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ABSTRACT
The aim of this paper is to design a backstepping integral sliding mode controller (BISMC) for
speed control of an electromechanical system under uncertainties and disturbances. An
integral dynamic is included in traditional sliding surface to improve chattering and steady-
state error in tracking a reference signal when parametric uncertainties and disturbances exist.
Design and stability of the closed-loop system is realized by Lyapunov criterion in a step by
step procedure. Experimental results of the proposed BISMC are compared with those of the
traditional sliding mode controller (SMC). The proposed BISMC achieves reasonable tracking
performance and exhibits more robust performance concerning parametric uncertainties and
disturbances than the traditional SMC.
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1. Introduction

During the past decades, the design of robust control-
lers for non-linear dynamical systems with parameter
uncertainties and disturbances has attracted enormous
research interests [1]. Many design techniques upon
the control of non-linear systems have emerged
recently such as sliding mode control (SMC), adaptive
control (AC) and backstepping control (BSC). Among
the most common non-linear feedback control techni-
ques in use today to overwhelm the undesirable effects
of uncertainties and disturbances on non-linear sys-
tems, the SMC has been used extensively due to their
numerous advantages such as robustness to model
uncertainties, external disturbance rejection, fast
dynamic responses, good transient performance and
insensitivity to parameter variations. The sensitivity of
non-linear systems under SMC in regard to uncertain-
ties and disturbances is lessened at the price of chatter-
ing in several real-world implementations [2]. SMC
can deal with uncertainties and disturbances exploiting
their lower and upper bounds without parameter adap-
tation. Contrary to SMC, parametric uncertainties are
managed by AC technique with the help of parameter
adaptation and their lower and upper bounds need not
be used. Thanks to its online adaptation skill, the AC
for a non-linear dynamical system with uncertainties
in constant or slowly-varying parameters is superior to
the SMC. Comparing with SMC methodology to han-
dle parametric or non-parametric uncertainties, the
AC methodology can achieve further flexibility to
adjust unknown non-linear dynamical systems for the
reason that the AC commonly contains an adaptive
estimation algorithm that plays an important role in

learning. Nevertheless, SMC is superior to AC under
uncertainties in rapidly changing parameters and
unstructured uncertainties. In addition, SMC handles
sudden and large changes in the system dynamics [3].

Various control design methods are based on Lya-
punov stability. Stability of the closed-loop control sys-
tem is simply realized by Lyapunov-based control
design. The backstepping approach offers a systematic
method for designing a control task to track a desired
reference signal by opting for a proper Lyapunov func-
tion candidate [4]. The BSC scheme is designed recur-
sively by viewing some of the state variables as virtual
controls and devising intermediate control laws. The
virtual control law for each step is adopted with the
satisfaction of selected Lyapunov functions such that
the stability of each subsystem constructed from the
overall system can be guaranteed. In order to stabilize
the whole closed-loop control system, all destabilizing
terms in each first-order subsystem are cancelled [4,5].
Nevertheless, Lyapunov-based BSC is not sufficiently
insensitive to parametric uncertainties. Combining the
backstepping design and SMC is an alternative scheme
to AC for non-linear systems with uncertainties and
disturbances. Although this hybrid method is robust to
parameter uncertainties and disturbances, it tolerates
parametric uncertainties at the price of chattering and
tracking error. Integral control action is one of the fun-
damental mechanisms in feedback control applica-
tions. It has an ability to eliminate constant steady-
state offset in a closed-loop control system. In practical
applications, it gives robustness ability to control sys-
tems and helps to solve undesirable problems with
unmodelled dynamics, parameter deviations and
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slowly varying disturbances. In order to overcome the
drawbacks mentioned above, a backstepping SMC
with integral action which is referred to as backstep-
ping integral sliding mode control (BISMC) has been
proposed to improve chattering and steady-state error
in tracking a reference signal when parametric uncer-
tainties and disturbances occur [1,6–9].

Due to its outstanding speed control characteristics,
direct current (DC) motors have been widely used in
industrial applications demanding variable speed,
changeable load and frequent starting, braking and
reversing such as robotics, electric vehicles, numeric con-
trol machines and industrial tools [10–12]. Owing to
their high-performance motion capability, DC motors
are main parts of electromechanical systems as actuator.
For electromechanical systems under load variations and
parameter uncertainties, speed control via conventional
linear proportional-integral-derivative (PID) controllers
is not a simple task. Recently, a lot of control methods
such as non-linear control, optimal control, variable
structure control and AC have been extensively sug-
gested [11,13–15]. In the present research, a non-linear
BISMC based on the Lyapunov stability theorem is pro-
posed for an electromechanical system to track the
desired reference despite parametric uncertainties and
disturbances. The proposed BISMC is devised so that the
stability of the entire closed-loop system for the duration
of the reaching and sliding periods is guaranteed. Robust
stability and tracking error convergence analysis of the
BISMC are carried out based on the Lyapunov function
candidates. The main focus of the BISMC is to provide
improved performance over the traditional SMC in terms
of less chattering of the control and smaller steady-state
error when the control system is subjected to parametric
uncertainties, load variations and disturbances. The pro-
posed BISMC has been experimentally applied to control
the speed of an electromechanical system. Experimental
results prove that the tracking performance is improved
in the presence of uncertainties and disturbances; and at
the same time, the stability is maintained. Compared to
the traditional SMC [15], the performance of the pro-
posed algorithm is improved in terms of less chattering
of the control and smaller steady-state error. The rest
of the paper is organized as follows. The experimental
set-up and mathematical model of the electromechanical
system are briefly introduced in Section 2. Design proce-
dures of the BISMC are presented in Section 3. In
Section 4, experimental applications and comparison
results of the proposed BISMC and the traditional SMC
are reported to show the efficiency of the proposed
BISMC. Section 5 draws the final conclusions.

2. Description of the electromechanical system
and the experimental set-up

In the current study, the Precision Modular Servo set-
up manufactured by Feedback Instruments [16] is

regarded to carry out experiments and validate the
proposed method. The set-up comprises a brushed dc
motor, digital encoder, power supply, pre-amplifier,
servo-amplifier, attenuator, input and output potenti-
ometers, gearbox/tachometer and analogue control
interface components as shown in Figure 1 [16,17].

A comprehensive mathematical model of the elec-
tromechanical system is composed of a coupled electri-
cal and a mechanical subsystem. The motor dynamics
is described by

€vðtÞ ¼ � R
L
þ n

J

� �
_vðtÞ � nRþ KtKb

LJ
vðtÞ

þ KgKtTrpm

LJ
uðtÞ

(1)

where R and L are the resistance and inductance of the
motor, respectively; J is the moment of inertia constant;
n is the viscous friction constant; Kt is the torque con-
stant; vðtÞ is the angular shaft speed; Kb is an electromo-
tive force constant; uðtÞ is the armature voltage; t is the
time; Kg is the gain of the amplifiers; Trpm ¼ 60=ð2pÞ
is a constant that converts the motor angular velocity
from rad=s to rpm. The DC motor parameters are
taken from the manual of Feedback Instruments and
presented in Table 1 [16]. The other electromechanical
system parameters determined experimentally are
J ¼ 0:0001218 kgm2 and n ¼ 0:000425 Nms=rad.

Composing the model with dead-zone non-linearity,
unmatched uncertainties and disturbances, the electro-
mechanical system can be modelled as a class of non-
linear dynamical system by [18–20]

€vðtÞ ¼ � R
L
þ n

J

� �
_vðtÞ � nRþ KtKb

LJ
vðtÞ

þ KgKtTrpm

LJ
uðtÞ þ ξðv; _v; tÞ

(2)

Figure 1. A picture of the experimental set-up.

Table 1. Values of the electromechanical
system parameters [16].
Parameter Value

Kt 0.052 Nm/A
Kb 0.057 Vs/rad
R 2.5 V
L 0.0025 H
Kg 9.6
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where ξðv; _v; tÞ is the total amount of dead-zone non-
linearity, unmatched uncertainties and external distur-
bances. Taking h ¼ ½h1; h2�T ¼ ½v; _v�Tas the state
vector, the following general non-linear dynamical equa-
tion is obtained:

_h1ðtÞ ¼ h2ðtÞ
_h2ðtÞ ¼ ufðh; tÞ þ ’ðh; tÞuðtÞ þ ξðh; tÞ (3)

where ufðh; tÞ is the parametric uncertainties with con-
stant parameter u, fðh; tÞ ¼ �ðRL þ n

JÞh2 � nRþKtKb
LJ h1,

’ðh; tÞ ¼ KgKtTrpm

LJ is a constant and has positive sign,
j ξðx; tÞ j � ξmax, and ξmax is a positive coefficient.

3. Design methods

In this section, after traditional SMC is briefly intro-
duced, the proposed BISMC shall be presented. The
SMC based on discontinuous control laws is an effi-
cient and robust tool to control non-linear dynamical
systems with uncertainties [21,22]. The control law for
SMC comprises both an equivalent control ueqðtÞ and
a discontinuous control udðtÞ [22,23]:

uðtÞ ¼ udðtÞ þ ueqðtÞ (4)

In order to design an SMC for the electromechani-
cal system in (3), first a sliding surface is chosen as fol-
lows:

sðtÞ ¼ k1eðtÞ þ _eðtÞ (5)

using the tracking error

eðtÞ ¼ yðtÞ � ydðtÞ ¼ h1ðtÞ � ydðtÞ (6)

where k1> 0 and the output is yðtÞ ¼ vðtÞ ¼ h1ðtÞ.
Afterwards, let us design the equivalent control by

setting the time derivative of the sliding surface to zero

ueqðtÞ ¼ 1
’ðh; tÞ ½�k1 _eðtÞ � ufðh; tÞ þ €ydðtÞ� (7)

Consider a Lyapunov function candidate to design a
discontinuous control udðtÞ

VðsÞ ¼ 1
2
s2ðtÞ�0 (8)

The derivative of VðsðtÞÞ along the trajectories of
the dynamic system in (3) and the sliding surface in
(5) is

_VðsðtÞÞ ¼ sðtÞ _sðtÞ
¼ sðtÞ½k1 _eðtÞ þ ufðh; tÞ þ ’ðh; tÞðueqðtÞ
þ udðtÞÞ þ ξðh; tÞ � €ydðtÞ�

(9)

Substituting (7) into (9), one has

_VðsðtÞÞ ¼ sðtÞ½’ðh; tÞudðtÞ þ ξðh; tÞ�
�� KsðtÞsignðsðtÞÞ
¼ �K j sðtÞ j �0 (10)

with the discontinuous control law

udðtÞ ¼ � 1
’ðh; tÞKsignðsðtÞÞ (11)

where

K�ξmax� j ξðx; tÞ j ; and signðsÞ ¼
1; sðtÞ> 0

0; sðtÞ ¼ 0

�1; sðtÞ< 0

8<
:

Consequently, the closed-loop dynamic system tra-
jectory reaches the sliding surface in finite time and
remains therein due to the fact that
_VðsðtÞÞ ¼ �K j sðtÞ j � 0.
One of the disadvantageous characteristics of SMC

is the chattering originating from imperfections in
switching devices. One of the numerous approaches to
diminish chattering is to utilize a saturation function
instead of the signum function. Therefore, one can use
the following discontinuous control instead of (11):

udðtÞ ¼ � 1
’ðh; tÞKsatðsðtÞ=DÞ (12)

where satðJÞ ¼ J; jJ j �1
signðJÞ; jJ j > 1

�

In order to overcome some drawbacks of the tradi-
tional SMC designed above such as chattering and
steady-state error or tracking error due to uncertainties
and disturbances, the BISMC is proposed. Step by step
design procedures are given in what follows and the
block diagram of the proposed BISMC is portrayed in
Figure 2. Considering again the electromechanical sys-
tem given in (3) and the tracking error in (6), one gets
its time derivative in the first step as follows [24–26]:

_eðtÞ ¼ _h1ðtÞ � _ydðtÞ (13)

Figure 2. Block diagram of the BISMC.
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Choosing an appropriate Lyapunov function helps
to ensure the stability of the non-linear system in the
first step as follows:

V0ðeÞ ¼ 1
2
e2ðtÞ> 0; 8e 6¼ 0 (14)

Time derivative of the above equation is

_V0ðeðtÞÞ ¼ eðtÞ_eðtÞ ¼ eðtÞ½h2ðtÞ � _ydðtÞ� (15)

If the state h2ðtÞ in (3) is viewed as a virtual input
h2ðtÞ ¼ d0ðeÞ ¼ �c1eðtÞ þ _ydðtÞ, the origin of _eðtÞ ¼
�c1eðtÞ is globally asymptotically stable because
_V0ðeÞ ¼ �c1e2ðtÞ< 0; 8ðe 6¼ 0Þ 2 R for c1> 0.
To design a feedback control law by adding an inte-

gral action which contributes to the control bandwidth
and tracking precision for parametric uncertainty and
robustness to high frequency unmodelled dynamics,
the virtual control becomes

h2ðtÞ ¼ dðeÞ ¼ �c1eðtÞ � c2

Z t

0

eðtÞdt þ _ydðtÞ (16)

where c2 > 0. Substituting (16) into (13), one has

_eðtÞ ¼ �c1eðtÞ � c2

Z t

0

eðtÞdt (17)

Modifying the Lyapunov function in (14) with the
integral action, one obtains

V1ðeÞ ¼ 1
2
e2ðtÞ þ 1

2
c2

Z t

0

eðtÞdt
0
@

1
A

2

> 0; 8e 6¼ 0 (18)

The derivative of the above equation with respect to
time is

_V1ðeÞ ¼ eðtÞ_eðtÞ þ c2eðtÞ
Z t

0

eðtÞdt (19)

Substitution of (17) into (19) results in

_V1ðeÞ ¼ �c1e
2ðtÞ� 0 (20)

This means that the system augmented by an inte-
gral action is asymptotically stable in the first step. In
order to backstep, if the change of variables is applied to

sðtÞ ¼ h2ðtÞ � dðeÞ ¼ h2ðtÞ þ c1eðtÞ þ c2

Z t

0

eðtÞdt

� _ydðtÞ
(21)

the system under control can be transformed into the
following form:

_eðtÞ ¼ sðtÞ � c1eðtÞ � c2

Z t

0

eðtÞdt (22)

In order to combine backstepping design and SMC,
let us determine the sliding surface using (22)

sðtÞ ¼ _eðtÞ þ c1eðtÞ þ c2

Z t

0

eðtÞdt (23)

Initial conditions _eð0Þ and eð0Þ can be included in
the sliding surface in (23) in order to define the integral
to within a constant. This constant may be selected to
set sðt ¼ 0Þ to zero regardless of the initial condition
of the desired trajectory. For the sake of simplicity, the
initial conditions are set to zero; that is, _eð0Þ ¼ 0 and
eð0Þ ¼ 0. A necessary and sufficient condition for the
tracking error to stay on the sliding surface is _sðtÞ ¼ 0

_sðtÞ ¼ €eðtÞ þ c1 _eðtÞ þ c2eðtÞ ¼ 0 (24)

In order to ensure the stability of the proposed
BISMC, the following composite Lyapunov function is
assumed to be

VcðeÞ ¼ V1ðeÞ þ 1
2
s2ðtÞ> 0; 8e 6¼ 0 (25)

The derivative of the Lyapunov function in (25)
along the solutions of (22) and the derivative of (21) is

_VcðeÞ ¼ eðtÞ sðtÞ � c1eðtÞ � c2

Z t

0

eðtÞdt
2
4

3
5

þ c2eðtÞ
Z t

0

eðtÞdt þ sðtÞ½c1 _eðtÞ þ c2eðtÞ

þ ufðh; tÞ þ ’ðh; tÞuðtÞ þ ξðh; tÞ � €yd�
¼ �c1e2ðtÞ þ sðtÞeðtÞ þ sðtÞ½c1 _eðtÞ þ c2eðtÞ
þ ufðh; tÞ þ ’ðh; tÞuðtÞ þ ξðh; tÞ � €yd�

¼ �c1e2ðtÞ þ sðtÞ½c1 _eðtÞ þ ð1þ c2ÞeðtÞ
þ ufðh; tÞ þ ’ðh; tÞuðtÞ þ ξðh; tÞ � €yd�

(26)

To make _VcðeÞ negative definite, the bracketed term
multiplying sðtÞ is set to �c3sðtÞ for c3> 0. Therefore,
the time derivative of the Lyapunov function becomes
negative definite

_VcðeÞ ¼ �c1e
2ðtÞ � c3s

2ðtÞ (27)

To design the feedback control law in order that the
stability of the whole system is guaranteed, let us select
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the discontinuous control

ud ¼ � 1
’ðh; tÞGsignðsðtÞÞ (28)

and the equivalent control

ueqðtÞ ¼ 1
’ðh; tÞ ½�c1 _eðtÞ � ð1þ c2ÞeðtÞ � c3sðtÞ
� ufðh; tÞ þ €yd�

(29)

With help of the control laws in (28) and (29), the
stability proof of the electromechanical system con-
trolled by the proposed BISMC can be made as follows:

_VcðeÞ ¼ �c1e2ðtÞ � c3s2ðtÞ þ sðtÞξðh; tÞ � G j sðtÞ j < 0;

8ðe 6¼ 0; s 6¼ 0Þ 2 R (30)

From the above analysis, it is obvious that the reach-
ing condition is guaranteed for G�ξmax� j ξðh; tÞ j.
Since VcðeÞ in (25) is radially unbounded, the origin of
the closed-loop system is globally asymptotically sta-
ble. Furthermore, the control law makes the output of
the system in (2) asymptotically track the desired tra-
jectory. It means that tracking error approaches zero
as time goes to infinity. Putting (28) and (29) together
and including (23), the feedback control law can be
rewritten as follows:

uðtÞ ¼ 1
’ðh; tÞ

h
� ðc1 þ c3Þ_eðtÞ � ð1þ c2 þ c1c3ÞeðtÞ

�c2c3

Z t

0

eðtÞdt � ufðh; tÞ þ €yd � GsignðsðtÞÞ
i

(31)

4. Experimental applications and results

In order to confirm the effectiveness of the proposed
BISMC, it is applied to the real electromechanical sys-
tem mentioned in Section 2. In order to avoid high fre-
quency measurement noise, a low-pass filter with the
transfer function of Gf ðsÞ ¼ 100=ðsþ 100Þ is used.
The saturation function in (12) instead of the signum
function is employed for the discontinuous control
udðtÞ because of its chattering-decreasing attributes.
For all experiments, the values of the controller param-
eters c1 ¼ k1 ¼ 600, c3 ¼ 10 and the zero initial
state conditions hð0Þ ¼ ½h1; h2�T ¼ ½v; _v�T ¼ ½0; 0�T of
the electromechanical system are used. A step refer-
ence trajectory of 2100 rpm in magnitude is applied to
the control system for all experiments.

In the first experiment, the nominal model with the
matched uncertainty u ¼ 1 for the electromechanical
system is supposed. The controller parameters
D ¼2� 105 and K ¼ G ¼ 3� 106 are chosen for both
the proposed BISMC and the traditional SMC [15].
The coefficient of the integral action for the proposed
BISMC is set to zero (c2 ¼ 0) since no parametric
uncertainty is presumed. The speed responses and the

corresponding control inputs of the proposed BISMC
and the traditional SMC to a step reference of
2100 rpm are depicted in Figure 3(a,b). The perfor-
mance of the proposed BISMC according to rise time
and settling time is much better than that of the tradi-
tional SMC. The rise time and settling time for the tra-
ditional SMC may be shortened by fine-tuning the
parameter k1 but in that case, overshoot would
increase. Roughly, the selection of the parameter k1 is
an optimum trade-off between the speed of the
response and overshoot. The proposed BISMC and
SMC show almost same steady-state error of about
15 rpm. As seen in Figure 3(a), the BISMC is two times
faster than the other in response. The settling time for
the BISMC is approximately 0.25 s but that for the
SMC is about 0.5 s. Almost no overshoot is observed
for both controllers. Input signals of the controllers
converge with different speeds as shown in Figure 3
(b). The BISMC has a much faster and a little larger
control signal than the other within 0.4 s. In addition,
the BISMC input increases to a higher level than the

Figure 3. Experimental results for nominal model with the
matched uncertainty u ¼ 1: (a) Speed, (b) Control input, (c)
Sliding surface.
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other in the transient phase. This is the reason why the
proposed control system has a faster response. The
faster and larger control that enables the electrome-
chanical system output to reach the set-point rapidly
but not to cause overshoot or oscillation is generated
by the backstepping part of the BISMC. Both the slid-
ing surfaces for both the controllers are smooth as can
be seen in Figure 3(c). They converge to zero since the
controllers are designed based upon the nominal
model and there does not exist parametric uncertainty.
No chattering is observed on both the surfaces.

The last experiment is carried out for the arguments
upon the behaviours of both the controllers for the
electromechanical system under the matched uncer-
tainty u ¼ 0:8. The objective of the experiment is to
compare the performance of the proposed BISMC
with that of the traditional SMC for robustness to
parameter uncertainty. The coefficient of the integral
action for the proposed BISMC is adjusted as c2 ¼ 12;
000 so that the output of the electromechanical system
under parametric uncertainty can closely track the
desired reference signal. The experiment is repeated
for the proposed BISMC with the integral coefficient
c2 ¼ 0 to validate the importance of the integral action.
The controller parameters D ¼ 2� 105 and G ¼ 3�
106 are chosen for the proposed BISMC with
c2 ¼ 12; 000. Those parameters are selected as
D ¼2� 104 and K ¼ 1� 107 for the BISMC with c2 ¼
0 and the traditional SMC. The speed responses, the
corresponding control inputs and the sliding surfaces
of the proposed BISMC with and without integral
action and the traditional SMC to a step reference of
2100 rpm are illustrated in Figure 4. The shorter rise
and settling times and smaller steady-state error are
achieved from the proposed BISMC with c2 ¼ 12; 000
as compared with the SMC and the BISMC with c2 ¼
0 as seen in Figure 4(a). The proposed BISMC with
c2 ¼ 12; 000 does not display overshoot whereas the
SMC and the BISMC with c2 ¼ 0 exhibit undesirable
amount of overshoot. Settling times for the proposed
BISMC with c2 ¼ 12; 000, the BISMC with c2 ¼ 0 and
the SMC are about 0.25, 0.28 and 0.33 s, respectively.
The steady-state errors for the proposed BISMC with
c2 ¼ 12; 000, the BISMC with c2 ¼ 0 and the SMC are
15, 22 and 25 rpm, respectively. It is obvious that the
proposed BISMC has less output variation from the
trajectory in steady-state compared to the SMC. This
makes certain that the proposed BISMC is more robust
than the SMC for the system under parametric uncer-
tainties. It is seen from Figure 4(b) that the BISMC
control law struggles to track the desired trajectory
more closely than that of the SMC when the control
system is subjected to any parametric uncertainty. As
can be observed from the figure, the undesirable high
frequency chattering that is supposed to be available in
the control input signal is significantly reduced by the
proposed BISMC with c2 ¼ 12; 000 as a consequence

of chattering-lessening characteristic of the integral
action included in the control law of the proposed con-
troller. The proposed BISMC achieves not only satis-
factory tracking control but also chattering-free
control. The sliding surfaces produced by the BISMC
with c2 ¼ 0 and the SMC converge to zero whereas the
proposed BISMC with c2 ¼ 12; 000 does converge to
any constant value instead of zero since the integral
action brings the output of the control system very close
to the desired reference signal without chattering despite
parametric uncertainty. However, the time derivative of
the sliding surface converges to zero. This allows the
tracking error to converge close to zero as well.

5. Conclusion

In this study, the BISMC for an electromechanical system
is suggested in order to overcome the difficulties in
parametric uncertainty. Comparisons with a traditional
SMC for speed control are introduced. In addition,

Figure 4. Experimental results for nominal model with the
matched uncertainty u ¼ 0:8: (a) Speed, (b) Control input, (c)
Sliding surface.
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stability analysis of the control system based on Lyapu-
nov method is presented. In order to confirm the effec-
tiveness of the proposed controller, it is implemented on
a real electromechanical system. Along with the results
of the experiments, the proposed BISMC makes an
improvement in steady-state error, decreases chattering
and compensates parameter variations compared to the
traditional SMC. The proposed BISMC provides not
only a faster transient response but also a smaller steady-
state error provided that the integral coefficient of the
controller is adequately tuned. Also, the proposed
BISMC decreases chattering on the control signal and at
the same time, it improves robustness against parametric
uncertainty.
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