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ABSTRACT 

PURPOSE: The purpose of this study was to examine the echo intensity (EI) values of different 

ultrasound (US) images of the vastus lateralis (VL) using panoramic imaging in the transverse 

plane (PTI) and still imaging in the longitudinal plane (SLI). Secondary purposes of this study 

were to examine VL homogeneity and to determine relationships between subcutaneous adipose 

tissue thickness (SubQ) adjacent to the muscle and EI. METHODS: Twenty-four recreationally-

trained collegiate males (20.2 ± 1.6 years; height: 178.1 ± 6.6 cm; weight: 82.2 ± 13.4 kg) 

participated in this investigation. EI, cross-sectional area (CSA), muscle thickness (MT), and 

SubQ of the VL were assessed in the dominant limb (DOM) via three PTI and SLI. The best PTI 

was divided into three compartments of equal horizontal length (tertiles) to examine EI 

homogeneity. RESULTS: A repeated-measures ANOVA revealed a significant main effect for 

image/tertile between measures of EI (p < 0.001). The EI of PTI (57.976 ± 8.806 AU) was 

significantly lower than EI of SLI (65.453 ± 11.023 AU) (p = 0.002), however significant 

positive correlations existed between the two (r = 0.681; p < 0.001). Additionally, the EI of the 

SLI was significantly greater than the EI of the lateral tertile (58.717 ± 9.877 AU) (p = 0.001) 

and the EI of the posterior tertile (56.354 ± 9.887 AU) (p = 0.002). Although there was no 

significant difference between EI of the SLI and EI of the anterior tertile (59.065 ± 9.126 AU), a 

trend towards a significant difference was shown (p = 0.051). No significant differences in EI 

values between tertiles were identified. Significant differences in MT existed between PTI and 

SLI (PTI: 2.178 ± 0.367 cm; SLI: 2.015 ± 0.397 cm; p = 0.003), however MT values from PTI 

and SLI were significantly positively correlated with one another (r = 0.809, p < 0.001). 

Significant differences in SubQ existed between PTI and SLI (PTI: 0.217 ± 0.167 cm; SLI: 0.316 
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± 0.225 cm; p < 0.001), however SubQ values from PTI and SLI were significantly positively 

correlated with one another (r = 0.915, p < 0.001). No relationship between EI and SubQ from 

either image was found (PTI and SubQ: r = -0.067, p = 0.754; SLI and SubQ: r = -0.114, p = 

0.597). SLI yielded slightly lower standard errors of measurement (SEM) and coefficients of 

variation (CV), indicating better precision compared to PTI. CONCLUSIONS: EI of the VL 

appears to be homogeneous as assessed in a PTI in recreationally-trained collegiate males. 

Additionally, PTI and SLI yield different EI, CSA, MT, and SubQ values, but these values are 

highly correlated. The use of SLI requires less time, equipment, and technical expertise, and 

therefore may be advantageous for use in future studies.  
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CHAPTER ONE: INTRODUCTION 

Numerous studies have used ultrasonography as a way to assess skeletal muscle 

morphology (Caresio, Molinari, Emanuel, & Minetto, 2014; Fukumoto et al., 2012; Jajtner et al., 

2014; Mangine et al., 2014a; Mangine et al., 2014b; Melvin et al., 2014; Scanlon et al., 2014; 

Wells et al., 2014; Young, Jenkins, Zhao, & McCully, 2015). The echogenicity (or echo 

intensity) of skeletal muscle obtained via ultrasonography can provide crucial information 

regarding muscle composition and possibly muscle quality (Mangine et al., 2014a; Mangine et 

al., 2014b; Pillen, 2010; Pillen and van Alfren, 2011; Scanlon et al., 2014; Wells et al., 2014). 

Echogenicity refers to the degree of reflectance of ultrasound waves off of a body tissue, where 

different body tissues possess different degrees of reflectivity (Pillen, 2010). Lower values of 

skeletal muscle echo intensity may be indicative of lower amounts of intramuscular fat and/or 

fibrous tissue which would be beneficial for many populations, including individuals who 

resistance train (Mangine et al., 2014a; Mangine et al., 2014b; Pillen et al., 2009; Scanlon et al., 

2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013; Watanabe et al., 2012; Wells et al., 

2014; Wilhelm et al., 2014; Young, Jenkins, Zhao, & McCully, 2015). It has been demonstrated 

that with resistance training, echo intensity values within the muscle may decrease (Jajtner et al., 

2014; Ivey et al., 2000; Scanlon et al., 2014). Additionally, significant negative correlations have 

been discovered between muscle echo intensity and strength and performance measures in 

various populations (Cadore et al., 2012; Fukumoto et al., 2012; Mangine et al., 2014a; Mangine 

et al., 2014b; Mangine et al., 2014c; Scanlon et al., 2014; Watanbe et al., 2013; Young, Jenkins, 

Zhao, & McCully, 2015). Previous research has shown that with training, inhomogeneous 

adaptations with regard to muscle size may occur within the same muscle (Ema, Wakahara, 
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Miyamoto, Kanehisa, & Kawakami, 2013; Seynnes, de Boer, & Narici, 2007; Wakahara et al., 

2012; Wells et al., 2014). Further studies have shown that the echogenicity within individual 

skeletal muscles may lack homogeneity as well (Caresio, Molinari, Emanuel, & Minetto, 2014; 

Young, Jenkins, Zhao, & McCully, 2015). To the best of our knowledge, no existing research 

has examined the heterogeneity of echo intensity values within the vastus lateralis muscle or in a 

recreationally-trained population.  

Ultrasound analysis of select muscles do not always permit the entire muscle to be 

viewed in a single still image, so panoramic imaging has been developed. Panoramic ultrasound 

imaging utilizes the overlapping of one image onto another as the probe is moved along the 

surface of the skin, to produce one comprehensive image (Ihnatsenka and Boezaart, 2010). 

Previous research has shown that panoramic imaging is a valid and reliable way to assess 

skeletal muscle morphology (Athiainen et al., 2010; Jajtner et al., 2014; Jajtner et al., 2015; 

Jenkins et al., 2015; Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; 

Noorkoiv, Nosaka, & Blazevich, 2010; Scanlon et al., 2014; Scott et al., 2012; Wells et al., 

2014). However, Noorkoiv and colleagues (2010) suggested that panoramic imaging may 

increase the likelihood of error due to the overlapping of one image onto another. Caresio and 

coleagues (2014) found that the region of interest affects reliability values of echo intensity 

obtained from a single still ultrasound image, where a larger region of interest generally results 

in a greater intra-class correlation coefficients between multiple measurements. These results 

offer the proposition that a panoramic image may result in a more accurate representation of 

muscle echogenicity if the entire muscle area cannot fit in a single still image. An investigation 

conducted by Jenkins et al. (2015) compared the echo intensities of single transverse ultrasound 

images of the biceps brachii to panoramic images of the same muscle. These researchers 
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discovered similar intra-class correlation coefficients, coefficients of variation, and minimal 

differences between the two different types of images. However, no previous research has 

investigated the heterogeneity of skeletal muscle echogenicity within an individual transverse 

panoramic image by breaking it up into anterior, lateral, and posterior compartments. Wells and 

colleagues (2014) discovered that resistance training can induce greater increases in vastus 

lateralis muscle thickness medially compared to laterally. Likewise, Ema et al. (2013) discovered 

significantly greater increases in the medial region of the vastus intermedius compared to the 

lateral region after resistance training. These inhomogeneous adaptations may affect echo 

intensity values of different areas within the muscle, however compartmental echo intensity was 

not examined in either study. Furthermore, Caresio et al. (2014) discovered significantly 

different echo intensity values in the rectus femoris muscle in a still ultrasound image at medial 

locations compared to lateral locations. Based on these results, one may expect may expect to see 

different echo intensities among different compartments of a panoramic ultrasound image of the 

vastus lateralis.  

Research up to this point has failed to examine the correlation between the echogenicity 

of single longitudinal images and transverse panoramic images of the same skeletal muscle. Most 

investigations have used only type of image to quantify muscle echo intensity, whether it be still 

images in the longitudinal or transverse plane or panoramic images in the transverse plane 

(Caresio, Molinari, Emanuel, & Minetto, 2014; Jajtner et al., 2014; Lixandrão et al., 2014; 

Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; Melvin et al., 2014; 

Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013; Watanabe et al., 

2012; Wells et al., 2014; Wilhelm et al., 2014; Young, Jenkins, Zhao, & McCully, 2015). Due to 

differences in fiber orientation and muscle architecture, an ultrasound image captured in the 
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longitudinal plane will produce an image that is vastly different from that captured in the 

transverse plane (Pillen, 2010). A longitudinal scan, taken parallel to the body of the muscle, will 

produce an image with visible striations due to fascia and connective tissue between individual 

muscle fibers. In contrast, a transverse scan will produce an image that is speckled in appearance 

due to the cross-sectioning of individual fascicles, connective tissue, and fascia (Pillen, 2010). It 

is likely that both types of images may produce different echo intensity values, however if both 

images are captured from the same area of the same muscle, one would expect correlation 

coefficients between the echogenicity of the two images types to be high.  

Muscle echogenicity is thought to be related to muscle quality, where a muscle with 

lower echo intensity values may contain lower amounts of intramuscular fat (Pillen et al. 2009; 

Strasser et al. 2013; Watanabe et al. 2012; Wilhelm et al. 2014; Young et al. 2015). However, 

upon examination of subcutaneous adipose tissue and its potential effect on echo intensity, 

research has exhibited conflicting results. Some researchers have demonstrated that echo 

intensity values are positively correlated with subcutaneous adipose tissue thickness (Caresio, 

Molinari, Emanuel, & Minetto, 2014; Nijboer-Oosterveld, van Alfren, & Pillen, 2011; Watanabe 

et al., 2013; Young, Jenkins, Zhao, & McCully, 2015), whereas other research has found no 

correlation between echo intensity and subcutaneous adipose tissue thickness (Fukumoto et al., 

2012; Melvin et al., 2014; Scholten, Pillen, Verrips, & Zwarts, 2003; Wu, Darras, & Rutkove, 

2010). Melvin and colleagues (2014) were one of the few to investigate the relationship between 

subcutaneous adipose tissue thickness and echo intensity in a resistance-trained population. 

These researchers discovered no correlation between subcutaneous adipose tissue thickness and 

echo intensity in Division I football players. Perhaps the thickness of subcutaneous adipose 

tissue adjacent to the muscle does not have an effect on a trained population, whereas a thicker 
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layer of subcutaneous fat may actually infiltrate the muscle in an untrained population (Miljkovic 

and Zmuda, 2010). Further research is necessary to determine the effect of subcutaneous adipose 

tissue on echo intensity in a recreationally-trained population. 

 Therefore, this study aimed to examine the relationship between echo intensity values 

obtained from different image types and scanning planes within the same muscle, to examine the 

heterogeneity of echo intensity values within the same image, and to determine if the amount of 

subcutaneous adipose tissue is related to skeletal muscle echogenicity in a recreationally-trained 

population.  

 

Purpose of the Study 

 The purpose of this study is to determine if there is a relationship between the echo 

intensity of a transverse panoramic ultrasound image and a longitudinal still ultrasound image of 

the vastus lateralis in the dominant leg of collegiate recreationally-trained males. The secondary 

purpose of this investigation is to determine if the echo intensity of the anterior, lateral, and 

posterior compartments of the vastus lateralis muscle in the dominant leg of collegiate 

recreationally-trained males is homogeneous as assessed in a transverse panoramic ultrasound 

image. Lastly, this study aims to determine if there is a relationship between subcutaneous 

adipose tissue thickness adjacent to the muscle and echo intensity of the vastus lateralis muscle 

in collegiate recreationally-trained males.   
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Research Questions 

The research questions for this investigation were as follows: 

1. Is there a relationship and/or a significant difference between the echo intensity of a 

panoramic ultrasound image captured in the transverse plane and a still ultrasound image 

captured in the longitudinal plane of the vastus lateralis? 

2. Do the anterior, lateral, and posterior sub-compartments of the vastus lateralis muscle 

have the same echo intensity values? 

3. Is there a relationship between the subcutaneous adipose tissue thickness adjacent to the 

muscle and echo intensity of the vastus lateralis? 

 

Hypotheses 

The hypotheses for this investigation were as follows: 

1. There is a positive correlation but a significant difference between the echo intensity 

values of an ultrasonographic transverse panoramic image and an ultrasonographic 

longitudinal still image of the vastus lateralis. 

2. The anterior, lateral, and posterior sub-compartments of the vastus lateralis muscle differ 

in echo intensity. 

3. There is no correlation between the subcutaneous adipose tissue thickness adjacent to the 

muscle and echo intensity of the vastus lateralis. 
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Delimitations 

1. Each participant was a member of the University of Central Florida’s Rugby Club team.  

2. Each participant was not affiliated with the University of Central Florida’s Athletic 

Association.  

3. Participants visited the Human Performance Laboratory at the University of Central 

Florida on one occasion.  

4. Participants will lay supine on an examination table for ultrasound assessment of the 

vastus lateralis muscle of the dominant leg.  

 

Limitations 

1. Each participant was recruited from one collegiate club-level rugby team, and therefore 

may not be representative of all recreationally-trained collegiate males. 

2. No requirement for resistance training experience or years playing rugby for participation 

was enforced so some subjects tested may have joined the team without prior rugby 

experience.  

3. No age range criteria was enforced for participation, although all subjects were college-

aged. 

4. There was no inclusion criteria for body composition, so echo intensity values obtained 

from participants with larger amounts of fat mass may have inaccurately resulted in lower 

echo intensity values due to non-systematic reflection of ultrasound waves with 

7 



increasing amounts of adipose tissue (Nijboer-Oosterveld, van Alfen, & Pillen, 2011; 

Young, Jenkins, Zhao, & McCully, 2015). 

5. Participants did not receive compensation for participation, which may have restricted 

incentive to participate. 

6. No medical history clearance or questionnaire was completed by any participant. Subjects 

with musculoskeletal injuries currently or previously were not excluded from the study, 

which may have affected echo intensity values due to increased pathological or 

neurological fibrous tissue.  

7. There was no distinction of player positions prior to testing. Different positions have 

different demands, which may affect muscle architecture and composition as well as fat 

mass in a non-homogeneous way. 

 

Assumptions 

1. Participants did not partake in vigorous exercise for at least 24 hours prior to testing. 

2. Proper calibration of ultrasound and consistency of ultrasound settings between and 

within participants (frequency, gain, depth, dynamic range, etc.). 

3. A skilled, experienced, and reliable technician completed all ultrasound imaging and 

ensured proper pressure and placement of the ultrasound probe upon the muscle of 

interest. 
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Operational Definitions 

1. Cross-Sectional Area: The total area of a two-dimensional image of a body tissue.  

2. Dominant Leg: Limb dominance was determined by self-reported kicking preference. 

3. Echo intensity/ Echogenicity: The degree of reflectance of ultrasound waves off of a body 

tissue, measured via ultrasound (Pillen, 2010). 

4. Muscle Thickness: The perpendicular distance from the deep border of the superficial 

aponeurosis of a muscle to the superficial border of the deep aponeurosis of the same 

muscle (Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; Radaelli et 

al., 2013; Scanlon et al., 2014; Wells et al., 2014). 

5. Subcutaneous Adipose Tissue Thickness/ Subcutaneous Fat Thickness: The perpendicular 

distance from the superficial border of the superficial aponeurosis of a muscle to the deep 

border of the epithelium.  

6. Tertile: Once a panoramic transverse image of the vastus lateralis has been divided into 

equal thirds based on length, one tertile represents one of the three compartments of the 

muscle.  

a. Anterior Tertile: The compartment of the vastus lateralis in a divided panoramic 

transverse image that is situated near the front of the body. 

b. Posterior Tertile: The compartment of the vastus lateralis in a divided panoramic 

transverse image that is situated near the rear of the body. 

c. Lateral Tertile: The compartment of the vastus lateralis in a divided panoramic 

transverse image that is situated away from the midline of the body. 
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CHAPTER TWO: REVIEW OF LITERATURE 

The Use of Ultrasonography in Skeletal Muscle Assessment 

The use of ultrasonography in assessment of skeletal muscle has grown vastly over the 

past 20 years (Mourtzakis & Wischmeyer, 2014). Ultrasonography is a quick, portable, relatively 

inexpensive, and non-invasive way to measure skeletal muscle morphological characteristics, 

including attributes such as muscle thickness, cross-sectional area, fiber architecture, and echo 

intensity (Pillen, 2010; Pillen and van Alfren, 2011). The following review articles explain how 

ultrasonography is utilized in relation to assessment of skeletal muscle morphology. 

 

Ihnatsenka, B. and Boezaart, A.P., 2010. 

Ultrasound: Basic Understanding and Learning the Language. 

 The purpose of this article was to familiarize the reader with various terms, techniques, 

and settings regarding the use of a standard ultrasound. Ultrasonography of skeletal muscle 

typically utilizes a brightness-mode (B-mode) ultrasound, which creates black-and-white images 

of different body tissues and muscles on the ultrasound screen. Each tissue contains varying 

degrees of grayscale contrast, which enables the distinction of one tissue from another. Skeletal 

muscle ultrasonography incorporates the use of a straight probe, which produces an image 

onscreen that is equal to the width of the transducer. When placed on the surface of the skin, the 

probe transmits sound waves that pass into the body and reflect off of each body tissue with a 

different amplitude. The reflected ‘echoes’ are transmitted back to the probe, which then create 
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pixelated images based on the degree of tissue reflectance and the time it took for the echo to 

return back to the probe. 

 Ultrasound probes can emit waves of high frequency, midrange frequency, or low 

frequency, where each frequency serves a specific function. High-frequency probes emit waves 

ranging from 10-15-Megahertz and are preferred when examining superficial tissues at a 

maximum distance of 4 centimeters from the surface of the skin. Midrange-frequency probes 

emit waves ranging from 5-10-Megahertz and are used to view deeper structures that lie 5-6 

centimeters from the surface of the skin. Low-frequency probes emit waves ranging from 2-5-

Megahertz and are beneficial when viewing much deeper images, 10+ centimeters from the 

surface of the skin. High-frequency probes and midrange-frequency probes provide better image 

resolution than low-frequency probes, however low-frequency probes permit a greater image 

depth. It is essential to use the probe that provides the best resolution for the corresponding depth 

of the tissue of interest. Additionally, the depth setting on the ultrasound should be set deep 

enough so that the image encompasses the entire tissue of interest, however increasing the depth 

after this point will decrease image quality. In addition, changing the gain of the ultrasound will 

adjust the brightness of the image. Modifying the gain will cause a change in the echogenicity of 

the image and may allow easier discrimination of separate muscles and body tissues, but it is 

crucial to keep this constant during the examination of multiple subjects. 

 Probe manipulation is another aspect of ultrasonography that is crucial for acceptable 

image quality. Altering the probe will change the direction of the ultrasound wave beams, which 

will affect each image. The mnemonic ‘PART’ can be useful when discussing probe 

manipulation, which stands for pressure, alignment, rotation, and tilt. Modifications in any one of 
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these maneuvers will change the way a body structure appears on an image. For example, 

modifying the pressure application of the probe on the skin surface can improve image quality, 

but can also affect the thickness and brightness of the structure of interest. Typically, probe 

pressure should be applied evenly so that all sides of the tissue are compressed to an equal and 

even extent. In some scenarios however, it may be beneficial to apply more pressure on one side 

of the probe than on the other in order to direct the beam perpendicularly to the structure of 

interest so that the underlying structures are properly aligned. In addition, applying too much 

pressure to the probe may disfigure the body tissues and lead to an inaccurate representation of 

muscle morphology. 

Alignment, also referred to as sliding, is also a vital aspect of probe manipulation, 

especially when performing panoramic ultrasound scans. Panoramic scans are a relatively new 

development in ultrasonography, which permit two-dimensional cross-sectional images of larger 

muscles to be viewed in a single image (Ahtiainen et al., 2010; Henrich, Schmider, Kjos, 

Tutschek, & Dudenhausen, 2002). Panoramic scans are especially beneficial for use when the 

structure of interest will not fit entirely in a still image. These types of scans have been proven 

effective for measuring spatial arrangement, locating anatomical reference points, and accurately 

measuring muscle and organ volume (Henrich, Schmider, Kjos, Tutschek, & Dudenhausen, 

2002; Kim, Choi, Kim, Lee, & Han, 2003). Panoramic scans utilize the compilation of multiple 

still images, overlapped upon one another to produce one comprehensive image. When 

performing an ultrasonographic panoramic scan, the ultrasound probe is moved along the skin 

adjacent to the structure of interest. It is essential that constant pressure and sliding speed of the 

probe are maintained throughout the entire sweep to ensure that possible alterations in muscle 

characteristics within the image are not due to improper probe alignment or pressure.  
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Rotation and tilt are other characteristics of probe manipulation that can be altered to 

change an ultrasound image. Rotation refers to the clockwise/counter-clockwise shift of the 

probe, which can affect the orientation of muscle fibers and measurement of cross-sectional area 

if the probe is rotated erroneously. Tilt refers to the backward/forward movement of the probe, 

which can affect the direction of the wave beam that is reflected off the tissue of interest. In all, it 

is imperative that correct probe manipulation is performed to produce a high-quality and accurate 

depiction of underlying body tissues (Ihnatsenka and Boezaart, 2010). 

 

Pillen, S., 2010. 

Skeletal Muscle Ultrasound. 

 The purpose of this article was to compare the use of an ultrasound in assessment of 

normal muscle tissue to that of neurological or pathological muscle tissue. Normal muscle tissue 

can be easily distinguished from surrounding structures such as bone, subcutaneous fat, nerves, 

and blood vessels due to the varying degrees of echogenicity that each tissue possesses. 

Echogenicity, or echo intensity, refers to the degree of reflectance of ultrasound waves 

off of a body tissue. When a difference in reflectivity between different body structures or 

different parts of the same structure exists, contrasting colors will appear on the ultrasound 

image. All body tissues can be characterized by some degree of echogenicity, ranging from 

tissues that are hyperechoic, or those that appear completely white on the screen, to those that are 

anechoic, or those that appear completely black on the screen. Tissues that are hyperechoic 

possess greater reflectivity than those that are anechoic. For example, in a given ultrasound 

image, bone appears anechoic with a hyperechoic rim due to the inability of the ultrasound beam 

to penetrate past the outer surface of the bone. Arteries, veins, and fat also appear anechoic on an 
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ultrasound image. On the other hand, muscles appear hypoechoic, a degree of reflectance 

between hyperechoic and anechoic that appears a shade of gray on screen.  

Muscles have a striate structure, which is primarily due to intramuscular fascia, 

individual fibers, and connective tissue surrounding each individual fascicle. Fascia and 

connective tissue appear as lines or streaks throughout muscle and are hyperechoic in nature 

(Ihnatsenka and Boezaart, 2010). Normal skeletal muscle appears hypoechoic, but the degree of 

echogenicity can be influenced by various factors. For example, a healthy muscle will appear 

relatively uniform throughout, with a lower reflectance and lower echogenicity due to the 

decreased presence of intramuscular fat or fibrous tissue. In contrast, neurological or 

pathological disorders can cause skeletal muscle architecture to become distorted, leading to the 

infiltration of fat and fibrous tissue (Caresio, Molinari, Emanuel, & Minetto, 2004; Miljkovic 

and Zmuda, 2010). The increased presence of intramuscular fat or fibrous tissue produces an 

image that is brighter in color. A brighter ultrasound image is typically indicative of “poorer” 

muscle quality due to the increased levels of intramuscular fat and fibrous tissue. However, 

muscle quality is a very subjective measurement and can differ depending on the goals of the 

individual (Fukumoto et al., 2012; Pillen et al., 2009; Pillen and van Alfren, 2011).  

Additionally, attenuation of the ultrasound beam can further affect the echogenicity of a 

skeletal muscle (Pillen, 2010). The inconsistencies in impedance as the ultrasound waves travel 

through underlying body structures inherently cause the superficial part of the a tissue of interest 

to appear more hyperechoic than the hypoechoic deeper part, which could result in an inaccurate 

measure of muscle echogenicity (Pillen, 2010).  

14 



Ultrasonography can be beneficial for use in all anatomical planes of the body. 

Ultrasound scanning or imaging planes are similar to anatomical planes and consist of the 

transverse (axial) plane, the longitudinal (sagittal) plane, and the frontal (coronal) plane. 

Utilization of different imaging planes will have a profound effect on the ultrasound image as 

well as the body tissues that can be seen. For example, a transverse scan, captured 

perpendicularly to the long axis of the muscle, will produce an image with a speckled appearance 

due to the perpendicular division of individual muscle fibers in this plane. In contrast, a 

longitudinal scan, taken parallel to the long axis of the muscle, will produce an image with 

visible striations, which are visible fascia and connective tissue between individual muscle 

fibers. Differences in muscle architecture on a macroscopic level (fusiform muscles, unipennate 

muscles, bipennate muscles, convergent muscles, etc.) will result in variations in muscle fiber 

arrangement and therefore will change what can be viewed on an ultrasound image. 

The ability to classify muscle architecture correctly and distinguish one structure from 

another is imperative when analyzing ultrasound images. The fibrous epimysium surrounding 

skeletal muscle is very hyperechoic and clearly visible on ultrasound images. In addition, 

variations in echo intensity values can exist between different skeletal muscles due to disparities 

in the amount of fibrous tissue, muscle architecture, and possible imbalances throughout the 

body (Seynnes, de Boer, Narici, 2007). It is vital to take this into account when comparing the 

echogenicity of one muscle to that of another. 

Quantification of the echo intensity of an individual muscle is typically performed 

through gray scale analysis. Utilization of an image analysis software, such as ImageJ (National 

Institutes of Health, Bethesda, Maryland, USA) or Adobe Photoshop (Adobe Systems Inc., San 
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Jose, California, USA) allows a subjective selection of a region of interest within an ultrasound 

image. After selecting a region of interest that entirely encompasses only the desired skeletal 

muscle but does not include the surrounding fascia, a histogram plot of the brightness of each 

individual pixel within the region of interest can be created. The values on the histogram range 

from 0-255, where a value of 0 represents a pixel that is completely black, and a value of 255 

represents a pixel that is completely white (Nielsen, Jensen, Darvann, Jorgensen, & Bakke, 2006; 

Pillen, 2010; Pillen and van Alfren, 2011). The mean grayscale value from the region of interest 

can then be generated via the histogram, which describes the overall echogenicity of the region 

of interest. Lower mean levels of echo intensity are indicative of a darker muscle and usually 

contain less intramuscular fat or fibrous tissue. Higher mean levels of echo intensity are 

indicative of a brighter muscle and usually contain greater amounts of intramuscular fat, fibrous 

tissue, some degree of neuromuscular or pathological disorders, or the infiltration of 

inflammatory markers as an indication of muscle damage (Jajtner et al., 2015). However, the 

echo intensity of a muscle can also be affected by the gain or depth of the ultrasound probe 

transducer and can also vary depending on the pressure, tilt, rotation, and alignment of the probe 

on the skin itself (Pillen, 2010). It is very essential to keep these consistent between each 

individual when performing a research study. An alteration in one variable can lead to extreme 

changes in echogenicity that are not actually due to the muscle itself, but due instead to 

application of the ultrasound (Pillen, 2010). 
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Validity and Reliability of Ultrasonography in Assessment of Skeletal Muscle Morphology 

 Previous research has shown that ultrasonography is a valid and reliable tool for the 

assessment of skeletal muscle morphological characteristics, such as muscle cross-sectional area 

and muscle thickness. Cross-sectional area is defined as the area of a cross-sectional image of a 

muscle and is a valid and reliable measure of muscle size (Mangine et al., 2014a; Mangine et al., 

2014b; Mangine et al., 2014c; Scanlon et al., 2014; Wells et al., 2014). Muscle thickness, defined 

as the perpendicular distance from the superficial aponeurosis to the deep aponeurosis of the 

muscle, has also been reported to be a valid and reliable way to assess muscle size (Mangine et 

al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; Radaelli et al., 2013; Scanlon et al., 

2014; Wells et al., 2014). However, many studies have used alternative techniques to assess 

skeletal muscle and tissue, which include but are not limited to, magnetic resonance imaging and 

computerized tomography. The following studies have aimed to examine the validity and 

reliability of assessing skeletal muscle and body tissue through ultrasonography in comparison to 

other muscle imaging techniques. 

 

Validity and Reliability of Ultrasonography Compared to Magnetic Resonance Imaging 

             Magnetic resonance imaging, or MRI, has been often been considered the gold standard 

for assessing skeletal muscle size and cross-sectional area, especially in the evaluation of 

exercise training programs, disease, or sarcopenia (Ahtiainen et al., 2010; Reeves, Maganaris, & 

Narici, 2003). Magnetic resonance imaging enables a high level of contrast between different 

body tissues as well as visualization of both superficial and deep muscles, making the assessment 

17 



of each tissue relatively easy (Ahtiainen et al., 2010; Pillen, 2010; Pillen and van Alfren, 2011; 

Reeves, Maganaris, & Narici, 2003). However, magnetic resonance imaging devices are not 

easily accessible for use in research due to their high cost of operation and high demand in 

clinical settings, which is why ultrasonography is often used for skeletal muscle assessment 

instead (Reeves, Maganaris, & Narici, 2003). The following studies aim to examine the validity 

and reliability of the use of ultrasonography compared to magnetic resonance imaging. 

  

Esformes, J.I., Narici, M.V., & Maganaris, C.N., 2002.  

Measurement of Human Muscle Volume Using Ultrasonography. 

 The purposes of this study were to use ultrasonography to measure the volume of the 

tibialis anterior muscle, to determine the reproducibility of using ultrasonography as a technique 

to assess muscle volume, and to examine the validity of ultrasonography compared to magnetic 

resonance imaging. Six healthy and physically active males and females (age: 23 ± 3 years) 

volunteered to participate. On day one of the study, participants were instructed to lay in a supine 

position for 20-30 minutes prior to testing to allow for interstitial or intracellular fluid shifts to 

occur. A 7.5-Megahertz, brightness-mode ultrasound was used to obtain 11 different transverse 

scans of the tibialis anterior muscle of the left leg in each subject. The length of the tibialis 

anterior muscle varied between subjects, but the distance between each of the 11 scans was kept 

constant within each subject. Measurement of the tibialis anterior was performed through 

ultrasonographic identification of the myotendinous and osteotendinous junctions at the proximal 

and distal ends of the muscle, respectively. Each ultrasound image was recorded twice, five 

minutes apart. On the next visit, which occurred 1-3 days later, magnetic resonance imaging 

scans were captured at the same locations that the ultrasound scans had previously been taken at. 
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All image analysis was performed by the same investigator three separate times using NIH 

Image software (NIH Image, National Institute of Health, Bethesda, USA). 

 The results of this study revealed that there was a very high intra-class correlation (ICC = 

0.99) between the two ultrasound measurements taken at each of the 11 intervals, indicating that 

ultrasound assessment of tibalis anterior volume is highly reproducible. There was also a very 

strong correlation between the tibialis anterior volume assessed via magnetic resonance imaging 

and ultrasonography (r2 = 0.978). However, the researchers noted that compared to the magnetic 

resonance imaging method, ultrasonography tended to slightly overestimate muscle volumes 

smaller than 120 centimeters3 and underestimate muscle volumes larger than 120 centimeters3. 

Overall, ultrasonography is a reliable, accurate, and reproducible method of measuring muscle 

volume as compared to magnetic resonance imaging (Esformes, Narici, & Maganaris, 2002). 

 

Reeves, N.D., Maganaris, C.N., & Narici, M.V., 2004. 

Ultrasonographic Assessment of Human Skeletal Muscle Size. 

 Reeves and colleagues (2004) aimed to test the reproducibility and validity of 

ultrasonography compared to magnetic resonance imaging in assessment of the cross-sectional 

area of the vastus lateralis muscle. This study was one of the first to use image fitting 

ultrasonography to assess a large muscle involved in locomotion. Ultrasonography had 

previously been restricted to measurement of small muscles due to the limited size of the 

ultrasound image. Six healthy males and females (age: 76.8 ± 3.2 years) volunteered to 

participate in this study. On the day of testing, subjects were instructed to lay in a supine position 

for 20 minutes prior to examination to allow for fluid shifts to occur. A 7.5-Megahertz, 
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brightness-mode ultrasound was used to obtain 10 transverse scans of the vastus lateralis muscle 

of the right leg in each subject. The proximal insertion of the vastus lateralis was identified on 

each subject and 10 transverse sections were then marked every 30 millimeters (mm) from this 

point. Ultrasound images of each section were recorded twice, with an average of three days in 

between scans. Magnetic resonance imaging measurements were performed on the same days 

that the ultrasound measurements were taken, about one hour after the ultrasound scans. 

Magnetic resonance imaging scans attempted to capture images at the same locations that the 

ultrasound scans had previously been taken at, however it was only possible to obtain images of 

the lower vastus lateralis due to size constraints with magnetic resonance imaging. All magnetic 

resonance imaging and ultrasound measurements were performed by the same investigator. 

Ultrasonographic still images of the vastus lateralis were sequentially opened in Microsoft 

PowerPoint (Microsoft, Redmond, WA, USA) and were rotated upon each other until the entire 

cross-section of the muscle could be seen. Cross-sectional area image analysis of the magnetic 

resonance images and ultrasound scans were then performed by six different experimenters to 

examine inter-experimenter reliability. 

 The results of this study showed that there was a very strong intra-class correlation (ICCs 

ranged from 0.997 to 0.999) between the two ultrasound measurements taken at each of the 10 

intervals, and typical error for ultrasound reliability was averaged 0.29 centimeters2 (2.6%). This 

indicates that ultrasound assessment of vastus lateralis cross-sectional area is highly 

reproducible. Validity of the magnetic resonance imaging method compared to the ultrasound 

method produced intra-class correlations ranging from 0.988 to 0.999, with a mean typical error 

of 0.15 centimeters2 (1.7%). Coefficient of variation values for cross-sectional area analysis by 

different experimenters equalled 2.1% for ultrasound images and 0.8% for magnetic resonance 
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images. Although coefficients of variation were slightly greater for ultrasonography assessment 

compared to magnetic resonance imaging assessment, this indicates that ultrasonography is a 

valid and reliable tool to assess the cross-sectional area of large muscles compared to magnetic 

resonance imaging. However, due to the small sample size and homogeneous population, the 

results of this study may not generalize to other populations. For example, the typically lower 

muscle mass and cross-sectional area that is often seen in older individuals would require fewer 

images to construct the overlay of the muscle (Janssen, Heymsfiels, & Ross, 2002). In younger 

individuals who possess greater muscle mass, more images of the vastus lateralis would be 

required, possibly increasing the chance of error. In addition, differences in subcutaneous fat and 

tendon architecture exist between younger and older individuals, which may also affect image 

fitting (Kubo, Kanehisa, Miyatani, Tachi, & Fukunaga, 2003). This study shows the validity and 

reliability of the use of ultrasonography in a specific population, but whether or not the validity 

and reliability of its use also applies to other populations will be further discussed (Reeves, 

Maganaris, & Narici, 2004). 

 

Lixandrão, M.E., Ugrinowitsch, C., Bottaro, M., Chacon-Mikahil, M.P.T., Cavaglieri, C.R., 

Min, L.L., de Souza, E.O., Laurentino, G.C., & Libardi, C.A., 2014. 

Vastus Lateralis Muscle Cross-Sectional Area Ultrasonography Validity for Image Fitting in 

Humans. 

To test a more heterogeneous sample of subjects, Lixandrão and colleagues (2010) 

examined the validity of magnetic resonance imaging compared to ultrasonography in 

assessment of the cross-sectional area of the vastus lateralis muscle. In this experiment, 31 

subjects (age: 52.44 ± 16.37 years; n = 21 males, n = 10 females) who were healthy and had not 
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participated in an exercise training program for at least six months were recruited. Each subject 

was instructed to refrain from exercise for 72 hours prior to the first day of the study. Upon 

arrival, all subjects were instructed to lay in a supine position 20 minutes prior to examination to 

allow for fluid shifts to occur. Their legs were then strapped with Velcro to prevent movement. 

Magnetic resonance images and ultrasound images were captured in duplicate of the participants’ 

right vastus lateralis muscle at 50% of the perpendicular distance from the greater trochanter to 

the inferior border of the lateral epicondyle of the femur. Sequential ultrasonographic still images 

were captured using a 7.5-Megahertz brightness-mode ultrasound, which were then imported 

into an image overlaying software that was previously described by Reeves and colleagues 

(2004). Cross-sectional area for each image was measured using an image analysis software. 

The results of this experiment demonstrated that there was a very strong positive 

correlation (r = 0.99, p < 0.001) between the cross-sectional area values obtained from the 

magnetic resonance images and the ultrasound images. The total error between the two imaging 

techniques was 0.37 centimeters2 (1.75%), which was similar to the total error between magnetic 

resonance images and ultrasound images reported by Reeves et al. (2004). High intra-

measurement reliability of both the magnetic resonance imaging and ultrasound methods were 

reported; the typical error was equal to 0.36 centimeters2 (1.69%) and 0.35 centimeters2 (1.68%), 

respectively. These results suggest that there is high validity and reliability of using 

ultrasonography to assess the cross-sectional area of the vastus lateralis muscle in a 

heterogeneous sample of participants. The authors note that the ultrasound method of measuring 

cross-sectional area does not produce an over- or underestimation of the actual measurements, as 

previously proposed by Reeves Maganaris, & Narici (2004) because the values of cross-sectional 
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area obtained by both magnetic resonance imaging and ultrasonography were very similar 

(Lixandrão et al., 2014). 

 

Ahtiainen, J.P., Hoffren, M., Hulmi, J.J., Pietikäinen, M., Mero, A.A., Avela, J., & 

Häkkinen, K., 2010. 

Panoramic Ultrasonography is a Valid Method to Measure Changes in Skeletal Muscle Cross-

Sectional Area. 

 A relatively recent and increasingly popular technique in ultrasonography is the use of 

panoramic imaging. Often times, single still ultrasound images are do not permit the entire area 

of large muscles to be viewed in a single frame. Panoramic ultrasound imaging is a process that 

involves the overlapping of multiple still images upon one another to create one cohesive image 

on the ultrasound screen. Panoramic images are composed of multiple small snapshots of the 

muscle, which are aligned upon one another to create a larger image that contains the entire 

region of interest. Prior to this point, the reliability and validity of this method of 

ultrasonography have not been evaluated in muscles with a large cross-sectional area. This study 

was the first to examine the validity and reliability of panoramic ultrasonography in the 

assessment of vastus lateralis cross-sectional area compared to magnetic resonance imaging.  

Twenty-seven untrained, healthy men were placed in either a total-body resistance-

training group (n = 20; age: 26.0 ± 4.2 years) or control group (n = 7; age 24.3 ± 3.0 years) for 21 

weeks. Vastus lateralis cross-sectional area was measured via ultrasonography and magnetic 

resonance imaging taken on the same days at the beginning and end of the study, preceded by at 

least three days of inactivity. Subjects were instructed to lay supine for 20 minutes prior to 
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examination to allow for fluid shifts to occur. Upon examination, each participants’ legs were 

placed 15 centimeters apart and were held in place with sculptured supports between and under 

their legs to prevent movement. The ultrasound and magnetic resonance imaging scans were 

performed at three different locations along the vastus lateralis muscle; one at the midpoint of the 

lateral knee joint surface and the spina iliaca anterior superior, one located 2 centimeters distally, 

and one located 4 centimeters distally from the aforementioned point. A 10-Megahertz 

brightness-mode ultrasound and LogicViewTM software was used to generate panoramic images 

of the vastus lateralis muscle. A probe support, angled perpendicularly to the leg, was used to 

ensure that constant pressure and compression was applied against the leg throughout the entire 

scan. The probe was manually moved along the leg in transverse plane, which had been marked 

previously with an ink line along the skin. As the transducer was moved, the LogicViewTM 

software created a panoramic image on the screen. The quick frame rate of this software allowed 

for greater than 10 images to be taken per second, resulting in considerable overlap of images. 

Based on the rotation and orientation of the images in the sequence, the software was able to 

create one comprehensive image on the screen to display to the user. Three panoramic 

ultrasonographic images were taken at each location for every subject before and after the 21-

week period. Magnetic resonance images were taken at the same sites that the ultrasound images 

were obtained from. The same investigator performed all of the ultrasound and magnetic 

resonance imaging measurements in this experiment. After all of the measurements were 

obtained, an image analysis software (ImageJ, National Institutes of Health, Bethesda, MD, 

USA) was used to determine vastus lateralis cross-sectional area from both the ultrasound and 

magnetic resonance imaging images.  
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 The results of this study showed that subjects participating in the resistance training 

program experienced significantly greater increases in cross-sectional area of the vastus lateralis 

compared to the control group, which was observed in both the magnetic resonance imaging and 

ultrasound imaging techniques (p < 0.001). There was no statistically significant difference in 

muscle cross-sectional area between either group at the beginning of the study, so both groups 

were combined to assess the reliability of the ultrasound method in measuring cross-sectional 

area. The intra-day repeatability of the ultrasound measurements was very strong, with a high 

intra-class correlation (ICC = 0.997) and low standard errors of measurement (SEM = 0.38 

centimeters2).  

The validity of the ultrasound method compared to the magnetic resonance imaging 

method in measurement of cross-sectional area was also assessed. The magnetic resonance 

imaging method yielded cross-sectional area values that were systematically larger than those 

obtained using the ultrasound method (31.28 ± 5.09 centimeters2 vs 28.32 ± 4.96 centimeters2, 

respectively), however intra-class correlations between the two were still very strong, and the 

standard error of measurement was low (ICC = 0.905, SEM = 0.87 centimeters2). The mean 

difference between the cross-sectional area values obtained from magnetic resonance imaging 

and ultrasound was 10 ± 4%. When examining the validity of the ultrasound method compared to 

magnetic resonance imaging method in the assessment of changes in cross-sectional area after 

the training period, the intra-class correlation between the two types of measurement and the 

standard error of measurement both increased (ICC = 0.929, SEM = 0.94 centimeters2). 

Overall, the results of this study show that panoramic ultrasonography is a valid and 

reliable tool in the assessment of vastus lateralis cross-sectional area. The ability of the 
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ultrasound to detect changes in muscle cross-sectional area after a training program was very 

similar to that measured via magnetic resonance imaging. The use of panoramic imaging reduces 

the time necessary for construction of the cross-sectional area of large muscles. However, cross-

sectional area values assessed in the training group at the start of the study via ultrasonography 

were systematically lower than the values obtained via magnetic resonance imaging. The authors 

suggest that this may be due to the measurement plane of the ultrasound in comparison to that of 

magnetic resonance imaging. The magnetic resonance scans captured images in a plane along a 

perfectly vertical axis, perpendicular to the measurement table and not to the participant. In 

contrast, the ultrasound captured images perpendicularly to the participant’s leg and not 

perpendicularly to the table. This could have resulted in an overestimation of the vastus lateralis 

cross-sectional area in the magnetic resonance images compared to the ultrasound images due to 

the angle at which the magnetic resonance imaging beam was oriented upon the leg. The 

experimenters reported that a difference in the perpendicular axis of measurement between the 

two methods of only 5-10° would result in a difference in cross-sectional area of approximately 

1-3%. This may indicate that the use of the ultrasound is a more accurate way to assess vastus 

lateralis cross-sectional area than the use of magnetic resonance imaging. In summary, 

panoramic ultrasonography is a valid and reliable tool for measuring vastus lateralis cross-

sectional area compared to magnetic resonance imaging (Ahtiainen et al., 2010). 

 

Scott, J.M., Martin, D.S., Ploutz-Snyder, R., Caine, T., Matz, T., Arzeno, N.M., Buxton, R., 

& Ploutz-Snyder, L., 2012. 

Reliability and Validity of Panoramic Ultrasound for Muscle Quantification. 
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 This study aimed to examine the validity and reliability of panoramic ultrasonography 

compared to magnetic resonance imaging in the assessment of quadriceps and gastrocnemius 

cross-sectional area and volume. Researchers in this study used the same type of panoramic 

imaging previously described by Ahtiainen and colleagues (2010). Nine healthy people (n = 8 

males, n = 1 female; age: 34.5 ± 8.2 years) with no recent history of thigh injury or inflammation 

volunteered to participate. Cross-sectional area of the vastus lateralis, rectus femoris, and medial 

and lateral gastrocnemius were measured using magnetic resonance imaging as well as a 9-

Megahertz brightness-mode ultrasound with panoramic capabilities. During imaging, the 

investigators used a customized template on the right leg of each participant to ensure consistent 

measurement. Once images were obtained, two different researchers analyzed the cross-sectional 

area of the ultrasound and magnetic resonance images via different image analysis softwares 

(ultrasound: MATLAB; Mathworks, Natick, MA, USA; magnetic resonance imaging: ImageJ, v. 

1.42, National Institutes of Health, Bethesda, MD, USA). 

The researchers determined that there was high inter-rater reliability between both the 

ultrasound images and magnetic resonance images. The cross-sectional area determined from the 

ultrasound images had strong intra-class correlations (ICC = 0.963 – 0.991) and low coefficients 

of variation (CV = 2.4% – 4.1%). The cross-sectional area determined from the magnetic 

resonance images also had strong intra-class correlations (ICC = 0.946 – 0.986) and low 

coefficients of variation (CV = 2.8% – 3.8%). These findings align with other research 

investigating panoramic ultrasonography as a valid and reliable technique to measure cross-

sectional area in large muscles such as the vastus lateralis (Thomaes et al., 2012; Noorkoiv, 

Nosaka, & Blazevich, 2010). 
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The absolute differences in cross-sectional area between the two images ranged from 0.3 

to 1.0 centimeters2, and mean differences in the cross-sectional area determined by 

ultrasonography were within 14% of the magnetic resonance imaging values for the rectus 

femoris and gastrocnemius, but greater than 14% for the vastus lateralis. The authors note that 

the disparities in cross-sectional area values between imaging techniques seen in the vastus 

lateralis may be due to the great curvature of the distal thigh compared and the large volume of 

the vastus lateralis muscle in general. With a large region of interest (in this case, muscle area), 

the ultrasound may systematically omit small sections of the image when processing it 

panoramically, which would produce a smaller image overall. Other researchers, including 

Ahtiainen and colleagues (2010), also found consistently smaller values of cross-sectional area 

with use of the ultrasound compared to magnetic resonance imaging. Ahtiainen et al. (2010) 

attributed this discrepancy to the differences in axes of analysis with ultrasonography and 

magnetic resonance imaging and determined that ultrasonography may actually produce values 

of cross-sectional area that are more accurate than those determined by magnetic resonance 

imaging (Scott et al., 2012). 

 

Validity and Reliability of Ultrasonography Compared to Computerized Tomography: 

 Computerized tomography (CT) is another technique that is often used to assess skeletal 

muscle and is especially used in a clinical populations (Pillen, 2010; Pillen and van Alfren, 

2011). Computerized tomography has often be used in emergency scenarios to examine bone 

injuries or detect the presence of disease (Pillen, 2010; Pillen and van Alfren, 2011; Thomaes et 

al., 2012). However, one disadvantage of computerized tomography is that, unlike 
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ultrasonography or magnetic resonance imaging, it emits radiation, and therefore may be 

deterred for use in certain populations or scenarios (Pillen, 2010; Pillen and van Alfren, 2011; 

Thomaes et al., 2012). For example, research studies requiring more than one computerized 

tomography scan (i.e. pre- to post- studies) may discourage people from participating due to the 

potentially harmful consequences. In addition, computerized tomography is capable of 

examining the infiltration of fat in muscles, but it is not capable of viewing fibrosis. The inability 

to distinguish fibrosis from normal muscle tissue in computerized tomography diminishes the 

ability for computerized tomography to assess muscle quality, but computerized tomography can 

still be used to assess muscle size. Regardless, the validity and reliability of computerized 

tomography compared to ultrasonography in the assessment of skeletal muscle will be discussed. 

 

Thomaes, T., Thomis, M., Onkelinx, S., Coudyzer, W., Cornelissen, V., & Vanhees, L., 

2012. 

Reliability and Validity of the Ultrasound Technique to Measure the Rectus Femoris Muscle 

Diameter in Older CAD-Patients. 

 Thomaes and colleagues (2012) examined the reliability and validity of using 

ultrasonography compared to computerized tomography to measure the diameter of the rectus 

femoris muscle in elderly individuals. Forty-five males and females with coronary artery disease 

(age: 68.4 ± 6.2 years) who were participating in a sports maintenance program volunteered for 

this study. Twenty of the 45 subjects were assessed with both ultrasonography and computerized 

tomography, whereas the remaining subjects were assessed twice with ultrasonography to 

examine both the validity and reliability of ultrasonography. A sequence of five still-images of 

the right rectus femoris was obtained in every subject using a brightness-mode 12-Megahertz 
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ultrasound at the midpoint between the lateral epicondyle and major trochanter of the femur. 

Subjects who received computerized tomography scans did so at the same location as the 

ultrasound scans, however four of the five images were located either below or above the 

aforementioned point. All ultrasound and computerized tomography scans were measured by the 

same researcher. 

 The results of this study showed that the average difference between the rectus femoris 

diameter assessed via ultrasonography and computerized tomography was very small and 

insignificant (0.01 ± 0.12 centimeters, p = 0.66), and the intra-class correlation between the two 

types of measurement was high (ICC = 0.92). In addition, there was high test-retest reliability 

between the two ultrasound measurements, where the average difference between the two was 

small and insignificant (0.02 ± 0.10 centimeters, p = 0.40), and the intra-class correlation was 

high (ICC = 0.97). This study shows that ultrasound is a valid and reliable tool to assess rectus 

femoris muscle diameter in an older, diseased population as compared to computerized 

tomography. Ultrasonography may actually be beneficial for use in this population due to the 

evasion of radiation emission, which is one major consequence of using computerized 

tomography (Thomaes et al., 2012). 

 

Noorkoiv, M., Nosaka, K., & Blazevich, A.J., 2010. 

Assessment of Quadriceps Muscle Cross-Sectional Area by Ultrasound Extended-Field-of-View 

Imaging. 

 The purpose of this study was to examine the inter- and intra-experimenter reliability and 

validity of the cross-sectional area of the vastus lateralis muscle measured using ultrasonography 
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and computerized tomography. Another aim of the study was to examine whether the reliability 

of panoramic ultrasonographic imaging was dependent on the proximo-distal location from 

which the image was obtained. In this study, researchers used extended-field-of-view panoramic 

ultrasonography to assess the vastus lateralis muscle of six males (age: 28.7 ± 4.6 years) 

(Ahtiainen et al., 2010). Prior to testing, each subject rested in a supine position for 20 minutes. 

Cross-sectional area was assessed at 10%, 20%, 30%, 40%, and 50% of the distance from the 

superior border of the patella to the anterior superior iliac spine in both limbs of each participant. 

The researchers used a 10-Megahertz brightness-mode ultrasound to obtain five consecutive 

transverse scans at each site and on each leg of the subjects. A custom-made device was used to 

ensure that the probe was guided perpendicularly to the leg. Computerized tomography images 

were taken at the same sites previously marked, two hours after the ultrasound images were 

captured. Vastus lateralis cross-sectional area was then assessed using an image analysis 

software (1.41, Wayne Rasband, National Institutes of Health, USA). 

 The results of this study revealed that there was a high intra-class correlation between the 

two imaging techniques captured at each location, which ranged from 0.951 to 0.998 (p < 0.001). 

However, the 95% confidence interval was only in the acceptable range for images taken at 30%, 

40%, and 50% of the distance from the superior border of the patella to the anterior superior iliac 

spine. The smallest difference between the cross-sectional areas measured using each technique 

was at the 50% mark, and the difference in cross-sectional area values obtained from each 

technique increased in the images taken distally from this point. At the 20% mark, the ultrasound 

images produced cross-sectional area values that were, on average, 8.9% smaller than those 

measured by computerized tomography. One major limitation of the study was that at the 10% 

mark, the vastus lateralis could not be visualized in most subjects.  
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The coefficient of variation examining the intra and inter-experimenter reliability of the 

ultrasound imaging technique ranged from 0.6 to 2.7%. The intra-class correlation values for 

inter-day reliability of the ultrasound imaging technique ranged from 0.982 to 0.998. The cross-

sectional areas of the vastus lateralis assessed at each location were all significantly different 

from one another, regardless of the method used. This shows that the vastus lateralis muscle 

varies in muscle size at different locations. Based on these results, the experimenters concluded 

that ultrasonography is a valid and reliable tool to assess large muscle cross-sectional area, but 

that the validity and reliability are dependent on location. Images taken at mid-thigh and 

proximal sections of the vastus lateralis were the most accurate and repeatable, whereas images 

taken more distally had poorer reliability. At distal regions of the thigh, a lower reliability was 

most likely observed because of the smaller thigh diameter and tightly curved surface, which 

may have made the probe more difficult to control. However, as the diameter of the vastus 

lateralis decreases, the most appropriate scanning plane for measurement of cross-sectional area 

changes due to the differences in the structure of the muscle. At a more distal point on the 

muscle, the superficial and deep aponeuroses of the vastus lateralis no longer exhibit a near-

parallel formation, as they do at a more central point. In computerized tomography, each image 

is taken perpendicularly to the table, which is an accurate method for measuring cross-sectional 

area when the aponeuroses of the muscle are parallel to each other. As the distance from the mid-

thigh area increases, the cross-sectional area of the muscle may not be obtained in the correct 

plane when assessed by computerized tomography. On the other hand, ultrasonography captures 

an image that is perpendicular to the skin, which may provide a more accurate measurement of 

distally-located cross-sectional area than computerized tomography. In the present study, a 

smaller cross-sectional area was observed with the ultrasound technique as compared to the 
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computerized tomography technique in all distal images, which may provide evidence that 

ultrasonography is a better method to assess cross-sectional area at distal locations than 

computerized tomography (Noorkoiv, Nosaka, & Blazevich, 2010). 

 

Validity and Reliability of Ultrasonography in Assessment of Subcutaneous Adipose Tissue 

Thickness 

 In addition to the assessment of skeletal muscle morphological characteristics, 

ultrasonography has also been used as a tool to measure subcutaneous body adipose tissue 

thickness (Pineau, Filliard, & Bocquet, 2009; Selkow, Pietrosimone, & Saliba, 2011). 

Subcutaneous adipose tissue is defined as the layer of fat that lies beneath the skin, superficial to 

the muscle (Selkow, Pietrosimone, & Saliba, 2011). Correct and accurate measurement of 

subcutaneous adipose tissue thickness is an essential tool in the examination of an individual’s 

body composition or percent body fat. Body composition can be used as an indication of health, 

where a lower body fat percentage is generally associated with lower risk of disease (Wagner, 

2013). The evaluation of subcutaneous adipose tissue thickness in previous studies has been 

assessed in various ways, including the use of skinfold measurements, dual x-ray absorptiometry, 

hydrostatic weighing, and ultrasonography (Fanelli & Kuczmarski, 1984; Pineau, Filliard, & 

Bocquet, 2009; Selkow, Pietrosimone, & Saliba, 2011).  

The use of ultrasonography as a way to assess subcutaneous adipose tissue thickness has 

been proven to be valid and reliable in comparison to magnetic resonance imaging, computerized 

tomography, bioelectrical impedance analysis, arm circumference, and skinfolds. For example, 

Fanelli and Kuczmarski (1984) examined the correlation between subcutaneous adipose tissue 
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thickness measured via skinfold calipers and brightness-mode ultrasound. The researchers 

discovered correlation coefficients ranging from r = 0.677 – 0.871 between the two methods of 

assessing subcutaneous adipose tissue thickness at areas adjacent to the triceps, biceps, 

subscapula, waist, suprailiac, thigh, and calf in 124 men (age: 18-30 years). In another study 

assessing the correlation of subcutaneous adipose tissue measured by skinfold calipers and 

ultrasonography, Selkow and colleagues (2011) found strong correlations between the two 

methods in the vastus medialis obliquus (r = 0.90, p < 0.001), distal and proximal rectus femoris 

(r = 0.93, p < 0.001 and r = 0.93, p < 0.001, respectively), and vastus lateralis (r = 0.91, p < 

0.001) in 20 healthy adults (n = 13 men, n = 7 women; age: 26.9 ± 5.4 years). Fukumoto and 

colleagues (2012) discovered that subcutaneous fat thickness assessed via ultrasonography was 

significantly positively correlated with body mass index and percent body fat as assessed by 

bioelectric impedance analysis (r = 0.61, p < 0.001 and r = 0.51, p < 0.001, respectively). 

Furthermore, Jenkins et al. (2015) discovered significant correlations between fat thickness 

adjacent to the biceps brachii assessed via ultrasonography and skinfold thickness and arm 

circumference (r = 0.98; p < 0.001; r = 0.75; p < 0.01, respectively). These studies provide 

evidence that ultrasonography is a valid and reliable tool in the assessment of subcutaneous 

adipose tissue thickness. 

 

Effects of Intramuscular and Subcutaneous Fat on Skeletal Muscle Echo Intensity  

 Skeletal muscle echo intensity has been shown to be related to levels of intramuscular fat 

and possibly subcutaneous adipose tissue (Caresio, Molinari, Emanuel, & Minetto, 2014; 

Fukumoto et al., 2012; Nijboer-Oosterveld, van Alfren, & Pillen, 2011; Scholten, Pillen, Verrips, 
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& Zwarts, 2003; Pillen, 2010; Pillen and van Alfren, 2011; Watanabe et al., 2013; Young, 

Jenkins, Zhao, & McCully, 2015). Pillen and colleagues (2009) discovered significant positive 

correlations between muscle echo intensity and the amount of intramuscular fibrous tissue 

obtained via muscle biopsies. Furthermore, Young et al. (2015) discovered significant positive 

correlations between intramuscular fat assessed via magnetic resonance imaging and echo 

intensity. Studies regarding whether or not subcutaneous adipose tissue thickness is related to 

echo intensity have discovered conflicting results. Some researchers have shown that echo 

intensity values are positively correlated with subcutaneous fat thickness (Caresio, Molinari, 

Emanuel, & Minetto, 2014; Nijboer-Oosterveld, van Alfren, & Pillen, 2011; Watanabe et al., 

2013; Young, Jenkins, Zhao, & McCully, 2015). However, additional research has found no 

correlation between echo intensity and subcutaneous fat thickness (Fukumoto et al., 2012; 

Jenkins et al., 2015; Melvin et al, 2014; Scholten, Pillen, Verrips, & Zwarts, 2003; Wu, Darras, 

& Rutkove, 2010). Jenkins et al. (2015) discovered significant correlations between fat thickness 

adjacent to the biceps brachii assessed via ultrasonography with skinfold thickness and arm 

circumference (r = 0.98; p < 0.001; r = 0.75; p < 0.01, respectively), but found no significant 

correlation between fat thickness and skeletal muscle echo intensity. Similarly, Caresio et al. 

(2014) discovered no correlation between fat thickness and echo intensity in the biceps brachii, 

however significant positive correlations existed between subcutaneous adipose tissue thickness 

and echo intensity of the vastus lateralis, tibialis anterior, and medial gastrocnemius. Perhaps the 

subcutaneous adipose tissue thickness adjacent to the biceps brachii does not have an effect on 

the echo intensity of that muscle, but the subcutaneous adipose tissue thickness adjacent to the 

other muscle groups has an effect on the echo intensity of that muscle group (Caresio et al., 

2014; Jenkins et al., 2015). Melvin and colleagues (2014) discovered no significant correlations 
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between vastus lateralis echo intensity assessed via ultrasonography and percent body fat, fat 

mass, lean mass, or leg lean mass in NCAA Division I football players assessed by dual x-ray 

absorptiometry. Overall, conflicting results exist as to whether or not subcutaneous adipose 

tissue has an effect on skeletal muscle echo intensity. The following study aims to discuss the 

effects of intramuscular and subcutaneous adipose tissue on skeletal muscle echo intensity. 

Although the previously discussed studies provide conflicting results, it is important to note that 

a greater amount of subcutaneous fat adjacent to the muscle may provide larger variability in 

echo intensity values (Pillen, 2010; Pillen and van Alfren, 2011). Pillen (2010) noted that there 

may be attenuation or non-systematic reflection of the ultrasound beam when it encounters 

different tissues, which may affect echo intensity values. Young and colleagues (2015) proposed 

that an underestimation of echo intensity may occur when the amount of intramuscular fat 

reaches about 15% due to the non-systematic reflection of the ultrasound waves. If there is an 

underestimation of intramuscular fat, the echo intensity of the muscle would most likely 

decrease, which would lead to an inaccurate measure of echogenicity and muscle quality. 

Additional research hypothesized that increased levels of intermuscular fat, or fat within fascia, 

may be due to the overflow of subcutaneous fat into the intermuscular compartment due to the 

inability to store excess amounts of fat (Gan et al., 2002). With an increase in intermuscular fat 

and accompanying preservation of subcutaneous fat, one may seem to have lower levels of 

subcutaneous fat, when in reality, the fat has just been deposited intermuscularly instead. The 

following study aimed to examine the effect of intramuscular fat on echo intensity in healthy 

individuals.   
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Young, H., Jenkins, N.T., Zhao, Q., & McCully, K.K., 2015. 

Measurement of Intramuscular Fat by Muscle Echo Intensity. 

 The purpose of this study was to compare the echo intensity values derived from 

ultrasound images to the percent intramuscular fat values obtained through magnetic resonance 

imaging of the rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius 

muscles. Thirty-one males and females (ages: 20-61 years) with diverse body mass indices and 

physical activity levels completed either two testing sessions (one using ultrasound and one 

using magnetic resonance imaging) or three testing sessions (two using ultrasound and one using 

magnetic resonance imaging). Images of the dominant leg were captured while the participant 

was lying in a supine position using an 8-12-Megahertz brightness-mode ultrasound. The gain 

was set at 58 decibels, the frequency was set at 8-Megahertz, and the depth was set at 4 

centimeters. The scanning depth was kept constant from participant to participant unless the 

thickness of the layer of subcutaneous fat did not allow the entire muscle area to fit in the 

ultrasound image. Both the magnetic resonance images and ultrasound images were obtained 

from the same location on each muscle. This allowed for intramuscular fat comparisons between 

the two imaging techniques and within-muscle analysis of echo intensity and percent 

intramuscular fat variability. Two images of each imaging type were captured from the muscles 

of interest. However, one major limitation that the authors noted was that the entire areas of the 

biceps femoris, tibialis anterior, and medial gastrocnemius did not fit in the single ultrasound 

image. This may have resulted in measures of muscle echo intensity that were not representative 

of the entire muscle because the full muscle area was not included. The ultrasound and magnetic 

resonance images were then used to quantify echo intensity, muscle thickness, subcutaneous fat 
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thickness, and cross-sectional area of each muscle using an image analysis software (ImageJ, 

National Institutes of Health, Bethesda, MD, version 1.45s).  

 The results of this study revealed that there were moderate to strong positive correlations 

between the echo intensity values and the percent intramuscular fat measured by magnetic 

resonance imaging for each muscle (tibialis anterior: r = 0.66; rectus femoris: r = 0.79; biceps 

femoris: r = 0.45; medial gastrocnemius: r = 0.54). This data shows that a higher echo intensity 

assessed by ultrasonography was associated with higher levels of intramuscular fat assessed by 

magnetic resonance imaging. The investigators also observed an independent influence of 

subcutaneous fat thickness on muscle echo intensity. After correction for subcutaneous fat 

thickness, stronger correlations between muscle echo intensity and percent intramuscular fat 

were observed for each muscle (tibialis anterior: r = 0.80; rectus femoris: r = 0.91; biceps 

femoris: r = 0.80; medial gastrocnemius: r = 0.76). Further correlation analyses were then 

performed, separating the participants by gender. Higher correlations were found in men 

compared to women in every muscle (males: tibialis anterior: r = 0.77; rectus femoris: r = 0.96; 

biceps femoris: r = 0.86; medial gastrocnemius: r = 0.86; females: tibialis anterior: r = 0.59; 

rectus femoris: r = 0.84; biceps femoris: r = 0.84; medial gastrocnemius: r = 0.81). After 

combining the data from all muscles, an overall moderate to strong correlation was found 

between echo intensity and percent intramuscular fat (r = 0.61). In addition, a multiple-

regression analysis was performed with echo intensity and subcutaneous fat thickness as 

independent variables and percent intramuscular fat as the dependent variable. This provided 

correlation coefficients that were similar to those found with the simple linear correlation with 

the subcutaneous fat correction factor applied (tibialis anterior: r = 0.76; rectus femoris: r = 0.90; 

biceps femoris: r = 0.80; medial gastrocnemius: r = 0.76). 
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 The reproducibility of the testing procedure on two separate days across all muscle 

groups were high, as indicated intra-class correlations and coefficients of variation for echo 

intensity values: rectus femoris: ICC = 0.91, CV = 3.3%; biceps femoris: ICC = 0.72, CV = 

13.1%; tibialis anterior: ICC = 0.92, CV = 2.6%; medial gastrocnemius: ICC = 0.71, CV = 5.6%. 

In addition, the inter-tester reliability of the ultrasound image analysis was examined and shown 

to be high in all muscle groups: rectus femoris: ICC = 0.93, CV = 4.3%; biceps femoris: ICC = 

0.96, CV = 4.5%; tibialis anterior: ICC = 0.98, CV = 3.5%; medial gastrocnemius: ICC = 0.95, 

CV = 3.7%.  

 The results of this study show that moderate to strong correlations existed between echo 

intensity and percent intramuscular fat in four different muscles of the lower extremity. In 

addition, the investigators found an influence of subcutaneous fat thickness on the echo intensity 

of the muscle that was independent from the amount of intramuscular fat present. Previous 

studies have discovered that the thickness of subcutaneous fat adjacent to the muscle can distort 

the reflection and/or absorption of ultrasound waves upon the tissue of interest, which can 

increase the difficulty of visualizing deeper tissues (Pillen & van Alfren, 2011; Nijboer-

Oosterveld, van Alfren, & Pillen, 2011; Wattjes, Kley, & Fischer, 2010). Pillen and van Alfren 

(2011) stated that an ultrasound wave can be attenuated when the beam encounters different 

types of tissues. Young and colleagues (2015) hypothesized that participants with greater than 

approximately 15% intramuscular fat may experience a reflection and absorption of the 

ultrasound beam that is affected in a non-systematic way. Therefore, the use of ultrasonography 

may be limited to more superficial tissues of interest.  
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The correlation between echo intensity values obtained from the ultrasound and percent 

intramuscular fat obtained from the magnetic resonance images improved when a correction 

factor for subcutaneous adipose tissue thickness was applied, further demonstrating that 

subcutaneous fat may distort image quality. The investigators also noted that higher correlations 

were found when examining the corrected echo intensity and percent intramuscular fat for each 

muscle individually, as compared to examining all muscle groups as a whole. This shows that 

there is great variability in the echo intensity values obtained from different muscle groups, 

which is consistent with prior research (Caresio, Molinari, Emanuel, & Minetto, 2014; Pillen et 

al., 2009; Pillen & van Alfren, 2011). In addition, the differences in the correlation coefficients 

within the different types of imaging and between genders was consistent with previous research 

conducted by Arts and colleagues (2010). These researchers discovered that the mean echo 

intensity values obtained from the sternocleidomastoid, biceps brachialis, forearm flexor group, 

quadriceps femoris, and tibialis anterior muscles were all greater in all female age groups 

compared to their male counterparts in participants ranging from 15 – 80+ years old. In this 

study, echo intensity was also found to be significantly positively correlated with age, showing 

that echo intensity increases with increasing age (Arts et al., 2010).  

In the present study, there was high reproducibility and reliability of the ultrasound 

technique and analysis performed on two different days and by different experimenters. 

However, limitations in the size of the ultrasound window may have accounted for measurement 

error, especially when the entire muscle could not be viewed in a single frame. There were also 

limitations in determining the exact amounts of adipose tissue within magnetic resonance images 

of the muscles because the identification of pure muscle, pure fat, and pure connective tissue was 

based on an investigator’s subjective measures. Overall, the amount of intramuscular fat assessed 
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via magnetic resonance imaging was related to the echo intensity of the rectus femoris, biceps 

femoris, tibialis anterior, and medial gastrocnemius in healthy males and females (Young, 

Jenkins, Zhao, & McCully, 2015). 

 

Skeletal Muscle Echogenicity May Be Related to Skeletal Muscle Quality 

 Muscle echo intensity is assessed by averaging the brightness of each pixel of a defined 

region of interest on an ultrasound image (Jenkins et al., 2015; Pillen, 2010; Pillen and van 

Alfren, 2011; Scanlon et al., 2014). Recent interest has been brought to the use of echo intensity 

as a way to assess skeletal muscle quality, where a darker image with lower echogenicity may be 

indicative of better muscle quality due to lower amounts of intramuscular fibrous tissue and/or 

triglycerides (Fukumoto et al., 2012; Pillen, 2010; Pillen and van Alfren, 2011). However, 

muscle quality is a very subjective measure. For example, lower amounts of intramuscular 

fibrous tissue and triglycerides would probably be most beneficial for the general population as 

well as for strength and power athletes. In many strength and power sports, the main objective is 

to exert maximal force as quickly as possible. Skeletal muscle architecture greatly influences its 

function (Burkholder, Fingado, Baron, & Lieber, 1994). A greater muscle mass and greater 

physiological cross-sectional area is generally indicative of greater strength, force-producing 

capabilities, and faster speed of contraction (Burkholder, Fingado, Baron, & Lieber, 1994; 

Fukunaga et al., 2001; Mayhew, Piper, & Ware, 1993; Moreau, Simpson, Teefey, & Damiano, 

2010; Young, Stokes, & Crowe, 1985). Possessing a greater muscle mass would be advantageous 

for strength and power sport athletes because these sports emphasize short bouts of extremely 

high-intensity exercise, requiring greater muscle mass and force (Kraemer, 1997; Mayhew, 
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Piper, & Ware, 1993). Echo intensity has been used in a limited number of training studies to 

assess muscle quality before and after a training program. Studies done on various populations 

have demonstrated that prolonged resistance training results in an increase in muscle thickness 

and cross-sectional area which is primarily due to muscle hypertrophy (Charette et al., 1991; Ikai 

and Fukunaga, 1970; McCall, Byrnes, Dickinson, Pattany, & Fleck, 1996; Narici, Roi, Landoni, 

Minettu, & Cerretelli, 1989; Scanlon et al., 2014; Seynnes, de Boer, & Narici, 2007). Further 

studies examining the echo intensity of skeletal muscle and performance have shown that 

echogenicity is negatively correlated with strength and other performance measures, and that 

higher echo intensity values are related to poorer performance (Cadore et al., 2012; Fukumoto et 

al., 2012; Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; Scanlon et al., 

2014; Watanbe et al., 2013; Young, Jenkins, Zhao, & McCully, 2015). However, most research 

examining skeletal muscle echo intensity and performance have been restricted to the 

examination of clinical and elderly populations who have an increased levels of fibrosis. Few 

studies have been performed specifically on strength and power athletes that investigate the 

relationship between muscle echo intensity and performance (Mangine et al., 2014a; Mangine et 

al., 2014b; Mangine et al., 2014c). Nonetheless, a lower skeletal muscle echo intensity would 

presumably be advantageous for strength and power athletes. 

On the other hand, it is also apparent that certain populations may actually benefit from 

greater amounts of intramuscular or fat fibrous tissue within certain muscles. Previous research 

has shown that stores of intramuscular triglycerides increase after prolonged aerobic training due 

to an increased reliance on fat oxidation for energy during endurance exercise (Morgan, Short, & 

Cobb, 1969; Schrauwen-Hinderling et al., 2003; van Loon & Goodpaster, 2005). In endurance 

athletes, a higher level of intramuscular fat would most likely result in a higher intramuscular 
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echo intensity, and therefore a ‘lower’ muscle quality. However, the adaptation of increased 

storage of intramuscular fat in response to chronic endurance exercise is actually beneficial for 

these athletes and would instead represent a ‘higher’ muscle quality. In contrast, recent research 

has found that many trained cyclists possess a lower muscle echo intensity in the rectus femoris 

muscle, which was highly correlated with intramuscular glycogen content quantified via muscle 

biopsy (Hill and Millan, 2015). Maximizing intramuscular glycogen content is essential for 

exercise performance, especially for athletes who compete in high-intensity activities for a long 

duration. Decreased levels of intramuscular glycogen has been associated with fatigue, 

hypoglycemia, decreased performance, decreased muscle contractility, and decreased calcium 

release (Bangsbo, Graham, Kiens, & Saltin; 1992; Chin and Allen; 1997; Hargreaves, Meredith, 

& Jennings, 1992). It has also been widely accepted that a greater intramuscular glycogen 

content is associated with increased water retention (MacKay & Bergman, 1931; Olsson & 

Saltin, 1970). In muscles that have greater glycogen and accompanying water content, echo 

intensity values of the muscle will likely be decreased (Hill and Millan, 2015). This occurs 

because sound waves emitted by an ultrasound probe travel easily through water, so few waves 

are reflected back to the transducer, producing a darker image (Pillen, 2010). Therefore, in 

endurance-trained athletes who possess greater glycogen content than their sedentary 

counterparts, one may expect to see lower values of echo intensity (Hill and Millan, 2015). 

However, immediately after an exhaustive exercise bout that depletes intramuscular glycogen 

stores, intramuscular echo intensity may be increased due to decreased glycogen and decreased 

water within the muscle. Jajtner and colleagues (2015) demonstrated an increased echo intensity 

in the rectus femoris and vastus lateralis muscles from pre-to post-exercise following a lower-

body resistance training protocol in resistance-trained men. These researchers also observed 
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significant increases in cross-sectional area in the rectus femoris and vastus lateralis muscles 

immediately after exercise, which was probably the result of local swelling and other factors 

(Jajtner et al., 2015). After a period of 30 minutes, the cross-sectional area and echo intensity of 

both the rectus femoris and vastus lateralis muscles began to decrease towards pre-values, which 

could be indicative of glycogen replenishment after exercise (Jajtner et al., 2015). Hill and 

Millan (2015) demonstrated similar findings, i.e., increased echo intensity compared to pre-

values in trained cyclists following a bout of exhaustive endurance exercise. These results 

indicate that glycogen storage may have a profound effect on skeletal muscle echogenicity.  

The balance between increased intramuscular triglycerides and increased intramuscular 

glycogen that occurs with endurance training will alter the way that muscles look on an 

ultrasound by producing either a brighter image or a darker image, respectively (Abernethy, 

Thayer, & Taylor, 1990). However, most endurance athletes experience both of these skeletal 

muscle adaptations simultaneously. Research examining which adaptation predominates and has 

the greatest effect on muscle echogenicity is non-existent up to this point. Regardless, the 

following studies examine the use of echo intensity via ultrasonography as a way to assess 

muscle quality. 

 

Echo Intensity and its Effects on Muscular Strength and Cardiovascular Performance 

 Skeletal muscle echo intensity has been shown to be related to strength and 

cardiovascular performance, where lower echo intensity values have been correlated with 

increased muscular strength and cardiovascular performance, particularly in the elderly (Cadore 

et al., 2012; Fukumoto et al., 2012; Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 
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2014c; Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013; Watanbe et 

al., 2013; Wilhelm et al., 2014). The following studies assess the relationships between echo 

intensity, muscular strength, and cardiovascular performance. 

 

Cadore, E.L., Izquierdo, M., Conceiҫão, M., Radelli, R., Pinto, R.S., Baroni, B.M., Vaz, 

M.A., Alberton, C.L., Pinto, S.S., Cunha, G., Bottaro, M., & Kruel, L.F.M., 2012. 

Echo Intensity is Associated with Skeletal Muscle Power and Cardiovascular Performance in 

Elderly Men. 

Cadore and colleagues (2012) examined the relationship between the echo intensity of the 

rectus femoris muscle and skeletal muscle strength and power in 31 elderly males (age: 64.7 ± 

4.1 years). Researchers used a 7.5-Megahertz brightness-mode ultrasound to assess the echo 

intensity of a transverse still image of the rectus femoris as well as the muscle thickness of the 

rectus femoris, vastus lateralis, vastus intermedius, and vastus medialis. Each participant was 

instructed to abstain from exercise for at least 72 hours prior to the study. The echo intensity of 

the rectus femoris was assessed after 15 minutes of resting in a supine position and was 

determined using the standard histogram function in an image analysis software (ImageJ, 

National Institutes of Health, USA, version 1.37). Subjects then performed an incremental test on 

a cycle ergometer to measure VO2max, first and second ventilatory thresholds, and workloads 

performed at each threshold. The subjects also performed isometric and isokinetic knee 

extensions on an isokinetic dynamometer to obtain isometric peak torque and isokinetic peak 

torque at different velocities.  

The results of the study indicated that the echo intensity of the rectus femoris muscle was 

significantly negatively correlated with isometric peak torque and isokinetic peak torque at 60°/s, 
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180°/s, and 360°/s (correlation values ranged from r = -0.48 to r = -0.64; p < 0.05). In addition, 

there were significant negative correlations between the echo intensity of the rectus femoris and 

the workloads at the first and second ventilatory thresholds (r = -0.46; p = 0.013, and r = -0.50; p 

= 0.009, respectively). Significant positive correlations were found between muscle thickness 

values of the rectus femoris, vastus intermedius, and vastus medialis, muscles and the values for 

isometric and isokinetic peak torque at all speeds (correlation values ranged from r = 0.42 to r = 

0.63; all p < 0.05), however correlation coefficients were greatest at higher velocities (180°/s and 

360°/s). These results indicate that individuals in this study that possessed larger amounts of 

muscle mass and lower echo intensity values tended to produce greater force than those with 

smaller muscle mass and greater echo intensity values. In addition, individuals with ‘better’ 

muscle quality, i.e., lower echo intensity, were able to perform more work at ventilatory 

threshold than those who had ‘lower’ muscle quality, indicating that muscle quality and muscle 

size both contribute to muscle strength. The authors suggest that a lower amount of connective 

tissue and intramuscular fat may actually increase cardiorespiratory capacity in older 

populations. This hypothesis is thought to occur because with aging, the number of capillaries 

within skeletal muscle decreases and the number of capillaries in isolation increases. Sufficient 

capillarization is essential for cardiovascular performance, and a greater amount of intramuscular 

adipose and connective tissue may impair cardiovascular function by restricting blood flow. In 

contrast, prolonged endurance training results in an increase in intramuscular fat, but also an 

increase in capillarization (Blomqvist & Saltin, 1983; Kraemer, 1997; Morgan, Short, & Cobb, 

1969; Schaible & Schever, 1981; Schrauwen-Hinderling et al., 2003; van Loon & Goodpaster, 

2005). This increase in capillarization maintains endurance capacity by allowing sufficient blood 

flow throughout the muscle. Overall, this study shows how echo intensity is a useful tool in the 
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assessment of muscle quality, muscle strength, and cardiovascular performance in older 

individuals (Cadore et al., 2012). 

 

Fukumoto, Y., Ikezoe, T., Yamada, Y., Tuskagoshi, R., Nakamura, M., Mori, N., Kimura, 

M., & Ichihashi, N., 2012. 

Skeletal Muscle Quality Assessed from Echo Intensity is Associated with Muscle Strength of 

Middle-Aged and Elderly Persons. 

 The purpose of this study was to examine if skeletal muscle echo intensity is associated 

with muscle strength independently of muscle thickness. A secondary purpose was to determine 

the relationship between echo intensity and body composition. Ninety-two healthy women (age: 

70.4 ± 6.6 years; 51-87 years). The researchers used an 8-Megahertz brightness-mode ultrasound 

to obtain transverse still images of the quadriceps femoris of the right leg. Muscle thickness of 

the quadriceps femoris was defined as the distance between the upper boundary of the femur and 

the lower boundary of the fascia surrounding the rectus femoris. This measurement included both 

the rectus femoris and vastus intermedius muscles. Echo intensity was evaluated using a standard 

histogram function in an image analysis software (Adobe Photoshop Elements, Adobe Systems 

Inc., San Jose, CA, USA), but only included the rectus femoris muscle and did not include the 

vastus intermedius. Subcutaneous fat thickness was also assessed in each individual using an 

ultrasound, and was defined as the distance between the upper boundary of the fascia 

surrounding the rectus femoris and the line separating the dermis from the subcutaneous fat. 

Body fat percentage was assessed via bioelectrical impedance analysis. In addition, maximal 

isometric strength of the lower extremity was measured at 60° knee flexion using an isometric 

dynamometer. 
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 To assess test-retest reliability, two separate images from seven female subjects (age: 

60.3 ± 6.9 years) were taken on two different days. A high intra-class correlation existed between 

each of the two images captured for muscle thickness (ICC1,1 = 0.90), subcutaneous fat thickness 

(ICC1,1  = 0.96) and echo intensity (ICC1,1  = 0.91), showing that the reliability of each of these 

measurements was high.  

Additionally, there was a significant positive correlation between muscle thickness and 

muscle strength in the subjects (r = 0.47, p < 0.001), revealing that a thicker muscle was 

associated with greater amounts of strength. There was also a significant negative correlation 

between muscle thickness and age (r = -0.40, p < 0.001), which may have been a result of 

sarcopenia. There was no correlation between muscle thickness and fat thickness. In addition, 

there was a significant negative correlation between the echo intensity of the rectus femoris and 

muscle thickness (r = -0.33, p < 0.001) and muscle strength (r = -0.40, p < 0.001), showing that a 

‘better’ quality muscle was associated with a thicker and stronger muscle. Echo intensity was 

positively correlated with age (r = 0.34 p < 0.001), which was probably due to the infiltration of 

fat and fibrous tissue that is associated with aging (Arts et al., 2010). However, echo intensity 

was not correlated with subcutaneous fat thickness.  

The researchers then performed further partial correlation analyses on echo intensity 

using age and muscle thickness as covariates. When this was performed, echo intensity was still 

significantly negatively correlated with muscle strength, showing that both muscle size and 

muscle quality contribute independently to muscle strength. However, the echo intensity values 

of the quadriceps femoris were not correlated to subcutaneous adipose tissue thickness, body 

mass index, or percent body fat. These results suggest that measurements of subcutaneous and 
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visceral fat may not be related to the degree of fat within certain muscles, and that one cannot 

assume a lower muscle quality with increased amounts of subcutaneous fat. In addition, because 

the values of fat thickness, body mass index, and percent body fat were not correlated with 

muscle strength, it is evident that echo intensity, representing the amount of fat that exists within 

a muscle, is a more accurate indicator of muscle strength than overall body fat (Fukumoto et al., 

2012). 

 

Watanabe, Y., Yamada, Y., Fukumoto, Y., Ishihara, T., Yokoyama, K., Yoshida, T., 

Miyake, M., Yamagata, E., & Kimura, M., 2012.   

Echo Intensity Obtained from Ultrasonography Images Reflecting Muscle Strength in Elderly 

Men. 

 Watanabe and colleagues (2012) aimed to determine whether muscle quality, as assessed 

by measuring muscle echo intensity, or muscle size, as assessed by measuring muscle thickness, 

corresponded to strength in elderly men. In this study, 184 healthy, elderly men (aged: 65 – 91 

years) were subjected to a 5-10-Megahertz, brightness-mode ultrasound, which was used 

examine the muscle thickness and echo intensity of the right thigh via transverse still images. 

One major limitation of this study was that each of the participants were standing upright when 

the ultrasound images were captured, so the legs were not completely relaxed and fluid shifts 

were not permitted (Ahtiainen et al., 2010; Esformes, Narici, & Maganaris, 2002; Fukumoto et 

al., 2012; Lixandrão et al., 2014; Reeves, Maganaris, & Narici, 2004; Scanlon et al., 2014; Wells 

et al., 2014). The researchers defined the muscle thickness of the anterior compartment of the 

thigh as the sum of the thicknesses of the vastus intermedius and rectus femoris muscles, as 

previously defined by Fukumoto and colleagues (2012). Echo intensity was evaluated using a 
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standard histogram function in an image analysis software (Adobe Photoshop Elements, Adobe 

Systems Inc., San Jose, CA, USA), and included as much of the rectus femoris muscle as 

possible, without including the surrounding fascia. The researchers also examined subcutaneous 

adipose tissue thickness, defined as the distance between the fascia of the rectus femoris muscle 

and the dermis, as previously defined by Fukumoto and colleagues (2012). In addition, muscle 

strength was assessed by evaluating maximum isometric knee extension torque at an angle of 90° 

on a custom dynamometer chair.  

To assess test-retest reliability of the echo intensity measurements, two separate images 

from 12 subjects (age: 74.2 ± 4.7 years) were taken on two different days. The intra-class 

correlation between each of the two images captured for echo intensity was ICC = 0.9635, and 

the coefficient of variation was CV = 4.2%, showing that the reliability of each of these 

measurements were high. 

The investigators discovered that there was a significant positive correlation between 

muscle thickness and muscle strength (r = 0.411, p < 0.001), revealing that a thicker muscle was 

related to greater strength. In addition, there was a significant negative correlation between 

muscle thickness and age (r = -0.326, p < 0.001) and significant positive correlations between 

echo intensity and age (r = 0.280 p < 0.001), which could be a result of decreased muscle mass 

via sarcopenia. No significant correlation existed between muscle thickness and subcutaneous 

adipose tissue thickness, however there was a significant positive correlation between echo 

intensity and subcutaneous adipose tissue thickness (r = 0.240 p = 0.001), showing that lower 

quality muscle was associated with greater subcutaneous fat. Fukumoto et al. (2012) found 
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conflicting results regarding echo intensity and fat thickness in a similar population, where no 

correlation existed between echo intensity and fat thickness in older adults.  

Muscle thickness and echo intensity were shown to contribute independently to muscle 

strength, as demonstrated through multivariate regression analysis. The researchers then 

performed further partial correlation analyses on echo intensity and muscle thickness using age, 

fat thickness, height, and weight as covariates. Echo intensity was still significantly negatively 

correlated with muscle strength (p < 0.001), and muscle thickness was still positively correlated 

with muscle strength (p = 0.004). The results of this study show that echo intensity was related to 

muscle strength independently of muscle thickness and that echo intensity is safe and easy way 

to assess muscle quality in older individuals (Watanabe et al., 2012).  

 

Strasser, E.M., Draskovits, T., Praschak, M., Quittan, M., & Graf, A., 2013. 

Association Between Ultrasound Measurements of Muscle Thickness, Pennation Angle, and 

Skeletal Muscle Strength in the Elderly. 

 Strasser and colleagues (2012) aimed to examine the relationship between muscle 

thickness and echo intensity of the quadriceps femoris muscles and maximum voluntary 

isometric contraction force in younger and older subjects. With aging, decreases in muscle 

strength and performance occur due to decreases in muscle mass and infiltration of fibrous and 

adipose tissue (Cruz-Jentoft et al., 2010). This change in muscle strength and performance likely 

has an effect on muscle architecture. In this study, 26 healthy young men and women (age: 24.2 

± 3.7 years; 18-35 years) and 26 healthy elderly men and women (age: 67.8 ± 4.8; 60-80 years) 

volunteered to participate. One leg of each participant was randomly assigned for investigation, 
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which was performed on two separate days. A 7.25-Megahertz brightness-mode ultrasound was 

used to capture both longitudinal and transverse still-images of each of the four quadriceps 

femoris muscles. All images were taken at the midpoint between the greater trochanter and the 

lateral knee joint space while the participants were lying in a supine position. However, the 

authors do not mention if the participants were able to rest prior to ultrasound examination to 

allow for fluid shifts to occur. Muscle thickness, defined as the widest distance between the 

superficial and deep fascia, of each individual muscle in the transverse plane was analyzed using 

ImageJ (National Institutes of Health, USA). Echo intensity of each individual muscle was also 

determined using ImageJ, however longitudinal images of each individual muscle were used. 

Single-leg maximum voluntary isometric contraction force during knee extension was also 

measured on each of the testing days, using the same leg that was used for ultrasound analysis. 

 The results of this investigation revealed that there were no significant differences in the 

amount of time spent participating in physical activity each week between the older and younger 

subjects. Despite this, the subjects in the older group had significantly weaker maximum 

voluntary isometric contraction force than those in the younger group (352.1 ± 114.2 Newtons 

(N) versus 510.8 ± 178.4 N, respectively, p < 0.001). Intra-class correlations between muscle 

thickness values for both groups examining each muscle between different days, different 

experimenters, different images, and within the same subject were all calculated to be high (ICCs 

ranged from 0.86 to 0.97). On the other hand, intra-class correlations between echo intensity 

values revealed differences between each group. The echo intensity values of the younger group 

had higher intra-class correlations (ranging from ICC = 0.57 to 0.65), whereas the echo intensity 

values of the older group had lower intra-class correlations (ranging from ICC = 0.20 to 0.31), 

indicating less reliability in older subjects. Systematic differences in echo intensity values were 
52 



found in the vastus intermedius in both the elderly and younger groups and in the vastus medialis 

in the elderly group. Additionally, the thickness of each of the quadriceps femoris muscles were 

significantly smaller in older individuals compared to younger individuals (p < 0.05), with the 

greatest difference occurring in the rectus femoris. The muscle thickness of each muscle was 

significantly positively correlated with maximal voluntary isometric contraction force in both 

groups (p < 0.00001). The echo intensities of each of the quadriceps femoris muscles were 

significantly greater in the older group compared to the younger group (p < 0.01), with the 

greatest difference in values between testing days occurring in the rectus femoris and vastus 

intermedius muscles. The vastus intermedius had the lowest echogenicity in both groups, 

whereas the rectus femoris had the highest echogenicity in both groups. However, the correlation 

between muscle echo intensity and maximal voluntary isometric contraction force revealed that 

there were no significant correlations between the two in the older group. In contrast, the 

younger group displayed significant moderate negative correlations (ranging from r = -0.47 to -

0.64, p < 0.05) between all muscles of the quadriceps femoris and maximal voluntary isometric 

contraction force, showing that lower echo intensity was related to increased muscle strength, but 

only in younger individuals.  

 The results of this study demonstrate that there were systematic differences in echo 

intensity values obtained in younger and older individuals. The discrepancies between these 

values may exist because the participants did not lay supine for a period of time prior to 

ultrasound examination. The correlation coefficients between echogenicity of the rectus femoris 

and maximal voluntary isometric contraction force in older individuals gathered in this 

investigation were lower than those in obtained other investigations (Cadore et al., 2012; 

Fukumoto et al., 2012). Discrepancies between the correlation coefficients found in these studies 
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may be due to the ultrasound scanning plane that was used in the investigation. Cadore et al. 

(2012) and Fukumoto et al. (2012) used transverse scans of the rectus femoris to determine echo 

intensity, whereas the current study used longitudinal scans. The echogenicity of skeletal muscle 

is highly affected by ultrasound positioning, so differences in scanning planes may affect echo 

intensity values due to differences in muscle architecture when viewing the muscle in a different 

plane (Pillen, 2010). In the longitudinal plane of the quadriceps femoris muscles, each individual 

muscle fascicle and surrounding perimysium can be visualized (Pillen, 2010). In the transverse 

plane, the individual fascicles of the quadriceps femoris cannot be viewed, but cross-sections of 

connective and adipose tissue can be seen. Ultrasound probe orientation would therefore 

probably have a profound effect on the echo intensity of the underlying muscle. Additional 

research should be investigated on this topic, which will be discussed further in this review of 

literature (Strasser, Draskovits, Praschak, Quittan, & Graf, 2013). 

 

Wilhelm, E.N., Rech, A., Minozzo, F., Radaelli, R., Botton, C.E., Pinto, R.S., 2014. 

Relationship Between Quadriceps Femoris Echo Intensity, Muscle Power, and Functional 

Capacity of Older Men. 

 The purpose of this study was to determine the relationship between the echo intensity of 

the quadriceps femoris muscles and muscle strength and power in elderly males. Fifty healthy, 

older men (age: 66.1 ± 4.5 years) participated in this study. Testing was completed on three 

separate days, with a least 72 hours between each testing day. Four transverse ultrasound still-

images of each of the right quadriceps femoris muscles were obtained using a 9-Megahertz, 

brightness-mode ultrasound, taken at a depth of 70 millimeters and set at a gain of 90 decibels. 

Images of the vastus lateralis, rectus femoris, and vastus intermedius muscles were captured at 
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the midpoint of the distance between the lateral condyle of the femur and the greater trochanter. 

Images of the vastus medialis were captured at 30% of the aforementioned length. Echo intensity 

of each muscle was calculated using the standard histogram function on an image analysis 

software (ImageJ, National Institute of Health, USA, version 1.42q). The thickness of each 

muscle was also calculated. The echo intensity of all four quadriceps femoris muscles were 

analyzed and quantified as the mean of the four individual muscles. The whole quadriceps 

femoris muscle thickness was also measured, which equaled the sum of the muscle thickness 

values for all four individual muscles. In addition, unilateral knee extension one-repetition 

maximum, vertical jump power, isometric peak torque, rate of torque development, knee 

extension power, and a 30-second sit-to-stand test were assessed on each participant as well.   

 The results of this investigation revealed that significant negative correlations existed 

between the echo intensities of each individual muscle and all power variables, however the 

correlations ranged from weak to moderate (r = -0.285 to -0.725, p ≤ 0.05). There were also 

significant negative correlations between the echo intensity of all of the quadriceps femoris 

muscles and all power variables, but these correlations ranged from moderate to strong (r = -

0.411 to -0.746, p ≤ 0.05). Total quadriceps femoris muscle thickness was significantly 

positively correlated with all power measurements (p < 0.05). Additionally, moderate negative 

correlations existed between all echo intensity measurements, isometric peak torque, and knee 

extension one-repetition maximum (correlation coefficients ranged from r = -0.460 to -0.657, p ≤ 

0.05). Echo intensity of the vastus lateralis, vastus medialis, and quadriceps femoris had 

moderate to strong significant negative correlations with rate of torque development, whereas the 

correlation between the echo intensities of the vastus intermedius and rectus femoris with rate of 

torque development only reached significance after longer periods of time. Furthermore, 
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significant negative correlations existed between the maximal number of repetitions completed 

in the 30-second sit to stand and the echo intensity of the quadriceps femoris and each individual 

muscle (p ≤ 0.05). Quadriceps femoris muscle thickness was significantly positively correlated 

with the maximal number of repetitions completed in the 30-second sit to stand (p < 0.05).  

 These results demonstrate that individuals who possessed better muscle quality, i.e., had 

lower echo intensity values tended to have greater strength and power values. The echo 

intensities of the four quadriceps femoris muscles, the vastus lateralis, and vastus medialis had 

the strongest negative correlations with all strength and power variables. This could indicate that 

echo intensity of these specific muscles may be most accurate when predicting lower body 

strength and power performance in elderly males. These findings align with the data collected by 

other researchers examining echo intensity and performance in an older population (Cadore et 

al., 2012; Fukumoto et al., 2012). However, these findings contradict the results that Strasser et 

al. (2013) discovered in an elderly population, which could be due to the differences in 

ultrasound probe alignment. Overall, these researchers discovered that lower echo intensity 

values were indicative of greater muscle strength and power in elderly males (Wilhelm et al., 

2014).  

 

Scanlon, T.C., Fragala, M.S., Stout, J.R., Emerson, N.S., Beyer, K.S., Oliveira, L.P., & 

Hoffman, J.R., 2014. 

Muscle Architecture and Strength: Adaptations to Short-Term Resistance Training in Older 

Adults. 
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 Scanlon and colleagues (2014) examined the changes in muscle morphology and muscle 

architecture after six weeks of resistance training in elderly individuals. Twenty-six healthy 

elderly males and females (age: > 60 years) were assigned to either a resistance training group or 

control group. The resistance training group completed a six-week total-body resistance training 

program consisting of two workouts per week, with progression and manipulation of acute 

program variables throughout the duration of the study. The control group maintained their 

normal daily activities. In general, subjects in the resistance training group experienced workouts 

that consisted of 2-4 sets of 8-12 repetitions of about 6-10 exercises at an estimated 70-85% of 

their maximal intensity. At the start of the study, each subject was instructed to refrain from 

physical activity for at least 72 hours prior to each testing session. After resting in a supine 

position for 15 minutes, a 12-Megahertz, brightness-mode ultrasound was used to capture 

measurements of muscle thickness, cross-sectional area, and echo intensity of the vastus lateralis 

and rectus femoris in the dominant leg of all subjects. The gain of the ultrasound was set to 50 

decibels and the image depth was set to 5 centimeters. Extended field-of view panoramic 

ultrasonography was used to capture three images of each muscle in the transverse plane. Images 

of the vastus lateralis were taken at 50% of the distance between the prominent point of the 

greater trochanter and the lateral condyle. Images of the rectus femoris were taken at 50% of the 

distance between the anteroinferior iliac spine and the proximal border of the patella. Three 

images were also captured in the same location as those previously mentioned but in the 

longitudinal plane. Cross-sectional area and echo intensity for were analyzed on each panoramic 

image using the polygon tracing tool on an image analysis software (ImageJ, National Institutes 

of Health, Bethesda, MD, version 1.45s) and included as much of the muscle as possible, without 

including the surrounding fascia. Muscle thickness was defined as the distance from the deep 
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aponeurosis to the superficial aponeurosis surrounding each muscle of interest and was also 

measured using the image analysis software. Intra-class correlations and standard errors of 

measurement were calculated for the rectus femoris cross-sectional area, muscle thickness, and 

echo intensity (ICC = 0.99, SEM = 0.46 centimeters2; ICC = 0.96, SEM = 0.11 centimeters; ICC 

= 0.91, SEM = 3.47 arbitrary units, respectively) and for the vastus lateralis cross-sectional area, 

muscle thickness, and echo intensity (ICC = 0.99, SEM = 1.26 centimeters; ICC = 0.89, SEM = 

0.12 centimeters; ICC = 0.93, SEM = 5.1 arbitrary units, respectively), all of which were found 

to be high. In addition, knee extensor strength was assessed via maximal voluntary isotonic 

contraction of 10 repetitions or less. 

The results of the study showed that there were significant improvements in muscle 

strength in the resistance training group throughout the duration of the study as measured by a 

one-repetition maximum knee extension (p ≤ 0.01). No improvements in strength existed in the 

control group (p > 0.05). In addition, there was an increase in muscle quality, which was 

represented as relative strength, in the resistance training group. This was assessed by dividing 

the one-repetition maximum on the knee extension by lean thigh mass assessed via dual x-ray 

absorptiometry. There was also an increase in muscle quality, which was represented as strength 

relative to echo intensity, in the resistance training group. This was assessed by dividing the one-

repetition maximum on the knee extension by the echo intensity of the vastus lateralis and the 

rectus femoris. There were no differences in cross-sectional area or muscle thickness of the 

rectus femoris from the beginning to the end of the study in either group (p > 0.05). Additionally, 

there were no changes in muscle thickness in the vastus lateralis for either the resistance training 

or the control group, and there were no significant changes in the echo intensity of the vastus 

lateralis in the resistance training group. However, there was a significant group by time 
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interaction for the resistance training group in the cross-sectional area of the vastus lateralis (p < 

0.05). The cross-sectional area of the vastus lateralis significantly increased by an average of 

7.4% in the resistance training group, which was not seen in the control group (p < 0.05). In 

addition, at baseline, the echo intensities of the rectus femoris in females were significantly 

higher than those seen in males (87.6 ± 5.8 arbitrary units in women; 78.4 ± 12.9 arbitrary units 

in men). A post hoc analysis revealed a gender interaction, where the echo intensity of the vastus 

lateralis decreased in females after training (p = 0.014), but this was not seen in males. The 

authors suggest that this may be due to gender differences in body composition or due to the 

influence of hormones on physiological changes with training. There was a main effect for time 

observed in the echo intensity of the rectus femoris in the control group, which corresponded to a 

significant decrease in echo intensity of 4.4% (p < 0.05), which could not be explained.  

These results show that six weeks of resistance training may be sufficient to increase 

muscle size but may not be sufficient enough to change muscle quality. Also, increases in cross-

sectional area of the vastus lateralis in the resistance training group were detected via 

ultrasonography but were not detected by dual x-ray absorptiometry, which may indicate that the 

use of ultrasonography is a more sensitive way to assess changes in muscle architecture than the 

use of dual x-ray absorptiometry. In addition, since increases in cross-sectional area were seen 

only in the vastus lateralis, it is possible that it takes longer than six weeks to see structural 

adaptations in the rectus femoris, or that the rectus femoris was not a key contributor to knee 

extension and was not activated to a great enough extent to adapt to the training. There were no 

changes in muscle thickness observed in either group, which may indicate that it takes longer 

than six weeks to induce changes in muscle diameter (Bemben, 2002). The results of this study 

show that six weeks of resistance training was sufficient enough to induce changes in muscle 
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architecture, muscle strength, and relative strength in elderly individuals, however it was 

insufficient at inducing changes in echo intensity in males (Scanlon et al., 2014). 

 

Mangine, G.T., Fukuda, D.H., La Monica, M.B., Gonzalez, A.M., Wells, A.J., Townsend, 

J.R., Jajtner, A.R., Fragala, M.S., Stout, J.R., & Hoffman, J.R., 2014. 

Influence of Gender and Muscle Architecture Asymmetry on Jump and Sprint Performance. 

 The purpose of this investigation was to determine the effect of gender and muscle 

architecture on jump and sprint performance in 28 healthy males (n = 14, age: 24.3 ± 2.2 years) 

and females (n = 14, age: 21.5 ± 1.7 years). Measures of muscle architecture were obtained using 

a 12-Megahertz brightness-mode ultrasound set at a depth of 5 centimeters and a gain of 50 

decibels. Cross-sectional area, echo intensity, and muscle thickness of the rectus femoris and 

vastus lateralis in both limbs of each subject were assessed after laying supine for a period of 15 

minutes. Cross-sectional area and echo intensity measurements were assessed in the transverse 

plane using panoramic imaging at 50% of the distance between the anterior-inferior iliac to the 

proximal border of the patella and at 50% of the distance between the lateral condyle and the 

most prominent point of the greater trochanter, respectively. Measures of muscle thickness for 

both muscles were assessed in the longitudinal plane via single still-images. Three images of 

each type were captured to assess reliability. All image analysis was completed using ImageJ 

(National Institutes of Health, Bethesda, MD, version 1.45s). Additionally, vertical jump height 

and peak and mean vertical jump power were assessed in each individual using a Tendo™ 

Weightlifting Analyzer (Tendo Sports Machines, Trencin, Slovakia). Thirty-meter sprint time 

from a three-point stance was also measured in each subject. 
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 The results of the study show that there were significant gender differences between 

measures of rectus femoris muscle thickness in both legs, cross-sectional area in both legs, and 

echo intensity in the non-dominant leg between men and women (p < 0.05). In the vastus 

lateralis, significant gender differences existed between measures of cross-sectional area and 

echo intensity in both limbs. There were also significant bilateral differences between cross-

sectional area of the vastus lateralis in men. No significant correlations existed between muscle 

thickness, cross-sectional area, or echo intensity of either the rectus femoris or vastus lateralis in 

either leg in males or females. However, peak vertical jump power was significantly correlated 

with non-dominant leg muscle thickness of the rectus femoris in men (r = 0.66, p < 0.01), cross-

sectional area of the vastus lateralis in the dominant limb in men (r = 0.64, p < 0.01), and muscle 

thickness in the vastus lateralis in the non-dominant limb in men (r = 0.55, p = 0.04). Peak 

vertical jump power was also significantly correlated with muscle thickness of the non-dominant 

vastus lateralis muscle in women (r = 0.81, p < 0.001) and the bilateral difference between 

muscle thickness in the vastus lateralis in women (r = -0.73, p < 0.001). Mean vertical jump 

power was significantly correlated with muscle thickness in the non-dominant rectus femoris 

muscle in males (r = 0.48, p = 0.04), cross-sectional area of the non-dominant rectus femoris 

muscle in females (r = 0.59, p = 0.03), bilateral differences between muscle thickness in the 

vastus lateralis in women (r = -0.76, p < 0.001), cross-sectional area of the non-dominant rectus 

femoris in women (r = 0.59, p = 0.03), and the bilateral differences between both the vastus 

lateralis and rectus femoris echo intensities in women (r = 0.54, p = 0.05; r = 0.55, p = 0.04, 

respectively). 

 These results show that males possess significantly greater muscle mass and lower echo 

intensity values than females, which is known to affect the ability to generate force (Cadore et 
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al., 2012). In males, muscle architecture was shown to be a primary determinant of performance. 

In women, asymmetry in muscle size between opposing limbs was shown to negatively affect 

jumping performance, whereas asymmetry in muscle echo intensity (i.e. muscle quality) was 

shown to positively affect jumping performance. In conclusion, bilateral differences in muscle 

architecture and muscle quality may help some populations, while hindering others (Mangine et 

al., 2014a).  

 

Skeletal Muscle Echo Intensity May be Related to Anaerobic Sports Performance 

 The previous studies have discussed the relationship between skeletal muscle echo 

intensity and strength measures, particularly in an elderly population. Examination of the echo 

intensity of skeletal muscle in athletes is sparse due to the use of echogenicity as a way to assess 

pathological conditions and muscle quality in older populations. However, some recent studies 

have been conducted investigating the echogenicity of skeletal muscles in an athletic population, 

which will be discussed in the following section (Jajtner et al., 2014; Mangine et al., 2014c; 

Melvin et al., 2014). In addition to these studies, an investigation conducted by Ivey and 

colleagues (2000) discovered significant decreases in echo intensity in young women following a 

unilateral resistance training program for 9 weeks. The following studies aim to investigate the 

relationship between echo intensity and performance in athletes.  

 

Mangine, G.T., Hoffman, J.R., Gonzalez, A.M., Jajtner, A.R., Scanlon, T., Rogowski, J.P., 

Wells, A.J., Fragala, M.S., & Stout, J.R., 2014. 
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Bilateral Differences in Muscle Architecture and Increased Rate of Injury in National Basketball 

Association Players. 

An investigation by Mangine et al. (2014c) explored the relationship between bilateral 

differences in echo intensity within the rectus femoris and vastus lateralis muscles and injury rate 

in nine professional National Basketball Association players (age: 23.5 ± 2.6 years). In this 

study, a 12-Megahertz, brightness-mode ultrasound, set at a depth of 5 centimeters and a gain of 

50 decibels, was used to measure cross-sectional area, echo intensity, and muscle thickness of 

the rectus femoris and vastus lateralis in both limbs. After laying in a supine position for a period 

of 15 minutes, measures of cross-sectional area and echo intensity of the rectus femoris were 

assessed in the transverse plane via panoramic imaging captured in Logiqview ™. Images were 

captured at 50% of the distance between the anterior-inferior iliac spine to the proximal border of 

the patella. Measures of cross-sectional area and echo intensity for the vastus lateralis were 

assessed in the transverse plane via panoramic imaging at 50% of the distance between the 

lateral condyle and the most prominent point of the greater trochanter. Measures of muscle 

thickness for both muscles were assessed in the longitudinal plane via single still-images. Three 

images of each type were captured to assess intra-experimenter reliability. All images were 

analyzed using ImageJ (National Institutes of Health, Bethesda, MD, version 1.45s). Bilateral 

and unilateral vertical jump power of each subject were also assessed using a power output unit 

(Tendo Sports Machines, Trencin, Slovak Republic).  

Intra-class correlations between cross-sectional area measurements for the vastus lateralis 

and rectus femoris were reported to be high (ICC = 0.99 and 0.99, respectively). Intra-class 

correlations between muscle thickness measurements for the vastus lateralis and rectus femoris 

were also reported to be high (ICC = 0.89 and 0.96, respectively). Intra-class correlations 
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between echo intensity measurements for the vastus lateralis and rectus femoris were reported to 

be high as well (ICC = 0.93 and 0.91, respectively). The amount of games that the players 

missed per season was moderately correlated to the bilateral difference in the cross-sectional area 

of the rectus femoris (7.8% ± 6.4 difference, r = 0.657, p = 0.05) and weakly correlated to the 

bilateral difference in the cross-sectional area of the vastus lateralis (6.2% ± 4.8 difference, r = 

0.521, p = 0.15). The mean difference in muscle thickness between each leg in the rectus femoris 

and vastus lateralis were 6.2% ± 5.1 and 7.9% ± 8.9, respectively. The mean difference in echo 

intensity between each leg in the rectus femoris and vastus lateralis were 7.9% ± 4.0 and 5.4% ± 

3.5, respectively. Players who were healthy (i.e. not injured) had smaller bilateral differences in 

muscle thickness, cross-sectional area, and echo intensity in the vastus lateralis and smaller 

bilateral differences in cross-sectional area and echo intensity in the rectus femoris compared to 

injured players, however these did not reach statistical significance (p > 0.05). In addition, there 

were smaller discrepancies between bilateral differences in vertical jump peak and average 

power in the uninjured group, however these measures also did not reach statistical significance 

(p > 0.05).  

These results show that greater bilateral differences in muscle architecture and vertical 

jump power were associated with a greater rate of injury. Bilateral differences in muscle 

architecture and strength may result in unequal forces distributed upon the lower extremities, 

which can be caused by preferential use of one leg over the other or the demands of the specific 

sport (Mangine et al., 2014c).  

 

Jajtner, A.R., Hoffman, J.R., Scanlon, T.C., Wells, A.J., Townsend, J.R., Beyer, K.S., 

Mangine, G.T., McCormack, W.P., Bohner, J.D., Fragala, M.S., & Stout, J.R., 2014. 
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Performance and Muscle Architecture Comparisons Between Starters and Nonstarters in 

National Collegiate Athletic Association Division I Women’s Soccer.  

 The aim of this study was to determine if changes in muscle architecture of the vastus 

lateralis in women’s collegiate Division I soccer players occur over a three-month competitive 

season. An additional purpose of the study was to assess muscle morphological characteristics in 

relation to speed, power, reaction time, and playing time, all of which are specific to the sport of 

soccer. In this study, 28 female collegiate Division I soccer players (age: 19.9 ± 1.1 years) 

completed a resistance training program during the in-season, twice weekly. Measurements of 

vastus lateralis and rectus femoris cross-sectional area and echo intensity were obtained using 

panoramic imaging in the transverse plane with a 12-Megahertz, brightness-mode ultrasound, set 

at a depth of 5 centimeters, a gain of 50, and dynamic range of 72. Muscle thickness 

measurements of the vastus lateralis and rectus femoris were obtained with the ultrasound probe 

oriented in the longitudinal plane, using a single still-image. Three images were captured at the 

each of the same locations previously described by Mangine and colleagues (2014c) and were 

analyzed using the same image analysis software. Additionally, a line drill measured for time and 

lower-body power were also assessed. 

 The results of this study revealed that there was high test-retest reliability between the 

three images of the rectus femoris with respect to muscle thickness, cross-sectional area, and 

echo intensity, as indicated by intra-class correlations and standard errors of measurement 

(muscle thickness: ICC = 0.96, SEM = 0.11 centimeters; cross-sectional area: ICC = 0.99, SEM 

= 0.46 centimeters2; echo intensity: ICC = 0.91, SEM = 3.47, respectively). Additionally, there 

was high test-retest reliability between the three images of the vastus lateralis with respect to 

muscle thickness, cross-sectional area, and echo intensity (muscle thickness: ICC = 0.89, SEM = 
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0.12 centimeters; cross-sectional area: ICC = 0.99, SEM = 1.26 centimeters2; echo intensity: ICC 

= 0.93, SEM = 5.10, respectively). Significant differences in playing time and age existed 

between starters and non-starters (p > 0.001 and p = 0.028, respectively). No significant 

interactions were discovered between vertical jump peak or mean power or line drill time 

between starters and non-starters during the season. Additionally, there were no significant 

changes in vertical jump peak or mean power or line drill time in either groups from the 

beginning to the end of the season, however magnitude-based inferences suggested that the 

starting players’ fastest line drill time was likely negative, meaning that they became faster 

throughout the course of the season. An analysis of variance and pairwise comparisons revealed 

significant main effects for time with regard to the echo intensity of the rectus femoris (p = 

0.005) and the cross-sectional area of the vastus lateralis (p = 0.022) throughout the course of the 

season in both groups. A decrease in echo intensity of the rectus femoris was found from the 

beginning (65.57 ± 1.50 arbitrary units) to the end (61.26 ± 1.59 arbitrary units) of the season, 

indicating likely improved muscle quality at the end of the season, however there was no 

significant difference between groups. The authors suggest that this decrease may be a result of 

the high utilization of the rectus femoris muscle during explosive knee extensions in the sport of 

soccer, which are especially important for kicking the ball. Also, an increase in cross-sectional 

area of the vastus lateralis was discovered form pre- (20.84 ± 3.58 centimeters2) to post-season 

(21.46 ± 3.66 centimeters2), which was likely due to increases in muscle size and strength. 

Furthermore, a likely negative difference was found in the muscle thickness of the vastus 

lateralis of the starting players, which the authors stated may not have large practical significance 

due to the simultaneous improvement in echo intensity. In conclusion, it is evident that muscle 
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quality may and size may change over the course of a competitive season in collegiate female 

soccer players (Jajtner et al., 2014). 

 

Melvin, M.N., Smith-Ryan, A.E., Wingfield, H.L., Ryan, E.D., Trexler, E.T., & Roelofs, 

E.J., 2014. 

Muscle Characteristics and Body Composition of NCAA Division I Football Players. 

 The aim of this investigation was to examine characteristics of muscle architecture and 

body composition in NCAA Division I football athletes. In this study, 69 football players (age: 

20.0 ± 1.1 years) were investigated were separated into groups by position, race, grade level, and 

starter status. A 26-Hz, brightness-mode ultrasound set at a depth of 4.5 centimeters and a gain 

of 68 decibels was used to capture a panoramic image of the vastus lateralis muscle in each 

participant. If the depth of 4.5 centimeters was insufficient to capture the entire area of the vastus 

lateralis in one image, the depth was adjusted according to the individual’s needs. Prior to 

examination, each subject was instructed to refrain from physical activity for at least two hours. 

Upon arrival, each participant was instructed to lay in a supine position for 3-5 minutes before 

ultrasound assessment. A recent study by Jajtner and colleagues (2015) revealed a significant 

increase in cross-sectional area vastus lateralis and rectus femoris may occur for up to 48 hours 

after a resistance exercise bout. Jajtner and colleagues (2015) also discovered a significant 

increase in echo intensity of the vastus lateralis immediately after exercise compared to pre-

exercise values and that these values continued to decrease to below baseline levels after a period 

of 48 hours. The results from this study show that it may require more than 48 hours after a 

resistance exercise bout to assess muscle architecture accurately (Jajtner et al., 2015). 

Unfortunately, this may have been a major limitation of the present study because subjects were 
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only required to refrain from exercise for a period of two hours. Another limitation that existed 

in this study was that the participants were not laying down for a sufficient enough time to allow 

for fluid shifts to occur. Previous research has required participants to lay in a supine position for 

at least 15 minutes prior to examination (Ema, Wakahara, Miyamoto, Kanehisa, & Kawakami, 

2013; Esformes, Narici, & Maganaris, 2002; Jajtner et al., 2014; Lixandrão et al., 2014; Mangine 

et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; Reeves, Maganaris, & Narici, 2004; 

Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013; Wakahara et al., 

2012; Wells et al., 2014). Allowing only 3-5 minutes for fluid shifts may have affected 

intramuscular water content and therefore echo intensity.  

Echo intensity and cross-sectional area of the vastus lateralis were assessed from the 

same image using an image analysis software (ImageJ, National Institutes of Health, version 

1.37). In addition, each participant completed a full-body dual x-ray absorptiometry scan to 

determine body composition. 

 The results of this study showed that there were significant differences between player 

positions with respect to vastus lateralis cross-sectional area (p ≤ 0.05), however there were no 

significant differences between positions with respect to echo intensity. Additionally, there were 

significant differences in percent body fat, lean body mass, lean leg mass, and fat mass between 

positions (p ≤ 0.05). There were no significant differences in cross-sectional area, echo intensity, 

percent body fat, lean body mass, lean leg mass, and fat mass between races. Significant positive 

correlations were discovered between vastus lateralis cross sectional area and lean mass, fat 

mass, leg lean mass, and percent body fat (p ≤ 0.05). A significant negative correlation was 

discovered between vastus lateralis cross-sectional area and echo intensity (r = -0.455, p < 0.01), 
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showing that individuals possessing a larger muscle area tended to have a darker muscle. No 

correlations were discovered between echo intensity and percent body fat, fat mass, lean mass, or 

leg lean mass. Similar results were discovered by Fukumoto and colleagues (2012) who found no 

correlation between echo intensity and percent body fat but significant negative correlations 

between echo intensity and cross-sectional area.  

 There were no performance variables measured in this study, however one can assume 

that each athlete was physically fit and strong due to standard requirements of Division I 

football. Direct assessments of strength and power were not measured in this study, so 

conclusions on how echo intensity or cross-sectional area may affect performance cannot be 

made. One may hypothesize that this athletic population of football players may have lower 

values of echo intensity and greater values of cross-sectional area compared to an elderly or 

untrained population due to lower levels of intramuscular fat or fibrous tissue and increased 

muscle mass. Vastus lateralis cross-sectional area was found to be correlated with all measures 

of body composition, which could indicate that the sport of football requires players with large 

statures and greater body fat along with increased muscle mass. The fact that measures of body 

fat significantly differed among player positions but echo intensity values did not may indicate 

that players with greater amounts of fat mass are able to maintain muscle quality, despite the 

hypothesis that an infiltration from the subcutaneous fat may lead to increased adipose tissue 

deposits into the muscle (Caresio, Molinari, Emanuel, & Minetto, 2004; Miljkovic and Zmuda, 

2010). Values of cross-sectional area in this study (38.7 ± 6.6 centimeters2) were considerably 

greater than those found in other studies examining the cross-sectional area of the vastus lateralis 

in untrained young males in other studies (26.7 ± 4.5 centimeters2 and 19.8 ± 1.9 centimeters2) 

(Ahtiainen et al., 2010; Scott et al., 2012). These findings are anticipated because Division I 
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football players undergo high-volume resistance training which is shown to increase hypertrophy 

in Type II muscle fibers, leading to increases muscle size and cross-sectional area (Charette et 

al., 1991; Ikai and Fukunaga, 1970; McCall, Byrnes, Dickinson, Pattany, & Fleck, 1996; Narici, 

Roi, Landoni, Minettu, & Cerretelli, 1989; Scanlon et al., 2014; Seynnes, de Boer, & Narici, 

2007). Resistance training has also been shown to decrease values of echo intensity, which may 

explain why values of echo intensity in this study were lower than those seen in other studies 

examining untrained or elderly males (Jajtner et al., 2014; Scanlon et al., 2014). The results of 

this study show that values of echo intensity may not necessarily be correlated with percent body 

fat in a trained, athletic population. In addition, the cross-sectional area of the vastus lateralis in 

Division I football players is greater than that in an untrained or elderly population, whereas the 

opposite is true for echo intensity (Melvin et al., 2014). 

 

Inter- and Intra-muscular Adaptations to Resistance Exercise are Heterogeneous 

 Previous research has shown that the architecture of skeletal muscle is heterogeneous 

throughout individual muscles as well as between different muscle groups (Lexell & Taylor, 

1991; Zajac, 1992). Studies on cadavers have discovered that the mean cross-sectional area of 

Type I and Type II muscle fibers varied significantly within the vastus lateralis muscle and that 

the distribution of these muscle fibers without the muscle vary (Arbanas et al., 2012; Lexell & 

Taylor, 1991; Mahon, Toman, Willan, & Bagnall, 1984; Nygaard & Sanchez, 1982). For 

example, disparities in muscle fiber distribution and size have been found superficially compared 

to deep, proximally compared to distally, or between contralateral limbs (Arbanas et al., 2012; 

Lexell & Taylor, 1991; Mahon, Toman, Willan, & Bagnall, 1984; Nygaard & Sanchez, 1982). 

70 



Furthermore, Narici and colleagues (1988) observed that the cross-sectional area of the 

quadriceps femoris muscles are not uniform throughout the entire length of the muscles. The 

cross-sectional area of each of the knee extensor muscles reaches a maximum near the mid-point 

of the femur and then decreases both proximally and distally from this point (Narici, Roi, & 

Landoni, 1988). Because of this reason, research investigating the effects of strength training on 

different regions of the muscle has been conducted. Investigators have discovered that chronic 

periods of resistance training cause an increase in muscle hypertrophy, but that this increase is 

not homogeneous throughout different muscle groups or within individual portions of muscles 

(Blazevich, Cannavan, Coleman, & Horne, 2007; Ema, Wakahara, Miyamoto, Kanehisa, & 

Kawakami, 2013; Häkkinen et al., 2001; Housh, Housh, Johnson, & Chu, 1985; Melnyk, Rogers, 

& Hurley, 2009; Narici et al., 1996; Noorkoiv, Nosaka, & Blazevich, 2010; Wells et al., 2014). 

Housh and colleagues (1985) investigated the effects of eight weeks of unilateral concentric 

isokinetic training in untrained male college students (age: 25.1 ± 6.1 years). They discovered 

that the cross-sectional areas of multiple muscles within the forearm and legs increased in only 

the side of the body that had been trained and that there was preferential hypertrophy of specific 

muscles within a muscle group. Additionally, the researchers observed that the increases in 

hypertrophy differed along the length of the muscle, and that the increases in hypertrophy also 

differed between individual muscles (Housh, Housh, Johnson, & Chu, 1985). A further 

investigation by Melnyk et al. (2009) examined the effects of nine weeks of unilateral strength 

training on quadriceps femoris cross-sectional area in the proximal, distal, and middle regions of 

the muscles of 43 individuals of varying age. The investigators reported that the greatest 

increases in cross-sectional area were seen at the middle region of the quadriceps femoris 

(Melnyk, Rogers, & Hurley, 2009). Similar results were found by Häkkinen and colleagues 
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(2001) who observed selective changes in muscle hypertrophy of the quadriceps femoris after 21 

weeks of resistance training in older women (age: 64 ± 3 years). In this study, increases in cross-

sectional area were greatest at the region of greatest cross-sectional area, which corresponded to 

the most proximal portion of the vastus lateralis measured and the most distal portion of the 

vastus medialis measured (Häkkinen et al., 2001).  

Conflicting research by Narici et al. (1996) demonstrated that six months of strength 

training in males resulted in greater increases in cross-sectional area of the quadriceps femoris at 

distal (increase from baseline by 18.8 ± 7.2%, p < 0.001) and proximal (increase from baseline 

by 19.3 ± 6.7%, p < 0.001) ends of the muscles compared to the central region (increase from 

baseline by 13.0 ± 7.2%, p < 0.001). Furthermore, previous research has suggested the evidence 

of neuromuscular compartments and myonuclear domains within individual muscles based on 

differences in muscle architecture, nervous innervation, and histological analysis within the 

muscle (Allen, Roy, & Edgerton, 1999; Segal, Wolf, DeCamp, Chopp, & English, 1991; Segal, 

1992). If this compartmentalization within muscles exists, it may explain why different 

adaptations are observed within the same muscle. The following studies highlight a few of the 

more recent studies examining the inhomogeneous muscle architectural adaptations to periods of 

resistance training.  

 

Seynnes, O.R., de Boer, M., & Narici, M.V., 2007. 

Early Skeletal Muscle Hypertrophy and Architectural Changes in Response to High-Intensity 

Resistance Training. 
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 The purpose of this study was to examine the adaptations to high-intensity resistance 

training in the muscle architecture of the lower extremity. Thirteen healthy, recreationally active 

males and females participated in this 35-day long investigation. Seven participants (n = 5 males, 

n = 2 females) (age: 20 ± 2 years) were assigned to a resistance training group, and six males 

(age: 22 ± 3 years) were assigned to a control group. The resistance training program was 

conducted three times weekly and consisted of leg extension and leg curl exercises. Maximal 

voluntary contraction and electromyographic activity during knee extension were tested at 

baseline, after 10 days, after 20 days, and at the end of the training program. Muscle cross-

sectional area of the quadriceps femoris was also evaluated at each of these timepoints using 

magnetic resonance imaging. Three transverse scans were captured at 25% and 50% of femur 

bone length, corresponding to the distal and proximal regions of the quadriceps, respectively.  

 The main findings from this study showed that there was a significant increase in 

maximal voluntary contraction after only 10 days of resistance training (p < 0.01). By the end of 

the 35-day training period, subjects in the training group significantly increased maximum 

voluntary contraction by 38.9 ± 5.7% compared to baseline values (p < 0.001). There was also a 

progressive increase in electromyographic activity within the quadriceps femoris during maximal 

knee extension throughout the training period, which was significantly greater than baseline after 

20 days (29.8 ± 7.0%, p < 0.01) and after 30 days (34.8 ± 4.7%, p < 0.01) of training. 

Additionally, the cross-sectional area of the quadriceps femoris muscles significantly increased 

from baseline values after only 20 days of training, both distally (p < 0.01) and proximally (p < 

0.001). By the end of the 35-day period, the cross-sectional area of the quadriceps femoris 

significantly increased 6.5 ± 1.1% distally (p < 0.001) and 7.4 ± 0.8% proximally (p < 0.001), 

however these changes were not significantly different from each other. With closer examination 
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of each individual muscle of the quadriceps femoris, the cross-sectional area of the distal part of 

the vastus lateralis muscle increased to a greater extent than the distal parts of the vastus 

intermedius, vastus medialis, and rectus femoris from baseline values at all timepoints. After 

only 20 days of training, the distal part of the vastus lateralis significantly increased from 

baseline values by 9.0 ± 3.7% (p < 0.05). After 35 days, the distal region of the vastus lateralis 

significantly increased from baseline values by 13.8 ± 3.1% (p < 0.01). In comparison, the cross-

sectional areas of the vastus medialis and vastus intermedius only significantly increased after 

the entire training period had completed, by 5.5 ± 1.9% (p < 0.01) and 6.0 ± 1.9% (p < 0.001), 

respectively. The cross-sectional area of the distal part of rectus femoris was not observed due to 

its anatomical structure. However, when examined at the proximal sites, the cross-sectional area 

of the rectus femoris muscle significantly increased by 7.4 ± 2.7% (p < 0.001) after 20 days of 

training, and significantly increased by 11.4 ± 5.0% (p < 0.001) after 35 days of training. The 

cross-sectional area of the vastus lateralis and vastus medialis also significantly increased 

proximally by 4.5 ± 1.0% (p < 0.05) and 6.3 ± 2.8% (p < 0.05) after 20 days, and by 7.8 ± 2.0% 

(p < 0.01) and 8.6 ± 3.0 (p < 0.01) at the end of the 35-day period, respectively. However, there 

were no significant differences between the extent of the increase in cross-sectional area 

observed distally and proximally of any of the quadriceps femoris muscles.  

 The findings from this investigation show that muscle hypertrophy from resistance 

training occurs in all of the quadriceps femoris muscles, but in a non-homogeneous way. The 

percent increase in maximal voluntary contraction and electromyographic activity greatly 

outweighed the increase in cross-sectional area for any of the muscles of the quadriceps femoris, 

indicating that neural factors probably contributed the most to the increase in strength, with 

secondary aid from changes in muscle architecture (Sale, 1988). The authors note that the 
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mechanical stimuli upon each muscle is the primary determinant for muscle growth, and that the 

disparities in cross-sectional area increases may be due to different demands on each part of the 

muscle. The forces generated through muscle contraction are transferred both longitudinally and 

transversely throughout the muscle, and any change in muscle architecture or tendinous 

structures throughout the muscle may affect its ability to adapt (Segal, 1992; Street, 1983). 

Perhaps, in this investigation, the distal portion the vastus lateralis was stimulated more so than 

the proximal part, whereas in the vastus medialis, the opposite may have occurred. This may 

explain why inhomogeneous increases in muscle hypertrophy were observed between muscles 

and at varying locations along each muscle (Seynnes, de Boer, & Narici, 2007).  

 

Ema, R., Wakahara, T., Miyamoto, N., Kanehisa, H., & Kawakami, Y., 2013. 

Inhomogeneous Architectural Changes of the Quadriceps Femoris Induced by Resistance 

Training. 

 The objective of this study was to determine if lower extremity muscle architecture 

adapts to resistance training in a homogeneous way within the same muscle and between 

different muscles. Twenty-one healthy men were assigned to either a control (n = 10; age: 26 ± 4 

years) or resistance training group (n = 11; age: 27 ± 2 years). The resistance training group 

consisted of unilateral knee extension exercises for a period of 12 weeks with both concentric 

and eccentric actions for five sets of eight repetitions. The training load for each participant in 

the training group was standardized at 80% of their one-repetition maximum, however the 

authors do not state how many times per week the exercises were performed. Before and after 

the training program, muscle thickness measurements of the vastus lateralis, vastus medialis, 

rectus femoris, and vastus intermedius were captured using a 7.5-Megahertz, brightness-mode 
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ultrasound. Measures of cross-sectional area of the quadriceps femoris were completed using 

magnetic resonance imaging. Participants waited at least three days after completing the last 

training session to be examined via ultrasound. Measurements were completed at distal and 

proximal regions of each muscle of the quadriceps femoris. Additionally, previous research 

performed by Blazevich and colleagues (2006) discovered that the muscle architecture of the 

vastus intermedius is inhomogeneous laterally and medially, so further ultrasound measurements 

of the vastus intermedius were captured at these locations. Longitudinal, single still-images of 

each muscle were captured from the right leg of each subject after they had been laying in a 

supine position for 20 minutes. Muscle thickness was defined as the mean of the distances 

between the superficial and deep aponeuroses (or bone in place of the superficial aponeurosis for 

the vastus intermedius). Magnetic resonance imaging scans were captured at the same locations 

as the ultrasound measurements to determine cross-sectional area of each muscle. Muscle 

thickness and cross-sectional area were determined using an image analysis software (ImageJ, 

National Institute of Health, USA). In addition, the maximal voluntary isometric knee extension 

torque of each participant was measured before and after the training program, at least three days 

after the last day of the protocol.  

Intra-class correlations between muscle thickness measurements taken on two separate 

days were reported to be high (ICC = 0.860), and the coefficient of variation was determined to 

be less than 3.4%. The intra-class correlations for magnetic resonance imaging images were also 

reported to be high (ICC = 0.999) and the coefficient of variation was 0.6 ± 0.7%. After the 

training period, the training group significantly increased knee extension one-repetition 

maximum and maximal voluntary isometric knee extension torque (69 ± 9 kilograms (kg) vs. 86 

± 9 kg; p < 0.001 and 257 ± 51 Newton meters (Nm) vs. 318 ± 51 Nm; p < 0.001, respectively), 
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whereas there were no significant changes in the control group in either variable. A three-way 

multivariate analysis of variance revealed a significant group by time interaction for muscle 

cross-sectional area (p < 0.01) and muscle thickness (p < 0.05) in each muscle. Significant 

increases in muscle cross-sectional area (p < 0.05) and muscle thickness (p < 0.05) were 

observed for each muscle at each measurement site, except for muscle thickness in the lateral 

region of the vastus intermedius. Furthermore, a three-way analysis of variance revealed a 

significant group by muscle by region interaction on muscle cross-sectional area (p < 0.05) and a 

significant group by muscle interaction on muscle thickness (p < 0.01). Follow-up analysis of 

variances demonstrated that the increases in cross-sectional area and muscle thickness of the 

rectus femoris in the training group were significantly greater than those of the other muscles 

measured (p < 0.01, p < 0.05, respectively). The increase in cross-sectional areas of the rectus 

femoris and vastus lateralis were greater in the distal region of the muscles compared to the 

proximal region (p < 0.01, p < 0.05, respectively), whereas there were no differences between 

the increases in the proximal and distal regions in the vastus intermedius and vastus medialis. 

However, the increase in muscle thickness in the medial region of the vastus intermedius was 

greater than the increase in the lateral region (p < 0.05). 

The results of this study show that there are inhomogeneous adaptations to resistance 

exercise in the quadriceps femoris muscles. The increase in cross-sectional area and muscle 

thickness were greater in the rectus femoris than in any of the other muscles, possibly 

demonstrating greater utilization of this muscle when performing knee extension exercises. 

Previous research has demonstrated that muscle activation in the rectus femoris was greater than 

that in any of the vasti during a knee extension exercise, which may be responsible for the 

disparities in inter-muscle hypertrophy seen in the current study (Narici et al., 1996; Richardson, 
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Frankm & Haseler, 1998). Furthermore, research has shown that there are a greater proportion of 

Type II muscle fibers in the rectus femoris than in the other muscles of the quadriceps femoris 

(Johnson, Sideri, Weightman, & Appleton, 1973). Type II muscle fibers are known to experience 

hypertrophy to a greater extent than Type I muscle fibers, which could be another explanation for 

the greater increase in muscle thickness and cross-sectional area in the rectus femoris compared 

to the vasti (Aagaard et al., 2001).  

Differences in muscle cross-sectional area between the distal and proximal parts of the 

muscle were seen in the rectus femoris and the vastus lateralis. These results support the findings 

of Wakahara and colleagues (2012), who suggested that the regional differences in increased 

muscle cross-sectional area after resistance training were due to regional differences in within-

muscle activation during exercise. Studies have shown disproportionate amounts of muscle 

activation in the proximal versus distal regions of the rectus femoris (Akima et al., 1999; Akima 

et al., 2004). Akima and colleagues (2004) discovered that during isokinetic knee extension, 

muscle activation was greater in the distal region of the rectus femoris than the proximal region, 

which could account for differences in hypertrophy between distal and proximal regions of the 

muscle in the current study. In addition, the vastus intermedius muscle demonstrated differences 

in the increase in muscle thickness medially compared to laterally. Previous research has shown 

that a two-week knee extension training regimen increased muscle activation in the 

anterior/medial regions of the vastus intermedius compared to the lateral regions (Akima et al., 

1999). These findings parallel the greater increase in muscle thickness in the medial regions of 

the vastus intermedius compared to the lateral regions in the current study. This study shows that 

the inter- and intra-muscular adaptations of the quadriceps femoris to resistance training occur in 

an inhomogenous way (Ema, Wakahara, Miyamoto, Kanehisa, Kawakami, 2013). 
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Wakahara, T., Naokazu, M., Sugisaki, N., Murata, K., Kanehisa, Y., Fukunaga, T., & 

Yanai, T, 2012. 

Association Between Regional Differences in Muscle Activation in One Session of Resistance 

Exercise and in Muscle Hypertrophy After Resistance Training. 

 The purpose of this investigation was to determine if regional muscle activation is related 

to regional increases in muscle hypertrophy after resistance training. Twelve healthy men (age: 

25.2 ± 3.0 years) participated an experiment investigating the acute effects of resistance training 

on muscle activation and hypertrophy in the upper arms. Nineteen healthy men participated in a 

secondary experiment investigating the chronic effects of resistance training on muscle 

activation and hypertrophy in the upper arms. When assessing the acute effects of resistance 

training, investigators instructed the participants to lay in a supine position and perform five sets 

of eight repetitions of a lying triceps extension exercise at 80% of their one-repetition maximum, 

which had been analyzed two days prior. Magnetic resonance images of the upper arms were 

captured before and after the exercise bout. Magnetic resonance images have been used 

previously to quantify the regional differences in muscle activation through determination of the 

brightness of the image. High-intensity exercise causes an increase in the brightness of the 

magnetic resonance images (Adams, Duvoisin, & Dudley, 1992; Fleckenstein, Bertocci, 

Nunnally, Parkey, & Peshock, 1989). The brightness of the images can be quantified by 

transverse relaxation time, which is related to the exercise intensity, the number of repetitions 

completed, and the electrical activity within the muscle (Adams, Duvoisin, & Dudley, 1992; 

Fisher, Meyer, Adams, Foley, & Potchen, 1990; Yue, 1994). Previous studies have shown distal-

proximal disparities in transverse relaxation time on a magnetic resonance image within the 

gastrocnemius muscle while performing a calf raise (Kinugasa, Kawakami, & Fukunaga, 2005). 
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The distal region of the gastrocnemius was found to have a greater increase in transverse relation 

time compared to the proximal region, indicating higher activation in the distal region of the 

muscle (Kinugasa, Kawakami, & Fukunaga, 2005).  

 In the present study, a total of 13 magnetic resonance images were captured along the 

upper arm, however the authors do not state which arm the images were taken from. The cross-

sectional area of the triceps brachii and mean transverse relaxation were analyzed using an image 

analysis software (ImageJ, National Institute of Health, USA). The mean transverse relaxation 

time for each pixel within the triceps brachii was calculated in order to determine the percentage 

of the muscle area that was activated. The intra-class correlations between two analyses of each 

magnetic resonance imaging slice were reported to be high (ICC = 0.999), and the coefficient of 

variation was 0.3 ± 0.3%.  

 In the second part of the study investigating the chronic effects of resistance training, 

twelve participants were assigned to a training group (age: 26.3 ± 3.7 years), while seven 

subjects were assigned to a control group (age: 26.9 ± 3.9 years). Subjects in the training group 

endured a 12-week resistance training protocol that they performed three times weekly, however 

the researchers do not mention what kinds of exercises were included in this regimen. Thirteen 

magnetic resonance images of the upper extremity were captured before and after the training 

period. The cross-sectional area of the triceps brachii was analyzed using an image analysis 

software (ImageJ, National Institute of Health, USA). The intra-class correlations between two 

analyses of the magnetic resonance imaging slices for three participants were reported to be high 

(ICC = 0.998), and the coefficient of variation was 1.2 ± 1.2%. 
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 The results from this study revealed that there was a significant main effect for region for 

the percent activated area of the muscle immediately after an acute bout of exercise as 

determined by an analysis of variance. The proximal and middle regions of the long and medial 

heads of the triceps brachii had a significantly greater percent of activated area than the distal 

regions. In addition, the percentage of activated area in the lateral head of the triceps brachii was 

significantly lower than that in the medial or long head at lower at locations ranging from 12-16 

centimeters from the elbow.  

After 12 weeks of resistance training, there was a significant increase in one-repetition 

maximum of the lying triceps extension exercise from 11.0 ± 2.0 kg to 17.3 ± 2.9 kg (p < 0.05). 

A two-way analysis of variance showed main significant main effects of time and region on the 

cross-sectional area of the triceps brachii in trained individuals. The cross-sectional area of the 

triceps brachii increased significantly throughout all parts of the muscle, however the change in 

cross-sectional area was significantly greater in the proximal and middle regions compared to the 

distal regions (p < 0.05). No differences in cross-sectional area were observed for individuals in 

the control groups in any region of the muscle.  

The findings of this study indicate that the percentage of activated area of the triceps 

brachii during one resistance exercise bout and the increase in cross-sectional area after chronic 

resistance training occur in a non-homogeneous way. The percentage of activated area after 

resistance exercise and the increase in cross-sectional area after training were both greater in the 

middle and proximal regions of the triceps brachii than the distal regions. The differences in 

relative increases in cross-sectional area support the hypothesis that hypertrophy may occur to a 

greater extent in the areas of the muscle that are activated to the greatest extent during exercise 
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(Adams, Duvoisin, & Dudley, 1992; Fisher, Meyer, Adams, Foley, & Potchen, 1990; Narici et 

al., 1996; Yue, 1994). The non-uniform increase in percent activated area after a resistance 

training bout may be due to the direction at which the exercise is performed, which is the result 

of differences in muscle recruitment for different exercises (Buchanan, Almdale, Lewis, & 

Rymer, 1986). In addition, previous research has suggested that the existence of neuromuscular 

compartments within a muscle may affect the way each muscle adapts individually to a stimulus 

(Segal, Wolf, DeCamp, Chopp, & English, 1991). Another possible explanation for the varied 

increase in cross-sectional area is muscle fiber composition of the triceps brachii. The long and 

lateral heads contain about 60% Type II muscle fibers, whereas the medial head contains about 

40% Type II muscle fibers (Elder Bradbury, & Roberts, 1982). The greater increase in cross-

sectional area in the proximal region of the triceps brachii may be due to the greater proportion 

of Type II fibers in the long head, whereas the smaller increase in the cross-sectional area in the 

distal region may be due to the lesser proportion of Type II fibers in the medial head (Elder, 

Bradbury, & Roberts, 1982). The main findings from this study show that the regional 

differences in muscle activation during one resistance exercise bout paralleled the increases in 

cross-sectional area of the triceps brachii after chronic resistance training, suggesting that 

hypertrophy within a muscle occurs in a non-homogeneous way (Wakahara et al., 2012). 

 

Wells, A.J., Fukuda, D.H., Hoffman, J.R., Gonzalez, A.M., Jajtner, A.R., Townsend, J.R., 

Mangine, G.T., Fragala, M.S., & Stout, J.R., 2014. 

Vastus Lateralis Exhibits Non-Homogeneous Adaptation to Resistance Training. 

 In this study, the investigators aimed to examine the changes in muscle architecture at 

two different points on the vastus lateralis muscle after a period of resistance training. A 
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secondary purpose of the study was to determine if the changes in muscle architecture at each 

point of the muscle was related to maximal strength. This study is unique because it looked to 

examine the adaptations to resistance training at different locations within the same muscle in the 

transverse plane, whereas most previous research has compared muscular adaptations to 

resistance training in the longitudinal plane, i.e., proximally and distally. Twenty-three Division I 

female soccer players (age: 19.7 ± 1.0 years) completed a 15-week resistance training protocol in 

the off-season as instructed by the team strength and conditioning coach. Players exercised four 

times per week and did not engage in any other structured exercise protocol throughout the 

course of the study. At the beginning and end of the 15-week period, a 12-Megahertz, brightness-

mode ultrasound was used to assess muscle thickness, cross-sectional area, and echo intensity of 

vastus lateralis muscle in the self-reported dominant leg of each participant. The ultrasound 

settings were standardized at a gain of 50 decibels, a dynamic range of 72, and a depth of 5 

centimeters for each subject. Prior to testing, each participant was instructed to lay in a supine 

position for 15 minutes to allow for fluid shifts to occur. Ultrasound measurements of muscle 

thickness were taken in the longitudinal plane, parallel to the length of the leg. Measurements 

were captured at two separate locations along the vastus lateralis muscle while the participant 

was laying on their non-dominant side; one at 50% of the linear distance from the greater 

trochanter to the lateral epicondyle of the femur (which was termed V0) and the other at a point 

located 5 centimeters medially from the previously mentioned site, toward the anterior side of 

the body (which was termed V5). Three still images were taken at each location in the 

longitudinal plane. Panoramic ultrasound measurements of the cross-sectional area of the vastus 

lateralis were captured in the transverse plane, perpendicularly to the length of the muscle at 50% 

of the linear distance from the greater trochanter to the lateral epicondyle of the femur. These 
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panoramic images were also used for echo intensity analysis. Three images were captured at this 

location in the transverse plane.  

Muscle thickness, cross-sectional area, and echo intensity were quantified via an image 

analysis software (ImageJ, National Institutes of Health, USA, version 1.45s). Muscle thickness 

was defined as the distance between the inferior border of the superficial aponeurosis to the 

superior border of the deep aponeurosis. Cross-sectional area of the panoramic images were 

calculated using the polygon tool in ImageJ by tracing the outline of the muscle, attempting to 

include as much lean mass as possible while avoiding the surrounding bone and fascia. Echo 

intensity was also calculated from the panoramic images by using the standard histogram 

function in ImageJ. In addition to ultrasound measures, one-repetition maximum testing in the 

barbell back squat was performed at the beginning and end of the 15-week period in 14 of the 23 

subjects to evaluate muscle strength. 

 Reliability data for the muscle thickness and cross-sectional area measures were reported 

as intra-class correlations, and were shown to be very high (ICC = 0.99). The investigators 

discovered that there was a significant increase in one-repetition maximum squat strength 

throughout the course of the study (change from pre to post = 3.7 ± 2.4 kg, p = 0.004). 

Additionally, the post values showed increases in muscle thicknesses at both V0 and V5 along 

the vastus lateralis compared to pre-values. However, the change in muscle thickness was 

significantly greater at V5 (change from pre to post = 0.18 ± 0.18 centimeters) compared to V0 

(change from pre to post = 0.04 ± 0.16 centimeters) (p = 0.006). Furthermore, the changes in 

one-repetition maximum squat strength correlated significantly with the changes in muscle 

thickness at V0, but did not correlate with the changes in muscle thickness at V5. Also, there was 
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a significant increase in cross-sectional area of the vastus lateralis from pre to post (change from 

pre to post = 0.58 ± 0.39 centimeters2, p = 0.016), but the magnitude-based inferences suggest 

that this change was trivial. No significant change in the echo intensity values from pre to post 

was observed. 

 The primary findings from this study show that the vastus lateralis adapts to resistance 

training in a non-homogeneous manner because the changes in muscle thickness were 

significantly greater at V5 compared to V0. The vastus lateralis muscle is unique in its 

morphology in comparison to other knee extensor muscles such as the rectus femoris because it 

has an asymmetrical shape in the transverse plane. The anteromedial side of the vastus lateralis is 

inherently thicker than the posterolateral part of the muscle (Blazevich, Gill, & Zhou, 2006). 

Additionally, studies have shown that muscle thickness and cross-sectional area vary along the 

length of the vastus lateralis muscle (Ema, Wakahara, Miyamoto, Kanehisa, & Kawakami, 

2013). Research has also shown that adaptations in muscle architecture may be dependent on the 

specific region of the muscle due to differences in neuromuscular compartments (Ema, 

Wakahara, Miyamoto, Kanehisa, & Kawakami, 2013; English, Wolf, & Segal, 1993; Segal, 

1991; Segal, Wolf, DeCamp, Chopp, & English, 1991). As a result, the vastus lateralis may 

experience non-homogeneous adaptations to training due to the nature of the muscle architecture, 

which is consistent with the findings of this study. The changes in muscle thickness at V0 were 

significantly correlated with improvements in barbell back squat strength, whereas there were no 

correlations found between the changes in muscle thickness at V5 and barbell back squat 

strength, indicating that improvements in strength may be mediated only by architectural 

changes at V0. Additionally, because the differences in cross-sectional area from pre to post 

were trivial, it is likely that the increases in barbell back squat strength may be due to the 
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increases in muscle thickness and not increases in cross-sectional area. These results also show 

that significant increases in muscle thickness do not necessarily result in concomitant increases 

in muscle cross-sectional area. The results from this study conflict with those seen in other 

studies, which have observed significant increases in cross-sectional area of the vastus lateralis 

following resistance exercise in men (Narici et al., 1996; Seynnes, de Boer, & Narici, 2007). 

However, the results from this study align with Nimphius and colleagues (2012), who discovered 

no change in muscle cross-sectional area despite an increase in squat strength after a competitive 

season in female softball players. In contrast to the findings of the current study, Nimphius and 

colleagues (2012) did not see significant increases in muscle thickness, but there was a high 

correlation between the changes in one-repetition maximum squat strength and muscle thickness 

(r = 0.57, p < 0.05).  

 Furthermore, there were no significant differences in echo intensity of the vastus lateralis 

throughout the course of the study, whereas other researchers have found conflicting results. 

Scanlon and colleagues (2014) observed a significant decrease in echo intensity in the vastus 

lateralis in elderly women after a resistance training program, which correlated to an increase in 

knee extensor strength. In addition, Ivey and colleagues (2000) discovered an increase in muscle 

quality defined as muscle strength per unit volume assessed by magnetic resonance imaging in 

young women following unilateral resistance training. Furthermore, Jajtner and colleagues 

(2014) discovered decreased echo intensity in Division I women’s soccer players from the 

beginning to the end of a competitive season. These results show that muscle strength relative to 

muscle volume may be a more sensitive measure of muscle quality compared to echo intensity, 

or that changes in echo intensity require a longer training period. Overall, adaptations of the 
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vastus lateralis muscle to resistance training may occur in a non-homogeneous way (Wells et al., 

2014). 

 

Inter- and Intra-muscular Echo Intensity Values May Be Heterogeneous 

 The above studies have validated that skeletal muscle architecture is inhomogeneous and 

that the within- and between-muscle adaptations to resistance training occur in an 

inhomogeneous manner. For this reason, the echo intensity within and between muscles may 

vary as well. The following studies aim to examine the echo intensity between muscle groups 

and within individual muscles.   

 

Young, H., Jenkins, N.T., Zhao, Q., & McCully, K.K., 2015. 

Measurement of Intramuscular Fat by Muscle Echo Intensity. 

 Although this study has been discussed previously, a secondary purpose of the study was 

to examine the variability of echo intensity within the same muscle. Thirty-one males and 

females (age: 20 – 61 years) with diverse body mass indices and physical activity levels were 

involved in this investigation. The upper and lower leg lengths of each participant were 

measured and recorded. Marks were made on the upper legs of each participant at distances of 

one-third and one-fourth the length of the upper leg from the superior lateral aspect of the patella 

to the anterior superior iliac spine. Marks were also made on the lower legs of each participant at 

distances of one-third and one-fourth the length of the lower leg from the inferior lateral aspect 

of the patella to the calcaneus. Ultrasound and magnetic resonance images of the rectus femoris, 
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medial gastrocnemius, tibialis anterior, and biceps femoris were captured at the marks previously 

mentioned.  

The results of this investigation revealed that the echo intensities of the different muscles 

examined varied considerably (rectus femoris: 55.1 ± 7.4 arbitrary units; biceps femoris: 42.6 ± 

7.3 arbitrary units; tibialis anterior: 56.1 ± 8.0 arbitrary units; medial gastrocnemius: 51.5 ± 8.5 

arbitrary units). Additionally, the mean echo intensities of the images taken at different locations 

within the same muscle revealed significant differences. Coefficients of variation for echo 

intensities between the two imaging locations within each muscle were fairly high, indicating 

disparities in intra-muscle echo intensity (CV = 5.6% in the rectus femoris; CV = 6.3% in the 

biceps femoris; CV = 5.0% in the tibialis anterior; CV = 4.8% in the medial gastrocnemius). 

When a correction factor for subcutaneous fat thickness was applied, the coefficient of variation 

for echo intensity between different locations within the same muscle changed (CV = 5.7% in the 

rectus femoris; CV = 8.7% in the biceps femoris; CV = 4.9% in the tibialis anterior; CV = 5.2% 

in the medial gastrocnemius). Coefficients of variation for the percent intramuscular fat between 

magnetic resonance images taken at each location revealed that differences in the amounts of 

intramuscular fat existed at different locations within the same muscle (CV = 11.0% in the rectus 

femoris; CV = 7.6% in the biceps femoris; CV = 5.6% in the tibialis anterior; CV = 5.1% in the 

medial gastrocnemius). 

The investigators noted that higher correlations between the echogenicity of the images 

taken at each location were found when examining the corrected echo intensity and percent 

intramuscular fat for each muscle individually compared to examining all muscle groups as a 

whole. This research also shows that variability in echo intensity exists in different locations 
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within the same muscle. Investigators discovered different amounts of intramuscular fat at each 

location within the muscle, which could significantly impact the echo intensity at those specific 

locations. In addition, the authors discovered variability in the echo intensity between different 

muscle groups, which was consistent with prior research (Caresio, Molinari, Emanuel, & 

Minetto, 2014; Pillen, 2010; Pillen et al., 2009; Pillen & van Alfren, 2011). Pillen and colleagues 

(2009) suggested that differences in muscle fiber orientation and fibrous tissue distribution 

within each muscle can contribute to the disparities in echo intensity between different muscles. 

Arts and colleagues (2010) also reported that the relationship between age and echo intensity 

dependent on the muscle of interest, and that some muscles did not show a change in echo 

intensity with age. In addition, the variability in echo intensity values discovered between 

different muscles in the present study may have been partially due to the size limitation of the 

ultrasound image. The investigators noted that a single ultrasound image was sufficiently large 

enough to capture the entire area of the rectus femoris muscle, but was not large enough to 

capture the entire area of the biceps femoris, tibialis anterior, and medial gastrocnemius, which 

may have affected echo intensity values. Overall, it is apparent that echo intensity is 

inhomogeneous throughout an individual muscle and among muscle groups (Young, Jenkins, 

Zhao, & McCully, 2015).  

 

Caresio, C., Molinari, F., Emanuel, G., & Minetto, M.A., 2014. 

Muscle Echo Intensity: Reliability and Conditioning Factors. 

 The purpose of this study was to assess the reliability of skeletal muscle echo intensity 

depending on the size, shape, and location of the region of interest within an individual muscle. 

Some muscles contain internal fascia that separates one component of the muscle from another, 
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depending on the function and architecture of the specific muscle. In addition, some muscles 

have an inhomogeneous distribution of intramuscular fat or fibrous tissue due to neurological or 

pathological conditions or as a result of normal muscle architecture. In this study, three 

consecutive transverse ultrasound images of the biceps brachii, rectus femoris, vastus lateralis, 

tibialis anterior, and medial gastrocnemius were assessed in opposite limbs of 20 healthy 

participants (n = 10 females, age: 26.0 ± 2.3 years; n = 10 males, age: 30.2 ± 5.6 years). A 

brightness-mode ultrasound, set at a gain of 50% of the total range was used to capture still 

images of each muscle in all participants. The depth setting on the ultrasound varied between 

participants and between muscles in order to include the entire muscle area in one image. 

However, altering depth settings between individuals and muscle groups may have affected 

image quality and echo intensity because this changes how deep the ultrasound beams penetrate 

the structure of interest (Pillen, 2010).  

Muscle thickness and subcutaneous fat thickness of each muscle were quantified using 

ImageJ (National Institutes of Health, Bethesda, MD, USA). The echo intensity of each muscle 

was assessed using the standard histogram function on MATLAB (The MathWorks, Inc., Natick, 

MA, USA). To do this, the maximal region of interest within an individual muscle was selected 

by including as much of the muscle as possible without including any surrounding fascia. 

Additionally, multiple other regions of interest within each muscle were assessed to examine the 

effect of the size and location of the region of interest on echo intensity. For example, a maximal 

rectangular region of interest was also created within each muscle, which was defined as the 

maximal rectangular area within the muscle that did not include any surrounding bone or fascia. 

Within the maximal rectangular region of interest, a total of nine other regions of interest were 

examined, each decreasing in size from the previous region of interest by 10%. Two additional 
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regions of interest examined in the tibialis anterior, a rectangular region in the superficial portion 

and a square region in the deep portion. In the rectus femoris, two additional regions of interest 

were also examined, a square region in the lateral portion and a square region in the medial 

portion.  

 The findings of this study indicate that the muscle thickness values were higher in males 

than females for all muscles except the medial gastrocnemius (p < 0.01). Subcutaneous adipose 

tissue thickness was greater in females than in males for all muscles except the biceps brachii (p 

< 0.001). Intra-class correlations and coefficients of variation were calculated across the different 

regions of interest within each muscle to assess intra-image reliability. Intra-class correlations 

ranged from moderate to high for each muscle (ICC = 0.54 to 0.86) and coefficients of variation 

ranged from 6.7% to 11.5%. Inter-image reliability was also calculated to determine the 

consistency of three images captured at each location and with each size of the region of interest 

in both the right and left limbs. In general, a non-linear relationship existed between the intra-

class correlations of the three consecutive images captured at each location and the region of 

interest size, where lower intra-class correlations were discovered when examining smaller 

regions of interest in both the right and left limbs. The authors concluded that a region of interest 

with a dimension of 9.6% the total size of the maximum region of interest was sufficient enough 

to obtain high reliability (where the intra-class correlation was greater than 0.70) in all muscles 

examined. No significant differences in echo intensity were found between the dominant and 

non-dominant muscles or the maximum regions of interest and maximum rectangular regions of 

interest in any muscle. Significantly greater echo intensity values were discovered in females 

compared to males in the rectus femoris, tibialis anterior, and medial gastrocnemius, however no 

significant differences were seen in the vastus lateralis and biceps brachii. When the data was 
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pooled for gender, the echo intensities of the biceps brachii and tibialis anterior were 

significantly higher than those of the medial gastrocnemius, rectus femoris, and vastus lateralis.  

Upon examination of the additional regions of interest in the tibialis anterior and rectus 

femoris, differences in echo intensity between regions were discovered. In the tibialis anterior, 

the echo intensity was significantly lower for the rectangular-shaped superficial portion 

compared to the square-shaped deep portion or the maximal region of interest and the maximal 

rectangular region of interest (p < 0.05). Also, the echo intensity of the rectus femoris was 

significantly greater in the medial portion compared to the lateral portion or the maximal region 

of interest and the maximal rectangular region of interest (p < 0.05). No significant correlations 

were found between muscle thickness and echo intensity in any muscle, however significant 

positive correlations were discovered for subcutaneous adipose tissue thickness and echo 

intensity in the vastus lateralis, tibialis anterior, and medial gastrocnemius (correlation 

coefficients ranged from r = 0.44 to 0.77; p < 0.05). 

The findings of this study show that echo intensity values may differ depending on the 

size, shape, and location of the region of interest. Quantifying the echo intensities of smaller 

regions of interest within muscles with were associated with lower intra-class correlations 

between images taken at the same location. This may indicate that it is important to include the 

entire area of a muscle when examining its echo intensity. A small section of the muscle may not 

be representative of the entire muscle and may result in inaccurate measures of muscle 

echogenicity. Additionally, the present study discovered that echo intensity values vary among 

different muscle groups and within individual muscles. This may be due to differences in muscle 

architecture and fascicle distribution throughout the muscle.  
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The positive correlation between subcutaneous adipose tissue thickness and echo 

intensity in the vastus lateralis, tibialis anterior, and medial gastrocnemius may imply that greater 

amounts of fat adjacent to the muscle cause higher echo intensity values. Perhaps the 

intramuscular adipose and fibrous tissue content is dependent on the amount of subcutaneous fat 

adjacent to the muscle. Miljkovic and Zmuda (2010) hypothesized that a greater amount of 

intramuscular adipose tissue may result from the infiltration of fat from the subcutaneous layer, 

so a greater amount of subcutaneous fat may increase the amount of intramuscular fat. In the 

current study, discrepancies between the correlations of subcutaneous fat and echo intensity 

existed depending on the observed muscle. Different muscles may have specific cellular 

adaptations to lipid storage and utilization depending on one’s level of activity, which may affect 

the amount of fat storage within a muscle and therefore may affect muscle echo intensity.  

The authors also hypothesized that the measurement of echo intensity is, in nature, an 

average value, so it does not represent extremely high or extremely low values of echogenicity 

within a muscle well. The distribution of fat and fibrous tissue within a muscle are lost with the  

central measure of echo intensity, so varying measures of echogenicity may occur within a 

muscle but cannot be seen when looking at overall muscle echo intensity. Further research 

should be done examining echo intensity values within individual muscles. Overall, it is apparent 

that the size, shape, and location of the region of interest within a muscle has a profound effect 

on its echo intensity value (Caresio, Molinari, Emanuel, & Minetto, 2014).  
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Single Versus Panoramic Ultrasound Imaging Techniques in Skeletal Muscle Echo Intensity 

Quantification  

A single transverse ultrasound image often does not permit the entire skeletal muscle area 

to fit in a single ultrasound image, so panoramic imaging has been developed to allow for 

visualization of larger muscles within one frame (Athiainen et al., 2010; Henrich, Schmider, 

Kjos, Tutschek, & Dudenhausen, 2002; Thomaes et al., 2012; Noorkoiv, Nosaka, & Blazevich, 

2010). However, panoramic imaging increases the likelihood of error due to the overlapping of 

images upon one another (Noorkoiv, Nosaka, & Blazevich, 2010). Noorkoiv and colleagues 

(2010) suggested that the curvature of the body of interest affects the reliability of panoramic 

ultrasound images, where tightly curved regions will probably result in lower reliability values. 

The results from an investigation previously discussed by Caresio et al. (2014) proposed that the 

reliability of echo intensity measurements may increase when the region of interest increases. 

These results offer the suggestion that a panoramic image may result in a more accurate 

representation of muscle echo intensity than a still image, especially in larger muscles that 

cannot fit in a single frame. The following study compares the utilization of panoramic 

ultrasound imaging with single ultrasound imaging in quantification of skeletal muscle echo 

intensity.  

 

Jenkins, N.D.M., Miller, J.M., Buckner, S.L., Cochrane, K.C., Bergstrom, H.C., Hill, E.C., 

Smith, C.M., Housh, T.J., & Cramer, J.T., 2015.  

Test-Retest Reliability of Single Transverse Versus Panoramic Ultrasound Imaging For Muscle 

Size and Echo Intensity of the Biceps Brachii. 
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 The aim of the current study was to examine the reliability of echo intensity values of the 

biceps brachii obtained via panoramic ultrasound scans compared to single transverse still 

images. Fourteen healthy males (age: 21.8 ± 2.5 years) who had not engaged in resistance 

training within the past six months and had no indication of musculoskeletal injury were 

examined on two days, separated by a period of about 48 hours. Participants were instructed to 

refrain from any physical activity for at least 24 hours prior to testing. During each visit, a 10-

Megahertz, brightness-mode ultrasound with a gain of 58 decibels was used to capture three 

panoramic transverse and three single transverse images of the biceps brachii on the right arm of 

all subjects. A padded guide was constructed and placed upon the arm of each subject to ensure 

that the probe moved perpendicularly to the length of the arm. An experienced investigator 

selected the best panoramic image and best transverse image taken from each participant during 

each visit. These images were then used for further analysis. Echo intensity, cross-sectional area, 

muscle thickness, and fat thickness for each of the best images were calculated using an image 

analysis software (ImageJ, National Institutes of Health, Bethesda, MD, USA, version 1.47v). 

Additionally, skinfold measurements and arm circumference measurements were obtained.  

 The findings of this investigation revealed no significant differences in any 

measurements obtained on the first visit compared to the second visit (p > 0.05). A significant 

correlation existed between muscle thickness and cross sectional area (r = 0.93; p < 0.001). 

Significant correlations also existed between subcutaneous adipose tissue thickness assessed via 

ultrasonography and skinfold thickness and arm circumference (r = 0.98; p < 0.001; r = 0.75; p 

< 0.01, respectively).  However, no significant correlation existed between echo intensity of 

either the panoramic or still image and subcutaneous adipose tissue thickness. These findings are 

in conjunction with Caresio et al. (2014) who discovered no correlation between fat thickness 
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and echo intensity of the biceps brachii muscle, but found significant correlations between fat 

thickness and echo intensity in the vastus lateralis, tibialis anterior, and medial gastrocnemius. 

Therefore, the relationship between echo intensity and subcutaneous adipose tissue thickness 

may be dependent on the muscle of interest and/or the population studied. Test-retest reliability 

for the echo intensity of the panoramic images was moderate (intra-class correlation = 0.78), 

whereas test-retest reliability for cross-sectional area, muscle thickness, fat thickness, and the 

echo intensity of single images were high (intra-class correlations ranged from 0.82 to 0.99). All 

coefficients of variation between measurements on different testing days ranged from 2.26% to 

7.27%. These results show that there was only slightly lower reliability in echo intensity values 

in panoramic images compared to single still images. These findings are in conjunction with 

those discovered by Rosenberg et al. (2014), who reported intra-class correlations of 0.72 in the 

echo intensity of panoramic images taken of the medial gastrocnemius. The echo intensity 

reliability values obtained from both panoramic and single images in this study were both lower 

than the reliability values obtained from all other ultrasound measures, including muscle 

thickness, subcutaneous adipose tissue thickness, and muscle cross-sectional area. Additionally, 

there were no significant differences (p = 0.13) between the echo intensity values calculated via 

panoramic images and single images, and the echo intensities of each image type of image were 

strongly correlated with one another (r = 0.89). These findings indicate that future studies may 

wish to use echo intensity obtained through single transverse images rather than panoramic 

transverse images due to the similar reliabilities and high correlations between the two. 

However, Caresio et al. (2014) discovered lower reliability values when the region of interest 

within a muscle decreases, so this may provide evidence of the contrary. Panoramic ultrasound 

imaging requires a greater amount of time and expertise to perform in comparison to single still-
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images, which may provide further reason for the use of still images. Overall, the results of this 

study show that echo intensity values calculated via transverse panoramic ultrasound images are 

comparable to those of single transverse images in the biceps brachii, so single transverse images 

may be more be beneficial to use if time constraints exist (Jenkins et al., 2015).  
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CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY 

Participants 

 Twenty-five collegiate recreationally-trained males participated in this investigation. One 

participant was removed from the final analysis due to inconsistencies in ultrasound (US) probe 

pressure and discrepancies during imaging. Therefore, data from 24 subjects (age: 20.2 ± 1.6 

years; height: 178.1 ± 6.6 cm; weight: 82.2 ± 13.4 kg) was included in the final analysis. 

Participants were purposively sampled from the University of Central Florida’s rugby club team 

through contact with the team coach.  

Each subject was required to provide a verbal form of consent in order to participate, 

following a description of the procedures, benefits, and risks of the study. Subjects were 

excluded from the study if they had participated in vigorous exercise for at least 24 hours prior to 

testing (Cadore et al 2012; Jajtner et al., 2014). The investigation was approved by the University 

of Central Florida’s Institutional Review Board for human subjects, and a waiver of consent was 

granted for the Institutional Review Board for participation in the study. 

 

Research Design 

 Each participant reported to the Human Performance Laboratory at the University of 

Central Florida on one occasion for non-invasive US examination of the vastus lateralis (VL) 

muscle in the dominant (DOM) leg. Subjects were required to abstain from vigorous exercise for 
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at least 24 hours prior to examination (Cadore et al., 2012; Jajtner et al., 2014). During this visit, 

three panoramic, extended-field-of-view images of the VL were captured in the transverse plane 

(PTI). Additionally, three still images of the VL were captured in the longitudinal plane (SLI). 

US image analysis was then completed using an image analysis software to determine specific 

muscle morphological characteristics.  

 

Variables 

 The independent variables included in this investigation were: (a) Tertile [Posterior (PT) 

vs. Lateral (LT) vs. Anterior (AT)] and (b) Image Type (PTI vs. SLI). The dependent variables 

included in this investigation were: (a) Echo Intensity (EI), (b) Muscle Cross-Sectional Area 

(CSA), (c) Muscle Thickness (MT), and (d) Subcutaneous Adipose Tissue Thickness (SubQ).  

 

Instrumentation 

• A scale (Health-O-Meter Professional Scale, Patient Weighing Scale, Model 500 KL, 

Pelstar, Alsip, IL, USA) was used to obtain measurements of height and weight of each 

participant.  

• A 12-Megahertz (MHz), brightness-mode US (General Electric LOGIQ P5, Wauwatosa, 

WI, USA) was used to capture images of the VL muscle in the DOM limb. 
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• An image analysis software (ImageJ, National Institutes of Health, USA, version 1.45s) 

was used to quantify muscle morphological characteristics, including EI, CSA, MT, and 

SubQ. 

• A data analysis computer program (SPSS for Windows, version 21.0, SPSS Inc., 

Chicago, Illinois, United States) was used to perform statistical analyses.  

• A computer software (Calculation for the test of the difference between two dependent 

correlations with one variable in common, Vanderbilt University, Nashville, TN, USA) 

was used to determine the difference between two dependent correlations. 

  

Procedures 

Ultrasonography 

 Prior to testing, all participants were instructed to wear shorts on testing day to avoid 

compression of the upper leg musculature and to expose the upper portion of the thigh. 

Participants were also required to abstain from vigorous exercise for at least 24 hours prior to 

examination (Cadore et al. 2012; Jajtner et al. 2014). Upon arrival to the Human Performance 

Laboratory, the subjects’ height and weight were recorded prior to US examination. US 

procedures have been previously described by Jajtner et al. (2014), Mangine et al. (2014a), 

Mangine et al. (2014b), Mangine et al. (2014c), and Scanlon et al. (2014). Briefly, subjects were 

required to lay supine on an examination table with both legs fully extended for a minimum of 

15 minutes to allow for fluid shifts to occur (Ahtiainen et al., 2010; Esformes, Narici, & 

Maganaris, 2002; Lixandrão et al., 2014; Reeves, Maganaris, & Narici, 2004; Scanlon et al., 
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2014; Watanabe et al., 2012; Wells et al., 2014). Then, each participant was instructed to lay on 

their non-dominant side in order to obtain skeletal muscle US images of the VL muscle in the 

DOM leg. Subjects were positioned with their legs on top of one another and slightly bent at the 

knee (Wells et al., 2014). 

US images of the VL were captured at 50% of the straight-line distance from the greater 

trochanter and the lateral epicondyle of the femur by an experienced researcher (C.H.B.) 

(Scanlon et al., 2014; Wells et al., 2014). To ensure proper probe placement and consistent image 

capture location, a dotted line was drawn transversely and longitudinally along the surface of the 

skin from the aforementioned location. All measures of muscle morphology were obtained using 

a B-mode, 12-MHz linear probe US (General Electric LOGIQ P5, Wauwatosa, WI, USA), 

coated with transmission gel (Aquasonic® 100, Parker Laboratories, Inc., Fairfield, NJ, USA) to 

provide acoustic contact without depressing the dermal layer of the skin (Scanlon et al., 2014; 

Wells et al., 2014). US settings remained fixed for examination of each participant to minimize 

instrumentation bias, to optimize spatial resolution, and to ensure EI consistency (Scanlon et al., 

2014; Wells et al., 2014). Image gain was set at 50 decibels (dB), dynamic range was set at 72, 

and image depth was set at 5 cm (Scanlon et al., 2014; Wells et al., 2014). Three PTI were 

captured in the transverse plane, perpendicular to the long axis of the muscle. These images 

utilized extended-field-of-view ultrasonography (LogiqView™) in order to include entire area of 

the VL in a single panoramic image. Additionally, three SLI were captured in the longitudinal 

plane, parallel to the long axis of the muscle. All measures were performed by the same 

examiner and captured from the same anatomical locations. Anatomical landmarks and probe 

orientation for US analysis in the PTI and SLI of a sample participant are depicted in Figure 1 

and Figure 2, respectively.  
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Image Analysis 

 All US images were analyzed offline by an experienced researcher (A.N.V.) using an 

image analysis software (ImageJ, National Institutes of Health, USA, version 1.45s) to quantify 

muscle morphological characteristics. A known distance shown in each ultrasound image was 

used to calibrate the image analysis software.  

Analysis of Panoramic Transverse Images 

Cross-Sectional Area of the Vastus Lateralis in Panoramic Transverse Images 

 CSA of the VL was quantified using images taken in the transverse plane utilizing 

extended-field-of-view ultrasonography (LogiqView™). PTI utilized a sweep of the probe along 

the VL from the anterior portion of the muscle to the posterior portion of the muscle in order to 

capture the entire area of the muscle in a single image. Three consecutive images were captured 

at the same anatomical location by the same investigator to determine within-day precision.  

Out of the three panoramic images captured from each participant, two experienced 

researchers (A.N.V. and C.H.B.) individually selected the best image for subsequent analysis 

(Jenkins et al., 2015). If the researchers did not agree on which image was best, a third 

experienced researcher (D.H.F.) selected the best image of the two chosen by A.N.V. and C.H.B. 

Requirements for best panoramic image selection can be found in Appendix C.  

CSA of the PTI (CSAPTI) was quantified offline using ImageJ. The outline of the VL 

muscle was located in the image and traced using the polygon function tool, which included as 

much lean mass as possible without including any surrounding bone or fascia (Wells et al., 
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2014). The total area of the traced polygon was then calculated and reported in centimeters2 

(cm2). A sample image for CSAPTI analysis is presented in Figure 3. 

Inter-day reliability for CSAPTI was completed on a separate sample of participants, with 

at least 24 hours between examinations. C.H.B. completed ultrasound image capture, and A.N.V. 

completed image analysis. A.N.V. and C.H.B. individually selected the best image for 

subsequent analysis (Jenkins et al., 2015). If these researchers did not agree on which image was 

best, a third experienced researcher (D.H.F.) selected the best image of the two. Intra-class 

correlation coefficients using model “3,1” (ICC3,1), standard error of measurements (SEM), 

minimal differences (MD), and coefficients of variation (CV) between the CSA of the best PTI 

taken on two separate days were determined to be: ICC3,1 = 0.984; SEM = 1.073 cm2; MD = 

2.974 cm2; CV = 2.105%. 

Echo Intensity of the Vastus Lateralis in Panoramic Transverse Images 

 EI of the PTI (EIPTI) was quantified within the region of interest previously demarcated 

for CSAPTI determination. EI of the traced polygon was determined using the standard histogram 

function in ImageJ. Quantification of the grayscale of each individual pixel in the region of 

interest was expressed as a value between 0-255 arbitrary units (AU) (0: black; 255: white) 

(Pillen, 2010; Scanlon et al., 2014; Wells et al., 2014). The grayscale of each individual pixel 

was then projected on a histogram plot (Pillen, 2010; Scanlon et al., 2014; Wells et al., 2014). 

EIPTI was quantified as the mean grayscale of the entire region of interest. A sample image for 

EIPTI analysis is presented in Figure 4. A sample histogram plot of EIPTI is presented in Figure 5. 
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Inter-day reliability for EIPTI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the EI of best PTI taken on two separate days were determined to be: ICC3,1 = 

0.718; SEM = 3.117 AU; MD = 8.641 AU; CV = 4.589%. 

Muscle Thickness of the Vastus Lateralis in Panoramic Transverse Images 

MT from PTI (MTPTI) was determined by identifying the outline of the VL in the PTI. 

The line tool and overlay options in ImageJ were then used to draw vertical lines on the most-

anterior and most-posterior borders of the muscle. The horizontal distance between the anterior 

and posterior borders of the muscle was measured, and this distance was divided into equal 

halves. The line tool and overlay options were used to mark the location of midline on the image 

at a location away from the muscle. One vertical line was then drawn through the muscle at the 

midpoint using the line tool and overlay option. MT, which is defined as the distance between 

the inferior border of the superficial aponeurosis and the superior border of the deep aponeurosis, 

was then measured using the line tool at the aforementioned midpoint of the muscle (Wells et al., 

2014). A sample MTPTI quantification is represented in Figure 6. 

Inter-day reliability for MTPTI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the MT of the best PTI taken on two separate days were determined to be: ICC3,1 = 

0.914; SEM = 0.083 cm; MD = 0.230 cm; CV = 2.905%.  
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Subcutaneous Adipose Tissue Thickness Adjacent to the Vastus Lateralis in Panoramic       

Transverse Images 

SubQ from PTI (SubQPTI) was assessed using the same US images that were previously 

used to quantify CSAPTI, EIPTI, and MTPTI in ImageJ. SubQ is defined as the distance between 

the inferior border of the epithelium and the superior border of the superficial aponeurosis 

(Young, Jenkins, Zhao, & McCully, 2015). To quantify SubQPTI, the same midpoint that was 

previously used for MTPTI was subsequently used for further analysis. The vertical line through 

the midpoint of the VL was extended throughout the image to include the subcutaneous fat layer. 

The line tool in ImageJ was then used to measure the distance between the inferior border of the 

epithelium and the superior border of the superficial aponeurosis. A sample SubQPTI 

quantification is represented in Figure 7. 

Inter-day reliability for SubQPTI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the SubQ of the best PTI taken each on two separate days were determined to be: 

ICC3,1 = 0.987; SEM = 0.063 cm; MD = 0.175 cm; CV = 8.243%. 

Analysis of Single Still Longitudinal Images 

Cross-Sectional Area of the Vastus Lateralis in Still Longitudinal Images 

CSA of the VL was also assessed using US images taken in the longitudinal plane, 

parallel to the long axis of the muscle. SLI were captured at 50% of the distance from the greater 

trochanter and the lateral epicondyle of the femur (Scanlon et al., 2014; Wells et al., 2014). 
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Three consecutive still-images were captured at the same anatomical location by the same 

investigator to determine within-day precision.  

Out of the three SLI captured from each participant, two experienced researchers (A.N.V. 

and C.H.B.) individually selected the best image for subsequent analysis (Jenkins et al., 2015). If 

the researchers did not agree on which image was best, a third experienced researcher (D.H.F.) 

selected the best image of the two chosen by A.N.V. and C.H.B. Requirements for best still 

image selection can be found in Appendix D. 

In ImageJ, the outline of the VL was located and traced using the polygon function tool 

to obtain as much lean mass as possible without including any surrounding bone, fascia, or 

image outline (Wells et al., 2014). Because the entire area of the muscle was not included in a 

single image, CSA of the SLI (CSASLI) was limited to the size of the frame. The right and left 

sides of the traced polygon consisted of perfectly vertical lines that aligned with the edges of the 

image, whereas the superficial and deep lines of the ImageJ polygon corresponded to the muscle-

aponeurosis interface. The total area of the traced polygon was then calculated and reported in 

cm2. A sample CSASLI quantification is presented in Figure 8.  

Inter-day reliability for CSASLI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the CSA of the best SLI taken on two separate days were determined to be: ICC3,1 = 

0.871; SEM = 0.351 cm2; MD = 0.973 cm2; CV = 4.513%.  
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Echo Intensity of the Vastus Lateralis in Still Longitudinal Images 

 The EI of the SLI (EISLI) was quantified using the same images and outlines that were 

used to simultaneously quantify CSASLI using ImageJ. EI of the traced polygon was determined 

using the standard histogram function in ImageJ as the mean grayscale of the region of interest. 

Inter-day reliability for EISLI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the EI of the best SLI taken on two separate days were determined to be: ICC3,1 = 

0.776; SEM = 4.264 AU; MD = 11.818 AU; CV = 5.564%. 

Muscle Thickness of the Vastus Lateralis in Still Longitudinal Images 

 MT from SLI (MTSLI) was quantified using the straight line tool in ImageJ at 50% of the 

horizontal distance of the image length. A sample MTSLI quantification is presented in Figure 9. 

Inter-day reliability for MTSLI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the MT of the best SLI taken on two separate days were determined to be: ICC3,1 = 

0.889; SEM = 0.082 cm; MD = 0.226 cm; CV = 4.613%.  
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Subcutaneous Adipose Tissue Thickness Adjacent to the Vastus Lateralis in Still Longitudinal 

Images 

 SubQ from SLI (SubQSLI) was quantified using the straight line tool in ImageJ at 50% of 

the horizontal distance of the image length. A sample SubQSLI quantification is presented in 

Figure 10. 

Inter-day reliability for SubQSLI was completed on a separate sample of participants. The 

same methods described previously for inter-day reliability were used. ICC3,1, SEM, MD, and 

CV between the CSA of the best SLI taken on two separate days were determined to be: ICC3,1 = 

0.993; SEM = 0.057 cm; MD = 0.158 cm; CV = 9.186%. 

 

Compartmentalization of the Vastus Lateralis 

 To examine the heterogeneity of EI, the best PTI that were previously used for CSAPTI, 

EIPTI, MTPTI, and SubQPTI quantification were further analyzed. Each image was divided into 

three compartments using ImageJ. To do this, the outline of the VL was identified and vertical 

lines were drawn on the most-anterior and most-posterior borders of the muscle using the line 

tool and overlay options. The horizontal distance between the anterior and posterior borders of 

the muscle was then measured, and this distance was divided into equal thirds. The line tool and 

overlay option was used to mark the location of each tertile on the image at a location away from 

the muscle. Two vertical lines were then drawn through the muscle at the tertile marks to break 

the VL into three compartments using the line tool and overlay option. The three compartments 

of the VL were classified as the anterior tertile (AT), lateral tertile (LT), and posterior tertile (PT) 
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tertiles depending on anatomical location. A sample PTI broken up into 3 compartments (AT, 

LT, and PT) is depicted in Figure 11.  

Cross-Sectional Area of Individual Tertiles 

 The CSA of each of the three tertiles was quantified using the best PTI which had been 

subsequently broken up into three compartments of equal length. The AT of the VL was located 

on the right-hand side of the US image, the LT of the VL was located in the center of the US 

image, and the PT of the VL was located on the left-hand side of the US image as a result of the 

probe placement and manipulation during scanning. Individual tertiles were easily identified as a 

result of the anatomically asymmetrical shape of the VL in the transverse plane. The anterior part 

of the VL is inherently thicker than the posterior part of the muscle, making anatomical 

identification of different sub-compartments fairly easy (Blazevich, Gill, & Zhou, 2006). The 

CSA of each compartment was quantified offline using ImageJ. To quantify CSA of the AT 

(CSAAT), the outline of the AT was located in the image and was traced using the polygon 

function tool to obtain as much lean mass as possible without including any surrounding bone, 

fascia, or image outline (Wells et al., 2014). The total area of the traced polygon was then 

calculated and reported in cm2. To quantify CSA of the LT (CSALT), the outline of the LT was 

located in the image and was traced using the polygon function tool to obtain as much lean mass 

as possible without including any surrounding bone, fascia, or image outline (Wells et al., 2014). 

The total area of the traced polygon was then calculated and reported in cm2. Finally, to quantify 

CSA of the PT (CSAPT), the outline of the PT was located in the image and was traced using the 

polygon function tool to obtain as much lean mass as possible without including any surrounding 
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bone, fascia, or image outline (Wells et al., 2014). The total area of the traced polygon was then 

calculated and reported in cm2. 

Echo Intensity of Individual Tertiles 

 The EI of each of the three compartments of the VL was quantified using the same US 

images and outlines used to quantify individual tertile CSA. EI of the AT (EIAT), EI of the LT 

(EILT), and EI of the PT (EIPT) were determined using the standard histogram function in ImageJ 

as the mean grayscale of the selected region of interest. 

 

Statistical Analysis 

Intra-examiner precision between three consecutive PTI and three consecutive SLI 

captured from each subject was analyzed using SEM for CSA, EI, MT, and SubQ. The following 

equation was used to calculate SEM (Vincent and Weir, 2012; Weir, 2005): 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �𝑆𝑆𝑆𝑆𝐸𝐸 

The SEM indicates how precise a measurement is compared to its true value and it is not 

sensitive to within- or between-subject variability (Vincent and Weir, 2012; Weir, 2005).  

Additionally, the coefficient of variation (CV) for each variable was calculated, which 

normalized the standard deviations of each measurement to the mean. The equation for CV is as 

follows (Vincent and Weir, 2012): 
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𝐶𝐶𝐶𝐶 =  
𝑆𝑆𝑆𝑆𝑋𝑋
𝑥𝑥𝑥

 × 100 

In this equation, SDx represents the standard deviation of the sample, and x̄ represents the sample 

mean. Lower CVs indicate greater reproducibility between measurements.  

A data analysis software was used to complete further statistical analysis (SPSS for 

Windows, version 21.0, SPSS Inc., Chicago, Illinois, United States). Shapiro-Wilk tests were 

used to determine normality for each variable. In the case of a non-normally distributed variable, 

equivalent non-parametric statistics were used. EIPTI, EISLI, EIAT, EILT, and EIPT, as well as 

CSAPTI, CSASLI, CSAAT, CSALT, and CSAPT data obtained from the best images and tertiles of the 

VL were analyzed using a one-way repeated measures analysis of variance (ANOVA). In the 

event of a significant main effect, a Bonferroni-adjusted post hoc comparison was performed 

between groups. A dependent t-test was used to examine the null hypothesis that MTPTI  and 

MTSLI were not statistically different. Because SubQPTI  and SubQSLI were not normally 

distributed, a Wilcoxon t-test was used to examine the null hypothesis that SubQPTI  and SubQSLI 

were not statistically different. Additionally, Pearson product-moment correlation coefficients 

were used to evaluate relationships between various dependent variables using the best PTI and 

SLI. In the event of a non-normally distributed variable, Spearman’s rho rank correlation 

coefficients were used instead of Pearson product-moment correlations (Caresio et al., 2014; 

Fredricks and Nelsen, 2007; O’Donoghue, 2013). Interpretation of the correlation coefficients 

were as follows: 0.00 – 0.30: little to no correlation; 0.30 – 0.50: low/weak correlation; 0.50 – 

0.70: moderate correlation; 0.70 – 0.90: high/strong correlation; 0.90 – 1.00: very high/very 

strong correlation (Hinkle, Wiersma, & Jurs, 2003).  

All data are reported as mean ± standard deviation unless otherwise noted. Results  
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were considered significant at an alpha-level of p ≤ 0.05. All data analysis was performed using 

SPSS version 21.0 (SPSS Inc., Chicago, Illinois, United States). 

Differences between two dependent correlation coefficients with one variable in common 

were tested using a method proposed by Steiger (1980). This method was used to determine if 

one correlation was significantly different than another correlation with one common variable. 

First, each correlation coefficient of interest was converted into a z-score using Fisher’s r-to-z 

transformation (Mudholkar, 1983). Then, differences between correlation coefficients were 

computed using equations previously described by Steiger (1980). The two correlation 

coefficients to be compared (i.e., rxy and ryz), along with the correlation coefficient between the 

two unshared variables (i.e., rxz), and the sample size were inputted into a computer software 

(Calculation for the test of the difference between two dependent correlations with one variable 

in common, Vanderbilt University, Nashville, TN, USA). The p-value associated with a two-

tailed test of significance was then computed. Results were considered significant at an alpha-

level of p ≤ 0.0083 after a Bonferroni correction factor was applied: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝐵𝐵𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 − 𝑎𝑎𝐵𝐵𝑙𝑙𝐵𝐵𝑎𝑎 =
𝑠𝑠𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑎𝑎𝐵𝐵𝑐𝑐𝐵𝐵 𝑎𝑎𝐵𝐵𝑙𝑙𝐵𝐵𝑎𝑎 𝐵𝐵𝐵𝐵 𝑃𝑃𝐵𝐵𝑎𝑎𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵′𝑠𝑠 𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵 𝑐𝑐𝐵𝐵𝑐𝑐𝑎𝑎𝑎𝑎 𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝐵𝐵𝑛𝑛𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠

 

When substituting the appropriate values in this equation, the results are as follows: 

0.05
6

= 0.0083 

An alpha level of p ≤ 0.0083 was used to determine if one correlation was significantly different 

from another. 
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CHAPTER FOUR: RESULTS 

 Twenty-four individuals were included in the final analysis out of 25 participants initially 

recruited. Participant characteristics and anthropometric data are expressed in Table 1.  

 The SEM and CV for each variable indicated high inter-image precision between all 

images and variables measured, however SLI yielded slightly better precision values. Precision 

measures are reported in Table 2. 

Shapiro-Wilk tests for normality indicated that all measures of VL muscle morphological 

characteristics were normally distributed except for SubQPTI and SubQSLI. Table 3 lists results for 

measures of EI, CSA, MT, and SubQ between images and tertiles.  

A repeated-measures ANOVA revealed a significant main effect for image/tertile 

between measures of CSA (F4,92 = 347.852, p < 0.001, η2 = 0.938). A Bonferroni-adjusted post 

hoc analysis revealed that the CSAPTI was significantly greater than CSASLI (p < 0.001), CSAAT 

(p < 0.001), CSALT (p < 0.001), and CSAPT (p < 0.001). Additionally, the CSASLI was 

significantly less than the CSAAT (p < 0.001), CSALT (p < 0.001), and CSAPT (p = 0.041). The 

CSAAT was significantly greater than CSALT (p < 0.001) and CSAPT (p < 0.001), whereas the 

CSALT was significantly greater than CSAPT (p < 0.001). CSAPTI and CSASLI values are displayed 

in Figure 12.  

All CSA measures were significantly positively correlated with one another. Moderate to 

very strong correlations existed between CSAPTI and all other measures of CSA (CSAPTI and 

CSAAT: r = 0.934; p < 0.001; CSAPTI and CSALT: r = 0.926; p < 0.001; CSAPTI and CSAPT: r = 

0.876; p < 0.001). Moderate to strong correlations existed between CSASLI and all other 
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measures of CSA (CSASLI and CSAAT: r = 0.564; p = 0.004; CSASLI and CSALT: r = 0.810; p < 

0.001; CSASLI and CSAPT: r = 0.687; p < 0.001). Additionally, moderate to strong correlations 

existed between CSAAT and other measures of CSA (CSAAT and CSALT: r = 0.796; p < 0.001; 

CSAAT and CSAPT: r = 0.703; p < 0.001). Strong to very strong correlations existed between 

measures of CSALT and all other measures of CSA (CSALT and CSAPT: r = 0.879; p < 0.001). 

CSAPTI and CSASLI were significantly negatively correlated with both EIPTI and EISLI. CSAPTI, 

CSASLI, EIPTI, and EISLI are represented in Figure 13.  

A repeated-measures ANOVA revealed a significant main effect for image/tertile 

between measures of EI (F4,92 = 11.517, p < 0.001, η2 = 0.334). A Bonferroni-adjusted post hoc 

analysis revealed that EIPTI was significantly lower than EISLI (p = 0.002). Additionally, EISLI was 

significantly greater than EILT (p = 0.001) and EIPT (p = 0.002). Although there was no 

significant difference between EISLI and EIAT, a trend towards a significant difference was 

revealed (p = 0.051). However, no significant differences existed between EIAT and any other 

measures of EI (EIAT and EIPTI: p = 1.000; EIAT and EILT: p = 1.000; EIAT and EIPT: p = 1.000). 

Additionally, no significant differences were noted between EIPTI and EI of any of the tertiles 

(EIPTI and EILT: p = 1.000; EIPTI and EIPT: p = 1.000), or between EILT and EIPT (p = 0.881). 

Individual data for EI are reported as open circles in Figure 14.  

Table 4 lists the Pearson product-moment correlations among EI variables measured in 

different images and tertiles. Correlation coefficients between all measures of EI ranged from 

moderate to very high. EIPTI was significantly positively correlated with all other measures of EI 

(p < 0.001). EISLI was also significantly positively correlated with all measures of EI (p < 0.011). 
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EIAT, EILT, and EIPT were all significantly positively correlated with all other measures of EI (p < 

0.011). EISLI compared to EIPTI, EIAT, EILT, and EIPT is represented in Figure 15.  

Steiger’s Z-test revealed that there were significant differences between correlation 

coefficients for measures of EI. The correlation between EISLI and EIPTI was significantly greater 

than the correlation between EISLI and EIAT (p = 0.0067). However, the correlation between EISLI 

and EIPTI was significantly lower than the correlation between EISLI and EILT (p = 0.0036). No 

significant differences in correlation coefficients were found between EISLI and EIPTI or between 

EISLI and EIPT (p = 0.0725).  

Upon examination of the correlation coefficients of EI of individual tertiles compared to 

EISLI, the correlation between EISLI and EIAT was significantly lower than the correlation between 

EISLI and EILT (p = 0.0006). Furthermore, the correlation between EISLI and EIPT was 

significantly lower than the correlation between EISLI and EILT (p = 0.0027). However, no 

significant differences in correlation coefficients were found between EISLI and EIAT or between 

EISLI and EIPT (p = 0.9411). 

A dependent t-test between MTPTI and MTSLI revealed that MTPTI was significantly 

greater than MTSLI (p = 0.003), however MTPTI and MTSLI were significantly positively 

correlated. MTPTI and MTSLI values are displayed in Figure 16.  

A Wilcoxon t-test between SubQPTI and SubQSLI revealed that SubQSLI was greater than 

SubQPTI (p < 0.001), however SubQSLI and SubQPTI were significantly positively correlated. 

SubQPTI and SubQSLI values are displayed in Figure 17.  

Table 5 lists the Pearson product-moment correlations or Spearman’s rho correlations 

among selected variables.Non-significant weak correlations were discovered between MTPTI and 
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MTSLI with SubQPTI and SubQSLI. Moderate to very strong significant positive correlations were 

found between MTPTI and MTSLI with all measures of CSA. Additionally, significant weak to 

moderate negative correlations were found between MTPTI and MTSLI and measures of EI. MT 

and EI values measured from different images are displayed in Figure 18. SubQPTI and SubQSLI 

were significantly positively correlated with CSAPTI, but were not significantly correlated with 

CSASLI. Neither measure of SubQ was correlated with EISLI or EIPTI. SubQ and EI measures 

from different images are represented in Figure 19.  
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CHAPTER FIVE: DISCUSSION 

 Several studies have utilized ultrasonography to examine skeletal muscle EI and its 

relationship to muscular strength, cardiovascular endurance, and anaerobic sports performance 

(Cadore et al., 2012; Fukumoto et al., 2012; Jajtner et al., 2014; Mangine et al., 2014a; Mangine 

et al., 2014b; Mangine et al., 2014c; Melvin et al., 2014; Scanlon et al., 2014; Strasser, 

Draskovits, Praschak, Quittan, & Graf, 2013; Watanbe et al., 2013; Wells et al., 2014; Wilhelm 

et al., 2014). Additionally, previous research has discovered that inter-and intra-muscular 

adaptations to resistance exercise may alter muscle morphology in a heterogeneous way (Ema, 

Wakahara, Miyamoto, Kanehisa, & Kawakami, 2013; Seynnes, de Boer, & Narici, 2007; 

Wakahara et al., 2012; Wells et al., 2014). However, few studies have examined the variability 

of EI within and between muscle groups (Caresio, Molinari, Emanuel, & Minetto, 2014; Jenkins 

et al., 2015; Young, Jenkins, Zhao, & McCully, 2015). To our knowledge, this is the first study 

to compare EI of different compartments and different images of the VL in the DOM limb. The 

main findings of this study suggest that EISLI is significantly greater than EIPTI taken within the 

same muscle, but significant positive correlations existed between EI values obtained from the 

two different types of images. Additionally, the use of the SLI yielded slightly lower CVs and 

SEM for all measurements (CSASLI, EISLI, MTSLI, and SubQSLI) compared to PTI (CSAPTI, EIPTI, 

MTPTI, and SubQPTI), indicating better precision compared to PTI. Also, after dividing the PTI of 

the VL into three compartments of equal length, EISLI was significantly greater than EI of two of 

the compartments (EILT and EIPT), and a trend towards significance was seen in the third 

compartment (EIAT). However, no significant differences in EI values existed between any of the 

three compartments. Other main findings of this study are that significant differences in 
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correlations coefficients existed between EI of different images of the VL and EI of individual 

tertiles. Furthermore, no significant correlations were discovered between SubQPTI and SubQSLI 

with EIPTI or EISLI.   

 EISLI provided significantly greater values than EIPTI (65.453 ± 11.023 AU vs. 57.976 ± 

8.806 AU, respectively). Despite these values being significantly positively correlated with each 

other, the discrepancies between values are most likely a result of the scanning plane. The SLI 

was captured in the longitudinal plane, parallel to the long axis of the VL. This produced a US 

image with visible striations throughout the entire image area, which was primarily a result of 

fascia and connective tissue between individual fascicles (Pillen, 2010). The fascia and 

connective tissue appear hyperechoic in nature in a US image, whereas the muscle fibers 

themselves appear relatively hypoechoic due to a difference in the impedance of sound waves 

through certain tissues (Ihnatsenka and Boezaart, 2010). In SLI, the length of the fascia or 

connective tissue can be visualized throughout the entire thickness of the muscle. Because EI in 

itself is an average measure of brightness in a defined region of interest, the lightly-colored 

striations in the SLI likely caused the brightness of the region of interest to increase, therefore 

increasing EI (Nielsen, Jensen, Darvann, Jorgensen, & Bakke, 2006; Pillen, 2010; Pillen and van 

Alfren, 2011). In contrast, the PTI produced a US image with a speckled appearance due to the 

cross-sectioning of individual fascicles, connective tissue, and fascia in the transverse plane 

(Pillen, 2010). Since these images did not contain visible striations of hyperechoic tissue similar 

to what was displayed in the SLI, it is likely that this alone may have caused EIPTI to be lower 

than EISLI. Another potential reason for the differences in EI values between images may be a 

result of the probe placement during PTI and SLI examination. During SLI examination of the 

VL, the probe is physically placed in a different anatomical location along the muscle compared 
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to that during PTI assessment. The SLI encompasses portions of the muscle in slightly proximal 

and distal locations from 50% of the straight-line distance from the greater trochanter to the 

lateral epicondyle of the femur in the longitudinal plane, whereas the PTI encompasses portions 

of the muscle in the anteromedial and posterolateral directions. Previous research has shown that 

EI differs between distal and proximal locations within an individual muscle and that EI is 

dependent on scanning location (Young, Jenkins, Zhao, & McCully, 2015). For example, Young 

and colleagues (2015) discovered significant differences in muscle EI between still images taken 

at proximal and distal locations of the rectus femoris, biceps femoris, and medial gastrocnemius. 

EI was significantly greater in the proximal portion of the rectus femoris and the medial 

gastrocnemius compared to the distal portion, but was significantly lower in the proximal portion 

of the biceps femoris compared to the distal portion (Young, Jenkins, Zhao, & McCully, 2015). 

In the present study, the SLI was captured in the longitudinal plane and encompassed small 

portions of the muscle in slightly proximal and slightly distal locations. In contrast, the PTI was 

captured at 50% of the straight-line distance from the greater trochanter to the lateral epicondyle 

of the femur and did not include any portion of the VL in the longitudinal plane. It is possible 

that, because the SLI contained proximal and distal portions of the VL, some of the muscle 

included may have had a greater EI compared to that contained in the PTI.  

Upon division of the PTI into individual tertiles, EIAT, EILT, and EIPT were not 

significantly different from one another (p > 0.8). In addition, EIAT, EILT, and EIPT were not 

significantly different from EIPTI (p = 1.000). This contradicts the findings of Caresio and 

colleagues (2014), who discovered significant differences in muscle EI within still transverse 

images of the rectus femoris and tibialis anterior. In this study, the EI of a square-shaped region 

of interest in both the lateral and medial regions of the rectus femoris within the same US image 
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were examined. EI was significantly greater in the medial region of the muscle compared to the 

lateral region (p < 0.05). In our study, no significant differences in EI were discovered between 

anteromedial or posterolateral compartments of the VL, as the EIAT, EILT, and EIPT were not 

significantly different from one another. A possible explanation for this may be that while the 

rectus femoris and vastus lateralis both assist in leg extension, they have considerably different 

fiber architecture arrangements. The rectus femoris is a bipennate muscle, meaning that fibers 

within the muscle are oriented in two different directions on of opposite sides of the tendon on 

the force-generating axis (Moreau, Teefey, & Damiano, 2009). In contrast, the vastus lateralis is 

a unipennate muscle, and the fascicles are oriented in only one direction on one side of the 

tendon of the force-generating axis (Moreau, Teefey, & Damiano, 2009). Differences in muscle 

fiber architecture have a profound effect on skeletal muscle EI (Arts et al., 2012; Caresio, 

Molinari, Emanuel, & Minetto, 2014; Jajtner et al., 2014; Mangine et al., 2014c; Pillen, 2010; 

Reimers et al., 1993; Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, & Graf, 2013; 

Young, Jenkins, Zhao, & McCully, 2015). Previous research has discovered significantly 

different EI values between muscle groups in healthy males and females (Caresio et al., 2014; 

Strasser et al., 2013; Young, Jenkins, Zhao, & McCully, 2015). Jajtner et al. (2014), Mangine et 

al. (2014c), and Scanlon et al. (2014) discovered significant differences in EI with respect to 

different muscles of the leg, including the rectus femoris and VL. Differences in EI values 

between muscles are probably a result of the amount of connective or fibrous tissue within the 

muscle, fiber type distribution, intramuscular triglyceride arrangement, and architectural features 

of fascicles and their orientation within the muscle (Caresio, Molinari, Emanuel, & Minetto, 

2014). The findings of the present study may have contradicted those of Caresio et al. (2014) due 

to the differences in fiber distribution and orientation between the VL and rectus femoris. The 
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bipennate structure of the rectus femoris may have resulted in EI values that differed between 

medial and lateral regions of the muscle due to differences in fascicle architecture and 

distribution (Caresio, Molinari, Emanuel, & Minetto, 2014; Moreau, Teefey, & Damiano, 2009). 

Unlike the rectus femoris, the VL has a uniform pennation arrangement of fascicles throughout 

the entire muscle, which may provide reason for why no significant differences in EI between 

tertiles were seen in the present study (Moreau, Teefey, & Damiano, 2009). 

Despite finding no significant differences in EI between tertiles, there was a significant 

difference between in EI between SLI and both LT and PT (p < 0.002). However, a trend toward 

significance a trend toward significance discovered between EISLI and EIAT (p = 0.051). A 

possible explanation for this may be the differing depths of the VL captured in each tertile. 

Although each tertile was the same width horizontally, the inherent muscle architecture of the 

VL likely caused the CSA of each tertile to be significantly different due to the inconsistent 

depths of the muscle contained in each compartment. The VL is asymmetrical in the transverse 

plane, where the anteromedial portion of the muscle is thicker than the posterolateral portion 

(Blazevich, Gill, & Zhou, 2006; Wells et al., 2014). The anteromedial portion of the VL 

corresponded with the AT in the present study, which was associated with a significantly larger 

CSA compared to in the LT and PT. In the AT, the VL protrudes deeper within the US image 

compared to the LT or the PT. This difference in muscle depth may non-systematically affect 

image quality and resolution due to the different reflectance of sound waves off of the tissue of 

interest. Ihnatsenka and Boezaart (2010) stated that high-frequency probes, similar to the one 

used in the present study, are preferred when examining superficial tissues at a maximum of 4-5 

cm from the surface of the skin. While this type of probe may be appropriate for examination of 

the PT and the LT in the present study, examination of the AT with a high-frequency probe may 
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result in compromised image resolution, especially in a trained population (Ihnatsenka and 

Boezaart, 2010). Resistance-trained athletes often have thicker muscles with increased cross-

sectional areas compared to those in an untrained population, which is primarily due to 

hypertrophy of individual muscle fibers (Charette, et al. 1991; Ikai and Fukunaga, 1970; McCall, 

Byrnes, Dickinson, Pattany, & Fleck, 1996; Narici, Roi, Landoni, Minettu, & Cerretelli, 1989; 

Scanlon et al., 2014; Seynnes, de Boer, & Narici, 2007). In a trained population, possessing a 

large muscle thickness may not permit the entire muscle area to be viewed using a US depth of 5 

cm or less. Increasing the image depth of the US may allow for visualization of the entire 

muscle, but would further decrease image resolution. Additionally, possessing greater amounts 

of SubQ may restrict the amount of muscle area that can fit in a US image. This may decrease 

image resolution if the depth of the image were to be increased to include the entire muscle area. 

Furthermore, previous research has shown that increasing amounts of SubQ may non-

systematically affect the reflectance of an ultrasound beam off of a tissue of interest (Pillen and 

van Alfren, 2011). It is possible that, upon examination of the AT, a midrange-frequency probe 

may be more appropriate to use if the tissue of interest does not fit into a US image with a depth 

of 5 cm. This may be especially important in a resistance-trained population if the size of the 

muscle is large due to an increased muscle thickness and hypertrophy (Ihnatsenka and Boezaart, 

2010; Ikai and Fukunaga, 1970; McCall, Byrnes, Dickinson, Pattany, & Fleck, 1996). However, 

the depth of the ultrasound beam in the current study was maintained at 5 cm to ensure consistent 

image quality between subjects. Although subjects were excluded from the study if the entire 

area of the VL was unable to fit in a PTI, possessing a thicker VL may have resulted in a 

decreased image resolution especially in the deeper portion of the AT. A decreased image 
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resolution in the AT may have resulted in EI values that were not significantly different from 

those of the SLI, which may provide possible evidence for the trend towards significance. 

Another possible explanation for the non-significant difference discovered between EIAT 

and EISLI may be due to the differences in EI between deep and superficial tissues. Research 

conducted by Caresio and colleagues (2014) discovered that there were significant differences in 

EI values between superficial and deep portions of the tibialis anterior muscle on a transverse 

still US image. In this study, the EI of a square-shaped region of interest in the deep region of the 

tibialis anterior was significantly greater than the EI of a rectangular-shaped region of interest in 

the superficial region. In the present study, there was no significant difference between EIAT and 

EISLI (p = 0.051), although the EISLI had significantly greater values than EIPTI, EILT, and EIPT. 

One explanation for this may be that the AT encompasses more of the VL in the deep portion of 

the US image compared to the PT and AT. If EI within the deep portion of the VL was greater 

than EI within the superficial portion of the VL, similar to the findings of Caresio and colleagues 

(2014), this may have resulted in a slightly greater EI values for the AT compared to those of the 

other tertiles. Although the present study did not measure differences in EI between superficial 

and deep compartments of the VL, perhaps the fact that the AT encompassed more of the muscle 

in a deeper location resulted in a slightly higher EI.  

Pearson product-moment correlation coefficients calculated between measures of EI for 

all images and tertiles revealed that all measures of EI were significantly positively correlated 

with one another (p > 0.011). However, the correlation between EISLI and EIPTI was significantly 

greater than the correlation between EISLI and EIAT, significantly lower than the correlation 

between EISLI and EILT, and was not significantly different from the correlation between EISLI 
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and EIPT. Additionally, the correlation between EISLI and EILT was significantly greater than the 

correlation between EISLI and either of the other tertiles. These results may provide further 

evidence that muscle depth has a large effect on EI. For example, the SLI was captured at 50% of 

the straight-line distance from the greater trochanter to the lateral epicondyle of the femur in the 

longitudinal plane. If, instead, this still image had been taken in the transverse plane but at the 

same location, the resulting image may have looked similar to a still image of the LT. This is 

because the LT encompasses a transverse image of the VL at the midpoint of the straight-line 

distance from the greater trochanter to the lateral epicondyle of the femur which corresponds to 

the center of the muscle, whereas the PT and AT capture transverse images of the VL in the 

posterolateral and anteromedial directions from this point, respectively. Image capture of the SLI 

is completed on the lateral side of the leg in the muscle belly of the VL. Therefore, the midpoint 

of the LT is also located on lateral side of the leg, in the muscle belly of the VL. Although the 

posterolateral location of the SLI in the transverse plane is not directly measured, MTSLI and 

MTLT may be related to one another because they are captured in approximately the same 

location from the same muscle. Therefore, image resolution should be affected to approximately 

the same extent in both of these types of pictures due to similar MT and SubQ values (Ihnatsenka 

and Boezaart, 2010). This may explain why significantly greater correlations were discovered 

between EISLI and EILT compared to the correlation between EISLI and EIPT, EISLI and EIAT, and 

EISLI and EIPTI. In addition, the significantly greater correlation between EISLI and EIPTI 

compared to that of EISLI and EIAT was likely a result of the amount of deep muscle that the AT 

encompassed. Ihnatsenka and Boezaart (2010) proposed that a greater MT may increase the 

likelihood of non-systematic error in resolution of the structure of interest. Since the AT 
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encompasses the VL in deeper locations compared to the LT or PT, the thickness of the muscle 

in the AT may have affected its resolution in a US image. 

 Although the measurements of CSASLI and CSAPTI were significantly positively 

correlated (r = 0.752, p < 0.001), CSAPTI was significantly greater than CSASLI (p < 0.001). 

Additionally, CSAPTI and CSASLI were significantly positively correlated with MTSLI and MTPTI, 

indicating that both CSA and MT may be used interchangeably for quantification of muscle size. 

Furthermore, CSASLI was significantly less than CSAAT, CSALT, or CSAPT, while CSAPTI was 

significantly greater than CSAAT, CSALT, or CSAPT. This is intuitive because the SLI and each of 

the tertiles encompass a much smaller muscle area compared to the PTI. Although the PTI of the 

VL was divided into three compartments of equal length, the CSA of each compartment was 

significantly different from one another. Differences between CSAAT, CSALT, and CSAPT were 

due to reasons discussed previously regarding the morphology of the VL in the transverse plane. 

However, previous research has also demonstrated that resistance training may cause non-

homogeneous muscle architectural adaptations in the transverse plane occur, which may be 

dependent on the regional activation of the muscle (Ema, Wakahara, Miyamoto, Kanehisa, & 

Kawakami, 2013; Wells et al., 2014). For example, one of the first studies to measure the 

mediolateral changes in muscle architecture with resistance training was completed by Ema and 

colleagues (2013), who discovered that a 12-week knee-extensor resistance training program 

elicited significantly greater increases in the MT of the vastus intermedius medially compared to 

laterally in 11 healthy males. Although these researchers did not directly measure muscle 

activation, they attributed their findings to the possibility of disproportionate amounts of muscle 

activation in the anterior compared to posterior regions of the muscle (Akima et al., 1999; Akima 

et al., 2004). Akima and colleagues (1999) discovered that isokinetic knee extensor training 
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muscle activation was greater in the anteromedial portion of the vastus intermedius compared to 

the posterolateral portion, which could account for differences in hypertrophy between medial 

and lateral parts of the muscle. Another study examining the mediolateral changes in muscle 

architecture was conducted by Wells and colleagues (2014), demonstrating that a 15-week off-

season resistance training program in female soccer players elicited significantly greater 

increases in MT of the VL medially compared to laterally. However, there were no significant 

differences in CSA of the VL after the training program, despite a significant increase in barbell 

back squat strength (Wells et al., 2014). In the present study, subjects had experienced an off-

season training regimen and were examined during the transition from the pre-season to the 

competition season. These subjects may have experienced increases in VL MT similar to those 

described by Wells et al. (2014), where the MT of the medial portion of the muscle may have 

increased to a greater extent than the lateral portion. With greater increases in MT in one portion 

of the muscle compared to another, this may affect the CSA of individual tertiles to an even 

greater extent and may contribute to greater discrepancies in CSA between the compartments. 

However, one limitation in the present study is that the off-season and in-season training 

programs were not structured or recorded, and actual changes in VL MT or CSA throughout the 

training period could not be determined. Future research should look to examine the changes in 

CSA of compartments of the VL along with MT over the course of a training season.  

Measurements of SubQSLI and SubQPTI were significantly positively correlated with one 

another, and measurements of MTSLI and MTPTI were significantly positively correlated with one 

another. However, SubQSLI was significantly greater than SubQPTI, whereas MTPTI was 

significantly greater than MTSLI. A potential explanation for this is the anatomical location of the 

US probe placement during SLI examination compared to the anatomical location of the probe 
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placement during PTI examination. The PTI encompasses the entire area of the VL in the 

transverse plane, so making direct horizontal measurement and demarcation of the midpoint of 

the muscle for SubQPTI and MTPTI analysis is fairly simple on an image analysis software. In 

contrast, the placement of the SLI in the transverse plane is dependent only on the straight-line 

distance from the greater trochanter to the lateral epicondyle of the femur and is not dependent 

on the actual location of the VL. While the placement of the SLI is certainly on the lateral side of 

the leg, it cannot be assured that this positioning was aligned perfectly with the midpoint of the 

PTI. This possible inconsistency between SLI placement and the location of the LT may account 

for the differences between measurements of MTPTI, MTSLI, SubQPTI, and SubQSLI. Due to the 

morphology of the VL previously discussed, the anteromedial portion of the VL is thicker than 

the posterolateral part (Blazevich, Gill, & Zhou, 2006; Wells et al., 2014). Additionally, SubQ 

located adjacent to the muscle on the anteromedial portion of the limb is often smaller than SubQ 

located adjacent to the muscle on the posterolateral portion (Levine et al., 2000). In the present 

study, if the SLI was captured at a more posterolateral location compared to the midpoint of the 

PTI, the SLI would most likely possess greater SubQSLI and lower MTSLI values. In contrast, if 

the SLI was captured at a more anterolateral location compared to the midpoint of the PTI, the 

SLI would include lower SubQSLI and greater MTSLI values. Nonetheless, the effects of probe 

placement, with respect to the midpoint of the PTI, during SLI examination should be evaluated 

in future investigations. 

The current findings align with those of other researchers who have discovered no 

significant correlations between either measure of SubQ and EISLI or EIPTI in the VL but 

significant negative correlations between measures of EI and CSA (Fukumoto et al., 2012; 

Melvin et al., 2014). In the present study, EI measurements and CSA measurements are obtained 
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simultaneously, where each is derived from the same outline within a US image. Melvin and 

colleagues (2014) examined EI and CSA of the VL in Division I football athletes and discovered 

that EI was negatively correlated with CSA but EI was not correlated with fat mass. 

Additionally, CSA of the VL was significantly positively correlated with fat mass (Melvin et al., 

2014). These results indicate that in football players, the accumulation of body fat is associated 

with muscle size but not EI, a potential proxy of muscle quality (Melvin et al., 2014). In our 

study, we examined recreationally-trained club sport athletes, who would likely benefit from 

increased muscle mass and lower EI with moderate amounts of fat mass. Our results show that 

individuals with greater CSA tended to have greater amounts of SubQ, which may provide 

evidence that possessing both are crucial for this population. Additionally, despite the previous 

hypothesis proposed by Miljkovic and Zmuda (2010) that an infiltration of fat from the 

subcutaneous layer may lead to increased adipose tissue deposits in the muscle, muscle EI was 

maintained even with increasing amounts of SubQ. Furthermore, our results show that EI may 

not be influenced by SubQ in an athletic population.  

Previous research has required subjects to lay in a supine position for a period of 15 

minutes prior to US analysis to allow for fluid shifts to occur (Ema, Wakahara, Miyamoto, 

Kanehisa, & Kawakami, 2013; Esformes, Narici, & Maganaris, 2002; Jajtner et al., 2014; 

Lixandrão et al., 2014; Mangine et al., 2014a; Mangine et al., 2014b; Mangine et al., 2014c; 

Reeves, Maganaris, & Narici, 2004; Scanlon et al., 2014; Strasser, Draskovits, Praschak, Quittan, 

& Graf, 2013; Wakahara et al., 2012; Wells et al., 2014). The aforementioned study conducted 

by Melvin and colleagues (2014) required subjects to lay down in a supine position for only 3-5 

minutes. This may have not been enough time for fluid shifts to occur, which may have affected 

intramuscular water content and therefore EI. Additionally, by examining EI and CSA of the VL 
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at as little as two hours after exercise, Melvin and colleagues (2014) may have seen higher EI 

and CSA values that could have been a result of local swelling, infiltration of inflammatory 

markers, glycogen depletion, and edema that were not a result of muscle composition (Jajtner et 

al., 2015; Hill and Millan, 2015). Jajtner and colleagues (2015) found an increased EI and CSA 

of the VL following a lower-body resistance training protocol in resistance-trained men that did 

not return until baseline levels until about 24 hours post-exercise. Likewise, Hill and Millan 

(2015) discovered higher EI values in the rectus femoris of trained cyclists after an exhaustive 

endurance exercise bout as compared to before, which was highly correlated with the amount of 

glycogen depletion in the muscle. Participants in our study were required to lay in a supine 

position for at least 15 minutes and refrain from exercise for at least 24 hours prior to US 

examination. Therefore, the results from our study may not be the result of post-exercise 

glycogen depletion, edema, or inflammation, and instead may be more accurate representations 

of muscle EI. Future research may be necessary to determine if there are differences in skeletal 

muscle EI when participants are only required to lay supine for a short period of time prior to US 

examination. 

Our results regarding SubQ and its relationship to EI conflict with those of Caresio and 

colleagues (2014), Nijboer-Oosterveld and colleagues (2011), and Watanabe and colleagues 

(2013), who discovered significant positive correlations between EI and SubQ in various 

muscles throughout the body. Possible reasons for the disagreement are the training statuses of 

individuals examined, the age of the participants, the muscles examined, and the ultrasound 

probe orientation and settings. For example, Caresio et al. (2014) discovered significant positive 

correlations between SubQ and EI in the VL, tibialis anterior, and medial gastrocnemius in 20 

healthy subjects. However, these researchers also discovered no significant correlations between 
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SubQ and EI in the biceps brachii. These findings align with those of Jenkins and colleagues 

(2015) who found also no significant correlations between SubQ and EI of the biceps brachii. 

Taken together, these results show that the amount of SubQ adjacent to a muscle may have a 

greater effect on EI for specific muscle groups (Caresio et al., 2014; Jenkins et al., 2015). 

However, the fact that Caresio et al. (2014) found a significant correlation between SubQ and EI 

of the VL may have to do with training status and gender of the population studied. In this study, 

men and women with unknown training statuses were examined and pooled for data analysis. It 

has been demonstrated that females tend to have greater EI values in the quadriceps femoris 

muscles compared to males, which is probably due to the influence of hormones and greater 

amounts of essential fat in women (Scanlon et al., 2014). If these individuals were untrained, 

perhaps the amount of SubQ adjacent to the muscle has a greater effect on EI than in a 

recreationally-trained population. Previous research has discovered that a greater amount of 

SubQ adjacent to the muscle may provide larger variability in EI values (Pillen, 2010; Pillen and 

van Alfren, 2011). Likewise, an untrained population may possess greater amounts of 

intramuscular fat, which has been found to be positively correlated with increasing EI values 

(Pillen et al., 2009; Young, Jenkins, Zhao, & McCully, 2015). Young and colleagues (2015) 

proposed that an underestimation of EI may actually occur when the amount of intramuscular fat 

reaches about 15%, which is primarily due to the non-systematic reflection of US waves. In 

populations with increasing amounts of intramuscular fat, skeletal muscle EI of the muscle 

would most likely decrease, which would lead to an inaccurate measure of echogenicity. 

 Research examining muscle architecture of the VL has reported substantially different 

values for CSAPTI, MTSLI, SubQSLI, and EI compared to those obtained in the current study. 

CSAPTI values obtained in our study (34.735 ± 8.051 cm2) are considerably greater than those 
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reported in untrained, healthy males (29.7 ± 5.1 cm2; Ahtiainen et al., 2010), untrained, healthy 

males and females (21.25 ± 6.85 cm2; Lixandrão et al., 2014) (19.8 ± 1.9 cm2; Scott et al., 2012), 

and untrained elderly males and females (14.99 ± 4.36 cm2; Scanlon et al., 2014). Studies 

investigating CSAPTI of the VL in recreationally-trained males as well as physically active males 

and females have reported values similar compared to the ones in the present study (39.8 ± 7.3 

cm2; Mangine et al., 2014a) (31.9 ± 8.8 cm2; Mangine et al., 2014b). Likewise, CSAPTI of the VL 

in resistance-trained males in previous studies are comparable to those seen in our study (33.4 ± 

5.7 cm2; Ahtiainen et al., 2010) (33.56 ± 5.39 cm2; Jajtner et al., 2015). Research investigating 

CSAPTI of the VL in trained, Division I collegiate football players discovered slightly larger 

CSAPTI values than those in our study (38.7 ± 6.6 cm2; Melvin et al., 2014), however research 

examining CSAPTI of the VL in professional NBA players revealed slightly lower values (33.6 ± 

3.4 cm2; Mangine et al., 2014c).  

In addition, MTSLI values obtained in our study (2.015 ± 0.397 cm) were considerably 

greater than those reported in the VL in untrained elderly males and females (1.51 ± 0.34 cm; 

Scanlon et al., 2014) and greater than those reported in Division I collegiate female soccer 

players at the end of an off-season training program (1.43 ± 0.2 cm; Wells et al., 2014). 

However, our results for MTSLI were lower than those discovered in professional National 

Basketball Association players (2.26 ± 0.46 cm; Mangine et al., 2014c). MTSLI measurements 

obtained in our study were greater than those reported in physically active males and females by 

Mangine and colleagues (2014b) (1.87 ± 0.36 cm, pooled for gender), but lower than those 

reported in other physically active males and females by Caresio and colleagues (2014) (2.39 ± 

0.46 cm and 2.10 ± 0.19 cm, respectively). Furthermore, our values for SubQSLI (0.316 ± 0.225 
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cm) were considerably lower than those discovered in physically active males and females (0.57 

± 0.23 cm and 1.28 ± 5.5 cm, respectively; Caresio et al., 2014).  

Previous studies have reported a wide range of EI values of the VL in untrained young 

males and females, elderly individuals, resistance-trained males and females, physically active 

males and females, individuals before and after resistance training programs, players in the 

National Basketball Association, and Division I collegiate football and women’s soccer players 

(Caresio et al., 2014; Jajtner et al., 2014; Jajtner et al., 2015; Mangine et al., 2014a; Mangine et 

al., 2014b; Mangine et al., 2014c; Melvin et al., 2014; Scanlon et al., 2014; Strasser, Draskovits, 

Praschak, Quittan, & Graf, 2013; Wells et al., 2014; Wilhelm et al., 2014). However, direct 

associations between EI values obtained from different studies may not be practical due to 

differences in US settings (i.e. gain, depth, dynamic range, US make and model), techniques, 

probe orientation, and types of images (Melvin et al., 2014). Previous research from our 

laboratory has investigated EI using a 12-MHz B-mode US, set at a gain of 50 dB, a depth of 5 

cm, and a dynamic range of 72 to capture a panoramic image of the VL in the transverse plane 

(Jajtner et al., 2014; Jajtner et al., 2015; Mangine et al., 2014a; Mangine et al., 2014b; Mangine 

et al., 2014c; Scanlon et al., 2014; Wells et al., 2014). These US settings align with those used in 

the current study. The results from the present study report EIPTI values of the VL (57.976 ± 

8.806 AU) that are considerably less than EIPTI values reported from our laboratory in untrained 

elderly males and females (91.80 ± 10.79 AU, pooled for gender; Scanlon et al., 2014), 

physically active men and women (60.4 ± 12.6 AU and 71.2 ± 12.8 AU, respectively; Mangine 

et al., 2014a; 65.9 ± 11.8 AU, pooled for gender; Mangine et al., 2014b), Division I collegiate 

female soccer players after a resistance-training program and in the pre-and post-season (68.27 ± 

8.05 AU; Wells et al., 2014; 69.08 ± 7.19 AU and 68.32 ± 6.80 AU, respectively; Jajtner et al., 
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2014), resistance-trained males (63.27 ± 6.67 AU; Jajtner et al., 2015), and professional National 

Basketball Association players (62.1 ± 10.6 AU; Mangine et al., 2014c). 

The muscle morphological characteristics examined in the present study are probably a 

result of the training status of the subjects evaluated. The participants included in this study were 

collegiate male club-sport athletes, who possessed a higher activity level than physically active 

college students, but a lower training status compared to Division I athletes. Resistance training, 

along with anaerobic sports training, promotes increases in contractile proteins, which results in 

muscle and myofiber hypertrophy, occurring primarily in Type IIa muscle fibers (Charette et al., 

1991; Deschenes and Kraemer, 2002; Ikai and Fukunaga, 1970; McCall, Byrnes, Dickinson, 

Pattany, & Fleck, 1996; Melvin et al., 2014; Narici, Roi, Landoni, Minettu, & Cerretelli, 1989; 

Scanlon et al., 2014; Seynnes, de Boer, & Narici, 2007). Therefore, because our subjects were 

recreationally resistance-trained and participated in club sports, a greater CSA and MT with a 

lower SubQ may be expected. Furthermore, resistance training has been shown to elicit 

significant decreases in EI values in various populations (Jajtner et al., 2014; Scanlon et al., 

2014). It is likely that in our subjects, a lower EI may be a result of the training that their 

respective sport required. Jajtner et al. (2014) discovered significant decreases in EI of the rectus 

femoris from pre-season to post-season in Division I collegiate women’s soccer players. 

Likewise, Scanlon and colleagues (2014) discovered significant decreases in EI of the VL after a 

six-week resistance training program in elderly women. However, Wells et al. (2014) discovered 

no significant changes in EI of the VL after a 15-week off-season resistance training program in 

Division I collegiate women’s soccer players. The discrepancies in findings may indicate that 

each muscle of the lower body adapts to resistance training in a non-homogeneous way and that 

changes in muscle EI may be more than just a result of training. Future studies should look to 
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examine EI before and after a resistance training program or sport season in male club sport 

athletes to determine the effectiveness of the program on muscle quality. 

CSASLI, EISLI, MTSLI, and SubQSLI yielded greater precision values compared to CSAPTI, 

EIPTI, MTPTI, and SubQPTI, as determined by within-session SEM and CV. Noorkoiv and 

colleagues (2010) suggested that lower reliability values seen with panoramic imaging may be 

due to the extent of curvature and area of the region of interest, where a more tightly curved 

region with a larger area of interest may result in lower reliability values. This may occur 

because panoramic imaging utilizes the overlapping of one image onto another, which increases 

the likelihood of error (Noorkoiv, Nosaka, & Blazevich, 2010). While still images may provide 

better reliability values, in many situations, the use of panoramic imaging is necessary to get an 

accurate representation of the entire muscle, as is the case in the present study. The measurement 

of CSAPTI represented the total CSA of the entire muscle, whereas CSASLI represented the total 

area of muscle contained within the single frame and was not representative of the entire CSA of 

the VL. CSASLI was limited to the size of the frame, which consisted of perfectly vertical lines 

on both the left and right sides of the image as well as deep and superficial lines that 

corresponded to actual muscle-aponeurosis interfaces. Caresio and colleagues (2014) suggested 

that a non-linear relationship exists between EI reliability and the size of the region of interest in 

the VL, where the highest ICCs corresponded with the greatest area encompassed within the 

region of interest. Despite the largest regions of interest within the muscle displaying the highest 

ICC values for EI, the researchers concluded that a region of interest within the muscle the size 

of only about 10-15% of the maximum region of interest was necessary to elicit reliable EI 

values. This indicates that analyzing the entire area of the muscle for EI reliability assessment 

(i.e. panoramic imaging) may not be necessary. This may provide evidence that the use of EISLI 
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and CSASLI assessment may be beneficial if time constraints exist, if the structure of interest is 

located in a tightly-curved region, or if panoramic imaging is not feasible. 

One limitation to the present study is that medical history questionnaires were not 

required for participants to complete prior to participation. Therefore, subjects with 

musculoskeletal injuries prior to the study were not excluded, which may have affected EI 

values. Previous research has discovered higher EI values due to increased fibrous tissue, which 

may be a result of increased scar tissue or pathological or neurological conditions (Caresio, 

Molinari, Emanuel, & Minetto, 2004; Jajtner et al., 2014; Miljkovic and Zmuda, 2010; Pillen, 

2010). Another limitation to the present study was that there was no inclusion requirement for 

body composition. Thus, as described earlier, EI values obtained from participants with larger 

amounts of subcutaneous adipose tissue or intramuscular fat may have inaccurately resulted in 

false measures of lower EI (Young, Jenkins, Zhao, & McCully, 2015). Additionally, there was 

no requirement for resistance training experience for inclusion in our study. Some participants 

may have joined a club sport team without prior training experience, which would have affected 

muscle morphological characteristics and would not have been representative of a recreationally 

resistance-trained population. Finally, there was no distinction of player positions/specialties 

prior to testing. Melvin et al. (2014) discovered significantly different amounts of fat mass, lean 

mass, and VL CSA between different positions in Division I football players, however there 

were no significant differences in EI between positions. Different positions/specialties have 

different demands, which may affect muscle architecture and composition as well as fat mass in 

a non-homogeneous way. Future research should look to examine EI in club-sport athletes with 

completion of medical history questionnaires, body fat inclusion requirements, resistance-

training experience, and distinction of player positions/specialties.  
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Conclusions 

In conclusion, the current study provides evidence that EIPTI of the VL appears to be 

homogeneous amongst the examined tertiles. Furthermore, despite differences in measurements 

of EI, MT, SubQ, and CSA between the PTI and SLI, these ultrasound-derived variables are 

highly correlated. The use of the SLI yields better precision with respect to each variable 

compared to the PTI. Therefore, utilization of the SLI may be advantageous for quantification of 

MT, SubQ, CSA, and EI for examination of the VL in a recreationally-trained population in 

future studies, especially if time constraints exist and only one image type can be measured, a 

highly-experienced technician in panoramic ultrasonography is not present, or if the thickness of 

the muscle is large enough to possibly affect reflectivity of an ultrasound beam  

  

136 



APPENDIX A: FIGURES 
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Figure 1: A sample participant laying down for panoramic transverse image (PTI) analysis. PTI 
were taken at 50% of the straight-line distance from the greater trochanter and the lateral 
epicondyle of the femur. Image capture location was demarcated using a permanent marker on 
the surface of the skin. PTI were captured in the transverse plane, perpendicular to the force-
generating axis of the muscle, using extended-field-of-view ultrasonography (LogiqView™). 
The yellow box represents the probe head orientation, and the solid yellow line represents the 
direction of probe manipulation along the leg during image capture. 
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Figure 2: A sample participant laying down for single longitudinal image (SLI) analysis. Still 
images were taken at 50% of the straight-line distance from the greater trochanter and the lateral 
epicondyle of the femur. Image capture location was demarcated using a permanent marker on 
the surface of the skin. SLI were captured in the longitudinal plane, parallel to the force-
generating axis of the muscle, using a still image. The yellow box represents the probe head 
orientation and image capture location. 
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Figure 3: A sample panoramic transverse image (PTI) of the vastus lateralis (VL) used for cross-
sectional area (CSA) analysis. The outline of the VL muscle was located in the image and traced 
using the polygon function tool in ImageJ, which included as much lean mass as possible without 
including any surrounding bone or fascia. The CSA value is highlighted in red and recorded in 
centimeters2. 
 

 

 

 

 

 

  
140 



 

 

 

 

 

 

 

 

 

 

Figure 4: A sample panoramic transverse image (PTI) of the vastus lateralis (VL) used for echo 
intensity (EI) analysis. The same region of interest used for cross-sectional area (CSA) analysis 
is again used for EI analysis. The EI value is highlighted in red and recorded in arbitrary units. 
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Figure 5: A sample histogram plot generated in ImageJ for echo intensity (EI) determination. 
This plot quantifies the grayscale of each individual pixel within the region of interest previously 
demarcated for cross-sectional area (CSA) and represents them as values from 0-255. 
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Figure 6: A sample panoramic transverse image (PTI) with muscle thickness (MT) measurement 
highlighted in blue. MT was quantified using the line tool at the midpoint of the horizontal 
distance between the anterior and posterior sides of the vastus lateralis (VL). MT is defined as 
the distance between the inferior border of the superficial aponeurosis and the superior border of 
the deep aponeurosis. The MT value is highlighted in red and recorded in centimeters. 
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Figure 7: A sample panoramic transverse image (PTI) with subcutaneous adipose tissue 
thickness (SubQ) measurement highlighted in blue. SubQ was quantified using the line tool at 
the midpoint of the horizontal distance between the anterior and posterior sides of the vastus 
lateralis (VL). SubQ is defined as the distance between the inferior border of the epithelium and 
the superior border of the superficial aponeurosis. The SubQ value is highlighted in red and 
reported in centimeters. 
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Figure 8: A sample single longitudinal image (SLI) of the vastus lateralis (VL) used for cross-
sectional area (CSA) analysis. The outline of the VL muscle was located in the image and traced 
using the polygon function tool in ImageJ, which included as much lean mass as possible without 
including any surrounding bone or fascia. The right and left sides of the traced polygon consisted 
of perfectly vertical lines, parallel to each other and parallel to the edges of the image, whereas 
the superficial and deep lines of the ImageJ polygon corresponded to the muscle-aponeurosis 
interface. The CSA value is highlighted in red and reported in centimeters2. 

 

145 



 

Figure 9: A sample single longitudinal image (SLI) with muscle thickness (MT) measurement 
highlighted in yellow. MT was quantified using the line tool at the midpoint of the horizontal 
distance between the left and right sides of the vastus lateralis (VL). MT is defined as the 
distance between the inferior border of the superficial aponeurosis and the superior border of the 
deep aponeurosis. The MT value is highlighted in red and reported in centimeters. 
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Figure 10: A sample single longitudinal image (SLI) with subcutaneous adipose tissue (SubQ) 
measurement highlighted in yellow. SubQ was quantified using the line tool at the midpoint of 
the horizontal distance between the left and right sides of vastus lateralis (VL). SubQ is defined 
as the distance between the inferior border of the epithelium and the superior border of the 
superficial aponeurosis. The SubQ value is highlighted in red and reported in centimeters. 
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Figure 11: A sample panoramic transverse image (PTI) divided into three tertiles of equal 
horizontal length. The anterior tertile (AT) denotes the compartment of the vastus lateralis (VL) 
that is situated in the anterior side of the body, the lateral tertile (LT) denotes the compartment of 
the VL that is situated on the lateral side of the body, and the posterior tertile (PT) denotes the 
compartment of the VL that is situated on the posterior side of the body. 
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Figure 12: Cross-sectional area (CSA) values obtained from panoramic transverse images (PTI) 
and single still longitudinal images (SLI) with corresponding trendline and correlation 
coefficient. 
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Figure 13: Echo intensity (EI) and cross-sectional area (CSA) values obtained from panoramic 
transverse images (PTI) and still longitudinal images (SLI). Open circles represent measures 
obtained from PTI. Closed circles represent measures obtained from SLI. 
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Figure 14: Echo intensity (EI) values of panoramic transverse images (PTI), still longitudinal 
images (SLI), anterior tertiles (AT), lateral tertiles (LT), and posterior tertiles (PT). Open circles 
represent individual data points. Closed circles represent sample means, and 95% confidence 
intervals are denoted by error bars. 

*Denotes statistically significant difference (p < 0.01) from single still longitudinal images. 
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Figure 15: Echo intensity (EI) values obtained from still longitudinal images (SLI) compared to 
EI of panoramic transverse images (PTI), anterior tertiles (AT), lateral tertiles (LT), and posterior 
tertiles (PT). Open circles represent measures obtained from PTI. Open squares represent 
measures obtained from AT. Closed squares represent measures obtained from LT. Closed 
triangles represent measured obtained from PT. 
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Figure 16: Muscle thickness (MT) values obtained from panoramic transverse images (PTI) and 
single still longitudinal images (SLI) with corresponding trendline and correlation coefficient. 
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Figure 17: Subcutaneous adipose tissue thickness (SubQ) values obtained from panoramic 
transverse images (PTI) and single still longitudinal images (SLI) with corresponding trendline 
and correlation coefficient. 
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Figure 18: Echo intensity (EI) and muscle thickness (MT) values obtained from panoramic 
transverse images (PTI) and still longitudinal images (SLI). Open circles represent measures 
obtained from PTI. Closed circles represent measures obtained from SLI. 
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Figure 19: Echo intensity (EI) and subcutaneous adipose tissue thickness (SubQ) values obtained 
from panoramic transverse images (PTI) and still longitudinal images (SLI). Open circles 
represent measures obtained from PTI. Closed circles represent measures obtained from SLI. 
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APPENDIX B: TABLES 
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Table 1: Participant characteristics (n = 24). 

 Mean  Std. Dev. Minimum Maximum 

Age (y) 20.2 1.6 18.0 24.0 

Height (m) 1.78 0.07 1.69 1.94 

Weight (kg) 82.2 13.4 62.8 125.7 

BMI (kg/m2) 25.84 3.31  20.51  35.57 

BMI: Body Mass Index 
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Table 2: Precision measurements between three consecutive panoramic transverse images (PTI) 
or still longitudinal images (SLI) for cross-sectional area (CSA), echo intensity (EI), muscle 
thickness (MT), and subcutaneous adipose tissue thickness (SubQ). 

  SEM CV 

 
 

PTI 

CSA 0.726 cm2 1.672% 

EI 1.639 AU 2.603% 

MT 0.065 cm 1.885% 

SubQ 0.018 cm 7.634% 

 
 

SLI 

CSA 0.040 cm2 0.491% 

EI 1.059 AU 1.418% 

MT 0.013 cm 0.544% 

SubQ 0.005 cm 3.025% 

SEM: Standard Error of Measurement; CV: Coefficient of Variation  
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Table 3: Echo intensity (EI; measured in AU), cross-sectional area (CSA; measured in cm2), 
muscle thickness (MT; measured in cm), and subcutaneous adipose tissue thickness (SubQ; 
measured in cm) values of the selected panoramic transverse images (PTI), still longitudinal 
images (SLI), anterior (AT), lateral (LT), and posterior (PT) tertiles. Results are reported as 
mean ± standard deviation. 

 EI CSA † MT SubQ 

SLI 65.453 ± 11.023 7.750 ± 1.519 2.015 ± 0.397 0.316 ± 0.225 

PTI 57.976 ± 8.806* 34.735 ± 8.051* 2.178 ± 0.367* 0.217 ± 0.167* 

     AT 59.065 ± 9.126 14.344 ± 3.194* - - 

     LT 58.717 ± 9.877* 11.554 ± 2.797* - - 

     PT 56.354 ± 9.887* 8.734 ± 2.080* - - 

* Denotes statistically significant difference (p ≤ 0.05) from SLI. 

† Denotes statistically significant difference (p ≤ 0.05) between all image types. 
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Table 4: Pearson product-moment correlation coefficients between echo intensity (EI) measures 
in panoramic transverse images (PTI), still longitudinal images (SLI), anterior (AT), lateral (LT), 
and posterior (PT) tertiles. P-values are reported below correlation coefficients in parentheses. 

 EISLI EIAT EILT EIPT 

EIPTI 0.681** 
(<0.001) 

0.925** 
(<0.001) 

0.951** 
(<0.001) 

0.855** 
(<0.001) 

EISLI - 0.510* 
(0.011) 

0.800** 
(<0.001) 

0.521** 
(0.009) 

EIAT - - 0.818** 
(<0.001) 

0.663** 
(<0.001) 

EILT - - - 0.784** 
(<0.001) 

* Correlation is significant at the p ≤ 0.05 level. 
**Correlation is significant at the p ≤ 0.01 level. 
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Table 5: Pearson product-moment correlation coefficients between body mass index (BMI), 
muscle thickness (MT), cross-sectional area (CSA), and echo intensity (EI) values in panoramic 
transverse images (PTI) and still longitudinal images (SLI). Correlation coefficients reported 
with subcutaneous adipose tissue thickness (SubQ) were evaluated using Spearman’s rho. P-
values are reported below correlation coefficients in parentheses. 

 MTPTI MTSLI SubQPTI SubQSLI CSAPTI CSASLI EIPTI EISLI 

BMI 0.519** 
(0.009) 

0.659** 
(<0.001) 

0.224 
(0.293) 

0.405* 
(0.049) 

0.776** 
(<0.001) 

0.640** 
(0.001) 

-0.206 
(0.335) 

-0.379 
(0.068) 

MTPTI - 0.809** 
(<0.001) 

0.169 
(0.429) 

0.217 
(0.307) 

0.731** 
(<0.001) 

0.824** 
(<0.001) 

-0.503* 
(0.012) 

-0.644** 
(<0.001) 

MTSLI - - 0.290 
(0.170) 

0.339 
(0.105) 

0.764** 
(<0.001) 

0.997** 
(<0.001) 

-0.441* 
(0.031) 

-0.067** 
(<0.001) 

SubQPTI - - - 0.915** 
(<0.001) 

0.462* 
(0.023) 

0.294 
(0.163) 

-0.015 
(0.944) 

-0.114 
(0.597) 

SubQSLI - - - - 0.571** 
(0.004) 

0.340 
(0.104) 

-0.067 
(0.754) 

-0.178 
(0.404) 

CSAPTI - - - - - 0.752** 
(<0.001) 

-0.413* 
(0.045) 

-0.478* 
(0.018) 

CSASLI - - - - - - -0.468* 
(0.021) 

-0.717** 
(<0.001) 

EIPTI - - - - - - - 0.681** 
(<0.001) 

* Correlation is significant at the p ≤ 0.05 level. 
**Correlation is significant at the p ≤ 0.01 level. 
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APPENDIX C: REQUIREMENTS FOR SELECTING THE BEST 

PANORAMIC IMAGE 
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Panoramic Transverse Image (PTI) Selection: 

• Entire muscle area captured in a single image 
• Consistent pressure applied throughout entire image 

o Consistent image quality 
o Minimal muscle compression 

• Consistent probe speed during image capture 
o No blurriness 
o No discrepancies (overlaps) along epithelial and/or muscle border 

• Clearest image of the three 
• Analyzed on same computer and on same screen 
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APPENDIX D: REQUIREMENTS FOR SELECTING THE BEST SINGLE 

STILL LONGITUDINAL IMAGE 
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Single Still Longitudinal Image (SLI) Selection: 

• Consistent pressure applied by probe 
o Minimal muscle compression 

• Superficial aponeurosis of vastus lateralis (adipose tissue/muscle interface) should be as 
close to horizontal as possible 

• Entire length of image consists of muscle fibers (no aponeuroses or inconsistencies in 
probe pressure or placement) 

• Analyzed on same computer and same screen 
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APPENDIX E: INTERNATIONAL REVIEW BOARD (IRB) APPROVAL 

FORM 
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APPENDIX F: LETTER TO THE UNIVERSITY OF CENTRAL 

FLORIDA’S CLUB RUGBY COACH 
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APPENDIX G: DATA COLLECTION SHEET FOR ULTRASOUND 

PROCEDURE RELIABILITY  
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APPENDIX H: DATA COLLECTION SHEETS FOR ULTRASOUND 

PRECISION VALUES 
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APPENDIX I: BEST IMAGE SELECTION CHECKBOX 
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APPENDIX J: DATA COLLECTION SHEETS FOR VARIABILES OF 

BEST ULTRASOUND IMAGES 
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