomiting
Range of motion restrictions

Cardiovascular Disease
Pernipheral vascular disease
Cerebrovascular disease
Coronary artery disease

Aortic stenosis

Congestive heart failure
Arterial fibrilation

“Heart block™

Myocardial infarction (Heart attack)
Poorly controlled hypertension
Heart pacemaker

High blood pressure

Heart murmur

Pulmonary disease

Chronic obstructive pulmonary disease
Asthnia

Interstitial lung disease

Frphysema

Asrites/ plenral effusion

dagadadn

gagdaaadd

=

L

yes

yes
ves
yes
ves

¥es

EBEEEEEEEBE

EEEEBEEBEEETEBETESE

no

no
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Human Performance Laboratory
Umversity of Cenmral Flonda

Metabolic disorder

Diabetes mellitus (tvpe 1. type 2) Ves
Dhiabetes insipidus Ves
Thyroid disorders ves
Renal disease Ves
Liver disease ves
Inmumnodeficiency disorder ves
Any others (specify):

Do you smoke cigarettes or use any other fobacco products?
Do you have a history of drug or alcohol dependency?

Has vour doctor ever said vou have a heart condition and
that vou should only do physical activity recommended by a
doctor?

Do vou feel any pamn in your chest when vou do
physical activity?

Are vou ever bothered by racing of vour heart?
Do vou ever notice abnormal or skipped heartbeats?

Do vou ever have any arm or jaw disconfort, nausea,
or vomiting associated with cardiac symptoms?

Do you ever have difficulty breathing?

Do you lose your balance because of dizziness or
do you ever lose consciousness?

Are you pregnant?
Is there a chance that vou may be pregnant?

Have you ever had any tingling or numbness in
your arms or legs?

Has a member of your family or close relative

B

g

no

no

no
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Human Performance Laboratory
Unversity of Central Flonda

died of heart problems or sudden death before
the age of 507

Is your doctor currently prescribing drmigs (for
example. water pills) for your blood pressure
or heart condition?

Do vou have a bone or joint problem that could be
made worse by a change in vour physical activity?

Has a health care practitioner ever demied or
restnicted your participation in exercise for any
problem?

Do vou kmow any other reason why you should not do

phyvsical activity?

Ves

ves

oo
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Subject #:

Ultrazound Rest Study
Familiarization

[[] mformed Consent ] PAR-Q+ [roiag
Date: [ [ Time: =

Dominant Leg: L R (circle one)

Warm-Up D

Unilateral Vertical Jump (at least 3) D

Biodex
Seat height (vertical):
Ankle position:
Left/right position:
Front'back position:
For/aft position
MVIC 1
3-min rest
MVIC 2
3-mnin ves|
Isokinetic @60 °5x3 [
3-min vest
Isokinetic @ 180 */sx 3 []
3-min rest
Isokinetic @ 240 /s x 3 []

3-EM Estimared Les Press

Wam-Up 1 Load (8-10 reps):
I-miin rest

Wami-Up 2 Load (6-8 reps):
2-min rest

Warm-Up 2 Load (4-6 reps):
3-nin rest

3-BM Attempt 1 Load (3 reps):
3-min rest

3-BM Attempt 2 Load (3 reps):
3-niin rest

3-BM Atteript 3 Load (3 reps):

Brzveka equation:
Weight / [1.0278 — (0.0278 x Number of repetitions)]
Estimated 1-EM:

Ues
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Subject #:
Ultrazound Rest Study
Testing Day
Dare: Time: -  Age years DOB:
Lastmeal: -  =4hours?T ¥ N
24-hour Alcohol Abstendon: ¥ N 24-hour Caffeine Abstention: Y
Last time exercising: = 2hours? ¥ N
TSG: (1) (2) (3)
Mark Leg D Leg lensth: cm
Height: il Body Mass: kg
BIA Percent Body Fat: % Print BIA Sheet: D
'S Randomization Order
Supine:
Non-Dominant Lateral Recumbent:
Dominant Iateral Recumbent:
Standing: 35
Supine:

Time laying down:
Plus 15-min time:
Actual time at beginning of assessment:

Non-Dominant Lateral Recumbant:
Time laving dowm:
IP time of assessment:
Plus 15-nun fime:
Acmmal fime at beginning of assessment:

Dominant Lateral Eecumbant:
Time laying down:
Plus 15-min time:
Actual time at beginming of assessment:

Standing:
Time standmg:
Plus 15-min time:
Actal tune at beginning of assessment:

N
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Subject #
Warm-Up D
Unilateral Verdcal Jump
Jumgp 1:
Height: cm
Peak Force: N
Peak Power: W
Total Work: I
Peak Velocity: n's
RPD: Nis
3-min rest
Jump 2:
Height: (511}
Peak Force: N
Peak Power: W
Total Work: I
Peak Velocity: ny's
EPD: Nis
3-miin rest
Jump 3:
Height: cm
Peak Force: N
Peak Power: W
Total Work: I
Peak Velocity: m's
EPD: Nis
Biodex
MVIC 1:
Peak Torque: N
Mean Torque: N
3-miin vest
MVIC 2:
Peak Torque: N
Mean Torque: N
3-miin rest

L

Ultrasound Rest Study
Testing Day
Biodex
Isokinedc @ 60 “/sx 3:
Avg Peak Torque: N
Avg Mean Torque: N
3-min rest
Isokinetic @ 180 °/s x 3:
Avg Peak Torgque: N
Avg Mean Torque: N
3-min rest
Tsokinetic @ 240 °/s x 3:
Avg. Peak Torque: N
Avg. Mean Torque: N

1-BM Leg Press

Warm-Up 1 Load (8-10 reps):
I-mim rest

Warm-Up 2 Load (4-6 reps):
Z-min rest

Warm-Up 2 Load (2-3 reps):
3-min rest

1-RM Attempt 1 Load (1 rep):
F-miin rest

1-BEM Attempt 2 Load (1 rep):
F-miin rest

1-BM Attempt 3 Load (1 rep):
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