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ABSTRACT 

ULTRAFAST HIGH-ENERGY ELECTRON DIFFRACTION STUDY OF 
PHOTOEXCITED BISMUTH NANOCLUSTERS BY FEMTOSECOND LASER 

PULSES 

Ahmed R. Esmail 
Old Dominion University, 2011 

Director: H. Elsayed-Ali 

The advancement in ultrafast electron crystallography (UEC) over the past few 

decades facilitated the study of structural dynamics in all phases of matter induced by 

femtosecond laser pulses. This technique became very powerful when the spatial 

resolution was combined with the temporal resolution, and succeeded in studying 

chemical reactions by ultrafast electron diffraction, bulk crystal phonons and melting by 

X-ray diffraction. 

In this dissertation, I demonstrate the uniqueness of UEC and its potential in 

monitoring in real time the structural dynamics of bismuth (Bi) nanoclusters and islands 

induced by femtosecond laser pulses. Our approach to accomplish this task includes 

building a time-resolved high energy electron diffraction setup that is capable of 

delivering high energy and short electron pulses, less than 3 ps, which will facilitate the 

real time measurement of the Bragg diffraction ring intensity, shift in the peak position 

and the diffraction ring full width at half maximum (FWHM) at different delay times 

with respect to the femtosecond excitation. Additionally, the temperature evolution of the 

same parameters, intensity, position and FWHM of the diffraction peaks, was monitored 

by using conventional direct current heating stage. 



The data collected from the static heating measurements showed that: 

• The Bragg peak intensity varies exponentially with temperature and follows 

Debye-Waller effect up to T= 464 ± 6 K. 

• The melting temperature of Bi nanoclusters, Tm(nanociusters) = 525 ± 6K, is less than 

that of the bulk Bi, Tm(bUik) = 544 K, as expected. 

• The onset of melting was found to start at T = 500 ± 6K, which is also confirmed 

from the temperature-dependent FWHM, since the FWHM is related to the cluster 

size, we found that the cluster size starts to decrease at T = 500 ± 6K. 

• The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K 

along the <012> direction and 86 ± 9 K along <110> direction. This confirms the 

anisotropic nature of Bi nanoclusters. At T = 464 ± 6 K, the diffraction intensity 

started to deviate from Debye-Waller behavior due to increased lattice 

anharmonicity. 

Another interesting observation was found from the dependence of the relative 

change in Bragg peak position, Ad/d (lattice strain) on temperature in two different 

directions, <012> and <110>. I noticed that the thermal expansion coefficient of the Bi 

(012) and (110) planes is positive up to ~ 499 ± 11 K. However, the expansion coefficient 

of the Bi (012) planes showed a transition from a positive to a negative value that occurs 

over the temperature range Tc ~ 499 ± 11 K to 511 ± 8 K. For the Bi (110) planes, the 

thermal expansion coefficient is positive up to their melting point, which is 525 ± 6 K. 

This behavior can be explained in terms of vibrational (phonon excitation) and/or non-

vibrational (lattice potential deformation) effects on the lattice near melting. 



• The study of the FWHM of the diffraction rings as a function of temperature 

confirmed the formation of a liquid shell of Bi at the onset of solid-liquid 

transformation. This shell includes Bi atoms in the liquid phase, detached atoms 

with high vibrational amplitude and vacancies. 

Another task was accomplished in which I utilized the pump-probe ultrafast 

electron diffraction setup that I built and tested with picoseconds laser pulses in PERI lab 

- Old Dominion University, transferred later to the Applied Research Center where a 

femtosecond laser system was used to characterize the transient effects induced in Bi 

nanoclusters due to femtosecond laser excitation. The sample under consideration is 

excited by a femtosecond laser pulses with moderate fluence just to induce an observable 

change in the diffraction pattern and far from sample damage. The femtosecond laser 

pulses induce changes in the charge carrier distribution function of Bi nanoclusters, 

which leads to a disturbance in the lattice potential and drives the solid-liquid phase 

transformation. The melting is detected as decrease in the integrated intensity of the 

Bragg peaks with time delay. 

Another interesting behavior is observed in these experiments in which a lattice 

contraction following femtosecond laser excitation and proceeding over a time period of 

~ 6ps precedes the lattice expansion in Bi (012) planes. Again, the electronic excitation, 

here, plays an important role in inducing a sudden change in the interatomic forces which 

leads to Aig phonon excitation. Due to the limited resolution of our system (2-3 ps) we 

were not able to detect the Ajg oscillation frequency/wavelength, but its effects which 

appear as lattice contraction upon its decay can be seen from the temporal evolution of 

the Bragg peak position over the time period, 0 < t < 6 ps. 



The incident laser fluence was not high enough to induce full melting, but was 

enough to induce partial lattice melting. This was observed as a gradual increase in the 

FWHM of the Bragg peaks as a function of delay time, i.e., formation of thin liquid layer 

which increases in size with time when the lattice temperature increases through electron-

phonon and/or phonon-phonon relaxation. 

Also, the time evolution of the relative Bragg peak intensity, Ad/d and FWHM 

were monitored for Bi islands. Bi islands were prepared by annealing the as-deposited Bi 

thin film (5 nm, average coverage) solely by either raising its temperature slowly up to ~ 

525 K or with ultrafast laser pulses of fluence 0.8 mJ/cm - 2.4 mJ/cm . 

In summary, 

• The lattice thermalization time of Bi islands in <012> direction is higher than that 

along <110> direction. 

• I did not detect a change in Ad/d with time, which is not expected and need 

further study of different factors that may affect this behavior. These factors are, 

but not limited to, thermal history, annealing temperature, laser fluence, substrate 

cluster size distribution, and morphology of the sample surface. 

• The time evolution of the percentage change in molten layer thickness measured 

from the change in FWHM showed that the sample is partially melted, and the 

thickness of the molten layer is a function of the incident fluence. 

• An interesting behavior was also detected, which is the transient times for Bi 

nanoclusters as measured from the time evolution of relative change in the 

diffraction intensity for Bi nanoclusters is higher than that measured from Bi 

islands. This will be explained in terms of the effect of the cluster size on the 



electronic energy band structure of Bi, which leads to the creation of energy sub-

bands as well as increase in the energy gap between the conduction and the 

valence band as the dimensions of the Bi sample decreases. 
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CHAPTER 1* 

CRYSTAL STRUCTURE OF BISMUTH A N D REVIEW OF 

PREVIOUS W O R K 

1.1. Bismuth, Why? 

Due to its unusual properties and the polymorphic nature of the crystal structure, 

bismuth (Bi) has been a subject of extensive studies especially in reduced size scale form. 

Over decades, Bi thin films, nanoclusters and nanowires were shown to have some 

properties that are different from those of the bulk and made them technologically 

important. For example, superconductivity was observed in Bi thin films [1] and in 

particles with reduced dimensions [2], while others have reported that a Bi thin film 

possesses nonlinear properties [3] and shows quantum size effects [4]. Although bulk Bi 

was classified as a semimetallic material due to the small overlap between the conduction 

and valence bands, a transition to a semiconductor with indirect band gap was observed 

at a critical thickness [5-10]. This makes Bi a useful material in developing optical and 

electro-optical applications. In addition, Bi has enhanced thermoelectric efficiency [11] 

and large magnetoresistance [12]. Extensive work has been done to study the dependence 

of the film structure on the thickness [6, 13-15], as well as the dependence of electrical 

transport properties on the structure [16]. 

1.2. Bulk Bi Crystal Structure 

Bi is a member of group V semimetals, such as arsenic (As) and antimony (Sb), 

with oc-arsenic or A7 structure [17-19]. The semimetallic nature is attributed to the high 

anisotropic and complex nature of the Fermi surface of the rhombohedral structure of Bi 

* The reference model of this work follows the SPIE format. 



2 

[11]. The rhombohedral unit cell of Bi, space groupR3m , has two atoms per unit cell 

with cell parameters, ar = 4.7459 A, ar = 57°14' [21]. The two atoms are occupying the 

positions (0, 0, 0) and (2w, 2u, 2u) where u = 0.237 [21]. 

The rhombohedral structure of Bi may be visualized as a distorted simple-cubic 

structure which may be obtained by, 1) straining the unit cell along the body diagonal and 

reducing the rhombohedral angle from 60° to ar, and 2) displacing the atom at the center 

toward its neighboring atom along the body diagonal till the position 2u is reached. 

This distortion results in atoms with the following arrangement: 

• Each atom has three equidistant nearest neighbor atoms (forming pyramidal 

intra-layer covalent bond) and another three equidistant atoms that are farther 

away which lie in the adjacent layer (forming inter-layer bonds of metallic or 

weak intermolecular attractive forces of Van der Waals nature) [22-24]. 

• This atomic arrangement (bilayer array) allows the bonding within each layer to 

be much stronger than the inter bilayer bonding, which in turn makes the Bi 

crystals easily cleaved along (111) plane, Fig. 1.1. 

In general, the bulk structure of Bi, and consequently the surfaces, can be 

described in three different ways: by using the rhombohedral notation, hexagonal 

notation, or pseudocubic notation. The relation between rhombohedral and hexagonal 

unit cells is shown in Fig. 1.1. This is in addition to cubic structure notation, which can 

be used to describe the bulk structure of Bi. However, we will consider the rhombohedral 

and hexagonal description and the reader can refer to Ref. [18] for more details about the 

pseudocubic indexing. Figure 1.2 shows the top and the side views of the atomic 

arrangement of the bulk Bi along <111> direction. 
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1.2.1. Rhombohedral structure 

Rhombohedral lattice with two atoms per unit cell is adopted to describe the Bi 

structure. The basis vectors of the unit cell are a,, a2, anda3, and represented by short 

dashed lines in Fig. 1.1, where, laj = \a2\ = |a3| = arh =4.7459 A. 

Fig. 1.1. Crystal structure of bulk Bi. Rhombohedral unit cell is represented by the solid 
and short dashed lines incorporated in the hexagonal unit cell represented by long dashed 
lines. The white and black solid spheres represent the two atoms in the rhombohedral unit 
cell. The short dashed and solid black lines represent the vectors spanning the 
rhombohedral and hexagonal lattice, respectively. The Cartesian coordinate systems used 
here are: bisectrix ( d , y), binary (C2, x) and trigonal (C3, z). 

To relate the rhombohedral unit cell to the hexagonal one, the unit vectors 

ax, a2 and a3,which are represented by short dashed lines in Fig. 1.1, are expressed in 

terms of the hexagonal lattice parameters, a - 4.5332 A, and c = 11.7967 A as follows, 

[25] 
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(a) Top View 
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\0 Fourth layer 

(b) Side View 

1.594 A 

2.347 A 

Fig. 1.2. Bulk structure of Bi (111), (a) Top view and (b) Side view of the first four 
layers. Solid lines represent the covalent bonds between the atoms. Reproduced from Ref. 
[17]. The angle between any two basis vectors is ar = 57° 14'. Therefore the crystal 
structure of Bi is completely identified by arh, ar and the position of the two basis atoms. 
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1.2.2. Hexagonal structure 

The hexagonal unit vectors are expressed in terms of the rhombohedral ones as 

follows, [25] 

ahx=ax-a3 

ah2=a2-al 

ah3 =al+a2+a3 

and can be written in terms of the rhombohedral unit cell as, 

- r
 1

 ^ m 
I o 

ah2=(a,0,0) 

ah3 =(0,0,c) 

In hexagonal notation, four indices are used (hkil) compared to three, (hkl), in 

rhombohedral structure, where / = -(h+k). 

1.2.3. Pseudocubic structure 

One should be careful when using the pseudocubic notation because it may look 

like the rhombohedral notation, but it represents a different surface. For example, the 

(100) and (110) surfaces have different geometries and different electronic structures in 

rhombohedral, but in pseudocubic notation both surfaces are represented by the (111) 

surface. Therefore, to eliminate any confusion, we will not be using any pseudocubic 

notation through the rest of this dissertation. But readers who are seeking further and 

detailed discussion about the pseudocubic structure indexing should refer to Ref. [18,26]. 

1.3. Electronic Band Structure of Bi 

It was mentioned earlier that the Bi crystal structure is a distorted simple cubic 

cell, but a quick question might pop up; what force law can hold the atoms in the unit cell 
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and make that structure in a stable configuration? A satisfactory answer to this paradox 

was introduced by H. Jones and revisited by Peirles and was later termed "Peirles-Jones 

mechanism" [27]. 

What Jones suggested is that Bi lattice has the symmetry of a face-centered cubic 

(fee) lattice with two atoms per unit cell. Therefore, the first Brillouin zone (BZ) of Bi is 

that of fee, Fig. 1.3. But the lattice potential is modified because one of the atoms is 

displaced with respect to the other, and this potential modification produces 

discontinuities in the surfaces of the second zone which lie inside the Bi unit cell, Fig. 

1.4. 

Therefore, the new zone will have a certain number of orbital states that are 

equivalent to half the number of the atoms per unit cell. Then, Jones' argument was that 

the new discontinuous surface is very close to the surface with constant energy of the 

undistorted lattice, i.e., in the case of Bi with atomic number of 83, the Fermi surface is 

very close to coincide with the new boundary and the electrons in the valence band will 

spill over to the next higher band to fill it, leaving few holes behind. If the Fermi surface 

is to coincide with the zone boundary, Bi would be an insulator, because the lower bands 

will be completely filled, and the next will be empty, but this is not the case with Bi. 

Based on the previous discussion, in the case of Bi, the density of charge carrier 

responsible for the conduction is direction dependent and limited to the energy pockets (L 

and T), Fig. 1.3, where the energy bands become separated leading to the creation of sub-

bands (energy quantization of charge carriers) as the sample dimensions are reduced 

(similar to the quantum particle problem in a potential well). Another factor, the lattice 

stress, can modify the shape of the Brillouin zone and consequently the energy pockets of 



charge carriers occupying them. More details of the electronic band structure of Bi and 

corresponding graphical representation can be found in Ref. [28,29]. 

Electron 
pocket 

Hole 
pocket 

Fig. 1.3. First Brillouin zone of bulk Bi and some important symmetry points; L and T 
are electron and holes pockets, respectively, in the Fermi surface (shaded area). 

-71/a -7i/2a 7t/2a 7t/a 

Fig. 1.4. Electron energy in a linear atomic chain where atoms are not equally spaced. 
Reproduced from Ref. [27]. 
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1.4. Size-Dependent Melting Point Depression 

Melting point depression was first introduced theoretically by Pawlaw [30] in 

1909 and confirmed experimentally in Bi by many groups [31-35]. Classical 

thermodynamics and modern simulation methods are used widely to investigate the 

melting point depression in small particles [36,37]. Accordingly, [38-42] [3,5,10-12,26] 

the melting of small particles was understood in terms of the reduction in the total energy 

of the solid (s), liquid (/), and vapor (v) interfaces (Ay), where, Ay=yv + ysi -ysv<0, and 

^is the interfacial energy per unit area. 

In general, the depression observed in the melting point is related to the particle 

size through the following formula [43,44]: 

A rp rpbulk _ rp , X f±m >. ^L 1 1 
a I 1

m
 1

mV)~ jjbulk
 X 1 " 1 

m 

where T^
lk
 and Hjfi

llk are the bulk melting temperature and bulk latent heat of fusion 

respectively, r is the radius of the spherical particle and a is the interfacial tension 

between the solid phase and its environment. Eq. 1.1 was predicted based on three 

different models used to describe the melting of small particles. These models are [43]: 

(1) Homogeneous melting and growth model (HMG) [31,45]. This model assumes a state 

of equilibrium between the entire solid and the entire liquid state and a is given by, 

Pi 

where, ps and pi are the densities of the solid and the liquid states, respectively. 

(2) The liquid shell model (LSM) [31,46], assumes the formation of thin layer of the 

molten particles of thickness r0, at the solid surface. Accordingly, 
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««a,=JV+^a-^L) 1.3 

r 

(3) The liquid nucleation and growth model (LNG) [47-50] considers that the melting 

begins by the formation of a liquid layer at the surface and grows very slowly at the 

expense of the solid material. 

asi < ocLNG < \ (ysv ~ Yiv j) 1 -4 

Although applying these models is beyond our interest in this work, it is worth 

mentioning the different proposed models that have been used for decades to shed some 

light on the melting mechanism of nanostructures. 

1.5. Surface Melting and Superheating 

Despite being a simple phase transition in which a transformation from solid to a 

liquid state occurs at a specific temperature, Tm (melting temperature), and a phenomenon 

that has been studied for decades, melting is still considered a mysterious phenomenon in 

nature. Melting was classified as either homogeneous or heterogeneous in nature 

depending on the locus of the melting nucleation site. Melting is classified as 

homogeneous if it starts at crystal defects (vacancies, interstitial, dislocation or 

impurities), while heterogeneous melting nucleates at grain boundaries, interfaces and 

free surfaces. 

For perfect crystalline material, surface melting is the most preferred mechanism. 

This is due to the fact that the solid-vapor interfacial energy is much higher than that of 

both the solid-liquid and liquid-vapor [51,52]. This may result in the formation of a 

molten thin layer on the surface below the melting temperature Tm, the thickness of which 

increases as the temperature moves toward Tm. In some cases, the quasi-liquid layer does 
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not propagate through the material and may result in either incomplete melting or crystal 

superheating [53,54]. Superheated solid materials do not lose their long range order at 

temperatures above their melting point Tm. There are many factors that may affect the 

superheating of the solid before its complete melting; these factors include, but are not 

limited to, free surfaces, defects, and heating rates (Q). 

Superheating is rarely observed in low heating rates experiments (Q ~ 1 K/s) due 

to heterogeneous nucleation. On the other hand, high heating rates may result in an 

appreciable degree of superheating. Such high rates of heating are easily achieved by 

using the proper heating source. Heating rates as high as 1014 K/s and more are easily 

achieved by very short laser pulses (picosecond and femtosecond). Such laser sources 

made it possible and opened unprecedented opportunities to investigate the kinetic limits 

Table 1.1: Summary of the bulk melting points and degree of superheating of various 
elements and compounds. These values were adopted from Ref. [32] and references 
therein unless otherwise noted. 

Material 

Si02 (quartz) 
P205 

p-toluidine 

As203 

H20 
Bi 
Bi(0001) 
Ga 
Ge 
In (111) 

P b ( l l l ) 

Sn 

Tm(K) 

1700 
836 
318 
551 
273 
544 
544 
303 
1210 
430 
601 

544 

degree of 
superheating (K) 

300 
50 
0.6 
60 

0.28 
>5 
90 
0.2 
134 
73 

120T 

2 
3 
2 

Ref. 

(55) 
(56) 

(57) 
(58) 

(54) 
(59) 
(60) 

tat~1011K/s 
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of superheating. Superheating was studied and seen in some materials; some of them are 

listed in Table 1.1. 

Bi is one of those elements that can preserve its solid integrity, and superheat at 

temperatures above Tm
Bulk

. According to Ref. [32,45], Bi was superheated 7 degrees 

above it bulk melting temperature Tm
Bulk

. A study on nano-sized clusters of Bi, In, Pb and 

As by Allen et al. [31] confirmed the superheating by 8 degrees in Bi but not in the other 

elements. 

Also, bulk crystalline Bi showed superheating of 90 K through a time-resolved 

reflection of high energy electron diffraction study by E. Murphy et al. [56]. Murphy et 

al. used an ultrafast laser to heat the crystalline Bi and probed the changes in the 

diffraction pattern of Bi induced by such very high heating rates, 10n K/s by using high 

energy electrons diffracted off the Bi surface. A 120 K superheating was observed in Pb 

(111) in another study [61] using the same technique, while Pb (001) surface did not 

show any superheating [62]. 

1.6. Previous Work in Time-Resolved Electron Diffraction Studies on Bi 

X-ray and electron diffraction have been widely used for decades to study the 

crystal structure of solid materials. In general, both techniques are complementing each 

other, but in some cases electrons have an advantage over X-ray in diffraction 

experiments. The advantage of electron diffraction over X-ray arises from, first, the 

extremely short wavelength (X) of the electron beam with respect to that of the X-ray 

beam of the same energy. Therefore, according to Bragg's law (2d sin 9= nX), this leads 

to a smaller Bragg angles for electrons than for X-rays. Second, the ease of focusing 

electrons into a very narrow, high intensity beam, allow measurements of a very small 
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sample volumes, i.e. high spatial resolutions. Third, electrons interact with and are 

diffracted by the electrostatic potential of both orbital electrons and atomic nuclei, while 

X-rays interact with and are diffracted by orbital electrons. This means that electron 

scattering cross section is higher than that for X-ray by about six orders of magnitude 

[63], and enables researchers to study the structures of gases, surfaces, and thin 

crystallites (nanometers size scale), which is beyond the capabilities of X-ray 

crystallography. Fourth, the damage effects due to electron-matter interaction are much 

less than that of X-rays at the same wavelength. 

Incorporating electron diffraction in time resolved experiments did not start until 

the mid 80's, when Williamson et al. [64] used a picosecond electron diffraction to 

monitor in real time the melting of Al thin film induced by picosecond laser pulses. This 

technique was later improved by M. Aeschlimann et al. [65]. Due to the poor time 

resolution of the earlier experiments, it was difficult to monitor the fast lattice dynamics 

that occur in the sub-picosecond time scale. By introducing the femtosecond lasers in the 

1980's, the resolution of the time resolved electron diffraction experiments are 

consequently improved and reached a sub picosecond (ps) time resolution by the 

improvements introduced by Cao et al. [66]. 

The time-resolved pump probe technique was utilized over decades, and much 

research work has been done on Bi. It is beyond of our capabilities to address every 

single work, but some of them will be mentioned here, and I can categorize the 

experimental work into three main categories: (1) pump-probe optical studies [67-72], (2) 

pump-probe X-ray studies [73,74], and (3) electron diffraction studies [56, 75-78]. This is 

in addition to the theoretical investigation of the electronic structure of Bi and the size 
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effect on the band structure made by Shick et al. [79] and the references therein. In all of 

these studies, the main objective is to study the impact of ultrashort excitation pulses on 

the physical properties as a function of time. In the optical pump-probe technique, the 

change in reflectivity and/or transmission with time following laser excitation is 

monitored. Although vast information could be extracted from an optical pump-probe in 

regard to carrier density change due to laser excitation and its subsequent relaxation that 

results in the excitation of coherent optical phonons in Bi, it is indirectly related to the 

changes in the atomic structure [81]. Generation of coherent vibrational optical phonons 

of symmetry Aig was monitored in Bi and its frequency was found to be a function of the 

pumping laser fluence [81-84]. 

Hase et al. [82] attributed the frequency chirp to the anharmonicity in the lattice 

potential which lead to the amplitude-frequency dependence. Fahy and Reis [85] 

explained that frequency change in terms of the softened electronic potential and the 

behavior of the photoexcited carrier during excitation and relaxation processes. A later 

study confirmed this mechanism, and the anharmonic effects were negligible [83]. Due to 

the insensitivity of the optical pump probe setup to monitor the atomic positions, the 

amplitude of the atomic displacement resulting from phonon excitation could not be 

measured. 

On the other hand, pump-probe X-ray diffraction can give a clear picture of the 

time evolution of structure dynamics induced by ultrashort laser pulses. 

An X-ray was used in a pump probe setup [73] to map the change in interatomic potential 

due to the change in carrier density photoexcited by ultrashort laser pulses. According to 

this study, they were able to characterize quantitatively the interatomic potential energy 
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surface at high excitation fluence by monitoring in real time the change in atomic 

displacement. Accordingly, a potential energy shift and softening was detected with the 

increased carrier density as a result of valence electrons excitation to the conduction 

band. 

The work done so far, to the best of our knowledge, on Bi using time-resolved 

electron diffraction is not extensive and summarized in the following paragraphs. One of 

the earliest studies was done by E. Murphy et al. [56]; they aimed at studying the Bi 

(0001) superheating using high energy electron diffraction in the reflection mode. They 

were able to detect 90 K superheating using a pump-probe setup with 200 ps time 

resolution. Recently, Krenzer et al. [75] studied the energy dissipation in an epitaxially 

grown Bi on Si (001) due to femtosecond laser excitation and were able to determine the 

thermal boundary conductance from the transient thermal response of the Bi film by 

means of ultrafast electron diffraction in the reflection mode. The same group studied the 

dynamics of surface temperature of Bi thin film grown on Si (001) induced by fs laser 

pulses [76]. Rajkovic [78] studied a highly oriented free stranding Bi thin film (20 ran), 

and all his observations and conclusions were based on two exponential fit functions of 

the normalized diffraction peak intensity. The first decay time is short, sub-picosecond, 

was attributed to the nonthermal effects while the second is few picoseconds, and was 

explained in terms of carrier relaxation through Auger mechanism. Although he was able 

to pump the Bi film with 1.5 mJ/cm2 laser pulses, for some reason, no change in 

diffraction peak FWHM or position was detected. Recently, G. Sciaini et al. [77] studied 

the melting mechanism in 30 nm thick free standing Bi induced by femtosecond laser 

pulses. According to this study, the melting mechanism of Bi at high pumping fluences (7 



15 

mJ/cm2 and 23 mJ/cm2) was attributed to a nonthermal effects which induces 

modification in the potential energy surface as a result of excitation of fully symmetric 

normal mode of vibration of Aig symmetry. 

1.7. Dissertation Motivation and Organization 

The unusual physical properties of small Bi structures, which sometimes are 

different from those of the bulk, have motivated us to study the photoexcitation of Bi 

nanoclusters by ultrashort laser pulses. To accomplish this goal, I have built a time-

resolved high energy electron diffraction setup of resolution better than 3 ps. 

Additionally, to the best of our knowledge, so far no time-resolved work has been done 

on Bi nanoclusters (5 nm). Also, a direct current heating stage was used to study the 

melting of the grown Bi nanoclusters. 

The first goal of our experiment is to study the melting of Bi nanoclusters by 

using the direct current heating stage. To do so, the intensity, diffraction ring position and 

FWHM were measured at different temperatures. We found that the Debye temperature 

of the annealed nanoclusters was 53 ± 6 K along the <012> direction and 86 ± 9 K along 

<110> direction. At T = 464 ± 6 K, the diffraction intensity started to deviate from 

Debye-Waller behavior due to increased lattice anharmonicity. The onset of the melting 

of the Bi nanoclusters was T-500 ± 6 K, as measured by the reduction of the nanocluster 

size through the formation of a liquid shell detected by the width of the diffraction rings. 

The thermal expansion of the Bi (012) planes showed that the transition from a positive 

to a negative value is not abrupt but occurs over the temperature range Tc ~ 499 ± 11 to 

511 ± 8 K, while for Bi (110) planes, the thermal expansion coefficient is positive up to 

their melting point, which is -525 ± 6 K. 
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Second, a time-resolved experiment is conducted to study the photoexcitation of 

Bi nanoclusters and the structure response to moderate laser fiuences ~ 1.9 ± 5% mJ/cm2 -

2.9 ± 5% mJ/cm . We found that the thermalization time has changed significantly for Bi 

islands when compared to Bi nanoclusters. Additionally, the thermalization time is 

direction dependent; for example, the thermalization time measured along <012> 

direction was found to be longer than that measured along the <110> direction. This was 

explained in terms of the sensitivity of the electronic band structure along the <012> 

direction compared to that along the <110> direction. 

Bi islands were obtained by annealing the grown film solely either by the heating 

stage or by femtosecond laser pulses of energy density within the range of 0.9 ± 5% 

mJ/cm - 2.4 ± 5% mJ/cm . While Bi nanoclusters were obtained by raising the 

temperature of the grown sample up to ~ 450 K while exposing it to laser pulses of 

fluence 0.9 ± 5% mJ/cm2 - 2.4 ± 5% mJ/cm2. 

The dramatic change in the thermalization time was explained in terms of the 

modification in the electronic band structure of Bi as a result of cluster size change. 

Additionally, the diffraction peak position was monitored at different delay times and it 

was found that, for (012) planes, just after t = 0 ps, a contraction of the lattice in that 

direction is detected over 6 ps, followed by expansion over a long time period (~ 20 ps). 

At the same time, no abnormal change in the (110) diffraction peak was detected other 

than expansion at t > 0. Although this behavior is prominent and repeatedly observed in 

Bi nanoclusters, the Bragg peak ring size for Bi islands did not show any change in the 

measured Ad/d and needs careful and further study of the effect of different factors that 

may contribute to such behavior. These factors are, but are not limited to, annealing 
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temperature, laser fluence, cluster size distribution and growth direction. We have used 

the FWHM of the Bragg peaks to calculate the percentage change in molten layer 

thickness, which showed an increase with delay time in both samples, indicating the 

partial melting of the Bi sample due to thermal effects. 

This dissertation is organized as follows: 

Chapter 1 (this chapter) deals with crystal structure, physical properties, electronic 

properties and an overview of superheating of Bi as well as some literature review of 

previous work done on Bi thin film. 

Chapter 2 covers the basics of electron diffraction theory and how the electron 

diffraction is used to extract useful information about the lattice structure modification 

induced by ultrashort laser pulses. 

Chapter 3 explains in detail the experimental setup, which includes the operation 

of the femtosecond laser system, lab-made photoactivated electron gun (PAEG), vacuum 

system, data acquisition and data analysis. 

Chapter 4 covers the general mechanism of ultrashort photoexcitation of thin solid 

film. 

Chapter 5 covers sample preparation and studies the melting of Bi nanoclusters. 

The melting temperature of Bi nanoclusters was found to be less than that of the bulk as 

expected. Additionally, the lattice thermal expansion coefficient was calculated at two 

different directions and we found that, the Bi lattice is suffering from an expansion in one 

direction <110> till near the melting point, while along <012> direction, the lattice starts 

to expand followed by contraction at certain temperature. 
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In chapter 6, the time-resolved data is presented for Bi nanoclusters, in which a 

detailed study of the time evolution of Bragg peak relative intensity, strain (Ad/d) and 

percentage change in molten layer thickness as measured from the FWHM. 

In chapter 7, a time-resolved comparative study is made between the Bi islands 

and Bi nanoclusters. 

In chapter 8, conclusions and a summary of the work presented here are given, 

along with suggested future work. 
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CHAPTER 2 

THEORY OF ELECTRON DIFFRACTION 

2.1. Introduction 

Diffraction pattern analysis plays a very important role in a wide range of 

applications, especially in solving molecular structures, identifying compounds, and the 

fabrication of materials. Diffraction patterns from crystalline compounds can provide a 

lot of information about the atomic structure of the compound. However, many 

compounds can only be prepared in a powder form. Although a powder diffraction 

pattern yields less information than that generated by a single crystal, it is unique to each 

substance and is very useful for identification purposes. 

The diffraction pattern is a 2-D picture obtained by allowing a short-wavelength 

radiation to fall onto a material. If the incident radiation is scattered coherently (Thomson 

scattering) by the atoms making up the material, the resultant scattered radiation produces 

an interference pattern that is dependent upon the relative positions of those atoms. 

White X-ray radiation (deceleration radiation) was the first radiation used in 

crystal diffraction, after early theories of crystal structure were proposed in which 

crystals were postulated to be composed of regular sub-units. These theories led von 

Laue, in 1912, to suggest that a crystal could act as the "grating" needed for the X-ray 

experiment. Soon, the first X-ray diffraction patterns were produced [1,2]. Later, the 

same theories were used to determine crystal structure with electron diffraction 

(Thomson and Reid on 1927) [1,2]. Therefore, electron diffraction (ED) and X-ray 
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diffraction have been used for decades and are known as powerful tools for 

characterizing the structure of materials, including perfect crystals and defect structures. 

Although the diffraction principles are the same, there are major differences 

resulting from the nature of each radiation. The advantages of ED over X-ray arise from 

the extremely short wavelength (X) of the electron with respect to that of the X-ray. As an 

example, 200 keV electrons have X = 2.5x10" nm while Cu (Ka) radiation has X = 

2.5x10"1 nm, which is approximately two orders of magnitude less than that of electrons. 

Therefore, according to Bragg's law (2dsin9 = nX), this leads to smaller Bragg angles for 

electrons than for X-rays. As will be shown later, the difference in scattering angles has a 

major effect on the ways diffraction data are collected. Also, the ease of focusing 

electrons into a very narrow, high intensity beam, allows measurements of very small 

sample volumes, i.e. high spatial resolutions. That is why atom cluster can be detected. 

Another major difference is that, electrons interact with and are diffracted by the 

electrostatic potential of both orbital electrons and atomic nuclei, while X-rays interact 

with and are diffracted by orbital electrons. This means that electron scattering is much 

more efficient than for X-rays by a factor of 10 - 10 . Therefore the electron diffraction 

patterns are obtained in less time, and facilitate the study of interior structure of the 

matter down to cubic nanometers in size, which is beyond the capability of X-ray 

crystallography. 

2.2. Theory of Electron Diffraction 

2.2.1. De Broglie waves 

The wave-particle duality is a concept that was introduced by De Broglie in 

1924 in which all particles have wave-like properties [1]. The wave-like nature of the 
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particles is proven through the phenomenon of diffraction. De Broglie predicted that the 

wave-like behavior of material particles, such as electrons, can be treated as quanta of 

electron waves. According to his postulate, an electron with momentum p = mv, is 

associated with a wavelength A and both are related to each other through the following 

simple relation, A = h/p, where m is the electron mass the v is its speed. 

This implies that, 

h 
A = . for non relativistic case (E « E0), 2.1 

•\j2m0E 

h 
A = . for relativistic case ( E » E 0 ) , 2.2 

j2m0E(l + E/2E0) 

E = eV, (electron kinetic energy), E0= m0c
2 (rest energy), e is the electronic charge, Fis 

the accelerating voltage, m0 is the rest mass of the electron, and c is the speed of light in 

vacuum. 

Substituting numeric values for the constants in Eq. (2.2) 

, _ 12-26 A 2>3 

^V(l + 0.9788 xl(T6F) 

where Fis measured in volts. 

De Broglie's hypothesis was verified accidentally by Davisson and Germer in 

1927 when they were measuring the intensity of an electron beam reflected from the 

surface of nickel [2]. They noticed that the reflected beam intensity was maximum in a 

certain direction in space with respect to the incident beam, Fig. 2.1. The diffraction of 

electrons by a crystal is very similar to diffraction of X-rays of the same wavelength. 
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Incident electrons 
54 eV, A, = 1.67 A 

Polar plot 
intensity versus 
reflection angle 

Intensity 
maximum 

Fig. 2.1. Davisson and Germer experiment. The electron beam intensity is maximum at 
an angle 50° with respect to the incident beam. Reproduced from Ref. [2]. 

2.2.2. Laws of diffraction, the contribution of Laue, Bragg and Ewald 

The contribution of Laue, Friedrichand and Knipping in the discovery of the X-

ray diffraction in crystal is very well known as is the subsequent development by Bragg. 

Ewald introduced the concept of reflecting sphere (Ewald sphere) which provided an 

obvious way of interpreting the geometry of the diffraction patterns [2]. Later, after the 

wave nature of electrons was proposed by de Broglie and the experimental validation by 

Davisson and Germer, the same laws that have been used for X-ray diffraction are also 

valid for electron diffraction. 

2.2.2.1. Bragg's law of diffraction 

The lattice points, or the atoms, in the crystal are arranged in sets or 

families of parallel planes. These planes were suggested by Bragg and called Bragg 
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planes [2]. Fig. 2.2 shows a set of such planes of Miller indices (hkl) where dm is the 

perpendicular distance between these planes. 

If an electron beam of wavelength A, is incident on these planes with an angle 0, 

Fig. 2.2, the path difference of the reflected rays from adjacent planes will be; 

{AB+BC) = dmsinO 

These rays reinforce each other and interfere constructively when the path difference is 

an integral multiple, n, of wavelengths, X. Therefore, 

2 dhkisin6 = n A 2.4 

Where n is the order of reflection and Eq. 2.4 is known as Bragg's law of diffraction and 

it holds true either if AB = BC, Fig. 2.2.(a) or AB £ BC, Fig. 2.2.(b). 

Incident wave Diffracted wave 

Incidence angle a 

Atomic planes 

\ 

0 Diffraction angle 

Fig. 2.2. (a) Bragg's law where AB = BC = dm and the path difference (AB+BC) = Idhki 

sinO. (b) Bragg's law for a general case in which AB £ BC, again (AB+BC) = IdhusinO. 

Although the derivation of Bragg's law might be very simple, the problems involved in 

the electron diffraction are not. In fact, the relative intensities of the diffracted beams at 

different angles depend on [2]: 

(1) The electron distribution of the atoms in the unit cell, and 

(2) The number and the relative position of these atoms in the unit cell 
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The first one is related to the atomic scattering factor (form factor), and it is due 

to the fact that rays are mainly out of phase when they are scattered by different electrons 

in the atom. Therefore, these secondary scattered rays will, partially, destructively 

interfere with each other, and the amplitude of the scattered radiation by an atom 

containing Z electrons is less than that scattered by Z coincident electrons. 

The second factor mentioned above is related to the geometrical structure factor, 

i.e., the dependence of the relative intensity on the arrangement of the atoms in the unit 

cell [2]. To clarify the effect of this factor on the scattered intensity, we may consider 

Fig. 2.3. It represents the CsCl unit cell projected on the (001) plane. The CI atoms (big 

grey circles) are located at the corners of the unit cell and define the sides of the unit cell. 

The Cs atoms (small white circles) define another set of planes located halfway between 

the first set of planes. Therefore for a diffraction angel 6, the CI atoms scatter the 

incidents rays in phase with each other and similarly do the Cs atoms. But the path 

difference, A, between the scattered rays is less than one wavelength X. Therefore, the 

atomic array do not scatter in phase with each other and this leads to partial destructive 

interference, which results in a reduction in the amplitude of the diffracted waves, i.e. less 

than that for in phase scattering by all atoms. If A = X/2, we will have a complete 

destructive interference, because the scattered waves are out of phase. Therefore, the 

intensity of the diffracted rays is determined by the actual atomic array or the crystal 

structure of the solid [2]. 
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Fig. 2.3. The CsCl structure viewed along (100) plane. The scattered waves are in phase 
if they are scattered off the atoms of the same type. Destructive interference results from 
a phase difference of 2KA/X between the scattered waves from successive planes. 
Reproduced from Ref. [2]. 

2.2.2.2. Laue diffraction condition. 

The Laue diffraction condition utilizes the concept of reciprocal lattice and relates 

it to the diffraction of the incident rays. For the derivation of Laue condition, Fig. 2.4 is 

adopted, in which an electron beam of wave vector k and wavelength X is allowed to fall 

on a crystal and scattered by two atoms located at the lattice points O and P separated by 

a lattice vector p = a + b +c , where a, b and c are the crystal lattice vectors. If s and s' 

are unit vectors perpendicular to the incident and scattered wave-fronts respectively, then 

we can write; 
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Also, the path difference and the phase difference between scattered waves from these 

points are given respectively by; 

path difference = OOl-JPx=p. s'-p. s = p.(s'-s) 2.5 

phase difference = 0 = i-j-j P • (s' ~ s) 2.6 

where, Ak = (k' - k) 

Since the waves are scattered elastically, therefore, 

27T 
k = k' =k = ^ 2.7 

Fig. 2.4. Scattering of incident waves from two atoms located at two lattice sites O and P, 
with graphical details of phase difference calculation of the scattered waves. Reproduced 
from Ref. [2]. 

For the intensity of the diffracted waves to be maximum, constructive interference, the 

phase difference between the amplitude of the scattered radiation should be integral 

multiple of 2n, i.e., 

§ = p . Ak = 2% x integer 2.8 
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If Ak = Akx + Aky + Afczand recalling that p = a + b + c, then Eq. 2.8 can be written 

in a component form as follows, 

<j>a~Oi- Akx = 2nq 

0b = V. Aky= 2% r 2.9 

0C
 =

 c. Akz =2% s 

where q, r, and s are integers. That set of equations, Eqs. 2.9 are called the three Laue 

equations. 

These equations can be related to the reciprocal lattice by making use of the expression of 

the reciprocal lattice vector, {ahkl = ha* +kb* +lc*), as well as the following relations: 

~a. d*hkl~2Tih 

b. ahkl = 2nk 

~?- d'hkl = 2nl 

By adding these equations, 

a. dlu + b . d*hkl +c . d*hkl = (a + b + c). d*hkl =2n(h + k + I), i.e., 

p . d'hu = 27t x integer 2.10 

Comparing Eq. 2.13 to Eq. 2.11, we can write, 

M = 4 2.11 

Eq. 2.11 is called the Laue diffraction condition. The Laue diffraction condition 

—» 

can lead to Bragg's law of diffraction by considering Fig. 2.5 [1-3]. The vector Afc in the 

reciprocal latticeis simply the vector normal to the reflection plane. If 26 is the angle 

between kmdk', therefore, #is the angle of incidence and from Eq. 2.7 we get, 



= 2k sin<9 = (4;r/;i)sin6> 

l
m 

2n I d hkl 

Therefore, 

2dhkisin6hki = n\ 

For n = 1, first order diffraction condition, and in its general form, 

2dhki sinOhki = rik 
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2.12 

2.13 

2.14 

Reflecting plane 

Fig. 2.5. The change in momentum vector, A£in terms of the diffraction Bragg angle 
6. Reproduced from Ref. [2]. 

2.2.2.3. Ewald sphere (reflecting sphere) 

According to Bragg's law of diffraction where n - 1 

. l/dhkl 2nldm 
sin 9 — — 

Qhkl 

21X 4TT/A Anil 
2.15 

In Fig. 2.6, the triangle COP is the graphical representation of Bragg's law. Also, 

note that the incident beam is along the diameter of the circle in Fig. 2.6. Since the circle 
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has a radius of (2TC/X), then CO and CP represent the incident and the diffracted wave-

vectors, kandk', respectively, and 20 is the angle between them. Also point C is the 

center of the circle and represents the location of the (hkl) plane in the crystal [2]. That 

plane makes an angle 0 with k and k'. SinceOP = CP — CO = k' — k — Ak = d*hkl, 

and point "O" represents the origin of the reciprocal lattice of the crystal and the 

diffraction occurs only if the reciprocal lattice point lies on that circle. 

For a polycrystalline sample, the reciprocal lattice is the superposition of the 

reciprocal lattices of the individual crystallites making it. To clarify this point, consider 

one reciprocal lattice vector d*hkl. If the number of crystallites in the powder is large and 

randomly oriented, then the reciprocal lattice vector will point in all possible directions 

and the corresponding reciprocal lattice points lie on the surface of a sphere of radius 

\d*hki\-

It is obvious that there exists a separate sphere for each value of d*hkl so that the 

reciprocal lattice is a set of concentric spheres. Since the origin of the reciprocal lattice of 

each crystallite is located at O, each reciprocal lattice sphere cuts the sphere of reflection 

(Ewaldsphere) provided that \d*hkl\ < 2n/A, Fig. 2.7. 

2.3. Intensity of the Diffracted Beam 

According to section 3.2.1, the intensity of the diffracted beam depends on the 

atomic scattering factor and the structure factor. The first describes the results of 

interference effects within the scattering atoms, which is due to the finite size effects of 

the atom with respect to the wavelength. The latter arises from the interference effects of 

the radiation scattered form the atoms located at different locations in the unit cell. 
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Fig. 2.6. Graphical and vector representation of Bragg's law. Reproduced from Ref. [2]. 

2.3.1. The atomic scattering factor 

The electron atomic scattering factor, fe(9), is obtained after solving the time 

independent Schrodinger equation, [4] 

Diffracted beam 

Reflection sphere 

A 

Fig. 2.7. Ewald Sphere (reflection sphere). The reciprocal sphere is not shown. 
Reproduced from Ref. [2]. 
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HVk„=FWk„ 2.16 

Where His the total Hamiltonian of the incident electron-lattice system, 

( 1,2 \ 

H = -
\2m j 

V
2
+U + H 2.17 

U is the interaction potential between the incident electrons and the lattice and H0 is the 

Hamiltonian of the lattice. 

IfVfc,a, is the wave function of the interacting electron-lattice system, then 

[- (£)v 2 + u + H°\ Wk'«=E y*.« 2-18 

where E = Ek + EK is the total energy of the system (incident electron and the lattice) 

[4]-

Solving Schrodinger's Eq. gives, [4] 

m0xe
2
 A 

2h sin 9 *~
iy 

where, Z is the atomic number and Z0 represents the electrons coupled to the atom. For 

neutral atoms, Z = Z0. 

Note that for relativistic effects, i.e. high energy electrons, f(0) must be corrected by 

replacing m0 in Eq. 2.19 by m0 /(\-v
2
/c

2
)

112 

2.3.2. The geometrical structure scattering factor 

If the incident waves are reflected off a set of planes (hkl), the structure factor 

amplitude \F(hkl)\ corresponding to (hkl) is the reflection amplitude E&y divided by the 

amplitude of the scattered wave by a single electron, i.e., [4] 

\F(hkl)\ = Ehkl/Ee 
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F(khl) = Zjfj.e-tvj = Y.jfj.e-
if
i
Al 2.20 

Where, fi is the scattering factor fromyth atom, <p} is the phase difference between they'th 

atom with respect to that at the origin, r, is the position vector of they'th atom, Fig. 2.8. 

It follows from Eq. 2.20 that the intensity of the diffracted electron from (hkl) 

plane is given by: 

IhkiccF(hkl)
2 2.21 

But this equation is valid only if the atoms are fixed at specific positions in the lattice 

which is not the case in real world. 

Debye and Waller [5] found that due to the continuous thermal vibrations of the 

atoms, the intensity of the diffracted beam decreases with temperature and follows what 

is later called "Debye-Waller factor". 

2.4. Debye-Waller Factor 

The effect of temperature on the diffracted beam intensity was quantified 

according to Debye-Waller effect as follows: 

I(T) = I0e~
2M 2.22 

Where, I(T) is the intensity at T, I0 is the intensity at reference temperature T0, and M is 

given by, 2M = G
2
(Au

2
), 

where, (Aw2)is the mean square atomic displacement, and G is the change in the electron 

wave vector as a result of scattering. 

Au
2
 ) = m

2 ( f \ 

mkB v®lj 
2.23 

where,. 0D is Debye temperature, m is the atomic mass, ks is Boltzmann's constant, h is 
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x 

Fig. 2.8. The position of they'th atom relative to the origin is specified by the vector fj. 

Reproduced from Ref. [2]. 

Planck's constant divided by 2n. Therefore, from Eq. 2.22 we can see that the effect of 

temperature is to increase the mean square atomic displacement, which in turn decreases 

Debye-Waller factor (e~
2M

) and leads to a decrease in the diffracted beam intensity. 

According to Eq. 2.22, the Debye-Waller effect, i.e. more intensity drop, is more 

pronounced for small QD and large momentum transfer G. 

A direct application of the Debye-Waller factor is to estimate the transient surface 

temperature of a thin film as a result of laser irradiation, which is a process that occurs 

over a few picoseconds and cannot be monitored by regular means. This is done by a 
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proper calibration process. The calibration is done by following the temperature 

dependence of the diffraction pattern with a conventional heating stage, from which the 

surface temperature can be estimated as a result of laser heating. 

2.5. Transient Structure Dynamics 

In general, photoexcitation of the crystal lattice is reflected on the position and 

shape of the Bragg peaks. Depending on the laser pulse fluence, a lattice disorder or a 

structural phase transition can be detected. A universal behavior was observed as a result 

of this kind of interaction, which includes the displacement of the Bragg peak position, 

intensity decrease and modification of the full width at half maximum of the diffraction 

ring. Fig. 2.9 summarizes schematically the expected photo-induced changes in the lattice 

[6,7]. Lattice disorder accompanying the solid-liquid phase transition is a well-known 

behavior of the photoexcited crystal, which in turn loses its long range order and leads to 
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Fig. 2.9. Different mechanisms of lattice response to ultrashort laser pulses (a, c, e and g), 
and their effect on the detected diffraction pattern (b, d, f, and h). In the upper side of the 
graph, the blue circles represent the unperturbed lattice, and the red circles represent the 
perturbed lattice, (a) Thermal effects induce lattice disorder, which in turn is translated as 
reduced intensity in the diffraction peak (b) due to Debye-Waller effect, (c) 
Homogeneous lattice disorder can lead to lattice expansion or contraction, red peak or 
green peak in (d), respectively, (e) Creation of satellite peaks in (f) due to the generation 
of longitudinal acoustic phonons. (g) Excitation of homogeneous optical phonons can 
reduce the detected diffraction peak intensity (h) but do not affect the peak position. 
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dimming or disappearance of the Bragg peak depending on the liquid/solid ratio that's 

formed due to photoexcited lattice, Fig. 2.9.(a), (e). 

If the laser-lattice interaction resulted in homogeneous acoustic lattice 

deformation, therefore, a lattice contraction/expansion is observed and will be detected as 

a shift in the Bragg peak position. Inhomogeneous excitation of the lattice occurs 

whenever the crystal has excited parts adjacent to nonexcited parts, which may lead to the 

formation of side bands and consequently results in Bragg peak broadening. Crystal size 

reduction as a result of thin film of liquid formation can lead also to Bragg peak 

broadening. Both effects are summarized in the following equation: 

fixcosO = C*X/D + r\*sin0, 2.24 

where, P is FWHM of the Bragg peak, 9 is the diffraction angle, C is constant = 1 for 

most solids, X is the electron wavelength, D is the cluster size, and r\ is the strain. 

Instrumental effect and defects may also contribute to the Bragg peak broadening. 
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CHAPTER 3 

EXPERIMENTAL SETUP 

3.1. Introduction 

Time resolved electron diffraction experimental setup is basically used to monitor 

structure dynamics induced by ultrashort laser pulses. The time factor is introduced in 

that technique by using a simple delay unit. The purpose of this unit is to change the 

distance traveled by the probe/pump pulse to reach the sample with respect to that of the 

pump/probe pulse. This spatial variation results in a time delay between the pump and the 

probe pulses and enables us to probe in real time the transient dynamics that may occur in 

solids in a very short time scale as a result of the pump pulse. 

In the following, we will describe a pump-probe time-resolved high energy 

electron diffraction experimental setup, in the transmission mode that is used to monitor 

thin film structural phase changes in the picoseconds time scale. This experiment, 

transmission high energy electron diffraction (THEED), is performed in a system that 

uses a 120 fs laser pulses from Ti: sapphire laser system. The laser beam is split into two 

parts, one of which is used to pump the sample while the other part is frequency tripled to 

generate photo-electrons and used as a probe. A variable delay is introduced between the 

two beams. The integrity of the delay stage is crucial for obtaining accurate scans. The 

pump beam hits the sample where the high energy electron probe beam should cross. The 

sample is placed on an X-Y-Z-rotational stage in a high vacuum chamber. The probe 

electron beam is focused and steered by a set of electromagnets, located outside the 

vacuum chamber, to the samples, generates a diffraction pattern which is viewed on a 
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microchannel plate (MCP) detector and captured by an electrically cooled CCD camera. 

It is imperative to have a dependable evaporation system to prepare a variety of samples 

of different materials, single crystals or polycrystalline, single material or a complex 

structure of multilayers. Film diagnostic tools are helpful as well like an optical 

microscope, a transmission electron microscope (TEM), and atomic force microscopy 

(AFM). 

3.2. Photoactivated Electron Gun, Construction and Operation 

The photoactivated electron gun (PAEG) is the most important component of the 

system under consideration. In order to study the ultrafast processes of interest, we need 

the fastest possible probe that can be correlated to the pump beam. An electron pulse that 

is generated by a portion of the laser beam sounds like a good candidate for obvious 

reasons. On the one hand it can be focused into a very small spot, a few hundred 

micrometers, its intensity can be controlled, the trajectory of the beam can be 

manipulated, it is easily detected and imaged, its interaction with the sample is mainly 

with the lattice, and above all it is rather easily generated. On the other hand, space-

charge effect can effectively broaden the electron pulse and may ruin in some cases the 

resolution of the system. For these reasons, the distance between the cathode and the 

anode is supposed to be as minimum as possible, and the distance between the electron 

gun and the sample should be as small as well. 

The detailed layout of the electron gun and the corresponding picture is shown in 

Fig. 3.1. (a) and (b) respectively. 

The photoactivated electron gun is a lab-made unit. The photocathode is -250 A 

thick film made out of silver which is thermally evaporated on a sapphire window, using 
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Fig. 3.1 (a) Schematic diagram of the lab-made photo-activated electron gun as well as 
the set of air-cooled electromagnets used to focus and direct the electron beam towards 
the sample. The photocathode can be operated at -40 kV, but for experimental and system 
stability purposes we chose to operate it at -35 kV. (b) Corresponding picture of the 
electron gun assembly. 
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tungsten filament and high quality grade silver wire, in a separate vacuum chamber and 

transferred immediately in the ultrahigh vacuum chamber for testing and operation. This 

window was placed in a photocathode support electrode groove of thickness that is 

exactly equal to that of sapphire window [1]. Electric contact to the silver film was made 

by silver paint. In general, metals are used to fabricate the laser driven photocathodes 

because of the ease of preparation, high damage threshold, and large free-electron density 

[2]. The main drawbacks of metals are low quantum efficiencies and high work function 

(4-5 eV), which require UV photons for linear (one photon) photo-emission [2]. A 

grounded mesh located 3.8 mm away from the photocathode serves as extraction mesh 

followed by a grounded 150 |am pinhole for electron beam collimation and reshaping. 

The operation of a PAEG is based on the photo-electric effect. The laser beam is 

split into two parts, one of which is frequency-multiplied and aimed at the main 

component of the PAEG, the photocathode. The photocathode is biased at -35 keV, 

which will energize the photogenerated electrons; the electron beam then passes through 

the grounded extraction mesh followed by the grounded pin-hole (anode assembly), 

which is ideally imaged on the detector. An external set of electromagnets is air cooled 

and employed for focusing and steering the beam towards the sample. The schematic 

details of the e-gun design are shown in Fig. 3.1. 

Another important factor that helped in improving the electron gun performance 

and operation and led to eliminating arcing and electric discharge, is reducing the surface 

roughness of the stainless steel components used. This is done by polishing the 

components with diamond compound of different grades, !4 um - 6 urn, into a mirror 

finish shape. 
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The PAEG is mounted on an 8" port of the vacuum chamber opposite to the screen 

assembly. The screen assembly consists of a double Chevron-type microchannel plate 

(MCP) followed by a phosphorous screen. A CCD thermoelectrically cooled camera is 

used to record electron diffraction pattern. 

To vacuum 
pumps 

Sample 

Electron gun 

Probe pulse 

Diffraction pattern 
formed on the 
MCP screen 

Pump pulse 

Polarizing 
beam splitter 

Half wave-
plate 

Tripling 
crystal 

v«J(HB><H* 

Delay 
stage 

120 fs 
laser 

Fig. 3.2. Layout of the time-resolved electron diffraction setup. A 120 fs pulse is 
generated from Ti:Sapphire chirped pulse amplifier. The system is running at 1 kHz. In 
this setup, the laser pulse is divided into two parts; one is frequency tripled and used to 
generate photo-electron from photo-activated electron gun (probe beam), and the other 
part is used to excite the sample (pump beam). The synchronization between the two 
beams is granted since they are generated from a single beam. 

3.3. Vacuum System 

The ultrahigh vacuum chamber is custom made to fulfill our needs and made out 

of 304 stainless steel and shown in Fig. 3.2 and pictured in appendix C. To achieve the 
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ultrahigh vacuum needed to maintain the stable operation of the electron gun and other 

parts inside the chamber, two independent pumping stations are used. The first one is a 

300 £/s turbomolecular pump supported by a roughing mechanical pump. This pumping 

station is able to pump down the system to high 10" Torr range. This vacuum improves 

after bake-out. A manual high vacuum valve is used to isolate the turbo pumping station 

from the chamber. The second pumping station is 270 I Is ion pump, which is connected 

directly to the vacuum chamber and can pump down the chamber to the 10"9 Torr range 

and goes further to 10"1 range after baking the system. The two pumping stations do not 

operate simultaneously; the turbo station is turned on just after loading the new sample 

for faster pumping, then the ion pump is turned on after turning off the turbo station. 

3.4. Sample Heating and Manipulation 

The samples were properly mounted on a lab-made heating stage. The heating 

stage is properly fitted in the system and allows the operation of the system in the 

transmission mode. Additionally, the heating wires were carefully embedded and 

installed inside a thin and highly conductive metal sheet to allow a uniform heating of the 

samples under study. The heating stage is held on an X-Y-Z rotational stage manipulator. 

For temperature measurements we have used a K-type thermocouple that is imbedded 

inside the heater and as close as possible to the samples, 2 mm, for accurate temperature 

measurements. The thermocouple went through different calibration procedures to insure 

the accurate measurement of the sample temperature. As a result, the temperature 

measurement was accurate enough within an error of ± 1 °C. 
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3.5. Laser System 

To resolve in real time the picosecond strain pulses generated as a result of laser-

sample interaction, very short optical pulses are required. A good candidate for this 

purpose is the Ti:sapphire amplifier system, which is based on the chirped-pulse 

amplification technique [3,4]. Such systems are capable of producing optical pulses of 

width in the range of few tens of femtoseconds. However, for generation of reasonable 

and detectable strain that produces detectable deformation, a few mJ.cm"2 optical pulses 

are needed. These specifications are now available in commercial laser systems with 

reliable stability [5]. 

The laser system used in our experiment is described in the following section and 

the block diagram is shown in Fig. 3.3. 

In general, it consists of the following parts: 

- Femtosecond oscillator (seed laser) 

- Stretcher 

- Regenerative amplifier 

- Pump laser 

- Compressor 

3.5.1. Ti:sapphire oscillator (seed laser) 

Ti:sapphire lasers are good candidates whenever ultrashort optical pulses are 

needed. Ti:sapphire in these lasers is adopted over any other material because (a) it has a 

broad absorption band in the blue and green region, which facilitates the use of frequency 

doubled Nd:YLF laser system as a pumping source; and (b) it has tunable, near infrared 

broad emission band centered around 800 nm line. Additionally, this system has an 
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output of a few to tens of femtosecond laser pulses in the 800 nm wavelength range after 

being modelocked Modelocking is a technique used to have laser modes in the cavity 

with fixed phase relationship. 

< Seed Laser 
i '*" k 
Msk m. 

Pump Laser 

Spitfire 
Amplifier 
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-Is ** *r — T t _ , 
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M X i 11 
r »# tP-

Fig. 3.3. Block diagram for femstosecond laser; SDG II stands for synchronization and 
delay generator. Reproduced from spitfire manual. 

In the absence of modelocking, the light will travel back and forth between the 

two end mirrors and interfere constructively with itself, forming a standing wave in the 

laser cavity. The modes within each standing wave have no fixed phase relationship and 

consequently will oscillate independently. Consequently, the output from a multimode 

continuous wave laser is fluctuating due to the interference between the modes as shown 

in Fig. 3.4 and will be noise as with no fixed phase relation. Modelocking technique will 

manipulate the phases of these modes to get a useful output, Fig. 3.5. 
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The purpose of mode-locking is to create a phase relationship between the modes, 

resulting in completely constructive interference between all the modes at one point and 

destructive interference everywhere else. Therefore a light pulse will travel back and 

forth between the end-mirrors, giving a pulse output each time it is incident upon the 

semi-transparent output mirror. Techniques of mode-locking lasers fall into two broad 

categories: active mode-locking and passive modelocking [7], and are shown 

schematically in Fig. 3.6. The details of these techniques are beyond our interest, but can 

be found in more details in Ref. [7]. 

Fig. 3.4. Schematic of a multi-mode laser output, showing the fluctuations of its 
output. Reproduced from Ref. [6]. 
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Fig. 3.5. Modelocked laser output, (a) spectrum, (b) laser output in time domain. 
Reproduced from Ref. [6]. 
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3.5.2. Laser amplifier, (stretcher - regenerative amplifier - compressor) 

The output from the previously mentioned self modelocked oscillator can be as 

low as 65 fs laser pulses with 790 nm wavelength with high repetition rate and energy ~ 1 

nJ/pulse. Although Ti: sapphire crystal in the regenerative amplifier has a high damage 

threshold, it cannot directly amplify the femtosecond pulses from the oscillator, as this 

will damage the optical components in the amplifier as well as the crystal itself. To 

overcome this limitation and avoid the nonlinear effects that may be induced in the 

crystal, Chirped Pulse Amplification (CPA) [8,9] was adopted. CPA is a three step 

process shown schematically in Fig. 3.7. First, the ultrashort seed pulse from the 

oscillator is stretched. This stretching results in a reduction in the pulse peak power, 

which in turn reduces the probability of damaging the Ti:sapphire crystal. A stretcher is 

basically composed of a pair of gratings aligned such that the seed pulse components with 

longer wavelength will arrive earlier than shorter wavelength components; this results in 

a stretched pulse (pulse duration increased) traveling towards the amplifier, Fig. 3.8. 

The second step in CPA is an amplification process to stretch the pulse, the 

scenario of which is as follows. The output from pump laser, Fig. 3.3, is used to excite 

the Ti:sapphire crystal, creating population inversion just before the arrival of the 

stretched seed pulse. The seed pulse induces stimulated emission in the crystal and thus 

amplifies the pulse at the same wavelength and direction. 

The final step in the CPA, is to undo the process initiated by the stretcher, i.e., to 

arrange a special pair of grating such that the longer wavelength components of the 

amplified pulse travel longer distance through it than the shorter wavelength ones. The 
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output pulses are ~ 120 fs in width, and 800 nm wavelength and average energy 1.4 

mJ/pulse. The pulse repetition rate is tunable from 1 Hz to 1000 Hz. 

(a) Active Mode-Locking 

Amplifier Modulator 

(b) Passive Mode-Locking 

Amplifier 
Intensity 

dependent 
loss S 

Fig. 3.6. Schematic diagram showing the active and the passive modelocking [7]. (a) 
Active modelocking: in this technique, modulation of the radiation in the laser cavity is 
done by a signal derived from an external clock source, to the modulator, and matched to 
the cavity roundtrip time, (b) Passive modelocking, in which the laser radiation itself 
generates a modulation through the action of non linear device in the laser cavity, and it 
is thus synchronized to the cavity round trip frequency. Reproduced from Ref. [7], 
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Fig. 3.7. Schematic diagram of CPA technique. 
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Fig. 3.8. Grating-pair arrangement for seed pulse stretching resulting in a longer laser 
pulse that is seeded to the regenerative amplifier. 

3.6. Electron Diffraction Pattern Acquisition and Data Analysis 

The electron diffraction pattern of the sample under study is formed on an MCP-

phosphorus screen assembly. The pattern is captured by a computer controlled CCD 

camera and stored in a proper format for data analysis. 

A series of softwares were used, one after another, to radially average and analyze 

each diffraction pattern to extract the intensity, the position and full width at half 

maximum of each Bragg diffraction ring at different delay time, appendix H. 

3.7. Expected Improvement 

For time resolved electron diffraction experiments, the most important issues are 

related to the resolution of probe and the synchronization between the pump and the 

probe pulses. To improve the resolution of the electron probe pulses, I suggest the 

following for the built system: 

1- Minimizing the distance between the anode and the cathode, acceleration region. 
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2- Minimizing the distance traveled by the electron bunches from the anode to the 

sample, drift region. 

3- Transferring the electromagnets set inside the vacuum chamber between the 

electron gun and the samples. 
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CHAPTER 4 

THIN FILM PHOTOEXCITATION BY FEMTOSECOND LASER 
PULSES 

4.1. Introduction 

An atomic number of 83 of Bi has classified it to belong to group V elements in 

the periodic table with electronic configuration [Xe]4f
14

5d
10

6s
2
6p

3
. The two s states 

and the three p states are filled with the ten valence electrons in the Bi unit cell, (two 

atoms per unit cell, with 5 electrons per atom in the valence shell). But the band structure 

of Bi is not that simple, since the p bands penetrate the Fermi level and create hole 

pockets and electron pockets at T point and L point, respectively, Fig. 4.1 [1,4]. That 

penetration is not that deep, 27.3 eV for electrons and 10.8 eV for holes, and results in 

17 "\ 

charge carriers densities of 3x10 cm", which are quite small with a small electron 

effective mass along <111> direction (m* = 0.003 m0) [1,3]. 

Although Bi was classified as a semimetal (poor metal) with very low thermal 

conductivity, it has the highest Hall coefficient [2]. Lovett [5] mentioned that Bi may 

behave as a semiconductor or close to narrow band gap semiconductor due to the band 

gap that covers most of the Brillouin zone. 

It is instructive to compare the Bi rhombohedral electronic structure to that of the 

simple cubic Bi. This is because the two atoms per rhombohedral unit cell will be 

reduced to one in the simple cubic unit cell, and consequently, the even number of 

valence electrons becomes an odd number. This predicts the cubic unit cell of Bi to have 

metallic character, where the rhombohedral unit cell could be seen as an insulator, but the 

small overlap between the energy bands leads to the semimetallic behavior of Bi. 
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holes 
spin-orbit 

*~~ gap 

Fig. 4.1: Band structure of bulk Bi, (green lines, Ref. [6], red lines, Ref. [7]). Reprinted 
fromRef. [1]. 

Therefore, our previous discussion aimed at a very important point, which is, 

structural changes at the surfaces will have a great impact on the electronic structure [1]. 

Shick et al. [8] showed that the semimetal to semiconductor transition is possible in Bi 

and can be controlled by a minor change in the structure. A factor that may affect the 

crystal structure is the surface reconstruction. Since the atoms are covalently bonded in 

Bi, the surface atoms may not reconstruct and thus affect the surface electronic structure 

and enhance the semiconducting nature of the surface atoms, which are located on top of 

a semimetallic core atoms [4]. 
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4.2. Bi on the Reduced Dimension, (thin films, nanowires, and nanoclusters) 

The properties of the small structures like thin films, nanowires and nanoclusters 

can be very different from those of the bulk. For example, Bi nanowires were shown to 

have enhanced thermoelectric properties compared to that of the bulk [9]. The figure of 

merit (ZT), Eq. 4.1, that defines the thermoelectric nature of 7 ran Bi nanowires, oriented 

along <111> direction, was found to be ~ 2 at room temperature which makes it an 

efficient thermoelectric cooler. 

Ke+KL 

AV 
Where, S = is Seebeck coefficient and is defined as the change in the induced 

AT 

thermoelectric voltage (AV) due to a temperature change AT, a is the electrical 

conductivity, T is the temperature, Ke and Ki are the electronic and phonon thermal 

conductivity. 

The semimetallic nature of bulk Bi, arising from the C-V band overlap, makes it a 

poor thermoelectric material, and the contribution from the electron and holes to the 

Seebeck effect cancel out each other. However, the contribution from the holes can be 

diminished by increasing the band gap between the conduction and valence bands. This 

can be accomplished by combining Bi with antimony (Sb) to make Bi-Sb alloy and 

applying a strong magnetic field (1.7 T) to the Bi-Sb alloy [10]. But this field is high, 

which is not suitable for commercial use. The band gap can also be reduced, or 

completely removed, by reducing the size of the bulk material to the nanoscale. 

Confinement effects in Bi nanoclusters, nanowires and thin films can shift the lowest 
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energy states of the electrons above the highest energy states of the holes and force the 

semimetal-semiconductor (SM-SC) transition [11,12]. 

The SM-SC transition was predicted [13] at 77 K in 49 nm thick Bi wires grown 

along <012> and at room temperature for 16 nm thick wires, Fig.4.2. The reduced 

dimensionality creates energy sub-bands with separation "zT ", Fig. 4.3, while A0 is the 

conduction-valence band overlap, that's inversely proportional to the cluster diameter 

square"/) " and the electronic effective mass "w " according to; [14] 

n2h2 

A' = -
m *D2 

where h is Planck's constant divided by 2n. 

4.2 

I 
S-i 

60 

40 

20 

£ 

fl 

Semiconductor 

Temperature (K) 

III 

Fig. 4.2. Semimetal-semiconductor phase transition in Bi at different temperature and 
thicknesses. At constant temperature, Bi can be semimetal (phase III) or semiconductor 
(phase I) or undergoes SM-SC transition as the temperature is reduced from 300 to 0 K. 
Reproduced from Ref. [13]. 
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Therefore the electron effective mass as well as the cluster size have a direct impact on 

the C-V band separation. As the cluster size goes beyond a critical value, a gap is formed 

between the conduction and the valence bands, and the overlap no longer exists, forcing 

the SM-SC transition, which enhances the thermoelectric properties of Bi nanowires. 

Fig. 4.3. Schematic diagram showing the electronic band structure of bulk Bi (dashed 
lines) compared to that of the nanowires/nanoclusters (solid lines). A0 is the conduction-
valence band overlap. Reproduced from Ref. [13]. 

Quantum size effect is another consequence of the reduced dimensionality of Bi. 

Quantum size effect is dictated by quantum mechanics for particles with very small 

dimensions D compared to de Broglie wavelength A,B of the electrons that are trapped and 

reflected off the particle's boundary. This phenomenon was described by the quantum 

box model, which was introduced by Efros and Efros [15]. They described the motion of 
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the electrons to be restricted in all directions by impenetrable walls. This model also 

describes the dependence of the energy gap (Eg) on the particle size (D), Eg a —j- • 

Another consequence of the quantum size effect is that the particles have atomic 

like energy levels, not continuous energy bands like bulk material. This leads to discrete 

absorption/emission spectra in contrast to the continuous spectrum of the bulk. 

The early work of Ogrin et al. [16] on Bi thin film grown in <111> direction, was the 

spark that has started the fire of the field of research of quantum size effects in thin films. 

They were able to detect the oscillations in the transport properties induced by the 

quantum size effect as a function of the Bi film thickness. 

In summary, reducing the dimensions of the Bi clusters will change the electronic 

structure due to the quantum size effects. Additionally, the surfaces of the small 

structures can possess different electronic properties from the bulk, which makes them 

technologically important [1]. 

4.3. Ultrafast Laser Excitation and Dynamics in Bi Nanoclusters 

In general, light pulses with sufficient energy can excite electrons to higher 

energy states which relax to their original state through different processes. Upon 

electron excitation, holes are created in the original energy band. The photoexcitation of 

electrons can be classified as a direct or indirect process. 

The direct excitation process is not accompanied by a change in the wave vector, 

while the indirect process is accompanied by a wave vector change due to emission or 

absorption of phonons where the conservation of total system momentum still holds. This 

electronic excitation is followed by a de-excitation process through which the electrons 

may go through different scattering processes, electron-electron and electron phonon 
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scattering processes, before they recombine with the holes in the valence band. The 

scattering processes are either elastic, where the total energy and the momentum of the 

system are conserved or non elastic, which is accompanied by creation or annihilation of 

phonons to maintain the conservation of the total energy of the system. In some cases, the 

response of photoexcited lattice is complex, and in the next section, I will go over some 

basic and common lattice dynamics as a result of ultrashort laser excitation. 

4.3.1. Electron and lattice dynamics induced by ultrafast laser pulses 

As mentioned earlier, following the photoexcitation with ultrashort pulses, the 

lattice may go through different relaxations processes prior to equilibration. The different 

pathways that can be identified during carrier excitation and relaxation are; (i) carrier 

excitation, (ii) thermalization, (iii) carrier removal and (iv) thermal and structural effects. 

Fig. 4.4 summarizes the different time scales characterizing these processes, while Fig. 

4.5 shows these processes in action [17,18]. It is worth noting that these processes are not 

happening one after the other, but rather overlap in time. As an example, thermalization 

of charge carriers occurs during carrier-lattice thermalization. Additionally, non-thermal 

effects can lead to metastable structures over a very short period of time while the lattice 

temperature is still almost constant. 

(i) Carrier excitation 

The probability of carrier excitation by single photon absorption is high as long as 

the incident photon energy is higher than the bandgap of the absorbing medium. For 

indirect bandgap SC, excitation by single photon absorption is possible, but this process 

nictitates the presence of a phonon for momentum conservation. On the other hand, 

multiphoton absorption on the right side of Fig. 4.5.(a) is possible in direct band gap SC 
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if the incident photon energy is less than the band gap. In metals, free carrier excitation 

increases their energy but not their energy density, Fig. 4.5.(b). The only way to increase 

that number is through impact ionization, Fig. 4.5.(c). 

Carrier • • Photon absorption 

excitation • • • • • • Impact ionization 
M B Carrier - carrier scattering 

B B B B B i Carrier - phonon scattering 
B B B B B B B B I Auger recombination 

Carrier Radiative recombination B B B B B B B B B B B B B B B B i 
removal Carrier diffusion B B B B B B B B B B B B B B i 

Ablation and evaporation 

iffusion 

i0"16 i(r15 io -14 io"13 io -12 i o ' u io'1 0 io"9io"8 io"7 io-6 io'5 

fs ps ns us 
time scale (s) 

Fig. 4.4. Time scale of different processes induced in the lattice as a result of ultrashort 
laser pulse excitation. The dark bars show an approximate time scale of occurrence of 
these processes. Reproduced from Ref. [17]. 

(ii) Thermalization 

Two regimes are considered following charge carrier excitation, namely, carrier-

carrier and carrier-phonon scattering, through which thermalization of excited carrier 

occurs. In the carrier-carrier scattering process, two carriers are involved, Fig. 4.5.(d), 

and the total energy of the excited carriers are conserved as well as their number. In the 

carrier-phonon scattering process, the total energy and momentum of the system is not 

conserved and therefore a phonon is created or annihilated to account for the energy lost 

during this process. This is illustrated in Fig. 4.5.(e) if it is an intraband scattering and in 

Fig. 4.5.(f) for interband scattering. 
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Again, during the carrier-phonon scattering process, the total number of carriers is 

conserved, but their energies decrease as a result of phonon creation, which in turn gives 

off its energy to the lattice. Carrier relaxation usually occurs over a few hundred 

femtoseconds, while several picoseconds are needed for carriers and lattice to be in 

thermal equilibrium, and the material is in a thermal state characterized by temperature T. 

This temperature rise causes the lattice to expand, which in turn generates acoustic 

coherent phonons propagating into the bulk [19] and stresses the lattice. 

(iii) Carrier removal 

Many processes are considered and contribute to the removal of excited charge 

carriers that are not yet in thermal equilibrium with the lattice, and consequently its 

density reduction in the excitation region. These processes are, but are not limited to, 

electron-hole recombination and/or diffusion into deeper region in the sample and leaving 

the area of excitation. Electron - hole recombination may be radiative or non radiative in 

nature. In radiative processes, opposite to excitation, a photon is emitted that carries the 

excess carrier energy, Fig. 4.5.(g). While in nonradiative recombination process, which 

includes Auger recombination, an electron recombines with a hole and the excess energy 

will be carried out by another electron and excited to a higher energy level, Fig. 4.5.(h). 

Excited carriers can be removed from the excitation region by diffusion into the sample, 

Fig. 4.5.(i). 

(iv) Thermal and structural effects 

Thermal and structural effects come into the picture when the charge carrier and 

the lattice are in thermal equilibrium and the final lattice temperature is determined by the 

initial energy deposited by the ultrashort laser pulses into the sample. Melting or 
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vaporization can occur if the lattice temperature exceeds the lattice melting or boiling 

temperature, respectively. In some cases, the material preserves its solid integrity at 

temperatures above its melting point, and in this case the lattice is said to be superheated 
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Fig. 4.5. Schematic of the different electron and lattice processes induced by ultrashort 
laser pulses: a) single and multiphoton absorption, b) Carrier absorption, c) Ionization, d) 
Carrier distribution before scattering, e) Carrier-carrier scattering, f) Carrier-phonon 
scattering, g) Radiative recombination, h) Auger recombination, i) Diffusion of excited 
carriers, j) Thermal diffusion, k) Ablation 1) Resolidification or condensation. 
Reproduced from Ref. [17]. 
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until liquid and gas sites start to nucleate at the surface, Fig. 4.5.(j). Ablation is a 

consequence of partial removal of lattice ions, atoms, and clusters at high excitation 

fluence, Fig. 4.5.(k). If the photoexcitation of the material did not induce any phase 

transition, the final temperature of the material recovers to a value determined by the 

surroundings over a microsecond time scale. At low excitation fluence, the sample can 

recover (resolidifies), Fig 4.5.(1), after melting when its temperature becomes less than 

the melting point. In some cases, the sample does not maintain its original structure after 

being photoexcited by ultrashort laser pulses [20, 21]. 

Although the processes included in ultrafast photoexcited material are complex 

and each process can stand as a different topic of study, the energy exchange process 

between excited carrier and the lattice can be simplified and described in terms of either 

the one or the two temperature model based on the laser pulse duration relative to the 

lattice equilibration time [22, 23]. 

4.3.2. The one and the two temperature model 

Upon photoexcitation with ultrashort laser pulses, the first thing to respond are the 

electrons, due to their low specific heat capacity compared to that of the lattice. Carrier-

carrier scattering relaxes the excited carriers, and their temperature can be characterized 

by Te and follow Fermi-Dirac distribution. This process occurs over tenths of 

picoseconds, while the lattice is still at its original temperature 7/ following Bose-

Einestein distribution. This process summarizes what is known as the two temperature 

model (TTM), and usually considered especially when the excitation source is very short 

pulses with duration texc less than the carrier-lattice thermalization time tiatt. 
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In this case, the system is characterized by a set of coupled equations in terms of Te and 7/ 

[22]. 

C.(T.)^ = K,??f--g(Tt-Tl) + S(z,t) 
dt dz

l 

c^gy.-T,) 
dt 

4.3 

4.4 

Where the subscripts e and / stand for electrons and lattice, respectively. C is the heat 

capacity, Ke is the thermal conductivity of electrons, S(x,t) is the laser source term given 

by Eq. 4.6 and g is the electron-phonon coupling factor estimated by, [23] 

n
2
mn C 

g 

->2 

6r. 
4.5 

e-p 

where me is the electron mass, ne is the electron density, re.p is the electron-phonon 

collision time and cs is the speed of sound in bulk material calculated by, [24] 

cs = 

where B is the bulk modulus and pm is the density. 

Assuming the absorption coefficient to be constant and using the definition of optical 

penetration depth 8 = 1/a, the laser source term S(z,t) in units of W/cm"3 is given by;[22] 

0 9 4 / 
S(*,0 = ^ - r - ( l - * ( 0 ) e x p 

tPs 
•2.77 

Z 

~8 
4.6 

where J" is the laser fluence in J/cm ; tp is the pulse duration; R is the reflectivity, and a is 

the absorption coefficient. 

Note that heating the sample with ultrafast laser pulses raises the electron 

temperature up to few thousand Kelvin; therefore, Ce cannot be treated as constant 
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because it is temperature dependent. Additionally, the carrier diffusion is usually ignored 

if the sample dimensions are comparable or less than the optical penetration depth of the 

excitation source. 

On the other hand, if the laser pulses are long compared to the equilibrium time, 

then the excited carriers will relax over a very short period of time comparable to that of 

the excitation pulse duration. In this case, the temperature of the carriers is given by; [23] 

dT d
2
T 

Eq. 4.7 is the known heat diffusion equation with the heat source term S to supply energy 

to the system over the pulse duration. 

4.3.3. Mechanism of coherent phonon excitation 

Although the methodology used to excite coherent lattice vibrations is the same, 

the generation mechanism of these vibrations is different in different materials, 

superconductors [24,25], semiconductor [26-28] and semimetals [29]. For example, in 

semimetals a large modulation in the reflectivity was attributed to the modification in the 

electronic band structure resulting from the displacive excitation of coherent phonon 

mechanism (DECP) [30,31]. 

The sample response to the femtosecond laser pulses is a collective contribution 

from the change in excited carrier density, change in carrier temperature, and change in 

coherent phonon amplitude [30]. The contribution from the later term can be recognized 

and separated from the other contributions because of its oscillatory nature that is 

superimposed on an exponentially decaying term, (the reader can refer to page 50 Ref. 

[30] for more details about the graphical representation of this effect). This term arises 

from the DECP and the following evolution of the lattice. 
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The DECP mechanism was adopted over any other mechanism, such as impulsive 

stimulated Raman scattering (ISRS), because in the first, the coherent phonons are 

excited after absorbing a significant amount of energy from the exciting source 

frequency, while in the latter, no absorption is required because the excitation source has 

energy less than the bandgap of the medium [32]. Additionally, the coherent phonon 

amplitude Q(t) of displacive nature has cos(co0t) dependence while in ISRS it has sin{co0i) 

dependence, where co0 is the frequency of the excited optical phonons with symmetry Ag 

[30]. 

Bi has three active normal modes of vibrations, (3N-M, where N = 2 is the 

number of atoms/unit cell and M = 3 is the number of acoustic modes). One of these 

modes has Aig symmetry (totally symmetric breathing mode) and the other two have Eg 

symmetry (doubly degenerate), Fig. 4.6. All of these modes (Aig and Eg) are Raman 

active with amplitude ratio 4:1 [30]. 
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Fig. 4.6. Bi lattice structure showing the optical phonons vibrational direction with 
symmetry Aig and Eg. Reproduced from Ref. [34]. 

Therefore, in DECP theory, the photoexcited lattice with ultrashort laser pulses 

increases the density of excited carriers in the conduction band through the interband 
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transition, and/or raises the electron gas temperature through photon absorption. The 

impact of these effects is to displace the equilibrium atomic positions due to the change 

in the atomic bond strength, which eventually launches large amplitude coherent phonons 

of symmetry Aig of displacive origin [27,31]. Consequently, the frequency of these 

phonons is now less than that before the excitations due to the softening of the bond 

strength. 10 ps later, these phonons restore its original frequency [33]. 

In summary, excitation and de-excitation processes occur over a very short 

periods of time, picoseconds and sub picoseconds, and to monitor the dynamics of 

excited states as a function of time we need a proper setup with temporal resolution 

similar or better than the time scale of these processes. That's why pump-probe setup 

based on ultrashort laser pulses is now used extensively to monitor these dynamics. 
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CHAPTER 5 

OBSERVATION OF LATTICE CONTRACTION WITH HEATING 
OF BISMUTH NANOCLUSTERS NEAR ITS MELTING POINT 

5.1. Introduction 

Melting and solidification are amongst the most dramatic phase change exhibited 

by a condensed matter. Although these phenomena are common processes that everyone 

may encounter on a daily basis, sometimes it is difficult to answer a very simple question 

regarding such phase transitions, such as how does a condensed matter turn into liquid or 

solid? 

The answer to this question stimulated, for decades, many scientific groups who 

became involved theoretically and experimentally [1-11] and put forward their utmost 

efforts to answer this question in order to clarify the pathways of the melting and 

solidification processes. In this chapter we review and summarize, to our best, some of 

these efforts as well as general information on the melting of solids under various 

conditions. 

5.2. Melting, Is It Abrupt or Continuous? 

Melting of a solid matter usually occurs when it is heated to a specific 

temperature, Tm. Although melting of a certain substance will occur at a specific 

temperature, Tm, other substances may retain their solid phase integrity at temperatures 

higher than Tm (superheating). 

To answer the question, how does a solid melt?, different points were considered. 

The first one dealt with melting from a very simple point of view. It was mentioned that 

solid-liquid phase transition is first order in nature, a discontinuous phase transformation. 
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Accordingly, there is no intermediate state involved and hence it is impossible to extract 

any detailed information on the progress of a melting transition. Another point of view 

dealt with melting as a continuous or nearly continuous phase transition. 

The most recent studies adopted the continuous melting point of view and it is 

believed that it is a characteristic of bulk materials and affected by the material 

boundaries. Classical thermodynamics has helped in understanding the process of melting 

by relating the Gibbs free energy of the solid (Gs) to that of the liquid (G/). Therefore, the 

melting temperature, Tm can be regarded as the temperature at which the solid and the 

melt are in thermodynamic equilibrium while keeping the pressure constant. In this case, 

the Gibbs free energies are equal, i.e. G^(P,T) = G/(P,T), Fig. 5.1. Although Gibbs free 

energy is continuous during the melting process, the entropy, internal energy, volume, 

and heat capacity are discontinuous. 
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Fig. 5.1. Temperature dependence of Gibbs free energy of a simple substance near its 
melting point. Reproduced from Ref. [12]. 

The contribution of thermodynamics to the understanding of melting is undeniable, but 

the melting process cannot be completely visualized without considering the size of the 



82 

sample under consideration. This is due to the direct impact of the cluster size on the 

melting point, as mentioned in chapter 1 of this dissertation. In general it was found that 

the melting point is inversely proportional to the cluster size [13-17]. This behavior was 

confirmed experimentally in many elements, including gold [18,19], lead [20], and 

bismuth [21-25]. 

The elastic properties of nanoclusters also show dependence on the cluster size. 

The magnitude of the thermal expansion coefficient was found to have inverse relation 

with the cluster size for some elements, e.g., copper [26] and selenium [27], and remains 

constant for some other elements, e.g., palladium [27]. Another study showed that 

palladium nanoclusters have the same behavior as copper and selenium nanoclusters [28]. 

Other factors that affect the physical properties of the nanoclusters are their morphology 

and history of heat treatment [27,29]. 

In this chapter, I studied the effect of reduced dimensionality on the physical 

properties (melting temperature and elastic properties) of Bi nanoclusters. A transmission 

high-energy electron diffraction (THEED) was used to study the thermal expansion of 

annealed Bi nanoclusters from room temperature up to ~525 ± 6 K. This was 

accomplished by monitoring the diffraction pattern of thermally evaporated Bi 

nanoclusters as a function of temperature after annealing the grown samples by 

femtosecond laser pulses at different temperatures. 

The temperature-dependent Bragg peak intensity, ring position, as well as the 

diffraction full width at half-maximum (FWHM) were monitored for (012) and (110) 

Bragg peaks. High resolution TEM was also used to characterize the as-evaporated and 

the annealed Bi nanoclusters. 
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Details of the experimental setup and data analysis are described in chapter 3 and 

appendices C - H. 

5.3. Experiment 

Bi noncontinuous film of average thickness 5 nm was grown by thermal 

evaporation on TEM grids coated with < 10 nm thick carbon layer. Bi chunks (99.999% 

pure) were loaded into a tungsten boat. The base pressure of the evaporation chamber 

was in the low 10"6 Torr range. The evaporation rate was controlled by varying the 

current through that boat. A quartz crystal thickness monitor was used to measure the 

deposition rate and thickness. Evaporation was done at room temperature at a rate of ~ 

0.5 As"1. 

A transmission electron diffraction system built in our lab was used to study the 

melting of the Bi nanoclusters in the temperature range 300 ± 6K - 525 ± 6 K. The 

THEED system is operated in an ultrahigh vacuum chamber (low 10"9Torr). The 35-keV 

photoactivated electron gun, used in electron diffraction, is capable of generating a well-

collimated electron beam with beam diameter 745 ± 54 um, measured at the sample 

location. A microchannel plate (MCP) followed by a phosphorous screen is used for 

diffraction pattern detection, and a computer-controlled, charge-coupled device camera is 

used to capture the diffraction pattern for analysis. The electron beam was steered 

towards the sample by a set of electromagnets located outside the UHV chamber. Laser 

pulses from a 120-femtosecond Ti:sapphire laser operated at a wavelength of 800 nm, 

and a frequency of 1 kHz was used for nanocluster annealing. 

The samples were mounted on a lab-made heating stage designed to operate in the 

transmission diffraction system. For temperature measurements, we used a K-type 
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thermocouple that was mounted inside the heater, about 1-2 mm away from the sample. 

The thermocouple was put through a calibration procedure to accurately measure the 

sample temperature. This was done by measuring the boiling point and the freezing point 

of distilled water and the melting point of a small Bi chunk. The temperature 

measurement accuracy is within ±1 K. 

The as-deposited Bi sample was heated from room temperature up to 450 K 

slowly, ~ 3 K/min, while exposing the sample to femtosecond laser pulses with a fluence 

of- 0.8 mJ/cm . At 450 K the sample was further heated by the laser pulses for about 20 

s with the laser operating at 1 kHz. This resulted in the melting of the as-deposited Bi 

non-continuous film and its quenching to form Bi nanoclusters. 

5.4. Results and Discussion 

5.4.1. Morphology and diffraction pattern indexing of the grown bismuth 

nanoclusters 

The fabricated Bi nanoclusters were studied by THEED and high-resolution 

TEM. Figure 5.2 shows the diffraction pattern and the TEM images of the as-deposited 

Bi 5 nm film (a), after thermal annealing up to 525 K (b), after annealing with 

femtosecond laser pulses at a fluence of- 0.8 ± 5% mJ/cm with 1 kHz repletion rate (c), 

and thermally annealed at 450 K while simultaneously exposing to the laser pulses (d). 

The stability of the system, which is determined mainly by the laser output power, was 

checked from time to time during collecting the data and in general was found to be - 2 

% but never exceeded 5%. The diffraction patterns were taken at room temperature. 

Neither laser annealing nor thermal annealing alone changed the morphology of the two-

dimensional islands into nanoclusters. But simultaneous thermal annealing of the grown 
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Bi, while exposing it to femtosecond laser pulses, resulted in nanocluster formation due 

to melting and subsequent quenching of the melt. Figure 5.3 shows the length distribution 

of the major axis and the minor axis of the nanoclusters shown in Fig. 5.2.(d). The height 

analysis of the as-deposited and the annealed samples surface could not be checked due 

to the limited resolution of the atomic force microscopy system. 

For the as-deposited sample, the Bragg peak (110) is much more intense than the 

other observed peaks, which reflects a preferred growth orientation. Upon tilting the 

sample a few degrees off the normal incidence of the electron beam with respect to the 

sample surface, an arc-like diffraction pattern is detected, which indicates the fiber 

texture of the as-evaporated Bi film. With annealing, there is no observed new Bragg 

peaks in the diffraction patterns, shown in Figure 5.2.(b) - (d). However, the intensity of 

the Bragg peaks changed. This indicates that annealing did not change the structure of the 

grown sample, but caused reorientation. The Bragg diffraction rings were identified, as 

shown in Fig. 5.4, and they all belong to the hexagonal Bi structure that precludes the 

presence of oxide. Figure 5.4.(b) shows the intensity of the diffraction rings as a function 

of the momentum transfer S = 2n/d (A"1) obtained after radial averaging of the intensity 

in Fig. 5.4.(a). Comparison of the diffraction intensity before and after annealing 

confirms crystal reorientation with annealing. 

An aluminum thin film was used for calibration of the diffraction camera length 

and identification of the Bragg diffraction peaks. The simple hexagonal structure with 

lattice parameters \a\ = \b\ = 4.54 A and |c| = 11.80 A was used to identify the ring 

pattern of the samples. 
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Fig. 5 2. HRTEM images and the corresponding diffraction pattern of (a) as-deposited Bi 
5 nm film,(b) after thermal annealing up to 525 K, (c) after annealing with femtosecond 
laser pulses at a fluence of ~ 0.8 mJ/cm2 with 1 kHz repetition rate, and (d) thermally 
annealed at 450 K while simultaneously exposing to the laser pulses. 
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Fig. 5.3. The length distribution of the major axis and the minor axis of the nanoclusters 
shown in Fig. 5.2.(d). 

High-resolution transmission electron microscopy images of as-deposited and 

annealed samples are shown in Fig. 5.5.(a) and 5.5.(b). The as-deposited samples show 

flat islands, while those annealed thermally and simultaneously with the laser show 

nanoclusters. We will refer to these samples as nanoclusters. Multi-grains are observed in 

some of these nanoclusters, as shown in the high-resolution TEM images in Fig. 5.5.(b). 

The Bi lattice parameters a and c and the unit cell volume V were calculated from Eqs. 

5.1 -5.3. The values obtained are a = 4.6 ±0.1 k,c= 11.6 ±0.1 A and V= 210.7 ± 11.2 

A3, in agreement with the parameters reported elsewhere [30]. The calculated value of the 

lattice constant c is less than the reported value for bulk Bi, which can be attributed to the 

stress imposed on the crystal lattice by the surface tension of the surface atoms in the 

nanoclusters. 
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Fig. 5.4. (a) Diffraction pattern of as-deposited Bi and annealed sample and (b) the 
corresponding radial average as a function of momentum transfer S = 27j/d. 
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Fig. 5.5. HRTEM images of (a) as-deposited and (b) annealed samples. The as-deposited 
samples show flat islands, while those annealed thermally and simultaneously with the 
laser show nanoclusters. 
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 5 ' 2 

V = a
2
xc*smy, / = 120° 5.3 

where, d\ and d2 are the interplanar spacing and (hi, ki, /;) and (J12, k,2, h) are Miller 

indices [31]. 

The total energy E deposited into the sample and Bi parameters are used to 

estimate the sample temperature rise AT solely due to femtosecond laser pulses with the 

help of equation 5.4. This results in AT- 93.4 ± 9.3 K, where m is the sample mass, and 

Cp= 122 J-kg .̂K"1 is the specific heat capacity of the bulk Bi at constant pressure. 

AT = —?— 5.4 
mxCp 

5.4.2. Debye-Waller factor 

The root mean square displacement of the atoms in nanoclusters is directly related 

to the intensity of the Bragg peak through the Debye-Waller factor: 

I(G,T) = I0(G,T) xexp(-2xMG) 5.5 

whereG-h(kf-kt)is the momentum transfer vector of the scattered electrons,[32] and 

the exponential term is the Debye-Waller factor, where 

„ , , / 2\ 16x;r2xsin2# r , 
2MG=[uG)x — 5.6 

A is the electron wavelength, 9 is the scattering angle, I0(G, T) is the scattered intensity of 

a rigid lattice, and luG \ is the rms vibrational amplitude in the direction of the scattering 



91 

vector G. The rms vibrational amplitude can be calculated using the harmonic oscillator 

model in the high-temperature limit, [33,34] 

x c
'i MxkB e

2
D 

where 0D is the Debye temperature, M is the atomic weight of the sample, T is 

temperature, N is Avogadro's number, ks is Boltzmann's constant, and h is Planck's 

constant divided by In. Therefore, from the diffraction intensity dependence on the 

temperature, we can estimate &v of Bi nanoclusters shown in Fig. 5.2.(d). 

Figure 5.6 shows the Bragg peak intensity at temperature Tnormalized to that at T 

= 323 K. To estimate the error in intensity measurement, we measured the intensity of the 

diffraction ring pattern at room temperature for over ~ 60 minutes. We found that the 

intensity fluctuation did not exceed 5%. Results also showed that the recrystallized Bi 

nanoclusters were not affected by successive heating and cooling cycles and the 

diffraction peak intensity of recrystallized clusters decays with temperature according to 

the Debye-Waller factor up to T = 464 ± 6 K, as shown in Fig. 5.6. The temperature-

dependent natural log of the normalized Bragg peak intensity up to T = 464 K was used 

to calculate Debye temperature of the Bi nanoclusters and found to be @u = 53 ± 6 K. 

This value is consistent with the reported Debye temperature of Bi thin film, 6fo = 42.0 ± 

9 K, [35] and 47 ± 5 K, [36] which is less than that for the bulk 0D,B= 120 K. Since the 

atoms in reduced dimensionality have a smaller coordination number of surface atoms 

and, consequently, have thermal vibrational amplitudes greater than that of the bulk, it is 

expected that &D(n<mociusters) < ®D,B- The Debye temperature was also calculated using the 

(110) diffraction order and was found to be = 86 ± 9 K. The direction-dependent Debye 
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temperature reflects the anisotropic nature of Bi. The reduced Debye temperature 

calculated from the (012) diffraction order compared to that from the (110) is indicative 

of the weaker atomic bonding in the <012> direction. 

-1 .6 T ' ' ' ' 1 ' ' ' 1 1 > 1 1 1 1 r-l—i 1 1 1-

300 350 400 450 500 550 

Temperature (K) 

Fig. 5.6. Temperature dependence of the natural log of intensity at temperature T 
normalized to that at temperature = 323 K, (Ij/I0), of the (012) and (110) Bragg peaks of 
Bi nanoclusters is shown in Fig. 5.2.(d). The inset shows the diffraction pattern at 
different temperatures. 
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5.4.3. Bragg peak position 

The Bragg peak position r is related to the interplanar spacing d for the set of 

planes producing the Bragg peak. Therefore, the relative change of the Bragg peak 

position (Ar/r) measured in the diffraction pattern equals the relative change of lattice 

plane spacing (Ad/d) according to Bragg's Law. 

The temperature dependence of (Ad/d) for Bi (012) and (110) planes is shown in 

Fig. 5.7. The data presented in Fig. 5.7 show a crossover in lattice spacing of Bi (012) 

planes over the temperature range T ~ 499 - 511 K. At T ~ 499 K, the thermal expansion 

coefficient a in the <012> direction changes from +14.4 ± 2.9xlO"6K"1 to -0.8 ± 0.3 xlO"3 

K"1, showing lattice contraction rather than expansion near melting. On the other hand, 

the Bi (110) planes did not show any abnormal behavior up to 525 ± 6 K with thermal 

expansion coefficient of 13.7 ± 2.5*10"6K"1. 

Although the data presented in Figs. 5.6 - 5.8 are for one scan, all different 

physical parameters mentioned here were the result of the average of six different scans. 

The error in each calculated value is the standard deviation calculated from those scans. 

The thermal expansion coefficient of nanocrystals is known to depend on their 

size and is larger with the reduction of size [37]. Moreover, experimental and theoretical 

studies showed that the lattice expansion is induced by the excess volume at grain 

boundaries due to relatively disordered atomic arrangements [38]. The nanoclusters 

studied here have a size distribution as shown in Fig. 5.3. Also, some nanoclusters have 

multigrains. The measured change in the lattice thermal expansion coefficient is that of 

the distribution of the nanoclusters since diffraction experiments cannot distinguish 

between the different compositions of the nanocluster distribution. 
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Many factors may compete and result in such an anomaly observed in the Bi 

<012> direction. Some of these factors are surface stress, surface phonons, defects, as 

well as finite size modification of the lattice potential [39,40]. Also, structural phase 

transitions can lead to similar behavior, but it was excluded in our case, since the lattice 

preserves its structure and no extra diffraction rings were observed up to the complete 

melting of the nanoclusters [39,40]. The negative expansion coefficient, as observed in 

Fig. 5.7, was previously explained in terms of the effect of electronic excitation on the 

equilibrium lattice spacing [39,40]. 

J 3 

J3 

< 

0.004 

0.002 

0.000 -

-0.002 -

-0.004 

-0.006 

-0.008 H 

-0.010 

• (012) 

o (110) 

• i — i — i i y T i' i 

300 350 

l " l - I • l - l "• l l | " I I "— I ™ — 1 ' 

450 500 550 400 

Temperature (T) 

Fig. 5.7. Temperature-dependent strain of the Bi (012) and Bi (110) planes 
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5.4.4. Full width at half maximum 

The average full width at half maximum (FWHM) of the diffraction ring pattern 

of polycrystalline material is related to the crystallite size in a direction parallel to the 

sample surface, D, through the Debye-Scherrer formula [41]. 

D ~ 5 ^ - 5.8 

B cos<9 

where X is the electron wavelength, B is the FWHM expressed in radians, and 6 is 

Bragg angle. At room temperature, an average crystallite size of 101±10 A was 

calculated from Eq. 5.8 and averaged over six different runs from the FWHM of (012) 

Bragg peak. Although the calculated value of D was done from (012) peak, in general it 

is considered, here as an average value, since the FWHM extracted from the fitting 

parameter gave an average value for FWHM and was best fit with (012) peak as well as 

most of the observed peaks. The details of the procedures followed to extract the 

intensity, ring radius and FWHM from the diffraction pattern are given in appendix H. 

Figure 5.8 shows the temperature dependence of the percentage change in the molten 

layer thickness, calculated from the change in the diffraction ring FWHM at temperature 

T normalized to that at T= 323 K, AB/B0, for (012) and (110) Bragg peaks, where B(T) is 

the FWHM at temperature T, B0 is the FWHM at 323 K, and B = B(T) - B0. For 

temperatures up to ~ 500 K, there is no significant change in the FWHM with 

temperature for the (110) order; however, some changes in the (012) order appear at a 

lower temperature and are more significant than in the <110> direction. For T> 500 K, a 

significant crystallite size reduction is detected due to the formation of a thin layer of 

liquid Bi around the solid Bi nanocluster, which grows in size as the temperature 

increases until the nanocluster is fully transformed into the liquid phase [42,43]. There is 
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an observed anisotropy in the molten layer thickness with that observed in the <012> 

direction more than in the <110> direction. This result is consistent with the reduced 

Debye temperature in the <012> direction. A lower Debye temperature is generally 

associated with reduced melting point. 
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Fig. 5.8. Temperature dependence of the percentage change in the molten layer thickness, 
calculated from diffraction ring FWHM at temperature T normalized to that at 
temperature T= 323 K. 

5.5. Discussion 

Crystal melting starts at the surface and depends on the crystal facet [44]. The 

high-density, close-packed surfaces are less energetically favored to be wetted by the 

melt, while the low-density packed ones can be wetted [44]. As the crystal temperature 
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approaches the melting point, a quasi-liquid layer forms on the less-packed surfaces and, 

with increasing temperature, melts the whole nanocluster. The quasi-liquid layer is a 

layer of disordered atoms which has stronger bonding than those in the melt. Such 

melting mechanism necessitates the presence of repulsive forces between the liquid-vapor 

and liquid-solid interfaces over some distance [44]. 

Thermal expansion upon heating occurs in most solid substances, whether they 

are elements or compounds. This phenomenon is generally due to a force that initiates the 

thermal expansion and is described by the Gruneisen parameter and the elastic reaction of 

the solid to this force [44,45]. This force is usually a thermal pressure induced by the 

strain produced in the lattice as a result of the increased lattice mean vibrational 

amplitude as the temperature increases. 

However, some materials contract upon heating [39,40,46]. Two main 

contributions are considered when studying lattice contraction upon heating, namely, the 

vibrational and non-vibrational contribution to contraction [47]. For a crystal with 

anisotropic lattice parameter, contraction along one crystal direction could be 

accompanied with expansion along another direction [48,49]. This is due to the impact of 

the potential energy curve on the crystal direction. Along the direction of high 

compressibility in the lattice, normal modes of vibrations with high frequencies are 

excited at a certain temperature at the expense of those with low frequencies [47]. 

Therefore, along that direction, a lattice expansion is higher than that along the 

perpendicular direction. In this case, contraction in one direction is accompanied by an 

expansion in the perpendicular direction. 

The data in Fig. 5.7 show that a transition from a positive thermal expansion to a 
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negative one for the Bi (012) planes starts at T ~ 499 ± 11 K, with no structural phase 

transition observed. This anomaly was previously explained in terms of the effect of 

electronic excitation on the lattice interplaner spacing [39,40]. In Bi nanoclusters, the 

energy levels are few meV apart and, consequently, the potential of the electrons 

occupying the valence band becomes high enough to affect the lattice atomic positions. 

Therefore, raising the lattice temperature increases the energy level separation. This leads 

to a reduction in the number of excited electrons and increases the thermal energy of the 

already-excited electrons occupying the conduction band. These factors cause the lattice 

to contract, rather than expand, upon raising its temperature. This also may suggest the 

previous observation of semimetal-semiconductor transition in Bi nanoclusters at a 

critical thickness of 13 nm, [50-53] where the molten layer increases with temperature at 

the expense of the solid Bi. 

5.6. Conclusions 

Transmission electron diffraction was used to study the structural properties of 

bismuth nanoclusters from room temperature up to 525 ± 6 K . From the temperature-

dependent diffraction intensity measurement, the Debye temperature of the annealed 

nanoclusters was found to be 53 ± 6 K along <012> direction and 86 ± 9 K along <110> 

direction. At T = 464 ± 6 K, the diffraction intensity starts to deviate from the 

exponential Debye-Waller behavior, which indicates the increased lattice anharmonicity 

with temperature. In addition to the positive thermal expansion before melting, a lattice 

contraction starts at ~ 499 ± 11 K, which can result from the disturbance in the potential 

of the electrons occupying the valence band that affects the lattice atomic positions. The 

onset of melting of the Bi nanoclusters, T ~ 500 ± 6 K, was estimated from the 
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temperature-dependent diffraction width. The size of the nanoclusters was observed to be 

reduced with heating. This observation is interpreted to be due to the formation of a thin 

liquid shell around the nanoclusters. 
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CHAPTER 6 

RESULTS, DATA ANALYSIS AND DISCUSSION OF TIME-
RESOLVED DATA COLLECTED FROM BISMUTH 

NANOCLUSTERS 

6.1. Introduction 

The data were collected by analyzing the electron diffraction pattern from 

annealed Bi sample at different delay times. A 5 nm Bi that is thermally evaporated on 

TEM carbon coated grid and transferred to the time-resolved system for further 

processing. The sample was subjected to about 1.5 mJ/cm2 femtosecond laser pulses 

while raising its temperature to 470 ± 6 K slowly, ~ 3 K/min. At 470 K the sample was 

further heated by the laser pulses for about 20 s with the laser operating at 1 kHz. In the 

next chapter, there will a time-resolved comparative study between photoexcited Bi 

islands versus Bi nanoclusters. Although the data presented here is from one run with Bi 

nanoclusters, but several data were collected and presented in appendix J and appendix K 

for Bi nanoclusters and Bi islands, respectively. All the data presented here and in the 

appendices show the same general behavior as will be explained in details later but there 

might be a slight difference in the extracted numbers from the collected data. This could 

be attributed to experimental errors, which include system stability when it runs over a 

long period of time (some data were collected by running the system continuously over 

two days with no break).Another factor is the cluster size effect, which proved to affect 

significantly the equilibration time as will be explained in chapter 7. 

For each sample, a femtosecond laser (pump), with wavelength of 800 nm and 

pulse width, rp = 120 fs, was used as an excitation source for time-resolved 

measurements. The FWHM of the pump laser spot size at the sample was measured and 
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found to be 1.9 ± 0.14 mm while the electron probe beam was measured at the sample 

and was found to have FWHM of 745 ± 54 um. The total incident laser fluence was 

calculated after correcting for the angle of incidence ~ 45°, absorption, and reflection 

from the glass window of the vacuum chamber, which was found to be ~ 10 %. The 

Bragg peak diffraction intensity, relative change in peak position (Ad/d) and FWHM 

were measured after radially averaging and background removal from each diffraction 

pattern. 

Background removal is very important because it is due to the inelastically 

scattered electrons, multiple scattered electrons and reflection of the pump beam off the 

sample surface. To do so, the IMAGEJ (Ver. 4.2) software was used to convert the raw 

image into two dimensional plot by radially averaging the diffraction pattern, with the X-

axis representing the position of the peaks (in pixels) and the Y-axis representing the 

peak intensity in arbitrary units. The data points of that plot were exported to an Excel 

sheet to remove the data which corresponds to the central undiffracted beam. 

Then PEAKFIT (Ver. 4.12) was used to redraw the selected data imported from 

the Excel sheet, to remove the background and to fit the data with the proper prebuilt 

function to find the ring diffraction intensity, position and FWHM. The processed Bragg 

peaks, when the pump laser "ON" compared to those when the pump laser "OFF", are 

shown in Fig. 6.1.(a) - (c). The details of image analysis are explained in Appendix H. 

I noticed that the choice of the parameters of the ring over which the radial 

average is performed is very crucial, as can be seen from Fig. 6.1.(d). In Fig. 6.1.(d), the 

radial average of the same diffraction pattern was analyzed with different parameters of 

the radial average ring, which is summarized in Table 6.1. It is clear that the wrong 
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choice of the radial average parameters and lead to unrealistic behavior in the data 

analysis. For this reason the data presented in Fig. 6.2.(a)-(c) were analyzed with 

different parameters, and the one which gave the least error in the measured parameter 

(such as lattice expansion), compared to the time-resolved data, was included. A detailed 

comparison is included in Appendix H. 

In this chapter, I will present the detailed data analysis performed on Bi 

nanoclusters and in the next chapter, I will do a time-resolved comparative study between 

Bi islands and Bi nanoclusters. 
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Fig. 6.1.(a) Radial average of the diffraction pattern at t = 26.6 ps when the pump laser is 
OFF compared to that when the pump laser is ON with fluence = 3.7 mJ/cm . 

6.2. Laser Fluence Dependent Electron Diffraction 

After careful adjustment of the temporal and spatial overlap between the bump 

and the probe beams (appendix F), the dependence of the (012) and (110) natural log of 

Bragg peaks intensity, Ad/d and normalized FWHM on the incident laser fluence were 
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studied and shown in Fig. 6.2.(a), (b) and (c) respectively; when the electron probe beam 

was delayed 27 ± 1 ps with respect to the pump beam, this delay time was calculated after 

careful measurement of the travel distance of both the pump and the probe d' and convert 

this distance into time t where t = c*d' and c is the speed of light in vacuum. 

As can be seen from this study, the intensity of the diffraction pattern decreases 

with increasing laser fluence due to thermal effects and increase in lattice disorder. The 

Bragg peak relative position (Ad/d) dependence on laser fluence shows that the same 

behavior that was observed in statically heated samples, i.e., lattice contracts in <012> 

direction at a critical fluence and continues to expand in <110> direction. 

There are many factors may contribute to the FWHM of the Bragg peak, as 

discussed in section 2.5. Inhomogeneous excitation of the lattice occurs whenever the 

crystal has excited parts adjacent to nonexcited parts, which may lead to the formation of 

side-bands and consequently results in Bragg peak broadening, Fig. 6.1.(a). 
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Table 6.1 Summary of the radial average parameters used in Fig. 6.1(d) 

Series 1 
Series 2 
Series 3 
Series 4 
Series 5 
Series 6 

X-position 
(pixels) 

509 
509 
510 
510 
508 
508 

Y-position 
(pixels) 

499 
498 
498 
499 
499 
498 

Circle diameter 
(pixels) 

300 
300 
300 
300 
300 
300 

Crystal size reduction as a result of the formation of a thin film of liquid layer, 

which grows at the expense of the solid Bi as the fluence increases can also lead to Bragg 

peak broadening, and an increase in FWHM. Since these factors cannot be isolated from 

the measured FWHM and cannot be studied separately, I used the normalized FWHM, 

which represent the collective behavior of the lattice. Fig 6.2.(c) is the behavior of the 

normalized FWHM of the (012) peak with fluence, since the software used for isolating 

and fitting the peaks extracted from the diffraction pattern, fits best for (012) peak, I 

could not isolate the momentum transfer vector "&" effects on the FWHM. 

The fitting for the (110) peak in Fig. 6.2.(b) is forced to a linear fitting because 

the behavior of that peak is expected to be linear from the data presented in chapter V. 

The fitting functions and the corresponding parameters for the other data in Fig. 6.2.(a)-

(c) are summarized in Table 6.2. 

Additionally, the error bars were not introduced here due to the fact that the 

physical properties of the grown samples is highly affected by thermal history of the 

sample as discussed in chapter I, but the behavior of these properties is the same, i.e., 

during all runs, Ad/d continues to decreases with the fluence for the (110) peak while it 

starts to contract at higher critical fluence for the (012) peak, Fig. 6.2.(b). 
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Table 6.2 Summary of the fitting parameters and functions of the data presented in Fig. 6. 
2.(a)-(c) 

Bragg 
peak 

(012) 

(110) 

(012) 

(110) 

(012) 

Figure 

VI. 2 (a) 

VI. 2 (b) 

VI. 2 (c) 

Fitting function 

f(y\ — V I -^ 

l + exp( l * yi)
) 

^ 3 

/ (* ) = ya + yt
 x+y2 -

x2 + ̂  -*3 

/ W = ̂ 0+>'i-» 

/W^+JVexpOv*) 

Fitting parameters 

y0 

-1.0638 

-1.4065 

0.0001 

0.0001 

0.9887 

yi 

1.0740 

1.4103 

-0.0016 

-0.001 

0.0012 

y2 

3.1808 

3.2557 

5.7E-5 

-

1.4318 

ys 

-0.4946 

-0.7317 

8.4E-5 

-

-

I also noticed that the behavior of the normalized Bragg peak intensity for (012) 

and (110) peaks are in general follows Debye-Waller effect and the Debye-Waller factor 

calculated from (012) is always less than that calculated from (110) as mentioned in 

chapter V, but sometimes the slope differs from run to run (also seen in the data 

presented in appendix I for the static heating data). This can be explained in terms of the 

effect of the thermal history of the sample as well as successive heating, either by direct 

heating stage or femtosecond laser pulses, and quenching may change the cluster size 

which has a direct impact on the electronic band structure of the sample as mentioned in 

chapter 4 and in turn affects the calculated physical parameters of the sample. 

Additionally, the formation of side-bands with fluence, which becomes well pronounced 

at high laser fluence, near the (012) peak may affect the phonon frequency and excite low 

frequency phonons, which consequently affects the Debye temperature as well as the 

unusual behavior of thermal expansion coefficient measured along (012) direction and 

responsible for the slow intensity drop of (012) compared to that (110), reversed behavior 

to that observed in Ch.5. This behavior is pronounced, especially, when the sample 
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dimensions have reduced significantly and reach the nanoscale [1]. At reduced 

dimensions, low frequency phonons might be excited at temperatures close to the Debye 

temperature of the nanoclusters and affect the elastic properties of Bi nanoclusters [2], the 

energy of these phonons could be a function of cluster size [1]. Therefore, as the 

dimensions of the nanoclusters get smaller, these phonons will be excited at a lower 

temperature, and contribute to the side-bands detected near (012) planes. An extensive 

study is needed to monitor the effect of cluster size on the excitation of these phonons 

and consequently on the different lattice thermal properties. 

0 1 2 3 4 

Incident laser fluence (mJ/cm2) 

Fig. 6.2.(a) Normalized Bragg peak intensity as a function of the incident laser fluence. 
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If we were to ignore the effect of side-bands and assumed the Bragg peak 

broadening to be due to the formation of molten layer surrounding the Bi nanoclusters, 

therefore, from Eq. 5.8 and Fig. 6.2.(c) the molten layer thickness is calculated at 

different fluences and summarized in Table 6.3. 

Table 6.3 Summary of calculated molten layer thickness at different laser fluence 
calculated from the data presented in Fig. 6.2.(c). 

Fluence (mJ/cm ) 
2.0 
2.6 
3.0 
3.6 

Molten layer thickness (A) 
6.3 
12.1 
15.7 
32.3 

6.3. Time-Resolved Electron Diffraction Data Analysis 

The data presented in the previous section guided us in determining the proper 

excitation fluence of Bi nanoclusters, which does not induce damage or full melting to 

the sample. Two sets of time-resolved data were collected at two different fluencies, 2.0 

mJ/cm and 2.9 mJ/cm . The first fluence is at the onset of partial melting, while the other 

fluence is high enough to induce partial melting of the sample, Table 6.3. Both fluencies 

were below the damage and full melting of the sample. Also, I would like to stress and 

clarify, for the reader, that the fitting used in the time-dependent lattice strain (Ad/d) is 

just to guide the eye of the reader to the general behavior of the lattice strain with time 

due to femtosecond laser excitation. This leads to a very important conclusion about the 

oscillatory behavior of Ad/d at t < 0 and/or / > 25 ps is not real and due to the uncertainty 

in the measured data, which may arise from the fluctuations in the femtosecond laser, 

system stability or any extraneous behavior due to the long time operation of the electron 

gun. Additionally, the lattice thermalization time cannot be estimated from Ad/d or 
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normalized change FWHM versus time due to the limited capabilities of the software 

used here. 

The data presented in this section were collected after precise space overlap 

between the pump beam (laser excitation pulses) and the probe beam (short electron 

pulses). The temporal overlap as well as the zero delay time between the pump and probe 

pulses was determined in situ by iteration method. In this method, we moved the delay 

stage back and forth over 5 mm distance, in steps of 0.15 mm (equivalent to 1 ps delay 

time), and observed the change in the diffraction pattern of Bi with and without pump 

laser pulses till we reached a point on the stage, beyond which there is no difference 

between the images taken with and without laser excitation, which corresponds to At = 0, 

for more details, please refer to appendix K. We controlled the delay time, At, between 

the bump and the probe pulses to monitor in real time the structure evolution prior or 

after the pump pulse excitation. Fig. 6.3 shows the diffraction pattern of Bi at different 

delay times, and the radial averaging of the pattern at different delay times, after 

background removal, is shown in Fig. 6.4.1 followed the procedures described in details 

in appendix H for data analysis and background removal. In Fig. 6.5.(a), we monitored 

the intensity and Ad/d of the (012) Bragg peak as a function of delay time. We also 

monitored the normalized FWHM, Fig. 6.5.(b), of the same peak. Although the FWHM 

of the ring pattern can be related to the thickness of the liquid shell that may form around 

the solid sample, excitation of longitudinal acoustic phonons and or strain effects can also 

affect the measured FWHM as discussed earlier [3, 4]. 

Then, we followed the same procedures for the (110) Bragg diffraction ring in 

Fig. 6.6. The data shown in Fig. 6.5.(a) and 6.6 are for pump laser fluence of ~ 2.9 
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mJ/cm . I used the intensity drop at the asymptote from Fig. 6.5.(a) and Fig. 6.6 to 

estimate the final lattice temperature. By comparing these values to the static heating data 

presented in Fig. 5.6, a final average lattice temperature of 511 ± 6 K, can be estimated, 

which is above the onset of melting temperature presented in the static heating data in 

chapter V and can be seen from the detected diffraction pattern at that fluence; see, for 

example, the pattern at 83 ps in Fig. 6.3. This fluence is not high enough to induce a full 

sample melting, but can induce partial melting as can be seen from Table 6.3. 

Since the position, 6, of the Bragg peak is related to the lattice spacing, d, 

therefore any deviation, AG, in the angular position of the center of the Bragg ring is a 

fingerprint of the lattice contraction or expansion, Ad. The relative change in Bragg peak 

position is obtained from the Bragg's law which gives, (bdl d)- -(A#/tan£?) [5]. 

From the results shown in Fig. 6.7 at laser fluence of 2.9 mJ/cm2, it is clear that 

the lattice contracts (~ 0.05%) immediately after the photoexcitation of Bi nanoclusters at 

t = 0 (first contraction region, 0 < t < 6 ps), which is fluence dependent. Following this 

contraction, the lattice expands to ~ 0.22% which is also fluence dependent. When the 

lattice reaches its maximum expansion, it contracts again, (second contraction region, t > 

25 ps), to a certain position determined by the total energy absorbed by the lattice and 

consequently on the final lattice temperature. 

The time dependent change in interplanar spacing, presented in Fig. 6.5.(a) and 

Fig. 6.6 along <012> and <110> directions, can be used to calculate the thermal 

expansion coefficient along these directions. From the definition of the linear thermal 

expansion coefficient, (Ad/d) = a°xAT, and from Fig. 6.5.(a) at the asymptote, Ad/d~ -

0.002, AT = 211 K, therefore a(012) = 9.5x10"6 K"1, and from Fig. 6.6 Ad/d~ - 0.0022 and 
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v 6 T7-1 
a.(uo)=\ 0.4x10"° K"1. These values are in fair agreement with the values calculated 

m 

chapter V with an estimated error of 34% and 24 % respectively. This percentage 

was calculated from Eq. 6.1, 

e error 

% error = &cw aTR 

cc„ 
xlOO 6.1 

where acw = 14.4xl0"6 K_1and 13.7xl0"6 K'1 for (012) and (110) planes respectively; 

calculated from chapter V, and aTRis the value calculated from the time resolved data 

mentioned above. 

as 

Fig. 6.3. Snapshots of the diffraction pattern of Bi at different delay times. 
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I noticed that the first contraction that occurred over 6 ps after r = 0, over this 

period of time, the lattice is not yet in thermal equilibrium and its temperature cannot be 

defined. Therefore we suggest the nonthermal regime for initial lattice excitation [6]. This 

can be explained as follows: the initial lattice contraction is due to the deformation 

imposed by femtosecond laser pulses on the lattice potential along the c-axis of the 

crystal lattice. This deformation is a consequence of the decrease in the carrier density in 

the valence band upon excitation to the conduction band. According to Murray et al.[7], a 

decrease of 1% of the carriers in the valence band causes a relative change in the atomic 
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displacement of 10 pm, which shifts the potential energy surface minima, and in turn 

reduces the Peierels barrier. 

The fraction of excited carriers An is affected by the absorbed laser fluence AF, 

which results in a lattice temperature rise AT, An = 33*W
5
AT [8]. As mentioned earlier, 

AT = 211 K, therefore, the fraction of excited carrier density = 0.7%. Since 1% carrier 

excitation causes 10 pm a relative change in atomic displacement [7], the fluence that I 

have used can make 7 pm change in atomic position, which is still high enough to modify 

the electronic structure and the energy gap which may affect the equilibration time. 

Therefore, we expect that the electronic disturbance in Bi by ultrashort laser 

pulses changes the equilibrium atomic positions within the unit cell by displacive 

excitation of coherent phonons (DECP) of symmetry Aig. Aig (breathing mode) is one of 

the normal modes of vibrations of Bi that does not change the symmetry of the lattice [9, 

10]. Then the excited lattice will be brought to a quasiequilibrium state over a very short 

period of time compared to that needed to thermalize the lattice. 

Therefore, we conclude from the previous discussion that the initial contraction 

observed in lattice spacing along (012) is not due to the thermal effect of ultrashort laser 

pulses, but rather due to the carrier density disturbance within the conduction and the 

valence bands that excite the Ajg mode, which gives rise to a restoring force that drives 

the coherent atomic motion and leads to lattice contraction. 

Following the initial contraction, lattice expansion is observed over a longer time 

scale, ~ 20 ps, through carrier density reduction and subsequent thermalization processes, 

electron-phonon and phonon-phonon interaction. Many processes are considered and 

contribute to charge carrier removal and consequently its density reduction. These 
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processes are, but are not limited to, electron-hole recombination. The diffusion is 

ignored in our study since the sample thickness is less than or comparable to the laser 

pulse penetration depth in Bi. 
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Fig. 6.6. Time evolution of the strain detected along (110) and the corresponding 
normalized change in intensity due to femtosecond laser excitation pulses of fluence 2.9 
mJ/cm2. 

Electron-hole recombination may be radiative or non-radiative in nature. In 

radiative processes, opposite to excitation, a photon is emitted that carries the excess 

carrier energy. While in non-radiative recombination process, which includes Auger 

recombination, an electron recombines with a hole and the excess energy will be carried 

out by another electron and excited to a higher energy level [6]. 
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Fig. 6.7. Normalized Bragg peak center position of (012) Bragg peak as a function of 
delay time at two different fluences. 

Thermal and structural effects come into the picture when the charge carrier and 

the lattice are in thermal equilibrium and the final lattice temperature is determined by the 

initial energy deposited by the ultrashort laser pulses into the sample. Melting or 

vaporization can occur if the lattice temperature exceeds the lattice melting or boiling 

temperature, respectively. In some cases, the material preserved its solid integrity at 

temperatures above its melting point, and in this case the lattice is said to be superheated. 

If the photoexcitation of the material did not induce any phase transition, the final 

temperature of the material recovers to a value determined by the surroundings over a 

microsecond time scale. 
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According to Fig. 6.5.(a), along the (012) direction, the lattice expands but after a 

time delay of 6 ps. Over this period of time, the electron - phonon coupling defines the 

lattice effective temperature increase which results in lattice disorder and reflected on the 

intensity drop. After t > 6 ps, the lattice expands to a maximum value of 0.22 % of its 

original value over 20 ps, followed by another contraction to a final value of ~ 0.2 % over 

a longer period of time. This final contraction is related to the more stable state of the 

lattice and it corresponds to the restoring force between the atoms which comes into 

effect after the lattice reaches it maximum expansion. 

It is worth noting that for (110) direction, Fig. 6.6, no contraction is observed in 

lattice spacing, only expansion and this can be explained in terms of the sensitivity of 

different Bragg peaks to the excited Aig optical phonons. Since all Bragg peaks, defined 

by Miller indices' (hkl), with / = 0 are insensitive to Aig mode [11], therefore its effect on 

those Bragg peaks could not be detected, Fig. 6.6. 

The temporal behavior of the diffraction ring intensity presented in Fig. 6.5.(a) 

and Fig. 6.6 was found to have a best fit to a single exponential decay functions given by: 

f~\ t< 0̂  7(0 
•0 yA + Bxe'^' t > 0 

6.2 

where I(t) is the Bragg peak intensity at delay time /, I0 is its intensity at / < 0, A = 0.6 

and B = 0.4 are the fitting parameters, while T is the decay time = 9.2 ps. The decay time 

can be used to interpret the different relaxation processes following femtosecond 

photoexcitation that may include but not limited to Auger recombination (non-radiative), 

radiative recombination and surface and defect recombination [6]. 
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Fig. 6.8. Different planes in hexagonal unit cell of Bi. 

6.4. Temperature Rise per Incident Laser Fluence 

The final lattice temperature can be calculated from Debye-Waller Eq. 2.22 as 

follows, 

•In = C'x 
f 1 * 

V "hkl J 

6.3 

Where I/I0 is taken from the asymptotic behavior of the time-dependent 

normalized Bragg peak intensity at fluence 2.0 mJ/cm2. 
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Therefore, a plot of-In 
JoJ 

versus 
< 1 V 

\dhu J 
, will produce a straight line of slope 

C , which is material dependent and related to the material parameters through the 

Debye-Waller Eq. as follows, 

C = l^lL. x (_L) x AT = 5.6 x 1(T2 x AT 
mxkB 0D 

6.4 

where 6D= 86 ± 9 K is the calculated Debye temperature from chapter V, and is 

considered here to be the average Debye temperature of the planes considered in Fig. 6.9. 

Therefore, from Eq. 6.4 and Fig. 6.9, the average increase in lattice temperature 

(AT) as a result of 2.0 mJ/cm2 femtosecond laser excitation is 186 K. Therefore the final 

sample temperature is 486 K. The temperature rise at the same excitation fluence can also 

be calculated from Eq. 5.4, which was found to be 211 K. Comparing these previously 

mentioned values of temperature rise calculated from Fig. 6.9 and Eq. 5.4, a percentage 

error of 12% was estimated after using Eq. 6.5. 

% error -
Tx-T2 xlOO 6.5 

where T, - 211 K and T2 = 186 K. 
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Fig. 6.9. Change in Debye-Waller factor with different interplanar spacing. The error bars 
were calculated by software in the form of the deviation of the actual data points from the 
linear fitting function. 

In summary, the data presented here can give an insight view of photoexcitation 

of Bi nanoclusters with ultrashort laser pulses,which induces nonthermal and thermal 

effects. Upon photoexcitaion, a significant amount of charge carriers are promoted from 

the valence to the conduction band. The increased carrier density in the conduction band 

changes the lattice configuration by excitation of optical phonons of symmetry Aig which 

has a displacive nature. In other words, the redistribution of the charge carriers in the 

valence band changes the interatomic potential energy surface and give rise to the 

restoring force which induces the coherent atomic motion which causes the lattice to 

contract, (nonthermal effects). The excited phonons relaxe through phonon-phonon 
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interaction and/or Auger recombination, which results in a lattice temperature increase 

that leads to lattice expansion after 6 ps (thermal effects). 

The data presented here opens the door for considering the thermal history and 

annealing effects on the physical properties of Bi. For example, I'm suggesting high 

resolution TEM scans after each single annealing process. This may have side-effects of 

successive exposure to air especially at nanostructures scale sample, as this may lead to 

the formation of oxide layer on the sample surface, which in turn imposes another factor 

that may affect the physical properties of the sample. 

Additionally, the theoretical model for the data presented here is also suggested, 

from which the thermalization time of the lattice strain and FWHM can be extracted. 
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CHAPTER 7 

TIME-RESOLVED COMPARATIVE STUDY, 
BISMUTH ISLANDSVERSUSBISMUTH NANOCLUSTERS 

7.1. Introduction 

Bismuth (Bi) thin films, nanoclusters and nanorods have a hexagonal crystal 

structure similar to that of the bulk with two atoms per unit cell. The Bi unit cell is a 

distorted cubic structure and the angle between the axis ^ 90. This configuration is not 

stabilized by a simple two or three body force law, but by Peierls-Jones mechanism [1] 

as described in chapter 1. 

On the other hand, the reduced dimensionality has a direct impact on the 

electronic structure and properties [2]. Shick et al. showed how the atomic displacement 

as well as an increase in the shear angle can induce a change in the Bi electronic structure 

and lead to a metal-semimetal transition and semimetal-semiconductor transition, 

respectively [3]. This was attributed to the effect of an internal displacement change, S = 

(0.25 - u), where u - 0.234, on the total energy of Bi, which has a double-well nature [3]. 

The double-well height can be reduced by reducing 8, and it can reach to a point that it 

becomes flat at some critical distance. Therefore, the electronic band structure is very 

sensitive to the change in the internal displacement 8, as well as the trifocal angle a. 

Shick et al. summarized the effect of these factors on the possible 

metal/semimetal/semiconductor transition, as follows, (a) 8 = 0 and a = 60°, this gives 

rise to the simple cubic structure nature of Bi at high pressure and enhances the metallic 

nature of Bi. (b) S = 0.016 and a= 60°, this configuration results from the displacement 

of one of the atoms along the (111) body diagonal and introduces a narrow band gap 
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along the T (single hole pocket) and L points (conductive electron pockets) in the 

Brillouin zone, which results in the semiconducting properties of Bi. (c) S = 0.016 and a 

= 57°.19'(trigonal structure of bulk Bi), this shear drives the semiconductor-semimetal 

transition of bulk Bi, the reader can refer to Fig. 4 in Ref. [3] for Bi electronic band 

structure. 

Therefore, the semimetallic reconstructed Bi surface can turn into a metal or 

semiconductor, which is very interesting in studying the two dimensional metals [2]. 

Additionally, some Bi surfaces, like the (110), were reported to have better metallic 

properties than other surfaces due to the nature of the structure along the <110> direction 

[4] which according to Ref. 2 "supports the dangling bond states on every other surface 

atom." 

Therefore, the possibility of a semimetal to become a semiconductor or a metal is 

strongly dependent on the relative displacement of the atoms in a unit cell [2]. I report 

here a study of the effect of reduced dimensionality of Bi nanoclusters and islands on the 

equilibration time of (012) and (110) surfaces upon photoexcitation by femtosecond laser 

pulses using transmission high-energy electron diffraction (THEED) technique. 

7.2. Experiment 

I followed here the same procedures that were followed in chapter VI to collect 

and analyze the time-resolved data and described in details in the appendices. Here, we 

are dealing with two samples, SI and S2. SI was annealed at room temperature by 

femtosecond laser pulses of fluence 2.4 ±0.12 mJ/cm2, while S2 was heated from room 

temperature up to 470 K while being exposed to the same laser fluence, where the error 

in measuring the fluence was found to be, at most, 0.12 mJ/cm2. 



Fig. 7.1. HRTEM images and diffraction pattern of (a) laser annealed Bi samples, SI and 
(b) laser annealed sample simultaneously with continuous heating up to 470 K, S2. 

The TEM images for both samples were compared and we found that, the surface 

of SI did not show any change in cluster shape and/or size, but rather increase the voids 

in the thin film due to agglomeration and coalescence of different clusters as a result of 

higher cohesive forces between Bi clusters than adhesion force between Bi and the 

substrate. Both samples have almost the same diffraction pattern except for the intensities 

of some rings [5] which indicated no structural phase transition occurred during 

annealing, Fig. 7.1. 
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7.3. Results 

Bi islands and nanoclusters were excited with 1.9 mJ/cm2 and 2.4 mJ/cm2 pump 

pulses at room temperature. The results presented in Fig.7.2 and Fig.7.3 are collected 

from Bi islands and correspond to (012) and (110) planes respectively and Fig. 7.4 and 

Fig. 7.5 shows the data collected from Bi nanoclusters for the same planes. We fitted the 

data presented in Fig. 7.2 - 5 to a single exponential decay function, 

f~\ \<0\ 7(0 
7.1 

J + Bxe-*"* t > 0 , 

where, A and B are the fitting parameters and ris the decay time. 

The different values for A, B and zfor SI and S2 are summarized in Table 7.1. The 

value of I(t)/I0 =1.00 ± 0.02 a/ < 0 is calculated after taking the average of the 

different values from Figs. 7.2-5. The error analysis in x written in Table 7.1 is the 

standard deviation calculated from the different decay times mentioned in this chapter as 

well as the values in Appendices J and K. 

In general, I noticed the following, 

(a) The thermalization time of Bi along <012> direction is higher than that along 

<110> direction. 

(b) The thermalization time along <110> direction for SI is less than that 

observed in S2. 

(c) The fluence has no significant effect, as can be seen from data summary 

presented in Table 7.1, on the thermalization time of both samples as long as the 

excitation level is below the threshold that can cause an appreciable melting of Bi or 

damage to the sample [16]. 
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(d) At a high level of excitation, Fig. 7.6 (a) - (b), the transient time has reduced 

significantly which is the same behavior that was seen recently by Sciani et al. [16]. Due 

to the limited resolution of our system, we could not measure sub-picosecond transient 

time as they did, but the same mechanism can still hold here where the non-thermal effect 

plays a significant role in the lattice disorder, as will be explained in section 7.4. 

(e) Additionally, the temperature rise of the lattice was calculated from Eq. 5.4 for 

Bi nanoclusters and islands and the results are summarized in Table 7.1. From Table 7.1 

it is clear that the temperature rise in Bi islands is higher than that for Bi nanoclusters at 

the same excitation level due to the higher coverage of Bi islands to the substrate when 

compared to that of nanoclusters, which means a higher amount of the incident fluence is 

absorbed in the islands (8%) than that absorbed in the nanoclusters (7%). Although there 

is no data collected for Bi nanoclusters at 1.5 mJ/cm , the temperature rise was included 

in Table 7.1 just for the sake of comparison to the temperature rise of Bi islands. 

Additionally it is worth noting that, at 2.4 mJ/cm , the temperature rise for nanoclusters is 

257 K, i.e. lattice temperature = 557 K, which is higher than the melting temperature of 

Bi nanoclusters measured from cw data presented in chapter 5. This suggests a 

superheating of Bi nanoclusters of about 32 K. The preliminary observation of Bi 

nanocluster superheating observed here requires an extensive study at different laser 

excitation while the sample is held at some base temperature to be confirmed. The same 

argument holds for Bi islands which show a higher degree of superheating than that 

observed for nanoclusters at the same fluence, Table 7.1. 



137 

Table 7.1 Summary of temperature rise calculation from Eq. 5.4 per incident laser 
fluence. 

Incident laser 
fluence (mJ/cm2) 

1.5 
1.9 
2.4 

Temperature rise, AT (K) 
Nanoclusters 

153 
201 
257 

Islands 
174 
228 
295 

(f) Also, I want to stress again that the fitting of the time-resolved date collected 

for the strain and FWHM did not fit properly to an exponential function similar to that 

used for the normalized peak intensity, but it is a moving average fitting just to guide the 

eye of the reader and to show the general behavior of the different peaks with the laser 

fluence. Additionally, the error bars were not introduced here due to the fact that, the 

physical properties of the grown samples is highly affected by thermal history of the 

sample as discussed in chapter I and V, but the behavior of these properties is the same, 

i.e., during all runs, Ad/d for Bi nanoclusters, starts to contract over a time period t, 6 ± 1 

ps > t > 0 ± 1 ps; afterwards, it expands over ~ 20 ps followed by another contraction 

which is related to the more stable state of the lattice, and it corresponds to the restoring 

force between the atoms that comes into effect after the lattice reaches its maximum 

expansion. Therefore, I am confident in saying that the oscillatory behavior of Ad/d att< 

0 and/or t > 25 ps is not an intrinsic behavior of the lattice and may result from the 

uncertainty in the measured data, which may arise from the fluctuations in the 

femtosecond laser, system stability or any extraneous behavior of the long time operation 

of the electron gun. 

(g) From the previous discussion, I concluded that the Sigmaplot software cannot 

be used to estimate the thermalization time of the lattice from the time resolved data of 



the lattice strain and normalized FWHM due to the limited number of the built-in 

functions that can be used to fit such irregular behavior in the lattice strain. Forcing the 

fitting to the exponential or Sigmoidal functions lead to unrealistic behavior and therefore 

we could not extract any useful information about the decay constant of the lattice; see 

for example Fig. 7.11. 

Table 7.2 Summary of the fitting parameters used in equation 7.1. The error in fluence 
measurements was found not to exceed 5% of the measured value. 

SI (012) 

SI (110) 

S2 (012) 

S2 (110) 

1.5 mJ/cm2 

1.9mJ/cm2 

2.4 mJ/cm2 

3.3 mJ/cm2 

1.5 mJ/cm2 

1.9mJ/cm2 

2.4 mJ/cm2 

3.3 mJ/cm2 

1.9mJ/cm2 

2.4 mJ/cm2 

1.9mJ/cm2 

2.4 mJ/cm2 

A 

0.736 
0.74 
0.66 
0.447 
0.737 
0.78 
0.71 

0.414 
0.82 
0.73 
0.79 

0.71 

B 

0.26 
0.29 
0.35 
0.533 
0.266 
0.23 
0.31 
0.568 
0.18 
0.27 
0.19 

0.27 

<ps) 
11.2±2.2 
7.1 ±2.2 
6.3 ± 2.2 
4.1±2.2 
4.3± 0.7 
2.9 ±0.7 
2.9 ±0.7 

3.1±0.7 
11.8 ± 1.1 
9.7± 1.1 
6.5 ±1.0 

7.7 ±1.0 
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Another set of data was collected from Bi nanoclusters and shown in Fig. 7.7 - lO.These 

includes the relative change in Bragg peak position, Ad/d, normalized change in FWHM 

with delay time. It is worth to mention that, although the change in Ad/d for Bi 

nanoclusters is clear and detectable, I didn't detect any change in Ad/d for Bi islands, 

which need an extensive study and better understanding of the impact of Bi island shape 

and size on the different excitation and relaxation processes induced by ultrashort laser 

pulses. 

-0.004 '• I • • • • I . . . . I . . . . I • • • • | i i , , | 

-20 0 20 40 60 80 

Delay time (ps) 

Fig. 7.7. Relative change in Bragg peak position (Ad/d) as a function of delay time for 
Bragg peak (012) of photoexcited Bi nanoclusters by laser fluence of 1.9 mJ/cm2and 2.4 
mJ/cm . 
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Fig. 7.11. Sample graph that shows the poor fitting of the exponential and Sigmoidal 
functions which therefore cannot be used to calculate the lattice thermalization time. A 
proper model is needed to fit properly such behavior. 

7.4. Discussion 

The semimetallic nature of bulk Bi arises from the 38 meV overlap between the 

L-point conduction and T-point valence band [6]. This semimetallic behavior of bulk Bi 

makes it a poor thermoelectric material due to the substantial bipolar contribution from 

both electrons and holes to the overall Seebeck coefficient which reduces the electronic 

thermal conductivity [7]. Seebeck effect refers to a phenomenon in which an electric 

current will flow when two dissimilar metals are connected in series and held at different 

temperatures, and vice versa. 

However, the contribution to the Seebeck coefficient from the holes can be 

diminished by increasing the band gap between the conduction and valence bands. The 

band gap can be altered or completely removed, by reducing the size of the bulk material 

to the nanoscale. Bi nanowires and thin films can shift the conduction and valence band 
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edges away from each other and forcing semimetal-semiconductor (SM-SC) transition. A 

previous study [9] predicted a SM-SC transition at 77 K in 49 nm thick Bi wires grown 

along <012> and at room temperature for 16 nm thick wires. Additionally, the reduced 

dimensionality creates energy sub-bands with separation "A' " that's inversely 

proportional to the square of the cluster diameter "Z*2" and electronic effective mass "w*" 

according to; [7] 

A' = ̂ l 7.2 

m*xD
2 

where h is Planck's constant divided by (2z). 

Therefore the electron effective mass as well as the cluster size has direct impact 

on the conduction-valence band separation. As the cluster size goes beyond a critical 

value, a gap is formed between the conduction and the valence bands, and the overlap no 

longer exists, forcing the SM-SC transition, Fig.7.12. 

The data reported here can give a qualitative picture of the SM-SC transition, or at 

least a modification in the electronic band structure as a result of reducing the 

dimensions, in Bi nanoclusters with the help of THEED setup due to its sensitivity to 

monitor different excitation and thermalization processes induced by femtosecond laser 

pulses. Femtosecond photoexcitation was explained in terms of the two temperature 

model (TTM) [10,11]. In the TTM, the laser induced heating in opaque materials is a two 

step process, first the electron gas, due to its low heat capacity compared to that of the 

lattice, absorbs the incident photon energy over a sub picoseconds time frame. 
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Fig. 7.12. Schematic diagram showing the electronic band structure of bulk Bi (dashed 
lines) compared to that of the nanowires/nanoclusters (solid lines). Reproduced from Ref. 
[9].A0 is the conduction-valence band overlap. 

During this process, the electron temperature can shoots up to few hundreds-

thousands of degrees while the lattice is still undisturbed. This process is followed by a 

process through which the electron gas re-establishes its Fermi-Dirac distribution in sub 

to few picoseconds (electron thermalization time). Second, electron-phonon collision is 

another process that takes the lattice out of its equilibrium followed by equilibration of 

the whole system over a few picoseconds that can be modeled by Bose distribution. 

In SCs, as mentioned in detail in chapter 4, many processes are considered and 

contribute to charge carrier removal and consequently its density reduction. These 

processes are, but are not limited to, electron-hole recombination and/or diffusion into 
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deeper region in the sample and leaving the area of excitation. The diffusion is eliminated 

in our study since we are dealing with nanoclusters. 

Electron - hole recombination may be radiative or non radiative in nature. In 

radiative processes, opposite to excitation, a photon is emitted which carries the excess 

carrier energy. In non radiative recombination processes which include Auger 

recombination, an electron recombines with a hole, and the excess energy will be carried 

out by another electron and excited to a higher energy level. 

Thermal and structural effects come into the picture when the charge carrier and 

the lattice are in thermal equilibrium and the final lattice temperature is determined by the 

initial energy deposited by the ultrashort laser pulses into the sample. Melting or 

vaporization can occur if the lattice temperature exceeds the lattice melting or boiling 

temperature, respectively. In some cases, the material preserved its solid integrity at 

temperatures above its melting point, and in this case the lattice is said to be superheated. 

Auger heating is another significant mechanism that can increase the carrier relaxation 

time and consequently slows down the dynamics of carrier relaxation [12]. 

In the well known Auger process, the total energy of the electron-hole pair does 

not change, while in Auger heating, it does change. This process is not significant in bulk 

SC [13,14], while in SC nanoclusters it is very efficient due to quantum size effects on 

the electronic band structure. Therefore, according to the previous discussion we can 

conclude that, THEED setup can detect the anisotropic nature of the electronic properties 

of different planes in Bi nanoclusters. Some surfaces in Bi, (110), have metallic nature 

due to the bond nature along (110). While other surfaces, (012), shows the formation of 
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subbands upon cluster size reduction which will in turn lead to the increased lattice 

thermalization time. 

7.5. Conclusions 

The data presented here shows an observable increase in lattice thermalization 

time of S2 compared to that of S1. This can be attributed to the modification of the 

electronic band structure of the lattice as a result of SM-SC transition in S2 as a result of 

modification in the cluster size and shape during femtosecond laser annealing while 

raising the temperature of the as-deposited sample to about 470 K. 

Additionally, we notice that, in general, the thermalization time of the surfaces 

oriented along <012> is higher than that of those oriented along <110> which reflects the 

anisotropic nature of the electronic band structure of Bi nanoclusters. Also, the Auger 

heating mechanism should be considered as an important factor that increases the 

relaxation time (50 ps in 2nm CdSe nanowire [15]). 

The lattice thermalization time of the lattice could not be extracted from the time-

resolved study of the lattice strain or FWHM of the Bragg peaks because the data did not 

fit properly to an exponential function similar to that used for the normalized intensity 

data and due to lack of the software used to provide a proper functions for fitting these 

data. 
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CHAPTER 8 

S U M M A R Y A N D CONCLUSIONS 

In summary, the framework of this thesis has two main tasks; the first is to build a 

high energy electron diffraction experiment that is capable of delivering highly energetic 

and very short electron pulses that will be used in the second task, which is studying in 

real time the excitation of Bi nanoclusters and Bi islands by ultrashort laser pulses using a 

pump probe technique. Another task was done during this thesis, which helped in giving 

more insight into the thermal melting of Bi nanoclusters using a conventional heating 

method. 

The Bi sample was prepared by thermal evaporation in a vacuum at room 

temperature and transported in a vacuum system that is part of the pump-probe setup for 

further processing and analysis. We noticed with TEM images that the as-deposited 

sample is noncontinuous film, which suggests the island growth mechanism of Bi 

increases in size as the thickness increases. The Bi islands were obtained either by raising 

the temperature of the as-deposited film up to 525 ± 6 K or by exposing it to a 

femtosecond laser pulses of moderate energy density (0.9 mJ/cm2 - 2.4 mJ/cm2). The 

nanoclusters were obtained after exposing the as-deposited samples to a femtosecond 

laser pulses of energy density 0.9 mJ/cm - 2.4 mJ/cm , simultaneously while raising the 

temperature of the sample with a heating stage with a rate of ~ 3 K.s"1 up to ~ 450 - 470 

K. This method produced Bi nanoclusters of average size - 1 3 - 1 6 nm. Exposing the 

sample to that range of fluence did not affect the crystal structure of the grown sample, 

but it enhanced the ring intensity of some peaks and dimmed the others, which was 
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explained previously in terms of the reorientation of the different planes within the grains 

of the grown sample. 

The detected diffraction ring pattern is identified and we found that these rings are in 

very good agreement with the published ones and confirmed the hexagonal structure of 

the Bi film, nanoclusters, and islands. 

We studied the Bi nanoclusters first by monitoring the ring pattern intensity, 

relative change in position and FWHM while raising its temperature from room 

temperature up to 525 K. We found the following reasonable conclusions; 

• The onset of the melting of the Bi nanoclusters was T ~ 500 ± 6 K, as measured 

by the reduction of the nanocluster size through the formation of a liquid shell 

detected by the width of the diffraction rings. 

• The melting temperature of Bi nanoclusters was measured to be ~ 525 ± 6 K and 

less than that of the bulk (7B = 544 K), as expected and reported in previous 

studies, where the melting temperature is inversely proportional to the average 

cluster diameter. This was attributed to the reduced dimensionality of the Bi 

nanoclusters and its increase in surface to volume ratio, which increases the stress 

and speeds up the melting process. 

• The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K 

along the (012) direction and 86 ± 9 K along (110) direction. At T= 464 ± 6 K, 

the diffraction intensity started to deviate from Debye-Waller behavior due to 

increased lattice anharmonicity. 

• The thermal expansion coefficient of the Bi (012) and (110) planes is positive up 

to ~ 499 ±11 . However, the expansion coefficient of the Bi (012) planes showed 
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a transition from a positive to a negative value that occurs over the temperature 

range Tc ~ 499 ± 11 to 511 ± 8 K. For the Bi (110) planes, the thermal expansion 

coefficient is positive up to their melting point, which is 525 ± 6 K. This behavior 

can be explained in terms of vibrational (phonon excitation) and/or non-

vibrational (lattice potential deformation) effects on the lattice near melting [1]. 

• The study of the FWHM of the diffraction rings as a function of temperature 

confirmed the formation of a liquid shell of Bi at the onset of solid-liquid 

transformation. This shell includes Bi atoms in the liquid phase, detached atoms 

with high vibrational amplitude and vacancies. 

The time-resolved ultrafast electron diffraction experiment was performed on Bi 

nanoclusters and islands to study in real time the structure dynamics of photoexcited Bi 

with femtosecond laser pulses. The structural dynamics evolution as a function of time is 

obtained by following the diffraction ring intensity drop, position and FWHM of two 

different set of planes, namely (012) and (110). 

The first allowed us to monitor the structure change in a direction with Miller 

index / ^ 0 while the latter has orientation with 1 = 0, i.e., with (012) orientation, we can 

monitor the lattice response due to the excitation of optical phonon Aig effects on the 

lattice potential, while for (110) we could not detect these effects [2]. Since the system 

resolution is not high enough to monitor the oscillation period or amplitude of Ajg mode 

but we can detect the consequences of its relaxation on the lattice potential through the 

measurements of the three parameters mentioned earlier. 
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The time-dependent intensity change of the ring pattern can be interpreted in 

terms of the increased lattice disorder due to ultrashort laser pulses (Debye-Waller effect) 

and can be used to estimate the temporal evolution of the lattice temperature. 

In general, the fitting applied to the intensity-time curve showed that the 

relaxation time of the lattice in <012> direction is different from that along <110> 

direction. This is attributed to the anisotropy in the electronic band structure of Bi, and 

the splitting of the energy bands along <012> direction [3]. Additionally, lattice 

thermalization time of Bi nanoclusters is higher than that for Bi islands. This was 

explained in terms of a possible semimetal - semiconductor phase transition as a result of 

the reduced dimensionality of the Bi nanoclusters compared to that of Bi islands. The 

surface tension (pressure) of the surface atoms can displace one of the atoms along the 

body diagonal which in turn modify the band structure of the lattice and enhances the 

transition of Bi to a semiconducting material with indirect band gap. 

The relaxation time represents the time needed for the lattice to become in 

equilibrium and follow Bose-Einestein distribution and generally used to give some 

information and interpret the thermalization processes that may include but not limited to 

Auger recombination (non-radiative), radiative recombination and surface and defect 

recombination. The temporal evolution of Bragg peak position showed that the behavior 

of the lattice along <012> direction is different (contraction) from that along <110> 

direction (expansion) over the first 6 ps of lattice excitation. We attributed this to the 

lattice potential disturbance as a result of the excitation of the Ajg phonons which are 

symmetric and of displacive nature. 
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The thermal effects of photoexcited Bi nanoclusters was also detected in the 

FWHM of the Bragg peaks with time as an increase in FWHM at t > 0 ps. This is due to 

the formation of thin liquid layer, which grows in thickness with time (lattice temperature 

increase). Change in the lattice strain and excitation of longitudinal acoustic phonons 

may also contribute to the increase in the FWHM of the ring pattern [4]. 

Finally, the lattice temperature evolution following the femtosecond laser 

excitation was calculated from the time evolution of the Bragg peak intensity and with 

the help of the Debye-Waller equation. We were able to measure a change in lattice 

temperature, 154 ± 9 K above room temperature, which corresponds to a final lattice 

temperature T = 454 K. This temperature is less than the melting temperature of Bi 

nanoclusters measured from static heating measurements, rm(nanociusters) = 525 K. This is 

attributed to the low Debye temperature that was calculated in Ch.5. 

Therefore, we have succeeded in building a time resolved high energy electron 

diffraction system capable of studying lattice structural evolution of photoexcited Bi 

nanoclusters with resolution that is better than 3 ps. 

The system resolution can be improved by introducing the following modifications: 

1- Moving the electron gun closer to the sample ~ 1" to reduce the space charge 

effects which have a direct impact on the electron pulse broadening which in turn 

will improve the system resolution. 

2- Placing the electromagnet inside the vacuum chamber in the space between the 

sample and the electron gun. 

3- Additionally, a detailed study on the possible superheating of Bi nanoclusters is 

needed. 
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4- A detailed study of time evolution of Bi islands strain (Ad/d) is needed. 

5- Effect of thermal history as well as the effect of annealing method, static versus 

laser, on the sample physical properties is also required. 

6- A theoretical model is required to describe the time-resolved strain behavior of 

the nanoclusters and islands, from which the thermalization time can be extracted. 
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APPENDIX A 

CHARACTERIZATION OF THE ELECTRON PULSE 

The photoelectrons (probe beam FWHM) which are generated from the PAEG 

play a crucial role in time-resolved high energy electron diffraction experiments, with 

which the resolution of the system is determined. There are many factors that affect the 

probe beam broadening and consequently the system resolution, these factors are; 

1. Biasing potential (V0), (electron energy), the higher the value of V0, the smaller the 

FWHM of the probe beam. 

2. Acceleration region length (d), the distance between the cathode and the anode, again 

smaller d gives smaller FWHM of the probe beam. 

3. Drift region, L, the distance from the anode to the samples, this distance is the main 

contribution to the pulse broadening and should be as small as possible. 

4. Other factors that contribute to the pulse broadening are the initial energy spread of 

the photoelectrons and trajectory differences in the drift region. 

Therefore, it is very important for us to estimate the resolution of our system 

based on our PAEG design. The PAEG schematic is shown in Fig. A. 1 with the following 

operating conditions; 

1. Acceleration potential = 35 kV, although the electron gun can operate at 45 kV, we 

decided to lower the operating voltage of the electron gun to reduce arcing and glow 

discharge. 

2. d~3.5 mm 

3. L = 20.3 cm 

4. Pinhole Dia. = 150 urn 
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5. Nickel mesh of 1000 mesh/in2 

We have used Faraday cup and lock-in amplifier to measure the number of 

electrons/pulse that are falling on the sample and from which we were able to estimate 

the probe pulse FWHM at the sample. 

Measurement 1 

We set the UV intensity to certain value which give the same diffraction pattern 

of the same intensity to a previously captured images and measured an electron current, I 

= 0.6 ±0.1 pA. This value gives ~ 3750 electrons/pulse, we used this value and Fig. A.2 

to estimate the broadening of the probe pulse which was estimated to be below 500 fs. 

This is because, Fig. A.2 accounts for only two values for N = 1000 and 5000 

electrons/pulse and the number of electrons we got is 3750 electron/pulse. Therefore, we 

can assume that, the FWHM at that level of number of electrons is better than 500 fs in 

the drift region. 

Measurement 2 

The same procedures were repeated at higher UV intensity and this gave a current 

I = 0.9 ±0.1 pA and the estimated electrons/pulse were ~ 5600. From Fig. D.2 this value 

gives ~ 500 fs FWHM for the probe pulse in the drift region. 

Measurement 3 

The highest UV intensity gave I = 2.4 ± 0.1 pA, and 15000 electrons/pulse. We 

could not use Fig. A.2 to estimate the probe beam pulse width, instead we used Ref. [2]. 

We had to calculate the travel time in the drift region of the electrons by considering the 

previously mentioned parameters of the PAEG. V0 = 35 kV, will accelerate the electrons 

to l .lxl08m/s. 
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Fig. A.2. Effect of the drift region length on the electron pulse broadening for two cases 
in which number of electrons/pulse = 1000 electrons and 5000 electrons, reprinted from 
Ref. [1]. 
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Since the drift region length = 0.2 m, therefore the total travel time for the 

electron in the drift region is t = d/v = 0.2032/1.1 xlO8 = 1.8xl0'9 s = 1.8 ns, i.e., the 

electron needs 1.8 ns to travel from the anode to the sample. According to Fig. A.3, at 1.8 

ns, the FWHM of the probe pulse is ~ 1 ps for Gaussian profile pulse and ~ 1.25 ps for 

flat head pulse at N = 10,000 e/pulse. Therefore, we expect our pulse at this UV level of 

intensity to be in the range of 1.5 ps since we are dealing with N = 15,000 e/pulse. Also, 

from Fig. A.3, for N = 5,000 e/pulse we have FWHM of 0.5 ps for Gaussian profile pulse 

and ~ 0.65 ps for flat head pulse which is consistent with our estimation in measurement 

1 in accordance with Ref. [1]. 
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Fig. A.3. FWHM of the probe pulse vs propagation time in the drift region for Gaussian 
and "top hat" beams. Reprinted from Ref. [2]. 
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APPENDIX B 

EVAPORATOR AND PROCEDURES TO MAKE SAMPLES 

B.l. System Components 

The samples were prepared ex-situ in a six-way cross, eight-inch stainless steel 

chamber. 

The chamber is equipped with the following, 

1- Mechanical pump, 

2- Turbo-molecular pump, 

3- Crystal thickness monitor and controller, 

4- Copper electrodes, 

5- Tungsten filament and/or boats, and 

6- Manual shutter 

B.2. System Operation 

1- Load the tungsten filament with Bi chunks and secure them with the copper 

electrodes inside the chamber. 

2- Install the carbon-coated grids on the evaporation flange above the filament. 

3- Secure the flange in place with a set of bolts and copper gasket and close the 

system and make sure that the valve is open. 

4- Turn on the mechanical pump and after two minutes turn on the turbo pump. 

5- Continuously check the pressure in the chamber by monitoring the reading of the 

Convectron Gauge. 

6- After two hours of operation, and if there is no leak in the system, the system is 

ready for evaporation. 
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7- Turn on the crystal thickness monitor controller and adjust the different sample 

parameters, such as sample density and the A-factor, these numbers are available 

in the operation manual of the crystal thickness controller. 

8- Reset the controller. 

9- Increase the current gradually and slowly through the filament and keep an eye on 

the controller monitor. 

10- When the reading of the monitor starts to increase, stop increasing the current and 

wait till the required thickness is evaporated. 

11- Turn off the current. 

12- Wait about 15 minutes till the sample cools down. 

13- Close the valve, turn off the turbo pump, and wait 5 minutes. 

14- Open the vent valve of the turbo pump slowly. 

15- When the turbo pump completely stops, turn off the mechanical pump. 

16- Open the vacuum chamber by either opening the valve, or loosen the screws one 

after the other slowly. 

17- Remove the samples and install them in the time-resolved system. 
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APPENDIX C 

VACUUM SYSTEM PUMP DOWN AND BRINGING BACK TO 
ATMOSPHERE PROCEDURE. 

C. 1. System Components 

The ultrahigh vacuum system (UHV) used to accomplish our goals consists of: 

1. Custom made-multiport UHV chamber from Kurt J. Lesker company, Fig. C. 1. 

2. Lab-made high energy photoactivated electron gun capable of delivering electrons 

with energy 35-40 keV, Fig. 3.1(b). 

3. Pumping station consisting of turbo molecular pump, 300 l/s, and mechanical 

pump, Fig. C.2. 

4. Double microchannel plate detector (MCP) - phosphorous screen assembly. The 

MCP is a special plate manufactured with millions of micro channels which work 

independently as electron multipliers. A single electron at the input is accelerated 

by the applied potential (~ 1.5 kV) across the terminals of the MCP plates and 

multiplied as it passes through these channels to about 10 electrons at the output. 

These electrons are allowed to fall on the phosphorous screen, which is biased at 

~ 4.1 kV, and generate photons with frequency in the visible range, usually green 

or blue depending on the type of screen coating. 

5. XYZ sample holder and manipulator. 

6. Custom-made heating stage. 

7. High voltage feedthrough. 

8. UHV valves and glass and quarts view ports. 
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C. 2. System Pump Down 

1. After loading the samples into the system, open the valve. 

2. Turn on the turbo-molecular pumping station; note that the mechanical pump 

starts first then few seconds later the turbo pump starts. 

3. Within 3 minutes the turbo pump reaches its full speed of operation (56,000 rpm). 

If it did not reach that speed within that time frame, turn off the pumping station 

and check for leaks. 

4. Keep the pumping station running for about two hours. During that time the 

pressure should be in the range of mid 10"7 Torr. If not, check for leaks. 

5. Close the valve and turn on the ion pump. 

6. If the ion pump did not start, turn it off and check for system leaks. 

7. If everything goes right, the system should be ready within 24 hours to run the 

time-resolved experiment. 

C. 3. Opening the System 

1. Turn off the ion pump. 

2. Wait 15 minutes and loosen one bolt slowly till the pressure starts to increase very 

slowly. Avoid gushing of air into the system rapidly as this may damage the 

delicate components in the vacuum system, the MCP and the electron gun. 

3. Continue loosening the screws one after the other and leave the system to reach 

atmospheric pressure gradually. 

Always remember that this system is very delicate, so try to be as gentle as possible 

whenever you pump it down or up. 
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APPENDIX D 

FEMTOSECOND LASER SYSTEM OPERATION 

D.l. General 

- Before turning on the femtosecond laser system, Fig. D.l, make sure that the 

water level in the chillers is at an appropriate level. 

- NEVER, NEVER and NEVER use regular water (city tap water). 

- For the oscillator (TSUNAMI-SPCTRS PHYSICS), use distilled water, and for 

pumping laser (DARWIN-QUNATRONIX) use de-ionized water. 

D.2. Turning on the Pumping Laser (DARWIN) 

1. Turn the main key to the left, then press "SELECT" on the main panel, Fig. D.2. 

2. Wait 3 minutes till the system is fully powered on. 

3. Press "MENU" scroll down to "SETTINGS" 

4. Press "TEMPERATURE" and adjust the temperature to 23.3 °C. 

5. Press "SELECT" and scroll down to "MODE" 

6. Select "PRF", then "EXTERNAL" 

7. Press "SELECT" and increase the current gradually to ~ 29 A. 

8. Open the shutter. 

D.3. Turning on the Oscillator (TSUNAMI) 

1. Turn on the main power by pressing the white button, Fig. D.3. 

2. Wait few minutes (~ 5 minutes) till the power is stabilized. 

3. Hold the turn on button for few second till the power reading starts to increase. 

4. When the power reading has reached its maximum value ( -4 .5 W), open the 

shutter. 
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5. Turn on the SDG (black switch at the back), and enable the laser output (front 

panel switch). 

6. Leave the system running for at least 30 minutes to stabilize before running the 

time-resolved experiment. 

7. Monitor the output power and make sure that the output power is constant over 

long periods of time. 

8. When the system is running properly, the output power is ~ 1.4 mJ/pulse when 

running at 1 kHz. 

Oscillator 

(seed laser) 
Regen. 

Amplifier 

Fig. D.l. Femtosecond laser system. Pumping 
laser 
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\ . \ • . • _ 

• 

Fig. D.2. Main controller for the Darwin laser (pumping laser). 



*£•?£-? 

Fig. D.3. Control unit for the oscillator (seed laser) 

Fig. D.4. SDG for seed laser and external trigger unit of pumping laser. 
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APPENDIX E 

PUMP-PROBE SETUP 

Time-resolved electron diffraction setup is shown schematically in Fig. E.l and 

the actual system picture is shown in Fig. E.2 with the pump and the probe beams paths. 

Electron gun 

< = > - ^ > 

Diffraction pattern 

formed on the MCP 

screen 

Probe beam 

Pump beam 

Polarizing 

beam splitter 

Half wave 

plate 

Tripling 

crystal Doubling 

crystal 

Delay 

stage 

120 fs 

laser 

Fig. E.l. Layout of the time-resolved electron diffraction setup. A 120 fs pulse is 
generated from Ti: sapphire chirped pulse amplifier. The system is running at 1 kHz. In 
this setup, the laser pulse is divided into two parts; one is frequency tripled and used to 
generate photo-electron from photo-activated electron gun (probe beam), and the other 
part is used to excite the sample (pump beam). The synchronization between the two 
beams is granted since they are generated from a single beam. 



Pump beam Vacuum chamber Probe beam 
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Fig. E.2. Actual pump-probe setup with pump and probe beam paths. 
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APPENDIX F 

PROCEDURES USED TO ACQUIRE DATA (ELECTRON BEAM 
ALIGNMENT WITH LASER, LASER ALIGNMENT ON TARGET, 

AND CONDITION OF WORKING PHOTOCATHODE) 

Prior to data acquisition, PAEG, MCP and phosphorous screen should be biased 

at the proper voltage as follows; 

1. The electron gun operating voltage is -35 kV. 

2. MCP biasing voltage is 1.4 - 1.6 kV. 

3. Phosphorous screen biasing voltage is 4.1 kV - 4.4 kV. 

4. A 60 V is used to get rid of the noise on the MCP. 

5. Electromagnet focusing current is 4.9 A. 

6. The current through the X-Y electromagnets (electron beam steering magnets) is 

adjusted such that the electron beam (probe) passes through the sample under study. 

7. Steer the pump beam with the end mirror such that it passes through the sample. To 

do so, use the infrared viewer to see the transmitted beam from the exit window and 

white piece of paper. You should see an image of the TEM grid on that paper. The use of 

a power meter to measure the transmitted infrared is useless because the transmitted 

portion is too weak to be detected. 

8. Compare the diffraction pattern when the pump beam is on to that when the pump 

beam is off; a reduction in the diffraction pattern intensity is observed if the delay stage is 

adjusted such that the probe beam is delayed with respect to the pump beam. Sometimes 

a detector was used to maximize IR transmission through the TEM grid. 

9. Keep moving the delay stage back and forth in steps of 1 ps, and collect diffraction 

images at each delay time. 



10. Analyze the data according to appendix H. 

11. A graph of I(t)/I(t0) similar to Fig. 6.4.(a) should be obtained. 

12. From that figure, the point where I(t)/I(t0) starts to drop below 1 is the t = 0 

13. A proper fitting to the data will help in determining that point. 
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APPENDIX G 

OPERATION OF THE CAMERA, IMAGE ACQUISITION AND 
DELAY STAGE SOFTWARE 

Computer controlled charge coupled detector (CCD) camera is used to capture the 

diffraction pattern of the Bi nanoclusters at different temperatures and at different delay 

times. 

The operation of the camera is as follows, 

1. Turn on the camera. 

2. Run "WINVIEW" software for image acquisition. 

3. If you want to focus the diffraction pattern, click on "At" icon and make the focus 

time 1 second, Fig. G. 1. 

4. Take a few more images with different acquisition times to check the best time for 

data acquisition that gives no saturated rings. 

5. The exposure time in the previous step varies from sample to sample, UV 

alignment and intensity. 

6. The operator should minimize the UV intensity to reduce the electron pulse 

broadening and may increase the exposure to compensate for the reduced UV 

intensity. 

7. Turn on the delay stage controller, 

8. Run the delay stage software "ESP TUNING" and press "ENTER", Fig. G.2. 

9. Enter the parameters shown in Fig. G.3 
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10. Vary the delay stage location in a proper steps and at each step capture the 

diffraction pattern with pump laser on and with pump laser off. 

11. Repeat step 10 till you finish acquiring the diffraction pattern over a distance 

equivalent to at least 100 ps (80 above t0 and 20 ps below t0). 

12. When done, close the CCD camera software and turn off the camera. 

13. Send the delay stage to its initial location (0 cm on the stage). 

14. Close the delay stage software and leave the controller power on. 

£. 
-!3£».s3| 

1. * •• H H »; 

g. G. 1. Winview software main panel for image acquisition. 



Fig. G.2. Delay stage software starting window. 
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Fig. G.3. Delay stage software main control window. 
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APPENDIX H 

HOW BRAGG PEAK INTENSITY, POSITION AND FWHM WERE 

MEASURED 

In the following I am summarizing the steps that I have followed for data analysis 

and measuring the Bragg peak intensity, position and FWHM. The process of data 

analysis is very long, may take up to 7 days, and is tedious, just to analyze one run, which 

normally has 200 to 400 (sometimes more) different diffraction pattern images. 

First: I used IMAGEJ to radially average the diffraction pattern, and convert it to pixel 

vs. intensity graph as follows; 

1. Open the diffraction pattern using IMAGEJ, and select the circle button and draw a 

circle (any size), Fig. H.l and Fig. H.2. 

; ImageJ 

S^ite Edit 

ote^ 
Point seieetk 

Image Process Analyze Pfugins 

c?|< A - f \ A <\|a • ® 

5ns (shit click for multiple points) 

Window 

Dewlstk S 

|_a J is ' 
Help 

/ <S> X 

•££« 
1 

3*w 1 

• 

Fig.H. 1. Main panel of ImageJ. 



1024x1024 pixels, 16-bit, 2MB 
B J C M I S J 

Fig.H.2. 

2. Click PLUGINS, and select RADIAL PROFILE, Fig. H.3. 

Ftle Edit image Process Analyze Q S S I Window Hefp _ 
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Graphics 

input-Output 
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SaveAsSPE 

Scripts 

Stacks 

Fig.H.3. 
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3. A new window will pop up with X center, Y center and radius in pixels; change these 

numbers till the yellow circle matches EXACTLY one of the diffraction rings in the 

pattern.Usually we choose the most intense one (you may zoom in to get better matching 

results), Fig. H.4. 

File Edit Image Process Analyze Pfugins Window Help 

Radial Profile 

i Radiat Distribution... |n£a»| 

X center (pixels) fflU 

Y center (pixels) 53100 

Radius (pixels) 102 00 

F~ Use Spatial Calibration 

OK | Cancel I 

Fig.H.4. 

t02jx1024 pixels 16-blt2MB 
=»T§f 

Fig.H.5. 
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4. After careful adjustment and matching, open PLUGINSagain, and change ONLY the 

circle radius to a value that includes all the diffraction rings; in my case the circle radius 

is 350 pixels, which is big enough to include all the diffraction rings and click ok, Fig. 

H.6 and Fig. H.7. 

5. Then click COPY. 

File Edit Image Process Analyze Plugins Window Help 

50 1D0 150 200 250 300 350 | 

Radius [pixels] | 

list | Sate J Copy | 

Fig.H.6. 

f ' ! C « ' " • f 1 T 1 [ ; -J —r 

1024x1024 pixels, 16-blt. 2MB 

Fig. H.7 
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Second 

6. Copy the data into EXCEL sheet; you may need to redraw the data to make sure you 

have copied the correct data. 

7. Select part of the data that includes only the diffraction peaks and copy it to PEAKFIT 

software, Fig. H.8. 
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Third 

8. Paste the selected data from EXCEL sheet into PEAKFIT software, Fig. H.9. 
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Fig.H.9. Main panel of PeakFit software V.4.2. 

9. Remove the background from the data by clicking the curve that has letter B inside. 

There are set of prebuilt functions used for background removal. These functions are 

listed on the left side of the figure. Choose the one that gives best background removal, 

Fig. H. 10. 

10. Click the check mark. 



Fig. H. 10 

11. Now you have the diffraction pattern drawn as pixel Vs intensity without 

background, Fig. H. 11. 
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Fig. H. 11 

12. For fitting, click the icon on the top that has letter "I. 
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13. Click on the icon to the left bottom side of the graph that has small white page with 

lines, Fig. H12. 

-Oii» ..,b. ..... _• 

14. A new window will pop up with all the information you need from the diffraction 

pattern (peak intensity, peak position, peak FWHM), Fig. H.13. 
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Fig. H. 13 

We need to copy these data into a new EXCEL sheet or any other software to 

draw these data vs. any parameter we have changed to obtain that diffraction pattern, for 

example, delay time, temperature, or laser power. 

To do so; 

15. Click "EDIT" then "ASCII editor" 
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Fig. H. 14 

16. Select the data, copy and paste it to the pre-prepared EXCEL sheet that has the 

physical parameter you have changed to get the diffraction pattern. 
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Fig.H.15. 

17. Repeat those steps for the 200 images (or more). 
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18. Therefore, from a single run you should get for a single diffraction ring, intensity 

vs. delay time, peak position vs. delay time and FWHM versus delay time. 

Example: 

In this example, we can see clearly how the radial averaging parameters affects 

the calculated physical parameters, but do not affect the behavior of the lattice. The radial 

average parameters used to extract the data presented in Fig. H.16 and 17 are summarized 

in the following table. 

Fig. H.16 
Fig. H. 17 

X-position 
509 
510 

Y-position 
499 
498 

Ring diameter 
300 
300 

The data presented in Fig. H.16 and 17 are redrawn in Fig. H.18-19, respectively, 

up to 2.1 mJ/cm . From Fig. H.18, it is clear that the slopes of data in both directions 

(012) and (110) are almost the same, -llxlO'4 (mJ/cm2)'1 and -lOxlO"4 (mJ/cm2)"1 

respectively which means that the lattice before the inflection point expands with almost 

the same rate which is the same results presented in Ch. V. In Fig. H.19 the slope of the 

data along (012) direction, -19X10"4 (mJ/cm2)"1, is higher than that along (110) direction, -

6*10"4 (mJ/cm2)"1. We conclude from the previous discussion that, although the data 

presented in Fig. H.16-17 gave the same behavior but it is critical to choose the proper 

radial average parameters in IMAGEJ software since a wrong parameters will over 

estimate the measured physical parameters. Therefore, I suggest the parameters used to 

produce Fig. H. 16 to be the proper parameters in reproducing the data. 
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APPENDIX I 

DATA SUMMARY ON CONTINUOUS HEATING 

(a) 
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(b) 
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Fig. 1.1. (a) Diffraction pattern of Bi nanoclusters at different temperatures and (b) the 
corresponding radial profile. 
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1.8. 3/16/2010 - Bi Nanoclusters 
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APPENDIX J 

TIME-RESOLVED DATA SUMMARY COLLECTED FROM 

BISMUTH NANOCLUSTERS 

Note: For all runs, the UV level was as minimum as possible since we don't have means 

of measuring the UV power at the time of collecting the data. 

J.l. Data Collected on 11/17/09, 

Fig. J. 1.1 Time evolution of Bragg peak intensity for (a) (012) planes, (b) (110) planes at 

different fluences. 
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Fig. J. 1.2. Time evolution of relative change in Bragg peak ring size at different fluences 

for (a) (012) planes and (b) (110) planes. 
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Fig. J. 1.3. Time evolution of Bragg peak average FWHM at different fluences. 
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J.2. Data Collected on 02/11/10 

Fig. J.2.1. Time evolution of Bragg peak intensity and relative change in ring radius 

(Ad/d) for (a) (012) planes, (b) (110) planes at 2.4 mJ.cm"2 laser fluence. 
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Fig. J.2.1 (c) Time evolution of Bragg peak FWHM at 2.4 mJ.cm" laser fluence. 
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J.3. Data Collected on 02/12/10 

Fig. J.3.1. Time evolution of Bragg peak intensity (black) and relative change in ring 

radius (red) (Ad/d) for (a) (012) planes, (b) (110) planes at 2.1 mJ.cm"2 laser fluence. 
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Fig. J.3.2. Time evolution of Bragg peak FWHM at 2.1 mJ.cm" laser fluence. 
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J.4. Data Collected on 08/19/2010 

Fig. J.4.1. Time evolution of relative change in Bragg peak intensity at different fluences 

for (a) (012) planes and (b) (110) planes. 
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Fig. J.4.2. Time evolution of relative change in Bragg peak ring radius at different 

fluences for (a) (012) planes and (b) (110) planes. 
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Fig. J.4.3. Time evolution of relative change in Bragg peak FWHM at different fluences. 
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Fig. J. 5. Fluence dependence of the Bragg (a) peak intensity, (b) Ad/d, and (c) normalized 

FWHM. 
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APPENDIX K 

TIME-RESOLVED DATA SUMMARY COLLECTED FROM BI 

ISLANDS 

I noticed that the Bragg peak ring size (Ad/d), for Bi islands did not give any 

useful information, just data points scattered everywhere. 

K.l. Data Collected on 09/03/09 

Fig. K.1.1 Time evolution of Bragg peak intensity for (a) (012) planes, (b) (110) 
planes at laser fluence = 2.4 mJ.cm"2. 
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Fig. K.1.2. Time evolution of Bragg peak FWHM at laser fluence = 2.4 mJ.cm" . 
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K.2. Data Collected on 06/11/2009 

Fig. K.2.1. Time evolution of Bragg peak intensity for (a) (012) planes, (b) (110) planes 

at two different fluences. 
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Fig. K.2.2. Time evolution of relative change in Bragg peak FWHM at different fluences. 
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K.3. Data Collected on 08/14/2010 

Fig. K.3.1. Time evolution of Bragg peak intensity for (a) (012) planes and (b) (110) 

planes at two different fluences. 
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Fig. K.3.2. Time evolution of Bragg peak FWHM at different fluences. 
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Fig. K.4. Fluence dependence of the Bragg (a) peak intensity, (b) Ad/d, and (c) 

normalized FWHM. 
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APPENDIX L 

DATA COLLECTED TO STUDY SUPERHEATING OF BISMUTH 

ISLANDS 

• The following power scans are made while the base temperature of 

the sample is at 373 K. 

• The error in calculating the fluence is high, because it was discovered 

that the pump beam size is changing whenever an alignment is made 

to the regenerative amplifier, which is a factor that is not taken into 

account here when the laser flunece is calculated. 

• The data were not repeated. 

• Based on the previous comments, I can not make any conclusive 

remarks about them, but from these data, I expect a superheating in 

the Bi samples which needs further and detailed study. 

• From the time resolved data, it is also showing the transient time 

dependence on the laser fluence. 

• For these kinds of samples (Bi islands), the data for the strain (Ad/d) is 

just a set of scattered points. 



245 

(012) 

Li-
Li. 

o 
1— 
CD (/) TO 

z 
o 
CD 
U) 
CO 

1.0 t 

0.9 -

0.8 -

0.7 -

0.6 -j 

0.5 -

0.4 -

X 

• 

A 

- » • * • • » M . I ^ T T -

18.0 ps 

9.3 ps 

2.7 ps 
— i H 

• 

m 

Xv 

\ \ 
\ \ 

* \ 
\ \ 

\ 
\ 
X 

1 , 1 

0 

Incident laser fluence (mJ/cm ) 



246 

< 

0.010 

0.008 

0.006 

0.004 

0.002 

0.000 

-0.002 H 

(012) 

-0.004 

X 

• 
• 

~ 

-

18.0 ps 

9.3 ps 

2.7 ps 

• 

• 

x 

r-^^_ *-»"^ 

x ^ S ^ - i • 

—-. 1 . 1-

.•• 
.• • • 

s 
S 

X 

• 

.•• 

• * 
• 

, * 

• 

• 
• • 

.•*•'' / 
/ x 

/ 
/ 

/ 

• 

m/ 

• 

1 

0 

Incident laser fluence (mJ/cm ) 



247 

Normalized FWHM calculated from (012) Bragg peak as a function of the incident laser 

fluence at different delay times. 
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Time-resolved data 

Time-dependent normalized Bragg peak intensity of Bi(012) planes at pump laser fluence 
= 2.5 mJ/cm2 
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Time-dependent normalized Bragg peak intensity of Bi(l 10) planes at pump laser fluence 

= 2.5 mJ/cm 
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Time-dependent normalized Bragg peak FWHM of Bi(012) planes at pump laser fluence 
= 2.5 mJ/cm2 
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APPENDIX M 

LIST OF VENDORS AND DIFFERENT COMPONENTS USED IN 
FILM PREPARATION AND TIME-RESOLVED ELECTRON 

DIFFRACTION SETUP 

L.l Thermal Evaporation System 

Unit description 

6 way high grade stainless 
steel vacuum chamber. 
UHV valve 

70 //s Turbo molecular pump 

Mechanical pump 

Evaporation filaments 

TEM grids 

Inficon deposition monitor 

Part number 

407008 

313037 

TG70FCND 

RV3 

-B5-0.04W 
-F12-3X0.030W 

Cu-400CN 

XTM/2 

Vendor 

http ://www.mdcvacuum. com 

http://www.osakavacuum.co.jp/en/ 

http://www.edwardsvacuum.com/ 

http://www.rdmathis.com/ 

http ://www. grid-tech.com/ 

http://www.inficonthinfilmdepositi 

on.com/en/index.html 

http://www.mdcvacuum
http://www.osakavacuum.co.jp/en/
http://www.edwardsvacuum.com/
http://www.rdmathis.com/
http://grid-tech.com/
http://www.inficonthinfilmdepositi
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L.2 Time-Resolved Electron Diffraction System 

Unit description 

Darwin 30 W pump laser 

Tsunami Ultrafast 
Ti:Sapphire Laser 
Regenerative Amplifier 

Ultrafast laser mirrors 

Ultrafast beam splitter 

Delay stage 

CCD camera, Pixis 1024 

Custom made high grade 
stainless steel vacuum 
chamber 
Rotational manipulator 
XYZ manipulator 
Perkin-Elmer ion pump, 
220 //s 
Turbo-Molecular pump, 
300 //s 
Mechanical pump 
MCP/phosphorous screen 
assembly 
High voltage power 
supply (screen) 
High voltage power 
supply (MCP) 
E-gun high voltage 
power supply 

Part number 
(if applicable) 

DARWIN-527-
30-M 

3941-M1SUSP 

SPITFIRE 
TLM1-800-45P-
1025 
BS1-800-30-1012-
45UNP 

UTM100-PE.1 

7520-0001 

— 

HTBRM-275-12 
PSM-1502 

— 

V300-HT 

949-9315 

— 

PS350/5000V-
25W 

05R 

FC50N2.4 

Vendor 

http://www.quantronixlasers.com/ 

http://www.newport.com/ 

http://cvimellesgriot.com/Products/Pr 
oducts.aspx 

http://www.newport.com/Optical-
Delay-Line-
Kit/396220/1033/catalog.aspx 
http://www.princetoninstruments.com 
/?gclid=CMmA2v7gqKUCFeYD5Qo 
dqxYV7A 

http://www.lesker.com 

www.mdcvacuum.com 

http://www.duniway.com/html/cs-ip-
section.htm 

http://www.varianinc.com 

http://www.burle.com/mcp_pmts.htm 

http://www.thinksrs.com/ 

http://www.glassmanhv.com/glassma 
n tech.shtml 

http://www.quantronixlasers.com/
http://www.newport.com/
http://cvimellesgriot.com/Products/Pr
http://www.newport.com/Optical
http://www.princetoninstruments.com
http://www.lesker.com
http://www.mdcvacuum.com
http://www.duniway.com/html/cs-ipsection.htm
http://www.duniway.com/html/cs-ipsection.htm
http://www.varianinc.com
http://www.burle.com/mcp_pmts.htm
http://www.thinksrs.com/
http://www.glassmanhv.com/glassma
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