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ABSTRACT
The conventional sense-and-avoid collision avoidance mode of UAV (unmaned aerial vehicle)
lacks applicability and timeliness in a multi-threat environment. In this paper, a new efficient
collision avoidance approach for uncertain threat environments derived from the idea of
autonomous mental development is proposed. The proposed collision avoidance pattern
consists of a sensory layer, a logic layer and a development layer. The threat information is
sensed using the sensory layer, and the path planning approach in the logical layer is applied
to the output configuration of UAV. In the development phase, the developmental networks
approach is used for online learning, training and updating the logical layer so as to form the
sense–action mapping, which is stored as the “basic experience” for UAV executing the
avoidance manoeuvre. In the implementation phase, the command is executed by matching
the sensing information and action base. The simulation results show that the proposed
approach has better timeliness compared to the conventional approaches.

KEYWORDS
UAV; development networks;
collision avoidance

1. Introduction

With a wide application of aeronautical techniques in
the field of economy and military, the number of
Unmanned Aircraft Systems (UASs) increases signifi-
cantly in airspace [1–3], while high-rise buildings,
birds, complex air conditions, etc., have posed a signifi-
cant challenge to air safety. The UASs must attain the
same or higher security level compared with a manned
aircraft [4]. Many researchers have focused on the
UAV collision avoidance technique as a key for ensur-
ing air safety. The Autonomous Mental Development
(AMD) [5] method can simulate the mental develop-
ment process of human-beings, which can also be
applied in the decision-making of UAV collision
avoidance in a complex threat environment.

Sensing and Avoidance (S&A) is a major pattern for
threat avoidance. The aircraft’s collision avoidance meth-
ods can be divided into the following categories: (1) the
method of resolving the guidance law based on geometri-
cal relationships [6–8]. This method calculates the guid-
ance law of avoidance manoeuvre according to the
relative distance, speed, acceleration, angle, etc., between
the aircraft and threats, but it is difficult to apply in com-
plex threat airspace. (2) The second method is based on
real-time path planning [9–12]. With the development of
research in this field, many path-planning approaches
with significant improvement in timeliness have been pro-
posed, such as artificial potential-field approaches, A�

algorithm, artificial heuristic approaches and sampling-
based path-planning approaches, etc., which can be

applied to common path-planning problems in dynamic
environments. However, the timeliness of such methods
is still questionable due to the lack of computation effi-
ciency and applicability in complex or high-dimensional
dynamic environments. (3) The third approach is based
on decision mechanism [13–15]. The decision-making
approaches based on recognition-primed decision-mak-
ing, Markov decision process and Bayesian decision the-
ory are capable of implementing decision-making
deduction considering real-time information. Thus, they
have obvious advantages in terms of making threat avoid-
ance strategy. However, the current researches mainly
focus on how to make a better decision under certain rules
[16], so it is flawed when dealing with complex situations
beyond the known rules. Aiming at the current challenges
in S&A techniques, it is necessary to introduce a learning
mechanism to solve the above-mentioned problems [17].

Recently, the concept of AMD has been extended pro-
foundly to robotic [18,19], particularly it is applied in
visual development [20,21], language and behaviour
learning techniques of robots [22,23]. The main idea is to
simulate the mental development process of an infant,
and the development of brain is realized by constant
incremental learning through profound interaction with
the environment, and storage of the learned knowledge
through certain methods [5]. Unlike those approaches
where the UAVs are programmed considering the
mission, this idea proposed an approach for self-organiza-
tion and incremental learning in a non-specific mission.

In this paper, a threat avoidance pattern that con-
sists of a sensory layer, a logic layer and a development
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layer is proposed. The logic layer accomplishes the ini-
tial global configuration space planning by path-plan-
ning method and implements real-time local re-
planning in the sensory region when the threat is
approaching, where the threat information is detected
by the sensor layer. Subsequently, the avoidance
manoeuvre under normal threat conditions is adopted
as the fundamental experience, and the mapping of
sense–action is formed through online learning and
training, which is based on the developmental net-
works (DNs) [24]. Therefore, the number of neurons
constantly grows by learning, training and implement-
ing the process. Moreover, the “experience” is also con-
stantly accumulated while dealing with different types
of threats. Finally, the collision avoidance development
process of UAVs is accomplished.

2. Sensory layer and logic layer

2.1 Mapping model

Sense information is obtained by the sensory layer;
configuration information of the UAV is the output of
the logic layer. As shown in Figure 1, the local sensing
and path-planning outputs are the inputs in the DN,
the network map the inputs and manoeuvre behaviour
bank, UAV behaviour is output in manoeuvre bank. In
the network, the input (sense)–output (behaviour)
relationship sample formed by the sensory layer and
the logic layer, mapping would be implemented by
adjusting the weights of neurons in the DN. In the
beginning, the behaviour bank has nothing, which con-
stantly stores the mapping of sense–behaviour as expe-
rience in the process of DN training.

The sensor in the sensory layer is an onboard lidar
with a detection range of dðtÞ, where t is the time
(real-time data). Assume that the sensor is able to
acquire all information regarding the environment,
and dðtÞ ¼ ðd1ðtÞ; d2ðtÞ; . . . ; dnðtÞÞ, where diðtÞ repre-
sents the shortest distance between the UAV and the
threat in a certain direction, vðtÞ is the current velocity
of the UAV, uðtÞ represents the output heading angle
of the path planning. The simplified configuration of
the UAV can be set as

qðtÞ ¼ ðxt;yt; uðtÞÞ (1)

where ðxt ; ytÞ is the current position of the UAV. The
heading angle uðtÞ is calculated as follows:

uðtÞ ¼ arctanðvyt=vxtÞ (2)

where vxt , vyt are the velocity projection along x-axis and
y-axis, respectively. Assuming that the value of velocity
is constant, the next configuration is given as follows:

qðtþ1Þ ¼ ðxtþ1; ytþ1; uðtþ1ÞÞ (3)

The coordinates of the next position are

xtþ1 ¼ xtþvðtÞcos uðtÞ �Dt
ytþ1 ¼ ytþvðtÞsin uðtÞ �Dt (4)

The state of current environment is denoted as

xðtÞ ¼ ðdðtÞ; vðtÞ; uðtÞÞ 2 x (5)

The mapping of sense–behaviour can be represented
as: f :x 7! Z, and the next output can be calculated as
follows:

zðt þ 1Þ ¼ f ðxðtÞÞ (6)

2.2 The logic layer

The logic layer outputs the control command through
path-planning method. In this paper, the collision
avoidance is considered as a decision-making process
of a local area. Making use of the dual-planning idea
that contains local and external planning within the
sensory range, the avoidance problem of unknown
type of threats is solved.

Set G¼ðV ; CÞ as a grid map with weights, where V
denotes the set of grid points, and C represents the
cost space (the Euclidean distance is set as the heuristic
function). Every grid point g 2 G (except the boundary
grid) is directly linked to eight neighbouring grids,
denoted as NeighbourðgÞ. The set of paths from the
start node s to the target node d can be represented by

PðG; s; dÞ ¼ ðg0; g1; . . . ; gNÞ j gnþ1 2 NeighbourðgnÞ;f
g0 ¼ g; gN ¼ d; n ¼ 0; . . . ;Ng

And the cost of path is

cðg0; g1; . . . ; gNÞ ¼
XN
n¼0

cðgnÞ (7)

kðxÞ is defined as the path with minimum cost from a
particular node x to a target node d, and is given as

kðxÞ ¼ 0 x ¼ Td

miny2NeighbourðxÞ kðyÞ þ cðxÞf g otherwise

�

For a certain node x, the sensory range is set as LðxÞ,
where LðxÞ 2 G. BðxÞ represents the margin region ofFigure 1. Collision avoidance frame.
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LðxÞ, but it does not belong to LðxÞ.
BðxÞ ¼ z j z 2 NeighbourðLðxÞÞf g\ z j z =2 LðxÞf g

Set xcur as the current position of the UAV. For any
x 2 LðxcurÞ, the initial cost is set as k0ðxÞ. When a
threat obstacle is sensed in the original path, the modi-
fied cost function is given as follows:

kðxÞ ¼ min k0ðxÞ; min
y2BðxcurÞ

½cðx; yÞ þ kðyÞ�
� �

(8)

where cðx; yÞ represents the cost from x to a certain
node y in the sense margin. Choosing the node y in
margin with minimum cost, thus

y ¼ arg min
y2BðxcurÞ

½cðxcur; yÞ þ kðyÞ� (9)

The path with minimum cost from xcur to a node y in
margin is the local planned path.

After accomplishing the local path planning, the con-
figuration command is the output and is applied to sat-
isfy the requirement of emergency collision avoidance.
Then, the path from a node in the margin to the target
node is calculated, which finally realizes the dual-plan-
ning. The computation cost of local paths in the sensory
region is much less than those of the global paths. The
delay caused by computation is minimum, and hence, it
is more suitable for real-time threat avoidance.

3. Collision avoidance method

Based on the definition of sensory layer and logic layer
mentioned above, the DN is used to connect both the
layers in this section. The sample of knowledge is
formed by mapping the sensory behaviour from the
sensory layer to the logic layer. Then, it is trained using
DN by adjusting the weights between neurons to form
the mapping relationship and extend the bank to real-
ize the development.

3.1 Algorithm of the developmental layer

As shown in Figure 2, the DN is composed of a sensory
layer X, an internal brain area Y and a motor area Z.

The sensory input and effector output can be con-
nected through the hidden networks in the brain. The
networks among the three layers are connected bi-
directionally. The layers X and Y are connected by
bottom–up synapses, while the layers Y and Z are con-
nected by top–down ones. In the incremental learning
phase, the effector layer serves as an input layer, con-
ducting the learning process through interactions with
the outside world. Otherwise, it is treated as an output
layer.

The dimensions of X, Y, Z are determined according
to the actual input and output of DN. In this paper, the
inputs are parameters of threat, i.e. vðtÞ, uðtÞ, dðtÞ, the
outputs determine which behaviour would be selected
in the bank. The complete process is shown in Figure 1.
The procedure can be explained as follows:

Initial state is at t ¼ 0. For any area A 2 X;Y;Zf g,
initialize its renewal part N ¼ ðV ;GÞ and the respon-
sive vector r. V includes the weights of all synapses
and G includes the ages of all neurons.

At t ¼ 1; 2; . . ., the task of collision avoidance is ini-
tiated in the simulation environment. The inputs are
provided for network training; iterative computation is
carried out in area A, and the corresponding function
is as follows:

ðr0;Q0Þ ¼ f ðb;d;QÞ (10)

where b represents the bottom–up vector, t denotes the
top–down vector and r0 is the response vector. The
update method is N N 0 and r r0. The bottom–up
and top–down vectors are in the Y-layer. The process
mentioned above shows the weight update of the net-
work nodes in the UAV collision avoidance process.

DN constantly performs the prediction for the next
time Z. If the prediction value turns out to be a wrong
match, it would be directly replaced by the measured
value at the next moment in the learning process. That
is to say, the wrong outputs from Z lead to the wrong
behaviour of the UAV, and eventually, it will be cor-
rected in the learning process. Hence, the right outputs
are generated by path-planning modular.

For the weight vector v ¼ ðvb; vtÞ in area A, its
response vector is

rðvb;b; vt ; tÞ ¼ vb
kvbk

b
kbk þ

vt
kvtk

t
ktk ¼ _v _p (11)

where _v ¼ ðvb=kvbk; b=kbkÞ is the response vector
after normalization, _p ¼ ðb=kbk; t=ktkÞ is the output
vector after normalization. The deviations of directions
of _v and _p reflect the degree of matching.

The top-k competition mechanism is adopted
among the neurons within area A. When k = 1, the
winner neuron j is defined as

j ¼ arg max
1� i� c

rðvbi; b; vti; tÞ (12)
Figure 2. Developmental networks.
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Only the winner neurons can be activated and
update their weights of synapses, while the other neu-
rons would stay in their inhibitory states. The Hebbian
learning algorithm is adopted in the learning process
of neurons. For each activated neuron j, the synapse
vector is updated by the following mechanism with the
increment of an activating age:

vj v1ðnjÞvj þ v2ðnjÞrj _p (13)

where v2ðnjÞ is the learning rate of neuron j at activat-
ing age nj, v1ðnjÞ is the maintaining rate and
v1ðnjÞ þ v2ðnjÞ ¼ 1. It can be described briefly as

vðiÞj ¼ i� 1
i

vði�1Þ
j þ 1

i
_pðtiÞ; i ¼ 1; 2; . . . ; nj (14)

where ti is the activation time of neuron j. After the
learning phase, mapping is formed between the neu-
rons in Y and Z layers based on the inputs from the
sensory area. Therefore, the whole training of collision
avoidance is completed.

3.2 Threat avoidance method

DN is capable of performing incremental learning and
internal network mapping through interactions with
the outside world. In the development phase, import
the threat states from the sensory layer into the logic
layer, and then execute the mapping of sensory input
and output behaviours. Thus, neurons were activated
to form an “experience” of collision avoidance. In the
execution phase, the UAV behaviour is exported
directly based on the mapping between sensing infor-
mation and behaviour bank. Such a recurrent process
of development and implementation can realize the
growth of the behaviour bank. The flow-chart of the
proposed algorithm is shown in Figure 3.

In the algorithm, first, N samples are provided as
input for training. Then, ask for zj, if it is not matching,
the learning rate v2ðnjÞ is decreased. Decrease vj and
return for the next matching. If it is matching, the
learning rate v2ðnjÞ is increased, and vj and z

0
j are

updated. In the execution phase, based on the inputs
from the sensory layer, search for the matching of zj. If
so, the UAV behaviour is output in the bank; other-
wise, execute path planning to generate a new path to
resolve the collision avoidance, and put the new result
into the sample.

4. Simulation and analysis

To test the performance of the proposed method, dif-
ferent simple situations are designed to train the DN.
The simulation is conducted in Matlab 7.0 using Win-
dows XP, Intel Core i3, 3.3 GHz platform.

4.1 Training of the developmental networks

First, eight different simple situations are applied for
training the basic avoidance behaviour of UAVs. The
considered environment size is 10 km £ 10 km, with
the beginning and ending depots as (0.5,4) and (9,4),
respectively. The threat model is

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx � xtÞ þ ðy � ytÞ

p
r< rd

0 otherwise

�
(15)

where rd values are 1 km and 0.6 km, ðxt; ytÞ is the
location of the threat.

A different number of network neurons are set in
the DN to determine the relationship between the acti-
vated age and the number of neurons.

As shown in Figure 4, the paths are exported by
path planning according to different situations; then,
online learning is implemented. The primary behav-
iour bank and samples are determined through

Figure 3. The algorithm flow-chart.
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training, which forms the basic mapping of sense–
behaviour.

In the development process, the number of neurons
is closely related to the activation ages. As shown in
Figure 5, under the top-k mechanism, when the num-
ber of neurons is relatively small, the activation time of
neurons in the same area increases significantly, and
the updating rate of synapsis is relatively high, which
means that the mapping relationships of neurons
within this area is relatively large. When the number of
neurons is large, the probability that the neurons are to
be activated in the current scenario increases, while the
neurons in other areas are inhibitory at the same time.
This shows that neurons in different areas correspond
to different scenarios, and it is unnecessary to repeat-
edly activate a certain group of neurons.

4.2 Validation of the algorithm

The scenarios with known static threats, unknown
pop-up static threats and dynamic threats are set to
validate the proposed algorithm. The threat model is

considered as a hemisphere,

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx � xtÞ þ ðy � ytÞ þ ðz � ztÞ

p
r< rd

0 otherwise

�

(16)

where rd is 2.5 km, and ðxt; yt; ztÞ is the location of the
threat.

The area size of environment is 20 km £ 20 km £
4 km. The parameter settings of scenario-1 are shown
in Table 1.

As shown in Figure 6, the hemispheres are threats,
and the red lines are the flight paths of the UAV. At
t = 25 s, the UAV was avoiding the first static threat,
and the dynamic threat was moving at the same time.
At t = 50 s, a threat suddenly turned up in the sensory
region of the UAV. Thus, the UAV tried to match the
state of the threat with its behaviour bank to avoid col-
lision. At t = 75 s, a dynamic threat ran into the sen-
sory region; the UAV started the third avoidance
action. The heading angle of the UAV in scenario-1 is
shown in Figure 7. This paper reserved the track of the
dynamic threat to observe the threat situations and the
UAV’s behaviour of avoidance. The result shows that
the proposed algorithm has good adaptability to such
kinds of environment.

In scenario-2, nine static threats and two dynamic
threats are set to test the real-time avoidance ability of
the proposed approach under multi-threat conditions.
The threat model is the same as the one in Section 4.1,
and the rd is set randomly. The size of the environment
is 20 km £ 20 km. Parameter settings are shown in
Table 2.

As shown in Figure 8, the UAV encountered with
threat1 and threat2 during the flight. The UAV and

1 2

3 4

7 8

5 6

Figure 4. Training sample.
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Figure 5. Developmental networks neurons.

Table 1. Initial parameters in scenario-1.
UAV Static threat Pop-up threat Dynamic threat

Starting point (1,2,0) (4,5,0) (10,6,0) (11,15,0)
Velocity (m/s) 200 0 0 80
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threats started to fly at the same time, but their veloci-
ties are quite different. At t = 80 s, threat1 came into
the range of perception, the UAV tried to match the
state of the threat with its behaviour bank and output
the avoidance command for the first time. At t = 248 s,
threat2 came into the sensory range executing the
same process again. As shown in Figure 8, in order to
show the time parameter, we set the z-axis to represent
time, and removed some of the threat images which
interrupt the sight of view. Figure 9(a) shows the
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Figure 7. Heading angle in scenario-1.

Table 2. Initial parameters in scenario-2.
Starting
point

Velocity
(m/s)

Beginning
time (s)

Encountered
time (s)

UAV (2,2) 175 0
Dynamic
threat1

(5,20) 124 0 80

Dynamic
threat2

(40,47) 68 0 248
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Figure 6. Threat avoidance process.
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process of avoiding threat1. It can be seen from the z-
axis that they have not intersected in time. Figure 9(b)
shows the similar process for threat2. The heading
angle of the UAV in scenario-2 is shown in Figure 10.
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Figure 10. Heading angle in scenario-2.
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Figure 11. Collision avoidance comparison.
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Results of different scenarios validate the feasibility of
the proposed algorithm.

4.3 Performance comparison

To show the performance differences, the proposed
algorithm was compared with dynamic Particle Swarm
Optimization (PSO) [25], dynamic A* algorithm [26]
and dynamic Artificial Potential Field (APF) [27] for
the same cases. The environment’s size is considered
as 50 km £ 50 km for this case. A total of 13 static
threats and 7 pop-up threats are set. The threat model
is the same as the one in Section 4.1, and the rd value is
set randomly. The starting point is (0,0) and the end
point is (50,50). The results are shown in the following.

As shown in Figure 11, the static threats and the
pop-up threats appeared at different time. The paths
generated by the four algorithms are entirely different.
The three-dimensional oblique view of Figure 11 is
shown in Figure 12(a), whereas Figure 12(b) indicates
the corresponding left view. To illustrate the paths
clearly, some of the threat images which interrupt the
view have been removed. It can be seen that in the

initial phase, the computational differences between
four paths are minor. After encountering the first pop-
up threat, the difference began to increase, and the
directions of different paths turn out to deviate. With
the change in threats, the difference of computational
time and path’s direction becomes more and more
apparent. Figure 13 shows the heading angle of the
UAV in different algorithms. The simulation results
are summarized in Table 3.

As shown in Table 3, the shortest path was gener-
ated by the dynamic A� algorithm, while the longest
path was generated by dynamic APF. The path gener-
ated by the DN is a bit longer than that of the dynamic
A� method. The shortest computation time is for the
DN algorithm; dynamic APF’s computation time is
longer than DN’s algorithm, and that for dynamic PSO
is the longest one. The proposed algorithm is fine
enough in terms of calculation time and the cost of
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Figure 13. Heading angle of algorithms.

Table 3. Simulation results.
Algorithm Dynamic PSO Dynamic APF DN Dynamic A�

Calculation time (s) 427 348 310 372
Path length (km) 75.4 77.6 72.3 71.2
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path’s length, and it can adapt to a workspace that
exists pop-up threats by making avoidance behaviour
in time.

5. Conclusions

In this paper, the concept of AMD is introduced. Also,
the UAV collision avoidance method based on DN is
proposed by combining the collision avoidance strategy
of the UAV with the DN. Unlike the conventional
sense–avoidance methods, the proposed method enables
the UAV to obtain fundamental experience of collision
avoidance by learning and training, as well as the online
expansion of knowledge. For different types of threats,
neurons in the DN realize growth and development by
adjustment and updation of the synapses’ weights. The
simulation results show that the proposed method
based on DN has better timeliness in threat avoidance.

The disadvantage of the proposed method is that it is
unable to confirm the area directly where neurons need
to be activated, which will affect the computation time
to a considerable extent. The future work will focus on
the improvement of the sensory layer in the DN by
classifying different types of threats when sensing infor-
mation from the outside world, which can be applied to
determine certain areas of activated neurons directly.
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