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SHORT COMMUNICATION

Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg
yolk
J. H. Leea, S. H. Moonb, Y. Honga, D. U. Ahnc and H.-D. Paik a

aDepartment of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea; bDepartment of Environmental
and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; cDepartment of Animal Science, Iowa State University,
Ames, IA, USA

ABSTRACT
1. Phosvitin, a major phosphoprotein found in egg yolk, has strong antioxidant activity. Activation of
elastase, collagenase, and hyaluronidase by reactive oxygen species are related to the degradation of
ECM and skin aging. The objective of this study was to determine the anti-elastase and anti-
hyaluronidase activity of phosvitin.
2. Elastase from porcine pancreas and hyaluronidase from bovine testes were used to study the
inhibitory activity of phosvitin. To elucidate the mechanism of enzyme inhibition, a Lineweaver-Burk
plot was constructed.
3. Phosvitin inhibited elastase and hyaluronidase activity in a dose-dependent manner. The IC50 value
of phosvitin was 31.6 μg/ml and 1,270 μg/ml against elastase and hyaluronidase, respectively. The
analysis of elastase and hyaluronidase kinetics indicated that the apparent Michaelis constant (appKm)
was increased by phosvitin but the Vmax value was not affected.
4. In conclusion, phosvitin exhibited competitive inhibitory activity against elastase and hyaluroni-
dase. Thus, phosvitin could be used as a natural anti-aging agent in the cosmetics industry.
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Introduction

Skin is constantly exposed to the external environment, and
thus can be damaged more easily than other organs. The
extracellular matrix (ECM) is the outermost component of
skin and acts as a barrier to external stimuli. ECM is com-
posed of various components, such as laminin, collagen,
elastin, and hyaluronic acid (Nystrom and Bruckner-
Tuderman 2019). Solar UV radiation, one of the strongest
stimuli to the skin, induces production of reactive oxygen
species (ROS). ROS induce activation of enzymes that are
closely related to the degradation of ECM, such as elastase,
collagenase, and hyaluronidase (Wittenauer et al. 2015).
These enzymes are known to be involved in skin aging
(Thring et al. 2009; Kumud and Sanju 2018).

Elastin is a protein in the ECM that confers elasticity to
various body tissues, such as skin, lungs, ligaments, and
arteries (Huertas et al. 2018). Elastin is cleaved by elastase,
which is a member of the chymotrypsin family, and is
involved in the degradation of ECM components, such as
collagen, fibronectin, and other ECM proteins (Thring et al.
2009). Elastase can activate matrix metalloproteinase (MMP)
precursors that are associated with the degradation of ECM
(Wittenauer et al. 2015). Therefore, inhibitors of elastase can
prevent degradation of the ECM.

Hyaluronic acid (HA), known as hyaluronan, is a polymer
composed of repeating units of glucuronic acid and
N-acetylglucosamine connected by β-linkages (Lee and
Spicer 2000). This high-molecular-weight polymer is
a component of ECM that provides viscoelasticity, and
plays a crucial role in preventing skin aging by reducing
wrinkles and keeping the skin smooth and hydrated (Necas
et al. 2008; Miri et al. 2014). Hyaluronidase is

a mucopolysaccharide-degrading enzyme that hydrolyses
the β-1,4-glycosidic bonds of HA and induces a decrease in
its viscosity (Necas et al. 2008; Moon et al. 2009; Lee et al.,
2018). Thus, elastase and hyaluronidase inhibitors can be
useful in preventing aging in skin.

Phosvitin is an egg yolk protein, and more than 50% of its
total amino acids is serine (Byrne et al. 1984; Samaraweera
et al. 2011). Of these, more than 90% of serine residues are
phosphorylated, indicating that phosvitin binds to 80% of the
phosphorus in the egg yolk (Taborsky and Mok 1967). This
high phosphorus content facilitates various functional activ-
ities, whereby phosvitin exhibits anti-osteoporosis effects by
stimulating the proliferation, differentiation, and mineralisa-
tion of MC3T3-E1 cells (Jie et al. 2018). Phosvitin is reported
that have an anti-tyrosinase activity in B16F10 melanoma
cells (Jung et al. 2012), act as an antioxidant (Lu and Baker
1986), and has anti-genotoxic (Moon et al. 2014), anti-
microbial (Khan et al. 2000), and immunomodulatory activ-
ity (Lee et al. 2017) because of its strong metal-chelating
activity. However, the anti-hyaluronidase and anti-elastase
activities of phosvitin have not been studied yet.

The aim of this study was to evaluate the inhibitory
activities of phosvitin on elastase and hyaluronidase. In addi-
tion, the underlying mechanisms of inhibition were identi-
fied using enzyme kinetics.

Materials and methods

Sample and reagents

Phosvitin was prepared from chickens egg yolk according to
the method previously described by Lee et al. (2014). Briefly,
egg yolk was homogenised using two volumes of cold DW
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and centrifuged at 3,400 × g for 30 min. After this step, the
precipitant was homogenised with four volumes of 0.05 N
NaOH solution containing 10% NaCl. Then, the pH was
adjusted to 4.0 and centrifuged at 3,400 × g for 30 min. The
solution was heat-treated at 80°C for 30 min and centrifuged
to remove impurities. The supernatant was collected,
desalted using ultrafiltration (membrane filter cut-off size:
10 kDa, GE healthcare Bio-Sciences Corp., Piscataway, NJ,
USA), and then lyophilised using a freeze-dryer. The purity
and yield of isolated phosvitin was 97.2 and 98.7%, respec-
tively. For chemical analysis of phosvitin, SDS-PAGE analy-
sis was conducted (Figure 1).

Elastase was extracted from porcine pancreas (EC.
3.4.21.36), hyaluronidase was obtained from bovine testes
(EC. 3.2.1.35), N-Succinyl-tri-L-alanine-4-nitroanilide, hya-
luronic acid, and p-dimethyl-aminobenzaldehyde were pur-
chased from Sigma Chemical Co. (St. Louis, MO). All other
organic solvents and chemicals used were of analytical grade.

Elastase inhibition assay

The anti-elastase activity was evaluated according to the
method previously described by Wittenauer et al. (2015)
with some modifications. Elastase obtained from porcine
pancreas (1 unit/ml, EC. 3.4.21.36, Sigma Chemical Co.)
and its substrate (N-succinyl-tri-L-alanine-4-nitroanilide,
0.6 mM, Sigma Chemical Co.) were dissolved in 2 mM Tris
buffer (pH 8.0). Then, various concentrations of phosvitin
(30 μl, 7.81–2,000 μg/ml distilled water) and 10 μl of enzyme
solution were mixed with 100 μl of buffer in 96-well plate.
The plate was pre-incubated at 25°C for 20 min. Then, 40 μl
of the substrate solution was added to each well. The anti-

elastase activity of phosvitin was measured by continuously
monitoring the absorbance at 410 nm for 20 min using
a microplate reader (Multiskan GO, Thermo Scientific,
Waltham, MA, USA). The initial velocities were calculated
from the slope of absorbance change during the first 10 min
of the reaction. The control used distilled water instead of
phosvitin solution. The anti-elastase activity was calculated
according to the following equation:

Anti� elastase activity %ð Þ ¼ ðinitial velocitycontrol
�

� initial velocitysampleÞ =initial velocitycontrol
i

� 100

IC50 values were determined using the software Softmax Pro
(Molecular Devices, San Jose, CA, USA).

Hyaluronidase inhibition assay

The anti-hyaluronidase activity was evaluated as described by
Moon et al. (2009) with modifications. Hyaluronidase
obtained from bovine testis (EC. 3.2.1.35, Sigma Chemical
Co.) (100 μl, 3,000 units/ml) was mixed with 100 μl of different
concentrations of phosvitin (500, 1,000, 1,500, and 2,000 μg/
ml) and treated with 500 μl of hyaluronic acid (5 mg/ml)
dissolved in 0.1 M acetate buffer (pH 3.5). After 40 min of
incubation at 37°C, 2 ml of p-dimethyl-aminobenzaldehyde
was added and the optical density of mixtures was measured at
570 nm in a microplate reader. The control used distilled
water instead of phosvitin solution. The anti-hyaluronidase
activity was calculated using the following equation:

Anti� hyaluronidase activity %ð Þ
¼ Acontrol � Asample

� �
=Acontrol

� �� 100

Where, A control refers to the absorbance of distilled water
and A sample refers to the absorbance of sample at 570 nm.
IC50 values were determined using the software Softmax Pro.

Kinetics of enzyme inhibition

Enzyme kinetics is an important tool to investigate the
mechanism of catalysis. The kinetic parameters were deter-
mined using the Lineweaver-Burk plot method. The reaction
conditions of elastase and hyaluronidase were the same as
those mentioned above. Various substrate (elastase: 0.125,
0.25, and 0.5 mM; hyaluronidase: 0.5, 1, and 2 mg/ml) and
phosvitin concentrations (elastase: 0, 25, and 50 μg/ml; hya-
luronidase: 0, 125, and 250 μg/ml) were used for the kinetic
study. From Lineweaver-Burk plot graph, Vmax and appKm

(apparent Michaelis constant) values were obtained as the Y-
and X-axis intercepts, respectively (Y-axis intercept: 1/Vmax;
X-axis intercept: −1/appKm) (Kim et al. 2018).

Statistical analysis

All results are presented as means and standard deviations
from the three independent experiments. Differences
between means frommultiple groups were analysed as a one-
way analysis of variance (ANOVA), followed by the
Duncan’s multiple range test (P < 0.05). All calculations
were performed using SPSS for Windows version 18.0
(SPSS Inc., Chicago, IL, USA).

Figure 1. SDS-PAGE (15% gel) band pattern of phosvitin. Lane 1: marker,
lane 2: Standard phosvitin (1 mg/ml), lane 3: isolated phosvitin (1 mg/ml).
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Results and discussion

The inhibitory activity of phosvitin on elastase and hyalur-
onidase is shown in Figure 2. Phosvitin inhibited the activ-
ities of elastase and hyaluronidase in a dose-dependent
manner. However, phosvitin exhibited higher inhibitory
activity against elastase than hyaluronidase. At 500 μg/ml
concentration, phosvitin showed > 90% (92.77 ± 0.45%) inhi-
bitory activity against elastase, and the amount needed for
50% inhibition (IC50) was 31.6 μg/ml (Figure 2 (a)). On the
other hand, much higher level of phosvitin was needed to
inhibit hyaluronidase than elastase activity, whereby phosvi-
tin at 2,000 μg/ml level inhibited hyaluronidase activity by
92.47 ± 2.14%, while phosvitin concentrations of 1,500,
1,000, and 500 μg/ml inhibited hyaluronidase activity by
65.91 ± 4.73%, 34.11 ± 5.61%, and 2.54 ± 5.55%, respectively.
The IC50 value of phosvitin on hyaluronidase was 1,270 μg/
ml (Figure 2 (b)).

To confirm the mechanism of enzyme inhibition by phosvi-
tin, an enzyme kinetics study was conducted (Figure 3, Table 1).
Lineweaver-Burk plots revealed that the apparent Michaelis

constant (appKm) of phosvitin was increased (elastase: 1.807,
3.700, and 5.373 mM substrate; hyaluronidase: 0.789, 0.897,
and 1.068 mg/ml substrate). This indicated that phosvitin
affected the affinity of enzyme to the substrate. However, the
Vmax values did not change (elastase: 0.075, 0.074, and 0.074ΔA/
min; hyaluronidase: 0.029, 0.028, and 0.028 mM/min). These
patterns were similar to a competitive inhibition model
(Kakizaki et al. 2015; Kim et al. 2018), which indicated that
phosvitin acted as a competitive-type inhibitor of elastase and
hyaluronidase. These results suggested that phosvitin interacted
with the active sites of elastase and hyaluronidase and interfered
with the substrate-binding to the enzyme.

Many competitive inhibitors of elastase (e.g., isoflavones;
Kim et al. 2018) and hyaluronidase (e.g. oligosaccharides and
flavonoids; Kakizaki et al. 2015; Kuppusamy et al. 1990) have
been reported. These inhibitors bind to the active site of
enzymes where they block substrate attachment or alter
enzyme conformation (Khueychai et al. 2018).

Many researchers have studied natural candidates that
can be used as anti-aging agents in the cosmetics industry.

Figure 2. Inhibition of in vitro elastase activity (a) and hyaluronidase activity (b) by phosvitin. Values are expressed as the mean ± standard deviation. Different
letters among samples indicate significant differences by Duncan’s multiple range test (P < 0.05) (n = 3). IC50 values were determined using the software Softmax
Pro.

Figure 3. Lineweaver-Burk plot of elastase (a) and hyaluronidase (b) inhibition by phosvitin. (a) ●: 0 μg/ml of phosvitin, ■: 25 μg/ml of phosvitin, and▲: 50 μg/ml
of phosvitin, (b) ●: 0 μg/ml of phosvitin, ■: 125 μg/ml of phosvitin, and ▲: 250 μg/ml of phosvitin.

Table 1. Values of appKm, Vmax, and slope of Lineweaver-Burk plot on the inhibition of elastase and hyaluronidase by phosvitin.

Phosvitin concentration appKm* (mM) Vmax (ΔA/min) Slope R2 value Inhibition model

Elastase
0 μg/ml 1.807 0.075 24.033 0.99 Competitive inhibition
25 μg/ml 3.700 0.074 49.733 0.99
50 μg/ml 5.373 0.074 72.044 0.99

Phosvitin concentration appKm (mg/ml) Vmax (mM/min) Slope R2 value Inhibition model

Hyaluronidase
0 μg/ml 0.789 0.029 27.429 0.99 Competitive inhibition
125 μg/ml 0.897 0.028 31.774 0.99
250 μg/ml 1.068 0.028 38.610 0.99

*appKm, apparent Michaelis constant.
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They studied the anti-elastase and anti-hyaluronidase activ-
ities because these inhibitors are known to play crucial roles
in anti-aging of skin by protecting the degradation of elastin
and HA, which are ECM components (Kumud and Sanju
2018). Following the degradation of elastin, the skin lost its
elasticity and showed wrinkling and sagging (Liyanaarachchi
et al. 2018). HA can hold large amounts of moisture
(approximately 6 l of water in 1 g), indicating that the
inhibitors of hyaluronidase can effectively regulate skin
moisturisation (Jegasothy et al. 2014).

Elastase is a member of the serine proteases. It has three
subunits bound with calcium ions and a cofactor (Sadeghi-
Kaji et al. 2019). Phosvitin exhibits a strong chelating activity
to metals such as Mg2+, Ca2+, Mn2+, Co2+ and Cu2+ ions
(Zhang et al. 2016). This is probably why phosvitin exhibits
inhibitory activity against elastase. Moreover, phosvitin has
a hydrophobic region composed of relatively rich hydrophobic
amino acids (Byrne et al. 1984). Sunitha et al. (2013) reported
that hydrophobic parts of hyaluronidase play a crucial role in
facilitating interactions with the thiol group of glutathione.
A previous study showed that the hydrophobic properties of
phosvitin are important factors in inhibiting tyrosinase by
interacting with the hydrophobic region of the enzyme (Jung
et al. 2012). Therefore, phosvitin can bind to the active site of
hyaluronidase and enabled strong hydrophobic interactions.
Jung et al. (2012) reported that phosvitin exhibited inhibitory
activity against tyrosinase both in vitro and ex vivo. Phosvitin
showed inhibition of mushroom tyrosinase. Furthermore, it
inhibited the expression of tyrosinase and its related proteins
1, 2 (TRP-1, TRP-2) in B16F10melanoma cells. This suggested
that phosvitin has a high potential to be used as a whitening
agent in the cosmetics industry.

In conclusion, phosvitin from egg yolk exhibited inhibi-
tory activity against elastase and hyaluronidase that are
related to skin aging. The inhibition model of phosvitin
involves competitive inhibition, indicating that phosvitin
combined with active sites of elastase and hyaluronidase
and interfered with the formation of enzyme-substrate com-
plex. These results suggested that phosvitin could be used as
a natural anti-aging agent in the cosmetics industry.
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