
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Spring 2007

The Distributed Independent-Platform Event-
Driven Simulation Engine Library (DIESEL)
Reejo Mathew
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted
for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Mathew, Reejo. "The Distributed Independent-Platform Event-Driven Simulation Engine Library (DIESEL)" (2007). Doctor of
Philosophy (PhD), dissertation, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/4mty-ka78
https://digitalcommons.odu.edu/ece_etds/97

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/97?utm_source=digitalcommons.odu.edu%2Fece_etds%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

THE DISTRIBUTED INDEPENDENT-PLATFORM EVENT-DRIVEN

SIMULATION ENGINE LIBRARY (DIESEL)

by

Reejo Mathew
M.S. December 2002, Old Dominion University

A Dissertation submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
May 2007

Approved by:

Leathrum, Jc./Dire<5tor)

RolapcLR. Mielke (Member)

Lee A. Belfore IV(Member)

C. Michael Overstreet (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

THE DISTRIBUTED INDEPENDENT-PLATFORM EVENT-DRIVEN SIMULATION
ENGINE LIBRARY (DIESEL)

Reejo Mathew
Old Dominion University, 2007

Director: Dr. James F. Leathrum, Jr.

The Distributed, Independent-Platform, Event-Driven Simulation Engine Library

(DIESEL) is a simulation executive, capable of supporting both sequential and distributed

discrete-event simulations. A system level specification is provided along with the

expected behavior of each component within DIESEL. This behavioral specification of

each component, along with the interconnection and interaction between the different

components, provides a complete description of the DIESEL behavioral model. The

model provides a considerable amount of freedom for an application developer to

partition the simulation model, when building sequential and distributed applications with

respect to balancing the number of events generated across different components. It also

allows a developer to modify underlying algorithms in the simulation executive, while

causing no changes to the overall system behavior so long as the algorithms meet the

behavioral specifications.

The behavioral model is object-oriented and developed using a hierarchical

approach. The model is not targeted towards any programming language or hardware

platform for implementation. The behavioral specification provides no specifics about

how the model should be implemented. A complete and stable implementation of the

behavioral model is provided as a proof-of-concept, and can be used to develop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commercial applications. New and independent implementations of the complete model

can be developed to support specific commercial and research efforts. Specific

components of the model can also be implemented by students in an educational

environment, using strategies different from the ones used within the current

implementation. DIESEL provides a research environment for studying different aspects

of Parallel Discrete-Event Simulation, such as event management strategies,

synchronization algorithms, communication mechanisms, and simulation state capture

capabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation is dedicated to the saying
"The day you are through learning, you are through."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to extend special thanks to Dr. James F. Leathrum, Jr., my mentor

and dissertation advisor, for the knowledge and guidance that he has given me during the

last seven years. I will fondly remember our spirited discussions about Yankees baseball

(my passion) and Duke basketball (his passion), although we have yet to find common

ground on either topic. I would like to believe that he has learned as much about soccer

(or football as it is known in the rest of the world) and cricket from me, as I have learned

about baseball traditions and the Princeton offense in basketball from him.

I would like to thank the other members of my advisory committee, Dr. Roland

Mielke, Dr. Lee Belfore and Dr. Michael Overstreet, for all their help and support and for

their amazing ability to adjust their schedules to be present at each one of the numerous

examinations that I had to undergo as part of the PhD program. I would also like to thank

my colleague, Mr. Saurav Mazumdar, of the Department of Electrical and Computer

Engineering at Old Dominion University, for his prototypical implementations of the

DIESEL model in C# and Java and for his valuable suggestions during the model

development.

I would like to thank my friends Shruti, Paul, Avi, Anand, Hrishi and lots of

others for helping me keep my sanity intact and my disposition cheerful during the times

that I needed it most.

My family has played a big role in all my achievements in my life and my career.

My brother, Rishi, though younger than me, has been a source of inspiration for me

throughout my career. I owe everything in my life to my parents, Annie and V.C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mathew. This doctorate is a testament to everything that I have learned from them and

my most cherished gift to them. Last but definitely not least, I dedicate this dissertation to

my sister, Reenu for her words of encouragement, her voice of reason, her generosity and

her inability to refuse whenever I asked her for monetary assistance. I love and respect

her for who she is and what she has done for me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES..xi

LIST OF FIGURES... xii

LIST OF GRAPHS.. xv

ABBREVIATIONS AND ACRONYMS... xvi

Chapter

I. INTRODUCTION.. 1
1.1 Overview... 2
1.2 Background... 2
1.3 Related W ork.. 13

1.3.1 Parallel and Discrete-Event Simulation (PDES)............................ 13
1.3.2 Research / Educational Frameworks.. 16

1.4 Chapter P lan .. 17

II. PROBLEM STATEMENT.. 18
2.1 Problem Statement..18
2.2 Research Purpose..20
2.3 Model Requirements.. 23
2.4 Definitions...24

III. INTERFACE SPECIFICATION FOR THE DIESEL SEQUENTIAL MODEL....26
3.1 Interaction between Components within DIESEL.....................................26
3.2 DIESEL Engine Interfaces...31

3.2.1 Delegate Interface.. 31
3.2.2 ArgumentList Interface...33
3.2.3 SimulationEngineComponent Interface.. 35

3.3 DIESEL Delayed State Commitment Interfaces.. 36
3.4 DIESEL State Capture and Restore Interfaces...38
3.5 DIESEL Base Interfaces.. 40
3.6 DIESEL Random Variate Model Interfaces...41
3.7 DIESEL Synchronization Interfaces... 44
3.8 DIESEL Entity Management Interfaces... 48
3.9 DIESEL Sequential Simulation Executive... 52
3.10 Implementation Classes for the DIESEL Engine Interfaces..................... 53

3.10.1 SimulationCluster C lass...53
3.10.2 SimulationEngine Class..54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.10.3 SimulationEngineComponent C lass..56
3.10.4 EventManager C lass...57

3.11 Examples...59
3.11.1 Timing diagram for execution of events..59
3.11.2 Dining Philosophers’ Problem... 66

IV. INTERFACE SPECIFICATION FOR THE DIESEL DISTRIBUTED MODEL... 69
4.1 Interaction between Components within DIESEL.....................................69
4.2 Extensions to the DIESEL Interface...75
4.3 DIESEL Distributed Simulation Executive..75

4.3.1 Barrier Synchronization Algorithm... 77
4.3.2 Time Warp Paradigm... 77

4.4 Support Classes for the DIESEL Distributed Interface............................. 79
4.4.1 ObjectRegistry Class..79
4.4.2 Message C lass..80
4.4.3 MessageQueue C lass...80
4.4.4 StateSaveQueue C lass... 81

4.5 DIESEL Analytical Support.. 81

V. CASE STUDIES...84
5.1 Event Management Study..84

5.1.1 Implementation of the Event Management Structure................... 85
5.1.2 Event Insertion Strategies for a LinearPendingEventSet............. 89
5.1.3 Timing Results...96

5.2 Distributed Simulation Study.. 99
5.2.1 Distributed Implementation.. 99
5.2.2 Communication Study... 101
5.2.3 Results... 103

5.3 Port Simulation (PORTSIM)... 105
5.4 Platform Independence Study..110

VI. CONCLUSION...113
6.1 Achievements..113
6.2 Enhancements... 114

REFERENCES... 117

APPENDICES.. 125
A DIESEL Sequential Interface Specification... 125

A.l State Capture Interfaces...125
A. 1.1 StateSave Interface...125
A. 1.2 StateSaveSupport Interface...126

A.2 Application Support Interfaces... 131
A.2.1 Replicable Interface... 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

A.2.2 ProgrammaticEvent Interface... 132
A.2.3 Routine Interface.. 133
A.2.4 Condition Interface.. 134

A.3 Application Interfaces..135
A.3.1 SequentialSimulationExecutive Interface......................... 135
A.3.2 ArgumentList Interface.. 137
A.3.3 Delegate Interface.. 142
A.3.4 SimulationEngineComponent Interface............................145
A.3.5 DelayedCommit Interface..150

A.4 Synchronization Interfaces.. 152
A.4.1 Trigger Interface.. 152
A.4.2 TriggerCounter Interface...155
A.4.3 Join Interface.. 158
A.4.4 JoinCounter Interface.. 161

A.5 Random Number Generation Interfaces...164
A.5.1 RNG Interface...164
A.5.2 AdvancedDistributions Interface.......................................168

A. 6 Entity Management Interfaces.. 174
A.6.1 Set Interface.. 174
A.6.2 FIFO Interface..180
A.6.3 LIFO Interface..183
A.6.4 BinaryTree Interface.. 187
A.6.5 PriorityQueue Interface... 192
A.6.6 Queue WithStatistics Interface... 195
A.6.7 EntityCounter Interface...200
A.6.8 EntityPool Interface...210

B DIESEL Distributed Interface Specification... 220
B.l DistributedSimulationExecutive Interface..................................... 220
B.2 Modified SimulationEngineComponent Interface.........................223
B.3 SimulationCluster Interface.. 224

V ITA ... 228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

LIST OF TABLES

Table Page

1. Messages passed and average pending events with 6 SimulationClusters...............103

2. Messages passed and average pending events with 3 SimulationClusters...............103

3. Messages passed and average pending events with 2 SimulationClusters...............104

4. Messages passed and average pending events with 2 SimulationClusters
with L-shape organization... 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1. Distribution Simulation Methodology..5

2. Time Warp Logical Process (TW LP)... 11

3. Communication between TW LPs... 12

4. DIESEL Interface... 19

5. SimulationCluster.. 27

6. Inherited SimulationEngineComponent... 28

7. Global SimulationEngineComponent... 28

8. Static SimulationEngineComponent... 30

9. Dynamic SimulationEngineComponents... 30

10. Delegate Interface.. 33

11. ArgumentList Interface.. 34

12. SimulationEngineComponent Interface..36

13. DelayedCommit Interface..38

14. St ate Save Interface...39

15. StateSaveSupport Interface... 40

16. Replicable Interface... 41

17. Programmatic Event Interface...41

18. RNG Interface...43

19. AdvancedDistributions Interface.. 44

20. Dependent Triggers..45

21. Trigger Interface.. 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22. TriggerCounter Interface.. 46

23. Dependent Jo ins... 47

24. Join Interface..47

25. JoinCounter Interface.. 47

26. Set Interface..49

27. FIFO Interface..49

28. LIFO Interface..49

29. BinaryTree Interface.. 49

30. PriorityQueue Interface...50

31. QueueWithStatistics Interface... 50

32. EntityCounter Interface... 51

33. Entity Pool Interface... 51

34. SequentialSimulationExecutive Interface... 52

35. Basic Sequential Simulation..53

36. SimulationCluster C lass.. 54

37. SimulationEngine C lass...54

38. SimulationEngineComponent C lass... 56

39. EventManager C lass.. 58

40. Timing Diagram...61

41. Snapshot of Dining Philosophers..67

42. SimulationForest..70

43. Registry of processors within simulation executive..71

44. Registry of objects within a SimulationCluster... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiv

45. Reference resolution between SimulationClusters..73

46. Communication between SimulationClusters..74

47. Modified SimulationEngineComponent Interface...76

48. SimulationCluster Interface...76

49. DistributedSimulationExecutive Interface... 76

50. Object Registry C lass..80

51. Message C lass.. 80

52. MessageQueue C lass... 81

53. StateSaveQueue C lass..81

54. EventList Structure...86

55. EventList and EventListNode Classes...86

56. LinearPendingEventSet Structure...87

57. LinearPendingEventSet and LinearPendingEventSetNode Classes.............................88

58. NonLinearPendingEventSet and NonLinearPendingEventSetNode Classes...............89

59. Snooker table divided into BallGroups.. 96

60. DistributedExecutiveSupport Interface...100

61. Mapping of BallGroups to SimulationClusters... 102

62. PORTSIM Architecture... 106

63. MapNode within PORTSIM Architecture... 107

64. Example PORTSIM ProcessFlow using PPFN ... 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

LIST OF GRAPHS

Graph Page

1. Time spent by Philosophers eating, thinking and waiting..68

2. Average execution time for different distributions..98

3. Average nodes searched for different distributions... 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvi

ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

BTB Breathing Time Buckets

COM Component Object Model

CORBA Common Object Request Broker Architecture

DARPA Defense Advanced Research Projects Agency

DCOM Distributed Component Object Model

DES Discrete-Event Simulation

DFD Data Flow Diagram

DIESEL Distributed, Independent-Platform, Event-Driven Simulation
Engine Library

DIS Distributed Interactive Simulation

FOM Federation Obj ect Model

GTW Georgia Time Warp

GVT Global Virtual lim e

HLA High Level Architecture

IDE Integrated Development Environment

IID Independent Identically Distributed

IOC Initial Operational Capability

LP Logical Process

MIS Management Information System

MPI Message Passing Interface

NACHOS Not Another Completely Heuristic Operating System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ODU Old Dominion University

OMG Object Management Group

OMT Object Model Template

PDES Parallel Discrete-Event Simulation

PORTSIM Port Simulation

PPFN Programmable Process Flow Network

RMI Remote Method Invocation

RTI Runtime Infrastructure

SDDC-TEA Surface Deployment and Distribution Command - Transportation
Engineering Agency

SIMNET Simulator Networking

SOM Simulation Object Model

SPEEDES Synchronous Parallel Environment for Emulation and Discrete-
Event Simulation

TWLP Time Warp Logical Process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

Chapter I

INTRODUCTION

The Distributed, Independent-Platform, Event-Driven Simulation Engine Library

(DIESEL) is a behavioral model for a simulation executive, capable of supporting both

sequential and distributed Discrete-Event Simulation (DES). The behavioral model

provides a system level specification for the simulation executive by describing the

different components of the system, specifying the behavior of each component, and

detailing the interconnection and interaction between the components. The model is

generic, language-independent and platform-independent, and is developed using an

object-oriented approach.

DIESEL specifies interfaces for each component of the behavioral model, along

with the expected behavior of each procedure within the component interface. This can

be used to develop new and independent implementations of one or more components of

the model. It also provides support for developing commercial applications by using the

same interfaces to build the application in a hierarchical manner.

DIESEL has been developed to bring research into different aspects of sequential

and distributed DES under a common research and development platform. A new

implementation can be developed for one or more components within the model and can

then be inserted into the complete system with no change in system behavior. At a system

level, the entire implementation of the behavioral model can be redefined by using

The reference model for this work is "An Object-Oriented Architecture for the Simulation o f Networks of
Cargo Terminal Operations." Journal o f Defense Modeling and Simulation (JDMS) 2, no. 2, 101-116, 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different algorithms and data structures without affecting any applications that are built

using the simulation executive.

1.1 Overview

Simulations are used extensively to model real-world systems, both existing and

proposed, and analyze problems and scenarios that occur within them. Simulations are

often a cost-effective method for modeling a complex physical system with a level of

detail that adequately represents the real-world system under consideration. Simulations

are often a relatively cheap approach for experimenting with an existing or proposed

system and for evaluating future modifications and additions to the system when

compared to building the actual system. The processing involved in the system needs to

be modeled with appropriate detail so that the developed model provides an accurate

representation of the system necessary to meet the stated objectives of the simulation. An

analysis of the simulation results can then be used to aid in the decision-making to

improve the performance and efficiency of the system. Simulations can also provide a

safe alternative to evaluating scenarios such as war planning, where it is too dangerous

and costly to conduct actual exercises during planning and training.

1.2 Background

The following terms are commonly used within a DES:

• Physical Time: Physical Time is the time within the real-world or proposed

system being simulated. In a digital circuit, the physical time might be in terms of

microseconds or nanoseconds, while in a port simulation, the physical time might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

be in terms of days, weeks, or months.

• Simulation (Virtual) Time: Simulation or Virtual Time is an abstract concept

used by a simulation to represent physical time. Fujimoto in [1] describes

simulation time as a totally ordered set of values where each value represents a

unique instant of physical time in the system being simulated.

• Wallclock Time: Wallclock time refers to the advancement of real time during the

execution of the simulation. For analytical simulations, wallclock time could start

from zero, while for real-time simulations wallclock time could be synchronized

with a true wallclock.

• Event: At any instant within a simulation, the state of the system can be derived

from the simulation state variables. An event is defined as an act which changes

the state of the system by modifying its state variables. In addition, an event can

schedule other events to be executed in the future.

A DES uses events to model discrete changes of state within a modeled system,

and the simulation progresses with events being processed in order of their timestamps. A

DES can be executed on a single processor with common time management for all

components of the simulation. A DES can also be mapped to a collection of processors

connected by a network (with each processor on the network modeling a particular

component) and then executed in parallel. This is known as a Parallel Discrete-Event

Simulation (PDES) [1,2]. PDES can offer several advantages over executing a

simulation on a single sequential processor, such as model parallelism and reduced

execution time for the simulation.

Simulations are usually composed of different components interacting with each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

other. Each component represents an individual process or set of processes within the

modeled system. These components can be intuitively mapped onto processors in the

network within a PDES with a single processor simulating one component or a group of

related components, thus preserving their natural structure. This structure can also take

advantage of any potential parallelism within the model, with each component executing

in isolation, independent of another component, until it needs to interact or synchronize

with another component.

Mapping a large simulation model to a network of processors by dividing the

model into distinct components and providing each component within the simulation

local access to its data and code potentially speeds up the execution of the whole

simulation model. The maximum speedup possible within a PDES is a factor of n, where

n is the number of processors available. It is rarely possible to achieve this ideal speedup

due to interconnection and synchronization delays among components. However, the goal

of a PDES is to generally execute faster than the equivalent sequential simulation.

Simulation users might need access to individual components of the simulation,

without having to worry about other components, or interfering with their execution. A

PDES can provide this isolation of components. This property is even more beneficial

when the users are at separate geographical locations, with the PDES providing the user

with access to the relevant components of the simulation model. Distributed interaction

by different users also requires distributed time management within the simulation which

is provided by the PDES.

The development of a PDES system can be described with a hierarchical, top-

down approach as shown in Figure 1. Given a system of interest to be modeled, the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

REAL-WORLD SYSTEM

iz
Formalism and
Specification

SIMULATION MODEL

zz
Network Mapping with

Interconnection and
Synchronization

DISTRIBUTED SIMULATION

Figure 1. Distributed Simulation Methodology

step is to develop an abstraction of the system, i.e., a model specification. The

components of the model and the input/output relationship among them need to be clearly

defined to develop a valid and correct model of the system. The model specification can

then be mapped onto a distributed simulation architecture by designing the

interconnection and synchronization mechanism among the components.

A PDES system consists of multiple processes interacting with each other to

complete the simulation task. Each such process simulates either an actual process within

the system of interest or a process to support simulation execution, such as complex

statistical analysis or construction of graphical images. Such a process is called a logical

process (LP). A PDES can be executed either on a single processor or a network of

processors with a communication medium connecting the processors. The number of LPs

is independent of the number of processors available for the simulation. All the LPs can

reside on the same processor in a single-processor environment or can be distributed

across the network. In concept, LPs interact with each other by transmitting messages

among each other. Messages are used by LPs to schedule events on other LPs, to transmit

synchronization information, to report errors, etc. The actual content of a message might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

include additional information unique to the synchronization paradigm being employed.

Within any simulation, the happened before relation needs to be defined for the

ordering of events. Let —* denote the happened before relation. Then

• If a and b are events within the same LP, and a comes before b in simulation time,

then a —> Z>.

• If a is the act of sending a message by one LP, and b is the receipt of the same

message by another LP, then a —> b.

• If a —*■ b and b —*■ c, then a-+ c.

• Two distinct events a and b are said to be concurrent if a b and b~A a.

Lamport [3] defines a virtual clock as:

• A virtual clock C is a logical structure with no relation to physical time.

• C; exists in each L P Pj.

• Cj assigns a timestamp Q <a> to each event in Pj.

Then, Lamport’s clock conditions state that:

For any events a, b

if a ^ b, then C<a> < C

This can be expanded to include the happened before relation as:

• If a and b are events within the LP Pj and a —> b, then Cj«3> < Cj.

• If a is the act of sending a message by L P Pj, and b is the receipt of the same

message by L P Pj, then Cj<a> < Cj<Z».

• If C<«> < C and C < C<c>, then C<a> < C<c>.

• If a and b are simultaneous events, i.e. events that have the same timestamp, then

no happened before relation exists between C<a> and C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A DES when executed as a sequential simulation should process events in

increasing order of their timestamps so that the happened before relation can be

maintained for the events. A DES when executed as a distributed simulation should also

process events, whether generated locally within a LP or generated by other LPs, in

increasing order of their timestamps. This is known as the Local Causality Constraint [1]

and is a sufficient condition for a DES. If each LP within a distributed simulation adheres

to the Local Causality Constraint, then the distributed simulation will produce identical

results to the equivalent sequential simulation, provided that both the sequential and

distributed simulations execute simultaneous events in the same order.

A distributed simulation can reorder events in violation of the Local Causality

Constraint provided that the reordering does not violate inherent computational

dependencies between events. This is rarely done since the simulation executive requires

knowledge of the computational dependencies between events in order to select an

appropriate event to execute. This knowledge requires a higher level of interaction than

that required by the Local Causality Constraint between the simulation executive and the

application, and requires the application to have a higher level of understanding of these

dependencies.

A PDES system can employ either of two types of synchronization algorithms to

satisfy the Local Causality Constraint, conservative and optimistic, as discussed below.

Conservative Synchronization Algorithms

Conservative synchronization algorithms strongly enforce the Local Causality

Constraint by blocking all LPs from processing any event until it is determined to be safe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

by the simulation executive. Determining what events are safe to process is an important

part of any conservative algorithm. A simple method is for each LP to send a null

message to every other LP indicating the lower bound on the time stamp of messages it

will send at any point in the future. This lower bound is calculated by adding a quantity

called lookahead to the local simulation time of the LP. Fujimoto [1] states that if a LP at

simulation time T can only schedule new events with timestamp of at least (T + L), then

L is the lookahead for the LP. The lookahead is determined by the simulation application,

and can change during the simulation. However, this method can lead to deadlock within

the simulation, with LPs waiting for each other to process events further.

An approach known as barrier synchronization can be used to address deadlock,

where each LP executes its safe events and then waits for every other LP to reach an

agreed upon synchronization point. Once each LP has reached that point, all LPs are

allowed to execute their next batch of safe events. Barriers can be implemented in a

variety of ways by organizing LPs to reduce the messages that need to be sent between

LPs to execute the barrier primitive [1].

The advantages of conservative algorithms are decreased complexity of the

simulation executive, the absence of causality errors, and modest memory requirements.

The disadvantages of these algorithms are LPs waiting for a notification that its next

event is safe to be processed and the possibility of deadlocks with each LP waiting for a

notification from all other LPs.

Optimistic Synchronization Algorithms

Optimistic synchronization algorithms, on the other hand, allow violations of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Local Causality Constraint, by allowing the LPs to continue executing events and then

returning to a safe state when causality errors occur. Optimistic algorithms account for

causality violations by rolling back to a saved safe state (which has been checkpointed),

undoing all state changes which occurred after the checkpoint, and by sending special

messages called anti-messages to reverse the effect of improperly sent messages after the

checkpoint. The execution of an event is provisional; it is conditional on the fact that no

message arrives at the LP with a timestamp less than the event’s timestamp. Optimistic

algorithms have been developed on the premise that improved simulation performance

can be achieved even with the overhead of undoing and possibly repeating one or more

event computations.

The Time Warp paradigm [4, 5] is one of the most widely discussed optimistic

synchronizing mechanisms for a PDES system. The Time Warp paradigm derives its

name from the behavior that virtual clocks of different LPs go back and forth,

independent of each other, reverting back to correct causality errors, while generally

progressing for the duration of the simulation. At any point in the simulation, some LPs

are allowed to progress ahead in terms of virtual time, while other LPs lag behind in

terms of their local simulation times. The paradigm is independent of any underlying

computer architecture. However, a reliable communication medium is assumed so that no

messages are lost in transit.

The Time Warp paradigm requires each LP to have the following:

• A process identifier unique to an LP indicating the virtual space co-ordinate of the

LP. The set of all process identifiers constitute the virtual space of the simulation.

• A local virtual clock Cj showing the current virtual time of the LP to indicate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

virtual time co-ordinate of the LP.

• A state denoting the current state of the LP including its state variables, execution

stack, etc.

• A state queue containing saved states of the LP called checkpoints for rollback

purposes. It is assumed that the state of each LP is saved after every event

computation.

• An input queue containing all processed and unprocessed messages received from

other LPs along with their timestamps. Messages which have been processed are

saved in case a rollback is necessary and the messages need to be reprocessed.

• An output queue containing faithful copies (with a negative sign) of messages

sent to other LPs during an event computation, called anti-messages. Anti

messages are stored to undo the effect of positive messages in the event of a

rollback.

A Time Warp Logical Process (TWLP) is shown in Figure 2. Causality of

executed events is achieved within Time Warp by two major components: the local

control mechanism and the global control mechanism. The local control mechanism

within Time Warp deals with the execution of events within a TWLP and receipt of

messages from other TWLPs in order of their timestamps. The value of Q at a TWLP

never changes during the processing of an event, it only changes between events.

However, in the absence of a global clock, it is likely that one TWLP will send a message

to another TWLP with a timestamp that is in the past of the destination TWLP. Such a

message is called a straggler message. In this case, the destination TWLP has to roll back

to a state earlier than the timestamp of the straggler message, and then start processing all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Input Queue Output Queue

State Queue

czzi o
State Local Virtual Clock□

Process Identifier

Figure 2. Time Warp Logical Process (TWLP)

events in its input queue that have timestamps greater than that of the straggler message.

When a straggler message arrives, all events that have been processed might have

modified state variables as well as scheduled new events by sending messages to other

TWLPs. Therefore, to undo the incorrect modification of state variables, the state of the

TWLP needs to be restored to a state prior to the incorrect modification. Various state

saving techniques exist in literature [6 - 11].

It also becomes necessary to undo the effects of messages that may have been sent

incorrectly because the straggler message was not processed. Therefore, for every

message that a TWLP sends to another TWLP, the original message is stored in the input

queue at the destination TWLP, and a faithful copy of the message with a negative sign,

called an anti-message, is stored in the output queue of the source TWLP. This is shown

in Figure 3. Whenever a message and an anti-message encounter each other in the same

queue, they cancel out each other. This is known as message annihilation. Since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Input Queue Output Queue

TT I I I I I
State Queue

LP 1

Input Queue Output Queue

h h
State Queue

LP 2

Figure 3. Communication between TWLPs

messages and anti-messages are created in pairs, the algebraic sum of all messages and

anti-messages in a Time Warp system at any instant of time is zero.

The local control mechanism consumes more and more memory as the simulation

progresses because states need to be saved for rollback purposes, and positive messages

and anti-messages need to be saved even after they have been executed. A more global

mechanism is required to reclaim memory allotted for history information. Moreover,

certain event operations such as I/O operations cannot be rolled back easily, and the

TWLP needs to be certain that no rollback is necessary for the current point before it

proceeds with such operations. Therefore, a lower bound on the timestamp of any future

rollback needs to be determined both for claiming memory allotted for state saving before

the lower bound and for safely performing I/O operations in the past of the lower bound.

This lower bound is known as the Global Virtual Time (GVT).

Fujimoto [1] describes Global Virtual Time at wallclock time T (GVT7), as the

minimum time stamp among all unprocessed and partially processed messages and anti-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

messages in the system at wallclock time T. GVT can be computed periodically or in

emergency situations, when the simulation is running low on memory or an I/O or

interrupt operation needs to be performed. Various techniques for computing the GVT

exist in literature [12, 13, 14].

1.3 Related Work

This section describes past work that has been done in Parallel and Discrete-Event

Simulation (PDES) and other related fields.

1.3.1 Parallel and Discrete-Event Simulation (PDES)

Research in the field of PDES is focused towards different aspects of the system.

Simulation tools and languages have been developed to support building computer

simulations. Tools have also been developed to help an application developer build a

simulation more efficiently. To support simulation execution, many simulations

executives and environments that support sequential and parallel discrete-event

simulations have been developed. Simulation frameworks to support linking together

simulations have also been defined. Most of these applications are focused towards

distinct aspects of the field of PDES.

Object-oriented programming was originally developed with the basic intention

of supporting the simulation of the states and activities of different entities [15, 16].

Attributes represent the state of an entity, while a method modifies the behavior of the

entity by manipulating its attributes. A real-world system usually involves multiple

entities interacting with each other through the lifetime of the system. Object-oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

methodology aids in simulating this process by dynamically instantiating multiple objects

to represent the different entities and representing the interaction among the objects as

objects invoking methods on other objects. Commercial simulation languages such as

MODSIM [17] and SIMSCRIPT [18] and simulation tools such as PROMODEL [19],

ARENA [20] and MODELICA [21] have been developed to build simulations. Many of

these languages are built using a specific general-purpose programming language and are

focused on simplifying the development of stable simulation applications. Distributed

simulation languages such as Maisie [22], MOOSE [23], APOSTLE [24], PARSEC [25],

POMSim [26], Silk [27] and Sim++ [28] have also been developed before. Maisie and

PARSEC are purely C-based simulation languages, Silk is Java-based, Sim++ is C++-

based, while MOOSE is an object-oriented extension to Maisie. APOSTLE employs a

single optimistic algorithm, the Breathing Time Buckets (BTB) synchronization

algorithm. POMSim exclusively simulates manufacturing systems.

Considerable work has also been done to provide a formal framework for

specifying and building application models. The DEVS formalism was conceived by

Zeigler [29, 30] to provide a rigorous approach for discrete-event modeling and

simulation. The DEVS formalism facilitates modular, hierarchical model specification,

using a top-down approach to model development. DEVS allows for the description of

system behavior at two levels: the basic model which can be used to develop larger

models and how basic models are interconnected to form a complete system. Frey et al.

[5] present a formal specification of the Time Warp paradigm, the structure of its

components, the properties necessary for its validity and correctness, and a formal

verification of the Time Warp specification. A reusable specification framework to extend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

the basic Time Warp specification and define and verify new properties is also described.

Simulation environments focus at the core simulation executive and support

different aspects of the parallel and distributed simulation paradigm by providing the

ability to use different algorithms and mechanisms. The Georgia Time Warp (GTW) [31]

is a parallel simulation executive which implements the Time Warp specification for

shared-memory multiprocessors. SPEEDES (Synchronous Parallel Environment for

Emulation and Discrete-Event Simulation) [32] is an object-oriented distributed discrete-

event simulation framework written in C++. SPEEDES supports a variety of conservative

and optimistic synchronization schemes for distributed simulations and has been designed

to run on a variety of hardware platforms. It also provides interfaces for developing

external simulations to interact asynchronously with the SPEEDES simulation. However,

SPEEDES is not a general purpose programming language nor does it provide a

behavioral specification to develop new implementations of various components. It

provides a modeling framework that allows other simulation scripting languages to be

written on top.

Simulator Networking (SIMNET) [33, 34], developed by Defense Advanced

Research Projects Agency (DARPA) provides an architecture for networking processors

in real-time for combat simulation and wargaming. Distributed Interactive Simulation

(DIS) [35] extends SIMNET by connecting diverse simulations using a communication

medium to provide a common battlefield on which the different simulations can interact

with each other in real-time. The High Level Architecture (HLA) [36, 37, 38] that

evolved from DIS provides a specification of a common technical architecture to address

the need for interoperability among new and existing simulations within the US

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Department of Defense. HLA defines a set of rules to link diverse existing simulations

(each called a federate) while providing a framework to incorporate new simulations in

order to create a collection of simulations operating together (called a federation). The

Object Model Template (OMT) within HLA provides a standard format for describing

information of common interest to more than one federate, while the Runtime

Infrastructure (RTI) provides the means for federates to coordinate the execution and

exchange of information.

1.3.2 Research / Educational Frameworks

A strength of the DIESEL model is that it provides a platform for further research,

allowing new implementations to be developed and evaluated within the prescribed

behavior. Similar work has been done in the field of operating systems to simulate a real

operating system, while providing a platform for changing components within the

simulation. NACHOS (Not Another Completely Heuristic Operating System) [39]

developed at the University of Berkeley, California is used to teach operating systems at

an undergraduate level. NACHOS allows the study and modification of an operating

system by providing a simulation environment for an instructional operating system. It

implements a CPU and device simulators, and simulates the general low-level facilities of

typical machines, including file systems, threads, remote procedure calls, interrupts,

virtual memory, and interrupt-driven device I/O. NACHOS allows students to write new

implementations for each major component of an operating system, enabling them to

understand aspects of real operating systems in terms of reliability, performance, and

simplicity of the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Research frameworks have also been developed in the field of Management

Information Systems (MIS) [40] for understanding and classifying existing research into

different categories and for generating potential hypotheses for future research.

1.4 Chapter Plan

Chapter II explains the rationale behind this research and lists the requirements of

the behavioral model. Chapter III provides a complete specification for the sequential

simulation executive. It also includes a brief description of the implementation of the

main components of the simulation executive. Chapter IV provides a complete

specification for the distributed simulation executive. Chapter V describes various case

studies that have been conducted to demonstrate the use of the behavioral model. Chapter

VI concludes the dissertation and offers suggestions on improvements and additions to

the model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Chapter II

PROBLEM STATEMENT

An architectural model defines the components of a system, specifies the manner

in which they interact with one another, and details the interconnection among these

components. The Distributed, Independent-Platform, Event-Driven Simulation Engine

Library (DIESEL) is a behavioral model for a simulation executive that aims to provide a

common platform for research and development in the field of Parallel and Discrete-

Event Simulation (PDES). The model has been designed to be generic, language-

independent and platform-independent using a hierarchical, object-oriented approach.

The model defines how time management will be handled in the simulation. It also

provides the application developer a tremendous amount of flexibility in the partitioning

of his model from an event management standpoint. The model is defined behaviorally so

that various algorithms and data structures can be implemented internally without

requiring modification of applications that are developed using the model.

The rest of this chapter is organized as follows. Section 2.1 explains the rationale

behind this research, Section 2.2 outlines the requirements of the architectural model, and

Section 2.3 defines various terms used in this dissertation.

2.1 Problem Statement

DIESEL has been developed to allow research into the development of simulation

executives, under a common research and development platform. It does not attempt to

address simulation modeling or the associated formalisms as done in DEVS [29, 30].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Simulation Application

DIESEL Interface

Simulation Executive

Figure 4. DIESEL Interface

DIESEL focuses on providing a software framework for algorithmic development to

support time management, entity management, and other simulation management issues

within the simulation executive. The DIESEL behavioral model is an abstraction of the

simulation executive not previously found in literature.

DIESEL aims to provide a standard Application Programming Interface (API) as

shown in Figure 4 for a simulation executive, capable of supporting both a sequential and

distributed DES. The DIESEL API separates the development of applications from the

underlying structure of the core simulation executive. The executive manages the

advancement of simulation time within the application for the duration of the simulation.

The application schedules events to be executed in the simulation future and the

executive executes the events at the appropriate simulation time. A different

implementation can be developed for the DIESEL API, without affecting any

applications that are built using the API. The DIESEL interface provides an API for

developing both sequential and distributed simulation applications. Any component

implementing the DIESEL interface can be modified or changed as long as it does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

modify the expected behavior of the interface.

The DIESEL interface described in Chapters III and IV provide various structures

for developing applications. The interface also manages simulation time for both a

sequential and distributed application. Events are executed in increasing order of their

timestamps to satisfy the Local Causality Constraint. The interface also provides a

mechanism to deal with simultaneous events, i.e. events with the same timestamp. This

mechanism allows the next state of the simulation to be computed totally based on the

current state of the simulation, and not on any intermediate computations while

transitioning from the current state to the next state. The interface however, does not

address race conditions between simultaneous events modifying the same state variable.

Resolving these race conditions is expected to be the responsibility of an application

developer or a specific implementation of the DIESEL interface.

2.2 Research Purpose

The research described in Chapter I addresses different distinct issues in the field

of PDES both at the application development level and the core simulation executive

level. SPEEDES provides a framework for developing discrete-event simulations using

the C++ programming language and provides interfaces to link external simulations

written in C++, to itself. However, SPEEDES does not specify a behavioral model or

interfaces to support the development of alternative implementations on different

platforms. HLA provides both a behavioral specification and an interface specification to

support simulations using different languages like C++, Ada, Java, and CORBA among

others. The interface specification, however, requires the application to have a high level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

of knowledge of the underlying time management. The specification requires each

simulation to know its own internal time management and how it will interact with other

simulations employing different time management strategies. HLA focuses on linking

existing simulations rather than partitioning a new simulation model into components for

parallelism.

At the core simulation executive level, DIESEL proposes to provide interfaces to

support development of different implementations of the behavioral model thereby

allowing different implementations to interact with each other. It would support

conservative synchronization algorithms, as well as optimistic synchronization

algorithms such as Time Warp. DIESEL does not attempt to mix synchronization

algorithms within a single simulation, but rather proposes to create a research

environment to study simulation behavior and interaction while utilizing a single time

management paradigm and communication mechanism for the whole simulation.

At an application level, DIESEL proposes to provide an application developer the

ability to partition the model in different ways and map different components of the

model to the processors available for the simulation.

DIESEL provides a common, standardized interface for developing applications,

for both sequential and distributed discrete-event simulations. A common interface is

specified for both a sequential and distributed simulation executive. DIESEL also

provides a fair amount of flexibility to the developer to partition the simulation model

into components in terms of event handling. The developer can employ a central event

management scheme to handle all events generated within the simulation, group together

similar components, and handle their events together, or designate that each object within

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

the simulation handles its own events. For research purposes, this varies the size of the

event list and can aid in the development of appropriate strategies to manage them.

DIESEL does not specify a particular algorithm or strategy to implement different

components of the behavioral model. This is extremely useful to:

• Compare application behavior while partitioning the model in different ways.

• Compare application behavior on a sequential and distributed executive.

• Compare existing event insertion and management algorithms on a common

platform.

• Develop and compare new event management algorithms under the same

platform.

• Compare different synchronization algorithms (conservative and optimistic) for a

distributed simulation executive.

• Verify simulation behavior while employing a new synchronization algorithm.

• Compare different communication mechanisms for a distributed executive.

The only constraints imposed on any employed algorithm or mechanism is that it

satisfy the expected behavior of that component in the behavioral model and not modify

the interconnections among components. Moreover, DIESEL functionality is defined

using a behavioral model and is generic. It defines the expected behavior of the

simulation executive and is not focused on any platform or programming language.

DIESEL can be implemented using any programming language suitable for a particular

research or commercial purpose.

The DIESEL behavioral model has been primarily developed as a research tool to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

aid in comparing existing solutions while also providing a great level of support for

research into implementation strategies for different components of both a sequential and

distributed simulation executive. Implementations are provided for all components

specified in the behavioral model, with each component implementation managed

separately and independently in order to isolate errors and also to encourage further

development. Implementations can be developed for specific components within the

model with no change to other components, thus ensuring that the complete system

continues to work. New implementations can also be developed for the whole model

using various programming languages and on different hardware platforms.

A stable environment and implementation for the DIESEL behavioral model is

also provided for developing commercial applications, even though DIESEL has been

primarily developed as a research tool.

2.3 Model Requirements

The architectural model for DIESEL has been developed with the intention of

satisfying the following basic requirements:

• Support fo r Discrete-Event Simulation'. DIESEL should be capable of supporting

discrete-event simulations.

• Support for a Sequential and Distributed Simulation Executive: DIESEL should

support both a sequential and distributed simulation executive, with the same

interface to the programming world.

• Generic Design: The DIESEL behavioral model should be as generic as possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

with simple interfaces between DIESEL and the outside world, as well as within

DIESEL itself.

• Object-Oriented Design'. The DIESEL architecture should be defined to be

object-oriented and developed using a hierarchical, top-down approach.

• Language and Platform Independent: The DIESEL behavioral model should not

be tailored to any particular language or platform for implementation. It is a

research goal to implement the model in different languages on various platforms

to provide proof of its generic design.

2.4 Definitions

The following terms are used in this document to describe various components of

the DIESEL behavioral model:

• SimObject: A SimObject is any object created and used within a simulation that

needs to pass simulation time during the simulation.

• SimulationCluster: A SimulationCluster is a set of SimObjects interacting with a

single SimulationEngine.

• SimulationEngine: A SimulationEngine handles all the time management for the

entire duration of a simulation. It keeps track of all simulation objects within a

simulation and controls the execution of events by the respective objects.

• SimulationEngineComponent: A SimulationEngineComponent handles the

scheduling and execution of events on an individual SimObject. All interaction

between the application layer (SimObjects) and the SimulationEngine are

performed through the SimulationEngineComponent as a communication layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Every SimObject should be associated with a SimulationEngineComponent.

• Interrupt: An interrupt is used to stop the execution of a particular event method

within a SimObject before its scheduled execution time. The event is removed

from the list of events scheduled to be executed. If an interrupt routine has been

defined for the particular event, then that routine is executed.

• Delegate: A Delegate is the primary method of scheduling events on different

SimObjects within this architecture. It encapsulates all the information required to

make a method call for an event at the scheduled time.

• SimulationForest: A Simulation!orest is a set of Simulation!lusters, with the

SimulationEngine within each SimulationCluster interacting with

SimulationEngines of other SimulationClusters to manage simulation time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Chapter III

INTERFACE SPECIFICATION FOR THE

DIESEL SEQUENTIAL MODEL

This chapter provides a complete description of the sequential component of the

DIESEL behavioral model. Section 3.1 describes the interaction between different

components within the DIESEL architectural model. Sections 3.2 to 3.9 provide the

specification for various interfaces for the DIESEL sequential model. The names for

different attributes and methods within an interface or class definition are based on

recommended guidelines [41]. Although these guidelines are primarily for standard C++

programming, the same guidelines have been used here.

The complete DIESEL behavioral model has been implemented in C++ and is

fully operational. All the structures described in this chapter have been implemented and

extensively tested. Section 3.10 describes the implementation classes for the DIESEL

Engine interface and also discusses event management within DIESEL. Section 3.11

discusses examples to demonstrate the operation and correctness of the behavioral model.

3.1 Interaction between components within DIESEL

A simulation involves different SimObjects interacting with the simulation

executive for scheduling and executing events. The simulation executive for a sequential

simulation has a single global SimulationCluster controlling the simulation. A SimObject

interacts with the SimulationCluster in a controlled manner through the DIESEL

Interface as shown in Figure 5. The DIESEL Interface requires that each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Simulation Applic
(Application Manag

DIESEL Interface

SimulationEngine

SimulationCluster
Figure 5. SimulationCluster

SimulationEngineComponent should be registered with the SimulationEngine when it is

initialized. It also requires that every SimObject be associated with a single

SimulationEngineComponent. A SimulationEngineComponent handles the scheduling

and execution of events on an individual SimObject. All interaction between the

application layer (SimObjects) and the SimulationEngine are performed through the

SimulationEngineComponent as a communication layer.

A SimObject can be associated with a SimulationEngineComponent in different

ways allowing an application developer a considerable level of freedom to partition the

simulation.

• A SimObject can inherit a SimulationEngineComponent as shown in Figure 6.

This results in each SimObject having its own SimulationEngineComponent.

• A single global SimulationEngineComponent can exist for all SimObjects in the

simulation as shown in Figure 7.

• A single static SimulationEngineComponent can exist for all SimObjects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Sin

Event
cheduling

>

lObject
A

1

1

\
j E v e n t
i E x e c u tio i

Standard
Interaction
between

SimObject

DIESEL Interface

Simulation
Engine

Component
Management

Simulation
Engine

Component

Time
Management

Time
Management

Simulation Engine

SimulationCluster
Figure 6. Inherited SimulationEngineComponent

Standard Interaction
between S im O bjects^-

SimObject A

Event
Scheduling

SimObject B

i E v e n t
! E x e c u t io n

DIESEL Interface

Simulation Engine Component

I Time
M anagement

Simulation Engine

SimulationCluster
Figure 7. Global SimulationEngineComponent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

belonging to a particular class as shown in Figure 8. All object instantiations of a

class will in this case, share a common SimulationEngineComponent.

• SimulationEngineComponents can be dynamically created during simulation

execution and SimObjects existing within the simulation can be partitioned across

the created SimulationEngineComponents as shown in Figure 9. This provides a

high level of flexibility for an application to define the model partitioning.

The different ways that a SimObject can be associated with a

SimulationEngineComponent enables application developers to partition events that are

expected to be generated within the simulation, in any suitable manner. A single global

SimulationEngineComponent implies that all generated events are stored in a single event

list even if they are to be executed on different SimObjects. In this case, a single

SimulationEngineComponent is registered with the SimulationEngine, and the

SimulationEngine calls it continuously to execute events in order of their timestamps.

Alternatively, each SimObject inheriting a separate SimulationEngineComponent

implies that only events scheduled on that SimObject will be stored on that

SimulationEngineComponent. This means that multiple event lists will exist within the

simulation, with the number of events being distributed across the event lists. Moreover,

the number of SimulationEngineComponents registered with the SimulationEngine

depends on the number of SimObjects within the simulation. This reduces the overhead

related with the number of events within each event list for any event management

strategy compared to a central list with a single global SimulationEngineComponent,

while increasing the overhead within a SimulationEngine to manage the increased

number of SimulationEngineComponents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

SimObject A
(Class X|

_L

Standard Interaction
between SimObjects

* ̂ SimObject B . .
(Class X)

 ̂ v * / ^ r
—

SimObject C
(Class Y)

SimObject D
(Class Y)
n

 ̂ t
Event\ \

Scheduling \ \
/ /

/ /

I\ r
4 Event ,

Execution-L J_ 7
DIESEL InterfaceV ■■ / I

Simulation Engine Simulation Engine
Component ^ Time r

Management
Component

I Time
Management

Time
ManagementI

Simulation Engine

SimulationCluster

Figure 8. Static SimulationEngineComponent

Standard Interaction SimObject B
between SimObjects (Class Y)

SimObject A
(Class X)

V ------
Event\ \

Scheduling \ \

' r- 1Even!
'E xecu tion

J L

SimObject D
(Class X)

<#•

L Sim(
[(Cl

Object C
ass Y)

!

DIESE . Interface
r 1

r \
Simulation

> Engine i
Component .

SimObject E
(Class Z)

•4ft

Simulation
Engine

Component

Simulation
Engine

Component

I Time
Management I I

Simulation Engine

SimulationCluster
Figure 9. Dynamic SimulationEngineComponents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is no particular association between a SimObject and a

SimulationEngineComponent described earlier, that performs significantly better than any

other type for all simulations and, therefore, can be recommended as the best possible

association. The most likely scenario in any simulation would be the existence of all the

types of associations described earlier, with the application developer choosing one that

suits his purpose the best for different model components.

A SimObject can schedule events to be executed on itself or on other SimObjects.

Events are always scheduled on the SimulationEngineComponent associated with the

SimObject on which the event is to be executed.

3.2 DIESEL Engine Interfaces

This section defines interfaces to introduce initial SimObjects into the simulation,

to schedule events to be executed on those SimObjects and to manage arguments to be

used when the events are executed.

3.2.1 Delegate Interface

A Delegate is the primary method of scheduling events on different SimObjects

within this architecture. A Delegate is the information required to execute an event at a

future point in wallclock time. Since an event is not directly invoked but scheduled to be

executed, sufficient information needs to be encapsulated within the Delegate to make a

method call for an event at a later point in wallclock time. A Delegate is stored in the

event list of the SimulationEngineComponent associated with the SimObject when it is

scheduled. The Delegate is later invoked at its scheduled simulation time. The execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

of a Delegate can be cancelled before its execution. When an event is scheduled, an

interrupt routine can be specified along with a set of arguments to be used for the

interrupt routine. This interrupt routine is executed if and when the execution of the

Delegate is cancelled. A Delegate holds the following information:

• The SimObject on which the event method should be executed.

• The event method to be executed by the SimObject.

• The list of arguments to be used during the execution of the method at its

scheduled execution time.

• The interrupt routine to be executed if the execution of the event method is

interrupted before its scheduled execution time. (Optional)

• The list of arguments to be used during the execution of the interrupt method.

(Optional)

• Priority of execution of event method relative to other event methods scheduled at

the same simulation time. (Optional)

All Delegates are scheduled to be executed with next-to-highest priority among

events scheduled on a SimulationEngineComponent at the same simulation time, unless a

priority is specified for the Delegate. The highest priority for execution of events is

reserved for DIESEL. A priority can be specified for a Delegate to lower the priority of

the event relative to other Delegates scheduled at the same simulation time. If two

Delegates have the same priority, then the Delegates are executed in first-come-first-

served order.

The Delegate interface is shown in Figure 10. The StateSave and Replicable

interfaces, which the Delegate interface inherits, are discussed in Sections 3.4 and 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

+CloneQ: Replicable

+ResolveReference$0
+RestoreReferencesO
+CreateO: StateSave
+DuplicateState(in original: StateSave)

+New(in object: SimObjectReference, in method: EventMethodReference, in methodList: ArgumentList, in interrupt: EventMethodReference, in interruptList: ArgumentUst)
+SetArgumentList(in methodList: ArgumentUst)
+GetArgumentUstQ: ArgumentUst
+lnvoke()
+lnterrupt()

Figure 10. Delegate Interface

The "Invoke" method executes the event method within a Delegate with the specified list

of arguments. The "Interrupt" method cancels the event method invocation within a

Delegate, with the interrupt method being executed using the specified list of arguments

for the interrupt.

3.2.2 ArgumentList Interface

Argument lists manage the arguments to be used when a scheduled event is

executed by invoking a method within a SimObject. DIESEL supports three types of

argument lists: ARGUMENTFIFO, ARGUMENTLIFO and

ARGUMENTINDEXED, with a single type allowed to be used with a particular

argument list. The behavior of an argument list is defined by its type. Once a type is

defined, arguments must be entered and retrieved in the same order. An argument list of

type ARGUMENT FIFO or ARGUMENT LIFO does not require an index to be

specified when arguments are added or accessed from the list. The arguments are

removed in first-in-first-out manner for an ARGUMENT FIFO list, and in last-in-first-

out manner for an ARGUMENT LIFO list. In the case of an ARGUMENT INDEXED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

+Clone(): Replicable

«interface»
R e p lic a b le

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

+New(in numArguments: Integer, in listType; ArgumentListType)
+Delete()
+SetArgument(in index: Integer, in scalar: boolean, in byValue: boolean, in reference: ArgumentReference, in size : Integer)
+SetReturnArgument(in scalar: boolean, in byValue: boolean, in reference: ArgumentReference, in s ize : Integer)
+GetNArguments(): Integer
+GetArgument(in index: Integer) : ArgumentReference
+GetArgument(in index: Integer, inout reference: ArgumentReference)
+GetReturnArgument(): ArgumentReference
+GetRetumArgument(inout reference: ArgumentReference)

«interfac ey> ArgumentList

Figure 11. ArgumentList Interface

list, an index needs to be specified each time an argument is added or accessed from the

list. An ARGUMENT INDEXED list can be accessed in any arbitrary order.

Arguments are provided either by reference in which a pointer is passed or by

value where a pointer is again passed, but the value is copied to an internal data structure.

Arguments that are passed by value while scheduling a method need to be accessed by

value when the method is executed. The same is true for arguments passed by reference.

A single return value can be assigned to the argument list before the list is used during

the execution of the event method.

The ArgumentList interface is shown in Figure 11. The "SetArgument" and

"GetArgument" methods are used to store and retrieve arguments within the argument

list, while the "SetRetumArgument" and "GetRetumArgument" methods are used to

access the return value within the list.

A drawback of the ArgumentList interface is that is stores no type information for

an argument, just its size and a reference to it. The result is that there exists no type

checking on the arguments when the arguments are used during Delegate invocation,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

since the arguments are treated as a block of memory identified by a reference to the

argument and the size of memory that the argument occupies. The type checking is

assumed to be done by the application, when the arguments are retrieved by the

application. The DIESEL behavioral model does not explicitly require support for type

checking. This is a common approach in parallel programming languages [42] since it is

difficult, if not impossible, to enforce type checking of arguments across networked

computers. However, the lack of an explicit specification for type checking within the

model does not preclude any implementations from using strong type checking on the

arguments. An extension to the interface would be to store the type information of the

argument when it is added to the ArgumentList, similar to the C# programming language.

The type of the argument that would be application based can then be used to perform

type checking when the arguments are stored in or retrieved from the ArgumentList.

3.2.3 SimulationEngineComponent Interface

The SimulationEngineComponent interface defines scheduling Delegates within

the simulation. Each SimulationEngineComponent maintains its own list of Delegates to

be executed on the associated SimObjects. The SimulationEngineComponent interface is

shown in Figure 12. The "ScheduleEventAtTime" method is used to schedule a particular

method in a SimObject at a specific simulation time, while the "ScheduleEventlnTime"

method is used to schedule a particular method in a SimObject after a given simulation

time has elapsed. The "GetAveragePendingEventSetSize" and

"GetAverageEventWaitTime" methods are used to gather various statistics associated

with the event list within the SimulationEngineComponent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

«interface»StateSave
+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface» SimulationEngineComponent

+New()
+Delete()
+ScheduleEventAtTime(in eventDelegate: Delegate, in simTime: double, in priority: EventPriority): EventID
+ScheduleEventlnTime(in eventDelegate: Delegate, in delta : double, in priority: EventPriority): EventID
+RescheduleEvent(in eventID: EventID, in delta : double)
+RescheduleAIIEvents(in delta: double)
+lntermptEvent(in eventID: EventID)
+lnterruptAIIEvents()
+GetEventTime(in eventID: EventID): Double
+lsPendingEventSetEmpty(): Boolean
+GetAveragePendingEventSetSize(): Integer
+GetAverageEventWaitTime(): Double

Figure 12. SimulationEngineComponent Interface

3.3 DIESEL Delayed State Commitment Interfaces

An important component of the DIESEL model is the Delayed State Commitment

for attributes of objects within a simulation. If one event modifies a state variable and

then a second event executed at the same simulation time uses the same state variable,

then the order in which the events are executed determines the final state of the state

variable after that simulation time. The result of the second event can be different

depending on whether the first event has been executed or not. For example,

a is an event that assigns the value of variable to "x" i.e. a:x<—y

b is an event that assigns the value of variable "z" to "y" i.e. b: y<— z

If a and b are both scheduled for execution at simulation time t and a is executed before

b, then the values of x and y after both events have been executed, i.e. at simulation time

(7+8) are:

x = y and y = z.

If a is executed after b, then the values of x and y at simulation time (7+5) are:

y = z and x = z

One solution to the problem is to define the current state (CS) to be the set of state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

variable values at a time (7-5) immediately prior to the current simulation time t. Then

the next state (NS) is defined as the resulting set of state variable values at a time

immediately (7+8) after the current simulation time t. The Delayed State Commitment

presented here defines the NS state variable values (SV(NS)) to be solely a function of

the CS state variable values (SV(CS)),

SV(NS) =/SV (CS))

and not a function of the order of computation of events at simulation time t.

Thus, the Delayed State Commitment ensures a more consistent behavior, by

making all events act on the same value of the state variable and updating the state

variable with its new value after all events have finished executing at that simulation

time. Delayed State Commitment makes the next state of a simulation truly dependent on

its current state, instead of the transition from the current state to the next state. An

attribute can be initialized as a DelayedCommit attribute instead of a standard type like

Integer, Double, Boolean, etc. with an initial value. When the value of the

DelayedCommit attribute is changed, it is not updated immediately. The DelayedCommit

attribute is added to a list maintained by the simulation executive. After all events

scheduled to be executed at the current simulation time have been executed by their

respective SimObjects, the simulation executive updates the value of every

DelayedCommit attribute within its list with its new value. If there are multiple updates to

a DelayedCommit attribute at the same simulation time, the last update to the attribute has

permanence beyond that simulation time.

Delayed State Commitment does not resolve race conditions when two events

modify the same state variable at the same simulation time. DIESEL currently does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

«interface»StateSave
+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+Dup/icateState(in original: StateSave)

I
«interface»DelayedCommit

+New(in parentSEC: SimulationEngineComponent, in value: AttributeValue)
+Delete()
+SetAttribute(in newValue: AttributeValue)
+GetAttribute(): AttributeValue

Figure 13. DelayedCommit Interface

support the breaking of ties to resolve which event to execute first at a particular

simulation time. Race conditions can be resolved by an application developer by

lowering the priority of one event with respect to another event scheduled at the same

simulation time when scheduling the delegate.

The DelayedCommit interface is shown in Figure 13. The "SetAttribute" and

"GetAttribute" methods store and retrieve values of the DelayedCommit attribute.

3.4 DIESEL State Capture and Restore Interfaces

DIESEL has the ability to capture the state of the simulation at a desired

simulation time. DIESEL can then resume execution of the simulation from that saved

state at a later time. This ability to save the simulation state is an important tool for

simulation analysis at a state other than its final state.

Every interface and class defined within DIESEL inherits the StateSave base

interface shown in Figure 14. It is also required that every class or interface defined

within an application should inherit the StateSave interface. The StateSave interface

should be the first class in the inheritance tree of any user-defined class or interface.

During a state capture operation, DIESEL treats every object within the simulation as a

StateSave object and calls its "ResolveReferences" method to resolve references for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

« interface»StateSave

+ResotveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

Figure 14. StateSave Interface

dynamically initialized attributes within the object. The "RestoreReferences" method

restores these same references within an object during a state restore operation. The

"Create" method creates an empty shell for a new object, and the "DuplicateState" copies

the state of the original entity to the newly created entity during a state duplication

process for a non-terminating state save operation. These methods should be defined for

each class or interface that inherits the StateSave interface.

A state capture operation can be scheduled at an offset from the current

simulation time, similar to a regular event, before the start of the simulation or at any

point during simulation execution. When a state capture event is executed, all references

within the simulation must be resolved so that they can be later restored. DIESEL

resolves all references within the simulation executive, by calling "ResolveReferences"

for all of its components. DIESEL then calls "ResolveReferences" for all entities within

the application to resolve their references. After all references have been resolved,

DIESEL writes the entire state of the simulation to an output file.

DIESEL has the ability to perform two types of state capture: terminating and

non-terminating. A terminating state capture terminates the simulation after the state of

the simulation has been captured and saved. A non-terminating state capture is identical

to checkpointing the state of the simulation. During a non-terminating state capture, the

entire simulation is duplicated by creating a clone for the simulation. Since references are

resolved in place, a clone is created so the references can be resolved for the clone. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

«interface»StateSaveSiipport
+RegisterEventMethod(in eventMethod: EventMethodReference)
+RegisterMethod(in m ethod: EvaluateMethodReference)
+StartDuplicate()
+GetDuplicateReference(in reference: StateSave): Reference
+GetDuplicateReference(in reference: Reference): Reference
+RegisterDuplicateReference(in reference: Reference, in duplicate: Reference, in s ize : Integer)
+DuplicateDone()
+ScheduleStateSave(in stateSaveFileName: string, in eventDelegate: Delegate, in outputDelegate: Delegate, in delta ; double, in terminate: boolean)
+GetReferencelD(in reference: StateSave): Reference/D
+GetReferencelD(in reference: Reference, in s ize : Integer): ReferencelD
+GetReferencelD(in eventMethod: EventMethodReference): ReferencelD
+GetReferencelD(in m ethod: EvaluateMethodReference): ReferencelD
+CaptureState(in stateSaveFile: FileStream)
+CaptureDone()
+RestoreState(in stateSaveFileName: string)
+GetReference(in referencelD: ReferencelD): Reference
+GetReference(in referencelD: ReferencelD): EventMethodReference
*GetReference(in referencelD: ReferencelD): EvaluateMethodReference
+RestoreDone()
+GetStateSaveFile(): FileStream

Figure 15. StateSaveSupport Interface

state of the simulation is captured by saving the state of the clone, while the original

simulation can continue execution since its references are still valid. Once the state of the

simulation has been saved, the clone is disposed and the simulation continues execution.

The StateSaveSupport interface shown in Figure 15 provides various procedures

for the simulation application to access the state save support infrastructure for both a

state capture and state restore operation. Every event method within the application

should be registered with the state save support infrastructure using the

"RegisterEventMethod" procedure. The "GetReferencelD" method registers an object

with the state save support infrastructure as well as retrieves the ID for a registered event

method. The "GetReference" method restores the reference for an object registered with

the state save support infrastructure as well as retrieves a registered event method.

3.5 DIESEL Base Interfaces

DIESEL defines base interfaces to support cloning of objects and

programmatically changing the properties of an object during simulation execution. Each

object that needs to be cloned should inherit the Replicable interface shown in Figure 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

«interface»StateSave
+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface»
R eplicable

+Clone(): Replicable

Figure 16. Replicable Interface

«in terface»Program m aticEvent

+Modify(in modifications: ArgumentUst)
+Adjust(in adjustments: ArgumentUst)
+Transfer(in transferlnfOrmation: ArgumentUst)

Figure 17. ProgrammaticEvent Interface

The "Clone" method creates a clone of the object and should be defined for every object

that inherits the Replicable interface.

The ProgrammaticEvent interface shown in Figure 17 allows a user to schedule

the modification or adjustment of the attributes of an object within a simulation. The

"Modify" method modifies the attributes of an object, the "Adjust" method adjusts the

attributes by a delta value (positive or negative), and the "Transfer" method copies

properties of one object to another object. All these methods should be defined for every

object that inherits the ProgrammaticEvent interface.

3.6 DIESEL Random Variate Model Interfaces

Any stochastic process has a certain amount of uncertainty associated with it. This

uncertainty or randomness is introduced in a simulation through random numbers.

Characteristics such as unknown delay times, process times, and inter-arrival times are

often represented in a program in the form of random numbers. These random numbers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

are generated using a random number generator. The generated random stream is not

actually random in nature, but rather derived using a mathematical formula. The random

stream is therefore said to be generating pseudo-random numbers. A random number

generator consists of an algorithm to generate independent, identically distributed (IID)

random numbers from the continuous distribution Uniform (0, 1). A good random

number generator should have a long cycle length, so that it would be highly unlikely that

the pseudo-random numbers would be repeated with a simulation. A good random

number generator should also have long sub-streams (sub-segments of the main random

stream) for variance reduction.

Any existing random number generator can be used to generated random numbers

from the Uniform distribution (0, 1) [43, 44]. Random numbers from other distributions

namely, Triangular, Unit, Normal Gamma, Beta, Weibull, etc, are derived by performing

computations on the random number obtained from the random number generator with

the computed random number still remaining random [45].

DIESEL supports complex distributions including the ability for a random

number requested from a particular distribution during the execution of one event to be

dependent on a previous request to the same distribution during the execution of a

previous event. The capabilities include:

• Single mode distributions: A wide variety of distributions is available including

Constant, Unit, Exponential, Triangular, Normal, Beta and Weibull.

• Multimodal distributions: Multimodal distributions support situations where with

one probability, a given distribution is employed, and with another probability, a

different distribution is employed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

«interface»RNG
+SetRNGSeed(in seed: long)
+Random(): Double
+Random(in m in : Integer, in m ax: Integer): Integer
+Constant(in m in: double, in m ax: double): Double
+Unit(): Double
+Triangular(in m in : double, in most: double, in max: double): Double
+Exponential(in mean: double): Double
+Normal(in mean: double, in standardDeviation: double): Double
+Beta(in alpha: double, in beta : double): Double
+Gamma(in scale: double, in shape: double): Double
+Weibull(in scale: double, in shape: double): Double_____________

Figure 18. RNG Interface

• Ordered distributions: Ordered distributions guarantee that subsequent events

cannot get out of order by preventing the next event from completing prior to the

current event.

• Blocking distributions: A blocking distribution is a multimodal distribution

where once a given mode is entered, all following calls will remain in that mode

for a period defined by another distribution.

The RNG interface shown in Figure 18 encapsulates the functionality to generate

integer random numbers, floating-point random numbers, and random numbers from

specific distributions within DIESEL. The AdvancedDistributions interface is used to

generate complex distributions within DIESEL, and supports the following modes of

operation:

• Multimodal: This mode essentially provides a combination of two or more simple

distributions that cannot be represented using a single simple distribution. An

associated probability is used to choose between then different distributions.

• Ordered: The entities that arrive for a certain process complete the process and

leave in a first-in-first-out order. No entity can complete its processing before a

preceding entity, in this mode.

• Blocked: In any process, if an entity were delayed in its processing time, it would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

+Clone(): Replicable
+Modify(in modifications. ArgumentList)
+Adjust(in adjustments: ArgumentList)
+Transfer(in transferlnfbrmation: ArgumentList)

«m terface»Program m aticEvent

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+lnitialize(in inputFile: FileStream)
+SetNlndexedDistributions(in numlndexes: Integer)
+SetlndexedDistribution(in index: Integer, in distribution: AdvancedDistributions, in similar: boolean)
+SetTotalModes(in to ta l: Integer)
+SetOrderedFlow(in order: boolean)
+SetNAssociatedDistributions(in nDistributions: Integer)
+SetParameters(in distType: DistributionType, in probability: double, in p a ra m l: double, in param2: double, in param3: double, in param 4: double, in index: Integer)
+SetWorkshiftParameters(in workshift: double, in startTime: double)
+Random(in index: Integer): Double
+RandomByWork$hift(in index: Integer): Double

Figure 19. AdvancedDistributions Interface

have a delaying effect on entities that follow. The delayed entity is a special case

in the process and would be represented by a certain mode of the process.

• Indexed: Two or more distributions can be used to specify a process. An

associated index is used to choose between the different distributions.

• Work Shift Adjusted: A random number obtained from a distribution can be

adjusted by a work shift for a day within the simulation (0 < work shift < 24). A

start time can also be specified for a work day within the simulation.

The AdvancedDistributions interface is shown in Figure 19. The interface defines

various methods to define a complex distribution and each distribution within a complex

distribution. It also defines methods to generate random numbers from the specified

distribution which can also be adjusted by a work shift time.

3.7 DIESEL Synchronization Interfaces

Certain processes within a simulation need to wait until some specified event or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Triggerl

Delegates
Trigger2

Delegates

Figure 20. Dependent Triggers

another process has occurred. The time that the process needs to wait within the

simulation is mostly unspecified; only the event that needs to occur for the process to

proceed is specified. This is similar to a Petri network where input and output functions

specify the transition to a finite set of places within the network. Triggers and joins are

used within DIESEL to achieve the purpose of arbitrary synchronization within a

simulation.

During a simulation, Delegates that need to wait for another event to be executed

before being scheduled for execution are added to a trigger. When the event is executed

and the trigger is fired, the trigger schedules the immediate execution of all Delegates

waiting for the specified event to be executed on their associated SimObjects. A trigger

can also have a collection of other triggers waiting for the parent trigger to fire as shown

in Figure 20. DIESEL supports two types of triggers:

• Trigger: A Trigger can be set up to trigger an arbitrary number of Delegates and

an arbitrary number of other Triggers. When a Trigger is triggered, it triggers all

Delegates and other Triggers that have been registered with it until that instant.

The Trigger interface is shown in Figure 21.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»Trigger

+New()
+Delete()
+RegisterChild(in child: Trigger)
+DeRegisterChild(in child: Trigger)
+AddDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriohty)
+FireFir$t()
+Fire(in condition: Condition)
+lnterruptDelegate(in thisDeiegate: Delegate)
+lnterruptAIIDelegates()__

Figure 21. Trigger Interface

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface»TriggerCounter

+New(in count: Integer)
+Delete()
HncrementCountQ
+Regi$terChild(in ch ild : TriggerCounter)
+DeRegisterChild(in child : TriggerCounter)
+AddDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Fire(in condition: Condition)
+lnterruptDelegate(in thisDeiegate: Delegate)
+lnterruptAIIDelegates()

Figure 22. TriggerCounter Interface

• TriggerCounter: A TriggerCounter can be set up to trigger a certain specified

number of Delegates. When a TriggerCounter is triggered, it triggers all

Delegates and other TriggerCounters that have been registered with it. If not all

the specified number of Delegates have been added to it when it is triggered, all

Delegates added to it after it has been triggered are immediately executed. The

TriggerCounter interface is shown in Figure 22.

Certain processes within a simulation need to wait for multiple events to be

executed before proceeding further. This is an extension of triggers where the process

waits for a single event. DIESEL provides this capability by allowing multiple events to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Joint

Join2

D elegate

Figure 23. Dependent Joins

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

t
«interface»Join

+New(in nPaths: Integer)
+Delete()
+RegisterParent(in parent: Join, in parentPath: Integer)
+DeRegisterParent()
+SetDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Update(in pathNumber: Integer)

Figure 24. Join Interface

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

t
«interface» Jo in C o u n ter

+New(in count: Integer)
+Delete()
+lncrementCount()
+RegisterParent(in parent: JoinCounter)
+DeRegisterParent()
+SetDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Update()

Figure 25. JoinCounter Interface

control the execution of a single event method. The event method is executed only when

all of the events controlling it have been executed. A join can also be set up with another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

join representing one of the events to be executed as shown in Figure 23. There are two

types of joins within the DIESEL architecture:

• Join: A Join is set up to wait for specific events to be satisfied. The Join interface

is shown in Figure 24.

• JoinCounter: A JoinCounter is set up to wait for just a number of events to be

executed. The JoinCounter interface is shown in Figure 25.

3.8 DIESEL Entity Management Interfaces

Simulations regularly need to group together similar entities for better

management and to direct them towards specific processes within the simulation. Another

common requirement of simulations is the notion of requesting and acquiring entities

(resources) from a holding pool for a particular task and releasing them back to the pool

after the task has been completed. When a request is made for a certain number of

entities, the request should be immediately satisfied if the entities are available. If not,

then the request should be queued and satisfied on first-come-first-served basis. If a new

request should arrive when there are pending requests, then the new request should be

queued. This should occur even if the number of entities requested by the second request

may be less than the first waiting request and there may be enough entities to serve the

second request but not the first request. This ensures that a request for a large number of

entities cannot be blocked by numerous requests for fewer entities [46].

DIESEL provides the following interfaces for management of entities.

• Set: A Set is a container capable of maintaining a collection of arbitrary entities.

The Set interface is shown in Figure 26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

+Clone(): Replicable

«interface»
R eplicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«i nterface »StateSave

+New()
*De!ete()
+GetNEntitie$(): Integer
+Add(in thisEntity: Replicable)
+Union(in s e t: Set)
+Next(in thisEntity: Replicable): Replicable
+SelectFirst(in condition: Condition): Replicable
+Select(in condition: Condition): Set
+Remove(in condition : Condition): Replicable
+RemoveThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+Exists(in condition : Condition): Boolean
+Each(in condition: Condition): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
*EmptyQ
+EmptyDispose(in routine: Routine)__________

+Clone(): Replicable

«interface»
R eplicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetNEntities(): Integer
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pull(): Replicable
+PullThi$(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)_______

« in terface»FIFO

Figure 27. FIFO Interface

Figure 26. Set Interface

+Clone() •' Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+PuplicateState(in original: StateSave)

« interface»StateSave

+New()
+Pelete()
+GetNEntities(): Integer
+SetRankRoutine(in rankRoutine: EvaluateMethodReference)
+Add(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Remove(): Replicable
+RemoveThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Pump(in outputRoutine: Routine)
+Empty()
+EmptyPispose(in routine: Routine)______________________

:mterface»BinaryTree

+Clone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original:

«interface»StateSave

+New()
+Pelete()
+GetNEntities(): Integer
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pop(): Replicable
+PopThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyPispose(in outputRoutine: Routine)

«interface»UFO

Figure 28. LIFO Interface
Figure 29. BinaryTree Interface

• FIFO: A FIFO maintains a collection of arbitrary entities in a first-in-first-out

manner. The FIFO interface is shown in Figure 27.

• LIFO: A LIFO maintains a collection of arbitrary entities in a last-in-first-out

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

+CIone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetN£ntities(): Integer
+Add(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Remove(): Replicable
+RemoveThis(in thisEntity: Replicable)
+lncludes(in thisEntity; Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)_______

«interface»PriorityQueue

Figure 30. PriorityQueue Interface

+Clone(): Replicable

+ResolveReference$()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«mterface»StateSave

+New()
+Delete()
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pull(): Replicable
+PullThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)
+SampleNEntities()
+GetNEntities(): Integer
+GetTotalNEntities(): Long
+GetMaxNEntities(): Integer
+GetAverageNEntities(): Integer
+GetAverageWaitTime(): Double__________

«interface»Q ueueW ithStatistics

Figure 31. QueueWithStatistics Interface

manner (stack). The LIFO interface is shown in Figure 28.

• BinaryTree: A BinaryTree maintains a ranked collection of arbitrary entities. The

BinaryTree interface is shown in Figure 29.

• PriorityQueue: A PriorityQueue maintains a collection of arbitrary entities based

on a given priority. The PriorityQueue interface is shown in Figure 30.

• QueueWithStatistics: A QueueWithStatistics maintains a collection of arbitrary

entities in a first-in-first-out manner, and tracks and reports various statistics

associated with itself. The QueueWithStatistics interface is shown in Figure 31.

• EntityCounter: An EntityCounter holds a count of available entities, but does not

hold actual entities. The availability of resources is indicated by a count within the

EntityCounter. It satisfies requests on a first-come-first-served basis. The

EntityCounter interface is shown in Figure 32.

• EntityPool: An EntityPool behaves identically to an EntityCounter except that it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

«interface»StateSave
+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»Program m aticEvent

+Modify(in modifications: ArgumentList)
+Adjust(in adjustments: ArgumentUst)
+Transfer(in transferlnformation: ArgumentUst)T

«interface»EntityCounter

+New(in priority: boolean, in entityCount: Integer)
+Delete()
+GetNEntities(): Integer
+AddSingle()
+AddMultiple(in nEntities: Integer)
+RequestSingleAtomic(): Boolean
+RequestSingle(in priority: PriorityValue, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestMultipieAtomic(in nEntities: Integer): Boolean
+RequestMultiple(in nEntities: Integer, in priority: PriorityValue, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestAvailableAtomic(in nEntities: Integer): Integer
+RequestAvailable(in nEntities: Integer, in priority: PriorityValue, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+ReleaseSingle()
+ReleaseMultiple(in nEntities: Integer)
+ReAssign(in sourceList: Set, in destination: EntityCounter, in nEntities: Integer, in eventDelegate: Delegate, in SEC: SimulationEngineComponent)
+ReturnReAssigned()
+TransferToEntityCounter(in destination: EntityCounter, in nEntities: Integer)
+TransferToEntityPool(in destination : EntityPool, in nEntities: Integer, in entity: Replicable)
+lnterruptRequest(in requestID: RequestID)

Figure 32. EntityCounter Interface

«interface»StateSave

+ResolveReferences()
+RestoreReference$()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»Program m aticEvent

+Modify(in modifications: ArgumentUst)
+Adjust(in adjustments: ArgumentUst)
+Transfer(in transferlnformation: ArgumentUst)

$

«interface»EntityPool
+New(in priority: boolean, in entitySet: Set)
+Delete()
+GetNEntities(): Integer
+AddSingle(in e n tity : Replicable)
+AddMultiple(in entitySet: Set)
+RequestSingleAtomic(in condition : Condition): Replicable
+RequestSingle(in priority: PriorityValue, in condition : Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestMultipleAtomic(in nEntities: Integer, in condition : Condition): Set
+Reque$tMultiple(in nEntities: Integer, in priority: PriorityValue, in condition: Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestAvailableAtomic(in nEntities: Integer, in condition: Condition): Set
+Request A vailable (in nEntities: Integer, in priority: PriorityValue, in condition : Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+ReleaseSingle(in entity: Replicable)
+ReleaseMultiple(in entitySet: Set)
+ReAssign(in sourceUst: Set, in destination: EntityPool, in nEntities: Integer, in condition: Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent)
+ReturnReAssigned()
+TransferToEntityPool(in destination : EntityPool, in nEntities : integer, in e n tity : Replicable)
+TransferToEntityCounter(in destination: EntityCounter, in nEntities: Integer)
+lnterruptRequest(in requestID: RequestID)__

Figure 33. EntityPool Interface

holds a collection of actual available entities as shown in Figure 33.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«interface»
Replicable

+Clone(): Replicable

A

«interface»
R eplicable

+Clone(): Replicable

 zy----

52

«interface»
Sequentia lS im ulationE xecutive

+StartSequentialSimulation()
+ExecuteSequentialSimulation()
+CleanUpSequentialSimulation()
+SetSimTime(in simTime: double)
+GetSimTime(): Double
+GetWallClockTime(): Double
+GetAveragePendingEventSize(): Integer
+GetAverageEventWaitTime(): Double

Figure 34. SequentialSimulationExecutive Interface

3.9 DIESEL Sequential Simulation Executive

The DIESEL simulation executive provides various methods for an application to

initialize a simulation and to control and track its progress. The

SequentialSimulationExecutive interface is shown in Figure 34.

An application can be built using sequential DIESEL by first initializing the

DIESEL simulation executive using the "StartSequentialSimulation" method. This

method initializes a single global SimulationCluster for the simulation. It also initializes

the state support infrastructure in case a state save operation (terminating or non

terminating) needs to be performed during simulation execution. The next step is to

create SimObjects and their associated SimulationEngineComponents and to schedule

events to be executed on the SimObjects on their respective

SimulationEngineComponents. The simulation can then be executed using the

"ExecuteSequentialSimulation" method. The "CleanUpSequentialSimulation" method

cleans up all DIESEL structures after executing a sequential simulation. This basic

procedure to build an application using DIESEL is shown in Figure 35. The

"SetSimTime” and "GetSimTime" methods provide access to the current simulation time,

while the "GetWallClockTime" method returns the current wallclock time within a

sequential simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

StartSequentialS im ulation()

S chedu le ev en ts on th e S im ulationEngineC om ponents

E xecuteSequentialS im ulation()

C leanllpS equentialS im ulationQ

S chedu le desired S ta te S av e e v en ts a t d esired simulation tim es

C rea te Sim O bjects and their a sso c ia ted Sim ulationE ngineC om ponents within th e simulation

Figure 35. Basic Sequential Simulation

3.10 Implementation Classes for the DIESEL Engine Interfaces

This section provides the class definitions for implementing the core functionality

for the DIESEL simulation executive. A basic simulation executive can be built by

implementing the class definitions in this section.

3.10.1 SimulationCluster Class

The SimulationCluster class shown in Figure 36, implements most of the

functions required of the simulation executive described in Section 3.9. A single global

SimulationCluster object is automatically initialized when the

"StartSequentialSimulation" method within the simulation executive interface is invoked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

«interface»StateSave

*ResolveReferences()
+RestoreRefeiences()
+Create(): StateSave
+DuplicateState(m original: StateSave)

I
S im ula tionC luste r

•c lu s te rS im E n g in e : S im ula tionE ng ine

+N ew()
+D elete()
+ S etS im T im e(in t i m e : doub le)
+ G e tS im T im e (): D ouble
+R unS im ulation()
+ S c h e d u le S ta te S a v e (in s ta te S a v e F i le : String, in e v e n tD e le g a te : D e le g a te , in d a ta D e le g a te : D e le g a te , in d e l t a : d o u b le , in t e r m in a te : b o o lea n)
+ G e tA v e ra g e P e n d in g E v e n tS iz e () : In teg er
+ G etA v erag eE v en tW aitT im e(): D ouble
+ R eg is te rS E C (in S E C : S im u la tio n E n g in eC o m p o n en t)
+ R em o v e S E C (in S E C : S im u la tio n E n g in eC o m p o n en t)
+ U pdateS E C M inT im e(in S E C : S im u la tio n E n g in eC o m p o n en t, in n e w T im e : doub le)
+A ddD elayedC om m it(in o b je c t : D e layedC om m it)

Figure 36. SimulationCluster Class

« i n terface» S ta te S a v e

+ResolveReference$()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
Sim ulationEngine

■simTime: D ouble
■SECW ithM inEventTimeList: S e t
■currentList: S e t
d e la y e d C o m m itl is t : S e t
■ stateSaveL ist: S e t
+New()
+D elete()
+SetS im T im e(in t im e : double)
+ G etS im T im e(): D ouble
+RunSim ulation(in b a r r ie r : double)
+ S ch e d u leS ta teS av e(in fileN am e : string, in e v e n tD eleg a te : D e legate, in d a ta D eleg a te :
+ G etA v erag eP en d in g E v e n tS e tS ize (): In teger
+ G etA verageE ven tW aitT im e(): Double
#R egisterSE C {in S E C : S im ulationE ngineC om ponent)
#R em oveS E C (in S E C : S im ulationE ngineC om ponent)
#U pdateSE C M inT im e(in S E C : S im ulationE ngineC om ponent, in tim e : double)
#A ddD elayedC om m it(in o b je c t : D elayedC om m it)

, in delta : double, in te rm in ate : boo lean)

Figure 37. SimulationEngine Class

3.10.2 SimulationEngine Class

The SimulationEngine class shown in Figure 37 is used to implement each

individual SimulationEngine within a SimulationCluster. It holds information about the

state of the simulation as well as all the SimObjects within the simulation. It maintains a

record of all SimulationEngineComponents in the simulation at the current simulation

time within "SECWithMinEventTimeList". Each entry in the list has a reference to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

SimulationEngineComponent as well as the minimum execution time of all events for the

SimulationEngineComponent. The "SECWithMinEventTimeList" list should ideally be

sorted based on the minimum event execution time of the events within the

SimulationEngineComponents so that the next SimulationEngineComponent to be

allowed to execute events can be determined easily. Other techniques can be also be

implemented to identify the SimulationEngineComponent with the minimum event

execution time.

The SimulationEngine uses the "RunSimulation" method to execute the

simulation. The method first calculates the current simulation time, which is the smallest

execution time of all the events scheduled on all SimulationEngineComponents. If

multiple events are found with the same least scheduled execution time, then the

SimulationEngineComponents on which they are scheduled are added to the

"currentList". If a state save event exists with a scheduled time less than the calculated

current simulation time, then the state save event is executed and the state of the

simulation is saved. If not, the SimulationEngine proceeds to inform each

SimulationEngineComponent in turn to execute these events. While each

SimulationEngineComponent is executing events at the current simulation time, the

SimulationEngine populates and maintains the "delayedCommitList" that holds all

DelayedCommits whose values have to be updated after executing all events scheduled to

be executed at the current simulation time. After all SimulationEngineComponents have

executed their events at the current simulation time, the SimulationEngine informs all

DelayedCommits within its "delayedCommitList" to commit their values. This process is

continued until no more events exist within the simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

«mter1ace»SimulationEngineComponent———
+Delete()
+ScheduleEventAtTime(in eventDelegate: Delegate, in simTime: double, in priority: EventPriority): EventID
+ScheduleEventlnTime(in eventDelegate: Delegate, in delta : double, in priority: EventPriority): EventID
+RescheduleEvent(in eventID: EventID, in delta : double)
+RescheduleAIIEvents(in delta : double)
+lnterruptEvent(in eventID: EventID)
+lnterruptAIIEvents()
+GetEventTime(in eventID: EventID): Double
+lsPendingEventSetEmpty(): Boolean
+GetAveragePendingEventSetSize(): Integer
+GetAverageEventWaitTime(): Double

?Il
S im ulationE ngineC om ponent

- e v e n tM a n a g e r : E v en tM a n ag er

+ R eso lv eR efe re n ces()
+ R e s to re R e fe re n c e s()
+ C re a te () : S ta te S a v e
+ D uplica teS ta te(in o rig in a l: S ta te S a v e)
+N ew()
+ D elete()
+Schedu leE ven tA tT im e(in e v e n tD e le g a te : D e leg ate , in sim T im e : d oub le , in priority : E v en tP rio rity): EventID
+ S ch ed u leE v en tln T im e(in e v e n tD e le g a te : D e leg ate , in d e l t a : doub le , in priority : E v en tP rio rity): EventID
+ R esc h ed u leE v e n t(in even tID : EventID , in d e lta : double)
+R eschedu leA IIE ven ts(in d e l t a : doub le)
+ ln terrup tE ven t(in e v e n tID : EventID)
+lntem jptA IIEvents()
+ G etE ven tT im e(in eventID : E v e n tID): D ouble
+ lsP e n d in g E v e n tS e tE m p ty () : B oolean
+ G e tA v e ra g e P e n d in g E v e n tS e tS iz e () : In teger
+ G etA v erag eE v en tW aitT im e(): D ouble
E x e c u te S im T im e E v e n ts () : D ouble
#R eg is terD e layedC om m it(in o b je c t : D elayedC om m it)

Figure 38. SimulationEngineComponent Class

3.10.3 SimulationEngineComponent Class

The SimulationEngineComponent class shown in Figure 38 implements the

SimulationEngineComponent interface. It maintains its own list of events to be executed

on SimObjects associated with it within "eventManager". The "ExecuteSimTimeEvents"

method is used to execute event(s) in "eventManager" that have an execution time equal

to the current simulation time.

The SimulationEngine class interacts with the SimulationEngineComponent class

using the "ExecuteSimTimeEvents" method. The DelayedCommit class interacts with the

SimulationEngineComponent class using the "RegisterDelayedCommit" method. These

methods are protected and are not accessible to the application layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

3.10.4 EventManager Class

An important component of any simulation executive is the management of

events scheduled to be executed on various objects within the simulation. Various issues

need to be addressed to make event management as fast and efficient as possible so that

the simulation runs more efficiently.

Event management within DIESEL is the shared responsibility of all

SimulationEngineComponents within the simulation. The event management structure is

distributed, i.e., each SimulationEngineComponent manages the collection of events to be

executed by it for the duration of the simulation itself. This structure avoids a central

event management mechanism within the SimulationEngine. There are advantages and

disadvantages to avoiding a central structure; every SimulationEngineComponent does

not need to communicate with the SimulationEngine, while scheduling an event within

the simulation, and the size of a single list of events may not become too large. At a

particular simulation time, the SimulationEngine pings each SimulationEngineComponent

to execute all its events scheduled at that simulation time. However, an application

developer, if he so chooses, can still have a single event list within the simulation, by

initializing a single global SimulationEngineComponent for all SimObjects to schedule

events on.

An EventManager within a SimulationEngineComponent encapsulates all the

functionality to handle events to be executed by each SimObject. The EventManager

stores all the events to be executed by the SimObject within "pendingEventSet". The

"pendingEventSef' can be implemented in any manner from a simple linked list to a more

complex structure, as long as it can interact with the EventManager and support all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
E ventM anager

• p a r e n t : S im u la tio n E n g in eC o m p o n en t
-p e n d in g E v e n tS e t: S e t

+N ew (in p a ren tS E C : S im u la tionE ng ineC om ponen t)
+ D elete()
+A dd(in e v e n tD e le g a te : D e le g a te , in sim T im e : double)
+ E x e c u te M in E v e n ts () : D ouble
+ R esc h ed u le (in even tID : E ventlD , in d e lta : doub le)
+R escheduleA II(in d e l t a : doub le)
+ ln terrupt(in e v e n tID : EventlD)
+lnterruptAII()
+G etE ven tT im e(in eventID : E v e n tlD) : D ouble
+ G etM in E v en tT im e (): D ouble
+ ls E m p ty () : B oo lean
+ G e tA v e ra g e S iz e () : In teg er
+ G etA v erag eW aitT im e (): D ouble ________________

Figure 39. EventManager Class

functions to be performed by the EventManager.

It is a DIESEL design decision to keep event handling completely isolated within

a SimulationEngineComponent. The EventManager has a reference to the

SimulationEngineComponent that is associated with its parent SimObject(s) (Multiple

SimObjects might be associated with the same SimulationEngineComponent). The

"ExecuteMinEvents" method is used by the SimulationEngineComponent to ask the

EventManager to execute all its events at the current simulation time. After it is done

executing all events at the current simulation time, it returns the next lowest simulation

time that it has events to be executed. This aids the SimulationEngine to know when to

call the SimulationEngineComponent again to execute events. The EventManager class is

shown in Figure 39.

Communication is allowed among various SimObjects in the simulation, as part of

the standard interaction between SimObjects. Communication is allowed between a

SimObject and its associated SimulationEngineComponent allowing a SimObject to

schedule events on itself. Communication is also allowed between a SimObject and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

SimulationEngineComponents of other SimObjects, allowing a SimObject to schedule

events to be executed on other SimObjects.

Different SimulationEngineComponents can communicate with each other

directly or through the SimulationEngine both for event scheduling and time

management. A SimulationEngineComponent can communicate with SimObjects

associated with it for execution of events scheduled on the SimObjects. There can be no

direct communication between a SimObject and the SimulationEngine. Communication

between a SimObject and the SimulationEngine is only possible through the

SimulationEngineComponent the SimObject it is associated with.

3.11 Examples

This section describes two examples to demonstrate the operation of the DIESEL

behavioral model. The first example shows a simple timing diagram for event execution

while the Dining Philosophers’ problem is implemented in the second example.

3.11.1 Timing diagram for execution of events

This example demonstrates the interaction between the SimulationEngine and

SimulationEngineComponent classes and various SimObjects with an example scenario.

The scenario shows the timing characteristics of the interaction between these classes.

The exact order of execution of events scheduled at a particular simulation time depends

on the strategy used to maintain the list of objects within the simulation, i.e. the strategy

used to implement "SECWithMinEventTimeList" and "currentList" within the

SimulationEngine class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

The following representation is used in the example scenario:

• Each SimObject (SOi - SO 3) is associated with a single

SimulationEngineComponent (SECi - SEC 3).

• Each entry in the table represents an event with its scheduled execution time as

the first integer.

• [] represents the set of events created when the current event is executed.

• (a, b) provides details about the created event, "a" is the particular SimObject on

which the event is to be scheduled, and "b" is the execution time of the event.

At SimTime = 0, the list of events to be executed by each

SimulationEngineComponent is as shown in Figure 40(a).

At SimTime = 1, the SimulationEngine goes through the list of

SimulationEngineComponents (SECi - SEC3) to find the minimum scheduled execution

time of all events. SimulationEngineComponents are added to currentList within the

SimulationEngine, if they have events scheduled at the minimum execution time. In this

case, SECi and SEC2 are added to the CurrentList. The SimulationEngine then passes

control to the first SimulationEngineComponent in the list, i.e., SECi using the

ExecuteSimTimeEvents method. SECi executes its event and schedules two events, an

event at SimTime = 3 on itself and an event at SimTime = 5 on SEC2. SECi then returns

control back to the SimulationEngine, which in turn passes control to SEC2 again, using

the ExecuteSimTimeEvents method. SEC2 executes its event and schedules a single event

at SimTime = 6 on SO3. SEC2 then returns control back to the SimulationEngine. This

process is shown in Figure 40(b).

At SimTime = 2, SEC 3 is added to the currentList. The SimulationEngine passes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

SOI S02 S03

1 [(1,3), (2,5)] 1 1(3,6)] 2 [(2,5), (3,5)]

4 [(1,6), (2,4)] 5 [(1,5)] 4 [(1,6), (2,7)]

5 [(1,5)]

5 [--]

Figure 40a. Timing Diagram: Events at SimTime = 0

ExecuteSimTimeEvents

Method

Schedu eEventAt' 'ime (3)

ScheduleEventAtTime (5;

Control
<-----

Control

Executes i mTimeE\ en ts

Method

ScheduleEventAtTime (6)

Control-̂----Control

Simulation
Engine SEC; SO;SEC SO, SEC; SO;

SOI S02 S03

3 [--] 5 [(1,5)] 2 [(2,5), (3,5)]

4 [(1,6), (2,4)] 5[~] 4 [(1,6), (2,7)]

5 [(1,5)] 6 [—]

5 H

Figure 40b. Timing Diagram: Event execution and events at SimTime = 1

control to SEC3 again using the ExecuteSimTimeEvents method. SEC3 executes its event

and schedules two events, an event at SimTime = 5 on itself and an event at SimTime = 5

on SEC2. SEC3 then returns control back to the SimulationEngine. This process is shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

i ecuteSimTimeEvents

Method

ScheduleEventAtTime (5'

Schedu eEventAt' 'ime (5)

Control
^-----

Control

Simulation
Engine

SOI SO 2 SO 3

3[~] 5 [(1,5)] 4 [(1,6), (2,7)]

4 [(1,6), (2,4)] 5 [—] 5 [“]

5 [(1,5)] 5 [--] 6 [--]

5[~]

Figure 40c. Timing Diagram: Event execution and events at SimTime = 2

Simulation
Engine SEC, SO,

ExecuteSimTimeEvents

Control
<-----

s e c 2 so2 s e c 3 so3

SOI S02 S03

4 [(1,6), (2,4)] 5 [(1,5)] 4 [(1,6), (2,7)]

5 [(1,5)] 5 H 5 H
5[~] 5 [—] 6 [—]

Figure 40d. Timing Diagram: Event execution and events at SimTime = 3

in Figure 40(c).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Exec uteSi m il meEven ts

Method

Schedu eEventAt' 'ime (6)

ScheduleEventAtTime (4'

Update JECMinTii ne

Control-̂----
Control

ecuteSimTimeEvents

Method

Schedu eEventAt'

ScheduleEventAtTime (7)

Control
<-----

Control

Executes imTimeE\ en ts

Method

Control
<-----

C ;ontrol

Simulation
Engine SEC; SO;SEC SO SEC; SO-

SOI S02 S03

5 [(1,5)] 5 [(1,5)] 5 [--]

5 [~] 5[~] 6 [--]

6 [--] 5 [—]
6[~] 7 [—]

Figure 40e. Timing Diagram: Event execution and events at SimTime = 4

At SimTime = 3, SECi is added to the currentList. SECi executes its event and

schedules no events as shown in Figure 40(d).

At SimTime = 4, SECi and SEC3 are added to the currentList. The

SimulationEngine passes control to SECi again using the ExecuteSimTimeEvents method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

ExecuteSimTimeEvents

Method

Schedu eEventAt' 'ime (5)

Method

Method

Control-̂----
Control

E xecutes imTimeE\ en ts

Method

ScheduleEventAtTime (5;

UpdateSECMinTime

Method

Method

Control«-----

ecuteSi m Ti m eEvents

Method

Control-̂----
Control

ExecuteSimTimeEvents

Method

Control<:-----
Control

Simulation
E n g i n e

SEC, SO; SEC; SO;SEC SO,

SOI S02 S03

6 [--] 7 [-] 6 [~]

6 [~]

Figure 40f. Timing Diagram: Event execution and events at SimTime = 5

SECi executes its event and schedules two events, an event at the current SimTime = 4

on SEC2 and an event at SimTime = 6 on itself. Since an event has been scheduled at the

current SimTime, SEC2 calls the SimulationEngine to update its currentList using the

UpdateSECMinTime method. SEC2 has its minimum event execution time updated and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

ExecuteSimTimeEvents

Method

M ethod

Control-̂----
C ontro l

ecuteSimTimeEvents

Method

Contro l-̂----
Control

Simulation
E n g i n e

SEC; SO;SEC, SO, SEC, SO,

SOI S02 S03

7 [—]

Figure 40g. Timing Diagram: Event execution and events at SimTime = 6

ExecuteSimTimeEv en ts

Method

C ontro l

Simulation
Engine SECi SO SEC:

Simulation Terminated

SEC3 S03

SOI SO 2 SO 3

Figure 40h. Timing Diagram: Event execution and events at SimTime = 7

has now been added to the currentList. SEC2 returns control to SECi, which in turn

returns control to the SimulationEngine. The SimulationEngine then passes control to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

next SimObject in the list, SEC3 which executes it event and schedules two events, an

event at SimTime = 6 on SECi and an event at SimTime = 7 on SEC2. SEC3 then returns

control to the SimulationEngine. The SimulationEngine then passes control to the next

SimulationEngineComponent in the list, i.e., SEC2. SEC2 now executes its event and then

returns control back to the SimulationEngine. This process is shown in Figure 40(e).

At SimTime = 5, SECi, SEC2 and SEC3 are added to the currentList. The

execution of events proceeds as shown in Figure 40(f).

At SimTime = 6, SECi and SEC3 are added to the currentList. The execution of

events proceeds as shown in Figure 40(g).

At SimTime = 7, SEC2 is added to the currentList. The execution of events

proceeds as shown in Figure 40(h).

3.11.2 Dining Philosophers’ Problem

The dining philosophers’ problem is a common concurrency problem set forth by

Edsger Dijkstra [47] and demonstrates the problems associated with multi-process

synchronization. The dining philosophers’ problem has five philosophers seated at a

table. They spend their time alternating between thinking and eating a bowl of spaghetti

at the center of the table. Each philosopher requires a pair of chopsticks to eat the

spaghetti. Flowever, there are only five chopsticks at the table, one between each pair of

philosophers. This implies that a maximum of two philosophers can be eating at any

point of time. After thinking for a certain time, each philosopher tries to eat, by picking

up one chopstick at a time. A potential for deadlock exists with adjoining philosophers

picking up the chopsticks on their same sides and then waiting for the other chopstick to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

5

4

3

2

1

0
2.1 2.2 2.9 32 2.3 2.4 2.5 2.6 2.7 2.8

Figure 41. Snapshot of Dining Philosophers

become available, without releasing the chopstick that they have already acquired. A

possible solution to avoid such deadlock is that if only one chopstick is available, then the

philosopher puts down the chopstick, waits for a while and then attempts to eat again.

There are various modifications of this basic problem. In this example, the basic

problem has been modified to include a centralized resource pool. The chopsticks are

placed at the center of the table in an EntityCounter beside the spaghetti. Each

philosopher starts by thinking for a random amount of time. Then, the philosopher

requests the EntityCounter for 2 chopsticks. If the chopsticks are available, then each

philosopher eats for a random amount of time and then returns the chopsticks to the

EntityCounter. The requests, if not satisfied immediately, are queued in the order that

they are received. The aim is to demonstrate that no philosopher is starved by waiting an

inordinately long time for the required chopsticks to eat.

The times that a philosopher spends thinking and eating are both random numbers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

H D in ing

CD W a itin g

B T h in k in g

Philosophers

Graph 1. Time spent by Philosophers eating, thinking and waiting

from Uniform (0, 1). Figure 41 shows a snapshot of the time interval between SimTime =

1 and SimTime = 3. The thick lines shows a philosopher eating, a thin line shows a

philosopher thinking, while the gaps show the time that a philosopher is waiting for

chopsticks to start eating. The figure shows that not more than two philosophers are

eating at the same instant of time. Graph 1 shows the percentage of time that each

philosopher spends thinking, eating, and waiting for chopsticks to eat. The graph shows

that each philosopher spends approximately the same amount of time eating and thinking

for the entire duration of the simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Chapter IV

INTERFACE SPECIFICATION FOR THE

DIESEL DISTRIBUTED MODEL

This chapter provides a complete description of the distributed component of the

DIESEL behavioral model. The sequential model described in Chapter III describes the

interfaces required to build a sequential application using a single SimulationCluster and

details the communication between components within a SimulationCluster. The

distributed model describes the initialization of multiple SimulationClusters and the

required communication between different SimulationClusters to manage and execute a

distributed simulation. Most of the interfaces described in Chapter III can be used with no

changes within the distributed application. Some new interfaces are defined to support

communication between SimulationClusters. An interface for a distributed simulation

executive that creates SimulationClusters, registers SimulationClusters and application

objects, and executes the distributed simulation is specified. This interface can be

extended to support different synchronization algorithms and communication

mechanisms.

4.1 Interaction between components within DIESEL

A distributed simulation involves SimObjects residing on different

SimulationClusters interacting with each other. This collection of SimulationClusters is

known as a SimulationForest and is shown in Figure 42. These SimulationClusters can

exist on the same processor or different processors depending on the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

SimulationForest

SimulationCluster

SimObject D

f Simulation Engine L
I Component r

SimulationCluster

SimObject SimObject A SimObject C

[Simulation Engine I
I Component I

A - ■ -S)
Communication

(Virtual)

Simulation
Engine

Simulation
Engine

Backbone to assis t Time M anagem ent and
Communication between SimulationClusters)

Figure 42. SimulationForest

processors used for the simulation.

The first step in building a distributed application is to create the required number

of SimulationClusters on the available processors and make the simulation executive

aware of each of them. An application can also be built using a single SimulationCluster

with the extra overhead associated with SimulationCluster interconnection and

management. A simulation executive should exist on each processor in the simulation

and hold the location of all SimulationClusters on all processors in the simulation. A

simulation executive receives messages from another processor and relays it to the

appropriate SimulationCluster existing on that processor. This registry of processors

within every simulation executive is shown in Figure 43.

A distributed simulation differs from a sequential simulation in the manner a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

SimulationCluster ID Processor Name
0 MATRIX-1

1 MATRIX-2

2 MATRIX-2

3 MATRIX-1

Figure 43. Registry of processors within simulation executive

SimObject accesses other SimObjects. SimObjects within a sequential simulation access

other SimObjects directly, since they exist on a single processor for the entire simulation.

SimObjects within a distributed simulation, on the other hand, can exist within different

SimulationClusters and on different processors. A SimObject has no knowledge of the

location of another SimObject and, therefore, cannot access it directly.

A distributed application implemented with DIESEL is required to generate

unique references for all SimObjects and other objects that are created by the application

and interact with each other. The unique references can be generated by DIESEL or by

the application. This unique reference is required to be public knowledge across the

simulation for an object within one SimulationCluster to refer to an object from another

SimulationCluster. Publishing of this reference is currently left to the application. As an

alternative, HLA [36, 37, 38] manages its objects by publishing shareable federation

objects in the Federation Object Model (FOM) and Simulation Object Model (SOM). An

object that is completely private to another object and interacts with no other object does

not need a unique reference, since no other application object will ever attempt to access

it.

Each unique reference that is generated for an application object must be

registered with the simulation executive by the application with the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Unique Reference SimulationCluster ID Object SimulationEngine
Component

1 0 NULL NULL

22 1 Obj1 SEC1

9 1 Obj2 SEC2

13 0 NULL NULL

Figure 44. Registry of objects within a SimulationCluster

information:

• the unique reference

• the application object

• the SimulationCluster on which the application object has been created

• the associated SimulationEngineComponent if the object is a SimObject

The simulation executive informs each SimulationCluster of the new object that has been

registered. Each SimulationCluster has a registry of all registered objects along with their

unique references as shown in Figure 44. The object registry is shared among all

SimulationClusters and is synchronized every time a reference is created or removed

from an object registry within any SimulationCluster. The registry has a valid entry for

each object that has been created on that SimulationCluster and a null value in the object

and SimulationEngineComponent fields for objects on other SimulationClusters.

Each application object when requiring access to another object, asks its parent

SimulationCluster to resolve the reference of the object and pass the required data to that

object as shown in Figure 45. The SimulationCluster resolves all references by accessing

its object registry. If the object exists within the SimulationCluster, it passes the message

to the object directly. If the object does not exist within the SimulationCluster, it asks the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

b etw een S im O bjects
u sing re fe ren ces m ApplicationApplication

DIESEL Interface
R eference R eference

R esolution

SimulationCluster SimulationCluster
O bject

R eference
S ynchronizationObject

Registry
Object

Registry“ 1/

Figure 45. Reference resolution between SimulationClusters

simulation executive resident on the processor it exists on to relay the message to the

appropriate SimulationCluster, which holds the object that is being accessed.

There is an overhead attached to the access between application objects within

the distributed model. Every application object needs to use its parent SimulationCluster

as an intermediary to access another object, irrespective of the location of both objects.

This is different from the direct access method within the sequential model where objects

can access each other directly. However, this type of access does not require the

application to know what type of access it is requesting, local or remote, thereby making

it completely transparent to the application.

The simulation executive, when asked to relay a message, determines which

SimulationCluster holds the object that is being asked for. If the SimulationCluster exists

on the current processor, it relays the message directly to the SimulationCluster. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

between SimObjects
\ using re fe re n c e s /

between SimObjects
\ using references /

Application Application Application

Reference

Simulation
Cluster

Simulation
Cluster

Simulation
Cluster

Inter-Processor Com unication

Figure 46. Communication between SimulationClusters

SimulationCluster exists on another processor, then the simulation executive asks the

communication mechanism to transmit the message to the appropriate processor. The

simulation executive on the destination processor then relays the message to the

appropriate SimulationCluster. This process is shown in Figure 46.

A reliable communication mechanism is assumed between processors such that no

messages passed between processors are lost. However, no assumption is made in the

order of delivery of the messages, i.e. that the messages are received in the order that they

were sent. Messages can also be bunched together depending on the communication

protocol. Different communication mechanisms exist in literature from as simple as

socket communication [48] to more advanced protocols such as Message Passing

Interface (MPI) [49], Distributed Component Object Model (DCOM) from Microsoft©

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Corporation [50, 52], Common Object Request Broker Architecture (CORBA) [51, 52]

from Object Management Group (OMG), and Java/Remote Method Invocation

(Java/RMI) from JavaSoft [52].

4.2 Extensions to the DIESEL Interface

All interfaces defined in Chapter III can be used with no modifications unless a

modified interface has been defined in this section. Most interfaces require minimal or no

changes to be used within the distributed model. The distributed model extends rather

than make radical changes to the sequential interface. The SimulationEngineComponent

interface described in Section 3.2.3 requires a new parameter, specifying the

SimulationCluster it belongs to while being initialized. This is shown in Figure 47.

A new interface needs to be defined to support the distributed model. The

SimulationCluster interface, shown in Figure 48, initializes a new SimulationCluster and

manages all objects that are created within the SimulationCluster. An application uses the

"ScheduleEvent" method to schedule an event to be executed on another SimObject.

4.3 DIESEL Distributed Simulation Executive

The DistributedSimulationExecutive interface shown in Figure 49 has various

methods to initialize a distributed simulation and to create and register

SimulationClusters. The interface uses the "EventsExist" and

"ExecuteDistributedSimulation" to execute the simulation. The "EventsExist" method

determines if any SimulationCluster has at least one event to be executed to continue

simulation execution, while the "ExecuteDistributedSimulation" method executes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«mterface»StateSave

+New(in clusterlD: Integer)
+Delete()
+ScheduleEventAtTime(in eventDelegate:
+ScheduleEventlnTime(in eventDelegate:
+RescheduleEvent(in eventID: EventlD, in delta : double)
+RescheduleAIIEvents(in delta: double)
+lnterruptEvent(in eventID: EventlD)
+lnterruptAIIEvents()
+GetEventTime(in eventID: EventlD): Double
+lsPendingEventSetEmpty(): Boolean
+GetAveragePendingEventSetSize(): Integer
+GetAverageEventWaitTime(): Double _________

«interface»SimulationEngineComponent

l in SimTime: double, in priority: EventPriority): EventlD
i, in delta: double, in priority: EventPriority): EventlD

Figure 47. Modified SimulationEngineComponent Interface

+ResolveReferences()
+RestoreReferences()
+C reate(): StateSave
+DuplicateState(in o rig ina l: StateSave)

«interface»StateSave

+New(in c lu s te r lD : Integer)
+Delete()
+RegisterSEC(in S E C : SimulationEngineComponent)
+RemoveSEC(in S E C : SimulationEngineComponent)
+SetSimTime(in s im T im e : double)
+G etSim Tim e(): Double
+ScheduleEvent(in re ference : UniqueReference, in m e thod : EventMethodReference, in m ethodList: ArgumentList, in s im T im e: double, in p rio rity : EventPriority)
+G etAveragePendingEvent$ize(): Integer
+GetAverageEventW aitTime(): Double
+GetAverageMessageQueueSize(): Integer

«interface»Sim ulationCluster

Figure 48. SimulationCluster Interface

« in te r fa c e » D is tr ib u te d E x e c u tiv e S u p p o r t

+RelayMessage(in sourceClusterlD: Integer, in m essage: Message)
+SetLookAhead(in lookahead: double)
+StartGVT()
+ReceivedStateGVT(in clusterlD: Integer)
+ComputeLocalMinimum()
+LocalMinimum(in clusterlD: Integer, in minimum : double)
+SendGVT(in G V T: double)___________________________________

Figure 49. DistributedSimulationExecutive Interface

simulation with the specified synchronization algorithm. The application can use the

"GetUniqueReference" method to specify a unique reference for an object or SimObject.

The application uses the "RegisterObject" method to register a new object, its unique

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

reference, and its location with the simulation executive. The "RemoveObject" method is

used to migrate the object to a new SimulationCluster. The interface can be extended

with new methods to support different synchronization algorithms for a distributed

simulation. Two synchronization algorithms are included within the Distributed DIESEL

interface to manage time within the distributed model. The different methods to manage

the execution of the simulation using these algorithms are discussed in the following sub

sections.

4.3.1 Barrier Synchronization Algorithm

The barrier synchronization algorithm described in Chapter I is included to

demonstrate that the interface can support conservative algorithms within PDES. The first

step is to calculate the lookahead within the application, which is different for each

application [1]. Then the "ExecuteDistributedSimulation" method calculates the next set

of safe events to process and executes the simulation as shown by the following

algorithm:

Procedure
begin

while (EventsExist()
minTime = minimum event execution time of all

S i m u l a t i o n C l u s t e r s
for all S i m u l a t i o n C l u s t e r s

execute events with timestamp <= (minTime +
lookahead)

end

4.3.2 Time Warp Paradigm

The Time Warp paradigm described in Chapter I is implemented to demonstrate

how the interface supports optimistic algorithms within PDES. A Time Warp Logical

Process (TWLP) can be mapped onto DIESEL in the following ways:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

• Each SimObject can be treated as a TWLP. In this case, its associated

SimulationEngineComponent would be part of the TWLP and could be part of

multiple TWLPs. This would involve a SimulationEngineComponent being

distributed across processors, if TWLPs are on different processors.

• Each SimulationEngineComponent can be treated as a TWLP. In this case, all

SimObjects associated with it would be part of the same TWLP.

• A collection of SimulationEngineComponents can be treated as a TWLP. In this

case, all SimObjects associated with them would be part of the same TWLP.

• Each SimulationCluster can be treated as a TWLP. In this case, all

SimulationEngineComponents (and associated SimObjects) would be part of the

same TWLP.

• A collection of SimulationClusters can be treated as a TWLP.

The selected mapping should have an input queue to receive messages from other

TWLPs and an output queue to store anti-messages of messages sent to other TWLPs. It

should also have the ability to save its state so that it can perform rollback in case a

message arrives with a timestamp in its past.

Avril and Tropper [53] describe another technique in which TWLPs are grouped

together into clusters (different from a SimulationCluster). The technique then identifies

each TWLP by its name and the cluster it belongs to and assigns an input queue and

output queue to each cluster instead of each TWLP. This grouping reduces some of the

overhead required of each TWLP in Time Warp by associating the overhead of managing

the input and output queues with the cluster rather than each individual TWLP. This

technique can be mapped onto DIESEL by defining an interface for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

SimulationClusterGroup (collection of related SimulationClusters) and then assigning the

input and output queues to the SimulationClusterGroup.

4.4 Support Classes for the DIESEL Distributed Interface

This section provides definitions for support classes within the distributed

DIESEL simulation executive to support a distributed simulation and the two

synchronization algorithms described in the previous section. The application interfaces

defined in Sections 4.2 and 4.3 cannot be modified. This section describes the internal

support to the interface and has been defined so that the same structure can be used for

different communication mechanisms. The classes defined here can be used within an

implementation or new classes can be defined and implemented to support the interface.

4.4.1 ObjectRegistry Class

The ObjectRegistry class, shown in Figure 50 implements the registry of all

application objects within a SimulationCluster. It stores information about all objects that

have been registered with the simulation executive by the application. An ObjectRegistry

exists within each SimulationCluster and holds unique references for all application

objects and a reference to the object if it exists on the SimulationCluster that the

ObjectRegistry is associated with. If the application object exists on another

SimulationCluster, then the object field has a null value for that object within the current

ObjectRegistry. An ObjectRegistry also holds a reference to the associated

SimulationEngineComponent if the registered object is a SimObject.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

O b je c tR e g is t ry

-references: Set
+New()
+Delete()
+Add(in reference: UniqueReference, in object: Reference, in S E C : SimulationEngineComponent)
+GetObject(in reference: UniqueReference): Reference
+GetSEC(in reference : UniqueReference): SimulationEngineComponent
+Remove(in reference: UniqueReference)___

Figure 50. ObjectRegistry Class

M e s s a g e

-messageType: MessageType
-messageiD: MessagelD
-reference: UniqueReference
-method: EventMethodReference
-simTime: Double
-p rio rity : E ventPriority__
+New(in reference : UniqueReference, in method : EventMethodReference, in methodList: ArgumentList, in simTime : double, in priority : EventPriority)
+Delete()
+SetType(in type : MessageType, in ID : MessagelD)
+GetReference(): UniqueReference
+ScheduleEvent(in object: SimObjectReference, in SE C : SimulationEngineComponent)

Figure 51. Message Class

4.4.2 Message Class

The Message class is used to communicate between SimulationClusters for both

synchronization algorithms. The Message class shown in Figure 51 encapsulates all

information required for objects to communicate with each other in a distributed

simulation. It supports one object scheduling an event method to be executed on a

SimObject residing on a different SimulationCluster. Once the message has been relayed

to the appropriate SimulationCluster, the SimulationCluster uses the "GetReference" and

"ScheduleEvent" methods to schedule the event for execution.

4.4.3 MessageQueue Class

The MessageQueue class shown in Figure 52 implements the input and output

queues within a SimulationCluster for the Time Warp implementation. When a message

or an anti-message is added to the MessageQueue, the MessageQueue first ascertains if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

M essageQ ueue

-messages: Set
+New()
+Delete()
+Add(in newMessage: Message)
+GetFirstUnprocessed(): Message
+GetFirstUnprocessedTime(): Double
+ClearProcessed(in G VT: double)
+Flush()
+GetAverageMessages(): Integer
+GetTotalMessages(): Integer
+GetMaxMessages(): Integer
-Annihllate(in thisMessage: Message): Boolean

Figure 52. MessageQueue Class

S ta te S a v e Q u e u e

-savedStates: Set
+New()
+Delete()
+Add(in savedState: State, in simTime : double)
+GetOlder(in thisTime : double): State
+ClearOlder(in GVT : double)________________

Figure 53. StateSaveQueue Class

the message can be annihilated. If not, it is added in timestamp order. The MessageQueue

also stores all processed messages until a GVT computation by the simulation executive

proclaims that it is safe to dispose processed messages older than the GVT. The

MessageQueue class can also capture various statistics associated with itself.

4.4.4 StateSaveQueue Class

The StateSaveQueue class implements the ability to store the saved states of a

SimulationCluster for the Time Warp implementation as shown in Figure 53. It retrieves a

state older than a specific simulation time when a rollback needs to be performed. It

disposes old states older than the GVT, once it is notified of a GVT computation.

4.5 Analytical Support within DIESEL

DIESEL provides considerable amount of support to analyze an application. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

support is built in to the SimulationEngineComponent and SimulationCluster interfaces.

The "GetAveragePendingEventSetSize" and "GetAverageEventWaitTime" methods are

used to gather various statistics associated with the pending event list within a single

SimulationEngineComponent. The "GetAveragePendingEventSetSize" method captures

the average length of the pending event list within a SimulationEngineComponent for the

duration of the simulation. This helps to determine if there are too many SimObjects

associated with the SimulationEngineComponent, and whether the SimObjects should be

associated with new or other existing SimulationEngineComponents.

Similarly, the "GetAveragePendingEventSetSize" method within the

SimulationCluster interface captures the average size of the pending event list within

each SimulationCluster. This is an average of the size of the pending event lists of all

SimulationEngineComponents within a SimulationCluster. This allows the application

developer to analyze the current partitioning of the simulation model by demonstrating if

a particular model component is being overloaded with work, while other components are

underused within the simulation, thereby helping to develop better model partitions. The

"GetAverageMessageQueueSize" method captures the average queue size of the

communication buffer. In a distributed simulation, it is desirable to keep communication

among processors at a minimum. This involves keeping SimulationClusters that interact

with each other a lot on the same processor to avoid communication delays.

The interfaces specified in this chapter can be used to build a distributed

application. The application can be executed using either a conservative or an optimistic

synchronization algorithm. Different synchronization algorithms can be evaluated by

implementing these algorithms within the interfaces provided. Various communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

mechanisms can also be used to connect the different SimulationClusters and networked

processors within the distributed simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Chapter V

CASE STUDIES

This chapter describes how an implementation of the DIESEL behavioral model

can be used for various purposes, both at the core simulation executive level as well as

the application development level. An implementation of the DIESEL behavioral model

has been developed in C++ as a proof-of-concept. All case studies described in this

chapter have been conducted using the DIESEL C++ implementation.

A comparison study of various event management strategies is described in

Section 5.1. A study demonstrating the number of messages passed among

SimulationClusters on a distributed system is shown in Section 5.2. A comparison of the

performance of optimistic and conservative synchronization algorithms within the same

application is also discussed. The use of DIESEL in building a high-level application

model is described in Section 5.3. Platform-independence of the DIESEL model is

discussed in Section 5.4.

5.1 Event Management Study

The insertion of events into a pending event list and the removal of the event(s)

with the shortest timestamp for execution should be as fast as possible. The insertion of

events in time-sorted order makes the retrieval of the event with the shortest timestamp

an 0(1) operation. Various techniques for managing the pending event list such as linear

lists, binary trees, and priority queues exist in literature [54-61]. This section describes

the event management structure used in the DIESEL implementation, which has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

implemented both as a linear and a non-linear list. Various strategies are described to

make the insertion of events into the pending event list as close to an 0 (1) operation as

possible. A comparison study is then performed on the performance of these strategies.

The comparison of these strategies on a single platform is made possible since the

DIESEL behavioral model does not specify or promote a single method; the standardized

interface of DIESEL, in fact, encourages employment and comparison of diverse

strategies, as long as they satisfy the expected behavior of the EventManager within a

SimulationEngineComponent.

5.1.1 Implementation of the Event Management Structure

The sequential DIESEL behavioral model described in Chapter III is implemented

using the C++ programming language on a Win32 hardware platform. The DIESEL C++

implementation is fully representative of the behavioral model and includes the full

functionality described in Chapters II and III. The C++ implementation uses the classes

defined in Section 3.10 as the basic building blocks. Functionality has been added to

these basic classes and new classes have been defined to satisfy the behavior expected of

each component.

The EventManager class holds the collection of events to be executed on each

SimulationEngineComponent. The event management structure for this study has been

implemented both as a linear list and a non-linear list. Four different strategies are used to

insert an event into a linear list within the EventManager. A binary tree structure is used

to implement a non-linear list within the EventManager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

usreviousNode previousNode areviousNode

EventListNode EventListNode EventListNode
delegate nextNode ► delegate nextNode delegate nextNode

EventList
n

Figure 54. EventList Structure

E v e n tL is t

-firstNode: EventListNode
lastNode: EventListNode

+Add(in newDelegate: Delegate, in priority : EventPriority)
+Remove(in thisDelegate : Delegate): Boolean
+GetFirstEvent(): Delegate
+EventExists(in thisDelegate : Delegate): Boolean
+Flush()
+lsEmpty(): Boolean
-lnsertAtFront(in newDelegate : Delegate, in priority : EventPriority)
-lnsertAtBack(in newDelegate : Delegate, in priority : EventPriority)
-lnsertPrioritySorted(in newDelegate : Delegate, in priority : EventPriority)

1

0. ,

E v e n tL is tN o d e

-nextNode: EventListNode
-previousNode: EventListNode
-event: Delegate
-eventPriority: EventPriority

Figure 55. EventList and EventListNode Classes

EventList

An EventList is a linked list of events to be executed at a particular simulation

time. The EventList is sorted based on relative priority of the events within the list, as

shown in Figure 54. An EventListNode wraps an interface around each event to be

integrated into the EventList. Each EventListNode is a unique event to be executed. The

class declarations for an EventListNode and EventList are shown in Figures 55.

LinearPendingEventSet

A LinearPendingEventSet is a linked list of distinct simulation times, i.e. the

scheduled execution times for events to be executed by the SimObject. A

LinearPendingEventSet is shown in Figure 56. The "currentSimTime" and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

EventList

EventList

EventList

simTime
LinearPendingEvent

SetNode

topNode

simTime
LinearPendingEvent

SetNode

topNode

topNode
LinearPendingEvent

SetNode

firstN ode

LinearPendingEventSet

lastN ode

Figure 56. LinearPendingEvent Structure

"currentSimTimeList" attributes are used to manage events whose timestamps are the

same as the current simulation time. The "ExecuteMinEvents" method within the

EventManager removes the first LinearPendingEventSetNode and assigns its EventList to

"currentSimTimeList". When an event is encountered with a timestamp equal to

"currentSimTime", it is added to "currentSimTimeList", thereby avoiding inserting the

event into the main list. When "currentSimTimeList" becomes empty, the SimObject has

no more events to be executed at the current simulation time and returns the simulation

time associated with its first LinearPendingEventSetNode to the SimulationEngine, to

notify the SimulationEngine of the next minimum execution time of its remaining events.

This information helps the SimulationEngine determine which

SimulationEngineComponent to ask to execute its events next.

A LinearPendingEventSetNode wraps an interface around each simulation time to

be integrated into the LinearPendingEventSet. Each LinearPendingEventSetNode is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

L in e a rP e n d in g E v e n tS e t

-firstNode: LinearPendingEventSetNode
-lastNode: LinearPendingEventSetNode
-currentSimTime: Double
-currentSimTimeList: EventList
-middleNode: LinearPendingEventSetNode
-shift: Double
-nNodes: Integer
-middleNodePosition: Integer
-nodeAdded: Boolean
-totalEvents: Integer
-middleEvent: Integer___
+Add(in newDelegate : Delegate, in time : double, in priority : EventPriority)
+Remove(in thisDelegate : Delegate): Boolean
+GetMinSimTimeList(): EventList
+GetMinSimTime(): Double
+FindEventTime(in thisDelegate: Delegate): Double
+ShiftTime(in delta: double)
+Flush()
+lsEmpty(): Boolean
-lnsertAtFront(in newDelegate : Delegate, in time : double, in priority : EventPriority)
-lnsertAtBack(in newDelegate : Delegate, in time: double, in priority : EventPriority)
-lnsertDown(in currentNode: LinearPendingEventSetNode, in newDelegate: Delegate, in time: double, in priority: EventPriority)
-lnsertUp(in currentNode : LinearPendingEventSetNode, in newDelegate: Delegate, in time : double, in priority : EventPriority)
-AdjustMiddleNodeOnAdd(in time: double)
-AdjustMiddleNodeOnRemove(in time: double)
-AdjustMiddleNodeSingle(in time: double, in offset: double)
-AdjustMiddleNodeMultiple(in time: double, in nEventsRemoved: Integer)__

1

0..*

L in e a rP e n d in g E v e n tS e tN o d e

-bottomNode: LinearPendingEventSetNode
-topNode: LinearPendingEventSetNode
-simTime: Double
-eventList: EventList
-nEvents: Integer
-nEventsAbove: Integer
-nEventsBelow: Integer
+Add(in newDelegate : Delegate, in priority : EventPriority)

Figure 57. LinearPendingEventSet and LinearPendingEventSetNode Classes

unique simulation time and has at least one event to be executed at that simulation time

by that SimObject. The class declarations for a LinearPendingEventSetNode and

LinearPendingEventSet are shown in Figure 57.

NonLinearPendingEventSet

A NonLinearPendingEventSet is implemented as a binary tree, where the nodes

in the tree are the simulation times of events. Each node, called a

NonLinearPendingEventSetNode, has a list of events to be executed at that time, similar

to a LinearPendingEventSet described earlier. The "Rank" method is used to sort the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

N onL inearP end ingE ven tS et

•root: NonLinearPendingEventSetNode
•currentSimTime: Double
•currentSimTimeList: EventList
+Add(in newDelegate: Delegate, in time: double, in priority: EventPriority)
+Remove(in thisDelegate: Delegate): Boolean
+GetMinSimTimeList(): EventList
+GetMinSimTime(): Double
+FindEventTime(in thisDelegate: Delegate): Double
+ShiftTime(in delta: double)
+Flush()
+lsEmpty(): Boolean
■AddNodeBelow(in parent: NonLinearPendingEventSetNode, in newDelegate: Delegate, in time: double, in priority : EventPriority)
■AddNodeBelowjin parent: NonLinearPendingEventSetNode, in thisNode: NonLinearPendingEventSetNode)
-Rank(in t im e l: double, in time2: double): Integer
-RemoveNode(in thisNode: NonLinearPendingEventSetNode): Boolean__________ _____________ _________________________

N o n L in e a rP e n d in g E v e n tS e tN o d e

-leftNode : NonLinearPendingEventSetNode
-rightNode: NonLinearPendingEventSetNode
-parent: NonLinearPendingEventSetNode
•simTime: Double
-eventList: EventList
+Add(in newDelegate: Delegate, in priority : EventPriority)

Figure 58. NonLinearPendingEventSet and
NonLinearPendingEventSetNode Classes

nodes based on their simulation times, while inserting an event into the binary tree. The

class declarations for a NonLinearPendingEventSetNode and NonLinearPendingEventSet

are shown in Figure 58.

The event management structure here is used to study different strategies for

inserting an event into the pending event list, both linear and non-linear. These strategies

involve starting the search for an appropriate insertion point at different points in the

event list and are described in the next sub-sections.

5.1.2 Event Insertion Strategies for a LinearPendingEventSet

Four strategies for inserting an event within the LinearPendingEventSet are

described below. The first two strategies involve starting the search for an appropriate

node at the head and tail of the list respectively, i.e., either from the "firstNode" of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

LinearPendingEventSet or the "lastNode" of the LinearPendingEventSet. The remaining

two strategies involve starting the search from some middle node in the list that is

maintained within the list.

Insert from front o f linear list

The search for an appropriate node to insert a new event starts from the first

existing LinearPendingEventSetNode in the list. This is the most basic strategy and might

be enough for a LinearPendingEventSet with a limited number of events. However, with

a large number of events, it will take the maximum average time among all the strategies

discussed here, since it is a fair assumption that new events will have timestamps closer

to the tail of the list. This strategy starts the search at the head of the list and would

therefore have to search through most of the nodes to find an appropriate insertion point.

Insert from rear o f linear list:

The search for an appropriate node to insert a new event starts from the last

existing LinearPendingEventSetNode in the list. This strategy is better than the previous

strategy because it is a fair assumption that an appropriate insertion point will be at the

tail of the list. This strategy is again appropriate for a limited number of events, where the

overhead of maintaining and adjusting a middle node might increase the execution time

without providing any substantial benefits.

Insert from a midpoint in linear list based on the number o f events

The search for an appropriate node to insert a new event starts from a midpoint in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

the list. The midpoint is a node in the list such that approximately half the total number of

events is above it and half below it, i.e., it is based on the number of the total events in

the list. This strategy is based on the assumption that since previous events have been

added to a particular node, there is a very high probability that a new event will be added

to the same node. Thus, this strategy searches a sub list that contains half the total number

of events in the list.

The "totalEvents", "middleEvent" attributes, and the "AdjustMiddleNodeSingle"

and "AdjustMiddleNodeMultiple" methods within the LinearPendingEventSet class are

used to adjust the midpoint. The "AdjustMiddleNodeSingle" method is used to adjust the

middle node while adding or removing a single event from the list, where an offset o f+1

indicates adding an event and -1 indicates removing an event. The

"AdjustMiddleNodeMultiple" method is used to adjust the middle node when the top

node (with multiple events) is removed for executing events at the current simulation

time. The "nEvents", "nEventAbove", and "nEventsBelow" attributes within the

LinearPendingEventSetNode class track the number of events relevant to each node.

The "shift" attribute within the LinearPendingEventSet indicates a variable bias

(between 0.0 and 1.0) towards the rear end of the sub list. A "shift" of 1.0 starts the

search at the head of the sub list, while a value of 0.0 starts the shift at the tail of the sub

list. The lower the value of "shift" the more likely that the search for an appropriate node

to insert an event will start at the tail end of the sub list and continue upward towards the

head of the list. The middle node needs to be adjusted after each new event is added and

after the top node is removed while executing events with the minimum execution time.

The algorithm for inserting a new event into the list is:

Note:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

firstTime = simTime associated with first node in list
lastTime = simTime associated with last node in list
midTime = simTime associated with middle node
newTime = simTime of new event to be added
shift = bias towards either the front or the rear of the

sublist.

Preconditions:
None.

Post-conditions:
1) Event is added to appropriate node.

Procedure
begin

if (newTime < firstTime)
add event to a new node at the head of the list

else if (newTime = firstTime)
add event to node at the head of the list

else if (newTime > lastTime)
add event to a new node at the tail of the list

else if (newTime = lastTime)
add event to node at the tail of the list

else
if (newTime <= midTime)

if ((time > (((midTime-firstTime)*shift)+firstTime)
look up from middle node to insert event

else
look down from first node to insert event

else
if (time > (((lastTime-midTime)*shift)fmidTime))

look up from last node to insert event
else

look down from middle node to insert event
Adjust the middle node

end

The algorithm for adjusting the middle node after adding an event is shown below:

Preconditions:
1) nEvents for the node the event is added to has been

incremented by 1
2) totalEvents has been incremented by 1

Post-conditions:
1) middleEvent is adjusted to appropriate value
2) middleNode is adjusted to appropriate node

Procedure
begin

newMiddleEvent = totalEvents DIV 2
if (totalEvents MOD 2 != 0)

newMiddleEvent++

if (eventAdded.simTime < middleNode.simTime)
middleNode.nEventsAbove++

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

middleNode.nEventsBelow++

if (newMiddleEvent > middleNode.nEventsAbove) AND
(newMiddleEvents <= (middleNode.nEventsAbove +

middleNode.nEvents))
[no change in middleNode]

else
if (eventAdded.simTime < middleNode.simTime)

newMiddleNode = middleNode.topNode
newMiddleNode.nEventsAbove = middleNode.nEventsAbove

- newMiddleNode.nEvents
newMiddleNode.nEventsBelow = middleNode.nEvents +

middleNode.nEventsBelow
else

newMiddleNode = middleNode.bottomNode
newMiddleNode.nEventsAbove = middleNode->nEvents +

middleNode->nEventsAbove
newMiddleNode.nEventsBelow = middleNode->nEventsBelow

- newMiddleNode->nEvents
middleNode = newMiddleNode

middleEvent = newMiddleEvent
end

The algorithm for adjusting the middle node after removing events is as shown below:

Preconditions:
1) nEvents for the node the event(s) have been removed from

has been decremented by appropriate value
2) totalEvents for the L i n e a r P e n d i n g E v e n t S e t has been

decremented by appropriate value
Post-conditions:

1) middleEvent is adjusted to appropriate value
2) middleNode is adjusted to appropriate node

Procedure
begin

newMiddleEvent = totalEvents DIV 2
if (totalEvents MOD 2 != 0)

newMiddleEvent++

if (eventRemoved.simTime < middleNode.simTime)
middleNode.nEventsAbove = middleNode.nEventsAbove -

nEventsRemoved
else

middleNode.nEventsBelow = middleNode.nEventsBelow -
nEventsRemoved

while NOT ({newMiddleEvent > middleNode.nEventsAbove) AND
(newMiddleEvents <= (middleNode.nEventsAbove +

middleNode.nEvents)))
if (eventRemoved.simTime <= middleNode.simTime)

newMiddleNode = middleNode.bottomNode
newMiddleNode.nEventsAbove = middleNode->nEvents +

middleNode->nEventsAbove
newMiddleNode.nEventsBelow = middleNode->nEventsBelow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

- newMiddleNode->nEvents
else

newMiddleNode = middleNode.topNode
newMiddleNode.nEventsAbove = middleNode.nEventsAbove

- newMiddleNode.nEvents
newMiddleNode.nEventsBelow = middleNode.nEvents +

middleNode.nEventsBelow
middleNode = newMiddleNode

middleEvent = newMiddleEvent
end

Insert from a midpoint in linear list based on the time o f events

The search for an appropriate node to insert a new event starts from a midpoint in

the LinearPendingEventSet. The midpoint is a node in the list such that exactly half the

nodes are above it and half below it, i.e., it is based on the times of the existing nodes in

the list. Thus, this strategy searches a sub list that has half the number of nodes compared

to the original list.

The "nNodes", "middleNodePosition", "nodeAdded", and "totalEvents" attributes

and the "AdjustMiddleNodeOnAdd" method within the LinearPendingEventSet class are

used to adjust the midpoint of the list after inserting an event. While adding an event to

the LinearPendingEventSet, the middle node needs to be adjusted only if a new node is

created, i.e., "nodeAdded" value is TRUE. The "AdjustMiddleNodeOnRemove" method

adjusts the midpoint after event(s) are removed from the list.

The "shift" attribute is used in the same manner as the previous strategy, and the

algorithm for inserting a new event into the list based on this strategy is the same as the

previous strategy. The algorithm for adjusting the middle node after adding an event is

shown below:

Preconditions:
1) new node has been created and event added to it

Post-conditions:
1) middleNodePosition value is adjusted to appropriate value
2) middleNode is adjusted to appropriate node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Procedure
begin

newMiddleNodePosition = nNodes DIV 2
if (nNodes MOD 2 != 0)

newMiddleNodePosition++

if (newMiddleNodePosition NOT EQUAL TO middleNodePosition)
if (time > midTime)

middleNode = middleNode->bottomNode
else

middleNode = middleNode->topNode
middleNodePosition = newMiddleNodePosition

end

The algorithm for adjusting the middle node after removing events is shown below:

Preconditions:
1) new node has been removed

Post-conditions:
1) middleNodePosition value is adjusted to appropriate value
2) middleNode is adjusted to appropriate node

Procedure
begin

newMiddleNodePosition = nNodes DIV 2
if (nNodes MOD 2 != 0)

newMiddleNodePosition++

if (newMiddleNodePosition NOT EQUAL TO middleNodePosition)
if (time < midTime)

middleNode = middleNode->bottomNode
else

middleNode = middleNode->topNode
middleNodePosition = newMiddleNodePosition

end

The last two strategies described here might perform similarly for most

simulations. The strategy based on the number of events might perform better when there

are simultaneous events, i.e., when multiple events are scheduled at the same discrete

simulation times. This implies that new events are added to the same nodes and,

therefore, the insertion procedure does not involve searching through a large number of

nodes. On the other hand, the strategy based on the time of events might perform better

when events are scheduled at distinct simulation times, with not many simultaneous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

) A
^ 'b

/
/

a
B a llG ro u p [1 ,1]

*

w

\

•

B a l lG r o i? [1 ,2]

/

•-
/

B a llG ro u p [1 ,3]

, --------------------------

//
\

Y B a l lG r o u p [2 ,1]
E

^ ^ /

f

K
/ s

/ B * IIG ro u p [2 ,2]

A /

^ B a l lG r o u p [2 ,3]

Pi
f I

f r

Figure 59. Snooker table divided into BallGroups

events during the simulation.

5.1.3 Timing Results

The event insertion strategies are tested using an example of a snooker table. The

snooker table is spatially divided into regions called BallGroups as shown Figure 59,

where each BallGroup constitutes a SimObject. Each BallGroup is assigned a certain

number of balls and the balls are assigned initial velocities and positions within the

region. The balls then move between regions or collide with the edges of the table, with

both actions generating events within the same SimObject (if the ball collides with an

edge) or on an adjoining SimObject (if the ball crosses into an adjoining BallGroup). The

collisions between the balls themselves are ignored for this study.

The insertion strategies are tested by assigning initial values to the X-component

and Y-component of the velocities of each ball from the following distributions:

• Constant

• Exponential: with mean values of 0.3, 0.5, and 0.7.

• Triangular: with minimum = 0, maximum = 1, and mid values of 0.25, 0.5, 0.75.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

• Normal: with p = 0.1, 0.2, 0.3.

• Beta: with ai = 0.8, 1.5, 2, 5 and 0C2 = 0.8, 1.5, 2, 5.

Assigning values from these distributions varies the velocities of each ball and in turn

varies the time taken by the ball to either cross a BallGroup or collide with an edge. This

generates events with timestamps mirroring the parent distribution that need to be added

to the list. The aim is to calculate which of the strategies works best for all the

distributions.

Readings are obtained by assigning 1000 balls each to 6 regions on the snooker

table, and then varying the number of events to be executed between 100000 - 5000000.

It is assumed that the time to execute the event is the same for all readings and the

difference between execution times is due to the insertion times. The readings are

normalized for each set of readings and then by calculating the average for each type of

distribution. The readings for the insertion strategies based on the time of events and the

number of events are taken for different shifts between 0.0 and 1.0. These readings

indicate that a shift of 0.2 works best for the maximum number of distributions, implying

that the search for the insertion point starts towards the tail end of the sub list. Therefore a

shift of 0.2 is used in all subsequent graphs for comparison with the other two strategies.

Graph 2 shows the average execution time for a single event using each strategy

described previously. The implementation of the pending event set as a binary tree proves

to be the best strategy for all distributions except a Beta distribution. Graph 3 shows the

graph of the average number of nodes searched to insert a single event using each

strategy. The insertion of an event into a binary tree requires the least number of nodes to

be searched. The number of nodes searched for the insertion strategies based on the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Average Event Execution Times for various distributions
with different Insertion Strategies

(SimObjects = 1000, Events between 100000 - 5000000)

111 0

t
CD Front Insert

□ R ear insert

□ Count Insert

□ T im ed In se rt

■ Binary Tree
Insert

Constant Exponential Triangular Normal Beta

Graph 2. Average execution time for different distributions

■oo

0)
V)
w
<D
TJO
Vo>
2<u
><

1000
900
800
700
600
500
400
300
200
100

0

Average Nodes Searched to insert 1 event for various
distributions with different Insertion Strategies

(SimObjects = 1000, Events between 100000 - 5000000)

□ Front Insert

B R ear Insert

□ Count Insert

B Timed Insert

■ Binary Tree
Insert

Constant Exponential Triangular Normal Beta

Graph 3. Average nodes searched for different distributions

of events and the number of events are identical due to the lack of many simultaneous

events. In the absence of any simultaneous events, the insertion strategies based on the

time and number of events are identical. The insertion strategies from the front and rear

of the list perform the worst among all the strategies due to the large number of events in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

the study.

5.2 Distributed Simulation Study

In a distributed simulation, SimulationClusters communicate with each other by

transmitting messages between each other. It is desirable to reduce network traffic by

keeping communication among processors at a minimum. This involves keeping

SimulationClusters that communicate with each other a lot on the same processor. This

section describes an example to study the number of messages transmitted among

SimulationClusters, when the application model is mapped to different organizations of

SimulationClusters. The purpose of the study is to identify an organization that results in

the least number of messages among SimulationClusters.

5.2.1 Distributed Implementation

The distributed DIESEL behavioral model described in Chapter IV is

implemented using the C++ programming language on a Win32 hardware platform. The

DIESEL C++ implementation is fully representative of the behavioral model and includes

the full functionality described in Chapter IV. The sequential implementation is extended

to support distributed simulations. In particular, support for the barrier synchronization

and Time Warp synchronization algorithms has been added to the distributed

implementation.

A set of procedures have been defined under the DistributedExecutiveSupport

interface, shown in Figure 60, to support the distributed simulation executive to execute

the simulation using the specified synchronization algorithm. These procedures are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

«interface»D istributedExecutlveSupport

+RelayMessage(in sourceClusterlD: Integer, in message : Message)
+SetLookAhead(in lookahead: double)
+StartGVT()
+ReceivedStateG VT(in clusterlD: Integer)
+ComputeLocalMinimum()
+LocalMinimum(in clusterlD: Integer, in minimum : double)
+SendGVT(in G VT: double)__________________________________

Figure 60. DistributedExecutiveSupport Interface

implementation-specific and are transparent to the application. A distributed simulation

involves SimulationClusters transmitting and receiving messages between each other. If

a SimulationCluster needs to send a message to another SimulationCluster, it calls the

"RelayMessage" procedure to send the message to the appropriate SimulationCluster.

SimulationClusters on the same processor are connected by the simulation executive on

the processor, while simulation executives on different processors are connected using

socket communication between processors. A procedure has been defined to support the

barrier synchronization algorithm. The "SetLookAhead" procedure sets the estimated

lookahead for the simulation.

The Time Warp algorithm requires regular computation of GYT, so that each

SimulationCluster can clear its history information and reclaim memory assigned to it.

The following procedures are defined to support the GVT computation.:

• The simulation executive uses the "StartGVT" procedure to notify each

SimulationCluster to start a GVT computation.

• Each SimulationCluster on receiving notification, stops processing events and

uses the "ReceivedStartGVT" procedure to notify the simulation executive that it

has received notification of a GVT computation.

• After the simulation executive has received notification from all

SimulationClusters, it uses the "ComputeLocalMinimum" procedure to ask each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

SimulationCluster to calculate its local minimum time.

• After the simulation executive has received the local minimum from each

SimulationCluster, it computes the GVT and sends it to each SimulationCluster,

using the "SendGVT" procedure.

• Each SimulationCluster on receiving the GVT, clears all saved history

information for timestamps which are in the past of the GVT, and resumes

processing events.

5.2.2 Communication Study

The snooker table example described in the previous section is used to study

communication among SimulationClusters in a distributed simulation. The snooker table

is again spatially divided into 6 BallGroups, and these BallGroups transmit messages to

each other while scheduling events on each other. The lookahead for the simulation is

calculated as follows:

Let "length" be the length of the table
Let "width" be the breadth of the table
Let "XDistance" be the length of each BallGroup
Let "YDistance" be the width of each BallGroup
Let "XPosition" be the x-component of a ball's position within a

BallGroup
Let "YPosition" be the y-component of a ball's position within a

BallGroup
Let "XVelocity" be the x-component of the velocity assigned to a

ball within a BallGroup
Let "YVelocity" be the y-component of the velocity assigned to a

ball within a BallGroup

length = 3569 mm
width = 1178 mm
XDistance = length/3 ~ 1189 mm
YDistance = width/2 = 589 mm
XPosition = 1 ^ XPosition ^ 1189
YPosition = 1 < YPosition ^ 589
XVelocity = 10 mm/sec
YVelocity = 10 mm/sec
Lookahead = Minimum ((XPosition/XVelocity), (YPosition/YVelocity))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

j s ' ' " ' *

Ball$r6up[1,1]

SimulationCluster 0

*

&>IIGroyp[1,2]
/

SimuiatiotnCluster 1

/ • - *

4

BallGroup[1,3]

SimulationCluster 2
i------------ ^ -----------

\/
vBallGroup[2,1]

X>
SimulationCluster 3 ^

r
\ /

0a)IGroup[2,2]
' \

SimulationCluster 4

\/ - \ \ y

BfllGroup[2,3]

^ ̂ ^nulationCkister S

J
? r

Figure 61a. 6 SimulationClusters

Ball§r6up[1,1]

SlmulationCktsi&r 0

JfcllGro|jp[1,2]
/

Simulati&nCluster 0

• -/

BallGroup[1,3]

SimulationCluster 0
i------ -------------

/
'BallGroup[2,1]

SmiuiationCiuster 1 ^

..... P
K /
pfaJIGroup[2,2]

' \
SitvulaikmClust&r 1

\ '* s \ \ . '

BjllGroup[2,3]

f ilfnulatjonCluster 1
’ J

* r

Ball§r6up[1,1]

SimulationCluster 0

.... .. w

killGroyp[1,2]
/

SimulationCluster 1

• -
4

BallGroup[1,3]

SimulationCluster 2
3------ f-J--------------

C \/
'BallGroup[2,1]

X>
SimulationCluster 0 ^

r

pfa|IGroup[2,2]
' \

SimulaifonClusier 1

\/ ~ \ \ y

BfllGroup[2,3]

f&tyujiatianClustQr 2

>
t r

Figure 61b. 3 SimulationClusters

Ball§r6up[1,1]

SimulationCluster 0

----------k j ---------

ifcllGroi^p[1,2]
/

SimuimitfzCluster 1

• -

BallGroup[1,3]

SimulationCluster 1
j------ &--------------

/
'BallGroup[2,1]
X)
SimulationCluster 0 /

P

pfajlGroup[2,2]
/ \ i \

SimulationCluster 0

\
...........A \ /

BfllGroup[2,3]

f& fnuiationClusm r 1

>
■ r

Figure 61c. 2 SimulationClusters Figure 61d. 2 SimulationClusters
with L-shaped organization

Figure 61. Mapping of BallGroups to SimulationClusters

= Minimum ((1/10), (1/10))
= 0 . 1

The BallGroups are assigned to different available SimulationClusters, and the

messages that they send to each other is noted. The number of available

SimulationClusters is varied from 2 to 6. The BallGroups are assigned to different

SimulationClusters as shown in Figure 61. Each BallGroup is assigned a certain number

of balls and the balls are assigned initial velocities and positions within the region,

similar to the previous section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Source
SimulationCluster

Destination SimulationCluster
0 1 2 3 4 5

0 0 2192 0 6139 0 0
1 1972 0 2194 0 6222 0
2 0 2034 0 0 0 6212
3 6308 0 0 0 2042 0
4 0 6289 0 2111 0 2013
5 0 0 6276 0 2049 0

Simulation
Cluster

Average
Events

0 188
1 122
2 189
3 188
4 122
5 192

Table la . Messages passed Table lb . Average Events

Table 1. Messages passed and average pending events with 6 SimulationClusters

Simulation
Cluster

Average
Events

0 188
1 122
2 190

Source
SimulationCluster

Destination SimulationCluster
0 1 2

0 0 4234 0
1 4083 0 4207
2 0 4083 0
Table 2a. Messages passed Table 2b. Average Events

Table 2. Messages passed and average pending events with 3 SimulationClusters

5.2.3 Results

Table 1(a) shows the number of messages passed among different

SimulationClusters with 6 SimulationClusters, while Table 1(b) shows the average size of

the pending event set within each SimulationCluster. Table 2(a) shows the number of

messages passed when the number of SimulationClusters is reduced to 3 and the

BallGroups are assigned as shown in Figure 61 (b). This partition decreases the total

number of messages passed among all SimulationClusters by 70%, while the average size

of the pending event set remains the same. Table 3 shows the number of messages and

the average events with 2 SimulationClusters as shown in Figure 61 (c). The average

pending event size decreases, but the number of messages doubles as compared to 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Source
SimulationCluster

Destination SimulationCluster
0 1

0 0 18573
1 18873 0

Simulation
Cluster

Average
Events

0 166
1 167

Table 3a. Messages passed Table 3b. Averaee Events

Table 3. Messages passed and average pending events with 2 SimulationClusters

Source
SimulationCluster

Destination SimulationCluster Simulation
Cluster

Average
Events0 1

0 0 10494 0 165
1 10243 0 1 167

Table 4a. Messages passed Table 4b. Average Events

Table 4. Messages passed and average pending events with 2
SimulationClusters with L-shape organization

SimulationClusters. Table 4 shows the statistics when the BallGroups are reorganized

within the same 2 SimulationClusters. The average size of the pending event size remains

the same as the previous organization, but the total number of messages transmitted

decreases by half.

The execution time for the simulation using the Time Warp algorithm is

considerably slower than when using the barrier synchronization algorithm. This is

expected, since the state capture ability within DIESEL captures the entire state of the

simulation, even though there are few state variables that change a lot within this

example. Similarly, a state restore operation due to rollback restores the state of the entire

simulation. These are very detailed processes which account for most of the execution

time. This state capture ability is specific to this implementation and can be replaced with

other state saving techniques [6 - 11] that save the state of variables rather than the whole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

system. With an application that has a lot of state variables which change often, the state

capture ability within DIESEL would be a valuable tool to capture the system state, rather

than attaching the overhead to each state variable.

5.3 Port Simulation (PORT SIM)

The Port Simulation (PORTSIM) system [62, 63, 64] is a discrete-event

simulation that facilitates the analysis of movements of military unit equipment through

worldwide seaports and allows for detailed infrastructure analysis. PORTSIM simulates

the use of seaports within the defense cargo transportation system and assists planners in

comparing and selecting ports. It determines port throughput capability given explicit

assumptions on assets, resources, and scenarios. It tracks utilization of critical resources

as well as potential bottlenecks and limiting resources to movement through the seaport.

The Programmable Process Flow Network (PPFN) is a process flow language

developed at Old Dominion University to describe the process activities at a cargo

terminal [65]. Previous versions of PORTSIM had processes statically coded into the

simulation, preventing the analyst from modifying them when a specific scenario

required it. By having the processes programmable, the analyst has full control of the

simulation processes. PPFN is partitioned into a high level language where the analysts

develop their processes and an assembly language that corresponds to data structures

internal to the simulation. The assembly-level instructions are interpreted by a virtual

machine called the Process Engine. This approach enables implementation of the

simulation given an appropriate set of process instructions. Meanwhile, the high level

language’s grammar and semantics are further defined to suit the needs of the analyst

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Process
Engine

Cargo Terminal
Architecture

DIESEL

E x e c u t e s p r o c e s s f lo w
a s s e m b l y l a n g u a g e f o r
e a c h p i e c e o f c a r g o o r
t r a n s p o r t b e in g
p r o c e s s e d a t a
t e r m in a l a r e a

D e f in e s p r o c e s s f lo w

Process flc v assembly

Process
GUI

S im u la t io n e n g i n e m a n a g e s
a l l s i m u la t io n t im e

D e f in e s c a r g o , p o r t , a n d
t r a n s p o r t s c e n a r i o s

M a n a g e s f lo w th r o u g h
t h e c a r g o t e r m i n a l s

Figure 62. PORTSIM Architecture

without affecting simulation development.

Previous versions of PORTSIM were implemented in MODSIM, originally in

MODSIM II and later in MODSIM III [17, 66, 67]. MODSIM is an object-oriented

simulation language developed by CACI. However, CACI sold the rights to the language

and the language has since been unsupported. This necessitated the movement of the

simulation to another language. The Army decided on a general purpose language,

requiring adopting a third party simulation executive (deemed undesirable for similar

reasons to the MODSIM issues) or development of a simulation executive to support the

project. This gave the first justification and opportunity for the development of DIESEL.

A functional prototype has been developed for the new PORTSIM simulation

model with PPFN support, utilizing the DIESEL C++ implementation as the supporting

simulation language with Windows XP OS on a Win32 platform. The current PORTSIM

system is shown in Figure 62. The Process Engine and the Cargo Terminal Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

«interface»StateSave
+Re$ol\/eReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
M aplnfrastructure

#parentMaplnfrastructure: Maplnfrastructure
-resourcePoolSet: CollectionKeyed
-transportPooSet: CollectionKeyed
-processTimeSet: CollectionKeyed
-constantSet: CollectionKeyed
+FindResourcePool(in path : PathReference, in secondKey : Key): EntityCounter
+GetResourcePool(in key : Key): EntityCounter
+FindTransportPool(in path : PathReference, in secondKey : Key): EntityPool
+GetTransportPool(in key : Key): EntityPool
+FindProcessTime(in path : PathReference, in secondKey : Key): AdvancedDistributions
+FindConstant(in path : PathReference, in secondKey : Key): ConstantValue

T
M apNode

+parentMapNode: MapNode
+parentMapSet: MapSet
+parentMap: Map
+level: NodeLevel
+location: Location
#cargoHolder: EntityHolder
#transportHolder: EntityHolder
#loaderSet: LoaderSet
#mapNodeSEC: SimulationEngineComponent
+ExecuteOnlnitProcessFlows()
+TransportArrive(in transport: Transport)
+TransportLeave(in transport: Transport, in destinationSelect: TransportDestination)
+RequestSpace(in transport: Transport)
+RequestSpace(in cargo: Cargo)
+AcquireSpace(in transport: Transport)
+AcquireSpace(in cargo: Cargo)
+ReleaseSpace(in transport: Transport)
+ReleaseSpace(in cargo: Cargo)
+RequestLoadForTransport(in transport: Transport)
+AddCargoForLoading(in cargo: Cargo)
+GetMapSet(in key : Key): MapSet
+GetMapNode(in location : Location): MapNode
+RegisterWithT ransitQ

Figure 63. MapNode within PORTSIM Architecture

components within PORTSIM interact with the DIESEL simulation engine, to initialize,

control, and execute the simulation. The Cargo Terminal Architecture within PORTSIM

is defined as a network of nodes, with each node defined by a process or by another

network thus allowing a hierarchical structure. A MapNode, shown in Figure 63,

represents cargo terminals within the cargo transportation network as well as the

individual terminal areas within a single cargo terminal. The architecture also supports

the routing of entities (cargo and transports) through the network by defining a starting

node, a destination node with a sequence of nodes to be traversed en route. Once a node

that can handle a given entity is identified, the entity must request space in the selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

node before transiting to the node. This is important to avoid infinite queuing in the

interconnection segments and to provide a level of flow control, thereby assisting in the

avoidance of deadlock.

A MapNode is one of the many SimObjects within PORTSIM with an associated

SimulationEngineComponent. Events are scheduled to be executed on a MapNode by the

arrival of cargo and transport at the MapNode at a particular simulation time, through the

routing infrastructure that exists between MapNodes. Requests for space by an entity

within a destination MapNode also create events on the source MapNode, once space has

been identified for the entity within the destination MapNode. Resources and transports

within a MapNode are modeled with the EntityCounter and EntityPool interfaces in

DIESEL, while cargo pools are modeled using other entity management interfaces within

DIESEL.

The Cargo Terminal Architecture is a shell around the cargo processing model

that is unique to each MapNode. A ProcessFlow is defined for each MapNode using

PPFN to represent the cargo processing model. A ProcessFlow is also a SimObject with

an associated SimulationEngineComponent. It is defined as a sequence of activities that

must be traversed in order by cargo or transports to be processed through a MapNode. An

example process flow is shown in Figure 64. Activities such as "ProcessTimeDelay" that

involve passing simulation time, cause events to be scheduled on the associated

SimulationEngineComponent. This causes the activity to be suspended until the specified

simulation time, after which it resumes execution. Activities also use the Trigger,

TriggerCounter, Join, and JoinCounter interfaces to achieve synchronization between

themselves within a single ProcessFlow or multiple ProcessFlows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

TransportAcquireSpace ()

TransportAcquireSpaceForCargo ()

(Ramp
Activities)

(Crane
Activities)

transport

ResourceRelease (Port.Tug, Port.TugsPerShip)
transport

ProcessTimeDelay (Portlnfrastructure, BerthSet.DeberthTime)

Send (Ship, OutOfLevel)

TransportReleaseSpace ()

ProcessTimeDelay (Portlnfrastructure, Port.TugRetumTime)

ProcessTimeDelay (Portlnfrastructure, BerthSet.BerthTime)

Figure 64. Example PORTSIM ProcessFlow using PPFN

The PORTSIM system uses the DIESEL state capture ability to save the state of

the simulation and restore it at a later time. The state capture ability has also been used

for debugging purposes, since a state save operation involves resolving all references

within the simulation, which is extremely useful to find stranded references.

Results over the past four years have shown the DIESEL behavioral model and its

C++ implementation to be more than adequate for supporting the development of real-

world applications. An Initial Operational Capability (IOC) release of PORTSIM

utilizing the sequential version of DIESEL is scheduled for June 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

5.4 DIESEL Platform Independence

One of the main requirements of the DIESEL behavioral model is that it should

not be focused on a particular programming language or hardware platform. The DIESEL

behavioral model described in Chapter II, III and IV is defined at a high level of

abstraction. The behavior expected of each component within the model has been

captured. However, the implementation of the behavioral model is completely

independent; each component can be implemented in a different manner, as long as they

satisfy the behavior that is expected of that component. Each new implementation of a

component should implement the interface that has been specified for that particular

component. This allows each new component to be inserted into the complete model and

cause no change to the behavior of the complete model.

Language Independence

The DIESEL behavioral model has been implemented in C++, Java and C#. The

DIESEL C++ implementation is fully representative of the behavioral model and includes

the full functionality described in Chapters II, III and IV. Java and C# implementations

with the core simulation engine functionality have been developed as prototypes by Mr.

Saurav Mazumdar from the Department of Electrical and Computer Engineering at Old

Dominion University. These implementations prove that the behavioral model is not

focused towards any language in particular. Complete Java and C# implementations can

be developed depending on user requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

Compiler Independence

Various applications including the example timing diagram and the Dining

Philosophers’ problem described in Chapter III, using the DIESEL C++ implementation,

have been tested on different C++ compliers. These compliers include the Visual Studio

2005 SP1 C++ compiler developed by Microsoft© Corporation and the GCC 4.1.1

compiler developed by Free Software Foundation in support of the GNU project using

the Anjuta Integrated Development Environment (IDE).

Platform Independence

The example timing diagram and the Dining Philosophers’ problem have been

tested on the Windows 2000 and Windows XP operating systems from Microsoft©

Corporation and the Fedora Core 6 operating system from Red Hat, installed on different

hardware platforms, using the DIESEL C++ implementation and the GCC compiler.

The complete source code for the C++ implementation is made available for

further research and development through the Department of Electrical and Computer

Engineering at Old Dominion University. Source code is extremely valuable while

debugging simulations that are developed using DIESEL as the underlying simulation

executive. Moreover, one of the goals of this research is to encourage development of

new implementations for a small component or for a set of interconnected components.

This development is greatly aided if complete source code is available so that the

developer can study the behavior of the component that is being replaced in the context

of the entire model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Should an application desire to use DIESEL without concern for the internal

implementation, stable libraries that have been built for the complete implementation are

made available through ODU too. These implementations can be used for developing

applications with no changes or further development required within the underlying

DIESEL implementation. This makes DIESEL an attractive option for commercial

applications, since the simulation executive along with its implementation is free and

easily modified to suit specific application needs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Chapter VI

CONCLUSION

This chapter concludes the work presented in this dissertation and offers

suggestions on future work based on the behavioral model presented here.

6.1 Achievements

DIESEL specifies a behavioral model for a simulation executive and is capable of

supporting sequential and distributed application development. The model is defined at a

high level of abstraction and the expected behavior of each component within the model

is described. The model also describes the interconnection among the model components.

However, the model specification implies no implementation details. The implementation

of each component or the whole behavioral model itself can be developed independently

with no change to system behavior, as long as each component satisfies its expected

behavior. The behavioral model is independent of any underlying network

communication protocols or synchronization algorithms while executing a distributed

application.

A complete and functional implementation of the behavioral model has been

developed in C++. The C++ implementation is independent of the compiler that is used to

compile the program or the hardware and software platform that it is executed on.

Prototypical implementations of the model with core engine functionality have also been

developed in Java and C#. Support for the conservative barrier synchronization algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

and the optimistic Time Warp algorithm has been implemented to show that the model

can support different synchronization algorithms.

The behavioral model for a simulation executive described in this dissertation can

be used for research and development into different aspects of PDES. The simulation

executive in its current form can be used to develop discrete-event simulations. The

underlying implementation can be changed with no changes required in the application.

Different event management strategies, communication mechanisms, and synchronization

algorithms, both new and existing, can be compared using the same behavioral model.

The model described here and its implementation can be used in classes to teach the

basics of a sequential and distributed simulation. It is also extremely stable and can

therefore be the underlying simulation executive for commercial applications.

6.2 Enhancements

Several enhancements are possible to the work described in this dissertation:

High Level Architecture (HLA) Compliance

The DIESEL simulation executive could be extended so that any applications

developed using DIESEL could be written to be HLA compliant, if needed. HLA

compliance could be achieved by specifying the HLA Simulation Object Model (SOM)

for DIESEL and its interface to the Runtime Infrastructure (RTI). An application would

then need to develop and specify its Federation Object Model (FOM) to achieve

compliance. Simulations built using DIESEL (called federates in HLA terminology)

would have to use the time management services of the RTI to manage local time in order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

to be HLA compliant. This would involve the DIESEL time management infrastructure

interacting with the RTI to manage and advance the simulation time within an

application, which could involve extensions to the DIESEL interface specification.

Support For Continuous-Time Simulations

The DIESEL simulation executive currently supports discrete-event simulations.

The behavioral model can be extended to support continuous-time simulations.

Simulation time within continuous-time simulations is non-discrete. Therefore, the

simulation time would have to be incremented by delta values to advance the simulation,

thereby simulating the non-discrete nature of a continuous simulation. The Delayed State

Commitment that already exists within the current specification can be an important tool.

If multiple processes modify the same state variable at the same simulation time, then the

order in which the processes act on the variable plays an important role in the final

outcome of the simulation. Delayed State Commitment makes all processes act on the

same value of the state variable and then updates the state variable with its new value

after all processes have finished executing at that simulation time.

Support For Process Flow Modeling

The DIESEL model can also be extended to support process flow modeling,

which represents a system as a Data Flow Diagram (DFD) [68]. A DFD shows the flow

of information through the system using processes where each process transforms a set of

inputs to a set of outputs. The DFD can be mapped onto DIESEL by converting the DFD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

to an event-driven model, with each event representing the transformation from input to

output within a process.

Support fo r Real-Time Simulations and Animation

Another extension to the DIESEL model could be support for real-time

simulations and animation within a simulation. The behavioral model currently executes

as fast as possible. This execution would have to be slowed down to synchronize it with

the wallclock time, such that each event execution would correspond to an activity within

real-time. The application model would have to be defined in such a way that a single

event computation takes no longer than the time it would take to happen in real-time. If

an event is executed faster than real-time, then the simulation would have to be

suspended until the wallclock time caught up with the simulation time.

Animation support can be built in as an after-the-fact effort by using DIESEL to

keep track of each event that an application object executed. This data could then be used

to represent the simulation and the entity interaction within the application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

REFERENCES

[1] Fujimoto, R.M. "Parallel and Distributed Simulation Systems." Wiley Series on

Parallel and Distributed Computing, 2000.

[2] Fujimoto, R.M. "Parallel Discrete Event Simulation." Communications o f the

ACM 33, no. 10 (October 1990): 30-53.

[3] Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed System."

Communications o f the ACM 21, no. 7 (July 1978): 558-565.

[4] Jefferson D. "Virtual Time." ACM Transactions on Programming Languages

7, no. 3 (July 1985): 405-425.

[5] Frey, P., R. Radhakrishnan, H.W. Carter, P.A. Wilsey, and P. Alexander. "A

Formal Specification and Verification Framework for Time Warp-Based Parallel

Simulation." IEEE Transactions on Software Engineering 28, no. 1 (January

2002): 58-78.

[6] Ronngren, R., M. Liljenstam, R. Ayani, and J. Montagnat. "Transparent

Incremental State Saving in Time Warp Parallel Discrete Event Simulation." In

Proc. l(fh Workshop on Parallel and Distributed Simulation, 70-77, 1996.

[7] Lin, Y.B., B.R. Preiss, W.M. Loucks, and E.D. Lazowska. "Selecting the

Checkpoint Interval in Time Warp Simulation." In Proc. 7th Workshop on

Parallel and Distributed Simulation, 3-10, 1993.

[8] Ronngren, R., and R. Ayani. "Adaptive Checkpointing in Time Warp." In Proc.

8th Workshop on Parallel and Distributed Simulation, 110-117, 1994.

[9] Quaglia, F. "Combining Periodic and Probabilistic Checkpointing in Optimistic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Simulation." In Proc. 13th Workshop on Parallel and Distributed Simulation, 109—

116, 1999.

[10] Quaglia, F. "Event History Based Sparse State Saving in Time Warp." In Proc.

12th Workshop on Parallel and Distributed Simulation, 72-79, 1998.

[11] Carothers, C.D., K.S. Perumalla, and R.M. Fujimoto. "Efficient Optimistic

Parallel Simulations using Reverse Computation." ACM Transactions on

Modeling and Computer Simulation 9, no. 3 (July 1999): 224-253.

[12] Chandy, K.M., and L. Lamport. "Distributed Snapshots: Determining Global

States of Distributed Systems." ACM Transactions on Computer Systems 3, no. 1

(February 1985): 63-75.

[13] Samadi, B. "Distributed Simulation, Algorithms and Performance Analysis." PhD

thesis, Computer Science Department, University of California, Los Angeles,

1985.

[14] Mattem, F. "Efficient Algorithms for Distributed Snapshots and Global Virtual

Time Approximation." Journal o f Parallel and Distributed Computing 18, no. 4

(August 1993): 423^134.

[15] Zeigler, B.P. "Hierarchical, Modular Discrete-Event Modelling in an Object-

Oriented Environment." Simulation 49, no. 5 (November 1987): 219-230.

[16] Eldredge, D.L., J.D. McGregor, and M.K. Summers. "Applying the Object-

Ooriented Paradigm to Discrete Event Simulations using the C++ language."

Simulation 54, no. 2 (February 1990): 83-91.

[17] Rich, D. O., and R. E. Michelsen. "An Assessment of the MODSIM/TWOS

Parallel Simulation Environment." In Proc. 1991 Winter Simulation Conference,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

509- 518, 1991.

[18] Dimsdale, B., and H.M. Markowitz. "A Description of the SIMSCRIPT

Language." IBM Systems Journal 38, no. 2-3 (1999): 151-161.

[19] Price, R. N., and C. R. Harrell. "Simulation Modeling and Optimization using

ProModel." In Proc. 1999 Winter Simulation Conference, 208-214, 1999.

[20] Bapat, V., and N. Swets. "The Arena Product Family: Enterprise Modeling

Solutions." In Proc. 2000 Winter Simulation Conference, 163-169, 2000.

[21] Fritzson, P., and V. Engelson. "Modelica - A Unified Object-Oriented Language

for System Modelling and Simulation." Lecture Notes In Computer Science 1445

(1998): 67-90.

[22] Bagrodia, R.L, and W.T. Liao. "Maisie: A Language for the Design of Efficient

Discrete-Event Simulations." IEEE Transactions on Software Engineering 20, no.

4 (April 1994): 225-238.

[23] Waldorf, J., and R.L. Bagrodia. "MOOSE: A Concurrent Object-Oriented

Language for Simulation." International Journal in Computer Simulation 4, no. 2

(1994): 235-257.

[24] Wonnacott, P., and D. Bruce. "The APOSTLE Simulation Language: Granularity

Control and Performance Data." In Proc. 10th Workshop on Parallel and

Distributed Simulation, 114-123, 1996.

[25] Pham, C.D., and R.L. Bagrodia. "Building Parallel Time-constrained HLA

Federates: A Case Study with the Parsec Parallel Simulation Language." In Proc.

1998 Winter Simulation Conference, 1555-1562, 1998.

[26] Zhang, Y., W. Cai and S.J. Turner. "A Parallel Object-Oriented Manufacturing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Simulation Language." In Proc. 15th Workshop on Parallel and Distributed

Simulation, 101-108, 2001.

[27] Kilgore, R.A., and E. Burke. "Object-Oriented Simulation of Distributed Systems

using Java® and Silk®." In Proc. 2000 Winter Simulation Conference, 1802-1809,

2000 .

[28] Lomov, G., and D. Baezner. "A Tutorial Introduction to Object-Oriented

Simulation and Sim++." In Proc. 1990 Winter Simulation Conference, 149-153,

1990.

[29] Zeigler, B.P. "Multifacetted Modeling and Discrete Event Simulation" Academic

Press, 1984.

[30] Concepcion, A.I., and B.P. Zeigler. "DEVS Formalism: A Framework for

Hierarchical Model Development." IEEE Transactions on Software Engineering

14, no. 2 (February 1988): 228-241.

[31] Das, S.R., R.M. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. "GTW: A

Time Warp system for Shared Memory Multiprocessors." In Proc. 1994 Winter

Simulation Conference, 1332-1339, 1994.

[32] Steinman, J.S. "SPEEDES: A Multiple-Synchronization Environment for Parallel

Discrete-Event Simulation." International Journal in Computer Simulation 2, no.

3 (1992): 251-286.

[33] Calvin, J., A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen. "The

SIMNET Virtual World Architecture." In Proc. IEEE Virtual Reality Annual

International Symposium, 450-455, 1993.

[34] Miller, D.C., and J.A. Thorpe. "SIMNET: The Advent of Simulator Networking."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Proceedings of the IEEE 83, no. 8 (1995): 1114-1123.

[35] IEEE Standard for Distributed Interactive Simulation - Application Protocols.

IEEE Standard 1278.1-1995, 1995.

[36] Dahmann, J. S. "High Level Architecture for Simulation." In Proc. 1st

International Workshop on Distributed Interactive Simulation and Real-Time

Applications, 9-14, 1997.

[37] Dahmann, J. S., R. M. Fujimoto and R. M. Weatherly. "The Department of

Defense High Level Architecture." In Proc. 1997 Winter Simulation Conference,

142-149, 1997.

[38] Fujimoto, R. M., and R. M. Weatherly. "Time Management in the DoD High

Level Architecture." In Proc. 10th workshop on Parallel and Distributed

Simulation, 60-67, 1996.

[39] Christopher, W.A., S.J. Procter, and T.E. Anderson. "The Nachos Instructional

Operating System." Technical Report: CSD-93-739, University of California at

Berkeley, 1993.

[40] Ives, B., S. Hamilton, and G.B. Davis. "A Framework for Research in Computer-

Based Management Information Systems." Management Science 26, no. 9 (1980):

910-934.

[41] Geotechnical Software Services. C+ + Programming Style Guidelines, (online at

http://geosoft.no/development/cppstyle.html)

[42] UPC Language Specifications, vl.2. UPC Consortium,

Lawrence Berkeley National Lab Tech Report LBNL-59208, 2005.

[43] Fog, A. "Uniform Random Number Generators." (online at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://geosoft.no/development/cppstyle.html

122

http://www.agner.org/random/randoma.htm)

[44] L’Ecuyer, P. "Fast Combined Multiple Recursive Generators with Multiplies of

the form a=2q±2r." In Proc. 2000 Winter Simulation Conference, 683-689, 2000.

[45] Frank, P. "A Generic Object-Oriented Random Variate Model for Discrete Event

Simulations: Separating the Data Model from the Process Model." Master’s

thesis, Department of Electrical and Computer Engineering, Old Dominion

University, December 1999.

[46] Gullapalli S. "An Object-Oriented Resource Pool Model in Support of Discrete

Event Simulations." Master's thesis, Department of Electrical and Computer

Engineering, Old Dominion University, May 2001.

[47] Dijkstra, E. W. "Hierarchical Ordering of Sequential Processes." Acta Informatica

1, no. 2 (June 1971): 115-138.

[48] Law, K.L.E., and R. Leung. "A Design and Implementation of Active Network

Socket Programming." In Proc. 11th International Conference on Computer

Communications and Networks, 78-83, 2002.

[49] Karonis, N.T., B. Toonen, and I. Foster. "MPICH-G2: A Grid-enabled

Implementation of the Message Passing Interface." Journal o f Parallel and

Distributed Computing 63, no. 5 (May 2003): 551-563.

[50] Wang, Y.M., O.P. Damani and W.J. Lee. "Reliability and Availability Issues in

Distributed Component Object Model (DCOM)." In Proc. 4th International

Workshop on Community Networking Proceedings, 59-63, 1997.

[51] Vinoski, S. "CORBA: Integrating Diverse Applications within Distributed

Heterogeneous Environments." IEEE Communications Magazine 35, no. 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.agner.org/random/randoma.htm

123

(February 1997): 46-55.

[52] Frantisek P., and M. Stal. "An Architectural View of Distributed Objects and

Components in CORBA, Java RMI and COM/DCOM." Software - Concepts &

Tools 19, no. 1 (June 1998): 14-28.

[53] Avril, H., and C. Tropper. "On Rolling Back and Checkpointing in Time Warp."

IEEE Transactions on Parallel and Distributed Systems 12, no. 11 (November

2001): 1105-1121.

[54] Franta, W.R., and K. Maly. "An Efficient Data Structure for the Simulation Event

Set." Communications of the ACM20, no. 8 (August 1977): 596-602.

[55] Ulrich, E.G. "Event Manipulation for Discrete Simulations Requiring Large

Numbers of Events." Communications o f the ACM 21, no. 9 (September 1978):

777-785.

[56] Franta, W.R., and K. Maly. "A Comparison of Heaps and the TL structure for the

Simulation Event Set." Communications of the ACM 21, no. 10 (October 1978):

873-875.

[57] McCormack, W.M. "Analysis of Future Event Set Algorithms for Discrete Event

Simulation." Communications of the ACM 24, no. 12 (December 1981), 801-812.

[58] Jones, W.D. “An Empirical Comparison of Priority-Queue and Event-Set

Implementations.” Communications of the ACM 29, no. 4 (April 1986): 300-311.

[59] Brown, R. "Calendar Queues: A Fast 0(1) Priority Queue implementation for the

Simulation Event Set Problem." Communications of the ACM1X, no. 10 (October

1988): 1220-1227.

[60] Marin, M. "On the Pending Event Set and Binary Tournaments." Technical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Report, Oxford University, 1997.

[61] Dahl, J., M. Chetlur and P.A. Wilsey. "Event List Management In Distributed

Simulation." In Proc. 7th International Euro-Par Conference on Parallel

Processing, 466-475, 2001.

[62] Nevins, M., C. Macal and J. Joines. "PORTSIM: An Object-Oriented Port

Simulation." In Proc. Summer Computer Simulation Conference (SCSC 1995),

160-165, 1995.

[63] Leathrum, J.F. and T. Frith. "A Reconfigurable Object Model for Port

Operations." In Proc. Summer Computer Simulation Conference (SCSC 2000),

693-698, 2000.

[64] Leathrum, J.F. "PORTSIM: Model Visibility for Training within a Port

Simulation." In Proc. CAORF/JSACC 2000, L l-l-L l-12 , 2000.

[65] Cuckov, F. "The Programmable Process Flow Network (PPFN)." Master’s thesis,

Department of Electrical and Computer Engineering, Old Dominion University,

May 2005.

[66] MODSIM-IIIReference Manual. CACI Products Company, 2000.

[67] MODSIM-III Tutorial. CACI Products Company, 2000.

[68] Arndt, T., and A. Guercio. "Decomposition of Data Flow Diagrams." In Proc. 4th

International Conference on Software Engineering and Knowledge Engineering,

560-566, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

APPENDICES

A. DIESEL Sequential Interface Specification

A.1 State Capture Interfaces

A. 1.1 StateSave Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DupiicateState(in original: StateSave)

Figure Al. StateSave Interface

M e t h o d s ;
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within an entity. This method
should be defined for each class or interface that
inherits the StateSave interface.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within an entity. This method
should be defined for each class or interface that
inherits the StateSave interface.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of an entity
during the state duplication process of a non
terminating state save operation. This method should
be defined for each class or interface that inherits
the StateSave interface.
None.

StateSave.
Empty shell of entity.
None.

• D u p l i c a t e S t a t e
Objective: This method copies the state of "original" to the

current entity during the state duplication process
of a non-terminating state save operation. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

method should be defined for each class or interface
that inherits the StateSave interface.

Parameters:
original

Mode: Input.
Type: StateSave.
Presence: Required.
Function: Specifies entity whose state is to be copied.

Return Value: None.
Exceptions: None.

A. 1.2 StateSave Support Interface

I n t e r f a c e D i a g r a m :

« in terface»S fateS aveS upport

+RegisterEventMethod(in eventMethod: EventMethodReference)
+RegisterMethod(in m ethod: EvaluateMethodReference)
+StartDuplicate()
+GetDuplicateReference(in reference : StateSave): Reference
+GetDuplicateReference(in reference: Reference): Reference
+RegisterDuplicateReference(in reference: Reference, in duplicate: Reference, in s ize : Integer)
+DuplicateDone()
+ScheduleStateSave(in stateSaveFileName: string, in eventDelegate: Delegate, in outputDelegate : Delegate, in delta: double, in terminate: boolean)
+GetReferencelD(in reference: StateSave): ReferencelD
+GetReferencelD(in reference: Reference, in s ize : Integer): ReferencelD
+GetReferencelD(in eventMethod: EventMethodReference): ReferencelD
+GetReferencelD(in m ethod: EvaluateMethodReference): ReferencelD
+CaptureState(in stateSaveFile: FileStream)
*CaptureDone()
+RestoreState(in stateSaveFileName: string)
+GetReference(in referencelD: ReferencelD): Reference
+GetReference(in referencelD: ReferencelD): EventMethodReference
+GetReference(in referencelD: ReferencelD): EvaluateMethodReference
+RestoreDone()
+GetStateSaveFile(): FileStream___

Figure A2. StateSaveSupport Interface

M e t h o d s ;
• R e g i s t e r E v e n t M e t h o d

Obj ective:

Parameters:
even tMe thod

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method registers an event method with the state
save support infrastructure.

Input.
EventMethodReference.
Required.
Specifies the event method to be registered.
None.
None.

• R e g i s t e r M e t h o d
Obj ective:

Parameters:
method

Mode:
Type:
Presence:
Function:

Return Value:

This method registers a method that evaluates two
elements with the state save support infrastructure.

Input.
EvaluateMethodReference.
Required.
Specifies the method to be registered.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Exceptions: None.

• S t a r t D u p l i c a t e
Objective: This method initializes a state duplication process

for a non-terminating state save operation.
Parameters: None.
Return Value: None.
Exceptions: None.

• G e t D u p l i c a t e R e f e r e n c e
Objective: This method returns the reference for the duplicate

of a StateSave object.
Parameters:

reference
Mode: Input.
Type: StateSave.
Presence: Required.
Function: Specifies the original StateSave object.

Return Value:
Type: Reference.
Function: Reference to the duplicate of the StateSave object.

Exceptions: None.

• G e t D u p l i c a t e R e f e r e n c e
Objective: This method returns the reference for the duplicate

of a non-StateSave object.
Parameters:

reference
Mode: Input.
Type: Reference.
Presence: Required.
Function: Specifies the original non-StateSave object.

Return Value:
Type: Reference.
Function: Reference to the duplicate of the non-StateSave

obj ect.
Exceptions: None.

• R e g i s t e r D u p l i c a t e R e f e r e n c e
Objective: This method registers a non-StateSave object and its

duplicate with the state save support
infrastructure.

Parameters:
reference

Mode: Input.
Type: Reference.
Presence: Required.
Function: Specifies the original non-StateSave object,

duplicate
Mode: Input.
Type: Reference.
Presence: Required.
Function: Specifies the duplicate of the original non-

StateSave object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
Integer.
Required.
the size of the non-StateSave object.
None.
None.

• D u p l i c a t e D o n e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method ends and cleans up a state duplication
process for a non-terminating state save operation.
None.
None.
None.

• S c h e d u l e S t a t e S a v e
Objective: This method schedules a state save operation at an

offset of "delta" from the current simulation time.
Parameters:

s tateSaveFileName
Mode: Input.
Type: String.
Presence: Required.
Function: Specifies the name of the state save file.

eventDelegate
Mode: Input.
Type: Delegate.
Presence: Required.
Function:

dataDelegate
Mode:
Type:
Presence:
Function:

delta
Mode:
Type:
Presence:
Function:

terminate
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Specifies the delegate to be executed to save the
state of the simulation.

Input.
Delegate.
Required.
Specifies the delegate to be executed to save the
data within the application.

Input.
Double.
Required.
Specifies the offset of
current simulation time.

state save operation from

Input.
Boolean.
Required.
Specifies if the simulation is to be terminated at
the end of the state save operation.
None.
None.

• G e t R e f e r e n c e l D
Obj ective:

Parameters:
reference

Mode:

This method registers a StateSave object with the
state save support infrastructure.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Type:

Function:
Return Value:

Type:
Function:

Exceptions:

StateSave.
Presence: Required.

Specifies the StateSave object to be registered.

ReferencelD.
ID of the StateSave object.
None.

G e t R e f e r e n c e l D
Objective: This method registers a non-StateSave object with

the state save support infrastructure.
Parameters:

reference
Mode:
Type:

Input.
Reference.

Presence: Required.
Function: Specifies the non-StateSave object to be registered.

size
Mode:
Type:

Input.
Integer.

Presence: Required.
Function: Specifies the size of the non-StateSave object.

Return Value:
Type: ReferencelD.
Function: ID of the non-StateSave object.

Exceptions: None.

G e t R e f e r e n c e l D
Obj ective:
Parameters:

eventMethod
Mode:
Type:

This method returns the ID for an event method.

Input.
EventMethodReference.

Presence: Required.
Function: Specifies the event method.

Return Value:
Type: ReferencelD.
Function: ID of the event method.

Exceptions: None.

G e t R e f e r e n c e l D
Obj ective:
Parameters:

method
Mode:
Type:

This method returns the ID for an evaluate method.

Input.
EvaluateMethodReference.

Presence: Required.
Function: Specifies the method.

Return Value:
Type: ReferencelD.
Function: ID of the method.

Exceptions : None.

C a p t u r e s t a t e
Obj ective: This method initiates writing the simulation state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

to the state save file for a state save operation.
Parameters:

stateSaveFile
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
File Stream.
Required.
State Save File.
None.
None.

• C a p t u r e D o n e
Objective:

Parameters:
Return Value:
Exceptions:

This method ends and cleans up a state save
operation.
None.
None.
None.

• R e s t o r e S t a t e
Obj ective: This method initializes the support infrastructure

for a state restore operation and initiates a state
restore operation from the specified state save
file.

Parameters:
stateSaveFileName

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
String.
Required.
Specifies
None.
None.

the name of the state save file.

G e t R e f e r e n c e
Obj ective:

Parameters:
referencelD

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method restores the reference for an object
registered with the state support infrastructure.

Input.
ReferencelD.
Required.
Specifies the registered object.

Reference.
Reference to
None.

the registered object.

• G e t R e f e r e n c e
Obj ective:

Parameters:
referencelD

Mode:
Type:
Presence:
Function:

This method restores the reference for an
method registered with the state support
infrastructure.

Input.
ReferencelD.
Required.
Specifies the

event

ID of the registered event method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Return Value:
Type : EventMethodReference.
Function: Reference to the registered event method.

Exceptions:

G e t R e f e r e n c e
Obj ective:

None.

This method restores the reference for an evaluate
method registered with the state support
infrastructure.

Parameters:
referencelD

Mode:
Type:

Input.
ReferencelD.

Presence: Required.
Function: Specifies the ID of the registered method.

Return Value:
Type: EvaluateMethodReference.
Function: Reference to the registered method.

Exceptions: None.

• R e s t o r e D o n e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method ends and cleans up a state restore
operation.
None.
None.
None.

• G e t S t a t e S a v e F i l e
Obj ective:

Parameters:
Return Value:

Type:

This method returns the state save file to the
simulation application, to save or retrieve
information.
None.
None.
File Stream.

Function: State Save File.
Exceptions: None.

A.2 Application Support Interfaces

A.2.1 Replicable Interface

I n t e r f a c e D i a g r a m :

+Clone(): Replicable

«interface»
R eplicable

+ResolveReferences()
+Re$toreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

Figure A3. Replicable Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

M e t h o d s :

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates a clone of the entity. This
method should be defined for each class or interface
that inherits the Replicable interface.
None.

Replicable.
Clone of the object.
None.

A.2.2 ProgrammaticEvent Interface

I n t e r f a c e D i a g r a m :
«in terface»Program m aticEvent

+Modify(in modifications: ArgumentUst)
+Adju$t(in adjustments: ArgumentUst)
+Transfer(in transferlnformation: ArgumentUst)

Figure A4. ProgrammaticEvent Interface

M e t h o d s :

• M o d i f y
Objective: This method modifies the attributes of an entity.

This method should be defined for each class or
interface that inherits the ProgrammaticEvent
interface and desires the ability to
programmatically modify its attributes.

Parameters:
modifications

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
ArgumentList.
Required.
Specifies the information required for modifying
properties of an entity.
None.
None.

• A d j u s t :
Obj ective:

Parameters:
adjustments

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method adjusts the attributes of an entity.
This method should be defined for each class or
interface that inherits the ProgrammaticEvent
interface and desires the ability to
programmatically adjust its attributes.

Input.
ArgumentList.
Required.
Specifies the information required for adjusting
properties of an entity.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

T r a n s f e r
Objective: This method transfers properties of an entity to

another entity. This method should be defined for
each class or interface that inherits the
ProgrammaticEvent interface and desires the ability
to programmatically transfer its properties.

Parameters:
transferInformation

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
ArgumentList.
Required.
Specifies the information required for transferring
properties an entity.
None.
None.

A.2.3 Routine Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+Reso!veReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface»Routine

+New(in objectReference: SimObjectReference, in routineReference: EvaluateMethodReference)
+Delete()
+Perform(in element: Element)

Figure A5. Routine Interface

M e t h o d s :
• N ew

Objective: This
Parameters:

obj ectReference
method initializes a Routine.

Mode: Input.
Type: Reference to a SimObject.
Presence: Required.
Function: Specifies the reference to a SimObject on which the

routine method should be executed.
routineReference

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
EvaluateMethodReference.
Required.
Specifies the routine method.
None.
None.

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes a Routine.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

• P e r f o r m
Obj ective:

Parameters:
element

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method executes the specified routine method
with an element as its input.

Input.
Element.
Required.
Specifies the element which
for the routine method.
None.
None.

is to be used as input

A.2.4 Condition Interface

I n t e r f a c e D i a g r a m :
«interface»StateSave

+ResoiveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

J .
«interface»Condition

+New(in objectReference: SimObjectReference, in conditionReference: EvaluateMethodReference)
+Delete()
+Evatuate(in element: Element): Boolean

Figure A6. Condition Interface

M e t h o d s :
• N ew

Objective: This
Parameters:

obj ectReference
method initializes a Condition.

Mode: Input.
Type: Reference to a SimObject.
Presence: Required.
Function: Specifies the reference to a SimObject on which the

routine method should be executed,
condi tionReference

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
EvaluateMethodReference.
Required.
Specifies the condition method.
None.
None.

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes
None.
None.
None.

a Condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

E v a l u a t e
Objective: This method executes the specified condition method

with an element as its input.
Parameters:

element
Mode: Input.
Type: Element.
Presence: Required.
Function: Specifies the element which is to be used as input

for the condition method.
Return Value:

Type: Boolean.
Function: Result of the evaluated condition.

Exceptions: None.

A.3 Application Interfaces

A.3.1 SequentialSimulationExecutive Interface

I n t e r f a c e D i a g r a m :
«interface»

Sequentia lS im ulationE xecutive
+StartSequentialSimulation()
+ExecuteSequentialSimulation()
+CleanUpSequentialSimulation()
+SetSimTime(in simTime: double)
+GetSimTime(): Double
+GetWallClockTime(): Double
+GetAveragePendingEventSize(): Integer
+GetAverageEventWaitTime(): Double

Figure A7. SequentialSimulationExecutive Interface

M e t h o d s :
• S t a r t S e q u e n t i a l S i m u l a t i o n

Objective: This method initializes DIESEL for a sequential
simulation.

Parameters: None.
Return Value: None.
Exceptions: None.

• E x e c u t e S e q u e n t i a l S i m u l a t i o n
Objective: This method executes a sequential simulation.
Parameters: None.
Return Value: None.
Exceptions: None.

• C l e a n U p S e q u e n t i a l S i m u l a t i o n
Objective: This method cleans up DIESEL after executing a

sequential simulation.
Parameters: None.
Return Value: None.
Exceptions: None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

S e t S i m T i m e
Obj ective:

Parameters:
time

Mode:
Type:

Return Value:
Exceptions:

This method sets the current simulation time for a
sequential simulation.

Input.
Double.

Presence: Required.
Function: Specifies the current simulation time.

None.
None.

G e tS i m T im e
Obj ective:

Parameters:
Return Value:

Type:

This method returns the current simulation time
within a sequential simulation.
None.

Double.
Function: Current simulation time.

Exceptions: None.

G e t W a l l C l o c k T i m e
Objective: This method returns the wall clock time within a

sequential simulation.
Parameters: None.
Return Value:

Type: Double.
Function: Current wall clock time.

Exceptions: None.

G e t A v e r a g e P e n d i n g E v e n t S i z e
Objective: This method returns the average size of the pending

event set for all SimulationEngineComponents within
a sequential simulation.

Parameters: None.
Return Value:

Type: Integer.
Function: Average size of pending event set.

Exceptions: None.

G e t A v e r a g e E v e n t W a i t T i m e
Objective: This method returns the average waiting time for an

event before it is executed within all
SimulationEngineComponents in a sequential
simulation.
None.Parameters:

Return Value:
Type: Double.
Function: Average event wait time.

Exceptions: None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.2 ArgumentList Interface

I n t e r f a c e D i a g r a m :

+Clone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»State$ave

+New(in numArguments: Integer, in listType: ArgumentUstType)
+Delete()
+SetArgument(in index: Integer, in scalar: boolean, in byValue: boolean, in reference: ArgumentReference, in size : Integer)
+SetReturnArgument(in scalar: boolean, in byValue: boolean, in reference: ArgumentReference, in size : Integer)
+GetNArguments(): Integer
+GetArgument(in index: Integer): ArgumentReference
+GetArgument(in index: Integer, inout reference: ArgumentReference)
+GetReturnArgument(): ArgumentReference
+GetRetumArgument(inout reference: ArgumentReference)

«i n te rfa ce »j4 rfirum entList

Figure A8. ArgumentList Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within an ArgumentList.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within an ArgumentList.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of an
ArgumentList during the state duplication process
a non-terminating state save operation.
None.

StateSave.
Empty shell of ArgumentList.
None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:

This method copies the state of "original" to the
current ArgumentList during the state duplication
process of a non-terminating state save operation.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

Type:
Presence:
Function:

Return Value:
Exceptions:

StateSave.
Required.
Specifies ArgumentList whose state is to be copied.
None.
None.

C l o n e
Obj ective:
Parameters:
Return Value:

Type:
Function:

Exceptions:

This method
None.

creates a clone of an ArgumentList.

Replicable.
Clone of an ArgumentList.
None.

N ew
Obj ective:
Parameters:

numArguments
Mode:
Type:
Presence:
Function:

This method initializes an ArgumentList.

Input.
Integer.
Required.
Specifies the number
ArgumentList.

of arguments in the

listType
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Invalid number of arguments

Input.
ArgumentListType.
Required.
Specifies the type of ArgumentList to be created.
None.

Cause: "arguments" <= 0.
Effect: Simulation terminates.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes an ArgumentList.
None.
None.
None.

S e t A r g u m e n t
Obj ective:

Parameters:
index

Mode:
Type:
Presence:

This method adds an argument to an ArgumentList. An
index needs to be specified for an ARGUMENT_INDEXED
ArgumentList. If no size is specified, then the
reference to the argument is stored within an
ArgumentList. In this case, the argument cannot be
disposed within the application. If a size is
specified, then a copy of the argument is made and
stored within the ArgumentList, so that the original
argument can be disposed within the application.

Input.
Integer.
Optional.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Function: Specifies the index of argument within the
ArgumentList.

scalar
Mode: Input.
Type: Boolean.
Presence: Required.
Function: TRUE if argument is a scalar, else FALSE.

byValue
Mode: Input.
Type: Boolean.
Presence: Required.
Function: TRUE if argument is passed by value, else

reference
Mode: Input.
Type: Reference to an argument.
Presence: Required.
Function: Specifies the reference to an argument.

size
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the size of argument in bytes.

Return Value: None.
Exceptions:

"No index specified for an indexed list"
Cause: No index specified while adding an argument to an

INDEXED list.
Effect: Simulation terminates.

"Index out of bounds"
Cause: (index < 0) OR (index > (nArguments - 1)) for an

INDEXED list.
Effect: Simulation terminates.

"Attempt to index a non-indexed list"
Cause: An index is specified while adding an argument to a

NON-INDEXED list.
Effect: Simulation terminates.

S e t R e t u r n A r g u m e n t
Obj ective:

Parameters:
scalar

Mode:
Type:
Presence:
Function:

byValue
Mode:
Type:

This method adds a return argument to an
ArgumentList. If no size is specified, then the
reference to the return argument is stored within
the ArgumentList. In this case, the return argument
cannot be disposed within the application. If a size
is specified, then a copy of the return argument is
made and stored within the ArgumentList, so that the
original return argument can be disposed within the
application.

Input.
Boolean.
Required.
TRUE if return argument is a scalar, else FALSE.

Input.
Boolean.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Presence: Required.
Function: TRUE if return argument is passed by value, else

FALSE.
reference

Mode: Input.
Type: Reference to an argument.
Presence: Required.
Function: Specifies the reference to return argument.

size
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the size of return argument in bytes.

Return Value: None.
Exceptions: None.

• G e t N A r g u m e n t s
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method is used to get the number of arguments
within an ArgumentList.
None.

Integer.
Number of arguments.
None.

G e t A r g u m e n t
Obj ective:

Parameters:
index

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:
"Accessing a

Cause:
Effect:

This method is used to return the reference to an
argument stored within an ArgumentList.

Input.
Integer.
Optional.
Specifies the index of argument within the
ArgumentList.

Reference to an argument.
Reference to the argument.

non-existent argument"
Accessing an argument that was not stored.
Simulation terminates.

Accessing an argument by reference that was passed by value"
Cause: Accessing an argument by reference that was passed

by value.
Effect: Simulation terminates.

No index specified for an indexed list"
Cause:

Effect:

No index specified while retrieving an argument from
an INDEXED list.
Simulation terminates.

"Index out of bounds"
Cause: (index < 0) OR (index > (nArguments - 1)) for an

INDEXED list.
Effect: Simulation terminates.

"Attempt to index a non-indexed list"
Cause: An index is specified while retrieving an argument

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Effect:
from a NON-INDEXED list.
Simulation terminates.

G e t A r g u m e n t
Obj ective:

Parameters:
index

Mode:
Type:
Presence:
Function:

reference
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Accessing £
Cause:
Effect:

This method is used to return the value of an
argument stored within an ArgumentList. The value of
the argument is copied into the memory location
pointed to by "reference".

Input.
Integer.
Optional.
Specifies the index of argument within the
ArgumentList.

Input/Output.
Reference to an argument.
Required.
Specifies the reference to an argument.
None.

non-existent argument"
Accessing an argument that was not stored.
Simulation terminates.

''Accessing an argument by value that was passed by reference"
Cause: Accessing an argument by value that was passed by

reference.
Effect: Simulation terminates.

‘'No index specified for an indexed list"
Cause: No index specified while retrieving an argument from

an INDEXED list.
Effect: Simulation terminates.

‘'Index out of bounds"
Cause: (index < 0) OR (index > (nArguments - 1)) for an

INDEXED list.
Effect: Simulation terminates.

‘'Attempt to index a non-indexed list"
Cause: An index is specified while retrieving an argument

from a NON-INDEXED list.
Effect: Simulation terminates.

G e t R e t u r n A r g u m e n t
Obj ective:

Parameters:
Return Value:

Type :
Function

Exceptions:
"Accessing

Cause:
Effect:

"Accessing
Cause:

This method is used to return the reference to the
return argument from an ArgumentList.
None.

Reference to an argument.
Reference to the return argument.

a non-existent return argument"
Accessing an argument that was not stored.
Simulation terminates,

return argument by reference that was passed by value'
Accessing an argument by value that was passed by
reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Effect: Simulation terminates.

• G e t R e t u r n A r g u m e n t
Objective: This method is used to return the value of the

return argument stored within an ArgumentList. The
value of the return argument is copied into the
memory location pointed to by "reference".

Parameters:
reference

Mode: Input/Output.
Type: Reference to an argument.
Presence: Required.
Function: Specifies the reference to return argument.

Return Value: None.
Exceptions:

"Accessing a non-existent return argument"
Cause: Accessing an argument that was not stored.
Effect: Simulation terminates.

"Accessing return argument by value that was passed by reference"
Cause: Accessing an argument by value that was passed by

reference.
Effect: Simulation terminates.

A.3.3 Delegate Interface

I n t e r f a c e D i a g r a m :

+CloneQ: Replicable

«interface»
Replicable

+ResolveReferencesO
+RestoreReferencesO
+CreateO: StateSave
+DuplicateState(in original:

«interface»StateSave

+New(in object: SimObjectReference, in method: EventMethodReference, in methodList: ArgumentList, in interrupt: EventMethodReference, in interruptUst: ArgumentList)
+SetArgumentList(in methodList: ArgumentList)
+GetArgumentListQ : ArgumentList
+lnvokeQ
+lnterruptQ___

«interfac e» Delegate

Figure A9. Delegate Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a Delegate.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Objective: This method restores references for dynamically

initialized attributes within a Delegate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Parameters: None.
Return Value: None .
Exceptions: None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a
during the state duplication process of
terminating state save operation.
None.

StateSave.
Empty shell of Delegate.
None.

Delegate
a non-

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current Delegate during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies Delegate whose state is to be copied.
None.
None.

• C l o n e
Obj ective:
Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates
None.

Replicable.
Clone of a Delegate.
None.

a clone of a Delegate.

N ew
Obj ective:
Parameters:

object
Mode:
Type:
Presence:
Function:

method
Mode:
Type :
Presence:
Function:

methodList
Mode:
Type:
Presence:
Function:

This method initializes a Delegate.

Input.
Reference to a SimObject.
Required.
Specifies the reference to a SimObject on which the
event method should be executed.

Input.
EventMethodReference.
Required.
Specifies the reference to an event method.

Input.
ArgumentList.
Required.
Specifies the list of parameters to be used when the
event method is executed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

interrupt
Mode: Input.
Type: EventMethodReference.
Presence: Optional.
Function: Specifies the reference to an interrupt method to be

executed if the Delegate is interrupted.
interruptList

Mode: Input.
Type: ArgumentList.
Presence: Optional.
Function: Specifies the list of parameters to be used when the

interrupt method is executed.
Return Value: None.
Exceptions: None.

• S e t A r g u m e n t L i s t
Objective: This method assigns an ArgumentList to a Delegate

for invoking an event method.
Parameters:

methodList
Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the list of parameters to be used when the

event method is executed.
Return Value: None.
Exceptions: None.

• G e t A r g u m e n t L i s t
Objective: This method returns the ArgumentList to be used for

event method invocation from a Delegate.
Parameters: None.
Return Value:

Type: ArgumentList.
Function: Specifies the list of parameters to be used when the

event method is executed.
Exceptions: None.

• I n v o k e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method executes the event method within a
Delegate with the specified ArgumentList.
None.
None.
None.

• I n t e r r u p t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method cancels the event method invocation
within a Delegate. The interrupt method is executed
with the specified interrupt ArgumentList.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

A.3.4 SimulationEngineComponent Interface

I n t e r f a c e D i a g r a m :

« in te rface » S ta te S a v e

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«\nlerface»SimulationEngineComponent

+New()
+Delete()
+ScheduleEventAtTime(in eventDelegate: Delegate, in simTime: double, in priority: EventPriority): EventID
+ScheduleEventlnTime(in eventDelegate: Delegate, in delta: double, in priority: EventPriority) : EventID
+RescheduleEvent(in eventID: EventID, in delta: double)
+RescheduieAIIEvents(in delta: double)
+lnterruptEvent(in eventID: EventID)
+lnterruptAIIEvents()
+GetEventTime(in eventID: EventID): Double
+lsPendingEventSetEmpty(): Boolean
+GetAveragePendingEventSetSize():
+GetAverageEventWaitTime(): Double

Figure A10. SimulationEngineComponent Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a
SimulationEngineComponent.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a
SimulationEngineComponent.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a
SimulationEngineComponent during the state
duplication process of a non-terminating state save
operation.
None.

StateSave.
Empty shell
None.

of SimulationEngineComponent.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:

This method copies the state of "original" to the
current SimulationEngineComponent during the state
duplication process of a non-terminating state save
operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

original
Mode: Input.
Type: StateSave.
Presence: Required.
Function: Specifies SimulationEngineComponent whose state is

to be copied.
Return Value: None.
Exceptions: None.

• N ew
Obj ective:

Parameters:
Return Value:
Exceptions:

This method initializes a SimulationEngineComponent
and registers itself with the SimulationCluster.
None.
None.
None.

• D e l e t e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method disposes a SimulationEngineComponent and
de-registers itself the SimulationCluster.
None.
None.
None.

S c h e d u l e E v e n t A t T i m e
Objective: This method schedules a Delegate to be executed on a

SimObject associated with the
SimulationEngineComponent at a specific simulation
time. A priority can be specified for a Delegate to
lower the priority of the Delegate relative to
Delegates scheduled at the same simulation time. The
Delegate is added to the collection of Delegates
scheduled on the SimulationEngineComponent.

Parameters:
eventDelegate

Mode:
Type:
Presence:
Function:

simTime
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Input.
Delegate.
Required.
Specifies
method.

Input.
Double.
Required.
Specifies
Delegate.

the Delegate having reference to the event

the scheduled execution time of the

Event Priority.
Double.
Optional.
Specifies the priority of the Delegate relative to
other delegates scheduled at the same simulation
time.

EventID.
Unique ID of the Delegate added to the
SimulationEngineComponent. This ID is used to refer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

to the event for activities such as interrupting the
Delegate or changing its scheduled execution time.

Exceptions:
"Execution time for delegate less than current simulation time"

Cause: (simTime < current simulation time).
Effect: Simulation terminates.

"Invalid priority for delegate"
Cause: (priority <= 0).
Effect: Simulation terminates.

• S c h e d u l e E v e n t l n T i m e
Objective: This method schedules a Delegate to be executed on a

SimObject associated with the
SimulationEngineComponent, after a given simulation
time has elapsed. This method is similar to the
ScheduleEventAtTime method.

Parameters:
eventDelegate

Mode:
Type:
Presence:
Function:

delta
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:
"Execution time for delegate less than current simulation time"

Cause: (delta < 0).
Effect: Simulation terminates.

"Invalid priority for delegate"
Cause: (priority <= 0).
Effect: Simulation terminates.

• R e s c h e d u l e E v e n t
Objective: This method reschedules a specific Delegate within a

SimulationEngineComponent, by applying a certain
simulation time as offset to its current execution
time. The offset can be positive or negative.
However, to reschedule a Delegate earlier than its

Input.
Delegate.
Required.
Specifies the Delegate having reference to the event
method.

Input.
Double.
Required.
Specifies the offset of Delegate execution from
current simulation time.

Event Priority.
Double.
Optional.
Specifies the priority of the Delegate relative to
other delegates scheduled at the same simulation
time.

EventID.
Unique ID of the Delegate added to the
SimulationEngineComponent. This ID is used to refer
to the event for activities such as interrupting the
Delegate or changing its scheduled execution time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Parameters:
eventID

Mode:
Type:
Presence:
Function:

delta
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Delegate t
Cause:

Effect:
"Attempt to
simulation

Cause:

original execution time, the offset should be
smaller than the difference between the current
simulation time and original event execution time.

Effect:

Input.
EventID.
Required.
Specifies the ID of the Delegate to be rescheduled.

Input.
Double.
Required.
Specifies the offset of Delegate execution time from
its current execution time.
None.

o be rescheduled not found"
Specified delegate does not exist within the
collection of delegates.
Simulation terminates,

reschedule delegate at time less than current
time"

New scheduled execution time for delegate less than
current simulation time.
Simulation terminates.

R e s c h e d u l e A l l E v e n t s
Obj ective:

Parameters:
delta

Mode:
Type:
Presence:
Function:

This method reschedules all Delegates within a
SimulationEngineComponent by applying a certain
simulation time as offset to their current execution
time. The restrictions on the offset value are
identical to that for the offset within the
RescheduleEvent method.

Input.
Double.
Required.
Specifies the offset of Delegate execution time from
its current execution time.
None.Return Value:

Exceptions:
"Attempt to reschedule delegates at time less than current
simulation time"

Cause: New scheduled execution time for at least one
Delegate less than current simulation time.

Effect: Simulation terminates.

I n t e r r u p t E v e n t
Obj ective:

Parameters:
eventID

Mode:
Type:

This method cancels the execution of a specific
Delegate within a SimulationEngineComponent.

Input.
EventID.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Presence: Required.
Function: Specifies the ID of the Delegate to be interrupted.

Return Value: None.
Exceptions:

"Delegate to be interrupted not found"
Cause: Specified Delegate does not exist within the

collection of Delegates.
Effect: Simulation terminates.

I n t e r r u p t A l l E v e n t s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method cancels the execution of all Delegates
within a SimulationEngineComponent.
None.
None.
None.

• G e t E v e n t T i m e
Obj ective: This method returns the scheduled execution time of

a specific Delegate within a
SimulationEngineComponent.

Parameters:
eventID

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:
"Delegate not

Cause:

Effect:

Input.
EventID.
Required.
Specifies the ID of the Delegate for which the
execution time is required.

Double.
Scheduled execution time of the Delegate,

found"
Specified Delegate does not exist within the
collection of events.
Simulation terminates.

• I s P e n d i n g E v e n t S e t E m p t y
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method ascertains whether a
SimulationEngineComponent has any pending Delegates
to be executed.
None.

Boolean.
TRUE if collection of Delegates is empty, else
FALSE.
None.

• G e t A v e r a g e P e n d i n g E v e n t S e t S i z e
Obj ective:

Parameters:
Return Value:

Type:
Function:

This method returns the average size of the pending
event set within the SimulationEngineComponent.
None.

Integer.
Average size of pending event set for the duration
of the simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Exceptions: None.

• G e t A v e r a g e E v e n t W a i t T i m e
Obj ective:

Parameters:
Return Value:

Type:

Exceptions:

This method returns the average wait time of an
event to be executed within the
SimulationEngineComponent.
None.

Double.
Function: Average wait time of an event to be executed.

None.

A.3.5 DelayedCommit Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave
+ResolveReferences()
+RestoreReference$()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface»DelayedCommit

+New(in parentSEC: SimulationEngineComponent, in value: AttributeValue)
+Delete()
+SetAttribute(in newValue: AttributeValue)
+GetAttribute(): AttributeValue

Figure All. DelayedCommit Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a DelayedCommit.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Objective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a DelayedCommit.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions :

This method creates an empty shell of a
DelayedCommit during the state duplication process
of a non-terminating state save operation.
None.

StateSave.
Empty shell of DelayedCommit.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current DelayedCommit during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies DelayedCommit whose
None.
None.

state is to be copied.

• N ew
Obj ective:
Parameters:

parentSEC
Mode:
Type:
Presence:
Function:

value
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes a DelayedCommit.

Input.
SimulationEngineComponent.
Required.
Specifies the associated SimulationEngineComponent.

Input.
Attribute Value.
Required.
Specifies the initial value of the DelayedCommit
attribute.
None.
None.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes a DelayedCommit.
None.
None.
None.

• S e t A t t r i b u t e
Obj ective:

Parameters:
newValue

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method assigns a new value to a DelayedCommit
attribute. The value of the attribute is not updated
immediately.

Input.
Attribute Value.
Required.
Specifies the new value of the DelayedCommit
attribute.
None.
None.

• G e t A t t r i b u t e
Obj ective:

Parameters:
Return Value:

This method returns the value of a DelayedCommit
attribute.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Type: Attribute Value.
Function: The value of the DelayedCommit attribute.

Exceptions: None.

A.4 Synchronization Interfaces

A.4.1 Trigger Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+ResoiveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
«interface»Trigger

+New()
+Delete()
+RegisterChild(in child: Trigger)
+DeRegisterChild(in child: Trigger)
+AddDelegate(in eventDelegate : Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+FireFirst()
+Fire(in condition: Condition)
+lnterruptDelegate(in thisDelegate: Delegate)
+lnterruptAIIDelegate$()__ _

Figure A12. Trigger Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a Trigger.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a Trigger.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a Trigger
during the state duplication process of a non
terminating state save operation.
None.

StateSave.
Empty shell of Trigger.
None.

• D u p l i c a t e S t a t e
Objective: This method copies the state of "original" to the

current Trigger during the state duplication process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies Trigger whose state is to be copied.
None.
None.

N ew
Objective: This method initializes a Trigger.
Parameters: None.
Return Value: None.
Exceptions: None.

D e l e t e
Objective: This method disposes a Trigger.
Parameters: None.
Return Value: None.
Exceptions: None.

• R e g i s t e r C h i I d
Objective: This method adds a child Trigger that is to be

triggered when the current Trigger is triggered.
Parameters:

child
Mode: Input.
Type: Trigger.
Presence: Required.
Function: Specifies the child Trigger to be added.

Return Value: None.
Exceptions: None.

• D e R e g i s t e r C h i l d
Obj ective:

Parameters:
child

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method removes
Trigger.

Input.
Trigger.
Required.
Specifies
None.
None.

child Trigger from the current

the child Trigger to be removed.

• A d d D e l e g a t e
Objective: This method adds a Delegate to be scheduled for

execution, when the Trigger is triggered, to a
Trigger.

Parameters:
eventDelegate

Mode: Input.
Type: Delegate.
Presence: Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Function:

SEC
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Specifies a Delegate to be executed when the Trigger
is triggered.

Input.
SimulationEngineComponent.
Required.
Specifies the SimulationEngineComponent on which the
Delegate is to be scheduled.

Input.
EventPriority.
Optional.
Specifies a priority for the Delegate relative to
other Delegates scheduled at the same simulation
time.
None.
None.

• F i r e F i r s t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method schedules the immediate execution of the
first Delegate scheduled (first-come-first-served)
within a Trigger.
None.
None.
None.

F i r e
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method schedules the immediate execution of all
delegates within a Trigger. This method also
triggers all child Triggers to schedule the
immediate execution of all their delegates, and to
trigger any of their child Triggers. If a condition
is specified, only delegates satisfying the
condition are scheduled for execution within each
Trigger.

Input.
Condition.
Optional.
Specifies the
None.
None.

condition to be satisfied.

I n t e r r u p t D e l e g a t e
Obj ective:

Parameters:
thisDelegate

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method cancels the execution of a specific
delegate within a Trigger.

Input.
Delegate.
Required.
Specifies the Delegate
None.

to be interrupted.

'Delegate to be interrupted not found'1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Cause: Specified delegate does not exist within the
collection of delegates within the Trigger.

Effect: Simulation terminates.

I n t e r r u p t A l l D e l e g a t e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method cancels the execution of all delegates
within a Trigger.
None.
None.
None.

A.4.2 TriggerCounter Interface

I n t e r f a c e D i a g r a m :
«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

J .
«interface»TriggerCounter

+New(in count: Integer)
+Delete()
+lncrementCount()

RegisterChildfin child: TriggerCounter)
+DeRegisterChild(in ch ild : TriggerCounter)
+AddDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Fire(in condition: Condition)
+lnterruptDelegate(in thisDelegate: Delegate)
+lnterruptAIIDelegates()___

Figure A13. TriggerCounter Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a TriggerCounter.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Objective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a TriggerCounter.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions :

This method creates an empty shell of a
TriggerCounter during the state duplication process
of a non-terminating state save operation.
None.

StateSave.
Empty shell of TriggerCounter.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current TriggerCounter during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies TriggerCounter whose state is to be
copied.
None.
None.

N ew
Obj ective:
Parameters:

count
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes a TriggerCounter.

Input.
Integer.
Optional.
Specifies
None.
None.

the number of delegates to be triggered.

D e s t r o y
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes
None.
None.
None.

a TriggerCounter.

I n c r e m e n t C o u n t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method increments the count of Delegates to be
triggered within the TriggerCounter.
None.
None.
None.

• R e g i s t e r C h i l d
Obj ective: This method adds a TriggerCounter that is to

triggered when the current TriggerCounter is
triggered.

Parameters:
child

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

be

Input.
TriggerCounter.
Required.
Specifies the child TriggerCounter to be added.
None.
None.

• D e R e g i s t e r C h i l d
Objective: This method removes a child TriggerCounter from the

current TriggerCounter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

Parameters:
child

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• A d d D e l e g a t e
Obj ective:

Parameters:
eventDelegate

Mode:
Type:
Presence:
Function:

SEC
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• F i r e
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
TriggerCounter.
Required.
Specifies the child TriggerCounter to be removed.
None.
None.

This method adds a Delegate to be scheduled for
execution, when a TriggerCounter is triggered, to a
TriggerCounter. If the TriggerCounter has been
triggered, then the Delegate is immediately
scheduled for execution.

Input.
Delegate.
Required.
Specifies a Delegate to be executed when the
TriggerCounter is triggered.

Input.
SimulationEngineComponent.
Required.
Specifies the SimulationEngineComponent on which the
Delegate is to be scheduled.

Input.
EventPriority.
Optional.
Specifies a priority for the Delegate relative to
other Delegates scheduled at the same simulation
time.
None.
None.

This method schedules the immediate execution of all
delegates within a TriggerCounter. This method also
triggers all child TriggerCounters to schedule the
immediate execution of all their delegates, and to
trigger any of their child TriggerCounters. If a
condition is specified, only delegates satisfying
the condition are scheduled for execution within
each TriggerCounter.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I n t e r r u p t D e l e g a t e
Obj ective:

Parameters:
thisDelegate

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Delegate to
Cause:

Effect:

This method cancels the execution of a specific
delegate within a TriggerCounter.

Input.
Delegate.
Required.
Specifies the Delegate to be interrupted.
None.

be interrupted not found"
Specified delegate does not exist within the
collection of delegates within the TriggerCounter
Simulation terminates.

• I n t e r r u p t A l l D e l e g a t e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method cancels the execution of all delegate
within a TriggerCounter.
None.
None.
None.

A.4.3 Join Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+ResoiveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

T
«interface»Join

+New(in nPaths: Integer)
+Deiete()
+RegisterParent(in parent: Join, in parentPath: Integer)
+DeRegisterParent()
+SetDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Update(in pathNumber: Integer)___

Figure A14. Join Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a Join.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Objective: This method restores references for dynamically

Parameters:
Return Value:

initialized attributes within a Join.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

Exceptions: None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a Join during
the state duplication process of a non-terminating
state save operation.
None.

StateSave.
Empty shell of Join.
None.

D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current Join during the state duplication process of
a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies Join whose state is to be copied.
None.
None.

N ew
Obj ective: This method initializes a Join with a specified

number of paths, with each path specifying an event
to wait for.

Parameters:
nPaths

Mode:
Type:
Presence
Function

Return Value:
Exceptions:

"Invalid number of paths"

Input.
Integer.
Required.
Specifies the number of input paths.
None.

Cause: (nPaths < 1)
Effect: Simulation terminates.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes a Join.
None.
None.
None.

• R e g i s t e r P a r e n t
Obj ective:

Parameters:
parent

Mode:
Type:

This method sets the parent Join for the current
Join, and indicates the specific path on which the
current Join exists on the parent Join.

Input.
Join.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Presence: Required.
Function: Specifies

parentPath
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies

"parent".
Return Value: None.
Exceptions: None.

the parent Join.

the path on which this Join exists on

D e R e g i s t e r P a r e n t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method removes the parent Join from the current
Join.
None.
None.
None.

• S e t D e l e g a t e
Obj ective: This method sets the Delegate to be executed after

the Join has been satisfied. If all paths have been
satisfied at least once,
■ The Delegate is scheduled for immediate execution
■ If a parent Join exists, it is updated on the

specified path.
■ The number of events satisfied on each path is

decremented by 1.
Parameters:

eventDelegate
Mode:
Type:
Presence:
Function:

SEC
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
Delegate.
Required.
Specifies a Delegate to be executed when the Join is
triggered.

Input.
SimulationEngineComponent.
Required.
Specifies the SimulationEngineComponent on which the
Delegate is to be scheduled.

Input.
EventPriority.
Optional.
Specifies a priority for the Delegate relative to
other Delegates scheduled at the same simulation
time.
None.
None.

• U p d a t e
Objective: This method indicates that an event has occurred on

a specific input path. If all paths have been
satisfied at least once, and a Delegate has been
specified,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Parameters:
pathNumher

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Path number
Cause:
Effect:

The Delegate is scheduled for immediate execution
If a parent Join exists, it is updated on the
specified path.
The number of events satisfied on each path is
decremented by 1.

Input.
Integer.
Required.
Specifies the number indicating the path that just
received an input (numbered starting from 1).
None.

out of bounds"
(pathNumber < 0) OR (pathNumber > (nPaths
Simulation terminates.

1)) •

A A A JoinCounter Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

T
«interface»JoinCounter

+New(in count: Integer)
+Delete()
+lncrementCount()
+RegisterParent(in parent: JoinCounter)
+DeRegisterParent()
+SetDelegate(in eventDelegate: Delegate, in SEC: SimulationEngineComponent, in priority: EventPriority)
+Update()

Figure A15. JoinCounter Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a JoinCounter.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a JoinCounter.
None.
None.
None.

C r e a t e
Obj ective: This method creates an empty shell of a JoinCounter

during the state duplication process of a non-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Parameters:
Return Value:

Type:
Function:

Exceptions:

terminating state save operation.
None.

StateSave.
Empty shell of JoinCounter.
None.

• D u p l i c a t e S t a t e
Objective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current JoinCounter during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies JoinCounter whose state is to be copied.
None.
None.

• New
Obj ective:

Parameters:
count

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes a JoinCounter with a
specified number of events to wait for.

Input.
Integer.
Optional.
Specifies the number of conditions to be satisfied.
None.
None.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes a JoinCounter.
None.
None.
None.

• I n c r e m e n t C o u n t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method increments the number of events to
occur, before the Delegate within
be executed.
None.
None.
None.

a JoinCounter can

• R e g i s t e r P a r e n t
Obj ective:

Parameters:
parent

Mode:
Type:
Presence:
Function:

This method sets the parent JoinCounter for the
current JoinCounter

Input.
JoinCounter.
Required.
Specifies the parent JoinCounter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Return Value: None.
Exceptions: None.

• D e R e g i s t e r P a r e n t
Obj ective:

Parameters:
Return Value:
Exceptions:

This method removes the parent JoinCounter from the
current JoinCounter.
None.
None.
None.

• S e t D e l e g a t e
Obj ective: This method sets the Delegate to be executed after

the JoinCounter has been satisfied. If the specified
number of events have occurred,
■ The Delegate is scheduled for immediate execution
■ If a parent JoinCounter has been registered, it

is updated.
■ The JoinCounter is reset.

Parameters:
eventDelegate

Mode:
Type:
Presence:
Function:

SEC
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
Delegate.
Required.
Specifies a Delegate to be executed when the
JoinCounter is satisfied.

Input.
SimulationEngineComponent.
Required.
Specifies the SimulationEngineComponent on which the
Delegate is to be scheduled.

Input.
EventPriority.
Optional.
Specifies a priority for the Delegate relative to
other Delegates scheduled at the same simulation
time.
None.
None.

U p d a t e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method indicates that an event has occurred. If
the specified number of events have occurred, and a
Delegate has been specified,
■ The Delegate is scheduled for immediate execution
■ If a parent JoinCounter has been registered, it

is updated.
■ The JoinCounter is reset.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

A.5 Random Number Generation Interfaces

A.5.1 RNG Interface

I n t e r f a c e D i a g r a m :
«interface»RNG

+SetRNGSeed(in seed: long)
+Random(): Double
+Random(in m in : Integer, in m ax: Integer): Integer
+Constant(in m in: double, in m ax: double): Double
+Unit(): Double
+Triangular(in m in: double, in most: double, in max: double): Double
+Exponential(in mean: double): Double
+Normal(in mean: double, in standardDeviation: double): Double
+Beta(in alpha : double, in beta : double): Double
+Gamma(in scale : double, in shape : double): Double
+Weibull(in scale: double, in shape: double): Double

Figure A16. RNG Interface

M e t h o d s :
• S e tR N G S e e d

Obj ective:

Parameters:
seed

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method
generator.

Input.
Long.
Required.
Specifies
numbers.
None.
None.

sets the seed for the random number

the seed to be used to generate random

R a n d o m
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method returns a random floating-point number
from the random number generator.
None.

Double.
Random
None.

floating-point number.

• R a n d o m
Obj ective:

Parameters:
min

Mode:
Type:
Presence:
Function:

max
Mode:
Type:
Presence:

This method returns a random integer between "min'
and "max" from the random number generator.

Input.
Integer.
Required.
Specifies the minimum value of the random integer.

Input.
Integer.
Required.

Function: Specifies the maximum value of the random integer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

Return Value:
Type :
Function:

Exceptions:

• C o n s t a n t
Obj ective:

Parameters:
min

Mode:
Type:
Presence:
Function:

max
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• U n i t
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• T r i a n g u l a r
Obj ective:

Parameters:
min

Mode:
Type:
Presence:
Function:

most
Mode:
Type:
Presence:
Function:

max
Mode:

Integer.
Random integer.
None.

This method returns a random floating-point number
from a Constant distribution between "min" and
"max".

Input.
Double.
Required.
Specifies the minimum value of the random floating
point number.

Input.
Double.
Required.
Specifies the maximum value of the random floating
point number.

Double.
Random floating-point number from a Constant
distribution.
None.

This method returns a random floating-point number
from a Unit distribution.
None.

Double.
Random floating-point number from a Unit
distribution.
None.

This method returns a random floating-point number
from a Triangular distribution.

Input.
Double.
Required.
Specifies the minimum value for the Triangular
distribution.

Input.
Double.
Required.
Specifies the most likely value for the Triangular
distribution.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

Type: Double.
Presence: Required.
Function: Specifies the maximum value for the Triangular

distribution.
Return Value:

Type: Double.
Function: Random floating-point number from a Triangular

distribution.
Exceptions: None.

E x p o n e n t i a l
Obj ective:

Parameters:
mean

Mode:
Type:
Presence

This method returns a random floating-point number
from an Exponential distribution.

Input.
Double.
Required.

Function: Specifies the mean value for the Exponential
distribution (mean > 0).

Return Value:
Type: Double.
Function: Random floating-point number from an Exponential

distribution.
Exceptions: None.

N o r m a l
Obj ective:

Parameters:
mean

Mode:
Type:
Presence
Function

This method returns a random floating-point number
from a Normal distribution.

Input.
Double.
Required.
Specifies the mean value for the Normal
distribution.

standardDeviation
Mode: Input.
Type: Double.
Presence: Required.
Function: Specifies the standard deviation for the Normal

distribution.
Return Value:

Type: Double.
Function: Random floating-point number from a Normal

distribution.
Exceptions: None.

B e t a
Obj ective:

Parameters:
alpha

Mode:
Type:

This method returns a random floating-point number
from a Beta distribution.

Input.
Double.

Presence: Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Function:

beta
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• G am m a
Obj ective:

Parameters:
scale

Mode:
Type:
Presence:
Function:

shape
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• W e i b u l l
Obj ective:

Parameters:
scale

Mode:
Type:
Presence:
Function:

shape
Mode :
Type:
Presence:
Function:

Return Value:
Type:
Function:

Specifies the alpha value for the Beta distribution
(alpha > 0).

Input.
Double.
Required.
Specifies the beta value for the Beta distribution
(beta > 0).

Double.
Random floating-point number from a Beta
distribution.
None.

This method returns a random floating-point number
from a Gamma distribution.

Input.
Double.
Required.
Specifies the scale for the Gamma distribution
(scale > 0).

Input.
Double.
Required.
Specifies the shape for the Gamma distribution
(shape > 0).

Double.
Random floating-point number from a Gamma
distribution.
None.

This method returns a random floating-point number
from a Weibull distribution.

Input.
Double.
Required.
Specifies the scale for the Weibull distribution
(scale > 0).

Input.
Double.
Required.
Specifies the shape for the Weibull distribution
(shape > 0).

Double.
Random floating-point number from a Weibull
distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

Exceptions: None.

A.5.2 AdvancedDistributions Interface

I n t e r f a c e D i a g r a m :

+Clone() . Replicable

i n t e r f a c e s
R e p lic a b le +Modify(in modifications: ArgumentList)

+Adjust(in adjustments: ArgumentList)
+Transfer(in transferlnformation: ArgumentList)

« in te r fa c e » P ro g ra m m a tic E v e n t

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+lnitialize(in inputFile: FileStream)
+SetNlndexedDistributions(in numlndexes: Integer)
+SetlndexedDistribution(in index : Integer, in distribution : AdvancedDistributions, in sim ilar: boolean)
+SetTotalModes(in to ta l: Integer)
+SetOrderedFlow(in order: boolean)
+SetNAssociatedDistributions(in nDistiibutions: Integer)
+SetParameters(in distType: DistributionType, in probability: double, in p a ra m l: double, in param2: double, in param3: double, in param4: double, in index: Integer)
+SetWork$hiftParameters(in workshift: double, in startTime: double)
+Random(in index: Integer): Double
+RandomByWorkshift(in index: Integer): Double

« in te rfa c e » A d v a n c e d D is tr ib u tio n s

Figure A17. AdvancedDistributions Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within an
AdvancedDistributions.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within an
AdvancedDistributions.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of an
AdvancedDistributions during the state duplication
process of a non-terminating state save operation.
None.

StateSave.
Empty shell of AdvancedDistributions.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

• D u p l i c a t e S t a t e
Objective: This method copies the state of "original" to the

current AdvancedDistributions during the state
duplication process of a non-terminating state save
operation.

Parameters:
original

Mode: Input.
Type: StateSave.
Presence: Required.
Function: Specifies AdvancedDistributions whose state is to be

copied.
Return Value: None.
Exceptions: None.

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• M o d i f y
Objective: This method modifies an AdvancedDistributions by

providing a new set of parameters. If any
dependencies exist from the current
AdvancedDistributions, it is transferred to the new
parameters.

Parameters:
modifications

Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions: None.

• A d j u s t
Objective: This method is not defined for an

AdvancedDistributions.
Parameters:

adjustments
Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions:

"Adjust method not defined for this interface"
Cause: Method not defined for an AdvancedDistributions.
Effect: Simulation terminates.

This method creates a clone of an
AdvancedDistributions.
None.

Replicable.
Clone of an AdvancedDistributions.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

T r a n s f e r
Objective: This method is not defined for an

AdvancedDistributions.
Parameters:

transferlnformation
Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions:

"Transfer method not defined for this interface"
Cause: Method not defined for an AdvancedDistributions.
Effect: Simulation terminates.

• N ew
Obj ective:
Parameters:
Return Value:
Exceptions:

This method initializes an AdvancedDistributions.
None.
None.
None.

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes an AdvancedDistributions.
None.
None.
None.

• I n i t i a l i z e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method initializes an AdvancedDistributions
from a file.
None.
None.
None.

• S e t N I n d e x e d D i s t r i b u t i o n s
Obj ective:

Parameters:
numIndexes

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes the number of independent
indexed AdvancedDistributions within the current
AdvancedDistributions.

Input.
Integer.
Required.
Specifies the number of
distributions.
None.
None.

independent indexed

• S e t l n d e x e d D i s t r i b u t i o n
Obj ective:

Parameters:
index

This method initializes the number of independent
indexed AdvancedDistributions within the current
AdvancedDistributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

Mode:
Type:
Presence:
Function:

di s tribution
Mode:
Type:
Presence:
Function:

similar
Mode:
Type:
Presence:
Function:

Input.
Integer.
Required.
Specifies the index of the independent distribution.

Input.
AdvancedDistributions.
Required.
Specifies the independent indexed distribution.

Input.
Boolean.
Required.
Specifies if the indexed distribution is the same as
any other indexed distribution. TRUE if distribution
is similar, else FALSE.
None.Return Value:

Exceptions:
"Attempt to index a non-indexed AdvancedDistributions"

Cause: AdvancedDistributions does not have indexed
distributions.

Effect: Simulation terminates.
"Index out of bounds"

Cause: (index < 0) OR (index > (number of indexed types
1)) •

Effect: Simulation terminates.

• S e t T o t a l M o d . e s
Objective: This method initializes the total number of modes

for an AdvancedDistributions.
Parameters:

total
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the total number of modes.

Return Value: None.
Exceptions: None.

• S e t O r d e r e d F l o w
Obj ective:

Parameters:
order

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method sets an ordered flow of operation within
an AdvancedDistributions.

Input.
Boolean.
Required.
Specifies if the distribution is ordered. TRUE if
distribution is ordered, else FALSE.
None.
None.

• S e t N A s s o c i a t e d D i s t r i b u t i o n s
Objective: This method initializes the number of distributions

associated with an AdvancedDistributions. More than
1 distribution may be associated with a single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

independent distribution to support multimodal,
blocked and ordered mode of operations.

Parameters:
nDistributions

Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the number of distributions.

Return Value: None.
Exceptions: None.

• S e t P a r a m e t e r s
This method initializes the parameters for each
associated distribution within an
AdvancedDistributions.

Input.
Type of Distribution.
Required.
Specifies the type of distribution (Constant,
Exponential, Normal, Triangular, Beta, Gamma or
Weibull).

Input.
Double.
Required.
Specifies the probability value that is associated
with each distribution. If the process is unimodal,
then the probability value associated with that
single distribution is always 1. If the process is
multimodal, there is probability values associated
with every modal distribution with the sum of
probabilities of all the modes adding up to 1.

paraml, param2, param3, param4
Mode: Input.
Type: Double.
Presence: Required.
Function: Specifies the parameters for the various

_______________ distributions (specified in the table below) .______
Distribution paraml param2 param3 param4
Constant Value N/A N/A N/A
Exponential Mean N/A N/A N/A
Normal Mean Standard Deviation N/A N/A
Triangular Minimum Maximum Mode N/A
Beta Minimum Maximum Alpha Beta
Gamma Mean N/A Alpha N/A
Weibull Mean N/A N/A Beta

Obj ective:

Parameters:
distType

Mode:
Type:
Presence:
Function:

probability
Mode:
Type:
Presence:
Function:

index
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
Integer.
Required.
Specifies the index of the associated distribution.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

"Invalid CONSTANT Distribution"
Cause: (Value < 0).
Effect: Simulation terminates.

"Invalid EXPONENTIAL Distribution"
Cause: (Mean <= 0).
Effect: Simulation terminates.

"Invalid NORMAL Distribution"
Cause: (Standard Deviation < 0).
Effect: Simulation terminates.

"Invalid TRIANGULAR Distribution"
Cause: (Minimum > Maximum) OR (Minimum >= Mode) OR (Mode >=

Maximum).
Effect: Simulation terminates.

"Invalid BETA Distribution"
Cause: (Alpha <= 0) OR (((Maximum - Minimum) x Beta) <= 0).
Effect: Simulation terminates.

"Invalid GAMMA Distribution"
Cause: (Mean <= 0) OR (Alpha <= 0).
Effect: Simulation terminates.

"Invalid WEIBULL Distribution"
Cause: (Mean <= 0) OR (Beta <= 0).
Effect: Simulation terminates.

• S e t W o r k s h i f t P a r a m e t e r s
Obj ective:

Parameters:
workShift

Mode:
Type:
Presence:
Function:

startTime
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes work
an AdvancedDistributions.

Input.
Double.
Required.
Specifies the work shift for
simulation (0 < work shift ^

Input.
Double.
Required.
Specifies the work shift
within the simulation.
None.
None.

shift parameters within

a day within the
24) .

start time during a day

R a n d o m
Obj ective:

Parameters:
index

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

This method returns a random floating-point number
from an AdvancedDistributions. If an index is
specified, then the specific distribution is used to
generate the random number.

Input.
Integer.
Optional.
Specifies the index of the independent distribution.

Double.
Random floating-point number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Exceptions:
"Attempt to index a non-indexed AdvancedDistributions"

Cause: AdvancedDistributions does not have indexed
distributions.

Effect: Simulation terminates.
"Index out of bounds"

Cause: (index < 0) OR (index > (numlndexedTypes - 1)).
Effect: Simulation terminates.

• R a n d o m B y W o r k S h i f t
Objective: This method returns a random floating-point number

based on work shift from an AdvancedDistributions.
If an index is specified, then the specific
distribution is used to generate the random number.

Parameters:
index

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:
"Attempt to index a non-indexed AdvancedDistributions"

Cause: AdvancedDistributions does not have indexed
distributions.

Effect: Simulation terminates.
"Index out of bounds"

Cause: (index < 0) OR (index > (numlndexedTypes - 1)
Effect: Simulation terminates.

"Invalid workshift time"
Cause: (workShift >24) OR (workShift not specified.
Effect: Simulation terminates.

Input.
Integer.
Optional.
Specifies the index of the independent distribution.

Double.
Random floating-point number.

A.6 Entity Management Interfaces

A.6.1 Set Interface

I n t e r f a c e D i a g r a m :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

+Clone(): Replicable

« in terface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+G etNEntities(): Integer
+Add(in th isE n tity : Replicable)
+Union(in s e t : Set)
+Next(in th isE n tity : Replicab le): Replicable
+SelectFirst(in cond ition : C ond ition): Replicable
+Select(in condition : C ondition): Set
+Remove(in cond ition : C ondition): Replicable
+RemoveThi$(in th isE n tity : Replicable)
+lncludes(in th isE n tity : R eplicab le): Boolean
+Exists(in cond ition : Cond ition): Boolean
+Each(in cond ition : C ondition): Boolean
+ForEach(in ro u tine : Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDi$pose(in ro u tine : Routine)______

«interface»Set

Figure A18. Set Interface

M e t h o d s ;
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a Set.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a Set.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell
the state duplication process of a
state save operation.
None.

StateSave.
Empty shell of Set.
None.

of a Set during
non-terminating

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:

This method copies the state of "original" to the
current Set during the state duplication process of
a non-terminating state save operation.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Type:
Presence:
Function:

Return Value:
Exceptions:

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• N ew
Obj ective:
Parameters:
Return Value:
Exceptions:

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

• G e t N E n t i t i e s
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• A d d
Obj ective:
Parameters:

thisEntity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• U n i o n
Obj ective:

Parameters:
set

StateSave.
Required.
Specifies Set whose state is to be copied.
None.
None.

This method creates a clone of a Set with all
entites currently within the Set existing in the
clone.
None.

Replicable.
Clone of a Set.
None.

This method initializes a Set.
None.
None.
None.

This method disposes a Set.
None.
None.
None.

This method returns the current number of entities
within a Set.
None.

Integer.
Current number of entities in the Set.
None.

This method adds an entity to a Set.

Input.
Entity.
Required.
Specifies the entity to be added to the Set.
None.
None.

This method creates a Union Set of the current Set
and "set". Each element of "set" is added to the
current Set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Mode:
Type :
Presence:
Function:

Return Value:
Exceptions:

• N e x t
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• S e l e c t F i r s t
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• S e l e c t
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

Input.
Set.
Required.
Specifies the Set to be used for Union operation.
None.
None.

This method returns the next entity after
"thisEntity" within a Set. If "thisEntity" is NULL,
it returns the first entity within the Set. A NULL
is returned when there is no more unseen entity in
the Set. If this method is continuously called till
a NULL value is returned, then a new entity is
returned each time.

Input.
Entity.
Required.
Specifies the current entity.

Entity.
Next entity after "thisEntity".
None.

This method returns the first entity within a Set
that satisfies a specified condition.

Input.
Condition.
Required.
Specifies the condition to be satisfied.

Entity.
First entity that satisfies "condition".
None.

This method returns a collection of entities within
a Set that satisfies a specified condition.

Input.
Condition.
Required.
Specifies the condition to be satisfied.

Set.
Set of entities that satisfy "condition".
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

R e m o v e
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method removes and returns the first entity
within a Set that satisfies a specified condition.
If a condition is not specified, then it removes and
returns the first entity within a Set.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Entity.
First entity that satisfies "condition".
None.

• R e m o v e T h i s
Objective: This method removes a particular entity from a Set.
Parameters:

thisEntity
Mode: Input.
Type: Entity.
Presence: Required.
Function: Specifies the entity to be removed.

Return Value: None.
Exceptions:

"Entity to be removed not found"
Cause: Specified entity does not exist within the Set.
Effect: Simulation terminates.

• I n c l u d e s
Obj ective: This method ascertains if a particular entity exists

within a Set.
Parameters:

thisEntity
Mode:
Type:

Input.
Entity.

Presence: Required.
Function: Specifies the entity to be checked.

Return Value:
Type: Boolean.
Function: TRUE if entity exists, else FALSE.

Exceptions: None.

E x i s t s
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:

This method ascertains if at least 1 entity exists
within a Set that satisfies a specified condition.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Boolean.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

Function:

Exceptions:

• E a c h
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• F o r E a c h
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

• E m p t y D i s p o s e
Obj ective:

Parameters:
routine

TRUE if at least one entity that satisfies
"condition" exists within the set, else FALSE.
None.

This method ascertains if all the entities within a
Set satisfy a particular specified condition.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Boolean.
TRUE if all entities within the set satisfy
"condition", else FALSE.
None.

This method performs a particular operation
specified by "routine" on each entity within a Set.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

This method outputs all entities within a Set, using
the specified output routine.

Input.
Routine.
Optional.
Specifies a reference to the output routine.
None.
None.

This method empties a Set without disposing any of
the entities within the Set.
None.
None.
None.

This method empties a Set and disposes of its
contents using the specified routine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

A.6.2 FIFO Interface

I n t e r f a c e D i a g r a m :

+Clone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetNEntities(): Integer
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pull(): Replicable
+PullThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)

«in terface»FIFO

Figure A19. FIFO Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Objective: This method resolves references for dynamically

Parameters:
Return Value:
Exceptions:

initialized attributes within a FIFO.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a FIFO.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:

This method creates an empty shell of a FIFO during
the state duplication process of a non-terminating
state save operation.
None.

StateSave.
Function: Empty shell of FIFO.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exceptions: None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

This method copies the state of "original" to the
current FIFO during the state duplication process
a non-terminating state save operation.

Mode: Input.
Type: StateSave.
Presence: Required.
Function: Specifies FIFO whose state is to be copied.

Return Value: None.
Exceptions: None.

• C l o n e
Obj ective: This method creates a clone of a FIFO with all

entites currently within the FIFO existing in the
clone.

Parameters:
Return Value:

None.

Type: Replicable.
Function: Clone of a FIFO.

Exceptions: None.

• N ew
Obj ective: This method initializes a FIFO.
Parameters: None.
Return Value: None.
Exceptions: None.

• D e l e t e
Objective: This method disposes a FIFO.
Parameters: None.
Return Value: None.
Exceptions: None.

• G e t N E n t i t l e s
Obj ective: This method returns the current number of entitie

within a FIFO.
Parameters:
Return Value:

None.

Type: Integer.
Function: Current number of entities in the FIFO.

Exceptions: None.

• P u s h
Obj ective:
Parameters:

thisEntity
This method adds an entity to a FIFO.

Mode: Input.
Type: Entity.
Presence: Required.
Function: Specifies the entity to be added to the FIFO.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

Return Value: None.
Exceptions: None.

• N e x t
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method returns the next entity after
"thisEntity" within a FIFO. If "thisEntity" is NULL,
it returns the first entity within the FIFO. A NULL
is returned when there is no more unseen entity in
the FIFO. If this method is continuously called till
a NULL value is returned, then a new entity is
returned each time.

Input.
Entity.
Required.
Specifies the current entity.

Entity.
Next entity after
None.

'thisEntity'1

P u l l
Obj ective:

Parameters:
Return Value:

Type:

This method removes and returns the first entity
within a FIFO.
None.

Entity.
Function: First entity that satisfies "condition".

Exceptions: None.

P u l l T h i s
Obj ective:
Parameters:

thisEntity
Mode:
Type:

This method removes a particular entity from a FIFO.

Input.
Entity.

Presence: Required.
Function: Specifies the entity to be removed.

None.Return Value:
Exceptions:

"Entity to be removed not found"
Cause: Specified entity does not exist within the FIFO.
Effect: Simulation terminates.

• I n c l u d e s
Obj ective:

Parameters:
thisEntity

Mode:
Type:

This method ascertains if a particular entity exists
within a FIFO.

Input.
Entity.

Presence: Required.
Function: Specifies the entity to be checked.

Return Value:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Type:
Function:

Exceptions:

Boolean.
TRUE if entity exists, else FALSE.
None.

F o r E a c h
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method performs a
specified by "routine"

Input.
Routine.
Optional.
Specifies
None.
None.

particular operation
on each entity within a FIFO.

a reference to the routine.

• D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method outputs all entities within a FIFO,
using the specified output routine.

Input.
Routine.
Optional.
Specifies a reference to the output routine.
None.
None.

E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

This method empties a FIFO without disposing any of
the entities within the FIFO.
None.
None.
None.

• E m p t y D i s p o s e
Objective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method empties a FIFO and disposes of its
contents using the specified routine.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

A.6.3 LIFO Interface

I n t e r f a c e D i a g r a m :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

+Clone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetNEntities(): Integer
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pop(): Replicable
+PopThis(in thisEntity: Replicable)
+lndudes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in outputRoutine: Routine)

«interface»LIFO

Figure A2 0. LIFO Interface

M e t h o d s :

R e s o l v e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a LIFO.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Objective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a LIFO.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a LIFO during
the state duplication process of a non-terminating
state save operation.
None.

StateSave.
Empty shell of LIFO.
None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:

This method copies the state of "original" to the
current LIFO during the state duplication process of
a non-terminating state save operation.

Input.
StateSave.

Presence: Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

Function:
Return Value:
Exceptions:

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• N ew
Obj ective:
Parameters:
Return Value:
Exceptions:

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

• G e t N E n t i t i e s
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• P u s h
Obj ective:
Parameters:

thisEntity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• N e x t
Obj ective:

Specifies LIFO whose state is to be copied.
None.
None.

This method creates a clone of a LIFO with all
entites currently within the LIFO existing in the
clone.
None.

Replicable.
Clone of a LIFO.
None.

This method initializes a LIFO.
None.
None.
None.

This method disposes a LIFO.
None.
None.
None.

This method returns the current number of entities
within a LIFO.
None.

Integer.
Current number of entities in the LIFO.
None.

This method adds an entity to a LIFO.

Input.
Entity.
Required.
Specifies the entity to be added to the LIFO.
None.
None.

This method returns the next entity after
"thisEntity" within a LIFO. If "thisEntity" is NULL,
it returns the first entity within the LIFO. A NULL
is returned when there is no more unseen entity in
the LIFO. If this method is continuously called till
a NULL value is returned, then a new entity is
returned each time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

Input.
Entity.
Required.
Specifies the current entity.

Entity.
Next entity after "thisEntity".
None.

• P o p
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method removes and returns the last entity
within a LIFO.
None.

Entity.
First entity that satisfies "condition".
None.

• P o p T h i s
Obj ective:
Parameters:

thisEntity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Entity to be
Cause:
Effect:

This method removes a particular entity from a LIFO.

Input.
Entity.
Required.
Specifies the entity to be removed.
None.

removed not found"
Specified entity does not exist within the LIFO.
Simulation terminates.

I n c l u d e s
Obj ective:

Parameters:
thisEntity

Mode:
Type:

This method ascertains if a particular entity exists
within a LIFO.

Input.
Entity.

Presence: Required.
Function: Specifies the entity to be checked.

Return Value:
Type:
Function:

Exceptions:

Boolean.
TRUE if entity exists, else FALSE.
None.

F o r E a c h
Obj ective:

Parameters:
routine

Mode:
Type:

This method performs a particular operation
specified by "routine" on each entity within a LIFO.

Input.
Routine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Presence:
Function:

Return Value:
Exceptions:

Optional.
Specifies a
None.
None.

reference to the routine.

D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method outputs all entities within a LIFO,
using the specified output routine.

Input.
Routine.
Optional.
Specifies a reference to the output routine.
None.
None.

E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

This method empties a LIFO without disposing any
the entities within the LIFO.
None.
None.
None.

E m p t y D i s p o s e
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method empties a LIFO and disposes of its
contents using the specified routine.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

A.6.4 BinaryTree Interface

I n t e r f a c e D i a g r a m :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

+Clone(): Replicable

«interface»
Replicable

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetNEntities(): Integer
+SetRankRoutine(in rankRoutine: EvaluateMethodReference)
+Add(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Remove(): Replicable
+RemoveThis(in thisEntity : Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)

«interface»BinaryTree

Figure A21. BinaryTree Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a BinaryTree.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a BinaryTree.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a
during the state duplication process of
terminating state save operation.
None.

StateSave.
Empty shell of BinaryTree.
None.

BinaryTree
a non-

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:

This method copies the state of "original" to the
current BinaryTree during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Presence: Required.
Function: Specifies BinaryTree whose state is to be copied.

Return Value: None.
Exceptions: None.

• C l o n e
Obj ective: This method creates a clone of a BinaryTree with all

entites currently within the BinaryTree existing in
the clone.

Parameters:
Return Value:

None.

Type: Replicable.
Function: Clone of a BinaryTree.

Exceptions: None.

• N ew
Obj ective: This method initializes a BinaryTree.
Parameters: None.
Return Value: None.
Exceptions: None.

• D e l e t e
Obj ective: This method disposes a BinaryTree.
Parameters: None.
Return Value: None.
Exceptions: None.

• G e t N E n t i t l e s
Obj ective: This method returns the current number of entities

within a BinaryTree.
Parameters:
Return Value:

None.

Type: Integer.
Function: Current number of entities in the BinaryTree.

Exceptions: None.

• S e t R a n k R o u t i n e
Obj ective:

Parameters:
rankRoutine

This method sets a ranking routine for a BinaryTree,
to be used when a new entity is added to the
BinaryTree.

Mode: Input.
Type: EvaluateMethodReference.
Presence: Required.
Function: Specifies a reference to the ranking routine.

Return Value: None.
Exceptions: None.

• A d d
Obj ective:
Parameters:

thisEntity
This method adds an entity to a BinaryTree.

Mode: Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

Type:
Presence:
Function:

Return Value:
Exceptions:

"No ranking routine defined'

Entity.
Required.
Specifies the entity
None.

to be added to the BinaryTree.

Cause: A routine to rank the entities
Effect: Simulation terminates.

has not been defined.

• N e x t
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method returns the next entity after
"thisEntity" within a BinaryTree. If "thisEntity" is
NULL, it returns the first entity within the
BinaryTree. A NULL is returned when there is no more
unseen entity in the BinaryTree. If this method is
continuously called till a NULL value is returned,
then a new entity is returned each time.

Input.
Entity.
Required.
Specifies the current entity.

Entity.
Next entity after
None.

'thisEntity'1

• R e m o v e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method removes and returns the first entity
within a BinaryTree.
None.

Entity.
First entity that satisfies "condition".
None.

• R e m o v e T h i s
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Entity to be
Cause:

Effect:

This method removes a particular entity from a
BinaryTree.

Input.
Entity.
Required.
Specifies the entity to be removed.
None.

removed not found"
Specified entity does not exist within the
BinaryTree.
Simulation terminates.

• I n c l u d e s
Obj ective: This method ascertains if a particular entity exists

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

• F o r E a c h
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

• E m p t y D i s p o s e
Objective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

within a BinaryTree.

Input.
Entity.
Required.
Specifies the entity to be checked.

Boolean.
TRUE if entity exists, else FALSE.
None.

This method performs a particular operation
specified by "routine" on each entity within a
BinaryTree.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

This method outputs all entities within a
BinaryTree, using the specified output routine.

Input.
Routine.
Optional.
Specifies a reference to the output routine.
None.
None.

This method empties a BinaryTree without disposing
any of the entities within the BinaryTree.
None.
None.
None.

This method empties a BinaryTree and disposes of its
contents using the specified routine.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

A.6.5 PriorityQueue Interface

I n t e r f a c e D i a g r a m :

+Ctone(): Replicable

«interface»
R e p lic a b le

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+GetNEntities(): Integer
+Add(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Remove{): Replicable
+RemoveThis(in thisEntity: Replicable)
+lndudes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)

«interface»PriorityQueue

Figure A22 . PriorityQueue Interface

M e t h o d s :
R e s o l v e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a PriorityQueue.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a PriorityQueue.
None.
None.
None.

C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a
PriorityQueue during the state duplication process
of a non-terminating state save operation.
None.

StateSave.
Empty shell
None.

of PriorityQueue.

• D u p l i c a t e S t a t e
Objective: This method copies the state of "original" to the

current PriorityQueue during the state duplication
process of a non-terminating state save operation.

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

original
Mode :
Type:
Presence:
Function:

Return Value:
Exceptions:

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• N ew
Obj ective:
Parameters:
Return Value:
Exceptions:

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

• G e t N E n t i t i e s
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• A d d
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• N e x t
Obj ective:

Input.
StateSave.
Required.
Specifies PriorityQueue whose state is to be copied.
None.
None.

This method creates a clone of a PriorityQueue with
all entites currently within the PriorityQueue
existing in the clone.
None.

Replicable.
Clone of a PriorityQueue.
None.

This method initializes a PriorityQueue.
None.
None.
None.

This method disposes a PriorityQueue.
None.
None.
None.

This method returns the current number of entities
within a PriorityQueue.
None.

Integer.
Current number of entities in the PriorityQueue.
None.

This method adds an entity to a PriorityQueue, based
on an assigned priority for the entity.

Input.
Entity.
Required.
Specifies the entity to be added to the
PriorityQueue.
None.
None.

This method returns the next entity after

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

"thisEntity" within a PriorityQueue. If "thisEntity''
is NULL, it returns the first entity within the
PriorityQueue. A NULL is returned when there is no
more unseen entity in the PriorityQueue. If this
method is continuously called till a NULL value is
returned, then a new entity is returned each time.

Input.
Entity.
Required.
Specifies the current entity.

Entity.
Next entity after
None.

'thisEntity'1

• R e m o v e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method removes and returns the first entity
within a PriorityQueue.
None.

Entity.
First entity that satisfies "condition".
None.

• R e m o v e T h i s
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Entity to be
Cause:

Effect:

This method removes a particular entity from a
PriorityQueue.

Input.
Entity.
Required.
Specifies the entity to be removed.
None.

removed not found"
Specified entity does not exist within the
PriorityQueue.
Simulation terminates.

I n c l u d e s
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:

This method ascertains if a particular entity exists
within a PriorityQueue.

Input.
Entity.
Required.
Specifies the entity to be checked.

Boolean.
Function: TRUE if entity exists, else FALSE.

Exceptions: None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

• F o r E a c h
Objective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method performs a particular operation
specified by "routine" on each entity within a
PriorityQueue.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

• D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method outputs all entities within a
PriorityQueue, using the specified output routine.

Input.
Routine.
Optional.
Specifies
None.
None.

a reference to the output routine.

• E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

This method empties a PriorityQueue without
disposing any of the entities within the
PriorityQueue.
None.
None.
None.

• E m p t y D i s p o s e
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method empties a PriorityQueue and disposes of
its contents using the specified routine.

Input.
Routine.
Optional.
Specifies
None.
None.

a reference to the routine.

A .6 .6 Q u e u e W ith S ta tis tic s I n te r f a c e

I n t e r f a c e D i a g r a m :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

+Clone() : Replicable

«interface»
R eplicable

+ResolveReferences()
+Re$toreReference$()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»StateSave

+New()
+Delete()
+Push(in thisEntity: Replicable)
+Next(in thisEntity: Replicable): Replicable
+Pull() : Replicable
+PullThis(in thisEntity: Replicable)
+lncludes(in thisEntity: Replicable): Boolean
+ForEach(in routine: Routine)
+Dump(in outputRoutine: Routine)
+Empty()
+EmptyDispose(in routine: Routine)
+SampleNEntities()
+GetNEntities(): Integer
+GetTotalNEntities(): Long
+GetMaxNEntities(): Integer
+GetAverageNEntities(): Integer
+GetAverage\A/aitTime(): Double__________

interface»Q ueueW ithStatistics

Figure A23. QueueWithStatistics Interface

M e t h o d s :

• R e s o l v e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within a QueueWithStatistics.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a QueueWithStatistics.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of a
QueueWithStatistics during the state duplication
process of a non-terminating state save operation.
None.

StateSave.
Empty shell of QueueWithStatistics.
None.

• D u p l i c a t e S t a t e
Objective: This method copies the state of "original" to the

current QueueWithStatistics during the state
duplication process of a non-terminating state save
operation.

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

original
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• N ew
Obj ective:
Parameters:
Return Value:
Exceptions:

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

• P u s h
Obj ective:
Parameters:

thisEntity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• N e x t
Obj ective:

Parameters:
thisEntity

Mode:

Input.
StateSave.
Required.
Specifies QueueWithStatistics whose state is to be
copied.
None.
None.

This method creates a clone of a QueueWithStatistics
with all entities currently within the
QueueWithStatistics existing in the clone.
None.

Replicable.
Clone of a QueueWithStatistics.
None.

This method initializes a QueueWithStatistics.
None.
None.
None.

This method disposes a QueueWithStatistics.
None.
None.
None.

This method adds an entity to a QueueWithStatistics.

Input.
Entity.
Required.
Specifies the entity to be added to the
QueueWithStatistics.
None.
None.

This method returns the next entity after
"thisEntity" within a QueueWithStatistics. If
"thisEntity" is NULL, it returns the first entity
within the QueueWithStatistics. A NULL is returned
when there is no more unseen entity in the
QueueWithStatistics. If this method is continuously
called till a NULL value is returned, then a new
entity is returned each time.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

Entity.
Required.
Specifies the current entity.

Entity.
Next entity after "thisEntity''
None.

P u l l
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method removes and returns the first entity
within a QueueWithStatistics.
None.

Entity.
First entity that satisfies "condition".
None.

• P u l l T h i s
Objective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Entity to be
Cause:

Effect:

This method removes a particular entity from a
QueueWithStatistics.

Input.
Entity.
Required.
Specifies the entity to be removed.
None.

removed not found"
Specified entity does not exist within the
QueueWithStatistics.
Simulation terminates.

• I n c l u d e s
Obj ective:

Parameters:
thisEntity

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method ascertains if a particular entity exists
within a QueueWithStatistics.

Input.
Entity.
Required.
Specifies the entity to be checked.

Boolean.
TRUE if entity exists, else FALSE.
None.

• F o r E a c h
Obj ective:

Parameters:
routine

Mode:

This method performs a particular operation
specified by "routine" on each entity within a
QueueWithStatistics.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

Type:
Presence:
Function:

Return Value:
Exceptions:

Routine.
Optional.
Specifies a reference to the routine.
None.
None.

D um p
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method outputs all entities within a
QueueWithStatistics, using the specified output
routine.

Input.
Routine.
Optional.
Specifies a reference to the output routine.
None.
None.

E m p ty
Obj ective:

Parameters:
Return Value:
Exceptions:

This method empties a QueueWithStatistics without
disposing any of the entities within the
QueueWithStatistics.
None.
None.
None.

E m p t y D i s p o s e
Obj ective:

Parameters:
routine

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method empties a QueueWithStatistics and
disposes of its contents using the specified
routine.

Input.
Routine.
Optional.
Specifies a reference to the routine.
None.
None.

• S a m p l e N E n t i t i e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method records the current number of entities
within a QueueWithStatistics.
None.
None.
None.

G e t N E n t i t i e s
Obj ective:

Parameters:
Return Value:

Type:
Function:

This method returns the current number of entities
within a QueueWithStatistics.
None.

Integer.
Current number of entities in the
QueueWithStatistics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0

Exceptions: None.

• G e t T o t a l N E n t i t i e s
Objective: This method returns the total number of entities to

exist within a QueueWithStatistics for the duration
of the simulation.

Parameters: None.
Return Value:

Type: Long.
Function: Total number of entities in the QueueWithStatistics.

Exceptions: None.

• G e t M a x N E n t i t i e s
Objective: This method returns the maximum number of entities

to exist within a QueueWithStatistics at any
instant, for the duration of the simulation.

Parameters: None.
Return Value:

Type: Integer.
Function: Maximum number of entities in the

QueueWithStatistics.
Exceptions: None.

• G e t A v e r a g e N E n t i t l e s
Objective: This method returns the average number of entities

to exist within a QueueWithStatistics for the
duration of the simulation.

Parameters: None.
Return Value:

Type: Integer.
Function: Average number of entities in the

QueueWithStatistics.
Exceptions: None.

• G e t A v e r a g e W a i t T i m e
Objective: This method returns the average time that each

entity existed within a QueueWithStatistics for the
duration of the simulation.

Parameters: None.
Return Value:

Type: Double.
Function: Average wait time of each entity in the

QueueWithStatistics.
Exceptions: None.

A .4 .7 E n tity C o u n te r I n te r f a c e

I n t e r f a c e D i a g r a m :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 1

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

«interface»Program m aticEvent
+Modify(in modifications: ArgumentList)
+Adjust(in adjustments: ArgumentList)
+Transfer(in transferlnformation: ArgumentList)

«interface»EntityCounter

+New(in priority: boolean, in entityCount: Integer)
+Delete()
+GetNEntities(): Integer
+AddSingle()
+AddMultiple(in nEntities: Integer)
+RequestSingleAtomic(): Boolean
+RequestSingle(in priority: PriorityValue, in eventDelegate: Delegate, in SEC : SimulationEngineComponent): RequestID
+RequestMultipleAtomic(in nEntities: Integer): Boolean
+RequestMultiple(in nEntities: Integer, in priority: PriorityValue, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestAvailableAtomic(in nEntities: Integer): Integer
+RequestAvailable(in nEntities: Integer, in priority: PriorityValue, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+ReleaseSingle ()
+ReleaseMultiple(in nEntities: Integer)
+ReAssign(in sourceList: Set, in destination: EntityCounter, in nEntities: Integer, in eventDelegate : Delegate, in SEC: SimulationEngineComponent)
+ReturnReAssigned()
+TransferToEntityCounter(in destination: EntityCounter, in nEntities: Integer)
+TransferToEntityPooi(in destination: EntityPool, in nEntities: Integer, in entity: Replicable)
+lnterruptRequest(in requestID: RequestID)___

«interface»
Replicable

+Clone(): Replicable zr--

Figure A24. EntityCounter Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within an EntityCounter.
None.
None.
None.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within an EntityCounter.
None.
None.
None.

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type :
Function:

Exceptions:

This method creates an empty shell of an
EntityCounter during the state duplication process
of a non-terminating state save operation.
None.

StateSave.
Empty shell of EntityCounter.
None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:

This method copies the state of "original" to the
current EntityCounter during the state duplication
process of a non-terminating state save operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 2

original
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Input.
StateSave.
Required.
Specifies EntityCounter whose state is to be copied.
None.
None.

C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates a clone of an EntityCounter with
the number of entites in the clone equal to the
number of entities currently within the
EntityCounter.
None.

Replicable.
Clone of an EntityCounter.
None.

M o d i f y
Obj ective:
Parameters:

modifications
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Modify method not defined for this interface'

This method is not defined for an EntityCounter.

Input.
ArgumentList.
Required.
Specifies the
None.

new parameters.

Cause: Method not defined for an EntityCounter.
Effect: Simulation terminates.

A d j u s t
Obj ective: This method increases or decreases the number of

entities within an EntityCounter based on an offset.
If insufficient entities currently exist to satisfy
a decrease in number of entities, all existing
entities are immediately removed, and all entities
subsequently released back to the EntityCounter, are
removed till the decrease is complete.

Parameters:
adjustments

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Insufficient
Cause:
Effect:

Input.
ArgumentList.
Required.
Specifies the new parameters.
None.

arguments for Adjust method"
Not enough arguments within "adjustments'
Simulation terminates.

• T r a n s f e r
Obj ective: This method invokes TransferToEntityCounter or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

TransferToEntityPool for an EntityCounter, with the
appropriate parameters based on
"transferlnformation".

Parameters:
transferInformation

Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions:

"Insufficient arguments for Transfer method"
Cause: Not enough arguments within "transferlnformation".
Effect: Simulation terminates.

N ew
Obj ective:
Parameters:

priority
Mode:
Type:
Presence:
Function:

entityCount
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes an EntityCounter.

Input.
Boolean.
Required.
Specifies if unsatisfied requests are queued based
on priority within the EntityCounter.

Input.
Integer.
Optional.
Specifies the initial number of entities within the
EntityCounter.
None.
None.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes an EntityCounter.
None.
None.
None.

G e t N E n t i t l e s
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method returns the current number of entities
within an EntityCounter.
None.

Integer.
Current number of entities in the EntityCounter.
None.

• A d d S i n g l e
Obj ective:

Parameters:
Return Value:
Exceptions:

This method increments the count of entities within
an EntityCounter by 1.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

• A d d M u l t i p l e
Objective: This method increments the count of entities within

an EntityCounter by "nEntities".
Parameters:

nEntities
Mode:
Type:
Presence

Input.
Integer.
Required.

Function: Specifies the number of entities to be added.
Return Value: None.
Exceptions:

"Invalid number of entities to be added"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

R e q u e s t S i n g l e A t o m i c
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method makes an atomic request for a single
entity to an EntityCounter. If an entity is
available, then a TRUE value is returned else a
FALSE value is returned.
None.

Boolean.
TRUE if entity available,
None.

else FALSE.

• R e q u e s t S i n g l e
Obj ective: This method makes a request for a single entity to

an EntityCounter. If an entity is available, then
the Delegate is immediately scheduled for execution.
If an entity is not available, then the request is
queued and serviced in a FCFS manner. If a priority
has been specified, then the request is queued with
the appropriate priority relative to other pending
requests.

Parameters:
priority

Mode:
Type:
Presence:
Function:

eventDelegate
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

Input.
Delegate.
Required.
Specifies the delegate to be scheduled when request
is satisfied.

RequestID.
-1 if request is satisfied, else ID of pending
request.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

• R e q u e s t M u l t i p l e A t o m i c
Objective: This method makes an atomic request for "nEntities'

to an EntityCounter. If the requested entities are
available, then a TRUE value is returned else a
FALSE value is returned.

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:
"Invalid number of requested entities'

Cause: "nEntities" < 0.
Effect: Simulation terminates.

Input.
Integer.
Required.
Specifies the number of requested entities.

Boolean.
TRUE if entities are available, else FALSE.

• R e q u e s t M u l t i p l e
Obj ective:

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

This method makes a request for "nEntities" to an
EntityCounter. If the requested entities are
available, then the Delegate is immediately
scheduled for execution. If the requested entities
are not available, then the request is queued and
serviced in a FCFS manner. If a priority has been
specified, then the request is queued with the
appropriate priority relative to other pending
requests.

Input.
Integer.
Required.
Specifies the number of requested entities.

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

eventDelegate
Mode: Input.
Type:
Presence:
Function:

Delegate.
Required.
Specifies the delegate to be scheduled when request
is satisfied.

Return Value:
Type:
Function:

RequestID.
-1 if request is satisfied, else ID of pending
request.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

• R e q u e s t A v a i l a b l e A t o m i c
Obj ective:

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

This method makes an atomic request for "nEntities'
to an EntityCounter. If no entities are available,
then a value of -1 is returned, else the minimum
value between "nEntities" and currently available
entities in the EntityCounter is returned.

Input.
Integer.
Required.
Specifies the number of requested entities.

Integer.
minimum value of "nEntities'
-1 if none available.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

and available entities,

R e q u e s t A v a i l a b l e
Objective: This method makes a request for "nEntities" to an

EntityCounter. If at least 1 entity is available,
then the Delegate is immediately scheduled for
execution, with the number of available entities
passed as a return argument by value for the event
method ArgumentList within the Delegate. If no
entities are available or if the number of available
entities is less than "nEntities", then the request
is queued and serviced in a FCFS manner. If a
priority has been specified, then the request is
queued with the appropriate priority relative to
other pending requests. The Delegate is scheduled
for execution every time new entities become
available till the request is completely satisfied.

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

eventDelegate
Mode:
Type:
Presence:
Function:

Return Value:
Type:

Input.
Integer.
Required.
Specifies the number of requested entities.

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

Input.
Delegate.
Required.
Specifies the delegate to be scheduled when request
is satisfied.

RequestID.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

Function: -1 if request is satisfied, else ID of pending
request.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e l e a s e S i n g l e
Objective:

Parameters:
Return Value:
Exceptions:

This method releases a single entity back to an
EntityCounter. It increments the count of entities
within the EntityCounter by 1.
None.
None.
None.

R e l e a s e M u l t i p l e
Objective: This method releases "nEntities" back to an

EntityCounter. It increments the count of entities
within the EntityCounter by "nEntities".

Parameters:
nEntities

Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies

Return Value: None.
Exceptions:

"Invalid number of entities to be released'1
Cause: "nEntities" < 0.
Effect: Simulation terminates.

the number of entities to be released.

R e A s s i g n
Obj ective: This method transfers "nEntities" from a collection

of EntityCounters to the "destination"
EntityCounter. This method behaves similarly to the
RequestAvailable method and tries to satisfy the
entire request, or whatever part of the request it
can satisfy. If the current EntityCounter cannot
completely satisfy the request, then it queues the
request within itself, and then passes along the
request to the next EntityCounter in
"sourcePoolList". If a transfer request is partially
satisfied by any EntityCounter subsequently, then
all EntityCounters within "sourcePoolList" update
their pending requests accordingly. If a transfer
request is completely satisfied by any EntityCounter
subsequently, then all EntityCounters within
"sourcePoolList" remove the request from their
collection of pending requests.

Parameters:
sourcePoolList

Mode:
Type:
Presence:
Function:

destination

Input.
Set.
Required.
Specifies the collection of source EntityCounters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

Mode: Input.
Type: EntityCounter.
Presence: Required.
Function: Specifies the destination EntityCounter.

nEntities
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the number of entities to be reassigned.

eventDelegate
Mode: Input.
Type: Delegate.
Presence: Required.
Function: Specifies the delegate to be scheduled when transfer

is complete.
Return Value: None.
Exceptions:

''Invalid source EntityCounters"
Cause: Invalid list of source EntityCounters.
Effect: Simulation terminates.

"Invalid destination EntityCounter"
Cause: Invalid destination EntityCounter.
Effect: Simulation terminates.

"Invalid number of entities to be reassigned"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e t u r n R e A s s i g n e d
Objective: This method returns the entities back to the source

EntityCounters where they were transferred from.
Parameters: None.
Return Value: None.
Exceptions:

"Invalid source EntityCounters"
Cause: Invalid list of source EntityCounters.
Effect: Simulation terminates.

• T r a n s f e r T o E n t i t y C o u n t e r
Obj ective:

Parameters:
destination

Mode:
Type:
Presence:
Function:

nEntities
Mode:
Type:

This method permanently transfers "nEntities" from
an EntityCounter to the "destination" EntityCounter.
If sufficient entities exist to satisfy the
transfer, "nEntities" are immediately transferred to
"destination". If insufficient entities currently
exist, all existing entities are immediately
transferred, and all entities subsequently released
back to the EntityCounter, are transferred till the
transfer is complete.

Input.
EntityCounter.
Required.
Specifies the destination EntityCounter.

Input.
Integer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

Presence: Required.
Function: Specifies the number of entities to be transferred.

Return Value: None.
Exceptions: None.

"Invalid destination EntityCounter"
Cause: Invalid destination EntityCounter.
Effect: Simulation terminates.

"Invalid number of entities to be transferred"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

• T r a n s f e r T o E n t i t y P o o l
Obj ective:

Parameters:
destination

Mode:
Type:
Presence:
Function:

nEntities
Mode:
Type:
Presence:
Function:

entity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method permanently transfers "nEntities" from
an EntityCounter to the "destination" EntityPool. If
sufficient entities exist to satisfy the transfer,
"entity" is cloned "nEntities" times and immediately
transferred to "destination". If insufficient
entities currently exist, all existing entities are
immediately cloned and transferred, and all entities
released back to the EntityCounter are cloned and
transferred till the transfer is complete.

Input.
EntityPool.
Required.
Specifies the destination EntityPool.

Input.
Integer.
Required.
Specifies the number of entities to be transferred.

Input.
Replicable.
Required.
Specifies the entity to be cloned during transfer.
None.
None.

"Invalid destination EntityPool"
Cause: Invalid destination EntityPool.
Effect: Simulation terminates.

"Invalid number of entities to be transferred"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

"Invalid entity for cloning"
Cause: Invalid entity to be cloned during transfer.
Effect: Simulation terminates.

I n t e r r u p t R e q u e s t
Obj ective:

Parameters:
requestID

Mode:

This method interrupts a pending request within an
EntityCounter. The interrupt method within the
Delegate, if defined, is executed.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 0

RequestID.
Required.
Specifies the ID of the pending request.
None.

Type:
Presence:
Function:

Return Value:
Exceptions:

"Request to be interrupted not found"
Cause: Specified request does not exist within collection

of pending requests.
Effect: Simulation terminates.

A.4.8 EntityPool Interface

I n t e r f a c e D i a g r a m :

+C lone(): Replicable

«interface»
Replicable +Modify(in modifications: ArgumentList)

+Adjust(in adjustments: ArgumentList)
+Transfer(in transferlnformation: ArgumentList)

;interface»Program m aticEvent

+ResolveReferences()
+RestoreReferences()
+C reate (): StateSave
+Duplicate$tate(in o rig ina i: StateSave)

«interface»StateSave

+New(in priority: boolean, in entitySet: Set)
+Delete()
+GetNEntities(): Integer
+AddSingle(in entity: Replicable)
+AddMultipie(in entitySet: Set)
+RequestSingleAtomic(in condition: Condition): Replicable
+RequestSingle(in priority: PriorityValue, in condition: Condition, in eventDelegate :
+RequestMultipleAtomic(in nEntities: Integer, in condition: Condition): Set
+RequestMultiple(in nEntities: Integer, in priority: PriorityValue, in condition: Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+RequestAvailableAtomic(in nEntities: Integer, in condition : Condition): Set
+RequestAvailable(in nEntities: Integer, in priority: PriorityValue, in condition : Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent): RequestID
+ReleaseSingle(in entity: Replicable)
+ReleaseMultiple(in entitySet: Set)
+ReAssign(in sourceList: Set, in destination: EntityPool, in nEntities: Integer, in condition: Condition, in eventDelegate: Delegate, in SEC: SimulationEngineComponent)
+ReturnReAssigned()
+TransferToEntityPool(in destination: EntityPool, in nEntities: Integer, in entity: Replicable)
+TransferToEntityCounter(in destination: EntityCounter, in nEntities: Integer)
+lnterruptRequest(in requestID: RequestID)___

«interface»EntltyPool

i, in SEC: SimulationEngineComponent): RequestID

Figure A25. EntityPool Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within an EntityPool.
None.
None.
None.

R e s t o r e R e f e r e n c e s
Objective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within an EntityPool.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 1

• C r e a t e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates an empty shell of an EntityPool
during the state duplication process of a non
terminating state save operation.
None.

StateSave.
Empty shell of EntityPool.
None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current EntityPool during the state duplication
process of a non-terminating state save operation.

Input.
StateSave.
Required.
Specifies EntityPool whose state is to be copied.
None.
None.

C l o n e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method creates a clone of an EntityPool with
the number of entites in the clone equal to the
number of entities currently within the EntityPool.
None.

Replicable.
Clone of an EntityPool.
None.

M o d i f y
Obj ective:
Parameters:

modifications
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

"Modify method not defined for this interface'

This method is not defined for an EntityPool.

Input.
ArgumentList.
Required.
Specifies the new parameters.
None.

Cause:
Effect:

Method not
Simulation

defined for
terminates.

an EntityPool.

• A d j u s t
Obj ective: This method increases or decreases the entities

within an EntityPool based on an offset. An entity
should be provided when increasing the number of
entities, so that it can be cloned and added to the
EntityPool. If insufficient entities currently exist
to satisfy a decrease in entities, all existing
entities are immediately removed, and all entities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 2

released back to the EntityPool, are removed till
the decrease is complete.

Parameters:
adjustments

Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions:

"Insufficient arguments for Adjust method"
Cause: Not enough arguments within "adjustments".
Effect: Simulation terminates.

• T r a n s f e r
Objective: This method invokes TransferToEntityPool or

TransferToEntityCounter for an EntityPool, with the
appropriate parameters based on
"transferlnformation".

Parameters:
transferlnformation

Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the new parameters.

Return Value: None.
Exceptions:

"Insufficient arguments for Transfer method"
Cause: Not enough arguments within "transferlnformation".
Effect: Simulation terminates.

N ew
Obj ective:
Parameters:

priority
Mode:
Type:
Presence:
Function:

entitySet
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes an EntityPool.

Input.
Boolean.
Required.
Specifies if unsatisfied requests are queued based
on priority within the EntityPool.

Input.
Set.
Optional.
Specifies the initial set of entities within the
EntityPool.
None.
None.

• D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes an EntityPool.
None.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

G e t N E n t i t l e s
Obj ective:

Parameters:
Return Value:

Type:

This method returns the current number of entities
within an EntityPool.
None.

Integer.
Function: Current number of entities in the EntityPool.

Exceptions: None.

A d d S i n g l e
Obj ective:
Parameters:

entity
Mode:
Type:

This method adds an entity to an EntityPool.

Input.
Entity.

Presence: Required.
Function: Specifies the entity to be added to the EntityPool.

None.
None.

Return Value:
Exceptions:

A d d M u l t i p l e
Obj ective:

Parameters:
entitySet

Mode:
Type:
Presence

This method adds a collection of entities to an
EntityPool.

Input.
Set.
Required.

Function: Specifies the collection of entities to be added to
the EntityPool.
None.Return Value:

Exceptions :
"Invalid collection of entities to be added

Cause: Invalid set of entities.
Effect: Simulation terminates.

R e q u e s t S i n g l e A t o m i c
Obj ective:

Parameters:
condition

Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

This method makes an atomic request for a single
entity to an EntityPool. If an entity is available,
then it is returned, else a NULL value is returned.
If a condition is specified, then an entity that
satisfies the condition is returned.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Entity.
Entity if available, NULL if not.
None.

R e q u e s t S i n g l e
Obj ective: This method makes a request for a single entity to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

the EntityPool. If an entity is available, then the
Delegate is immediately scheduled for execution,
with the entity passed as a return argument by
reference for the event method ArgumentList within
the Delegate. If a condition is specified, then an
entity that satisfies the condition is returned. If
an entity is not available, then the request is
queued and serviced in a FCFS manner. If a priority
has been specified, then the request is queued with
the appropriate priority relative to other pending
requests.

Parameters:
priority

Mode:
Type:
Presence:
Function:

condition
Mode:
Type:
Presence:
Function:

eventDelegate
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

Exceptions:

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Input.
Delegate.
Required.
Specifies the delegate to be scheduled when request
is satisfied.

RequestID.
-1 if request is satisfied, else ID of pending
request.
None.

• R e q u e s t M u l t i p l e A t o m i c
Obj ective:

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

condition
Mode:
Type:
Presence:
Function:

Return Value:
Type:
Function:

This method makes an atomic request for "nEntities"
to an EntityPool. If the requested entities are
available, then a Set containing the entities is
returned, else a NULL value is returned. If a
condition is specified, then entities that satisfy
the condition are returned.

Input.
Integer.
Required.
Specifies the number of requested entities.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Set.
Set containing the entities if available, NULL if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

not.
Exceptions:

"Invalid number of requested entities"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e q u e s t M u l t i p l e
Objective: This method makes a request for "nEntities" entities

to an EntityPool. If the requested entities are
available, then the Delegate is immediately
scheduled for execution, with the Set containing the
entities passed as a return argument by reference
for the event method ArgumentList within the
Delegate. If a condition is specified, then entities
that satisfy the condition are returned. If the
requested entities are not available, then the
request is queued and serviced in a FCFS manner. If
a priority has been specified, then the request is
queued with the appropriate priority relative to
other pending requests.

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

condition
Mode:
Type:
Presence:
Function:

eventDelegate
Mode:
Type:
Presence:
Function:

Input.
Integer.
Required.
Specifies the number of requested entities.

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

Input.
Condition.
Optional.
Specifies the condition to be satisfied.

Input.
Delegate.
Required.
Specifies the delegate to be scheduled when request
is satisfied.

Return Value:
Type:
Function:

RequestID.
-1 if request is satisfied, else ID of pending
request.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e q u e s t A v a i l a b l e A t o m i c
Objective: This method makes an atomic request for "nEntities"

to an EntityPool. If no entities are available, then
a NULL value is returned, else a Set containing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

Parameters:
nEntities

Mode:
Type:
Presence
Function

condition
Mode:
Type:
Presence
Function

Return Value:
Type:
Function

entities equal to the minimum value of "nEntities"
and currently available entities in the EntityPool
is returned. If a condition is specified, then
entities that satisfy the condition are returned.

Input.
Integer.
Required.
Specifies

Input.
Condition.
Optional.
Specifies

Set.

the number of requested entities.

the condition to be satisfied.

Set containing the available entities,
available.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

NULL if none

• R e q u e s t A v a i l a b l e
Obj ective:

Parameters:
nEntities

Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

condition
Mode:
Type:

This method makes a request for "nEntities" to an
EntityPool. If at least 1 entity is available, then
the Delegate is immediately scheduled for execution,
with the Set containing the entities passed as a
return argument by reference for the event method
ArgumentList within the Delegate. If a condition is
specified, then entities that satisfy the condition
are returned. If no entities are available or if the
number of available entities is less than
"nEntities", then the request is queued and serviced
in a FCFS manner. If a priority has been specified,
then the request is queued with the appropriate
priority relative to other pending requests. The
Delegate is scheduled for execution every time new
entities become available till the request is
completely satisfied.

Input.
Integer.
Required.
Specifies the number of requested entities.

Input.
Priority Value.
Optional.
Specifies the priority of the request relative to
pending requests.

Input.
Condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

Presence: Optional.
Function: Specifies the condition to be satisfied.

eventDelegate
Mode: Input.
Type: Delegate.
Presence: Required.
Function: Specifies the delegate to be scheduled when request

is satisfied.
Return Value:

Type:
Function

RequestID.
-1 if request is satisfied, else ID of pending
request.

Exceptions:
"Invalid number of requested entities"

Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e l e a s e S i n g l e
Obj ective:

Parameters:
entity

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method releases a
EntityPool.

Input.
Entity.
Required.
Specifies the entity
EntityPool.
None.
None.

single entity back to an

be released to the

• R e l e a s e M u l t i p l e
Objective: This method releases a collection of entities to an

EntityPool.
Parameters:

entitySet
Mode: Input.
Type: Set.
Presence: Required.
Function: Specifies the collection of entities to be released

to the EntityPool.
Return Value: None.
Exceptions: None.

• R e A s s i g n
Objective: This method transfers "nEntities" from a collection

of EntityPools to the "destinationPool" EntityPool.
This method behaves similarly to the
RequestAvailable method and tries to satisfy the
entire request, or whatever part of the request it
can satisfy. If the current EntityPool cannot
completely satisfy the request, then it queues the
request within itself, and then passes along the
request to the next EntityPool in "sourcePoolList".
If a transfer request is partially satisfied by any
EntityPool subsequently, then all EntityPools within
"sourcePoolList" update their pending requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

accordingly. If a transfer request is completely
satisfied by any EntityPool subsequently, then all
EntityPools within "sourcePoolList" remove the
request from their collection of pending requests.
If a condition is specified, then entities that
satisfy the condition are returned.

Parameters:
sourcePoolList

Mode: Input.
Type: Set.
Presence: Required.
Function: Specifies the

destination
Mode: Input.
Type: EntityPool.
Presence: Required.
Function: Specifies the

nEntities
Mode: Input.
Type: Integer.
Presence: Required.
Function: Specifies the

condition
Mode: Input.
Type: Condition.
Presence: Optional.
Function: Specifies the

eventDelegate
Mode: Input.
Type: Delegate.
Presence: Required.
Function: Specifies the

is complete.
Return Value: None.
Exceptions:

"Invalid source EntityPools"
Cause: Invalid list of source EntityPools.
Effect: Simulation terminates.

"Invalid destination EntityPool"
Cause: Invalid destination EntityPool.
Effect: Simulation terminates.

"Invalid number of entities to be transferred"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

• R e t u r n R e A s s i g n e d
Objective: This method returns the entities back to the source

EntityPools where they were transferred from.
Parameters: None.
Return Value: None.
Exceptions:

"Invalid source EntityPools"
Cause: Invalid list of source EntityPools.
Effect: Simulation terminates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

T r a n s f e r T o E n t i t y P o o l
Obj ective:

Parameters:
destination

Mode:
Type:
Presence:
Function:

nEntities
Mode:
Type:
Presence:
Function:

entity
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method permanently transfers "nEntities" from
an EntityPool to the "destination" EntityPool. If
sufficient entities exist to satisfy the transfer,
"entity" is cloned "nEntities" times and immediately
transferred to "destination". If insufficient
entities currently exist, all existing entities are
immediately cloned and transferred, and all entities
released back to the EntityPool are cloned and
transferred till the transfer is complete.

Input.
EntityPool.
Required.
Specifies the destination EntityPool.

Input.
Integer.
Required.
Specifies the number of entities to be transferred.

Input.
Replicable.
Required.
Specifies the entity to be cloned during transfer.
None.
None.

"Invalid destination EntityPool"
Cause: Invalid destination EntityPool.
Effect: Simulation terminates.

"Invalid number of entities to be transferred"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

"Invalid entity for cloning"
Cause: Invalid entity to be cloned during transfer.
Effect: Simulation terminates.

• T r a n s f e r T o E n t i t y C o u n t e r
Obj ective:

Parameters:
destination

Mode:
Type:
Presence:
Function:

nEntities
Mode:

This method permanently transfers "nEntities" from
an EntityPool to the "destination" EntityCounter. If
sufficient entities exist to satisfy the transfer,
"nEntities" are immediately transferred to
"destination". If insufficient entities currently
exist, all existing entities are immediately
transferred, and all entities released back to the
EntityPool, are transferred till the transfer is
complete.

Input.
EntityCounter.
Required.
Specifies the destination EntityCounter.

Input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 0

Type: Integer.
Presence: Required.
Function: Specifies the number of entities to be transferred.

Return Value: None.
Exceptions: None.

"Invalid destination EntityCounter"
Cause: Invalid destination EntityCounter.
Effect: Simulation terminates.

"Invalid number of entities to be transferred"
Cause: "nEntities" < 0.
Effect: Simulation terminates.

• I n t e r r u p t R e q u e s t
Objective: This method interrupts a pending request within an

EntityPool. The interrupt method within the
Delegate, if defined, is executed.

Parameters:
requestID

Mode: Input.
Type: RequestID.
Presence: Required.
Function: Specifies the ID of the pending request.

Return Value: None.
Exceptions:

"Request to be interrupted not found"
Cause: Specified request does not exist within collection

of pending requests.
Effect: Simulation terminates.

B. DIESEL Distributed Interface Specification

B.l DistributedSimulationExecutive Interface

I n t e r f a c e D i a g r a m :

«in terface»D istribu tedE xecu tiveS upport

+RelayMessage(in sourceClusterlD: Integer, in m essage: Message)
+SetLookAhead(in lookahead: double)
+StartGVT()
+ReceivedStateGVT(in clusterlD: Integer)
+ComputeLocalMinimum()
+LocalMinimum(in clusterlD : Integer, in m inimum: double)
+SendGVT(in G V T : double)___________________________________

Figure Bl. DistributedSimulationExecutive Interface

M e t h o d s :
• S t a r t D i s t r i b u t e d S i m u l a t i o n

Obj ective:

Parameters:
nClusters

Mode:
Type:
Presence:

This method initializes DIESEL for a distributed
simulation with the specified number of
SimulationClusters.

Input.
Integer.
Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 1

Function: Specifies the number of SimulationClusters in a
distributed simulation.

Return Value: None.
Exceptions: None.

G e t N S i m u l a t i o n C l u s t e r s
Objective: This method returns the number of SimulationClusters

in a distributed simulation.
Parameters: None.
Return Value:

Type: Integer.
Function: Number of SimulationClusters in a distributed

simulation.
Exceptions: None.

• C r e a t e S i m u l a t i o n C l u s t e r
Objective: This method creates a SimulationCluster and

registers itself with the simulation executive.
Parameters:

clusterlD
Mode:
Type:
Presence
Function

synchronizationMethod
Mode: Input.
Type: Synchronization Algorithm.
Presence: Required.
Function: Specifies the synchronization algorithm used.

Return Value:
Type: SimulationCluster.
Function: Created SimulationCluster.

Exceptions: None.

Input.
Integer.
Required.
Specifies the ID of SimulationCluster to be created.

• A d d S i m u l a t i o n C l u s t e r
Obj ective:

Parameters:
cluster

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method registers a SimulationCluster with the
simulation executive.

Input.
SimulationCluster.
Required.
Specifies the SimulationCluster to be registered
with the simulation executive.
None.
None.

• G e t S i m u l a t i o n C l u s t e r
Obj ective:

Parameters:
clusterlD

Mode:
Type:
Presence:

This method returns access to a SimulationCluster
registered with the simulation executive.

Input.
Integer.
Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 2

Function: Specifies the ID of required SimulationCluster.
Return Value:

Type: SimulationCluster.
Function: Required SimulationCluster.

Exceptions: None.

• C l e a n U p D i s t r i b u t e d S i m u l a t i o n
Objective:

Parameters:
Return Value:
Exceptions:

This method cleans up DIESEL after a distributed
simulation.
None.
None.
None.

E v e n t s E x i s t
Obj ective: This method ascertains if any delegates exist on any

SimulationClusters in the distributed simulation and
returns the minimum execution time of all delegates
if they do exist.

Parameters:
minimumEventTime

Mode: Output
Type:
Presence:
Function:

Double.
Required.
Specifies the minimum event execution time of
delegates within all SimulationClusters.

Return Value:
Type: Boolean.
Function: TRUE if events exist, ELSE FALSE.

Exceptions: None.

E x e c u t e D i s t r i b u t e d S i m u l a t i o n
Objective: This method executes a distributed simulation with

the specified synchronization algorithm.
Parameters: None.
Return Value: None.
Exceptions: None.

• G e t U n i q u e R e f e r e n c e
Obj ective:

Parameters:
Return Value:

Type:

Exceptions:

This method returns a unique reference for an
application object to be used in a distributed
simulation.
None.

Unique Reference.
Function: Unique reference for an application object.

None.

R e g i s t e r O b j e c t
Obj ective:

Parameters:
reference

Mode:
Type:

This method registers an application object with the
simulation executive.

Input.
Unique Reference.

Presence: Required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

Function:

clusterlD
Mode:
Type:
Presence:
Function:

object
Mode:
Type:
Presence:
Function:

SEC
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

Specifies the unique reference of the application
object to be registered.

Input.
Integer.
Required.
Specifies the ID of the SimulationCluster that the
application object belongs to.

Input.
Obj ect.
Required.
Specifies the application object to be registered.

Input.
SimulationEngineComponent.
Required.
Specifies associated SimulationEngineComponent if
the object is a SimObject.
None.
None.

• R e m o v e O b j e c t
Obj ective:

Parameters:
reference

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method de-registers an application object with
the simulation executive.

Input.
Unique Reference.
Required.
Specifies the unique reference of the application
object to be de-registered.
None.
None.

B.2 Modified SimulationEngineComponent Interface

I n t e r f a c e D i a g r a m :

«interface»StateSave

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave

DuplicateState(in original: StateSave)

1
«\ri\erface»SimulationEngineComponent

+New(in clusterlD: Integer)
+Delete()
+ScheduIeEventAtTime(in eventDelegate : Delegate, in simTime : double, in p rio rity : EventPriority) : EventID
+ScheduleEventlnTime(in eventDelegate: Delegate, in delta : double, in priority: EventPriority): EventID
+RescheduleEvent(in eventID: EventID, in delta: double)
+RescheduleAIIEvents(in delta: double)
+lnterruptEvent(in eventID: EventID)
+lnterruptAIIEvents()
+GetEventTime(in eventID: EventID): Double
+lsPendingEventSetEmpty(): Boolean
+GetAveragePendingEventSetSize(): Integer
+GetAverageEventWaitTime(): Double

Figure B2. Modified SimulationEngineComponent Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

M e t h o d s

• N ew
Obj ective:

Parameters:
clusterlD

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes a SimulationEngineComponent
with the ID of the SimulationCluster it belongs to
and registers itself with the appropriate
SimulationCluster.

Input.
Integer.
Required.
Specifies the SimulationCluster on which the
SimulationEngineComponent has been initialized.
None.
None.

B.3 SimulationCluster Interface

I n t e r f a c e D i a g r a m :

« in te rfa c e » S ta te S a v e

+ResolveReferences()
+RestoreReferences()
+Create(): StateSave
+DuplicateState(in original: StateSave)

I
« in te rfa c e » S im u la tio n C lu s te r

+New(in clusterlD: Integer)
+Delete()
+RegisterSEC(in SEC: SimulationEngineComponent)
+RemoveSEC(in SEC: SimulationEngineComponent)
+SetSimTime(in simTime: double)
+GetSimTime(): Double
+ScheduleEvent(in reference : UniqueReference, in method: EventMethodReference, in methodList: ArgumentList, in simTime: double, in priority: EventPriority)
+GetAveragePendingEventSize(): Integer
+GetAverageEventWaitTime(): Double
+GetAverageMessageQueueSize(): Integer

Figure B3. SimulationCluster Interface

M e t h o d s :
• R e s o l v e R e f e r e n c e s

Obj ective:

Parameters:
Return Value:
Exceptions:

This method resolves references for dynamically
initialized attributes within
None.
None.
None.

a SimulationCluster.

• R e s t o r e R e f e r e n c e s
Obj ective:

Parameters:
Return Value:
Exceptions:

This method restores references for dynamically
initialized attributes within a SimulationCluster.
None.
None.
None.

• C r e a t e
Obj ective: This method creates an empty shell of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

Parameters:
Return Value:

Type:

Exceptions:

SimulationCluster during the state duplication
process of a non-terminating state save operation.
None.

StateSave.
Function: Empty shell of SimulationCluster.

None.

• D u p l i c a t e S t a t e
Obj ective:

Parameters:
original

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method copies the state of "original" to the
current SimulationCluster during the state
duplication process of a non-terminating state save
operation.

Input.
StateSave.
Required.
Specifies
copied.
None.
None.

SimulationCluster whose state is to be

N ew
Obj ective:
Parameters:

clusterlD
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

This method initializes a SimulationCluster.

Input.
Integer.
Required.
Specifies ID of SimulationCluster.
None.
None.

D e l e t e
Obj ective:
Parameters:
Return Value:
Exceptions:

This method disposes
None.
None.
None.

SimulationCluster.

• R e g i s t e r S E C
Obj ective:

Parameters:
SEC

Mode:
Type :
Presence:
Function:

Return Value:
Exceptions:

This method registers a SimulationEngineComponent
with a SimulationCluster.

Input.
SimulationEngineComponent.
Required.
Specifies SimulationEngineComponent to be registered
with the SimulationCluster.
None.
None.

R e m o v e S E C
Obj ective: This method de-registers a SimulationEngineComponent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

with a SimulationCluster.
Parameters:

SEC
Mode: Input.
Type: SimulationEngineComponent.
Presence: Required.
Function: Specifies SimulationEngineComponent to be de

registered with the SimulationCluster.
Return Value: None.
Exceptions: None.

• S e t S i m T i m e
Obj ective:

Parameters:
time

Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

• G e tS i m T im e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

• S c h e d u l e E v e n t
Objective: This method schedules an event on a SimObject if the

SimObject exists within a SimulationCluster. If it
does not, then the SimulationCluster asks the
simulation executive to relay a message with the
required information to the appropriate
SimulationCluster.

Parameters:
reference

Mode: Input.
Type: Unique reference to an application object.
Presence: Required.
Function: Specifies the unique reference to an application

obj ect.
method

Mode: Input.
Type: EventMethodReference.
Presence: Required.
Function: Specifies the reference to the event method.

methodList
Mode: Input.
Type: ArgumentList.
Presence: Required.
Function: Specifies the list of arguments to be used when the

This method returns the current simulation time
within a SimulationCluster.
None.

Double.
Current simulation time.
None.

This method sets the current simulation time for a
SimulationCluster.

Input.
Double.
Required.
Specifies the current simulation time.
None.
None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

s i m T im e
Mode:
Type:
Presence:
Function:

priority
Mode:
Type:
Presence:
Function:

Return Value:
Exceptions:

event method is executed.

Input.
Double.
Required.
Specifies the scheduled execution time of the event
method.

Input.
Event Priority.
Optional.
Specifies the priority of the event method relative
to other delegates scheduled at the same simulation
time.
None.
None.

• G e t A v e r a g e P e n d i n g E v e n t S i z e
Obj ective:

Parameters:
Return Value:

Type:
Function:

Exceptions:

This method returns the average size of the pending
event set for all SimulationEngineComponents within
a SimulationCluster.
None.

Integer.
Average size of pending event set.
None.

• G e t A v e r a g e E v e n t W a i t T i m e
Objective: This method returns the average waiting time for an

event before it is executed within all
SimulationEngineComponents in a SimulationCluster.

Parameters: None.
Return Value:

Type: Double.
Function: Average event wait time.

Exceptions: None.

• G e t A v e r a g e M e s s a g e Q u e u e S i z e
Objective: This method returns the average size of the input

queue in a SimulationCluster.
Parameters: None.
Return Value:

Type: Integer.
Function: Average size of input queue.

Exceptions: None.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

VITA

DEGREES:
Doctor of Philosophy (Electrical and Computer Engineering), Old Dominion
University, Norfolk, VA, May 2007.

Master of Science (Computer Engineering), Old Dominion University, Norfolk, VA,
December 2002.

Bachelor of Engineering (Electronics Engineering), Sardar Patel College of
Engineering, Mumbai University, Mumbai, India, June 2000.

PART TIME EMPLOYMENT:
Software Engineering Intern in the Cargo Simulation and Logistics laboratory at
MYMIC LLC, Portsmouth, VA. (January 2006 - Present)

Research Assistant at the Virginia Modeling Analysis and Simulation Center
(VMASC), Suffolk, VA. (August 2000 - December 2005)

PUBLICATIONS:
Books

• Leathrum J.F., R.R. Mielke, S. Mazumdar, R. Mathew, Y. Manepalli, V. Pillai, and
R.N. Malladi. "A Simulation Architecture to Support Intratheater Sealift
Operations." Defense Transportation: Algorithms, Models and Applications for the
21st Century, Elsevier Science Ltd, 2004.

Journals
• Mathew R., J.F. Leathrum, S. Mazumdar, T. Frith, and J. Joines. "An Object-

Oriented Architecture for the Simulation of Networks of Cargo Terminal
Operations." Journal o f Defense Modeling and Simulation (JDMS) 2, no. 2 (April
2005): 101-116.

• Leathrum J.F., R.R. Mielke, S. Mazumdar, R. Mathew, Y. Manepalli, V. Pillai, and
R.N. Malladi. "A Simulation Architecture to Support Intratheater Sealift
Operations." Mathematical and Computer Modelling 39, no. 6-8 (May 2004): 817—
838.

Conferences
• Mazumdar S., R. Mathew, and J.F. Leathrum. "A Strategy for Distributing

Simulations for Statistical Analysis." In Proc. Summer Computer Simulation
Conference (SCSC 2004), 294-299, 2004.

• Leathrum J.F., R.R. Mielke, T. Frith, and R. Mathew. "Modeling New
Technologies in a Joint Logistics Over The Shore (JLOTS) Operation." In Proc.
Summer Computer Simulation Conference (SCSC 2002), 165-169, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Spring 2007

	The Distributed Independent-Platform Event-Driven Simulation Engine Library (DIESEL)
	Reejo Mathew
	Recommended Citation

	tmp.1553621778.pdf.IlVUd

