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ABSTRACT
A novel quantum-behaved particle swarm optimization (QPSO) algorithm, the dual sub-swarm
interaction QPSO algorithm based on different correlation coefficients (DCC-QPSO), is proposed
by constructing master-slave sub-swarms with different potential well centres. In the novel
algorithm, the master sub-swarm and the slave sub-swarm have different functinons during the
evolutionary process through separate information processing strategies. The master sub-
swarm is conducive to maintaining population diversity and enhancing the global search ability
of particles. The slave sub-swarm accelerates the convergence rate and strengthens the
particles’ local searching ability. With the critical information contained in the search space and
results of the basic QPSO algorithm, this new algorithm avoids the rapid disappearance of
swarm diversity and enhances searching ability through collaboration between sub-swarms.
Experimental results on six test functions show that DCC-QPSO outperforms the traditional
QPSO algorithm regarding optimization of multimodal functions, with enhancement in both
convergence speed and precision.

KEYWORDS
Particle swarm optimization;
quantum-behaved particle
swarm optimization; sub-
swarm; interaction

Introduction

Optimization techniques are a mathematically-based
technology used to search for optimal or satisfactory
solutions to various engineering problems [1]. The
Particle Swarm Optimization algorithm (PSO) pro-
posed by James Kennedy and Russell Eberhart [2] is a
recent implementation of these techniques. The essen-
tial idea of PSO is to emulate the flocking behaviour of
birds [3]. Initially, PSO is given with a population of
random solutions, and then it searches for optima by
updating generations [4]. Unlike some other meta-
heuristic algorithms, the standard PSO sustains the
global search strategy, avoids complex evolutionary
operations and enhances convergence capability.
Therefore, the PSO algorithm has drawn broad atten-
tion in various application fields. The random inertia
weight Particle Swarm Optimization (RNW-PSO) is
introduced for trajectory tracking of wheeled mobile
robots [5] and coefficients optimizing of proportion
integration differentiation (PID) controller [6]. An
improved PSO algorithm is used to deal with the prob-
lem of controlling a class of uncertain nonlinear sys-
tems in the presence of external disturbances [7]. A
new and powerful optimization algorithm, known as
chaotic accelerated PSO (CAPSO), is used for deter-
mining the coefficients of the proportional–integral
controller of Dynamic voltage restorer [8].

Nevertheless, some problems remain to be solved in
the PSO algorithm. One that has been raised and
proven by Bergh [9] is that PSO is not guaranteed to
always converge to the global optimal solution.
Although a significant amount of work [10–12] has
been done in recent years to modify and improve PSO,
the state-of-the-art shows that some limitations
remain. Aiming at PSO’s convergence bottleneck,
through the comparison between the human learning
processes and particles’ behaviour in quantum spaces,
Sun [13] proposed the quantum-behaved PSO (QPSO)
algorithm, which leverages the aggregation tendency of
collective intelligence in a population. In QPSO model,
individuals are represented as particles in quantum
space, which continuously iterate according to charac-
teristics seen in human society, such as self-organiza-
tion, collaboration, etc. Theoretical proofs have shown
that QPSO is a globally convergent algorithm. Thus, it
has become an active area of research in several fields
[13–15].

Although the standard QPSO outperforms original
PSO in search ability, its significant drawback is the pre-
maturity. When one particle finds a local optima, the
others will quickly close to it due to the single potential
well centre. If the particles could not find any better loca-
tions during the process to the local optima, the algo-
rithm will run into prematurity. In order to jump out of
the local optima, some improved ways have been pre-
sented in the practical applications, such as the QPSO
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with the extremum disturbed arithmetic operators [16],
the chaos QPSO [17], QPSO with mutation operator
[18], etc. However, these improved algorithms increase
the complexity of the algorithm while avoiding prematu-
rity through the immune mechanism. In order to further
improve the performance of the QPSO algorithm with-
out introducing complexity, this paper proposed a novel
algorithm building on existing research results, which is
the dual sub-swarm interaction DCC-QPSO. First, this
new algorithm divides the entire population into two
sub-populations equal in size. Then, each sub-group
applies different processing methods in order to achieve
the separation of potential well centres. The collabora-
tion between main-group and slave-group can take
advantage of effective information, avoid rapid loss of
population diversity and prevent particles becoming
trapped in local optima by transferring information
between the two subgroups with different potential well
centres. Experimental results on test functions show that
DCC-QPSO outperforms the traditional QPSO algo-
rithm in the optimization of multimodal functions, with
enhancement in both convergence speed and precision.

Binary correlation QPSO algorithm

The standard QPSO algorithm

In a PSO optimization algorithm, the solution space is
abstracted as the birds’ foraging space, where each bird is
abstracted as a massless and size-free particle flying at a
certain speed. Each particle has a fitness value deter-
mined by the function to be optimized. According to the
fitness value, a random search is carried out by each par-
ticle. In every round of iteration, each particle updates
itself by tracking two optima: The first one is the optimal
solution found by each particle itself, commonly referred
to as the personal optimum pbest; the other is the optimal
solution found by the entire population, commonly
referred to as the global optimum gbest. For simplicity, in
this article, Pi = (pi1, pi2, …, piD) and G = (pg1, pg2, …,
pgD) are used to describe the personal optimum and
global optimum of particle i in the D-dimensional search
space, respectively. Particle i’s personal best position pbest
is determined by Equation (1)

PiðtÞ ¼ XiðtÞ if f ðXiðtÞÞ< f Piðt � 1Þð Þ
Piðt � 1Þ if f ðXiðtÞÞ� f Piðt � 1Þð Þ

�
(1)

The index g of the global best position G = (pg1, pg2,
…, pgD) is determined by Equation (2):

g ¼ arg min1�i�D f PiðtÞð Þf g
g 2 1; 2; . . . ;Df g (2)

Reference [19] has demonstrated that standard PSO
is not guaranteed to converge on the global optimum
solution with probability 1, which is a major

shortcoming of the traditional PSO. In order to achieve
global convergence, on the basis of previous studies of
the particles’ convergence behaviours, the QPSO algo-
rithm was proposed based on the d potential well by
representing the PSO system as a quantum space [13].

According to the analysis of particle orbits in the
PSO algorithm done by Clerc and Kennedy [20], a d

potential well can be established at the local attraction
point pi = (pi1, pi2, …, piD) to impact particles in the
population, whose coordinate is:

pi;jðtÞ ¼ c1r1;i;jðtÞPi;jðtÞ þ c2r2;i;jðtÞGjðtÞ
c1r1;i;jðtÞ þ c2r2;i;jðtÞ ; 1� j�D (3)

In this equation, r1 and r2 are random numbers
independently distributed within the interval [0, 1],
called random factors; c1 is the individual cognitive
acceleration coefficient, whereas c2 is the global cogni-
tive acceleration coefficient.

Equation (3) can be simplified as

pi;jðtÞ ¼ ’i;jðtÞPi;jðtÞ þ ½1� ’i;jðtÞ�GjðtÞ (4)

where,

’i;jðtÞ ¼ c1r1;i;jðtÞ=½c1r1;i;jðtÞ þ c2r2;i;jðtÞ� (5)

In our representation, particles are moving in a
quantum space, thus the particles’ states can be
described using the wave function C(X, t). From the
point of view of the theory of dynamics, the conver-
gence process of a particle can be described as follows:
a particle is continuously approaching the local attractor
pi with decreasing speed, and eventually overlaps with
pi. The steady-state of a particle in the d potential well
can be expressed using the Schr€odinger equation.

d2c
dX2

þ 2m

�h2
E þ gdðX � piÞ½ �c ¼ 0 (6)

By solving the above equation, the probability distri-
bution function in every dimension can be obtained for
each particle.

cðXijÞ ¼ 1ffiffiffi
L

p e� jXij � pij j =L (7)

And the position-updating equation of every parti-
cle in each generation in the QPSO can be deduced as:

Xi;jðt þ 1Þ ¼ pi;jðtÞ § Li;jðtÞ
2

ln½1=ui;jðtÞ� (8)

where ui,j(t) » U(0,1), Li,j(t) is the length of the potential
well. Li,j(t) can be evaluated using the following equation:

Li;jðtÞ ¼ 2a� jCjðtÞ � Xi;jðtÞ j (9)
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where C(t) is the average of all personal best positions,
known as the gravity position of the population, and is
evaluated as follows:

CðtÞ ¼ ðC1ðtÞ;C2ðtÞ; . . . ;CnðtÞÞ ¼ 1
N

XN
i ¼ 1

PiðtÞ

¼ 1
N

XN
i ¼ 1

Pi;1ðtÞ; 1N
XN
i ¼ 1

Pi;2ðtÞ; . . . ; 1N
XN
i ¼ 1

Pi;NðtÞ
 !

(10)

Therefore, a particle’s position evolution equation in (6)
is finally defined as follows:

Xi;jðt þ 1Þ ¼ pi;jðtÞ § a� jCjðtÞ � Xi;jðtÞ j ln½1=ui;jðtÞ�
(11)

In the above equation, a is referred to as the
contraction-expansion coefficient, which is the only
parameter in this algorithm except for the population
size and iteration count. In the iteration process, conver-
gence performance is controlled by fine-tuning a. The
value of a can be fixed or decreased in a linear manner.

Binary correlation QPSO algorithm

The coordinate formula of the potential well centre,
which is denoted as pi = (pi1, pi2,…, piD) can be divided
into two portions

(1) Individual cognitive component: c1r1i;jðtÞ
c1r1i;jðtÞ þ c2r2i;jðtÞ Pi;jðtÞ,

which indicates the experiences of the particles
themselves;

(2) Social cognitive component: c2r2i;jðtÞ
c1r1i;jðtÞþc2r2i;jðtÞGjðtÞ,

which represents shared information among the
particle population.

Under the combined effect of the two components
above, the QPSO algorithm aims to find the optimal
solution, adjusting the position of pi constantly in the
solution space according to the sharing of information
and the experiences of each particle.

The coefficients c1, c2 represent the statistic weights
of the particle’s acceleration, reflecting the information
exchanged in the particle swarm. Setting a large c1 will
cause the particles to wander in the local area because
of an undue reliance on their own experience, while a
large c2 will cause the particles to converge to a local
optimum prematurely [19].

As they are important parameters in the standard
PSO algorithm, there are a lot of related studies about
how best to set the values of the acceleration factors c1
and c2 [1,12,20–24]. These policies have obtained some
improvement in the PSO algorithm, however, they do
not take into account the impacts of the random fac-
tors r1 and r2 on algorithm performance.

The independence assumption between r1 and r2 in
the pi formula means the algorithm cannot distinguish
the utilization of pbest and gbest. At present there are
few studies on the effects of parameters r1 and r2 on
the algorithm. However, it is necessary to analyse the
random factors in order to further study the impacts of
the utilization of the particles’ own experiences and
community sharing information on the performance
of the QPSO algorithm, respectively.

To analyse the connection between r1 and r2 in
QPSO, reference [20] suggested the concept of binary
correlation factors and proposed the Binary correlation
QPSO algorithm, referred to as the BC-QPSO algo-
rithm. The BC-QPSO algorithm constructed the rela-
tions between r1 and r2 using the bivariate normal
Copula function: Fr(F

¡1(r1), F¡1(r2), the Fr�echet–
Hoeffding lower bound: W(u, v) = max(u + v - 1, 0),
the Fr�echet–Hoeffding upper bound: M(u, v) = min
(u, v) and the product Copula: P(u, v) = u v. The par-
ticle’s position evolution equation of BC-QPSO is
finally defined as follows:

Xi;j t þ 1ð Þ ¼ pijðtÞ § a� jCj tð Þ � Xi;j tð Þ j �ln 1=ui;j tð Þ
� �

; 1� j�D

pijðtÞ ¼ c1r1i;j tð ÞPi;j tð Þ þ c2r2i;j tð ÞGj tð Þ
c1r1i;j tð Þ þ c2r2i;j tð Þ

Hðr1; r2Þ ¼ Crðr1; r2Þ

8>>>>><
>>>>>:

(12)

Crðr1; r2Þ ¼

Wðr1; r2Þ; r ¼ �1

Pðr1; r2Þ; r ¼ 0

Mðr1; r2Þ; r ¼ 1

FrðF�1ðr1Þ;F�1ðr2ÞÞ; � 1< r< 1; r 6¼ 0

8>>>>>><
>>>>>>:

(13)

where H is the joint distribution function of the binary
correlation factors r1, r2; C is the binary normal Cop-
ula function; r is the specified correlation coefficient,
which is an indicator of the relevant strength and could
reflect linear correlation properties between variables
r1 and r2; Fr is the two-dimensional standard normal
distribution function of the correlation coefficient r;
and F¡1 is an inverse function of the one-dimensional
standard normal distribution function.

The dual sub-swarm interaction QPSO
algorithm based on different correlation
coefficients

The BC-QPSO proposed by reference [20] enhances
the optimization performance to some extent. How-
ever, this algorithm builds the potential well on a single
position, thus the global searching ability is compro-
mised by the optimum’s attraction for particles. The
evaluation pattern offered by the multi-group interac-
tion has revealed an effective method to enhance the
overall performance of the BC-QPSO. In order to
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further enhance the BC-QPSO’s searching ability and
convergence precision, on the basis of our previous
work, a novel interactive QPSO is proposed in this
paper – the dual sub-swarm interaction DCC-QPSO.
This new algorithm separates the single potential well
into a double one, and then the entire population is
divided into two sub-swarms in which different infor-
mation processing strategies are adopted, respectively,
to expand the search range. Meanwhile, the wait effect
[15] among the particles avoids excessive accumulation
of the population. Therefore, superior convergence
performance is achieved for the new algorithm.

Learning strategies

The analysis of BC-QPSO done by reference [20]
shows that the diversity of the population decreases
with increasing correlation coefficient r(¡1 � r �
1) of the binary correlation factors (i.e. r1 and r2,
seen in Equation (13)). In the BC-QPSO model,
given that r = ¡1, the particle’s unbalanced use of
pbest and gbest in determining the position of the
potential well centre deviates the potential well
from gbest, resulting in a trend of expansion of the
population, which helps extending the search space
as well as population diversity. In the BC-QPSO
model given that r = 1, particles make the most of
pbest and gbest in a highly balanced manner, making
the potential well rapidly move towards extremum,
resulting in a quick contraction of the population,
which helps to speed up the convergence. Based on
the above analysis, a conclusion can be drawn that
the higher the degree of correlation between the
binary correlation factors r1 and r2, the faster the
convergence of the algorithm; conversely, the lower
the degree of correlation, the greater the diversity
of the population and the higher the precision of
convergence. In order to guarantee the desired con-
vergence precision and efficiency, by the combina-
tion of the fully positively correlated BC-QPSO (i.e.
r = 1) and the fully negatively correlated BC-QPSO
(i.e. r = ¡1), we derive a new QPSO algorithm – DCC-
QPSO.

Suppose that the entire population is S and the size
of the population is N; the master group is denoted as
S1, its population size is NS1, and its global best is gbest1;
the slave group is S2, its population size is NS2, and its
global best is gbest2; thus we have S1[S2 = S and Ns1 +
NS2 = N.

The basic ideas of DCC-QPSO are: in a random-
ized and quantum-behaved particle swarm, we
divide the whole population into two fully indepen-
dent sub-groups. One group adopts the fully nega-
tive correlation strategy against pbest and gbest when
determining its potential well, that is, we carry out
an iterated search of the solution space given r =
¡1 (i.e. the correlation coefficient between r1 and

r2). This group is referred to as the master group
S1. The other group adopts the fully positive corre-
lation strategy against pbest and gbest when determin-
ing its potential well, that is, we carry out an
iterated search of the solution space given r = 1.
This group is referred to as the slave group S2.

The evolution equation of each particle in the DCC-
QPSO based on the d potential well is as follows:

Xi;j t þ 1ð Þ ¼ pi;j tð Þ§a1 jCj tð Þ � Xi;j tð Þ j ln 1=ui;j tð Þ
� �

; ui;j tð Þ»U 0; 1ð Þ

Pi;j tð Þ ¼
c1r1i;j tð Þ

c1r1i;j tð Þ þ c2r2i;j tð Þ Pi;j tð Þ þ
c2r2i;js tð Þ

c1r1i;j tð Þ þ c2r2i;j tð ÞGj tð Þ; 1�j�D

H r1; r2ð Þ ¼ W r1; r2ð Þ; i 2 NS1

H r1; r2ð Þ ¼ M r1; r2ð Þ; i 2 NS2

8>>>>>>>><
>>>>>>>>:

(14)

Due to the different learning strategies, the two sub-
groups play different roles in the evolution of the
swarm. The master group’s learning strategy against
existing information helps maintaining the diversity
and enhancing the global searching ability of each par-
ticle. The slave group’s learning strategy against exist-
ing information helps in accelerating the convergence
and enhancing the local searching ability of each parti-
cle. By enabling information exchange between these
two sub-groups, DCC-QPSO takes advantage of the
two learning strategies and compensates for the short-
comings of each one.

Interaction between sub-swarms

Information exchange between the two sub-groups is
achieved through their respective global best fitness val-
ues. At the end of each iteration, a comparison between
the fitness values corresponding to S1 and S2’s current
best position is carried out. If gbest2 is more optimal
than gbest1, then gbest2 is assigned to gbest1; otherwise,
gbest1 is assigned to gbest2. The essence of the above oper-
ation is to update the whole swarm’s best position,
which helps sub-groups escape from local optima.
Thus, the whole swarm does not become trapped in a
local optimum even if a “super individual” appears.

By the mutually complementary and collaborative
evolution of the master group S1 and salve group S2,
advantageous information is utilized to prevent the
swarm from having its evolution halted by settling into
local optimal values. This is done without increasing
the swarm size, adding parameters, complicating the
algorithm or compromising convergence. In addition,
the mutual collaborative iteration during the search
process maintains higher diversity and global search
ability, while avoiding excessive aggregation of swarm
particles.
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Algorithm execution process

Based on the designs and definitions discussed above,
the execution process of the DCC-QPSO algorithm is
as follows:

Step 1: Parameters setting. The parameters to be set
up include the individual cognitive acceleration
coefficient c1, the global cognitive acceleration
coefficient c2, the contraction-expansion factor
a, the swarm population size N and the maxi-
mum number of iterations iterMax or the error
precision of fitness. Meanwhile, the whole pop-
ulation is divided into two fully independent
sub-groups. The sub-group adopting the fully
negative correlation (i.e. the correlation coeffi-
cient r = ¡1) is referred to as the master group
S1, and its population size is Ns1; the other sub-
group adopting the fully positive correlation is
referred to as the slave group S2, and its popula-
tion size is Ns2.

Step 2: Initialization of the population. For S1, ini-
tialize the position of every particle in the solu-
tion space by randomly generating Xi,j(0) for
every particle and let be the personal best posi-
tion Pi,j(0) = Xi,j(0), where i2{1,…,NS1}, j2{1,…,
D}. For S2, initialize the position of every parti-
cle in the solution space by randomly generating
Xi,j(0) for every particle and let it be the per-
sonal best position Pi,j(0) = Xi,j(0), where i2
{Ns1+1,…,N}, j2{1,…,D};

Step 3: Calculate the fitness values for all particles in
S1 and S2. Suppose that the optimization prob-
lem to be solved is a minimization one, and
then assign the position corresponding to the
smallest fitness value to the global best position
of sub-groups respectively, i.e. gbest1 = {Xi jmin(f
(Xi)), i2{1,…,NS1}, gbest2 = {Xi jmin(f(Xi)), i2{1,
…,NS2}.

Step 4: Calculate the average best positions of the
entire population C(t) according to Equation
(10) and evaluate the parameters Li,j(t) of the
master and slave sub-groups, respectively.

Step 5: Update the position for particle i(1 � I � N),
that is calculate new positions for all particles
according to the objective function. (for t
iterations).

Step 6: Update the personal best positions using
Equation (1) for the master and slave sub-
groups, respectively. If f(Xi(t)) < f(Pi(t ¡ 1)),
then let be Pi(t) = Xi(t); otherwise, Pi(t) = Pi(t ¡
1).

Step 7:If i2S1 and the fitness value of Pi(t) is better
than the fitness value of the global best position
for the whole swarm Pg(t ¡ 1), i.e. f(Pi(t)) < f
(Pg(t ¡ 1)), then Pi(t) is saved as the global best
position of master group S1, which is denoted as

Pgs1(t); otherwise, Pgs1(t) = Pg(t ¡ 1). If i2S2 and
the fitness value of Pi(t) is better than the fitness
value of Pg(t ¡ 1), i.e. f(Pi(t)) < f(Pg(t ¡ 1)),
then Pi(t) is saved as the global best position of
the slave group S2, which is denoted as Pgs2(t);
otherwise, Pgs2(t) = Pg(t ¡ 1).

Step 8: Compare the fitness value of Pgs1(t) and
Pgs2(t), if f(Pgs2(t)) < f(Pgs1(t)) then assign Pgs2(t)
to be the global best position Pg(t), i.e. Pg(t) =
Pgs2(t); Otherwise, Pgs1(t) is assigned to Pg(t), i.e.
Pg(t) = Pgs1(t).

Step 9: Termination determination. If the maximum
number of iterations iterMax has been executed
or the error precision of fitness value is
achieved, then stop the searching process and
output the results. Otherwise, let t = t + 1 and
repeat steps 3–9.

The execution flow chart of the DCC-QPSO algo-
rithm is as shown in Figure 1.

Experimental design and results analysis

Experimental design

The performance and efficiency of the intelligent algo-
rithms tend to be affected by the experimental parame-
ter settings [16]. How to determine the parameters that
achieve optimal performance is in itself a very complex
optimization problem. In order to obtain reasonable
experimental results, a set of benchmark functions,
including the Sphere function, Rosenbrock function,
Rastrigin function, Griewank function, Ackley func-
tion and Schaffer function, were adopted to test QPSO,
BC-QPSO, DIR-QPSO and DCC-QPSO in a perfor-
mance comparison.

Benchmark functions
Benchmark functions with various characteristics are a
major tool for performance evaluation in evolutionary
algorithms. Unimodal and multimodal problems are
commonly seen in engineering projects, thus, unimo-
dal and multimodal functions are used as testing func-
tions in this paper. Expressions, search range of
variables, initialization range, optimal solution and
optimal values are given in Tables 1 and 2.

Experimental parameter configuration
The parameter a decreases linearly from 1 to 0.5 in
every algorithm to be tested, and the correlation
parameter r is set to be ¡1 in the BC-QPSO algo-
rithm. The dimensionality of the benchmark func-
tions is set to be 20 and the maximum number of
iterations is set to be 1000. The size of the swarm
population is set as 50, the size of the master group
is 25 and the slave group is 25 as well; every
benchmark function is tested times independently,
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and the average value of each test function is evalu-
ated at the end of 30 iterations.

Experimental results

The mean fitness value and the central processing unit
(CPU) time of each iteration using QPSO, BC-QPSO,
DIR-QPSO [23], DCC-QPSO solving benchmark
functions is as shown in Table 3.

We see from Table 3. that compared with QPSO,
DIR-QPSO and BC-QPSO, DCC-QPSO finds the opti-
mal value for the Rastrigin function through

interaction between sub-groups. In addition, it leads to
the best optimization for the Sphere function, multi-
modal Ackley function and Expanded Shaffer function.
DIR-QPSO finds the optimal value for the Rastrigin
function. The standard QPSO offers the best optimiza-
tion precision while processing the Rosenbrock func-
tion and non-linear multimodal Griewank functions,
whereas it provides the optimal value while processing
the Ackley function.

Figure 2 depicts the convergence curves of the
unimodal and multimodal test functions using
QPSO, DIR-QPSO, DCC-QPSO and BC-QPSO

Figure 1. The execution flow chart of the DCC-QPSO algorithm.

Table 1. Unimodal functions.
Benchmark function Equation Searching range Initial range Optimal and fitness value

Sphere
f1ðXÞ ¼

XD
i ¼ 1

x2i
½�100; 100�D ½�100; 50�D f1ð0; 0; . . . ; 0Þ ¼ 0

Rosenbrock f2ðXÞ ¼ ½100ðxi þ 1 � x2i Þ2 þ ðxi � 1Þ2� ½�10; 10�D ½�10; 10�D f2ð1; 1; . . . ; 1Þ ¼ 0
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algorithms when the population size is 50 and the
problem dimensionality is 20. The comparison
shows that the d potential well based DCC-QPSO
algorithm not only attains a better optimization
precision, but also provides faster convergence
when processing unimodal functions, including
Sphere function and Rosenbrock function, which
are illustrated in Figure 2(a,b), respectively.

The convergence curve of Rastrigin is showed in
Figure 2(c). This function is a non-linear multimodal

function with many local optimal solutions. Therefore,
it is hard to find the global optimum and easy to
become trapped in a local optimum. In the solving of
the 20 dimensional Rastrigin function, the two single-
population QPSO algorithms are trapped in the local
optima, whereas the two interactive dual-group QPSO
algorithms exhibit better performance in solving the
problem due to the separation of potential well centres
and the interaction between the master group and the
slave group.

Table 2. Multimodal function.
Benchmark function Equation Searching range Initial range Optimal and fitness value

Rastrigin
f3ðXÞ ¼

XD
i¼1

ðx2i � 10cosð2pxiÞ þ 10Þ ½�5:12; 5:12�D ½�5:12; 2�D f3ð0; 0; . . . ; 0Þ ¼ 0

Griewank
f4ðXÞ ¼

XD
i ¼ 1

x2i
4000

�
YD
i ¼ 1

cosð xiffiffi
i

p Þ þ 1
½�600; 600�D ½�600; 200�D f4ð0; 0; . . . ; 0Þ ¼ 0

Ackley
f5ðXÞ ¼ � 20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD
i ¼ 1

x2i

s !

� exp
1
D

XD
i ¼ 1

cosð2pxiÞ
 !

þ 20 þ e

½�32:786; 32:786�D ½�32:786; 16�D f5ð0; 0; . . . ; 0Þ ¼ 0

Expanded shaffer f6ðXÞ ¼ gðx1; x2Þ þ gðx2; x3Þ þ � � � þ gðxD � 1; xDÞ þ gðxD; x1Þ

gðx; yÞ ¼ 0:5 þ ðsin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p Þ2 � 0:5

ð1:0 þ 0:001ðx2 þ y2ÞÞ2 ;
½�100; 100�D ½�100; 50�D f6ð0; 0; . . . ; 0Þ ¼ 0

Table 3. The results of optimization algorithms (D = 20, N = 50).
Algorithm f1 f2 f3 f4 f5 f6
QPSO FV 2.0941E¡289 1.4351E001 9.6164 0.3631 2.0428E¡014 2.8404E¡007

T(s) 1.2823 0.3123 0.2946 0.3410 0.3542 0.2607
BC-QPSO FV 2.34E¡231 1.5205 E001 16.9143 0.756309 2.94E¡005 9.77E¡009

T(s) 1.3921 0.3122 0.2876 0.3479 0.3333 0.5797
DIR-QPSO FV 2.02E¡278 1.49123 E001 0 0.672136 1.02E¡013 3.49E¡009

T(s) 1.2906 0.2062 0.2062 0.2625 0.2641 0.2219
DCC-QPSO FV 1.53E¡289 1.7494 E001 0 0.858269 2.66E¡015 1.12E¡009

T(s) 1.2686 0.1987 0.2133 0.2532 0.3111 0.1984
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Figure 2. Convergence curves of test functions (D = 20, N = 50). (a)f1,(b) f2,(c) f3,(d) f4,(e) f5,(f) f6.
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Figure 2(d) shows the convergence curve of the
Griewank function. The Griewank function is a
strongly nonlinear multimodal function. This function
has some features such as the strong interference
among the product terms of the function, local optima
distribute in a predictable manner, and the number of
the local optima reduces as the dimensionality of the
problem increases. The experimental results show that
DIR-QPSO, DCC-QPSO and BC-QPSO exhibit similar
performance when solving the 20-dimensional Grie-
wank function, while DIR-QPSO slightly outperforms
the others.

The convergence curve of the Ackley function is
shown in Figure 2(e). The optimal solution of Ackley
lies deep down in a “valley”, surrounded by regularly
distributed local optima. The DCC-QPSO algorithm
proposed by this paper gives the highest convergence
precision, whereas, the QPSO shows its advantage in
convergence speed when dealing with the Ackley
function.

Figure 2(f) illustrates the convergence curve of the
Expanded Shaffer function. The optimal value of this
function is surrounded by a number of concentrically
distributed local minima. In addition, the strong fluc-
tuation of the function surface makes it even harder to
find the real optimal solution. The four algorithms
mentioned in this section consistently fall into the local
optima in the process of iteration. The standard QPSO
converges after 650 iterations and the DCC-QPSO
does so after 750 iterations.

In summary, the single-population QPSO algo-
rithms (the standard QPSO and the BC-QPSO) are
capable of solving the simpler unimodal functions
with one optimal solution in an efficient manner
because they maintain the diversity of the popula-
tion while elevating the average best position C to
its optimal level. Meanwhile, unnecessary complex-
ity is added to the optimization process when
multi-population interactive algorithms are adopted,
offering no advantages in solving unimodal func-
tions. The dual-group QPSO algorithms exhibit bet-
ter convergence performance when dealing with
different multimodal functions. Compared with the
other QPSO algorithms, the DCC-QPSO constructs
two potential wells for a master and a slave group
through each using a strategy based on different
correlation coefficients. This policy offers the novel
algorithm outstanding global searching ability due
to the sharing of best positions between S1 and S2
through mutual complementation and evolution.
The search pattern that two sub-groups carry out
involving simultaneous searching and mutual learn-
ing enhances the probability of finding the optimal
solution. It also offers higher convergence precision
and speed within limited iterations.

Although superior performance can be gained from
the multi-group interactive algorithms when solving

multimodal functions, the size of the population needs
to be expanded. For single-population QPSO algo-
rithms, the size of the population can be chosen
between 20 and 60 while for multi-population interac-
tive algorithms, the size of the population should not
be too small, otherwise optimization may be compro-
mised [24]. For instance, in this experiment, the size of
population in the DIR-QPSO and that in DCC-QPSO
are both set to be 50, divided equally into 25 for the
main and slave groups, respectively. The energy-
consuming problem brought by multi-groups can be
solved by parallel computing techniques, thus the
multi-group algorithm is a rational and effective route
towards performance enhancement.

Conclusion

This paper proposed the DCC-QPSO, a new Quan-
tum-behaved PSO algorithm. This new algorithm
divides the entire population into two sub-populations
equal in size and applies different processing methods
to these sub-groups in order to achieve the separation
of potential well centres. The collaboration between
main and slave sub-groups makes possible a more
thorough mutual learning between particles, which
leads to an enhancement in global searching ability,
avoidance of falling into local optima prematurely and
improvement of QPSO convergence performance. By
the comparison of the solution processes of unimodal
and multimodal functions, the DCC-QPSO proves to
be a promising global optimization algorithm. This
algorithm exhibits higher convergence precision and
speed when dealing with multimodal functions, com-
pared with traditional QPSO algorithms, and it also
reflects its broad application potential in related areas
where high solution precision is required.
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