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ABSTRACT 

SYNTHESIS OF ALD ZnO AND THIN FILM MATERIALS OPTIMIZATION FOR 
UV PHOTODETECTOR APLLICATIONS 

Kandabara Nouhoum Tapily 
Old Dominion University, 2011 
Director: Dr. Helmut Baumgart 

Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is 

thermodynamically stable in the wurtzite structure at ambient temperature conditions. 

ZnO has very interesting optical and electrical properties and is a suitable candidate for 

numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. 

ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, 

achieving good homojunction ZnO-based photodiodes such as UV-photodetectors 

remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates 

such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes 

suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect 

levels responsible for the electrical and optical behaviors. Presently, there is no clear 

consensus about the origin of those defects. 

In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a 

novel deposition technique suitable for nanotechnology engineering that provides unique 

features such as precise control of ZnO thin film with atomic resolution, high uniformity, 

good conformity and high aspect ratio. Using this novel deposition technique, the ALD 

ZnO deposition process was developed and optimized using diethyl zinc as the precursor 

for zinc and water vapor as the oxygen source. In order to optimize the film quality for 

use in electronic applications, the physical, mechanical and electrical properties were 



investigated. The structural and mechanical properties of the ALD ZnO thin films were 

investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), 

atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic 

Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS 

absorption and nanoindentation. The electrical characterizations were performed using C-

V, I-V, DLTS, Hall Effect, and four-point probe. 

The intrinsic defects responsible for the electrical and optical properties of the ALD 

ZnO films were analyzed and identified. ALD ZnO based electronic devices were 

fabricated, optimized and their electrical characteristics measured. The photocurrent 

characteristics of ALD ZnO were also optimized, and high efficiency UV-photodetectors 

were achieved. 
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NOMENCLATURE 

AFM = Atomic Force Microscope 

ALD = Atomic Layer Deposition 

TEM = Transmission Electron Microscopy 

SEM = Scanning Electron Microscope 

XPS = X-ray Photoelectron Spectroscopy 

CVD = Chemical Vapor Deposition 

PVD = Physical Vapor Deposition 

MBE = Molecular Beam Epitaxy 

ZnO = Zinc Oxide 

Si = Silicon 

Ar = Argon 

N2 = Nitrogen 

CSM = Continuous Stiffness Measurement 

DEZ = Diethyl Zinc 

Zn; = Zinc interstitial 

V0 = oxygen vacancy 

Vzn = Zinc vacancy 

DI = Deionized Water 

/? = correction factor for Berkovich indenter 

vs= substrate Poisson's ratio 

v,-= indenter Poisson's ratio 

Es= substrate Young's modulus 



Ei= indenter Young's modulus 

Eeff= Film's effective modulus 

H= Meyer's hardness 

Ehv= energy of a photon 

K= Boltzmann's constant = 1.38x 10'23 J/K 

q = electron charge = 1.6 x 10"19 C 

h= Planck's constant = 6.626 x 10"34 m2kg/s 

A** = Richardson's constant 

T = temperature in °K 

c= Speed of light = 3*108 m/s 
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CHAPTER 1 

INTRODUCTION 

1.1 Material Properties 

ZnO is a wide bandgap, II-VI semiconductor. ZnO crystallizes in either a cubic or 

hexagonal structure. The three known crystal structures of ZnO are zincblende, rocksalt 

and wurtzite structure. The first two are cubic while the latter is hexagonal. The wurtzite 

crystal structure of ZnO is the thermodynamically stable form of ZnO at ambient 

temperature conditions. The wurtzite structure has a unit cell with two lattice parameters 

a and c. Like most wurtzite crystal structure materials, ZnO belongs to the hexagonal 

system with space group C6V
4
 (P63mc) with two formula units per primitive cell, where 

all atoms occupy C3V sites.1 Each Zn atom is surrounded by four O atoms and each O 

atom is surrounded by four Zn atoms. Figure 1 shows a schematic configuration of the 

wurtzite of ZnO. 

ZnO exhibits many technologically important properties such as piezoelectric, 

ferromagnetic properties. ZnO reveals high resistivity in the order of ~1012
 Q-cm when 

doped with Li ions. ZnO has many technologically interesting properties such as 

piezoelectric, ferroelectric, ferromagnetic properties that can be modulated by doping 

with transition metals. ZnO is thermochromic. These properties make ZnO an ideal 

candidate for spintronics, medical applications such as ointments and sun screen lotion, 

solar cells, UV light-emitting diodes, sensors, surface acoustic devices, transparent 

electronics like those in transparent thin film transistor and transparent conductive 

electrodes. ZnO is a good and less expensive alternative to indium tin oxide (ITO). A 



comparison of key properties of ZnO and the leading competing wide bandgap 

semiconductor materials is displayed in Table 1. With a binding energy of 60 meV, lasing 

operation can occur in ZnO even at room temperature. The high binding energy and 

relatively inexpensive processing cost give ZnO an edge over GaN (with a band energy 

-3.4 eV) for LED applications. ZnO exhibits superior UV emissions.3 The undoped ZnO 

has a bandgap of-3.4 eV. This bandgap can be modulated according to the doping level 

with various dopants. Magnesium doping increases the bandgap of ZnO.4 However 

doping ZnO with CdO decreases the bandgap.5 Consequently, one can tune the bandgap 

to applications where a range of wavelengths is required or to cut off undesired 

wavelengths. In addition, ZnO is very stable under ionizing radiation making it a suitable 

candidate for optical applications in outer space. 

Figure 1. Wurtzite structure of ZnO showing tetrahedral bonding. Blue spheres (or larger 

spheres) represent Zn atoms and red spheres (smaller spheres) represent O atoms. 



Various forms of ZnO such as single crystal bulk, thin films, powder, and 

nanostructures such as nanotubes,6 nanosheets,10 needles,7'8 nanorods,9 shells, n ribbons, 

10 and tetrapods n can be synthesized by numerous techniques. Some of the growth 

techniques used to deposit ZnO are sputtering,12 pulsed laser deposition, 13'14 

electrochemical decomposition,15 thermal evaporation,9 vapor liquid phase,16 metal 

organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) and, 

most recently, atomic layer deposition (ALD).19,20 

21 
Table 1. Comparison of keys parameters of most studied wide bandgap materials. 

Crystal Lattice Bandgap Energy Energy Excitonic Dielectric 
Material structure parameter energy of of binding constant 

a(/t) {eV) cohesion fusion (meV) e(0) 
c(i) (eV) (°K) 

ZnO 

ZnS 

ZnSe 
GaAs 
GaN 

6H-SiC 

Wurtzite 

Wurtzite 

Zincblende 
Zincblende 
Wurtzite 

Wurtzite 

3.25 
5.21 
3.82 
6.26 
5.66 
5.65 
3.19 
5.19 
3.18 
15.12 

3.37 

3.8 

2.7 
1.43 
3.39 

2.86 

1.89 

1.59 

14.29 

2.24 

3.17 

2248 

2103 

1793 

1973 

>2100 

60 

30 

20 
4.2 
21 

-

8.75 

9.6 

9.1 

8.9 

9.66 

Although ZnO has been studied for decades, it is attracting more attention due to 

its optical properties. It exhibits visible emission, such as green, yellow, and red/orange 

emission, due to the presence of intrinsic and extrinsic defect levels in the ZnO film. In 

fact, the emission wavelengths in ZnO photoluminescence can be modulated according to 

the defect levels present in the film. 
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1.2 Defects in ZnO 

Defect related luminescence in ZnO occurs in three main bands: green 

luminescence, yellow luminescence and red/orange luminescence. The green emission 

occurs at ~2.3 eFor at a wavelength of 510 nm. The yellow emission occurs at 2.1 eV ox 

at a wavelength of 570 nm. The red/orange emission occurs at 1.8 eV ox at a wavelength 

of 650 nm?
1 Despite the well known emission at the green, yellow and red wavelengths, 

there remains great controversy about the origins of those emissions. Green emission is 

thought to be due to the transition of a singly ionized oxygen vacancy and a photo excited 

hole,23 transition between an electron close to the conduction band and a deeply trapped 

hole at a doubly ionized oxygen vacancy,24 and surface defects.25 Yellow/red-orange 

emission is associated with excess oxygen.26 Different surface treatments have been 

proposed in order to reduce the defect level and to study their effects on the 

photoluminescence. Roy et al.27 have demonstrated that the introduction of water was 

found to reduce the defect related luminescence. Hydrogen is an impurity that is always 

found in ZnO due to the current growth techniques. Hydrogen acts as a shallow donor 

when incorporated into ZnO. Incorporating hydrogen leads to a weakening of the donor-

bound exciton line at 3.62 eV. 

Visible emissions in ZnO are due to intrinsic and extrinsic defects. Defects in 

ZnO are usually zinc interstitials (ZnO, oxygen vacancies (V0), hydrogen, dislocations, 

carbonates, and hydrogen carbonates. Intrinsic defects are either elemental impurities, 

such as hydrogen, or structural defects in the ZnO crystal lattice such as Zn;, V0 and Vz„, 

and dislocations. These defects are also called deep-level defects. The intrinsic defects, 
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which are found about 0.01-0.05 eV below the conduction band, are referred to as 

shallow defect levels 

The two most common intrinsic defects found in ZnO are oxygen and zinc 

vacancies and interstitials. An oxygen vacancy has a lower formation energy than a Zn 

interstitial. Therefore, a region with a higher concentration of zinc has a higher oxygen 

vacancy concentration. In an oxygen rich region, zinc vacancy concentration is higher. 

Defect related emission in ZnO is also dependent on the sample preparation techniques. 

Deposition parameters such as pressure, temperature, and flow rate, influence the defect 

types and concentrations which in turn affect visible photoluminescence emission. Due 

to the variety of the defects and the fact that defects can exist both at the sub-lattice level 

and in different charge states, interpreting experimental results becomes complex. 

Another defect type in ZnO is hydrogen. Hydrogen easily diffuses in ZnO and attaches 

itself to an oxygen atom forming an OH group. H atoms always act like donors. It is 

thought hydrogen defect level in ZnO is responsible for the undoped n-type 

conductivity.28 

Extrinsic defects in contrast are due to intentional impurities introduced to change 

the optical and electrical properties of the material. The common dopants in ZnO include 

Li, Na, Cu,,N, P and As. Cu doping is effective in enhancing the green luminescence. Li 

and the group I elements are used as p-type dopants. Because of their small radii, group I 

elements tend to occupy interstitial sites and become donors instead of acceptors and 

consequently contribute to the n-type conductivity. The native defect levels tend to 

compensate for the effect of dopants. In order to form a p-type ZnO, it is important to 

keep the formation energy of donor-type defects very low. P-type ZnO still remains an 
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interesting challenge to overcome. However, it was found that N-doped ZnO exhibits p-

type conduction.29 

1.3 Photodiodes 

A Diode is a two terminal semiconductor device consisting of a single p-n junction. 

When the p-type material and the n-type material composing the diode are the same, the 

diode is called a homojunction diode. An example is a Si diode. A heterojunction diode is 

formed with a p-n junction made of different materials, for example a GaAs/AlGaAs 

diode. At equilibrium with no external voltage applied, a depletion region forms in a p-n 

junction due to the diffusion and drift of electron and holes. The electrons diffuse to the p 

region and the holes diffuse to the n region where they constitute minority carriers. 

Consequently, a region depleted of charge carriers forms near the metallurgical junction, 

hence the depletion region is created. The diffusion of holes and electrons from the 

junction leaves ionized acceptors and donors in the depletion region. The negatively 

charged acceptors are fixed near the p-region while the positively charged donors are 

fixed near the n-region. Thus, a built-in voltage develops in the depletion region. The 

built-in voltage gives rise to an electric field with a maximum at the junction. A 

photodiode is a diode that converts incident light into electric current. 

Figure 2 shows a schematic of a p-n junction diode at equilibrium, and under positive 

and negative biases. Positive bias reduces the depletion while negative bias increases the 

depletion region. The effect of the voltage bias on the energy bands and diode 

characteristics will be discussed in detail in later chapters. The total current of the p-n 

junction is equal to the sum of the diffusion and drift current. At thermodynamic 

equilibrium without external bias, the drift current is equal to the diffusion current 



resulting in a zero flow of current. When photons of energy Ehv greater than the bandgap 

Eg of the semiconductor material, for example for Si Eg= 1.1 eFand for ZnO Eg = -3.4 

eV, are absorbed in the material electron-hole pairs are generated. The electrons and holes 

are separated by the electric field that acts across the depletion region. The electrons and 

holes that are generated within the depletion width diffuse into the depletion region. 

Electrons are collected in the n region and the holes to the p region. When the photodiode 

is electrically connected, a current flows. The generated current, photocurrent, is 

proportional to incident light. 
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Figure 2. Schematic of a) p-n junction diode and the electrical representation of a 

photodiode. b) p-n junction under forward bias, c) p-n junction under reverse bias. 
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The current in a photodiode in the absence of an incident light is similar to a 

rectifying diode and is called the dark current. The mathematical relationship of the dark 

current is given as follows 

Idark = I s ^ - \ ) (1) 

where Uark
= dark current, V= bias voltage, Is is the saturation current = current flowing at 

V=0, q= electron charge, k = Boltzmann's constant and T = temperature in (°K). 

Under optical stimulation, the total current is in terms of the generated photocurrent and 

is given as follows: 

Itotai = Is(fi-\) + Ip , (2) 

where Ip is the generated photocurrent. 

The current - voltage (I-V) relationship described above is shown in Figure 3. 

When the diode is forward biased the current is exponential. In reverse bias mode very 

little leakage current flows. As the reverse bias increases, a sharp increase in current is 

observed. The voltage at which the sharp increase occurs is called the breakdown voltage. 

The electrical representation of a photodiode is shown in Figure 4. The shunt 

resistance RShunt is the inverse slope of the I-V curve at V=0. Ideally, Rshunt should be 

infinite. In practice, a very large Rshunt is desired. A large RShunt results in lower noise 

current. The photodiode has a resistance in series, Rsenes- Rsmes rises from the contacts 

resistance. The series resistance of a photodiode should be as small as possible. The 

boundaries of the depletion region form a capacitance. The junction capacitance Cj is 

indirectly proportional to the reverse bias and affects the device response time. 
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Figure 3.1-V characteristics of a photodiode as a function of illumination. Light 1 - Light 

3 represent different incident light intensity. As the intensity increases the shift in the 

current is more pronounced. 
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Figure 4. Equivalent electrical representation of a photodiode. Ip = photogenerated 

current. Ia= diode current. Cj = junction capacitance. RShunt = shunt resistance, Rsenes= 

series resistance. 

Photodiodes have two main modes of operation. The first mode is the 

photovoltaic mode, and the second one is the photoconductive mode. In the photovoltaic 

mode, the photodiode is unbiased. While in photoconductive mode, a reverse bias is 

applied. In photoconductive mode the speed of response is improved; however, the 

increase in the device speed comes at the expense of noise current. The reverse bias 

increases the noise current. In photovoltaic mode, the dark current is minimized. The 

photovoltaic mode is the mode of operation of solar cells. 

The responsivity, R, is a measure of the sensitivity of a photodiode. It is defined 

as the ratio of the photocurrent and the power of the incident light 

R = ?P {AW) (3) 

where P is the power of the incident light of a given wavelength. The responsivity varies 

with wavelength. The percentage of the light that contributes to the photocurrent is 

called quantum efficiency. It is a measure of the effectiveness of the conversion of light 

into current. The quantum efficiency (QE) in terms of responsivity is: 

QE=«^ (4) 
Aq 

where c= speed of light and X = wavelength of light. 

1.4 Metal contacts 

The contacts in a photodiode affect its performance, especially the series 

resistance of the diode. An Ohmic contact is defined as a metal-semiconductor contact 
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that produces a negligible contact resistance. The I-V characteristic of an Ohmic contact 

is linear. On the other hand, a Schottky contact of a metal-semiconductor produces a 

barrier height to the electron flow. The barrier height has to be overcome for current 

flow. The Schottky contact produces non-linear diode I-V characteristics.30 The current 

density of the diode can be written as follows: 

J = A~T
2
e

kT
 e

nkT
-l 

V ) 
(5) 

where J = current density, T = temperature, q = electron charge, k= Boltzmann's 

constant, V = applied voltage, n= diode factor, Kn<2, and A * = Richardson's constant 

Amnk
2
q 

A = • 

where m = electron effective mass and h = Planck's constant. 

(6) 

The specific contact resistance, pc, of the metal-semiconductor can be written in 

terms of the current density and voltage. 

( 

Pc 

Or 

Pc 

dJ 

dV 

V1 

(a-cm
2
) (7) 

qA~T 

V=Qj 

,kT (8) 

1.5 Dissertation Overview 

The renewed interest in ZnO is due to its excellent optical and electrical 

properties and due to novel advanced deposition equipment and technology that hold 

great promise for technological advancement. Understanding the optical behavior and the 

root causes of the optical emission is critical to the development of ZnO based 
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optoelectronic devices. ZnO thin films exhibit a strong UV emission which will benefit 

UV detectors; however, the difficulty in achieving good homojunction ZnO based 

photodiodes due to the lack of reproducible p-type ZnO is a challenge. The intrinsic 

defects are responsible for the electrical and optical behaviors of ZnO. To date, many 

controversies can be found in the scientific literature about the origin of those intrinsic 

defects in ZnO. The main objective of this work is to provide an understanding of the 

native defects and to combine the atomic resolution feature of ALD to deposit, control, 

characterize the native defects and to optimize ZnO layers for electronic and 

optoelectronic applications. First, the ALD process of ZnO will be developed. ALD ZnO 

thin films will be synthesized and the quality of films will be improved. ALD deposition 

parameters such as temperature, pressure, and surface chemistry will be established and 

optimized. Then, the native defects responsible for the electrical and optical properties 

will be investigated to provide a deeper understanding of how to minimize the defects in 

the ALD ZnO films. High-efficiency ZnO UV photodetectors will be fabricated. The 

optimization of the diode characteristics will be divided into three main sections: 

- Optimization of Schottky and Ohmic contacts to ZnO (Pt, Au, Ni, Al, Ti, W), 

- Improvement of ZnO thin film quality and interface, 

- Optimization of metal contacts. 

To achieve these goals, a variety of different characterization techniques will be 

used such as spectroscopic ellipsometry, TEM (cross-sectional view and interface study), 

XRD (crystallinity study), RBS + EDS (ZnO films stoichiometry), XPS (binding energy 

study, and band energies determinations to accurately study defect levels). 



13 

CHAPTER 2 

ATOMIC LAYER DEPOSITION (ALD) 

2.1 Introduction 

Various forms of ZnO such as single crystal, thin films, powder and 

nanostructures such as nanotubes, nanosheets, needles, nanorods, shells, ribbons and 

tetrapods can be synthesized. However, most of ZnO growth technique to date studied in 

technical literature rely on sputtering, pulsed laser deposition, evaporation, vapor liquid 

phase, metal organic chemical vapor deposition, molecular bean epitaxy. In this work, 

ZnO is grown using a novel technique offered by ALD to optimize and deposit very 

uniform thin film for photoelectronics applications such as photodetectors. In this 

chapter, ALD technique is explored. 

2.2 Background 

Currently, atomic layer deposition (ALD) is the only deposition technique that 

can offer thin film uniformity at the atomic resolution at the 32 nm technology node and 

beyond. ALD was developed in Finland by Suntola and colleagues in the late 1970s as 

atomic layer epitaxy or ALE.31 ALD is a new version of the old chemical vapor 

deposition (CVD)-like technique based on alternate saturated surface reactions and 

provides crucial new techniques for nanotechnology process engineering.32 One key 

property of ALD is its self-limiting film growth feature. Each precursor is pulsed into the 

chamber sequentially, one at a time, and reacts only with the surface until the surface is 

completely saturated with a monolayer. ALD is a surface reaction driven deposition 

technique. Unlike other CVD techniques, ALD is capable of depositing thin film on 
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complex surface morphology with extremely high aspect ratio, excellent conformity and 

uniformity, and gives the user excellent control over the film thickness with atomic 

resolution. A variety of materials can be deposited by ALD ranging from semiconductors 

and metals to insulators. Some of the technologically important materials that can be 

deposited by ALD are given in Table 2. 

Table 2. Period table elements and oxides deposited by ALD 

Materials 
Metals and elemental semiconductors 
Insulators 
Semiconducting metal oxides 

Nitrides 

II-VI compounds 
III-V compounds 
Other compounds 

Chemical Formulas 
W, Pt, Ru, Cu, Mo, Ge, Si, Ni, Ti 
A1203, Hf02, Zr02, Ta205, La203, Si02 

ZnO, ZnO:Al, ln203, In203:X (X= Sn, F, 
Zr), Sn02, NiO, WO3 
GaN, A1N, InN, TiN, TaN, NbN, MoN, 
SiN,WN 
ZnS, ZnSe, ZnTe, CaS, SrS, BaS 
GaAs, InP, InAs, GaP, A1P, AlAs 
LaCo03, LaNi03, La2S3, PbS, In2S3, ZnF2, 
CaF2, YBa2Cu307.x 

2.3 ALD Film Growth 

Thin film growth in an ALD reactor occurs in a cyclic manner. Each ALD growth 

cycle is divided into four different process steps. In the first step, the first volatile 

chemical precursor is pulsed into the chamber and allowed to react with the surface until 

the surface is saturated. Then in the second step, the ALD chamber is purged by an inert 

gas such as nitrogen or argon. In this step, the bi-products and any left-over reactants are 

evacuated to an exhaust system. In the third step, the second chemical precursor is pulsed 

into the ALD chamber and reacts with the reacted surface from the first chemical 
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precursor to form the final compound. In the fourth step, the ALD chamber is purged 

again with an inert gas. A schematic illustrating an ALD cycle is shown in Figure 5. The 

ALD growth cycles are repeated as many times as necessary to deposit the desired film 

thickness. Few cycles are usually needed in order to deposit one monolayer of an ALD 

film depending on the growth rate of the chemical precursor. 

i) 
* * * 

* tt 

Substrate 

2) 

Substrate 

3) 

*y 
<h ^ <? o- <* *> 

Substrate 

4) 

Substrate 

5) 

Substrate 

Figure 5. Schematic of an ALD cycle. 1) Pulsing of the first precursor. 2) Purging of the 

chamber with inert gas. 3) Pulsing of the second precursor. 4) Purging of the chamber 

with inert gas. 5) Repeat step 1-4 to increase film thickness 

Each reaction taking place in an ALD reactor is complete, which implies each 

precursor reacts with the substrate surface, and the reaction is self terminating as soon as 
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the surface is saturated. This feature provides ALD its characteristic self-limiting growth 

nature. Therefore, the chemical precursor dose is irrelevant as long as it is enough to 

cover and saturate the substrate surface. The deposition rate is independent of the 

chemical precursor flux and depends only on the number of ALD cycles used. The purge 

step removes all excess precursor and volatile bi-products. ALD depositions are usually 

carried out at low temperatures less than 400 °C. If the deposition temperature is too high, 

the density of chemically reactive sites is reduced or thermal decomposition of ALD the 

film and chemical precursors can happen. When the temperature is too low, thermally 

activated reactions are reduced. Therefore, a careful control of the range of temperatures 

is required for stable ALD growth. Experimental determination of the ALD process 

window or ALD temperature window is the most important task in an ALD deposition to 

ensure the saturation and self-limiting nature of ALD. Establishing an accurate ALD 

process window ensures proper ALD growth, which means by definition the ideal case of 

a monolayer per cycle and dependency of the deposition rate only on the number of 

cycles used. Figure 6 shows schematically the ALD process window as a function of 

temperature. 
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Figure 6. ALD process window as a function of temperature. 

2.4 ALD Reactor 

Similar to most CVD equipment, ALD depositions can be performed in different 

types of reactors. The sequential pulsing of the chemical precursors and the need for 

surface saturation in the reactions require some specific components on all ALD 

equipment. However, the self-limiting nature of ALD provides a lot more freedom in 

designing such reactors. All ALD reactors must have the following properties 

Carrier gas supply (usually N2 or Ar); 

Precursors inlet lines; 

Flow and sequential control of the chemical sources (mass flow controller, 

high speed valves); 

- ALD Reaction chamber; 

- Temperature control of the heated precursor and of the reaction chamber; 
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- Vacuum pump and all related exhaust equipment;. 

High switching speed valves for the delivery of the volatile chemical 

precursors. 

There are many types of ALD reactors that are used in commercial and academic 

research and development applications. 

2.4.1 Viscous Flow Reactor 

The flow-type ALD reactors are designed to minimize the purge and pulse time 

while maximizing the precursor utilization. The reactants are pulsed and delivered to the 

reaction chamber by a constant flow of the inert gas. Each chemical precursor pulse is 

separated from the next pulse by a sufficient flow of the inert gas and a sufficiently long 

purging time. A schematic diagram of an ALD flow reactor is shown in Figure 7. 
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Figure 7. ALD flow type reactor 
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Some examples of viscous flow type reactors are the cross-flow reactor and the 

top-flow reactor. In the case of top-flow reactors, the reactants are delivered to the 

substrates through a shower head configuration or some other kind of mechanism from 

the top of the reaction chamber. 

2.4.2 Molecular flow reactor 

Vacuum type reactors or molecular flow type reactors require high vacuum for 

operation. The deposition rate in a molecular flow reactor is much lower than that of a 

viscous flow reactor. Due to the high vacuum needed for molecular flow reactors, 

loadlock chambers are required. Molecular flow reactors allow the implementation of In-

situ measurement set-ups such as x-ray photoelectron spectroscopy (XPS) and low 

energy electron diffraction. 

2.5 ALD Precursors 

ALD precursor design is an important part of all ALD deposition. A variety of 

different precursors are used for ALD coatings. The most common types of chemical 

precursors used are metal halides, metal alkyls, metal alkoxides, metal alkylamides, metal 

nitrides, metal B-diketonates, and metal cyclopentadienyls. The chemical precursors to be 

used in an ALD process have to fulfill the following requirements: 

- High Volatility; 

- Reactivity: very aggressive and complete reactions; 

- Thermally stable; 

- No self- decomposition; 

- No etching of the film; 

- Unreactive volatile bi-products; 
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- Cost effective and environmentally friendly. 

2.6 Advantages and Disadvantages of ALD 

Each ALD growth cycle deposits exactly the same amount of material making the 

film thickness only dependant on the number of cycles. This allows the user to accurately 

control the film thickness. The self-limiting nature of ALD ensures that the chemical 

precursor flux does not need to be uniform over the substrate as long as it is high enough 

to saturate the substrate surface. ALD is a CVD-like technique that offers excellent 

conformity, good uniformity, good film density, good control over the film thickness, 

high aspect ratio film growth, good repeatability and the capability to deposit multilayer 

structures in a continuous manner. ALD also offers a wide processing window, which 

implies uniform films at the same rate can be obtained over a wide range of temperatures 

as seen in Figure 6. Once the ALD processing window is determined for a specific 

chemical precursor, uniform film thickness can be deposited with high accuracy and good 

repeatability. 

The one disadvantage of ALD is its relatively slow deposition rate. The average 

ALD deposition rate per cycle is 0.1 A to 3 A.34 Although ALD is a comparatively slow 

process. It is useful for deposition where small film thickness is required and where high 

aspect ratio is needed for complex surfaces. Another limitation of ALD applies for cases 

when area selective deposition is needed. ALD typically coats substrates uniformly. 

Table 3 summarizes some important properties of ALD technology compared to other 

CVD techniques and physical vapor deposition (PVD). 
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Table 3. A comparison of commonly used deposition techniques. 

Material 

ALD 
MBE 
CVD 
PLD 
Evaporation 
Sputtering 

Thickness 
uniformity 
Good 
fair 
Good 
Fair 
Fair 
Good 

Step coverage 

Good 
Poor 
Varies 
Poor 
Poor 
Poor 

Sharp interface 

Good 
Good 
Fair 
Varies 
Good 
Poor 

Deposition rate 

Poor 
Fair 
Good 
Good 
Good 
Good 
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CHAPTER 3 

THIN FILM CHARACTERIZATION TECHNIQUES 

3.1 Introduction 

This work investigates the novel thin film deposition technology of ALD for ZnO. 

Very little is known about the ALD synthesis of ZnO thin films. In order to 

experimentally establish and optimize the crucial ALD process window for ZnO and to 

measure the ZnO thin film growth rate, spectroscopy ellipsometry has been performed. 

Since ALD ZnO films are optically transparent, spectroscopic ellipsometry is the best 

method to accurately measure the ZnO film thickness as a function of ALD growth cycles 

and deposition temperatures. Spectroscopic ellipsometry determines the optical constants. 

The ALD ZnO thin films are grown on substrates such as Si, quartz and glass. It is 

important to investigate the interface of the ZnO films and the underlying substrate 

because those properties affect the device performance. TEM is one of the best 

characterization techniques to investigate the cross-sectional properties, grain boundaries 

and diffraction patterns. A complementary technique to TEM diffraction analysis is 

XRD. XRD is a non destructive technique that determines the ALD ZnO crystal 

structure, grain size and orientation. Surface morphology of materials is very important 

especially in the case of photodiodes. A metal contact is to be deposited on the ALD ZnO 

for photodetector applications. Therefore, it is indispensable to study the morphology of 

the as-deposited and treated ALD ZnO samples. One of the best ways to do that is 

through AFM. A combination of RBS, EDS and XPS determine the film stoichiometry, 

quality and contamination levels in the ALD ZnO. Combining this information, process 
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optimization experiments can be designed for ALD ZnO deposition. The intrinsic defect 

levels and types were characterized by DLTS. The electrical properties were investigated 

by four point probe, I-V characterization and the Hall Effect. The mechanical properties 

of bulk are different for a thin film of the same material. For example, bulk single crystal 

ZnO and polycrystalline ZnO or nanocrystalline ZnO differ in mechanical properties. 

This affects the device performance in applications such in MEMS. Very little is known 

about the mechanical properties of ALD ZnO. Nanoindentation was used to accurately 

calculate modulus and hardness of the ALD ZnO films. These properties are later used 

for simulation in this work. This chapter explains the theory of ellipsometry 

measurements, AFM, TEM, XRD, XPS, DLTS, I-V, QE measurements, Hall Effect and 

four-point probe, PL and Raman spectroscopy, and nanoindentation. 

3.2 Structural Characterizations 

3.2.1 Ellipsometry Measurements 

Spectroscopic ellipsometry is a contactless, non-destructive optical 

characterization technique used to measure materials' dielectric properties and thickness. 

EUipsometers can measure extreme thin film thicknesses as small as the wavelength of 

the light used for probing, essentially at the atomic level. In this study, spectroscopic 

ellipsometry was used to measure the thickness of the deposited ALD ZnO thin films. 

The basic principle of light scattering on a sample surface is shown in Figure 8a. Light 

with intensity I; incident to the sample surface at an angle of 0i hits the sample surface. 

Part of the light will be reflected at an angle 8R and intensity Ir. Another part of the light 

will be transmitted at an angle 9T and intensity IT as seen in Figure 8a. The reflection and 

transmission coefficients can be defined as the ratio of 1,/Ij and Ir/Ii respectively. Using 
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the basic principles of reflection and transmission of incident lights in Figure 8a, a 

linearly polarized light with known wavelength X is sent on the plane of the sample's 

surface. The linearly polarized light is then converted to an elliptically polarized light. 

The reflected light is then analyzed by a detector. Information about the film's thickness 

is then obtained. This principle is shown in Figure 8b. The measurements are expressed 

in terms of *P and A. 

p = tanCF)e/A (9) 

where p = complex reflectance ratio =RP / Rs, Rp and Rs are the Fresnel's reflection 

coefficients, tan (¥) = amplitude upon reflection and A is the phase shift. 

Spectroscopic ellipsometry measurements are very accurate and highly 

reproducible. The thickness can be monitored accurately as the reflected light is 

measured from layer to layer because different materials have different and unique 

refractive indices. Ellipsometry can be used to measure a single layer thickness and 

complex structures like in multi-layered specimens. 

To measure the ALD ZnO film thickness, a variable angle spectroscopic 

ellipsometer (VASE) was used. The advantage of VASE over conventional single 

wavelength ellipsometer is the option of measuring film thickness and optical constant 

(refractive index) over a wide spectral range and at a different angle of incident. The 

variable angle feature gives the user the option to measure the film thickness and optical 

properties at different angles. Each angle provides new data about the material; hence it 

improves the confidence of measurements. Ellipsometry measurements are performed at 

angles near the Brewster angle to obtain high sensitivity. The refracted light is linearly 

polarized. The Brewster angle is dependent on the refractive index of the materials under 
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study. Because different materials have different refractive indices, different materials 

exhibit different Brewster conditions. Therefore, a VASE would offer high sensitivity in 

the measurements which is not possible with a single angle ellipsometer. 

a) ! * '' b) 

Figure 8. a) Basic principle of light scattering in a material showing the incident light, 

reflected light and transmitted light, b) Ellipsometry principle showing the thickness 

measurement of a multi-layered specimen, n and k are the refractive indices, n defines the 

phase velocity of light and T the thickness. X is the wavelength of the incident light. The 

parallel and perpendicular polarization directions are denoted by subscript p and s 

respectively. 
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3.2.2 X-Ray Diffraction 

X-ray diffraction (XRD) is a non-destructive characterization technique used to identify 

crystalline phases and their preferred orientation in crystalline solid materials. XRD can 

also provide information about the crystal lattice constant, the grain size, thin film 

thickness, defects in the film, strain and stress of thin film. XRD does not required 

vacuum equipment or sample preparation and it can be used in an ambient environment 

at room temperature. A typical X-ray diffractometer is shown schematically in Figure 

9a. The X-rays are generated by an X-ray vacuum tube where high energy electrons 

impinge on a solid metal target-the anode. X-ray radiation with energy characteristic of 

the metal target used is emitted. Some common X-ray targets used in X-ray 

diffractometer are Cu, Co and Mo. The emitted X-rays are coUimated through a set of 

slits and are sent on the sample under study. Since the wavelength of X-rays is of the 

order of magnitude of the lattice constant of crystalline solids, XRD can be used to 

probe the crystal structure of solid matters. When incident X-rays are scattered by atoms 

of a particular set of crystal lattice planes, this can result in either constructive or 

destructive interference depending on the incident angle. In a destructive interference 

the scattered waves cancel each other. In a constructive interference, the scattered 

waves add together to form a wave with a larger amplitude and intensity. XRD analysis 

is based on constructive interference, as seen in Figure 9b. The diffracted X-rays are 

collected by the detector through a set of slits. The crystal lattice information is 

extracted from the XRD plot using Bragg's Law. The detector is swept through a wide 

range of angles to record the X-ray intensity as a function of the angle 29. X-ray peaks 

are detected where Bragg's conditions are fulfilled. Bragg's Law is expressed as follow: 
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nA = 2dsm(0) (10) 

where n = integer, X = wavelength of incident X-ray, d - lattice constant, 6 = angle 

between incident X-ray and scattering plane = Bragg's angle. 
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Figure 9. X-ray diffracttion. a) XRD diffractometer. b) Basics principles of XRD 

showing Bragg's law. 

Thin films may be either amorphous, single crystal or polycrystalline which 

consist of randomly oriented grains. As a result, the diffraction pattern of thin 

polycrystalline ALD ZnO films will be constituted of a multitude of X-ray peaks from 
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any crystallites satisfying Bragg's conditions. For thin polycrystalline films, a preferred 

orientation is defined when a majority of crystallites have the same orientation. 

3.2.3 X-ray Photoelectron Spectroscopy 

For a deeper understanding of the novel as deposited and the annealing 

experiments in different ambient gases, the binding energy of the Zn and O elements is 

necessary. XPS is used to obtain this information. X-ray photoelectron spectroscopy 

(XPS) is a contactless and non-destructive technique. It is also called electron 

spectroscopy for chemical analysis (ESCA). XPS is used for composition analysis, 

valence band structure, elemental analysis, contamination analysis and chemical state. 

XPS can be used to analyze any element except hydrogen and helium due to their very 

small atoms. The technique consists of exposing the material to an X-ray beam. The 

incident X-rays are used to eject electrons from inner shells and measure the kinetic 

energy of the photoelectrons generated. Core electrons are used for the analysis due to the 

fact that they carry information about the chemical element. The binding energy is the 

required energy to free an electron from its atom. The binding energy of a photoelectron 

is characteristic of each chemical element. Therefore, using the following relation, one 

can calculate the binding energy and, hence, perform an elemental analysis. 

K.E = hv-B.E (11) 

where K.E is the kinetic energy, hv= energy of the photon used, B.E = electron 

binding energy. 

XPS is surface sensitive. Therefore, an ultra high vacuum chamber is required to 

help eliminate contamination of the surface. Analysis is usually done on thin layers of a 
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few nanometers, -1-10 ran, thickness. The XPS apparatus consists of an X-ray source, 

photoelectron analyzer, an electron detector, loading chamber, vacuum pumps and related 

assembly. The most common X-rays used in XPS are Al Ka (1486.6 eV), Mg Ka (1253.6 

eV), Ti Ka (2040 eV). A schematic illustrating the principle behind the XPS experimental 

set-up is shown in Figure 10. Figure 10a shows the XPS apparatus, and Figure 10b shows 

the basic principle. When a photoelectron is emitted from an X-ray scattering event, it 

leaves a vacancy hole behind. The vacancy can be filled by an electron of higher energy 

while releasing energy that can excite and remove another electron called an Auger 

electron, as seen in Figure 10c. Auger electrons can also be used in XPS for chemical 

analysis and materials characterization. 

a) 
X-ray source 

Electron analyzer and detector 

Emitted photoelectrons 

valence e~ 

Auger e" 

valence e" 

nucleus nucleus 

Figure 10. a) XPS apparatus, b) Basic principle, c) Auger electron from XPS 
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3.2.4 Atomic Force Microscopy 

Understanding the surface morphology is critical in electronics and thin film 

processing at the nanotechnology node. Atomic force microscope (AFM) or scanning 

force microscope (SFM) is a characterization technique used to study surface topography, 

roughness, and grain size. Unlike the scanning tunneling microscope, AFM does not 

require conductive samples; hence, it can be used on any sample including insulators. 

AFM utilizes a sharp moving tip on the end of a cantilever to scan the sample. As the tip 

moves across the sample's surface, the deflection from the change in Van der Waals 

forces, attractive and repulsive forces, between the tip and the sample is measured. An 

image is then obtained by monitoring the distance with angstroms resolution. The image 

can be used to obtain information such as surface profile, surface roughness, grain size 

distribution, surface steps, etc. One of the advantages of AFM is that it can be used in all 

environments (air, vacuum, liquid). 

3.2.5 Transmission Electron Microscopy 

As mentioned at the beginning of this chapter, the interface of the films and the 

substrate affects the device performance. The interface of the as-deposited ALD ZnO and 

the underlying substrate was investigated by TEM. Transmission electron microscopy 

(TEM) is a structural characterization technique used to obtain information about the 

specimen's crystallinity, micro structure, and internal crystal lattice defects such as grain 

boundaries, twins dislocations and interface. One of the strongest features of TEM 

structural analysis is the high magnification and its high lateral resolution better than 0.2 

nm.
36 Inside a TEM, a focused electron beam is incident on a thin film usually less than 

200 nm to permit the transmission of electrons. As the high energy electron beam (>100 
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keV), the beam is scattered from crystal atoms of a specific set of crystal planes and 

unscattered from defects and grain boundaries. The scattered beam is used to obtain the 

diffraction patterns of the sample under study, while the unscattered beam is used to 

obtain information about defects such as dislocation in the sample. The diffracted and 

transmitted beams are delivered to a detector (a fluorescent screen, video camera or a 

film plate) by a series of lenses located below the specimen. The TEM image is then 

formed on the image plane. A schematic of a TEM is displayed in Figure 11. The TEM 

image can be obtained in bright-field or dark-field mode. In bright-field mode, only the 

direct transmitted beam is used for imaging. In dark-field mode, the diffracted beam is 

used while excluding the direct beam. TEM analysis is a destructive technique because 

samples either have to be thinned down considerably so that the electron beam can 

transmit through the specimen. The high lateral resolution allows the TEM image to 

provide information about defects within the material and the interface between layers. In 

diffracted mode, a selected area electron diffraction pattern is obtained. This mode is 

equivalent to an XRD pattern. The diffraction pattern corresponds to diffused halos for 

amorphous solids, rings for polycrystalline materials and spots pattern for single 

crystalline materials. In image mode, one can obtain an accurate measurement of the film 

thickness and information about grain boundaries and interface features. 
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Figure 11. TEM schematic showing the electron optical path of the diffracted and the 

transmitted electron beam. 

3.2.6 Rutherford Backscattering Spectroscopy 

ZnO is a II-VI compound. It is necessary to investigate the film stoichiometry in 

order to verify the 1:1 ratio between Zn and O elements. Rutherford backscattering 

spectroscopy (RBS) offers the most accurate technique to determine a material's 

composition experimentally. RBS is a characterization technique capable of providing 
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film chemical stoichiometry, depth profile, thickness, atomic mass and crystal quality. 

The principle of RBS is based on the momentum transfer. It consists of colliding high 

energy ions with atoms in the solid specimen under study. High energy ions (1-3 MeV), 

typically He, are used to bombard the sample. After the collision, the backscattered beam 

is collected and analyzed. The low mass He ions undergo elastic collisions with atoms in 

the ALD ZnO thin film sample. The collision is specific to atoms and varies from atom to 

atom. When the incident ions collide with light atoms, a significant portion of the energy 

is transferred, and the backscattered ions have energy significantly lower than the 

incident beam. In the same manner, the backscattered ions have slightly lower energy 

than the incident beam after colliding with heavy atoms. Using this property, the atomic 

mass, the elemental concentration, depth profile, crystal quality and doping impurities in 

the lattice can be determined. The main weakness of RBS is the difficulty in measuring 

lighter elements than the ions used. For example, H is difficult to measure using He ions. 

3.3 Optical Characterizations 

3.3.1 Raman Spectroscopy 

Atoms in molecules and crystals are connected by chemical bonds such as ionic 

and covalent bonds. These systems can vibrate. The vibration frequencies are 

characteristics of atoms and their bond strengths. Raman spectroscopy is a non-

destructive optical characterization technique that studies the vibrational and rotational 

properties of the molecules and atoms that form the sample material. It is very sensitive 

to the strength and the length of bonds, and defects can also be detected. In Raman 

spectroscopy, a monochromatic laser light excites and probes the sample surface. The E-

field of the incident light distorts the electron cloud that makes up the chemical bond and 
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some energy is stored. When the excited electron cloud relaxes, the energy is re-radiated. 

When the radiation is at the same frequency and energy as the incident beam, the 

radiation is called elastic Raleigh scattering. Raleigh scattering are usually very strong 

intensity and are not useful for Raman characterization of materials. Often they are 

filtered out using filters and apertures. A small portion of the energy is transferred to the 

sample and excites the vibration modes which are detected by Raman scattering 

spectroscopy. These scattering are known as Raman scattering. Raman scattering events 

are inelastic and weak. There are two kinds of Raman scattering: Stokes and anti-Stokes 

scattering. Stokes scattering occurs when the emitted photons have less energy than the 

absorbed photons. Stokes scattering is observed on the red side of the spectrum. Anti-

Stokes scattering occurs when the emitted photons have higher energy than the absorbed 

photons. On the spectrum, anti-Stokes scattering is observed on the blue side. An 

illustration of the principle behind Raman scattering is shown in Figure 12. These Raman 

shifts can be used to obtain information about the stress and strain in the ALD ZnO. For 

example, a blue shift in the Raman spectrum corresponds to compressive stress while a 

red shift corresponds to tensile stress. The amount of the shift is proportional to the strain. 
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Figure 12. Principle of Raman scattering spectroscopy. 

3.3.2 Photoluminescence 

Stimulation radiation is due to photon absorption. Emission is the result of an 

optical excitation usually from a laser source. In photoluminescence spectroscopy (PL), 

an incident light with energy greater than the bandgap is absorbed by the specimen. The 

excited electron loses energy through relaxation and falls back down to the ground state 

energy level. When the radiative relaxation occurs, light is emitted at a specific 

wavelength and detected by the photodetector. In PL studies, spontaneous emission is 

achieved through optical excitation. The light involved in PL excitation and emission 

usually is in the range of 0.6-6 eV (roughly 200-2000 nm). A schematic of the PL 

principle is shown in Figure 13. PL measurements are non-destructive and require very 

little sample preparation. The PL spectrum provides information about the quality of 
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surface and allows the detection and identification of impurities in semiconductor 

materials such as ZnO. The radiative emission created from recombination of an electron-

hole pair is proportional to the impurity density. Temperature dependence, time 

dependence and voltage dependence, and photoluminescence are used to further 

investigate electronic bands to calculate the lifetime, electronic states and trap levels. The 

highest resolution PL is obtained when very low temperature samples are cooled with 

liquid He. The main drawback of PL is the sample under study has to emit light which is 

perfect for direct bandgap semiconductors like ALD ZnO. 

L Non-radiative / Ec = conduction band 

*M/W 
Light emission 

M/W 
Eg = bandgap energy 

Ev = valence band 

Figure 13. Photoluminescence schematic principle. Emission is achieved through optical 

excitation. 
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3.4 Elasto-mechanical Characterization 

3.4.1 Introduction 

Very little is known about the elasto-mechanical properties of nano-engineered 

ALD ZnO thin films. Nanoindentation is an excellent technique in investigating the 

mechanical properties of very thin films, which are difficult to test with conventional 

mechanical testers. The elasto-mechanical properties such modulus, hardness and poisson 

ratio of ALD ZnO thin films were accurately determined. These properties were used in 

the simulation software. A brief background and theory are given in the following 

section. 

3.4.2 Background 

Indentation testing is one of the most used material testing methods to determine 

the mechanical properties of the thin film specimens under study. It consists of touching 

the specimen under study whose mechanical properties are unknown with another 

material whose mechanical properties are well known. Diamond is a standard material 

used to test other materials due to its high hardness value. Nanoindentation, like its name 

implies, is the indentation testing of materials at the nanometer scale and is the method of 

choice for extremely thin solid films. Nanoindentation measurements provide information 

about the hardness, elastic modulus, cracking, phase transformation, creep, strain-

hardening, fracture toughness and specimen strength;37 however, elastic modulus and 

hardness are the most frequently measured mechanical properties by nanoindentation. 

Nanoindentation consists of applying known loads on the indenter shaft and measuring 

the indentation depth through a capacitive sensing or inductive sensing network. This plot 
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of load versus depth is then used to compute the modulus and hardness of the specimen 

under test. There are two operating modes for nanoindentation equipment. The first one is 

a load-control indentation mode, and the second is a depth-control indentation mode. In 

load-control, the user specifies the maximum load and the load increments. In contrast to 

load-control indentation, the user specifies the maximum depth of penetration in depth-

control indentation mode. Most nanoindentation equipment operate in load-control mode. 

3.4.3 Load-Depth curve 

As the applied load on the indenter shaft increases, the displacement is recorded 

and plotted. As mentioned in the previous section, the load-depth curve is used to 

calculate the elastic modulus and hardness of materials. The nanoindentation tests can be 

divided into various cycles. A typical cycle consists of the loading phase followed by the 

unloading phase. The loading phase in a test conducted with a Berkovich tip is governed 

by elastic-plastic deformation. The unloading phase is purely governed by elastic 

deformation. The load-depth plot provides information about creep, pop-in events. 
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Figure 14. Load-depth curve from a Berkovich indentation test. Xp= plastic region, Xe 

= elastic region. 

3.4.4 Berkovich Indenter 

There exist different kinds of indenters which are customized for the specific 

material under study. The most commonly used indenters in indentation testing are 

spherical indenters, Vickers indenters, conical indenters, flat punch indenters and 

Berkovich indenters. Berkovich is the most frequently used indenter made of diamond. It 

is a three sided pyramidal tip. The tip radius of a typical Berkovich tip ranges from 50-

100 nm and typically increases with use. After indentation, it gets difficult to accurately 

measure the contact area with an optical microscope. Therefore, the area is estimated 

from the exact penetration depth and the known geometry of the indenter. The face angle 
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of a Berkovich tip is 65.27°. Therefore, the ratio of A by the square of the penetration 

depth is 24.5. 

A = 3Shp(tan(0))
2 (12) 

where A= projected area, hp = plastic penetration depth, 9= face angle. 

Substituting the face angle by 65.27 °, we get: 

A = 24A9hp
2 (13) 

3.4.5 Hardness 

Hardness is defined as the resistance to penetration or to permanent deformation 

due a load or force from a sharp object. The higher the hardness values of materials, the 

greater the resistance they have to be permanently deformed. In nanoindentation, the 

hardness or Meyer hardness is defined as the ratio of the full load at maximum depth over 

the projected contact area. By recording the depth as the load is applied to the indenter 

shaft, the maximum load can be determined. The contact area can be computed as well. 

H = ^ss. (14) 
A 

where H = hardness, P^ = maximum load, A = area. 

3.4.6 Modulus 

The elastic modulus or Young's modulus is defined as the tendency of a material 

to deform elastically along the axis the forces are acting on. In nanoindentation, the 

elastic modulus is defined as the slope of the unloading curve over the square root of the 

projected area. 
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E
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 =
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 (15) 

where E^ = is the effective modulus, — = slope of the unloading curve from the load-

depth curve, A = contact area. 

The relationship described in the above equation can be rewritten in terms of the 

substrate and indenter properties. 

( r. , .,-i-i\ 

E =-?-
* JA V 

\-vi 1-v 
- + '-

(16) 

for a monolithic specimen where (3 is an indenter dependant constant. For the ALD ZnO 

thin films, J3 = 1.22, vs = substrate Poisson's ratio, v,. = indenter Poisson's ratio, Es = 

substrate Young's modulus, Ei = indenter Young's modulus (in this case the Berkovich 

indenter tip is made of diamond). 

The modulus obtained from the load-depth curve is often referred to as the 

indentation modulus, the elastic modulus, or the Young's modulus. 

3.4.7 Factor affecting nanoindentation 

Accuracy in the contact area measurement is critical in determining both the elastic 

modulus and the hardness of thin film materials. Factors that might affect the 

measurement of the area after the unloading of the tip are sink-in, pile-up, and indentation 

size effects. The indentation size effect is defined as the increase of the hardness with 

decreasing indentation size. The presence of friction between the indenter and specimen 

can lead to the indentation size effect. Another event that can affect nanoindentation tests 

is the notion of thermal drift. Thermal drift occurs due to thermal expansion of the 
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apparatus and the change of temperature within the specimen. Another factor that affects 

significantly the mechanical properties measured by indentation is the surface roughness 

of the specimen. Smooth samples are desirable. Rough samples give an inaccurate 

measure of the contact depth which in turn affects the contact area calculation and 

therefore affects the modulus and the hardness determination. 

The principles discussed so far apply to homogenous and isotropic solid 

specimens. In the case of dissimilar materials such as thin hetero-epitaxial films on top of 

substrates resulting in multi-layer specimens, a different approach needs to be taken. To 

avoid the influence on the hardness and modulus measurement due to the substrate effect, 

a penetration depth of about 10 % of the film thickness is required. For example, for a 

400 nm ALD ZnO film on Si, indentation depths greater than 40 nm will suffer from the 

substrate Si effect. Simulations like finite element analysis are performed to compensate 

for the effect of the substrate. 

3.4.8 Nanoindentation Experiments 

The Nano Indenter® XP in conjunction with a continuous stiffness measurement 

(CSM) unit made by MTS Nano Instruments was used as the indentation testing 

instrument. The CSM option adds capabilities not possible with conventional indentation 

testing methods. By introducing a small and well controlled oscillation into the normal 

loading sequence of the Nano Indenter®, the CSM allows monitoring of the contact depth 

and contact stiffness throughout the loading and unloading of the indenter shaft. Unlike 

conventional indentation testing methods, the use of the CSM provides the advantage of 

measuring material hardness and elastic-modulus as a continuous function of depth. The 

load is applied to the indenter shaft through a piezo -driven network. As the load is 
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increased, the depth of penetration is continuously recorded by a capacitance gauge and 

sensing network. A diagram of the instrument is shown in Figure 15. 

The Nano Indenter® XP with the CSM mode was used in depth control mode 

meaning the user defined the maximum depth of penetration and the equipment set the 

necessary loads to reach the desired depth. A three-sided pyramidal Berkovich diamond 

tip was the indenter tip. 

Magnet/coil system 

Spring network 

Load transducer 

Displacement 
transducer "" 

T , . ^ ~ Indenter 
Indenter 

Stage -

(b) 

Figure 15. Nano indentation experimental set-up. a) shows a schematic of a 

nanoindentation equipment, b) shows the specimen under test. 

3.5 ELECTRICAL CHARACTERIZATION 

The electrical and optical of ALD ZnO are dominated by intrinsic defects such as 

vacancies and interstitials forming various trap levels in the films. It is absolutely crucial 

to study these defect levels in ALD ZnO in order to advance the material of ALD ZnO 

thin films. 
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3.5.1 DLTS 

Deep-level transient spectroscopy (DLTS) is an electrical technique designed to 

characterize the energy levels, concentrations and capture rate of electrically active traps 

in semiconducting materials like ZnO. The DLTS consists of s sensitive capacitance 

measurement set-up with good transient response. The traps in ZnO identified from the 

DLTS measurements are represented by either a positive or negative peak depending on 

the nature of the defects as a function of temperature. One of the key parameters for 

DLTS is the rate window. The measurement is only sensitive to the rate window, 

meaning an emission is seen only if a transient with a rate is seen within that window. For 

the same trap level, by changing the rate window one can change the location of the peak 

within that rate window. The rate windows are thermally activated. 

3.5.2 Hall measurement 

For a naturally n-type semiconductor material like ZnO, it is important to measure 

the carrier density accurately for the fabrication of junction devices in ZnO films. The 

Hall measurement is a technique used to determine the carrier density, carrier type, 

mobility and resistivity. A magnetic field perpendicular to the current flow direction in 

the device under test is applied. A voltage is applied between two contacts on the sample. 

An E-field is produced perpendicular to the magnetic field and current. The charge 

carriers in the semiconductor are subject to a force called the Lorentzian force. In steady 

state, the forces acting on the charge carriers are balanced resulting in a measurable 

voltage across the sample called Hall's voltage, VH- This voltage is positive for holes and 

negative for electrons. The carrier density, type and mobility of the charge carrier are 

obtained from the Hall coefficient, which is dependent on the Hall's voltage. 
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3.5.3 Four-Point Probe 

The resistivity p is a very important property for both metals and 

semiconductors. It affects electrical properties such as threshold voltage, capacitance, 

series resistance, charge carrier density and mobility. The resistivity is given by the 

following relationship: 

P = (17) 
q(njun + pvp) 

Four-point probe is an electrical test commonly used to measure the resistivity of the 

device under test. It consists of four collinear probes arranged with equal probe spacing s. 

The voltage drop is measured across a pair of probes after a current is applied through the 

other pair of probes. A schematic of the probe is shown in Figure 16. The resistivity 

from a four-point probe is given by: 

p = 2x.s.F.—J (18) 

where s= probe spacing, F= correction factor, V = measured voltage, / = applied 

current and t = sample thickness. The probe spacing is usually 0.5-1.5 mm. 
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Figure 16. Four-point probe set-up 
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CHAPTER 4 

ATOMIC LAYER DEPOSITION OF SEMICONDUCTOR ZnO 

4.1 Introduction 

As a wide bandgap direct semiconductor material Zinc oxide (ZnO) exhibits a 

variety of technologically important properties. It has a thermodynamically stable 

wurtzite structure. With a large binding energy of 60 meVand band energy around 3.39 

eV at room temperature, ZnO is an ideal candidate for transparent electronics such as 

transparent thin film transistor (TFT), optoelectronics, piezoelectric, ferroelectric and 

ferromagnetic applications, solar cells, and sensors.2'38 Various forms of ZnO such as 

single crystal, thin films, powders, and nanostructures such as nanotubes, nanosheets, 

needles, nanorods, shells, ribbons, and tetrapods can be synthesized by many different 

techniques. These techniques include sputtering,12 pulsed laser deposition,1 

electrochemical decomposition,14 thermal evaporation,15 vapor liquid phase,16 metal 

> 1 Q 

organic chemical vapor deposition, molecular beam epitaxy, and most recently atomic 

layer deposition (ALD) as a novel thin film deposition technique.19 Among the thin film 

growth techniques, Atomic Layer Deposition (ALD) provides unique features such as 

precise control of ZnO thin films with atomic resolution at the angstrom scale, high 

uniformity, good conformity and the capability of high aspect ratio. A novel thermal film 

deposition ALD process for ZnO was developed and optimized for optoelectronic device 

applications. The resulting ZnO growth structures were investigated using X-ray 

diffraction (XRD), atomic force microscope (AFM), energy dispersive spectroscopy 
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(EDS) and Rutherford backscattering (RBS) to gain in depth understanding of the new 

structural properties and how they relate to device applications. 

4.2 ALD ZnO deposition 

One of the main objectives of this work was to establish and investigate the novel 

ALD technique for the synthesis of nano-scaled ZnO films. Towards this end, a Savannah 

SI00 ALD system was used to deposit the ZnO films. Figure 17 shows the schematic of 

the Savannah SI00 ALD chamber. Diethyl zinc (DEZ) was chosen as the chemical 

precursor for zinc and H2O vapor was used as the oxygen source. N2 was used as the 

carrier gas. Neither of the two chemical precursors was heated for ALD ZnO deposition. 

The base pressure in the chamber prior to deposition is 9><10"2 Torr. The deposition 

parameters for ALD ZnO, which were determined experimentally to provide a uniform 

film coverage of ZnO are displayed in Table 4. The deposition pressure was measured to 

be 2X10"1 Torr with a 10 seem N2 flow. ZnO ALD films were deposited on p-type Si 

(100) substrate wafers. The native oxide on the Si wafers was etched prior to deposition 

by dipping them in 2% of diluted hydrofluoric acid for 4 min followed by a DI water 

rinse. The samples were dried with N2. The cleaned silicon wafers were immediately 

loaded in the ALD deposition chamber and the deposition chamber was pumped to 

vacuum. To experimentally determine the ALD window, 80 ALD growth cycles were 

deposited at temperatures ranging from 60 °C to 240 °C. DEZ and H2O vapor were pulsed 

for 0.1 seconds and 0.05 seconds respectively. 
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Figure 17. Schematic of Savannah SI00 from the labview controlling software by 

Cambridge NanoTech Inc. 

Table 4. ZnO deposition parameters 

Valve 
0 
1 

Pulse (s) 

0.05 
0.1 

Pump (s) 

5 
5 

Cycle 
80 

Flow (seem) 

10 

4.3 ALD process window 

After ALD deposition, the ZnO film thickness on each wafer was measured using 

a variable angle spectroscopic ellipsometer (VASE M44 by J.A WooUam). A 

Xenon/mercury light was used to probe the surface. The refractive indices of ZnO and Si 

High speed 
Precursors 
valve 

Precursors 
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are 2 and 3.88 respectively. The Brewster's angle discussed in the ellipsometry section 

was calculated to be 62.7° for the multilayered sample of ZnO on Si. The measurements 

were performed at incident angle of 62°, 63° and 75°. The polarizer was set to 30°. The *F 

and A values of the complex reflection coefficient were measured to obtain refractive 

indices which in turn were used to measure the film thickness. The Cauchy dispersion 

model was used to extract the optical properties. The structure model used to fit the data 

is shown in Figure 18. For the Cauchy dispersion model the complex refractive index N 

is defined as: 

N=n + jk 

R C 
n = A +-$• + -£ 

" A
2
 A

4 

k = n / ^ 

(19) 

(20) 

(21) 

where n and k are defined as the refractive index and the extinction coefficient. A = 

i n 

wavelength, A,B,C, D, F are fitting parameters. 

Air, n0, ko 

Thickness 

Figure 18. Model for measuring ZnO thickness on Si by ellipsometry. 
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For the ALD ZnO thin films deposited in this research, the best fitting parameters 

were determined to be An= 1.8701, Bn =0.039346 nm
2 and C„ = 0.0004 nm

4
. The 

extinction coefficient was 0, and the refractive index n goes from 2.1 to 1.9 in the visible 

region. The thickness was measured on 5 points on the wafer as shown in Figure 19 to 

investigate the uniformity of the ALD deposited ZnO film. 

Figure 19. EUipsometry measurement points 

The ALD process window for ZnO was unknown and had to be determined 

experimentally. The deposition temperatures were randomly generated from 80 °C to 240 

°C to diminish the experimental errors. The thicknesses of different films deposited at 

different temperatures were measured by spectroscopic eUipsometry and subsequently 

plotted. The process window is shown in Figure 20. The ALD growth deposition rate 
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decreases as the temperature is increased beyond the ALD window. This might be due to 

precursor decomposition. The ALD growth rate increases for deposition temperatures 

less than the process window due to activation energy requirement. The thermal ALD 

process window for ZnO was established to lie in the temperature range of 100 °C— 160 

°C. Within this process window, the deposition is only dependent on the number of ALD 

growth cycles used as long as the precursor dose is sufficient to saturate the surface. The 

activation energy, enthalpy and entropy in the ALD process window were calculated 

from the Arrhenius plot to be -561.639 J/mol, -4.078.67 kJ/mol, and -59.9566 J/mol 

respectively. The spectroscopic ellipsometry measurements are plotted in Figure 21 as a 

function of the deposition cycle to determine the ALD deposition rate of ZnO. From 

Figure 21, one can see the deposition rate of ALD ZnO is linear and the deposition rate 

was calculated to be about 2 A per ALD cycle. The root mean squared error on the 

thickness measurements is 0.3 nm. Using Figure 20 and Figure 21, one can customize 

ALD ZnO for temperature dependent processes and thicknesses using the ALD number 

of cycle with excellent reproducibility. Optical micrographs of various ALD ZnO films 

deposited with different thicknesses on 4" Si (100) wafers are shown in Figure 22 . 
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Figure 20. ALD ZnO process window 
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Figure 21. Thickness (A) vs ALD cycle. ALD deposition rate for ZnO was found to be 2 

A/cycle at 150 °C. 
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Figure 22. Various ALD ZnO films with different thickness deposited on Si at 150 °C 

deposition temperature. 
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4.4 ALD ZnO Growth and Structural Characterization 

In order to optimize the quality and the properties of the as deposited ALD ZnO, 

the structural, growth mechanism, mechanical, optical and electrical properties need to be 

understood. The growth mechanism and structural properties of the thin film ALD ZnO 

was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), energy 

dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray 

photoelectron spectroscopy (XPS) and Rutherford backscattering (RBS). The fractal 

dimensions of ALD ZnO thin films at different thicknesses, substrates and temperatures 

were investigated to provide a figure of merit for the dominant crystal nucleation and 

growth model. 

4.4.1 ALD ZnO Growth Mechanism 

Thin film growth can be classified in three main growth modes: the Frank Van der 

Merwe, the Volmer-Weber, and the Stranski-Krastanov growth models. The Frank Van 

der Merwe growth model consists of layer-by-layer growth because the atoms of the 

material are more attracted to the substrate than to themselves. In this manner, incoming 

atoms are deposited on the substrate forming the film. Epitaxial growth is usually 

achieved in this growth mode. On the other hand, when atoms of the deposited film are 

attracted to themselves more than to the substrate, Volmer-Weber growth occurs. This 

type of growth mode results in island growths. Incoming atoms are drawn to themselves 

resulting in island formation at the early nucleation stage of film growth. These islands 

grow larger with increasing deposited atoms and finally coalesce to cover the substrate 

surface. Stranski-Krastanov is a mixture of layer and island growth. More details on thin 
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film growth modes can be found in Ref. (40). The ALD ZnO deposition on various 

substrates has been characterized to fall into one those growth modes. The growth mode 

was studied by AFM based fractal dimension analysis. One well accepted way of 

characterizing the surface morphology of thin films is by AFM. The AFM renders it 

possible to achieve a detailed surface topography with atomic resolution. Using AFM 

analysis, one can describe thin film surfaces in terms of their fractal dimensions. Fractal 

geometry has been used to describe thin film growth mechanism.41'42'43 

The fractal geometry, pioneered by Benoit Mandelbrot, characterizes the scaling 

structure of a surface by a number Df, the fractal dimension, that varies from 2 to 3.41>42,43 

A Df =2 corresponds to a smooth and flat surface. The fractal analysis reveals objects that 

are similar at all levels of magnification.44 In this way ALD ZnO thin films growth mode 

can be obtained at the early growth stage. Using the slit island analysis of Mandelbrot et 

al., 41 for islands characterized by a fractal dimension Df, the coastlines obtained by 

sectioning with a plane are of fractal dimension D/ = Df- 1. The resulting D/ varies 

from 1 to 2. One can obtain the thin film fractal dimension D/ through the perimeter and 

the area of the islands using the following relationship: 

P = juA
a/

. (22) 

The above equation can be re-written as follows: 

log(P) = log(//) + a / log(^) . (23) 

P = Perimeter of the island, A = area of the island, ju = proportionality factor and 

Uf 

af =—-. 
J n 
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The plot of the log (perimeter) versus the log (area) should be linear and the slope 

of the line is af; hence, the fractal dimension Df can be determined. The fractal 

dimensions can be used to determine the type of growth model for a particular thin film. 

Table 5 shows the criteria of different thin film growth models based on the fractal 

dimension Df. In this study, the as-deposited ALD ZnO film fractal dimensions are 

calculated from the WSxM software.45'46 

Table 5. Growth mode and Fractal dimension by Guisbiers et al.43 

Growth Mode 

x Volmer-Weber 

Stranski-Krastanov 

/ Frank-Van Der Merwe 

Criteria 

D/<1 .5 

D / ~ 1.5 

D / > 1.5 

The growth of nano-scaled ALD ZnO films was investigated on different 

substrates. The ALD ZnO films were deposited on p-type Si (100), quartz and glass 

wafers. The deposition parameters are the same as discussed in section 4.2. ALD ZnO 

thin film samples grown at different temperatures on various substrates and at different 

thicknesses were used for fractal analysis. A typical log (perimeter) versus the log (area) 

of the ALD ZnO films is shown in Figure 23. As can be seen from Figure 23, the plot is 

rectilinear. As mentioned above, the fractal dimensions were extracted utilizing the 

WSxM software. The effect of temperature on the fractal dimensions, hence the surface 

structures, during the growth of ALD ZnO was investigated using a constant film 
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thickness which is equivalent to a constant number of cycles at three different deposition 

temperatures of 100 °C, 125 °C, 150 °C on silicon substrates. The number of ALD growth 

cycles used was 239 cycles that correspond to a ZnO film thickness of about 50 nm. In 

order to account for any potential effect of substrate material on fractal dimension, the 

ZnO films were deposited on silicon, quartz and glass substrates. 

i . l . I I I i I I . I i L 
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Figure 23. Log of perimeter P versus log of area S of a 310 cycles ALD ZnO deposited at 

150 °C. Fractal dimension D/ =1.314. The circles represent the experiment data. 
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During the course of this experiment, all the deposition parameters were 

maintained constant; only the substrate material was changed. The resulting fractal 

dimension D/ is shown in Table 6 as a function of the deposition temperature and in 

Table 7 showing the dependence on substrate influence. From Table 6, it is evident that 

the ALD ZnO deposition at 100 °C offers the smallest D/. As the ALD temperature is 

increased from 125 °C to 150 °C, no significant change is observed; however, as seen 

from the extracted Df values in Table 7, there is no significant effect of the substrate 

material on the fractal dimension D/. Figure 24 displays the fractal dimension versus the 

number of ALD deposition cycles. D/ is ~1.3 with increasing ALD ZnO thickness. From 

the growth mode criteria in Table 5 established by Guisbiers et al.,43 the as-deposited 

ALD ZnO film is of Volmer-Weber type growth. This thin film growth mode is 

consistent with temperature variation and with different substrate materials. A schematic 

model of the Volmer-Weber growth is shown in Figure 25 with distinct island growth 

features at the earliest nucleation stage. This is collaborated by the ellipsometry thickness 

measurement in Figure 21 showing a different deposition rate for very shallow films 

(ALD growth cycles less than 50 cycles). The slightly higher deposition rate indicates a 

nucleation stage. As thicker films are grown the deposition rate remains constant at 2 

A/ALD growth cycles. 
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Table 6. ALD growth temperature and fractal dimension D/. 239 ALD cycles were 

deposited on Si for all ZnO depositions. 

Temperature(°Q 

100 

125 

150 

Fractal Dimension (Z)/) 

1.263 

1.353 

1.307 

Table 7. Substrate effect on fractal dimension D/. 1900 ALD cycles were deposited at 

150 °C for all deposition ZnO depositions. 

Substrate 

Silicon 

Quartz 

Glass 

Fractal Dimension (£>/) 

1.263 

1.221 

1.268 
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Figure 25. Volmer-Weber growth model for ALD ZnO. 
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4.4.2 ALD ZnO Structural Characterization 

Knowing the growth mode of the ALD ZnO films, it is necessary to understand 

the structural properties of the deposited films in order to further improve the quality of 

the ZnO films. Film contamination and defects in the film will further reduce the device 

performance of the ALD ZnO films for optoelectronic applications such photodetectors. 

The morphology will be studied by AFM and the cross-section analysis will be done by 

TEM. Energy dispersive X-ray spectroscopy (EDS) and Rutherford Backscattering (RBS) 

analysis were performed on the as-deposited ALD ZnO films in order to characterize the 

contamination level and the film stoichiometry. EDS analysis was performed using an 

SEM (JSM-6060LV) by JEOL. Figure 26 shows the EDS analysis results of ALD ZnO 

films deposited on Si. The elemental EDS analysis revealed the presence of only the 

expected Zn, O, and Si elements with no other detectable contaminants. The RBS study 

revealed a Zn to O ratio of 1:1. The error on the Zn measurements was ±0.1 and that of O 

was ±0.02. The combination of both the EDS study and the RBS analysis assured very 

good quality contamination free and stoichiometric ALD ZnO thin films. 
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Figure 26. Energy dispersive X-ray spectroscopy (EDS) spectrum. The EDS analysis on 

ALD ZnO samples revealed the presence of only Zn, O, Si elements. 

The ZnO films surface morphology was investigated by a Nanoscope 

Dimension™ 3100 AFM by Veeco. The AFM analysis of the surface roughness revealed 

an increase in roughness as a function of the ZnO film thickness. The RMS roughness 

value of the films increases from ~ 1 nm for the thinnest ALD ZnO film (250 ALD cycles 

which is equivalent to film thickness of 50 nm) to ~ 7 nm (1900 ALD cycles which is 

equivalent to film thickness of 400 nm) for the thickest ALD ZnO film investigated for 

this study. Figure 27 shows the plot of the RMS of the as-deposited ALD ZnO samples 

and an AFM image of a 954 ALD cycles or 200 nm thick ALD ZnO thin films. 
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Figure 27. a) AFM measurement of ALD ZnO film roughness vs deposition cycles, b) 

AFM image of a 954 ALD cycles of ZnO on Si. 

The film crystallinity was investigated by a Rigaku Miniflex X-ray diffractometer 

(XRD) with Cu Ka radiation (^.=1.54 A). The goniometer diameter was 150 mm. The 
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sensitivity on the 29 measurements is 0.05°. The XRD plot of the as-deposited samples is 

displayed in Figure 28a. As the ZnO film thickness is increased, a stronger peak of (002) 

is observed. The ALD ZnO films exhibit a preferential growth in the (002) plane or c-

plane of the hexagonal wurtzite phase of ZnO. The wurtzite structures have a hexagonal 

unit cell with two lattice parameters c and a with the ratio c/a= J—. The lattice 

parameters of the as grown ALD ZnO were calculated using the following relationship: 

-J— = &h
2
+k

2
+hk) + l

2
£)

2
]± (24) 

a (hu) 5 c a 

where h,k and 1 are the miller indices; d is obtained from Bragg's law. 

For the (002) direction, the following lattice parameters were calculated and 

tabulated in Table 8. From Table 8, it can be seen that the percentage difference to bulk 

ZnO is reduced as a function of both temperature and growth cycle. As a function of 

deposition temperature, the lattice constants of ALD ZnO films converge towards those 

of the bulk ZnO. Similarly, as a function of increasing thickness the lattice constants 

converge towards the bulk values with the closest ones obtained from the 400 nm thick 

ZnO film. 
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Table 8. Lattice parameters of the ALD ZnO as a function of ALD growth cycle and 

temperature. 

ALD Growth c(A) 

Cycle 

a(i) c% from bulk a % from 

bulk 

239 at 100 °C 5.3458 

239 at 125 °C 5.355 

239 at 150 °C 5.1616 

310 at 150 °C 5.169 

381 at 150 °C 

477 at 150 °C 

954 at 150 °C 

1900 at 150 °C 

5.1614 

5.1554 

5.1862 

5.2012 

3.273621 

3.279254 

3.160822 

3.165353 

3.160699 

3.157025 

3.175886 

3.185072 

2.803846 

2.980769 

0.738462 

0.596154 

0.742308 

0.857692 

0.265385 

0.023077 

2.300643 

2.4767 

1.22433 

1.08271 

1.22815 

1.34297 

0.75356 

0.46652 

The presence of small grains and crystallites in the films for very low ALD cycles 

is predicted by the Volmer-Weber island nucleation model and explains the increase of 

roughness from the AFM measurements with increasing film thickness. Once a 

nucleation site island has formed, subsequent ALD cycles contribute to the growth of the 

crystallites into larger grains. Each grain can have a different crystallographic orientation 

and each crystal orientation grows at a different rate; hence, this contributes to the 

increase of ZnO film surface roughness. As the film thickness increases from 239 cycles 

to 1900 cycles, the intensity of the (002) peak also increases, as seen in Figure 28b. 
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Figure 28. a) XRD pattern of as-deposited ALD ZnO films as a function of film 

thickness. The as-deposited samples grow along the (002) plane, b) (002) peak intensity 

as a function of the film thickness. The patterns were recorded using CuKa radiation 

(X=1.54A). 
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This result provides experimental evidence that ALD ZnO is deposited as 

polycrystalline material independent of the number of ALD growth cycles in accordance 

with the Volmer-Weber island growth model. The full width at half maximum (FWHM) 

and the peak position of the (002) plane were plotted in Figure 29. The (002) peak 

position shift is shown in Figure 29a. From Figure 29a, a shift in the (002) peak position 

from the bulk ZnO value can be observed. This shift is higher for the thinnest film, which 

is attributed to a built-in stress in the as-deposited ZnO film and further evidence of 

Volmer-Weber crystallization because impinging growing crystallite islands will 

ultimately generate strain. The peak position converges quickly after the initial nucleation 

phase for the thicker films. This result corroborates the data obtained in Table 8. The 

peak identification was carried out using the JCPDS PDF# 98-000-0111 reference file for 

powder ZnO. The ALD ZnO film crystallinity is improved with increasing film thickness. 

This is confirmed as the FWHM gets smaller for thicker films and the intensity of (002) 

plane gets stronger. This can be seen in Figure 29b. 



69 

35.0-

« 
Q 

c 
o 

"3 
o 
a. 

n 
a> 
Q. 

r10000 

o 

r1000 § 

o 
(0 

100 

T — r — i — i — T — i — i • i—i i i—i—i—r-" 1—i—«-
200 400 600 800 1000 1200 1400 1600 1800 2000 

a) 
ALD Growth Cycle 

b) 
i • i »—1—»—i—•—i—' i • — i — • — i — • — r — • — r 

200 400 600 800 1000 1200 1400 1600 1800 2000 

ALD Growth Cycles 

Figure 29. a) Plot of the peak position in the (002) plane vs. number of ALD deposition 

cycle (circle) and log of the peak intensity (up triangle), b) Full-width at half maximum 

vs. deposition cycle at the (002) XRD peak of the as-deposited samples. 
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Detailed cross-sectional transmission electron microscopy (TEM) analysis was 

performed on ALD ZnO films in order to investigate the nanostructure of the films. The 

cross-sectional analysis was performed by a JEOL JEM2100F HRTEM. The TEM cross-

sectional micrograph of a 50 nm ALD ZnO film on Si is shown in Figure 30. It can be 

seen that the film is very uniform in Figure 30a. In this case, the native oxide on the Si 

was not removed before the ALD ZnO deposition as seen in Figure 30b. High resolution 

TEM cross-sectional analysis confirmed the XRD measurements revealing the 

polycrystalline nature of the ALD ZnO films corroborating the Volmer-Weber growth 

model. It can be seen that no columnar grains are present in the film. Instead, we find 

randomly oriented grains demonstrating that the films deposited by ALD are 

polycrystalline ZnO films as seen in Figure 31. 

10 nm 

Figure 30. TEM micrograph of 50 nm ZnO films deposited at 160 °C. In the inset a high 

magnification of the interface of ZnO and Si. A thin layer of native oxide is also 

observed. 
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Figure 31. HRTEM micrograph of 30 nm of ALD ZnO. Randomly oriented grains can be 

seen. 

4.4.3 Effect of Rapid Thermal Annealing on ALD ZnO 

A portion of a 400 nm thick ALD ZnO on Si sample was subdivided into smaller 

pieces by cleaving and annealed in oxygen, nitrogen and room ambient. The annealing 

was performed in a rapid thermal annealing (RTA) Solaris 150 furnace by Surface 

Science Integration. The annealing temperatures were varied from 400 °C to 600 °C with 

50 °C increment for 1 h time. A plot of the RTA experiment for a ZnO sample annealed 

at 400 °C for lh is displaying the furnace recipe in Figure 32. The chamber was filled 

with N2 for the N2 annealed samples and O2 for the O2 annealed samples. In the case of 
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room ambient annealing, no gas was used. The annealing chamber was directly connected 

to the room air. The samples were cooled down in the chamber before opening the RTA 

chamber. 
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Figure 32. Actual RTA experiment at 400 °C for lh for a 400 «m thick ALD ZnO film. 

After annealing, the crystal structure of the ZnO films was again investigated by 

XRD. No new crystallographic phases were observed after annealing as compared to the 

as-deposited non-annealed ZnO samples. This observation was consistent with the 

annealing environment and the annealing time; however, the intensity of the (002) peak 
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increased significantly with increasing annealing temperature compared to the as-

deposited samples. The same trend was observed in oxygen, nitrogen and room ambient 

annealing. Figure 33 shows an XRD plot of ALD ZnO samples annealed at various 

temperatures in N2 and the FWHM plot as a function of different annealing atmospheres. 

The individual grain size of the ZnO thin film grew with temperature and this effect is 

independent of the annealing ambient gas as seen in the AFM surface morphology 

analysis; see Figure 34. 

The grain size of the ZnO thin film grew with temperature as documented in 

Figure 34. Using Scherrer's formula, the grain size of the ALD ZnO thin films was 

estimated. 47 Table 9 summarizes the resulting grain size following the different thermal 

annealing experiments. The data in Table 9 provide a rough figure of merit to investigate 

the grain growth as a function of annealing temperature. 

£> = - ^ — (25) 
Bcos0 

where D is the Crystallite size, k is the Scherrer's constant, k = 0.9, X is the X-ray 

wavelength, B is the full width at half maximum in radian and 0 is the diffraction angle. 
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Figure 33. a) XRD plot as a function of different annealing temperatures in N2 b) FWHM 

in the (002) plane for post deposition annealing in N2 (red circle), O2 (blue up triangle) 

and room ambient (black square). 
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Figure 34. a) AFM analysis of ALD ZnO film (400 nm) annealed at 400 °C compared to 

b) ALD ZnO film (400 nm) annealed at 600 °C. The annealing environment is N2 

Table 9. Crystallite size calculated from Scherrer's formula for the annealed samples. 

Repeat the calculation. 

Annealing Crystallite size (nm) Crystallite Size (nm) Crystallite Size (nm) 

Temperature (°Q PDA Air PDAN2 PDAO2 

400 28.50 29.49 29.19 

450 30.24 29.92 30.25 

500 30.24 30.92 30.03 

550 31.75 32.36 28.51 

600 34.51 33.40 34.52 
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The thermal expansion coefficients of hexagonal ZnO at room temperature are 

respectively 4.75x10"6
 /°K and 2.9 xlO"6 /^T along the c and a axis while Si has a thermal 

expansion coefficient of 2.61 xlO"6
 /°K.

4S
'
49 Due to the difference of thermal properties 

between Si and ZnO, a built-in stress is expected as the samples undergo different 

thermal anneal cycles. This built-in stress in the films causes a shift in the XRD peak 

position from the bulk ZnO (002) peak value. The biaxial film stress (a) was 

characterized using the relationship described in detail by Hong et al. 50 and is described 

as follow: 

2C13 — Cii(Cll + C12) Cfllm—Cbulk 

<rZno = — r p r - ^ — — x
 - ^ (26> 

where C n = 208.8 GPa, Ci2= 119.7 GPa, Ci3= 104.2 GPa, and C33= 213.8 GPa are the 

elastic contants of single crystal bulk ZnO from ref (22). Cgim, and Cbuik are the lattice 

constants of the ALD ZnO films and bulk ZnO respectively. 

The biaxial stress was characterized for the 400 ran thick ALD ZnO films on Si 

annealed at temperatures ranging from 400 °C to 600 °C. The annealing environment was 

also varied using N2, O2, and room ambient. The results are displayed in Figure 35. The 

stress in Figure 35 is a combination of both the stress from the thermal mismatch and the 

internal built-in stress from the film. Our results reveal that RTA annealing in N2 ambient 

produced the lowest overall film stress. This result can be understood by invoking the 

intrinsic defect model for ZnO. The as-deposited ZnO films exhibit different intrinsic 

defects such as oxygen and zinc vacancies and interstitials responsible for the electrical 

and optical properties of ZnO. Annealing in O2 environment reduces those native defect 

concentrations. Effect of O2 ambient gas can be interpreted by the following reactions: 
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ZnZn + V0 + 0 2 * Z n O + O; (27) 

Zni + 0 2 -»ZnO + 0; (28) 

2Zn(OH)2 + 0 2 * 2ZnO + 2H2OT (29) 

During annealing in O2 ambient gas, one of the above reactions can happen. The 

concentration of the intrinsic defects responsible for the electrical properties such as 

oxygen vacancy and zinc interstitials is reduced; hence, an increase in resistivity is 

observed. Similarly, the effect of N2 on the intrinsic defects can be explained by the 

above equations. By replacing O2 by N2 no reduction of the vacancies is achieved; 

however, a slight increase of the vacancies concentration is achieved. This effect is well 

corroborated by the high resolution XPS scans of the Ois peak (especially the oxygen 

deficient region denoted by Ob). 
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Figure 35. Built-in stress in the ZnO films vs. annealing temperature in N2, O2 and room 

air. (red circle) Annealing in N2 ambient, (blue up triangle) Annealing in O2 ambient, 

(black square) Annealing at room ambient. 

Next, X-ray photoelectron spectroscopy was performed to investigate the 

chemical state of the ALD ZnO films. The XPS measurements were carried out using a 

Phi Quantera SXM X-ray photoelectron spectrometer with a monochromatic AlKa 

radiation source (hv=1486.6 eV). Before measurement, the samples were sputtered clean 

in the vacuum chamber to remove any surface contamination. For accuracy, the XPS 

measurements of the ALD ZnO films were calibrated using the binding energy of C Is. 

The C Is peak was observed at 285.53 eFfor the as-deposited ZnO films. A survey scan 



79 

of an as-deposited 400nm thick ALD ZnO sample is shown in Figure 36. The main peaks 

observed from the XPS spectra are Zn, O, Auger Zn LMN and OKLL. The chemical state 

of Zn in ZnO is investigated by analyzing the Zn2p peak and that of O in ZnO is analyzed 

by Ols peak. The as-deposited ZnO films show an O Is peak at 530.53 eV. The Zn2p 

shows a doublet, the Zn2p3 and Zn2pl. The Zn2p3 peak was observed at 1022.53 eV 

while the Zn2pl was observed at 1045.53 eV. The measured peaks of the O Is and Zn2p 

are in agreement with the literature value of bulk ZnO confirming very good quality ZnO 

films; however, the binding energy of Zn2p in ZnO and in metallic Zn are very close 

making it difficult to investigate the chemical state of the Zn2p. Auger peak investigation 

of the ZnLMM is more sensitive to the analysis of the Zn state. The ZnLMM peak in 

metallic Zn can be observed at 992 eVand that of the as deposited ALD ZnO films was 

observed at 977.5325 eV.
51 The lower shift in ZnLMM peak shows most of the Zn 

elements exist in Zn2+ state. 

A high resolution valence band spectrum was done on the as deposited ALD ZnO 

samples to investigate the energy bands. The valence band maximum (VBM) position 

was obtained by linear extrapolation. The intersection of the fitted line through the base 

line and the tangent to the peak is defined as the valence band maximum. Figure 37 

shows the spectrum of the valence band of ALD ZnO. The VBM is the energy difference 

between the valence band and Fermi level Ep. For the as-deposited ALD ZnO, the VBM 

is found to be 3.25 eV below the Fermi level. 
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Figure 36. XPS analysis of as-deposited ALD ZnO films of 400 nm thickness. 
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Figure 37. Valence band spectrum of the as-deposited ALD ZnO 
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The position of the Fermi level with respect to the conduction band minimum can 

be estimated by the following mathematical model: 

KT Af 
EF-Ec=—h^f) (30) 

where Ec= conduction band minimum, EF = Fermi level, ND = n-type carrier density, 

KT 
Nc = effective density of states in the conduction band, = 0.026 eV. 

q 

ye.2c»Mm» (31) 

h 

where h = Bolztmann's constant and me* = effective mass of an electron=0.25.52'53,54 

Using the effective mass listed above, the electron effective density of states is calculated 

to be ~ 3><1018
 cm'

3
. This result is consistent with the literature values.52'53,54'55 Therefore, 

the position of the Fermi level with respect to the conduction band is estimated to be ~ 

0.05 eV. This implies the Fermi level lies above the conduction band by 0.05 eV. Hence, 

it can be considered as a degenerate semiconductor n++. The experimental XPS analysis 

combined with the theoretically calculated position of the Fermi level provide the 

following energy band diagram for ALD synthesized ZnO in Figure 38. 



82 

0.05 eV J 

1022.5325 eV 

Figure 38. Energy band diagram of as-deposited ALD ZnO thin films 

4.4.4 Conclusions 

Good quality ZnO thin films were synthesized by atomic layer deposition. Our 

analysis reveals that ALD ZnO follows a Volmer-Weber type film growth. This growth 

mode can consistently explain the experimental results for varying temperature and 

different substrate materials. Once a nucleation site has formed, subsequent ALD cycles 

contribute to the growth of the crystallites resulting in appreciable grain growth. The 

ALD ZnO films exhibit a preferential growth direction in the (002) for the hexagonal 

wurtzite crystallographic phase. As the film thickness increases from 239 ALD cycles to 

1900 ALD cycles, the intensity of the (002) peak increases. The as-deposited (002) peak 

intensity increased with temperatures. This observation was consistent regardless of 

annealing ambient gas. In summary, the ALD ZnO crystal quality was improved by 

3.25 eV 

Zn2p3 
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annealing. The built-in stress was characterized for the samples annealed in N2, O2 and 

room ambient. Annealing in N2 ambient produced the lowest overall stress. During 

annealing in O2 ambient gas, the concentration of the intrinsic defects responsible for the 

electrical properties such as oxygen vacancy and zinc interstitials is reduced; hence, an 

increase in resistivity is observed. 

4.5 Raman Spectroscopy and Photoluminescence of ALD ZnO Thin Films 

Zinc oxide (ZnO) is a direct wide bandgap semiconductor material with a variety 

of technologically interesting properties. The optical properties of ALD ZnO were 

investigated by Raman spectroscopy and photoluminescence. Raman spectroscopy is a 

non destructive optical characterization technique based on inelastic light scattering that 

provides information about the phonon vibrational and rotational mode properties of the 

ALD ZnO material under test. The interaction of the probing laser beam with the solid 

target produces a shift in the energy of the detected photons. Stokes shift defines a down 

shift to lower frequencies of the emitted photons, while the Anti Stokes shift designates 

an up shift. Experimental characterization of the vibrational properties is essential in 

accurately determining the transport properties which are important in order to design 

good quality optoelectronic devices and to characterize the ALD ZnO material by its 

characteristic phonon modes. Crystalline ZnO films are dominated by intrinsic point 

defects such as oxygen or zinc vacancies and interstitials or defect complexes which are 

largely responsible for the electrical and optical properties.56 The issues and technical 

challenges surrounding these intrinsic point defects are a major reason why the 

fabrication of good, reliable p-n junctions in ZnO has eluded researchers for a long time. 

Those point defects and intrinsic defect complexes affect the transport properties. Raman 
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spectroscopy is sensitive to distortion in crystal lattice, crystal defects, and phase 

transformation. 

Like most wurtzite crystal structure materials, ZnO belongs to the hexagonal 

system with space group C6V
4
 {P6jmc) with two formula units per primitive cell, where 

all atoms occupy C3V sites.57 According to the group theory, the Raman active phonons 

are Ai (z direction), Ei (xy direction), and two E2. The Raman non-active phonons are Bi. 

Both Ai and Ei are polarized phonons having each longitudinal optical (LO) and 

transverse optical (TO) components. E2 corresponds to the non polarized phonon having 

two frequencies E2(high) and E2(i0W)- Table 10 summarizes the literature values of the 

Raman active phonons in single crystal bulk ZnO. 

Table 10. Optical modes of bulk single crystal ZnO. 

Optical Mode 

E2(low) 

E2(high) 

Ai (TO) 

A, (LO) 

Ei (TO) 

E, (LO) 

Frequency {cm
1
) 

101 

444 

380 

579 

413 

591 
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The vibrational phonon modes of polycrystalline ALD synthesized ZnO films on 

Si substrates were characterized with a Raman spectrometer (Inspector, DeltaNu) with a 

probing laser excitation wavelength at ~785 nm with -40 Wpump power. The signal was 

integrated for 2 sec and averaged 5 times for each measurement. 

4.5.1 Results and Discussion 

The Raman spectrum of the ALD thin films on Si (100) is displayed in Figure 39. 

From Figure 39, for 100 nm thick ALD ZnO and above, one can detect the Raman signal 

of optical phonons. For the highest ALD ZnO film thickness of 400 nm, there is the 

appearance of the E2 (high) optical phonon at a frequency of 446.33 cm'
1
. From Figure 

39, the peak at 384.75 cm'
1 corresponds to the Ai(TO) mode for the 400 nm ALD ZnO 

sample. The Ai (TO) mode for the 200 nm ALD ZnO sample is located at 388.3 cm'
1
. 

This corresponds to a red shift of the A1 (TO) mode from the 200 nm to the thicker 400 

nm ALD ZnO sample. The Stokes shift to lower frequencies is attributed to the presence 

of impurity defects.58 The red shift is indicative of tensile stress in the as-deposited ALD 

ZnO thin films. The ALD ZnO films grown in this study showed no external impurity 

contamination in the films. Therefore, the only defects present are intrinsic defects 

inherent to ALD ZnO films. Based on the experimental evidence explained in the 

following sections the most probable intrinsic defects are oxygen vacancies. In a separate 

study, annealing of ALD ZnO in pure O2 atmosphere revealed higher sheet resistivity 

values compared to annealing in pure N2 atmosphere. In depth analysis about the nature 

of the intrinsic defects in ALD ZnO thin films will be performed in the near future. 

From the XRD measurements, the ALD ZnO thin films have a preferential c-axis 

growth; however, during the initial nucleation phase the growth in the c-axis does not 
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dominate until a thickness ~ 100 nm ZnO is reached. 59 This might explain why the 

Raman modes are not distinguishable from the signal to noise ratio. The shift in the 

Raman frequencies is indicative of built-in stress. The E2 optical mode is used to 

characterize the built-in inherent stress in the ALD ZnO films. From Figure 39a, the E2 

mode is shifted to higher frequencies or blue shifts. This is indicative of a compressive 

built-in stress in the film. No LO phonon was detected; however, a peak was observed at 

280.93 cm'
1
, and secondary phonons between 1200 cm'

1 and 1500 cm'
1
. 

For benchmarking, single crystal bulk ZnO samples from Cermet were measured. 

Figure 39b displays the Raman spectra of bulk single crystal ZnO compared to the 

spectra obtained from a 400 nm polycrystalline ZnO film grown by ALD. Raman modes 

are very dependent on the selection rule. The observed phonons are dependent on the 

crystal orientation and the direction of propagation and polarization of the incident 

excitation light beam and the scattered light. The bulk single crystal ZnO sample was 

measured under the same conditions as the ALD polycrystalline ZnO thin films. The bulk 

single ZnO crystal exhibits a sharp and higher intensity E2 (high) optical phonon mode at 

442 cm'
1
. The increase in signal intensity of the E2 mode for the bulk ZnO compared with 

the ALD ZnO thin film is due to the high single crystal quality of bulk ZnO. 

Polycrystalline films tend to result in broader peaks compared to single crystal materials. 

The broader peak can be attributed to formation of the misfit and twin dislocation. 
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Figure 39. a) Raman spectra of as deposited ALD ZnO as a function of increasing film 

thickness, b) Raman spectra of as deposited polycrystalline 400 nm (1900 cycle) ALD 

ZnO (Black) and bulk single crystal ZnO (red). 
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When growing a dissimilar material on a substrate (such as hetero-epitaxy of 

ALD ZnO on Si) the lattice mismatch between the two materials imposes a stress on the 

growing film. The stress increases with increasing ALD ZnO thickness up to a critical 

thickness and then begins to decrease. The critical thickness is dependent not only on the 

lattice parameters but also on the Poisson ratio. The decrease of stress in the ALD ZnO 

films is due to the relaxation of the ZnO film on Si. The relaxation in the film is achieved 

through the formation of dislocation such as misfit dislocations. Both materials bulk ZnO, 

and the polycrystalline ALD ZnO thin films exhibit Raman peaks at 270 and 280 cm'
1 

respectively. We attribute those peaks to activation of the B2 modes. It has been observed 

that the silent B2 mode can be activated due to the electric field.60 Macguire et al. have 

reported the appearance of a Raman peak at 276 cm
1 in ZnO nanobelts.61 We observed a 

peak broadening in the frequency range of 1055-1173 cm'
1 in the Raman spectrum of the 

bulk ZnO sample. Ei optical phonon mode was detected for neither bulk single crystal 

nor the ALD ZnO sample. The peak at 236 cm'
1 for both bulk single crystal ZnO and 

ALD ZnO thin films might be due to intrinsic defects. 

The photo luminescence (PL) of ALD ZnO films was recorded using a 355 nm UV 

laser at room temperature. The PL spectrum of as-deposited ALD ZnO is shown in 

Figure 40. A strong UV band-edge emission can be observed at a wavelength of about 

386 nm or 3.22 eV. The samples were benchmarked against bulk single crystal ZnO. The 

bulk single crystal ZnO exhibited a very close UV emission to the ALD ZnO thin films at 

380 nm or 3.26 eV. A defect emission around 544 nm or 2.3 eFis also visible on the ALD 

ZnO films. This defect emission is due to the presence of oxygen vacancies in the as-

deposited films. Absorption measurements are the most accurate optical measurement 
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techniques to calculate the optical bandgap. The standard procedure to experimentally 

determine the optical bandgap of semiconductors is to use optical absorption/transmission 

measurements. However, due to the move of an optical lab, the equipment for the optical 

absorption was not available. PL measurements of optical bandgaps are not 100% 

accurate because of the effect of shallow donor level near the conduction band edge on 

the emission spectrum. However, PL was the only optical equipment available. 

Therefore, PL provided a means to experimentally measure a near approximate value of 

the optical bandgap of ALD ZnO thin films. The optical bandgap of the as-deposited 

ALD ZnO is ~ 3.22 eFfrom PL measurements, which is comparable to the bulk single 

crystalline value of 3.3 eV. The measured band gap is in good agreement with the 

previously calculated bandgap value of 3.2 eV. 
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Figure 40. Photo luminescence of ALD ZnO thin films showing a strong band edge UV 

emission and slight defect emission. 

4.5.2 Conclusion 

Polycrystalline ZnO thin films were synthesized by atomic layer deposition (ALD). The 

X-ray diffraction (XRD) spectra showed a c-axis preferential growth in the (002) plane. 

The Raman spectroscopy study revealed a red shift in the Raman peak, which is 

indicative of built-in tensile stress. Our measurements show the appearance of the E2 

(high) optical phonon at frequency of 446.33 cm'
1 for the thickest ZnO films. The peak at 

384.75 cm'
1 corresponds to the Ai (TO) mode. There was no indication of any LO 

phonons; however, several phonon peaks at 280.93, 1343.6 and 1422.8 cm' were 

JV 
1 1 1 1 « 1 ' 
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observed. The bulk single crystal ZnO sample exhibits a sharp E2 (high) optical phonon 

mode at 442 cm'
1
. In contrast to the polycrystalline ALD ZnO thin films, the ZnO single 

crystal did not display the Ai(TO) optical phonon. Ei optical phonon mode was detected 

for neither bulk single crystal nor the ALD ZnO sample. The peak at 236 cm'
1 for both 

bulk single crystal ZnO and ALD ZnO thin films might be due to intrinsic defects. The 

ALD ZnO showed broader peaks of the Ai(TO) than the single crystal bulk ZnO. 

Polycrystalline films tend to result in broader peaks compared to single crystal materials. 

The broader peak can be attributed to formation of the misfit and twin dislocation. The 

stress increases with increasing ALD ZnO thickness up to a critical thickness and then 

begins to decrease. The critical thickness is dependent not only on the lattice parameters 

but also on the Poisson ratio. The elasto-mechanical properties of the novel ALD ZnO 

will be discussed in the following section. 

4.6 Elasto-Mechanical Characterization of ALD ZnO by Nanoindentation 

The Nanoindenter XP was used in conjunction with the continuous stiffness 

measurement in depth control mode to analyze the elasto-mechanical properties of ALD 

ZnO thin films samples. For comparison, we benchmarked the mechanical properties of 

single crystal bulk ZnO samples against our polycrystalline ALD ZnO thin films. 

Among the novel thin film growth techniques, Atomic Layer Deposition (ALD) 

provides unique features such as precise control of ZnO thin films with atomic resolution, 

high uniformity, good conformity and high aspect ratio depositions; however, there exists 

a lack of systematic studies regarding the structural and mechanical properties of ALD 

grown ZnO thin films. The mechanical properties of single crystal bulk ZnO have been 

studied by various techniques such as X-ray diffraction (XRD),62 and Vickers 
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microhardness tests.63 Nanoindentation is a testing mechanism that is capable of 

accurately investigating the mechanical properties of thin film materials needed at the 

nanotechnology node. The mechanical properties of polycrystalline films exhibit a 

greater variation due to the grain sizes and defect content, the deposition methods and 

deposition parameters. Polycrystalline ZnO films have hardness and modulus values 

ranging from 1.5-12 GPa and 40-160 GPa respectively. Yoon et al. M have tested the 

mechanical properties of ZnO films deposited by PLD. PLD ZnO films were found to 

have a hardness of 10 GPa and a modulus of 150 GPa. 

For this study, an MTS Nano Indenter XP equipped with a continuous stiffness 

measurement attachment was used to measure the mechanical properties. 

Nanoindentation testing is one of the most useful material testing methods in order to 

determine the mechanical properties of very thin film specimens. It consists of testing the 

specimen under study whose mechanical properties are unknown with another very hard 

indenter material whose mechanical properties are well known. Nanoindentation consists 

of applying known loads on the indenter shaft and measuring the indenter penetration 

depth through a capacitive sensing or inductive sensing network. The experimental set-up 

is shown in Figure 15. By plotting the load versus penetration depth, one can 

experimentally determine the modulus and hardness of the specimen tested. The CSM 

option adds experimental capabilities which were not previously available with 

conventional indentation testing methods. By introducing a small and well controlled 

oscillation into the normal loading sequence of the Nano Indenter®, the CSM allows the 

monitoring of the contact depth and the contact stiffness throughout the loading and 

unloading of the indenter shaft. Unlike conventional indentation testing methods, the use 
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of the CSM provides the advantage of measuring material hardness and elastic-modulus 

as a continuous function of depth. A three-sided pyramidal Berkovich diamond tip with a 

tip radius less than 20 nm was used. For validation, we indented deep into the bulk Si to 

obtain well documented bulk Si properties and for simulation purposes. A depth of 1 nm 

was used as the maximum depth of penetration of all four samples. A series of 10 indents 

were placed on each sample. The impression of the indents was scanned by the attached 

NanoVision unit. The ALD ZnO films were characterized for surface roughness and film 

quality. Atomic force microscopy (AFM) was used to determine the surface morphology. 

The AFM was used in contact mode. The AFM scan of a lxl um area is shown in Figure 

41. The ALD ZnO samples are very smooth. The AFM analysis revealed a roughness 

RMS value of ~4 nm for a 400 nm thick ALD deposited ZnO thin film. From the TEM 

cross-sectional analysis, it was found that no columnar grains are present in the film. 

Instead, randomly oriented grains are observed demonstrating that the ZnO films 

deposited by ALD are polycrystalline films. This was confirmed by XRD analysis on 400 

nm ALD ZnO films. Our as-deposited ALD ZnO thin films show a preferential growth in 

the c-axis. Figure 42 shows the XRD data of a 400 nm thick ALD ZnO thin film. The 

crystallite size was calculated to be 28 nm using Scherrer's formula.47 
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Figure 41. AFM micrographs of 400 nm ALD ZnO deposited at 150 °C. An RMS 

roughness value ~4 nm was obtained. 

For this study, the elasto-mechanical properties of the polycrystalline ALD ZnO 

thin films were investigated using the Nano Indenter XP. Commerically available c-axis 

single crystal ZnO sample was also used as a reference. The equipment was used in depth 

control mode. Prior to the measurements, the tip was calibrated using a standard fused 

silica sample. The calibration was also conducted in between measurements and after the 

measurements. 
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Figure 42. XRD pattern of as-deposited ALD ZnO films. The as-deposited samples 

shows the preferential growth in the (002) plane. The patterns were recorded using CuKa 

radiation (1=1.54 A). 

To verify that the areas of indentation were accurately measured and that the 

indenter tip was appropriately calibrated, the contact depth versus the square root of the 

contact area -4A for fused silica, bulk single crystal ZnO, and ALD ZnO thin films was 

plotted in Figure 43. From Figure 43, it can be seen that the calibration for the three 

materials correlates well. Therefore, one can conclude that the areas of indentation 

measurements are accurate because both the modulus and hardness properties are very 

dependent on the accuracy of area measurements. Material deformations such as cracks, 
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pile-ups and sink-ins render it a challenge to measure the exact contact area, hence 

hardness and modulus. The contact areas were verified by an AFM around the Berkovich 

impression. Most of the discrepancy in the hardness measurements in the scientific 

literature is due to errors in the indentation area. The Poisson's ration and modulus values 

of the diamond tip used in the experiment are vd =0.07 Ed=l 137 GPa respectively. 
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Figure 43. Contact depth as a function of square root of the contact area, (black dash line) 

Fused silica calibration, (red dotted line) Bulk single crystal calibration, (blue solid line) 

ALD ZnO film. 
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Indentation depths of 250 nm, 500 nm, and 1000 nm were performed on bulk 

single crystal ZnO. The loading curve overlaps for all three indention depths validating 

the accuracy of the measurement, see Figure 44a. For analysis of the data, the 1000 nm 

indents will be discussed for comparison to the ALD ZnO data. The modulus data and the 

hardness were calculated as a function of increasing depth. The Meyer hardness is the 

ratio of the maximum load (from the load-depth curve) over the projected indentation 

area. 

The modulus is defined as the ratio of the slope of the unloading curve measured 

at the tangent to the data point at the maximum load and the projected area. The modulus 

and the hardness were recorded and plotted against the indenter contact depth. The 

modulus and hardness of bulk single crystalline ZnO are shown in Figure 45 as a function 

of the indentation depth. We measured a modulus value of 125 ± 1.6 GPa and a hardness 

value of 5.6 ± 0.09 GPa for our single crystal bulk ZnO reference sample. Our results are 

comparable to literature values of 111.2 ± 4.7 GPa and 5.0 ±0.1 GPa obtained from bulk 

ZnO sample.65 

The polycrystalline ALD ZnO thin films were also tested under the same 

conditions. The indentation depth was chosen to be 1000 nm. The load-depth curve of the 

ALD ZnO is shown in Figure 44b. 
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Figure 44. a) Load- depth curve of 250 nm, 500 nm and 1000 nm indentation depth on 

bulk ZnO. b) Load- depth curve of the ALD ZnO films. 
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Figure 45. Modulus and hardness vs. displacement of bulk single crystalline ZnO. A set 

of 10 different indents were performed at 1000 nm depth using a diamond tip Berkovich 

indenter for bulk ZnO. The plot displays the average data of modulus and hardness. 

In the case of multilayered dissimilar specimen data taken beyond 10% of the thin 

film thickness, the measurements are influenced by the substrate material.66 For example, 

as the indentation depth gets closer to the interface between the thin film and the 

substrate, the effect of the substrates becomes more pronounced. Because we indented 

deep in the substrate, there is the influence of the underlining Si wafer. From Figure 44b), 

a pop-out event can be seen from the unloading curve of the ALD ZnO thin films. The 

pop-out behavior from the unloading curve is attributed to the underlying Si substrate. 
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Cubic Si is well known to undergo pressure induced phase transformation in 

nanoindentation. In the loading phase, the cubic Si transforms to metallic Si phase S-II. 

In unloading, the pressure releases cause further transformation into an amorphous Si or 

a mixture of bcc Si , rhombohedral Si depending on the unloading rate. 7' ' Yan et al 

fro 

have shown the critical load to cause a pop-out in cubic Si at ~ 30mN. The indent 

penetration depth and loads are sufficient enough to cause phase transformations in the 

underlying Si substrate. Figure 46 shows 3-D AFM micrographs by the incorporated 

nanovision AFM equipment. Some pile-ups and radial cracks can be observed on the 

AFM images shown in Figure 46 due to the Si substrate material. 
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Figure 46. 3-D AFM plots by nanovision. Cracks are propagating radially and outward. 
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To take into account the substrate effect, simulations and modeling based on the 

contact area, the substrate properties, and the specimen compliance were calculated. The 

model employs linear elasticity theory to calculate the average elastic displacement 

beneath the uniformly loaded area. The unloading contact compliance is used to calculate 

the effective modulus and is given as follows: 

1 1 
C 

E EA 
r d 

(3) 

Where A = projected area, va= poisson ratio of the diamond Berkovich indenter, Ed= 

modulus of the diamond Berkovich indenter, |3= dimensionless constant related to 

geometry of the indenter, Er= modulus of the specimen. 

The Si substrate being harder confines plastic flow in the softer ALD thin film 

during testing resulting in an upward flow of the material which is then seen as pile-up 

around the indent. This phenomenon of enhanced pile-up of softer films on harder 

substrates was also observed by Tsui and Pharr70 and also by Lee and Fong.71 

The modulus data and the hardness data were simulated using elastic theory. 

More details about the simulation can be found in ref. (72). To estimate the elastic 

modulus (Es) of the films, the effective modulus (iseff) is plotted in Figure 47 with the 

simulation data. In this model the effect of the silicon substrate underneath the ZnO film 

is taken into account, and the Eeg of the elastic contact between the indenter and layered 

specimen is simulated for thin films with different Es. The elastic properties of silicon 

used in the simulation were 161 GPa for Es and 0.227 for Poisson's ratio (ys). The v* for 

the ZnO film was calculated to be 0.3. The data is normalized to the film thickness, 

allowing films of varying thicknesses to be directly compared to the same simulations. 
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Comparing the experimental data points to the simulated curves, the Es for the as-

deposited ALD ZnO thin film was calculated to be approximately 143±7 GPa. This 

modulus is higher than that of the bulk single crystal value. 

The modulus and hardness of our polycrystalline ALD ZnO thin films were 

calculated to be 143± 7 GPa and 6.9± 0.6 GPa respectively. 

240 

VA/h 

Figure 47. Effective modulus vs. square root of area normalized with the thickness. The 

solid line represent CSM experimental data and the symbols are the simulated results of 

Stone's model for films with different. Eeff = effective modulus, A= contact area, h= film 

thickness, A= contact area. The simulation curves are E = 120 GPa, 140 GPa and 150 

GPa. CSM = experimental data. v= poisson ratio 
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4.6.1 Conclusion 

ZnO is a versatile material with numerous properties that make it suitable for 

renewable energy, white LEDs, spintronics, piezoelectric and ferromagnetic applications. 

We successfully deposited low temperature ZnO thin films by ALD. The physical 

properties of the ALD thin films were studied by TEM, AFM, XRD and nanoindentation. 

Based on the experimental results and modeling the film growth mode for ALD ZnO has 

been found to follow the Volmer-Weber island growth. Our as-deposited ALD ZnO thin 

films are polycrystalline. We have reported here the modulus and hardness of ALD ZnO 

and benchmarked it against crystalline bulk ZnO using nanoindentation techniques. Bulk 

single crystal ZnO was measured to have a modulus value of 125± 1.6 GPa and a 

hardness value 5.6± 0.09 GPa. Simulations based on Stone's model of elastic rebound 

between an indenter and a composite multi-layered specimen were used to accurately 

extract the modulus of our polycrystalline ALD ZnO thin films on Si (100). The modulus 

and hardness of our polycrystalline ALD ZnO thin films were calculated to be 143± 7 

GPa and 6.9± 0.6 GPa respectively. 

4.7 Investigation of Electrical Properties of ALD ZnO 

After deposition, the ALD ZnO samples were subdivided into multiple pieces by 

cleavage and their electrical properties were investigated by four-point probe. To limit 

the effect of Si on the resistivity measurements, an insulating layer is present between the 

ZnO layer and the Si substrate. Figure 48 shows the sheet resistance measurements of the 

as-deposited samples. The resistivity for the ALD ZnO films below 200 ALD growth 

cycles is high and rapidly decreases as the ALD ZnO film thickness increases. The as-

deposited ZnO thin films are very conductive. The initial high resistivity for very thin 
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ZnO films provides experimental evidence for incomplete ZnO films during the island 

nucleation phase. Once the islands grow into a continuous ZnO film the resistivity drops 

rapidly to its final value. The ALD ZnO thin films have a lower resistivity (~0.02 Q-cm 

for 400 nm thick ALD ZnO) than that of the bulk single crystal ZnO (0.364 Q-cm). The 

resistivity decreases as the film thickness is increased and saturates for the ALD growth 

cycles higher than 500 cycles or 100 nm thick films to a value of ~ 0.02 Q-cm. In general, 

the decrease in resistivity with increasing film thickness can also be explained by the 

reduction of surface states, interface scattering and the incorporation of more defects 

(oxygen vacancies and interstitials, Zn interstitials).73 The incorporation of more 

structural defects in the films during deposition reduces the electron mean free path; as a 

consequence, the electrical resistivity is enhanced. For the very thin films, the increase of 

the effect of scattering of the electrons at the interface influences the resistivity 

measurements. This effect is further annihilated in the thicker films. Surface scattering 

and grain boundaries scattering affect very thin films disproportionately more resulting in 

an increased resistivity values. 74 
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Figure 48. Sheet resistance as a function of ALD growth cycles. 

The ALD ZnO films' conductivity was also investigated as a function of 

deposition temperature. For this experiment 50 nm thick ALD ZnO thin films were grown 

at deposition temperatures of 100°C, 125 °C and 150 °C. All other deposition parameters 

and the sample cleaning procedure remained unchanged. After ALD ZnO film 

deposition, the surface conductivity was investigated employing the conductive AFM 

mode. A description of the apparatus is shown in Figure 49. An area of lum x lum was 

scanned. The ZnO samples were biased at a voltage of 2 V. The surface current intensity 

goes from light (lowest = OfA) to dark red (highest=l pA). The dark red spots represent 

areas of high current density and the yellow spots are areas of low current density. The 

measurements show an increase of conductive areas with increasing deposition 

temperature. This can be explained by the fact that the defects responsible for the surface 
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conductivity in the as-deposited ALD ZnO are not activated at low temperatures. A 

minimum activation energy is required. For deposition temperature of 125 °C and 

beyond, the surface conductivity increases. A visual map of the surface conductivity is 

shown in Figure 50. 
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Figure 49. Schematic of the conductive AFM apparatus 
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Figure 50. a) 50 nm ALD ZnO deposited at 100 °C. b) 50 nm ALB ZnO deposited at 125 



108 

A 400 nm thick ALD ZnO thin film was deposited on a 4 inch Si (100) wafer at 

150°C and subdivided by cleaving into different sample sets. One set was annealed in air 

for 10 minutes at 400 °C. Another set was annealed in forming gas (95% N2 and 5% H2) 

for 10 minutes at 400 °C. A third set was not annealed and used as a reference sample. 

The annealing experiment was carried out in a rapid thermal annealing system. The 

surface conductivity was also investigated using the same conductive AFM apparatus 

shown in Figure 49 to investigate the effect of annealing on the surface defects of the 

ALD ZnO films. The surface current intensity goes from light (lowest = OfA) to dark red 

(highest=5 pA). It can be seen from Figure 51 that the conductivity of ZnO film surface is 

only significantly changed when annealed in air. The surface conductivity of the as-

deposited ZnO films and films annealed in forming gas does not change significantly. 

Annealing in forming gas is passivating the dangling bonds at the surface and in the grain 

boundaries; however, annealing in air reduced the surface defects present on the surface. 

Further investigation of the effect of annealing on the structural defects will be presented 

later on in another chapter in this dissertation. 
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Figure 51. Conductive AFM mapping of ALD ZnO films, a) as-deposited 400 nm. b) 

Annealed in forming gas. c) Annealed in Air. The annealing time and temperature for all 

samples are 10 minutes and 400 °C respectively. 
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The effect of annealing on the film's structural defects and their identification was 

further investigated. After ALD ZnO film deposition a portion of the samples were 

divided by cleaving for post deposition anneal (PDA) in room ambient, nitrogen ambient, 

and oxygen ambient in a rapid thermal annealing system (Solaris 150 by Surface Science 

Inc). The annealing temperatures range from 400 °C to 600 °C for 1 hour. The resistivity 

of the samples annealed in room ambient, N2, and O2 atmospheres were measured using a 

four-point probe. The resistivity measurements of the annealed samples are displayed in 

Figure 52. The samples annealed in pure N2 atmosphere reveal about 2 orders of 

magnitude lower resistivity values compared to annealing in pure O2 atmosphere and 

about 3 orders of magnitude lower resistivity values compared to annealing in room 

ambient for annealing temperatures lower than 550 °C. At higher annealing temperature 

the values for all three ambient appear to converge. The as-deposited ZnO films exhibit 

different intrinsic defects such as oxygen and zinc vacancies and interstitials responsible 

for the electrical and optical properties of ZnO. Annealing in O2 and air atmosphere 

reduces those structural defects only to some degree. As a result, thermal treatment in 

those environments was found to reduce the conductivity values of the samples. The most 

dramatic resistivity reduction is achieved for annealing in pure N2 atmosphere. 
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Figure 52. Resistivity of ALD ZnO films as a function of annealing temperature as a 

function of different annealing ambient in O2, N2, and room ambient. 

For an in-depth study, high-resolution XPS scans of the O l s peaks of the ALD 

ZnO samples annealed in air, O2 and N2 gas were performed. For the as-deposited ZnO 

sample, the O Is peak shows an asymmetric feature and a shoulder in the HR XPS profile 

as seen in Figure 53. The spectra are fitted by three peaks centered at binding energy of 

531.01 eV, 532.55 eVmd 533.19 eV. The lower binding energy peak at 531.01 eFis due 

to O2" ions on the wurtzite structure of the hexagonal Zn2+ ions. In this dissertation, the 

lowest peak will be referred to as Oa, the medium peak as Ob and the highest peak as Oc. 

This is attributed to the Zn-0 bonds whereby each Zn atom is bonded to 4 O atoms or 
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vice versa. The intensity of the peak Oa with the lowest binding energy is the highest and 

contributes about 81% of the total area indicating a strong Zn-O bonding or wurtzite 

hexagonal formation in the ALD ZnO thin films. The shift of the lowest binding energy 

peak Oa to higher energy values from the published literature value indicates show an 

increase concentration of oxygen vacancies.75 The medium and highest binding energies 

at 532.55 eV and 533.19 eV are thought to be due to OH" groups and adsorbed water 

molecules forming Zn(OH)2. These OH" are adsorbed only at the ZnO surface. The 

component of the medium peak Ob is attributed to the oxygen deficient region in ZnO. 

Hydrogen forms a deep donor in ZnO. When H ions bond with O atoms in ZnO, oxygen 

vacancies are created in the ZnO crystal lattice. The more H ions get absorbed, the higher 

the concentration of oxygen vacancies. The same observation is consistent with samples 

annealed in different environments. The high resolution XPS scans of O Is of the as-

deposited sample and the different annealing environments are shown in Figure 53. 

Figure 54a shows the shift in Oa peak as a function of the annealing environment. 

Oxygen and air annealing have the greatest shift in Oa peak position resulting in a shift 

towards lower binding energies close to the literature values of 530.53 eV indicating 

better crystallization and bonding between Zn and O species.75 This is a result of the 

reduction of the oxygen vacancies. To corroborate, the Ob were also analyzed as a 

function of annealing temperature and annealing ambient gas. Figure 54b shows the plot 

Ob peak as a function of temperature; however, in the oxygen deficient region a decrease 

in both binding energy and intensity of the peak Ob is observed for annealing in O2 and 

air environment. This effect can be interpreted as a decreased concentration of oxygen 

vacancies in the ALD ZnO samples because O2 annealing diffuses a large supply of O 
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atoms into the ZnO crystal lattice resulting in a decrease of oxygen vacancies. N2 

annealing does not change significantly the intensity of the Oa and Ob peaks indicating 

the amount of oxygen vacancies did not decrease. This observation corroborates the 

resistivity measurements as a function of annealing ambient. 
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Because the ALD synthesized ZnO thin films exhibit such a high electrical 

conductivity, the carrier type and density was further investigated. The as-deposited ALD 

ZnO thin film carrier concentration was measured by the Hall Effect. In order to suppress 

the effect of the Si substrate on the measurements, a thick electrically insulating oxide 

layer was grown and sandwiched between the ZnO layer and the Si substrate. Three sets 

of samples made of ZnO/SKVSi, ZnO/Hf02/Si and ZnO/quarts were investigated. The 

ZnO/SKVSi set was made of an ALD ZnO layer on top of 150 nm PECVD Si02 grown 

on Si. Similarly, the ZnO/Hf02/Si was made of ALD ZnO on top of 150 nm of ALD 

grown on high-k insulating Hf02 on Si. Finally, the third set was ALD ZnO on a quartz 

wafer. Hall measurements revealed an n-type carrier concentration in the order of ~1019 

cm'
3 for all experiments compared to a concentration of 1015

 cm'
3 for bulk single crystal 

ZnO. These measurements reveal a significant difference in carrier concentration 

compound to bulk ZnO. The as-deposited ALD ZnO thin films, without any intentional 

doping, exhibit a native n-type high concentration. The carrier densities and mobility of 

the ALD ZnO films was measured as a function of thickness in Figure 55. A carrier 

concentration of 1.7 x 1019
 cm'

3 and a mobility of 24 cm
2
/V-s were observed for the 

400nm as-deposited ALD ZnO; see Figure 55. Due to the high n-type concentration, the 

ALD ZnO shows relatively high electrical conductivity. The resistivity measurements 

from the Hall Effect agree well with the four-point probe measurements. An MOS 

structure was processed and fabricated to investigate the MOS behavior with ALD ZnO 

as the semiconducting layer. MOS capacitors with Au and Pt top metal electrodes were 

fabricated on the HftVALD ZnO structure. Figure 56 shows the C-V measurement of 

ALD 4 nm Hf02 on ZnO with Au top electrodes at a frequency of 1 MHz. 
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The flat band voltage was calculated from the C-V curve in Figure 56 to be -0.5 

V. The Hft)2 on ZnO dielectric constant was calculated using the following relation: 

C = ^ (32) 

d 

A dielectric constant of ~ 15 is obtained for the MOS structure using HfCh as the 

high-k layer and ZnO as the semiconductor layer. ZnO has potential applications in the 

electronics industry. Very good C-V plots can be obtained with ZnO in accumulation 

region with positive voltages and in inversion region with negative voltages, which is 

characteristic for n-type semiconductor materials; however, from the C-V plot, the deep 

inversion layer indicates the presence of trap levels in the ZnO film. 

The charge trap levels in ZnO were investigated using deep level transient 

spectroscopy (DLTS). The DLTS measurements were taken using a Biorad DL4600 

DLTS system. A sample of 400 nm ALD ZnO thin film was cleaned in acetone, 

isopropanol and rinsed in DI water. After cleaning, circular Au and Pt electrodes were 

deposited by e-beam evaporation. The thickness of the top metal electrodes deposited 

was -100 nm, and the size of the electrodes ranged from 250 to 500 um in diameter. A 

eutectic solution was used on the back of the samples as back contacts. The 

measurements were carried out using a rate window of 11.4 Hz. The time window is 204 

ms. The bias voltage and the peak voltage were Vb = -1 Fand Vp= 3 V respectively. The 

DLTS signal on the ALD ZnO was plotted as a function of temperature, as seen in Figure 

57 a). The DLTS in the temperature range from 50K to 300K revealed one primary defect 

level. This defect level was found to have an activation energy of 0.23 eV below the 

conduction band. The capture cross-section a and concentration were calculated to be 

equal to 4.43x10"21
 cm

2 and 1.41xl015
 cm'

3 respectively. The Arrhenius plot of the 
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dominant defect is displayed in Figure 57. The capacitance of the diode under reverse 

bias of 3 Fis equal to 35.53 pF. For comparison, the DLTS measurements on bulk ZnO 

in the literature indicate a common defect level with an activation energy between 0.2-03 

eV.
 76 '77 These defects are structural defects and are present in both single crystal and 

polycrystalline ZnO films, and they are generally thought to be due to oxygen vacancies 

(V0) and Zn interstitials (Zn;); however, Zn; is believed to be a shallow donor in ZnO and 

V0 are deep donors. This is consistent with the local density approximation. The 

combined results of the XPS and the DLTS measurements of the ALD ZnO indicate that 

the presence of oxygen vacancies constitute the major defects level in the as deposited 

ZnO films. 
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Figure 57. a) DLTS signal vs. temperature. b)Arrhenius plot of the primary defect in 

400 nm ALD ZnO thin films. 
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CHAPTER 5 

ALD ZnO BASED PHOTODIODES 

5.1 Introduction 

Recently, ZnO photodiodes have attracted a lot of renewed interests. For 

photodiode device the ZnO layer is used as the photosensitive material. Among the 

semiconducting metal oxides that are being considered as candidates for the fabrication 

of photodiodes, ZnO offers specific advantages such as low deposition temperature, low 

cost and good electrical and optical properties. In addition, ZnO based photodetectors do 

not require anti reflection coatings. ' ' Due to the lack of reproducible high quality p-

type ZnO, because of the very high n-type background doping, good homo junction ZnO 

devices still remain an elusive goal. For the time being most heterojunction diodes have 

been fabricated as an alternative solution. The most common p-type semiconductors used 

are SiC, GaN, ZnRl^O-t, NiO, Q12O and ZnMgO. Although the heterojunction devices 

based on these p-type materials exhibit good diode characteristics, they suffer from low 

spectral responsivity and hence low efficiency.79 For example, n-ZnO/p-SiC samples 

have spectral responsivity around 0.045 A/W for energies greater than the bandgap Eg ~ 3 

eV.
 80 Heterojunction n-ZnO/p-Si devices have attracted significant attention. Those 

photodiodes can exhibit higher efficiencies and cover a wide spectral range. Quantum 

efficiency of ~50% or spectral responsivity of 0.28 A/W can be achieved with such 

photodiodes. 79 Si is the most studied element semiconductor and is relatively 

inexpensive. 
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In this chapter of the dissertation two terminal device applications for ZnO are 

explored, and heterojunction ALD n-ZnO/p-Si photodiodes are fabricated, characterized 

tested and optimized. 

5.2 Experimental Set-up 

ALD ZnO thin films were deposited on 4-inch diameter p-type Si (100) wafers at 

150 °C to form a p-n heterojunction diode. DEZ was used as the precursor for zinc and 

H2O vapor was used as the oxidation source. N2 was used as the carrier gas. The ALD 

Chamber pressure reading was ~ 2-lxlO"1
 Torr in N2 ambient. After the ALD deposition, 

the sample was subdivided by cleaving in multiple pieces. Surface cleaning can affect 

device performance particularly when depositing a thin film material. Therefore, one set 

of the samples was cleaned using O2 plasma ashing for different times to investigate the 

effect of surface cleaning on the diode characteristics. Additionally, the choice of metal 

contact for the p-n heterojunction diode has a considerable impact on the device behavior. 

Moreover, the work function of the metal needs to be selected carefully while considering 

the doping concentration on the n-type material. Indeed, the work function of the metal 

contact with respect to the semiconductor work function and doping concentration 

determines whether the contact is Ohmic or a Schottky contact. Therefore, various metal 

contacts with different workfunctions were used to study both the contact resistance and 

the device performance. A Kurt Lesker PVD 250 electron-beam system was used to 

evaporate Ti, W, Al and Pt electrodes. These metals were used as top electrodes on the 

photodiode samples that were treated with O2 plasma ashing and diode samples that did 

not receive O2 plasma pre-treatment. The deposition parameters for the metals are 

summarized in Table 11. 



Table 11. E-beam deposition parameters for metal contacts. 

Metal 

Ti 

W 

Pt 

Al 

Starting 
Pressure 
(Torr) 

1.5x10-'' 

5.3X10"6 

5.3 xlO-6 

5.3 xlO-6 

Density 
(g/cm ) 

4.5 

19.3 

21.4 

2.73 

Z 
ratio 

0.628 

0.163 

0.245 

1.08 

Deposition 
rate (A/s) 

4 

1 

2 

1 

Thickness 
(nm) 

100 

100 

100 

100 

The electrical properties of the ZnO/Si photodiodes were studied using different 

characterization techniques. The photodiodes I-V characteristics were measured using a 

semiconductor device analyzer B1500A by Agilent connected to a Micromanipulator 

probe station. The B1500A has a current resolution of 0.1 fA and a voltage resolution of 

0.5 fiV. Both the dark current and the photocurrent were collected using I-V 

measurements. The voltage was swept from -4 Fto 4 Fand 4 Fto -4 Fwith 0.08 Fstep 

and 0.1 F compliance. The quantum efficiency (QE) experiments were performed on a 

PV-Measurements system (IVQE-8C), at 0 volt bias, under AM1.5G illumination, with a 

Xenon Arc lamp source as primary source and dual-grating monochromator. The incident 

power was 100 mW/cm
2
. The QE measurements evaluate the current or e/h pairs collected 

by light absorption of the sample versus the known intensity of light irradiated on the 

photodiode sample. For optimum device performance, the design of the p and n regions is 

critical. The thickness and doping concentration of the n-type ZnO layer is thus very 

important. The thickness of the top layer affects both the absorption efficiency of the 
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photodiode, as well as the amplitude of the total current collected. The photoactive 

semiconductor film has to be thin enough to allow carrier collection at the contact side 

and therefore enable diffusion of carriers with minimum recombination. The films should 

also be thick enough to absorb a greater light intensity (more photons) under illumination. 

Thus, the ZnO layer thickness has to be optimized to increase the collected current and to 

optimize absorption efficiently. The recombination rate is inversely proportional to the 

carrier lifetime which is in turn proportional to the square of the carrier diffusion length. 

Thus, the n-type layer thickness needs to be designed with consideration of the carrier 

diffusion length. The calculation of the carrier diffusion length can be found in Appendix 

A. The carrier diffusion length in ZnO was calculated to ideally be 364 nm. A 400 nm 

ALD ZnO thin film was deposited on Si to take into account both the diffusion length and 

the absorption efficiency for diode characteristics optimization. Additionally, the full 

stoichiometry of ZnO deposited by ALD is ideally obtained at a film thickness of 400 nm. 

5.3 Energy band diagram of ALD n-ZnO/p-Si structures 

One of the most important properties of a p-n heterojunction diode is its current-

voltage behavior or rectifying characteristic. Current flows in one direction under forward 

bias applied voltage and almost no current in the other direction. Under forward bias, the 

diode current flow increases exponentially with voltage. The voltage at which the current 

starts increasing is known as the turn-on voltage. Ideally, under reverse bias no current 

flows. However, as the reverse bias is increased the diode finally starts conducting after a 

certain voltage. The point at which current flow is detected under reverse bias is known 

as the breakdown voltage. The forward bias is defined as a positive voltage applied on the 

p-side of the p-n junction and a negative voltage applied on the n-side. On the other hand, 
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the reverse bias is defined as a negative voltage applied on the p-side and a positive 

voltage on the n-side. In order to optimize the ALD ZnO based heterojunction 

photodiodes, the energy band alignments have to be studied since the conduction and 

valence bands offsets affect the diode characteristics such as turn on voltage, breakdown 

voltage, depletion width, band offsets and carrier diffusion length and thus the current. 

The energy bands of the heterojunction were accurately determined by high resolution 

XPS analysis. Figure 58 shows the separated energy bands of both semiconductors with 

respect to the vacuum level prior to the formation of the p-n heterojunction. The Fermi 

level of ZnO and that of Si are also drawn. It is important to notice the misalignment of 

the two Fermi levels since that energy level difference is responsible for the bending of 

the conduction and valence bands, the diffusion of carriers, the depletion width, etc. The 

electron affinity of the semiconductors, which is defined as the separation between the 

vacuum level and the conduction energy level, and the difference between the conduction 

band and Fermi level determine the conduction band and valence bend shift that is 

required to align the Fermi levels of the two semiconductors at equilibrium. The Fermi 

level of n-type ZnO is above its conduction band, meaning that the semiconductor is 

degenerate. However, the Fermi level of p-type Si is above and closer to the valence band 

since the material is lightly p-doped with boron acceptor atoms. Moreover, it can be 

observed that the conduction band and valence band energy levels of the two materials 

are not aligned when separate. 
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Figure 58. Energy bands of ALD ZnO and Si with respect of the vacuum level 

Simulations using ADEPT semiconductor simulator were performed and 

compared with the calculated values. Theoretical detailed calculations were performed to 

verify the accuracy of the simulation results. Appendix A shows the calculations. The 

material properties used in the simulation and the simulation code are shown in Appendix 

B and C respectively. The simulated band diagram is shown in Figure 59 under different 

bias conditions. As expected, at equilibrium the Fermi levels of the ZnO, EFN, and that of 

Si, EFP align when the p-n heterojunction forms; thus, the conduction and valence bands 

will bend accordingly. At equilibrium, in order to maintain the condition of charge 

neutrality, the Fermi levels must be constant. The simulated band diagram under zero 

bias is shown in Figure 59a. The simulated valence and conduction band offsets are 0.45 
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eV and 2.6 eV respectively. These values are very comparable to the independently 

calculated values of 0.45 eFand 2.5 eV. The band offsets originate from the difference of 

workfunctions of both semiconductors. It is a measure of the energy required to reduce 

the barrier seen by carriers and for the current to flow. In other words, this energy barrier 

is known as the built-in voltage for a heterojunction. The higher the band offsets, the 

larger the built-in voltage and the higher the voltage required to turn the device on. The 

built-in voltage was calculated to be ~ 0.6 V. 

After the formation of the heterojunction, carrier diffusion takes place to maintain 

equilibrium state. Because of the large concentration difference in carriers, the electrons 

from the n-side diffuse into the p-side and the holes from the p-side are drawn by 

diffusion to the n-side. This inter-diffusion leaves a depletion region near the junctions 

which becomes depleted of carriers. As a consequence, space charge region is developed 

with positively charge donor ions on the n-side and negatively charge acceptor ions on 

the p-side. This space charge creates an electric field in the depletion region which drives 

a drift current. The electric field drives the holes in the same direction as the field and the 

electrons in the opposite direction of the field which opposes the diffusion current until 

an equilibrium is established. The simulated and calculated depletion widths are 0.27 fim 

and 0.23 jum respectively. In an abrupt p-n junction, the depletion region extends 

asymmetrically further into the material with the lowest doping level. The total current is 

the sum of the drift current due to E-field and the diffusion current. 

Figure 59b-d shows the band alignment of the heterojunction n-ZnO/p-Si under 

different biasing conditions. It can be seen that the conduction band offset is reduced by 

the action of the forward biasing voltage and the band offset is increased by applying a 
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reversed bias. The depletion region is reduced under forward bias and the band offsets is 

also reduced. This facilitates the current flow. Under the forward bias conditions, the 

diffusion current dominates over the drift current. Under reverse bias conditions, the 

depletion width and the energy barrier are both increased. Consequently, the drift current 

becomes greater than the diffusion current. The effect of the biasing conditions is 

depicted in Figure 59. The electric field and the total charge density were also simulated 

in Figure 60. The p-n junction behaves like an abrupt junction with most of the depletion 

region in the Si p-type layer since it is much more lightly doped compared to the ALD 

ZnO layer. Figure 60a shows the electron and hole densities in the quasi-neutral region. It 

can be seen that the carriers are depleted from a region at the metallurgical junction from 

-0.4 jum to -0.6 fim. Figure 60b-d show the total charge density in the depletion region, 

the electric field and recombination rate which mostly is dependent on the carrier 

lifetime. The discrepancy between the calculated depletion region and the simulated 

depletion region is attributed to how the simulator treats the presence of the abrupt 

junction difference in velocity and lifetime of the electrons and holes in ZnO and Si. This 

is not taken into account by the theoretical calculation. Overall, the simulation data agree 

well with theoretical values. 
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Figure 60. a) Electron and hole density of n-ZnO/p-Si heterojunction in the quasi-neutral 

region, b) Total charge density as a function of depth in the depletion region c) Electric 

field as a function of depth, d) Recombination and generation rate. 

5.4 Quantum efficiency 

Quantum efficiency (QE) is one of the most important properties for 

photosensitive devices such as photodiodes and solar cells. It measures the number of 

electron-hole pairs generated under incident light. The QE of a diode can be expressed as 

follows: 
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qX 

where h= Planck's constant, c=speed of light, q= electron charge, A,=wave length of the 

incident light and R= responsivity is described in equation P {A/W) 

(3). 

The quantum efficiency measurements of the fabricated ZnO/Si photodiodes 

cover a wide spectral range. For the ZnO/Si heterojunction photon energies covering the 

visible and near-infrared range are attributed to processes in the Si because those energies 

are smaller than the bandgap of ZnO. Therefore they cannot be absorbed by the ZnO 

material. That is the reason why knowledge of the band structures of the materials is 

critical in designing an efficient photodiode. The bandgap of ZnO is 3.2 eV; thus, the 

material will only absorb photon with energy greater than its energy band gap. Thus, 

shorter wavelengths, as seen in Figure 58 and Figure 59, will be absorbed by the ALD 

ZnO material. By depositing a ZnO layer on Si, the spectral responsivity of Si 

photodetectors is widened down to UV range. To achieve an efficient UV photodetector, 

the ZnO layer must be the active layer where the detection occurs. The photodiode device 

structure is shown in Figure 61. Each electrode was isolated from its neighbor to limit the 

effect from the surrounding electrodes. Therefore, the efficiency measurement is obtained 

from the ZnO region which is irradiated and where the light is absorbed. The 

measurements were conducted under 0 V bias and measuring the QE was measured when 

the sample is under radiation from UV (300 nm) to infrared (1300 nm). 
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Figure 61. Schematic of photodiode device structure for QE measurement, a) Side view 

b) cross-sectional view 

Figure 62 shows the QE measurements for Al/ZnO/Si and Pt/ZnO/Si 

heterojunctions with two different metal contacts. The simulation is shown in Figure 59. 

The bandgap of Si is 1.1 eV, thus Si will absorb photon energies large than 1.1 eV. Si 

absorption quantifies the QE response in the visible range (400 nm - 800 nm) and also in 

the near-infrared to infrared range since Si absorbs photons with wavelength smaller than 

1.12 nm. The measurements revealed a QE of 38.48 % for Al/ZnO/Si photodiodes and 

41.83 % for Pt/ZnO/Si photodiodes for the as-deposited ALD ZnO samples at a 

wavelength on 380 nm which matches exactly the band edge of our ALD ZnO films. This 

can also be seen in Figure 62. The peaks from Figure 62 around 470 nm and 630 nm are 

most likely due to interference fringes. Optical reflection, carrier recombination, fringes 

from interface layer and defects, all affect the quantum efficiency. For the case of ALD 
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ZnO/Si photodiodes, there is the presence of a thin layer of non-stoichiometric SiOx. The 

thin layer of the oxide is originating from the deposition process due to H2O precursor 

used as oxidation source. The native oxide can be detected by TEM analysis in Figure 63. 

In this case, the interference fringes add up constructively resulting in the spectra seen in 

the visible range. Additionally, the ZnO crystal structure is hexagonal and, thus, has two 

essential lattice constants 3.2 A on the a-axis and 5.2 A on the c-axis. In ALD grown 

ZnO, the c-axis is dominant; thus, the lattice constant is 5.2 A, which represents a 4 % 

mismatch with Si lattice constant of 5.43 A. Thus, the ZnO lattice is under tensile strain 

up to its critical thickness after which it relaxes by releasing defects. The critical 

thickness he of ALD ZnO on Si can be calculated as follows: 

6 ( l - v c o s V ) ) ( l n ( V 6 ) + l) 
c
 8nf(l + v)cos(A) 

where v = is the Poisson ratio of ALD ZnO obtained from the nanoindentation 

experiment and is depending on the Young's modulus, b= Burgers vector =azno/2 <110>, 

f=misfit parameter= / = —— —, a and X are the angle between the Burgers vector and 

asi 

slip direction and the slip plane and the interface respectively. 

After solving the equation, the critical thickness upon which the relaxation 

introduces dislocations near the interface was calculated to be ~ 1 nm. The grown ALD 

films are much thicker than the critical thickness therefore a dislocations are expected as 

seen in the TEM cross-section in Figure 63. 

Despite the defects from the lattice relaxation, the efficiency of the device 

measured is significant and encouraging. Further device improvements can be achieved 

by dealing with the defect density levels. Because surface structures heavily impact the 
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QE measurements the samples were cleaned by an O2 plasma treatment for 5, 10, 15 and 

30 min. The plasma power was set at 20 W and a pressure of 50*10"3 Torr. The oxygen 

flow was set to 15 seem. The QE was found to increase after O2 plasma cleaning to 

approximately 49.05 % and 52 % for Pt and Al respectively. 
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Figure 62. Quantum efficiency of ALD ZnO/Si photodiodes. a) QE using an Al electrode, 

(solid line) non cleaned sample, (dash-dot) after 15 minutes O2 plasma clean, (dash) after 

30 minutes O2 plasma clean, b) QE of a Pt/ZnO/Si photodiode. (dash) non clean, (solid 

line) 30 minutes O2 plasma clean, c) Comparison of Al/ZnO/Si and Pt/ZnO/Si 
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photodiodes not cleaned, d) Comparison of Al/ZnO/Si and Pt/ZnO/Si photodiodes after 

30 minutes O2 plasma clean. 

Figure 63. TEM showing thin oxide layer on Si responsible for interference fringes. 

So5 I-V Characteristics of n-ZnO/p-Si Photodiodes 

In order to gain a better understanding of the QE measurements, the energy bands 

diagrams were simulated. The workfunctions of Pt and Al are 5.6 eV and 4.05 eV 

respectively. From our previous calculations the workfunction and electron affinity of 

ZnO are 4.45 eV and 4.5 eV respectively. A Schottky contact is defined as a metal 

junction contact where the metal work function is larger than that of the semiconductor 

workfunction. However, even when the metal work function is larger than that of the 
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semiconductor, a metal junction contact can behave as an Ohmic contact depending on 

the doping concentration of the semiconductor and on the interface defect density. When 

a metal-semiconductor junction is created, a depletion region is created underneath the 

metal. At thermodynamic equilibrium, electrons flow from the semiconductor to the 

metal in Schottky contacts. This flow causes a depletion region to form at the 

semiconductor-metal interface. Also, the potential barrier height, due to the work 

function difference between the semiconductor and the metal, prevents electrons from 

crossing from the metal side to semiconductor. Current flow occurs for forward bias and 

very little current flows in reverse bias. This results in a rectifying behavior for Schottky 

contacts. However, if the doping concentration in the semiconductor is very high, the 

depletion width in the semiconductor underneath the metal is reduced, allowing the 

electrons to tunnel through the barrier more readily and rendering the contact a virtual 

Ohmic contact. On the other hand, an Ohmic contact occurs when the work function of 

the metal is lower than that of the semiconductor. For Ohmic contacts, the contact 

resistance is as low as possible and follows Ohm's law V=IR. Pt metal, having a higher 

workfunction than the workfunction of ZnO, is expected to form a Schottky contact with 

ZnO. On the other hand, the Al workfunction is lower than that of ZnO; therefore Al is 

expected to form an Ohmic metal contact with ZnO. The ideal barrier height for Al and 

Pt with ALD ZnO are -0.405 eV and \2 eV respectively, see Appendix A for the 

calculation. Figure 64 shows the band alignment simulation of different metal contacts 

with ZnO/Si p-n heterojunctions and their potential barrier heights. The barrier height and 

depletion region of the metal/ZnO/Si photodiode are calculated as follows: 

q(f>b =qVi + Em= q<t>metal - q(/>Zn0 + Em (35) 
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W= fe^F. (36) 

iqNd ' 

The calculated depletion width of the metal electrodes on Si is shown in Table 12. It must 

be noted that the potential barrier is reduced when the bias voltage applied. Also, the 

barrier seen by the electrons from the semiconductor side might be smaller if interface 

states exist with levels higher than the conduction band minima. 

Table 12. Workfrinction, barrier height and depletion width of metals on ZnO/Si 

photodiodes 

Metal 

Workfunction 

{eV) 

®b(eV) 

W (nm) 

W 

4.55 

0.145 

2.36 

Ti 

4.33 

-0.075 

2.59 

Pt 

5.6 

1.195 

8.01 

Al 

4.05 

-0.355 

4.72 

The current-voltage measurements of the fabricated n-ZnO/p-Si photodiodes 

using Al, Pt metal electrodes are shown in Figure 65 as well as two other metals with 

workfunctions between those of Pt and Al. Ti and W were chosen because of their work 

functions of 4.33 eFand 4.55 eV respectively. The dark current measurements are shown 

in Figure 65a. A very good rectifying characteristic can be detected with Al, Pt, and W 

metal electrodes. Nevertheless, Ti electrodes show a deviation from the ideal diode 
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characteristics. Figure 65b shows the photogenerated current. One of the causes of the 

observed behavior of the I-V curves is the high ideality factor n. The ideality factor is 

heavily impacted by defect levels, surface conductivity and interface layers. 
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Figure 64. Band diagrams with metal electrode, a) Pt contact b) Al contact c) Ti contact 

d) W contact on n-ZnO/p-Si heterojunctions. 
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In fact, interface states created from the dangling bonds and impurities at the 

surface act as recombination centers and thus affect the electrical properties. Cleaning 

and surface preparation can reduce the surface conductivity, and surface recombination 

velocity. After O2 plasma cleaning, the contact between the metal and ZnO improved 

considerably. 

It can be seen from Figure 66 that the longer the O2 plasma cleaning time lasts, 

the better the rectifying characteristics get and the smaller is the reverse bias current of 

the diode. This effect was consistent with all the different four metal types investigated. 

The O2 plasma clean was performed as a surface preparation before the contact 

deposition. Since oxygen ions are bombarded on the substrate, the dangling bonds at the 

surface of ZnO are passivation. Thus, some of the surface defects and impurities on ZnO 

are eliminated by the cleaning step, which in turn improves the device characteristics. 

The turn-on voltages Vt and short circuit current as a function of cleaning are shown in 

Table 13. The short circuit current for dark measurements is the saturation current of the 

diode when the applied voltage is 0 V. The open circuit voltage is the voltage when the 

diode current is 0 A and is obtained graphically by extrapolation of the tangent to the I-V 

curve in the region of current flow. It can be seen from Table 13 that the reverse 

saturation current is reduced and the turn on voltage is improved with the O2 plasma 

cleaning time for all metals. The saturation current of Pt contacts decreased from 0.00235 

A/cm
2 to 0.00043 A/cm

2 after cleaning in O2 plasma for 15 minutes. This explains the 

improvement in quantum efficiency of the UV ALD ZnO/Si photodetectors from 41 % to 

49 % after surface cleaning in O2 plasma. From the XPS studies, the ALD ZnO thin films 

were found to be terminated by adsorbed OH groups on the surface. The O2 plasma 
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treatment removes those OH groups and saturates those dangling bonds and decreases the 

surface states, hence the recombination centers are decreased. As a result a sharper 

interface is created between the metal and the active layer ALD ZnO. The surface 

preparation also impacts the diode ideality factor n. As explained previously, n is strongly 

dependent on the doping concentration, defect density, interface states and surface 

recombination. Surface treatments reduce those defects; hence, the ideality factor 

improves. 
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Figure 65. a) Dark I-V curve of metal/ZnO/Si with no surface cleaning, b) I-V curve 

under light source. Metals = W, Ti, Pt, and Al. 
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Figure 66. I-V characteristics of ZnO/Si photodiodes showing the effect of the surface 

cleaning. Sample were cleaned for 5,10, 15 minutes in O2 plasma. 
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Table 13. Summary of short circuit and open voltage of metal/ZnO/Si diode. Metals = W, 

Ti, Pt, Al 

Metals 

electrodes 

WO 

TiO 

PtO 

Al 

W5 

Ti5 

Pt5 

W10 

TilO 

PtlO 

W15 

T15 

Ptl5 

Jsc dark 

(A/cm
2
) 

0.0002 

0.00041 

0.00235 

0.01149 

0.0037 

0.00204 

0.00036 

4.3X10-6 

0.00245 

0.00243 

0.00029 

0.0018 

0.00043 

V,dark 

(V) 

2 

1.51 

2.09 

2.1 

2.1 

2.1 

1.88 

2.11 

2.1 

1.2 

2.11 

2.1 

1.95 

Rs (OJcm
1
) 

0.051670947 

0.091162 

0.054373735 

0.055051 

0.0535636 

0.053890244 

0.047010638 

0.0552375 

0.055936709 

0.062783607 

0.0535636 

0.052607143 

0.0491 

Rsh 

(x/^Q) 

5.982531009 

3.006012 

0.519390582 

0.106358 

0.3298334 

0.599940006 

3.357582541 

283.99678 

0.498090652 

0.502638854 

4.1823505 

0.680735194 

2.860684657 

Jsc Light 

(A/cm
2
) 

0.03529 

0.87012 

0.04275232 

0.0439 

0.01645 

0.06081 

0.38087 

0.00017 

0.0301 

0.95181 

0.04358 

0.07872 

0.32183 

Vt(V) 

Light 

2.08 

1.7 

2.07 

2.1 

2.1 

2.1 

1.95 

2.11 

2.09 

1.2 

2.09 

2.1 

1.95 

A small voltage drop across the metal electrode is expected due to the metal finite 

resistivity. The DLTS measurements revealed the presence of deep level defects with a 

defect density ~1015
 cm'

3
. These defect levels act as recombination sites, known as 

Shockley Read Hall recombination sites. Therefore, the recombination current is 
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increased by the presence of defect in the active region. As a result, the total dark current 

of the photodiode is dependent not only on the diffusion current but also the 

recombination and the parasitic effect of the series and shunt contact. 

The series resistance Rs is obtained from the slope of the I-V curve at 1=0 and RSh 

is obtained from the slope of the I-V at V=0 V. Ideally, Rs is 0 and Rsh is oo. However, in 

practice they differ from their ideal values. Rs should be as small as possible and RSh 

should be as large as possible in the order ofMQ. Rs affects the open-circuit voltage and 

Rsh affects the short-circuit current. This effect can be discerned from Table 13. For 

example, the reverse saturation current of the as deposited W metal contacts is ~0.0002 

A/cm
2 and the RSh is ~6xl 05 Q. Following a 10 minutes cleaning in O2 plasma, the 

saturation current was improved to 4.3 fiA/cm
2 and the RSh increased to 2.83><107Q. 

The ideal current equation can be re-written in terms of diffusion current, recombination 

current and parasitic effects by the contact resistance. 

v w ^-.a.) ! ^ ^ v jjf 

Ksh KSI, 

where Jdifr = diffusion current, jRec = recombination current, Rs = series resistance, RSh = 

shunt resistance, Jsi = saturation current due to diffusion, J^ = saturation current due to 

recombination, V= applied voltage, ni = ideality factor in diffusion and n2 = ideality 

factor in recombination. The photodiode, taking into account the diffusion, recombination 

and parasitic effect, can be represented as follow: 
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phonon 

AA/V 
Rseries 

Figure 67. Circuit representation of a photodiode with recombination and diffusion 

currents and shunt and series resistances indicated 

From the schematic model in Figure 67, it is apparent that one way to improve the 

photodiode behavior is to modulate the recombination current. This can be achieved by 

biasing the substrate. By applying a negative bias on the p-type Si substrate, the holes in 

the Si are attracted towards the bottom of the Si while the electrons are repelled from it. 

As a result, the depletion region is modulated and the recombination current is further 

reduced. The photodiode current is mainly dependent on the diffusion current. However, 

a positive bias on the substrate increases the recombination current, hence a much larger 

saturation current flows. This method can be used in conjunction with the surface 

cleaning to achieve improved performance in the UV photodiode. Figure 68 shows the 

effect of biases on the ALD ZnO/Si photodiodes. Positive bias on the Si shifts the I-V 

curve down. With a positive bias of voltage higher than 2 V, irradiation with light onto 

the photodiode has no effect on the current. On the other hand, negative bias on the Si 

substrate improves the photodiode rectifying characteristics. A negative voltage bias of-2 

V achieved the optimum rectifying characteristics. In summary, heterojunction n-ZnO/p-
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Si photodiodes can be employed as a UV photodetector. High efficiency ALD ZnO 

photodiodes have been fabricated and measured. The quantum efficiency improves with 

O2 plasma ashing of the as deposited ALD ZnO. This is due to the fact that O2 surface 

treatment reduces the surface recombination sites and provides a better metal-

semiconductor interface. The diode can be tuned from a photosensitive diode to a regular 

rectifier by just applying bias on the Si substrate. 
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Figure 68. I-V characteristics of Ti/ZnO/Si photodiodes. (dash line) Negative biases. 

(dot line) Positive biases. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

ZnO is a versatile material that is attracting a lot of attention due to its numerous 

technologically interesting properties. It is a wide bandgap material with numerous 

properties. ZnO exhibits strong UV emission as well as related defect emission in the 

visible range. The UV emission peak in ZnO structures is explained by band-edge 

emission principle. On the other hand, the defect related emissions are observed in the 

green, yellow, red/orange, blue, and violet ranges. However, the origin of the defect 

emissions is still a largely unresolved issue in the optical properties of ZnO and subject to 

debate in the technical literature. In addition to elucidating the root cause of those defects, 

it is important to reduce and control the defect level in ZnO. In this study, ALD ZnO thin 

films were successfully deposited using diethyl zinc and H2O as precursors. The 

deposition parameters were developed and optimized resulting in an ALD process 

window of 100 °C - 160 °C. The ALD ZnO films were characterized structurally, 

optically and electrically. 

Good quality ZnO thin films were synthesized by atomic layer deposition. Our 

analysis reveals that ALD ZnO follows a Volmer-Weber type film growth. This growth 

mode can consistently explain the experimental results for varying with temperature and 

for different substrate materials. Once a nucleation site has formed, subsequent ALD 

cycles contribute to the growth of the crystallites resulting in appreciable grain growth. 
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The as-deposited ALD ZnO thin films were found to be polycrystalline with preferential 

growth direction in the (002) or in the c-axis for the hexagonal wurtzite crystallographic 

phase. As the film thickness increases from 239 ALD cycles to 1900 ALD cycles, the 

intensity of the (002) peak increases. The as-deposited (002) peak intensity increased 

with temperatures. This observation was consistent regardless of annealing ambient gas. 

In summary, the ALD ZnO crystal quality was improved by annealing. The built-in stress 

was characterized for the samples annealed in N2, O2 and room ambient. Annealing in N2 

ambient produced the lowest overall stress. During annealing in O2 ambient gas, the 

concentration of the intrinsic defects responsible for the electrical properties such as 

oxygen vacancy and zinc interstitials is reduced; hence, an increase in resistivity is 

observed. The Raman spectroscopy study revealed a red shift in the Raman peak, which 

is indicative of built-in tensile stress. Our measurements show the appearance of the E2 

(high) optical phonon at frequency of 446.33 cm
1 for the thickest ZnO films. The peak at 

384.75 cm'
1 corresponds to the Ai (TO) mode. There was no indication of any LO 

phonons; however, several phonon peaks at 280.93, 1343.6 and 1422.8 cm'
1 were 

observed. The bulk single crystal ZnO sample exhibits a sharp E2 (high) optical phonon 

mode at 442 cm"1. In contrast to the polycrystalline ALD ZnO thin films, the ZnO single 

crystal did not display the Ai(TO) optical phonon. Ei optical phonon mode was detected 

for neither bulk single crystal nor the ALD ZnO sample. The peak at 236 cm'
1 for both 

bulk single crystal ZnO and ALD ZnO thin films might be due to intrinsic defects. The 

ALD ZnO showed broader peaks of the Ai(TO) than the single crystal bulk ZnO. 

Polycrystalline films tend to result in broader peaks compared to single crystal materials. 

The broader peak can be attributed to formation of the misfit and twin dislocation. The 
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stress increases with increasing ALD ZnO thickness up to a critical thickness and then 

begins to decrease. The critical thickness is dependent not only on the lattice parameters 

but also on the Poisson ratio. The optical bandgap was determined to be ~3.22 eV. The 

thin films exhibited very good electrical conductivity and transmission of 88 % - 90 % in 

the visible range. The as-deposited films showed n-type conductivity with a carrier 

density of ~1019
 cm'

3
. Such high carrier density results in a degenerate semiconductor. 

The defects responsible for the measured electrical and optical properties were identified 

in a series of experiments. Oxygen vacancies and Zn interstitials complexes were found 

to be the major defect levels in the forbidden bands. ALD ZnO/Si based UV 

photodetectors were fabricated, tested, analyzed and optimized. The measurements 

revealed a QE of 38.48 % for Al/ZnO/Si photodiodes and 41.83 % for Pt/ZnO/Si 

photodiodes for the as-deposited samples at a wavelength on 380 nm which matches 

exactly the band edge of our ALD ZnO films. The QE was found to increase after O2 

plasma treatment of the ZnO surface to around a value of 49.05 % and 52 % for Pt and Al 

respectively. Even though as-grown ALD ZnO films exhibit intrinsic defects in the films, 

high quantum efficiency was obtained. Different methods have been proposed to further 

improve the performance of the ALD ZnO based electronic devices. 
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6.2 Future Work 

Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based 

photodiodes such as UV-photodetectors remains a big technological challenge. ZnO is an 

n-type semiconductor material with numerous intrinsic defects levels responsible for the 

electrical and optical behaviors. Reducing those intrinsic defects will result in higher 

device efficiency for heterojunction photodiodes. Because of the lattice mismatch 

between Si and ZnO, the grown ZnO layer will exhibit some additional extrinsic defects 

in the film. ZnO has a smaller lattice constant than Si and is thus under tensile stress. 

When the grown thickness exceeds the critical thickness, the film relaxes by generating 

defects. One way to improve the crystal structure is to grow the ZnO layer on a buffer 

layer such as ZnS. The lattice constant of ZnS is 5.42 A which represents a lattice 

matched system with Si (0.18 % mismatch). ZnS is a wide bandgap direct semiconductor 

with a bandgap about that of ZnO. Thus, by introducing oxygen in ZnS to form ZnOi_xSx, 

the lattice constant of the ternary compound is further reduced to match that of ZnO. ZnO 

can be grown on Si using a buffer system such as the one described above which would 

result in defect-free film. This can help to increase the efficiency measurements. Another 

possible improvement in the growth of ALD ZnO is through confining the defects. This 

has been demonstrated with growing GaAs on Si.81 Li et al have demonstrated defect 

pinning through S i d masking.81 Figure 69 shows the mechanism of ALD ZnO with Si02 

masking. A Si02 layer is grown and patterned on a Si substrate wafer. Then, the ALD 

ZnO films are deposited on the structured sample. The lattice mismatch between the Si 

and ZnO places some stress on the growing ZnO film. As the film relaxes, defects are 

created and propagate. The presence of Si02 patterned structures pinned those defects 



149 

and stop them from propagating. After a certain intermediate thickness, defect free films 

can be grown which would result in higher efficiency ALD ZnO/Si UV photodetectors. 

a) b) 

Si 

Si02 

ALDZnO 

c) d) 

Defects 

Figure 69. Proposed defect pinning in ALD ZnO on Si substrates, a) Deposition of Si02 

layer on Si. b) Patterning of the Si02 Layer, c) Deposition of the ALD ZnO layer, d) 

defects are pinned by the Si02 layer. 

Above all, designing homojunction photodiodes on top of p-type ZnO will result in 

much higher efficiency. Another advantage of forming a homojunction is the prevention 

of the native oxide underneath the device layer as seen in Figure 63 and the lattice 

matching issue. Therefore, depositing p-type ZnO is critical to homojunction ZnO p-n 

diodes. One way of growing p-type ZnO is through doping by group V elements such as 

N, As, P. One doping implementation is through ion implantation. Due to the high 
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concentration of native intrinsic defects, multiple implantation doses and depths are 

necessary to limit the doping compensation by the intrinsic defects of ALD ZnO. Figure 

70 shows the implantation profile of P ions in ZnO using different ion energy and 

fluence. Due to the low solubility of P in ZnO, only very small ion fluence can be used. 
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Figure 70. Phosphor ion implantation simulation at various implantation fluences. (solid) 

1.4xl014
 cm

2 P-fluence at 80 KeV. (dash line) 1.2*1014
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2 P-fluence at 110 KeV. 

(dotted line) 1.8><1014
 cm'

2 P-fluence at 150 KeV. The simulations were done using a 

SRIM software. 
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Dopant activation temperature and ambient is also critical. Therefore, two activation 

methods are proposed: 

- Rapid thermal annealing 

RTA uses high power tungsten lamps to evenly increase the temperature of the 

sample from 50 °C/s to 120 °C/s. The fast increase in temperature limits the 

compensation effect from the ALD ZnO; however, the long inconvenient cooling 

time is the drawback of the RTA annealing method. 

- Pico and Femto secondLaser quenching 

Fast laser pulses from femtosecond lasers (Ti: sapphire) or picosecond laser can be 

used to rapidly anneal and electrically activate the dopants in the ALD ZnO 

sample and quench the profile down super fast. This method shows the most 

significant way to electrically activate samples such as the implanted ALD ZnO 

and to stop and prevent carrier compensation by intrinsic defects. The drawback 

of laser annealing is the slow process due to the small laser size. This is time 

consuming particularly for big samples. 

Another doping method that can be achieved through the ALD deposition is the 

use of three chemical precursor lines instead of two. The other two chemical precursor 

lines are similar to the ALD ZnO deposition with H2O and diethyl zinc. The third 

precursor line can be used as a supply of NH3 gas. By controlling the dose of NH3 gas in 

between cycles and the deposition temperature, N doping could be achieved hence p-type 

doping. 

Nanostructures offer a few advantages over thin films due to their high surface 

areas. Designing ZnO nanotube photodiodes on Si can result in higher efficiency. ZnO 
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was deposited into anodic aluminum oxide (AAO) pores with an aspect ratio of 300 (pore 

diameter: 200 nm, depth: 60 jum) by ALD. A conformal and complete ZnO coating inside 

the AAO pores was achieved by extended exposure time for the precursors during 

deposition. SEM pictures of the nanotubes are shown in Figure 71. The folly release 

nanotubes can be deposited on Si wafers to form p-n junctions. 

Figure 71. SEM picture of ALD ZnO nanotubes. (Top) high magnification of partially 

release nanotubes. (bottom) fully release ALD ZnO nanotubes. 

6.3 Applications 

A potential application of the ALD ZnO is in the lighting industry. Trichromatic 

RGB mixtures of phosphors for white light, either for cathodoluminescent (CL) 

applications such as BLU or ESL, or for photoluminescent (PL) applications, such as 

compact fluorescent (CFL) or near-UV LED, typically use a red component of Y203:Eu 

or Y202S:Eu, depending on the degree of saturation desired. Although these compounds 

represent the best red phosphors available, they suffer from diminishing efficacy and 
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lifetime with increasing power density. The severe loss in efficacy is a result of the poor 

thermal and electrical conductivity (in CL use) of Y203:Eu particles. The situation is 

worsened in that most white-light applications need to be operated at high power 

densities. Furthermore, phosphor screens often employ silicate binders for adherence to 

the glass lamp, further diminishing thermal conductivity. The first demonstration of 

coating of Y203:Eu red phosphor powder with ALD ZnO is presented here. ALD 

provides unique features such as precise thickness control of ZnO thin films with atomic 

resolution, high uniformity and absolute conformity. As demonstrated in this dissertation 

the as deposited thin films exhibit very high conductivity and transparency in the visible 

range. ALD is capable of coating complex surface morphologies capable to penetrate 

minute voids. A thin layer of red phosphor powder was deposited on a Si substrate by 

sedimentation technique and coated with a 100 nm thick film of ALD ZnO at 150 °C. 

Figure 72 is an SEM image of loosely packed red phosphor particles and shows that 

every single red phosphor particle was coated with 100 nm ZnO including the Si 

substrate. After coating the red phosphor, the four-point probe measurements revealed 

very low resistivity (~0.02 Cl-cm) for the as-deposited 100 nm ALD ZnO thin films. The 

photoluminescence study revealed a bright red emission of Y203:Eu2+. After coating with 

ALD ZnO, the photoluminescence measurements show that the red emission of 

Y203:Eu2+ is conserved, as shown in Figure 73. The results demonstrate that not only can 

the silicate binder be replaced with luminescent ZnO, but thermal and electrical 

conductivity can be enhanced, in order to improve efficacy, lifetime, and thermal 

stability, by the same process. The preliminary results suggest a 30 % increase in the 
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efficiency from the cathodoluminescence measurements of the red phosphors coated by 

ALD ZnO. 

Figure 72. SEM image of (a) loosely packed Y203:Eu particles deposited by 

sedimentation and (b) higher magnification of Y2C>3:Eu2+ particles coated with 100 nm of 

ALD ZnO film. 
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Figure 73. Photo luminescence measurement of red phosphor without ALD ZnO coating 

and with ALD ZnO. 
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APPENDIX A 

THEORETICAL CALCULATION OF BAND ALLIGNMENT 

Position of Fermi level in ZnO with respect to the conduction band 

Similarly, Position of Fermi level in Si from the valence band: 

„ KT. NA 
EFp= ln(—^) 

Where Nc = 2 
(inrnSKTT . /W*rV'2 

h2 j 

and NY=2 
_p 

h 
are the effective density of 

states of conduction and valence band respectively. 

See material properties for Nc and Nv values for both ZnO and Si. 

1 7xl01 9 

Em = 0.026 ln( - JT-) = 0.045 leV 
m 3xl018 

Position of Fermi level in Si from the valence band: 

1 33xl016 

EFD = 0.026 ln( - TT) = 0.17327'eV 

Fp 1.04xl019 

Or EFp= 1.12 - 0.17327 = 0.947 eFfrom conduction band of Si. 

Workfunction calculation 

<f)Zn0 = 4 . 5 - 0.045 = 4.45eF 

<pSi = 4.05 + 0.947 = 4.9967eF 

Band offsets using Anderson's rule for ideal heterojunction 



A£c = Zzno ~ ZSi = 4-5 - 4.05 - 0A5eV 

&Eg = EgZn0-EgSi =3.22-hl2 = 2A0eV 

*Ey = (Zz„o + EgZn0) - (Zsi + Eg si) = *Ec+AEg = .45 - 2.08 - 2.55eF 

Built-in voltage 

** = Ko ~ +st = 4-45 - 4.9967 = -0.54673F 

Depletion region 

W = XZn0-XSi = 2£
zno£si(NASi+NDZn0)

2
Vbi = 02307JjUm 

V <lNASiNDZno(ESiNASi + £ZnONDZno) 

£zno= £o kzno and 8si= so ksi 

XZno = ̂ T T ^ f = °-0018/™ 
^ ASi + ^ DZnO 

X., = w ^ ^ = 0.2305//m 

ly ASi ^ l y DZnO 

C= I
 qS

^0
£
Si

N
ASi

N
DZnO = 4 . 4 8 8 x 1 0 - S F / c m 2 

1 pVbi(eSiNASi+eZn0NDZn0) 
Diffusion Length 

Using Einstein relation, the diffusivity is : 

kT 
D = —jun = 1.8cm

2
 Is 

1 

The diffusion length is: 

L = JDT = 364nm 

Where x is the electron lifetime. For optimum device performance the deposited ZnO 

layer should be about the diffusion length (364 nm). 



Barrier height of the different metal electrodes 

qv -<I<I>B i v 

J = JS(e"
KT

 -1) = A**T
2
e

 KT
 (e

nKT
 -1) 

Saturation current is: 
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-Q$B 

•Js=A"T
2
e«T*<PB=-^H-^r) 

q AT 

Contact resistance 

Pc = 
dJ 

dV 

v 1 

(fl-cm
2
) 

v=oJ 

Pc = 
k Q 

qA"T 

kT 

Metal 

Barrier 

(eV) 

height 

Workfunction 

(eV) 

W 

0.614 

5.11 

Ti 

0.596 

5.10 

Pt 

0.55 

5.05 

Al 

0.509 

5.01 

Ideality factor 

qV 

J = Js (e"
KT -1) •» log(—) = -^- log e * log(—) = -^- log e •* n = — ^ ^ log e 

J, nKT Js nKT slopeKT 
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APPENDIX B 

MATERIAL PROPERTIES 

Properties 

Bandgap (eV) 

Nc (cm'
3
) 

Ny(cm'
3
) 

Dielectric constant 

Carrier density (cm'
3
) 

Electron affinity (eV) 

Electron Mobility (cm
2
/Vs) 

Hole Mobility (cm
2
/Vs) 

Electron lifetime (s) 

Hole lifetime (s) 

Electron velocity (cm/s) 

Hole velocity (cm/s) 

Modulus/Hardness (GPa) 

ZnO 

3.22 

3xl018 

1.8xl019 

8.6 

1.7xl019 

4.5 

34 

10 

1.7xl0"10 

1.7xl0"10 

225xl05 

200x104 

143/6.5 

Si 

1.12 

2.8xl019 

1.04xl019 

11.7 

1.33xl016 

4.05 

1471 

471 

5xl0"10 

5xl0-10 

270x103 

160xl03 

130/12 



APPENDIX C 

SOURCE CODE 

*title ZnO/Si N-p Heterojunction 

mesh nx=250xres=1.0 

* layer N ZnO 

layer tm=0.40 nd=1.7el9 eg=3.25 nc=3el8 

+ nv=l .8el9 ks=8.565 chi=4.5 un=34. up=l. 

+ eaa=-1.0 ead=-1.0 taup.shr=1.7e-10 taun.shr=1.7e-10 

+ et.shr=0.0 vsatn=2.25e7 vsatp=0.2e7 

* layer p Si 

layer tm=l na=1.0el6 eg=1.12 nc=2.8el9 

+ nv=1.04el9 ks=11.7 chi=4.05 un=1417. up=471. 

+ eaa=-1.0 ead=-1.0 taup.shr=5.0e-10 taun.shr=5.0e-9 

+ et.shr=0.0 vsatn=2.7e5 vsatp=1.6e5 

* Boundary condidtion wdfit= workfunction metal - affinity semiconductor 

BC MBC=2 wdfrt=0.7 wdbck=0.94 

i-v vstart=0.0 vstop=2.0 dv=0.05 

solve itmax=100 

output info=5 step=l 
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