
Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Theses &
Disssertations

Electrical & Computer Engineering

Winter 2008

Rapid Prototyping for Virtual Environments
Emre Baydogan
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Computer Sciences Commons, and the Electrical and Computer Engineering
Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted

for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more

information, please contact digitalcommons@odu.edu.

Recommended Citation
Baydogan, Emre. "Rapid Prototyping for Virtual Environments" (2008). Doctor of Philosophy (PhD), dissertation, Electrical/
Computer Engineering, Old Dominion University, DOI: 10.25777/pb9g-mv96
https://digitalcommons.odu.edu/ece_etds/45

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/45?utm_source=digitalcommons.odu.edu%2Fece_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

R A P I D P R O T O T Y P I N G FOR VIRTUAL

ENVIRONMENTS

by

Emre Baydogan

B.S. June 1999, Marmara University, Turkey

M.S. June 2001, Marmara University, Turkey

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY

December 2008

Lee A. Belfore, H (Director)

K. Vijayan Asari

Jesmca R. Crouch

ABSTRACT

R A P I D P R O T O T Y P I N G FOR VIRTUAL

ENVIRONMENTS

Emre Baydogan

Old Dominion University, 2008

Director: Dr. Lee A. Belfore, II

Development of Virtual Environment (VE) applications is challenging where appli-

cation developers are required to have expertise in the target VE technologies along

with the problem domain expertise. New VE technologies impose a significant learn-

ing curve to even the most experienced VE developer. The proposed solution relies

on synthesis to automate the migration of a VE application to a new unfamiliar VE

platform/technology. To solve the problem, the Common Scene Definition Frame-

work (CSDF) is developed, that serves as a superset/model representation of the

target virtual world. Input modules are developed to populate the framework with

the capabilities of the virtual world imported from VRML 2.0 and X3D formats. The

synthesis capability is built into the framework to synthesize the virtual world into

a subset of VRML 2.0, VRML 1.0, X3D, Java3D, JavaFX, JavaME, and OpenGL

technologies, which may reside on different platforms. Interfaces are designed to keep

the framework extensible to different and new VE formats/technologies. The frame-

work demonstrated the ability to quickly synthesize a working prototype of the input

virtual environment in different VE formats.

IV

To

My Family

V

ACKNOWLEDGMENTS

I would like to acknowledge and extend my heartfelt gratitude to my advisor, Dr. Lee

A. Belfore II, for his support and encouragement, which has made the completion of

this dissertation possible.

I would also like to thank Dr. K. Vijayan Asari, Dr. Jessica R. Crouch, and

Dr. Frederic D. McKenzie for serving on my dissertation committee and for their

constructive comments and feedback.

My sincere gratitude also goes to Dr. M. Borahan Turner, who advised me during

my Master's years at Marmara University, and who encouraged me to start my PhD

education endeavor in the United States.

This project was started together with my colleague, Prabhu Krishnan. Many

thanks go to him for helping me build a strong foundation on which to add my

research ideas.

I would also like to thank my parents, my brothers, and my sister, who have always

helped me ascend during difficult times, by supporting me morally and financially.

My appreciation also goes to my good friends, Catalina, Hector, Marija, Ulas,

Keremcan, and Saurav, who kept me true to who I am and who offered their valuable

time for moral support and discussions.

TABLE OF CONTENTS

VI

Page

List of Tables ix

List of Figures xi

CHAPTER

I Introduction 1

1.1 Current Frameworks 1

1.1.1 VR Juggler 2

1.1.2 DIVERSE 3

1.1.3 INTML 3

1.1.4 Unicron CVE 4

1.1.5 ALICE: Rapid Prototyping for Virtual Reality 5

1.2 Methodology: Rapid Prototyping 7

1.3 Problem Statement 8

1.4 Pros and Cons of Present Frameworks and CSDF 10

II Background 12

11.1 3DVEs 12

II.1.1 Domains 13

11.2 Prototyping 16

11.3 Technologies 18

11.3.1 VRML 19

11.3.2 X3D 23

11.3.3 Java3D 24

11.3.4 JavaFX . . 31

11.3.5 M3G (Mobile 3D Graphics API) 33

11.3.6 JavaME (Java Platform, Micro Edition) 34

11.3.7 OpenGL (Open Graphics Library) 35

11.3.8 DirectX - Direct3D 37

11.3.9 Virtools 40

11.3.10 TouchDesigner 40

11.4 Platforms 42

11.4.1 Microsoft Windows PC 42

11.4.2 Unix-like PC(Linux & Mac OS) 43

11.4.3 Portable Devices 43

vii

II.4.4 Immersive Devices 44

II.5 Graphics Processing (Rendering) 44

11.5.1 Immediate Mode Rendering 46

11.5.2 Retained Mode Rendering 47

III Theory 50

111.1 Rapid Prototyping 50

111.2 Classification of VE Capabilities 52

111.2.1 Geometry/ Appearance 52

111.2.2 Behaviors 52

111.2.3 Scripting/Custom Coding 53

111.3 CSDF 53

111.3.1 Framework 54

111.3.2 Modules 56

111.3.3 Analysis (Parsing) from Technologies 56

111.3.4 Synthesis to Technologies/Platforms 57

111.3.5 Authoring 59

IV Reference Implementation 60

IV. 1 Software for Implementation and Testing 60

IV.1.1 Java 60

IV.1.2 CSDF and Proprietary Platforms 63

IV.2 Modules 63

IV.2.1 CSDF Core 64

IV.2.2 Analysis 65

IV.2.3 Synthesis 76

IV.2.4 Authoring 78

IV.2.5 Current Implementation status 78

V Applications 82

V.l A Simple VE 82

V.l . l VRML Synthesis 83

V.1.2 X3D Synthesis 85

V.l.3 Java3D Synthesis 86

V.1.4 OpenGL/GLUT Synthesis 87

V.l.5 JavaFX Synthesis for Portable Device 90

V.2 VOR 90

V.2.1 Virtools Analysis 91

VI Conclusions 94

viii

VI.l Future Work 95

BIBLIOGRAPHY 96

APPENDICES

VITA 108

ix

LIST OF TABLES

Page

I Features and Differences among Frameworks 11

II Node Types and Nodes in VRML 1.0 19

III X3D Supported Features 26

IV DirectX Components 39

V Differences between C++ and Java 62

VI Analysis and Synthesis Support for CSDF 79

X

LIST OF FIGURES

Page

1 Layered architecture of the Juggler Suite 2

2 DIVERSE sample code 3

3 InTml Architecture 4

4 Unicron CVE Architecture 5

5 ALICE hierarchy sample 6

6 ALICE sample 6

7 Prototyping Process 16

8 VRML sample code 20

9 VRML Sample View in Cortona Player 21

10 Modular block of X3D baseline profiles 25

11 X3D sample code 25

12 X3D Sample View in Xj3D Browser 27

13 Java3D Sample Scene Graph Diagram 29

14 Java3D Sample Code 30

15 Java3D Sample View 31

16 JavaFX sample script 32

17 M3G code piece (Retained Mode) 34

18 OpenGL Graphics Pipeline Process 37

19 OpenGL sample code displaying a solid cube, using GLUT 38

20 OpenGL (GLUT) sample: Color Cube 39

21 Virtools development environment (Virtual Chainsaw) 41

22 TouchDesigner development environment (Wound Debridement Simu-

lator) 41

xi

23 CSDF Concept Diagram 51

24 CSDF Classes 64

25 CSDFGeometry interface and a few classes that implement the interface. 65

26 CSDFSynthesis interface and a few classes that implement the interface. 66

27 Analysis components of CSDF 66

28 Phases of VRML Parser 67

29 A small portion of the context-free grammar (CFG) for VRML language. 69

30 Example of Semantic action in the VRML parser 70

31 Semantic action for node name handling and type checking (VRML

Parsing) 71

32 Semantic action for node attribute handling and type checking (VRML

Parsing) 73

33 X3D parser embedded in constructor of CSDF nodes (recursive con-

struction of CSDF classes) 75

34 Virtools to TouchDesigner Analysis/Synthesis 76

35 Synthesis components of CSDF 77

36 VRML 2.0 implementation of the simple VE 84

37 VRML 2.0 implementation of the simple VE in Cortona plug-in for

Internet Explorer 85

38 X3D view of the synthesized VE in Xj3D Browser 86

39 Java3D view of the synthesized environment 88

40 OpenGL view of the synthesized VE 89

41 JavaFX view of the synthesized VE 90

42 Virtual Operating Room in Virtools VR Player (Four Projections). . 92

43 Virtual Operating Room in Virtools Development Environment. . . . 93

1

CHAPTER I

INTRODUCTION

Virtual environment (VE) applications are used in a wide variety of areas and can

be deployed on many different platforms. A VE can be defined simply as "an envi-

ronment that is simulated by a computer which includes aspects of reality." Since

most of the VEs provide primarily visual experiences, much of the work is done in the

improvement or construction of visual environments. Applications of VEs have been

employed in many domains (e.g., medicine, military and training), and have greatly

benefited from the continous improvements in computer systems, processing power,

and network bandwidth. New directions and interesting projects are now available to

be explored by researchers and workers in the area of VEs, and different types of VE

development technologies and platforms have been created to meet the great demand

for VE in many areas.

1.1 C U R R E N T F R A M E W O R K S

There are currently several tools and environments that serve as development and

prototyping platforms to VE technologies. VR Juggler, DIVERSE (Device Indepen-

dent Virtual Environments Reconfigurable, Scalable, Extensible), InTml (Interaction

Techniques Markup Language), Unicron CVE (Collaborative 3D Virtual Environ-

ments) and ALICE (Rapid Prototyping for Virtual Reality) are some examples of

The reference model for this work is IEEE Transactions on Visualization and Computer

Graphics.

2

Gadgeteer

VR Juggler

i •"

Sorb

VR Juggler Portable Runtime (VPR)
OpenAU

AudioWorks
OperCL

Operating S/tierr.

FIG. 1: Layered architecture of the Juggler Suite (Reproduced from [1]).

such tools and environments. A brief overview of each is given in the following sec-

tions.

1.1.1 V R Juggle r

VR Juggler defines a system-independent virtual platform which provides the ability

to deploy VE applications onto different platforms [1]. Figure 1 shows the layered

architecture of the Juggler Suite and pieces of the foundation upon which it is built.

VR Juggler hides the low level complexities of the target platforms, such as desk-

top Virtual Reality (VR), HMD (Head Mounted Display), Cave Automatic Virtual

Environment (CAVE)-like devices, and Powerwall-like devices [2]. A universal way

of describing 3D environments, employed by VR Juggler, facilitates the platform-

independence.

3

#include <dpf.h>
int main(void) {
dpf *app = new dpf;
app->config();

app->display()->world()->addChild(pfdLoadFi le("model .pfb")) ;

wh i l e (app->s ta te & DTK_ISRUNNING)

app->frame();

d e l e t e app;

p f E x i t O ;

r e t u r n 0;

}

FIG. 2: DIVERSE sample code.

1.1.2 D I V E R S E

DIVERSE provides a platform for distributed, device-independent VE applications

[3]. A program created by DIVERSE can be run on a CAVE, ImmersaDesk, HMD,

desktop, and laptop systems without requiring modifications to the VE application.

The modular design of DIVERSE allows the user to use the different modules sep-

arately. Thus, DIVERSE may be used in conjunction with many other APIs and

toolkits, like OpenGL, OSG (Open Scene Graph), etc. There is also support for dis-

tributed computing, and distributed rendering via means of "remote shared memory,"

and "message passing." The code fragment in Figure 2 runs equally well in a CAVE,

ImmersaDesk, HMD, and on desktop/laptop, without modification.

1.1.3 I N T M L

InTml is a language designed to describe VE applications in a platform-independent

and toolkit-independent manner [4]. In addition, InTml can be used to work with

4

VR Designer

InTrnl Language ItiTml Tools; clri'l'iril-'I"!

-VR Developer

ITITIIII Framework

i InTml-F)

hiTnil Library

Implementation

Core Frameworks/APIs: Java3D, X3D, VRJuggler, ...

FIG. 3: InTml Architecture [5].

several VR toolkits for rapid prototyping of VE applications. Figure 3 describes the

overall architecture of an implementation in InTml. It consists of a domain specific

XML-based language to describe VR, and AR (Augmented Reality) applications.

Hence, high level elements of an application are used: references to virtual objects,

to devices, and to interaction techniques, and not to VR low-level components (I.e.,

geometry and texture, haptic capabilities).

1.1.4 Unicron C V E

Unicron CVE is a rapid development platform for VEs that focuses on developing 3D

collaborative environments for education [6]. Unicron includes three APIs: a custom

simple 3D language, a network, and the audio modules. The system includes envi-

ronment builder tools, collaboration tools, and a class library for the infrastructure

5

.Generate and Checkpoint-

ServerGraphModel
Server-Side Representation of the Scene graph

CVEScenoUraph
Lirjpl' Arthrortiiic

X

CiientGraphModel
Client-Side Representation of fie Scene graph

update & retrieval "Polymorph!:-"
. .Polymorphism.

ljupdate.

SerwrCVESeeneGraph
Server-Side Hooks

ClientCVESceneGraph
Client-Side Hooks D

Files & DB
f | Slate Handlei |"|
1 Medinloi :•!*(; Handles cyi-nrr-ir stall: I

CVEBuildei
Dyiiamr riendorer/Df Ri"idt>it>'

*
delegation cals

^-Authentication-

/I T\

/ Server \
\ Server Stub /

Request/Response,

Network
/ Client \
t Client Stub J

FIG. 4: Unicron CVE Architecture (Reproduced from [6]).

of the 3D environment (e.g., doors, whiteboards, avatars, etc.). For the low 3D re-

quirements of the collaborative environment, a very high level simple text-based 3D

language is developed. Figure 4 shows several aspects of the Unicron client-server

architecture.

1.1.5 ALICE: Rapid Prototyping for Virtual Reality

ALICE is a prototyping system for VR, developed by User Interface Group at the

University of Virginia [7]. Alice provides an authoring environment to create VEs by

using object manipulation interactively, programmatically (Python), or via a graph-

ical user interface. The objects present in the VE are stored in a scene graph tree,

as can be noted in Figure 5. The sample hierarchy illustrated in Figure 5 produces a

VE such as the one in Figure 6.

6

_ _

PadBaom} [Camera] f Ligtit J

Jt
•pSi'TMble]

Ball 1 |

H: Ball 16

Light [Light

Tracker

^

pljuriny]

Left Hand lef t Hand }
, •/ V.,*,,,,,, *,v . . , /

• R n g e r s ~ J

[-»[Head~~]

p|s:::PMf)gers

^ ! '° rCue j

HM Lett Ear

MM Glasses

S»(Right Ear'""'

Left Arm

Mallet

Right Arm

15 Mallet

FIG. 5: ALICE hierarchy sample (Reproduced from [7]).

FIG. 6: ALICE sample [7].

7

1.2 METHODOLOGY: R A P I D P R O T O T Y P I N G

Rapid prototyping is used often in non-physical systems, as in the case of software

systems [8, 9]. In software prototyping, incomplete versions of software are created

as prototypes. A software prototype typically implements a small subset of the fi-

nal software/program. This implementation might be different from the eventual

final software implementation, since the traditional programming languages might be

costlier than prototyping languages [10].

There are two major types of prototyping: throwaway prototyping and evolu-

tionary prototyping [8]. In the throwaway prototyping, the prototype is eventually

discarded rather than becoming a part of the final product. The purpose of this

type of prototyping is to allow the developers to evaluate possible proposed designs

quickly and efficiently [11]. Such an evaluation is performed for proof of concept

verification and to test key components and functionalities of the final product. On

the other hand, in evolutionary prototyping, the main purpose is to create a very ro-

bust prototype so that it can be revised iteratively until it becomes the final product

[12, 13]. Iterative prototyping helps in defining user requirements at the design level

and provides continuity from the initial concept to the finished application.

Development of VEs is very similar to software development. A VE is a software

system that represents and simulates a physical system via use of computer graph-

ics. Using rapid prototyping methodology to quickly develop a VE is an attractive

strategy for the developer. Such a methodology would allow using such technologies

8

to a developer, who must use a VE technology with which he or she is not famil-

iar for various reasons such as project constraints, and specific application needs.

As applied in several domains such as the manufacturing sector, the developer may

need a throwaway-prototype for proof of concept demonstrations in a new unfamiliar

technology. Moreover, using synthesis tools that automate the porting of the existing

technology, a prototype may be rapidly created on an alternate VE platform. The

synthesized prototype may be potentially less efficient than a product that is the

outcome of a monolithic development cycle, but may enable the developer to be able

to make high level design decisions that may reduce the overall design time for the

desired final product. This knowledge gained from the prototyping phase can en-

able the creation of a more robust and efficient final VE and also enable verification

of requirements and specification of the VE implementation. Rapid prototyping is

discussed in further detail in §11.2 and §111.1.

1.3 P R O B L E M S T A T E M E N T

Some of the problems deploying VE content include the following:

• Application developers are usually expected to have expertise in many different

technologies.

• VE applications bring together a diverse range of hardware and software tools

required by VE application developers. Integrating these tools and their prod-

ucts to serve as a single entity is a crucial step which proves to be challenging.

• Significant expertise is required to use these tools and the platforms in which

9

they reside. Attaining expert proficiency increases the time necessary for devel-

oping the VE solution.

• Collaborative work and communication among developers working with differ-

ent software tools have always been problematical.

One of the solutions to the problems listed above is the creation of a rapid pro-

totyping environment to aid the developers in building VE applications on many

platforms. Some of the benefits of such an environment are as follows.

• A single development environment eliminates the need to learn a variety of

software/hardware platforms, by defining the capabilities for each platform in

a common representation that incorporates their definitions.

• The design time is reduced, by minimizing or eliminating the training required

for new hardware/software platforms, as well as by providing optimizations for

a specific platform through the stored knowledge of the target platform.

• The very same rapid development environment might also help communication

and collaboration of the developers who have expertise in different tool sets and

platforms.

A developer who is not an expert in a specific technology might have to use the

technology for various reasons such as project constraints, specific application need,

etc. Moreover, the developer may be required to build a prototype using an unfamiliar

technology just for the concept demonstration purposes.

10

As a solution, a rapid prototyping framework, Common Scene Definition Frame-

work (CSDF), is developed, that serves as a superset/model representation of the

target virtual world. Input modules are developed to populate the framework with

the capabilities of the virtual world imported from VRML 2.0 and X3D formats. The

synthesis capability is built into the framework to synthesize the virtual world into a

subset of VRML 2.0, VRML 1.0, X3D, Java3D, JavaFX, JavaME, and OpenGL tech-

nologies, which may reside on different platforms. If needed, VEs can be authored in

this superset of all technologies to ensure that maximum number of capabilities are

supported on target VEs. Another important feature of the prototyping system is its

knowledge of the capability limitations for a particular synthesis platform.

1.4 PROS A N D CONS OF P R E S E N T F R A M E W O R K S A N D CSDF

In contrast to current rapid prototyping and development environments, the proposed

framework and its encapsulating modules provide VE applications with language and

format-independence, as well as platform and hardware-independence. Theoretically,

through the use of the corresponding import module, any existing virtual world,

3D environment, or model can be imported into the proposed framework (CSDF)

to be modified or synthesized for output of different platforms/languages. This is

one of the most significant advantages over other existing prototyping/development

environments (i.e., VR Juggler, DIVERSE, InTml, Unicron CVE and ALICE).

Table I shows features and differences of current frameworks and CSDF.

11

TABLE I: Features and Differences among Frameworks.

Feature

The framework allows arbitrary

technology for development.

The framework is device indepen-

dent.

The framework is extensible.

The framework supports low level

VE elements.

The framework allows develep-

ment inside the framework repre-

sentation.

V
R

 J
u

g
g

le
r

/

/

/

D
IV

E
R

S
E

/

/

/

IN
T

M
L

/

/
U

n
ic

ro
n

C
V

E

/

A
L

IC
E

/

C
S

D
F

/

/

/

/

/

12

C H A P T E R II

BACKGROUND

In this chapter, discussions and descriptions on thesis domain, technologies, method-

ologies, and platforms are presented. Brief explanations of VEs and Prototyping are

given. Furthermore, technologies that can be used to create VEs are described, as

well as the platforms in which these technologies are used. Even though a few of

these technologies and platforms are not directly used, they are in close relation to

the thesis domain and describe the proof of concept.

II . 1 3D VES

A VE is a computer generated environment that allows human-to-computer inter-

action. Most VEs are displayed either on computer monitors or projected surfaces.

Some VEs provide multi modal interaction including, for example, audio and haptic

interaction capabilities. Audio interaction is provided by speakers or headphones,

whereas haptic interaction can be provided by special hardware that can simulate

tactile feedback. Indeed, users can interact with VEs through input devices (i.e. key-

board, mouse, and enhanced human-computer-interface devices). VEs can be similar

to real world, representing real world scenarios, or they can be very different from

real world, as in fictional games that uses VEs.

In practice, it is currently very difficult to create a high-fidelity VR experience,

13

due largely to technical limitations on processing power, image resolution and com-

munication bandwidth. However, those limitations are expected to eventually be

overcome as processor, imaging and data communication technologies become more

powerful and cost-effective over time.

II. 1.1 Domains

3D VEs are used in a variety of application domains, such as national defense, team

training, academic learning, medicine, manufacturing, and gaming.

National Defense

VE can improve readiness to military organizations by bringing training opportunities

that can not be made available in the real world. These systems can reduce training

costs by substituting actual equipments and weapons, and even old expensive sim-

ulators that are not using virtual technologies. Modern military equipment is very

expensive to operate. In addition, some weapons and equipment are rarely used that

they are not available for training. VEs can used for several purposes in military field:

training, mission rehearsal, evaluation of new concepts and equipment, performance

measurement, and knowledge elicitation [14, 15, 16].

Team Training

VEs have potential for individual and team training [17]. VE technology may immerse

an individual or a team in computer generated worlds. Then, users are allowed to

interact with autonomous agents and/or human actors/team members. Combinations

14

of multiple trainees and trainers, human or virtual, may exist in in such environments.

Thus, effective teamwork training can be achieved for complex tasks.

Academic Learning and Education

It is known that well-designed simulations can provide learning experiences that are

not available via normal means. Virtual field trips consume no fuel; simulated labo-

ratories do not explode; virtual dissection kills no animals [18]. VEs provide infinite

possibilities of experimentation for their users. Specific skills may be practiced and

observed from different viewpoints [19].

Medicine

In the medical domain, the core technology is the use of interactive three-dimensional

visualization toward training personnel; and improving the quality of patient care in

emergency situations, hospitals, and battlefields. The experience of VEs can be im-

mersive or augmented; with a head-mounted display (HMD), on a 3-D video monitor,

or in a room size CAVE; stand alone, distributed, or Internet-based. Thus, it is pos-

sible to customize the required VE experience for the respective health care provider

or patient. The most important benefit is that VEs provide a risk-free experience

to practice new procedures that have not been tried on human patients, to train

medical professionals, who traditionally practiced on real patients, and to measure

performance metrics for specific procedures. VEs are used in diagnosis, therapy, ed-

ucation, and training [20].

15

Manufacturing Industry

Every type of good available to society, from consumer goods to electronics, com-

puters, and automobiles results from manufacturing. In order to manufacture items,

a manufacturing system, which is a collection of machines, equipment, and labor, is

required. VEs are beneficial to manufacturing systems as a means of visualization,

simulation, information provision (information display via VEs), and telerobotics (re-

mote control of robotics in VEs representing remote real environment) [21].

Gaming and Entertainment

Use of VEs in the gaming and entertainment industries has the longest history among

all the domains, dating back to start of the twentieth century [22]. Today, VEs are

non-replaceable components of games and other entertainment platforms. Computer

games may run on many different, platforms including arcade machines, personal

computers, gaming consoles, and palmtop devices. Even though early games were

two-dimensional (2D), with the improvements on three-dimensional (3D) computer

graphics technology, the domain moved into using truly interactive 3D gaming. Along

with the gaming industry, today, many branches of the entertainment industry, such

as the film industry, adopted VEs. The push from the gaming industry has resulted

in the leading companies making large investments in game engine design, terrain

management, clustering, data segmentation, etc. In addition, gaming and computer

graphics hardware companies made large improvements in a wide variety of hard-

ware/software combinations to satisfy the hunger of the industry and to compete

16

Iterate New

Prototype

FIG. 7: Prototyping Process.

with rival companies.

II.2 P R O T O T Y P I N G

Prototyping is the process of quickly creating a working model in order to test a de-

sign, demonstrate ideas and/or features with potential users. In a development cycle

one or more prototypes are generated iteratively (Figure 7), where each subsequent

prototype is affected by the assessment of the previous one [9, 23, 24, 25]. Hence, the

deficiencies of the earlier prototypes are eliminated. The target product is ready when

the prototype meets the initial requirements in terms of functionality and robustness.

The advantages of using prototyping in system design are [8, 26, 27]:

May provide the proof of concept necessary to attract funding

17

• Early visibility of the prototype gives users an idea of what the final system

looks like

• Encourages active participation among users and producer

• Enables a higher output for user

• Cost effective (Development costs reduced)

• Increases system development speed

• Assists to identify any problems with the efficacy of earlier design, requirements

analysis and coding activities

• Helps to refine the potential risks associated with the delivery of the system

being developed

• Various aspects can be tested and quicker feedback can be gotten from the user

• Helps to deliver easily the product in quality

• High end-user involvement

• Early detection of design issues

• Early deployment of end product

Moreover, the disadvantages are [8, 26, 27]:

• User expectations for the prototype may be beyond its performance

• Possibility of causing systems to be left unfinished

18

• Possibility of implementing systems before they are ready

• Producer might produce a system inadequate for overall organization needs

• User can get too involved, whereas the program can not reach a high standard

• Structure of system can be damaged since many changes could be made

• Producer might get too attached to it

• Not suitable for large applications

II.3 TECHNOLOGIES

There are several alternative technologies to construct VEs. Each of these compet-

ing technologies has its inherent strengths and weaknesses compared with the other

technologies. The choice of which technology or delivery medium to use is dictated

by several factors including:

• Capabilities required by the specific application or domain

• Nature of the required application (stand alone, Web capable)

• Ease of distribution (Web enabled vs. distribution on CDROMs etc)

• Proprietary software interfaces such as plug-ins required to interact

• Capabilities of end user system (high end graphics workstation vs. PDA etc.)

A discussion of some of the important 3D formats, APIs, and development envi-

ronments are presented in the following subsections.

19

TABLE II: Node Types and Nodes in VRML 1.0 [30].

Node Type

Shape nodes represent the shape nodes

that specify the geometry

Property nodes represent the properties

of the geometry and its appearance, and

matrix or transform properties

Group Nodes used to create aggregate

objects using the single or other group

nodes

Light Source nodes used to add different

light sources within the VRML 1.0 scene

Camera Nodes are used to specify the

type of projection system for the view.

List of nodes

AsciiText, Cone, Cube, Cylinder,

IndexedFaceSet, IndexedLineSet,

PointSet, Sphere

Coordinate3, FontStyle, Info, Material,

MaterialBinding, Normal, NormalBind-

ing, Texture2, Texture2Transform, Tex-

tureCoordinate2, ShapeHints, Matrix-

Transform, Rotation, Scale, Transform,

Translation

Separator, Switch, WWWAnchor, LOD

DirectionalLight, PointLight, SpotLight

OrthographicCamera, PerspectiveCam-

era

II.3.1 V R M L

Virtual Reality Modeling Language (VRML) [28], originally Virtual Reality Markup

Language, is a text-based file format for representing 3D interactive vector graphics.

Initial design of VRML was made for the World Wide Web [29] and based on the

Open Inventor file format developed by Silicon Graphics Inc. The initial version,

namely VRML 1.0, was completed in May 1995 and provided basic support for shapes,

lighting, surface color, UV mapped textures, shininess, transparency. Table II lists

node types and nodes in VRML 1.0. VRML 1.0 could be used to develop passive VR

systems where, once developed, the virtual world scene presents a read-only view to

the audience. The user was not able to author or interact with the scene, unless the

user generated an entirely new content file.

20

#VRML V2.0 utf8

Red cone

Shape {
appearance Appearance {
material Material {
diffuseColor 1 0 0

}
}
geometry Cone {
bottomRadius 0.75
height 1.6

}
}

FIG. 8: VRML sample code

In 1997, VRML 2.0 was created to extend the capabilities of VRML 1.0. VRML

1.0 was among the first open formats for 3D objects and provided only very primitive

capabilities for user interaction. The draft of the VRML 2.0 specification also known

as VRML97 was accepted as an ISO standard.

VRML files are commonly called "worlds" and have the *.wrl extension. In addi-

tion, VRML worlds use a text format, so they may often be compressed using GZIP

so that they transfer over the Internet more quickly . Figure 9 depicts the repre-

sentation of the VRML 2.0 code listed in Figure 8, using ParallelGraphics' Cortona

VRML client for Microsoft Internet Explorer.

VRML [31, 32, 33] employs tree based structure, namely scene graph structure,

to describe 3D objects (vertices and edges for a 3D polygon) along with surface color,

UV mapped textures, shininess, and transparency within the virtual world. VRML

21

CilipQcumonts^SBttjngslEmtoBajdoaaotDasKiirt,.,

o

o

«• • • i •M

FIG. 9: VRML Sample View in Cortona Player.

specification allows VRML nodes, which are essentially the entities in the scene graph

structure, to communicate with each other along with multiple referencing of the

existing node. Multiple referencing is provided by use of DEF and USE keywords.

Any node labeled with [DEF <name>] <NodeType> {<body>} may be referenced later

via use of USE keyword. Thus, a pointer link is created to previously declared DEF

name in place of USE node. The communication among scene graph nodes is provided

via an event mechanism called Route statements. Hence, source and destination of

the events in the environment are connected.

22

Summarized below are some key enhancements altered by VRML97 compared

with VRML 1.0.

• Static type

— Sound, MovieTexture and AudioClip nodes allow addition of multimedia

experience.

— Extrusion node describes a rectangular array of varying height and allows

for the modeling of terrain.

— Background node is to describe the background view of the environment.

— New Shape node allows encapsulation of other geometry type nodes.

• Interaction type

— TimeSensor node provides a timer to trigger other events.

— PlaneSensor node maps a pointing device motion into a two-dimensional

translation.

— Proximity Sens or node allows testing of proximity of the user view to the

scene object in question.

— Collision node can detect collision of the geometries or a geometry with

an avatar.

• Behavior type

— Interpolator nodes are used to perform calculations.

23

— Script node can contain functions written in programming languages such

as Java or Javascript.

• Prototyping type

- Proto and Externproto nodes allows developer to extend the VRML speci-

fication by creating new re-usuable objects that consist of multiple existing

VRML nodes

II.3.2 X 3 D

X3D is an open-source standards file format and run-time architecture, which builds

on VRML97. X3D represents and communicates 3D scenes and objects using Extensi-

ble Markup Language (XML) [34], a general-purpose specification for creating custom

markup languages. X3D is under active development and ISO ratification [35], latest

specification dating April 2008, through the Web3D consortium [36]. X3D system

specifies storage, retrieval and playback of real time graphics content embedded in

applications within variety of domains.

The use of XML encoding provides easy integration to Web services, distribution

on networks, cross-platform operability and easy file and data transfer. Rich sets

of components within X3D can be authored for custom use in domains such as en-

gineering, scientific visualization, medical visualization and multimedia. Moreover,

the system is extensible for added functionality for other domains. The component-

based architecture of X3D system allows creation of different profiles, which can be

individually supported, as well as addition of new levels and components. Hence,

24

improvements can be made quickly on a specific area without modifying the overall

specification of X3D. The modular blocks of the baseline profiles for X3D architecture

are shown in Figure 10.

The four baseline profiles are:

• Interchange: profile for communicating between applications (geometry, tex-

turing, basic lighting, and animation).

• In te rac t ive : profile for basic interaction with a 3D environment by adding var-

ious sensor nodes for navigation, interaction, enhanced timing, and additional

lighting (PlaneSensor, TouchSensor, Spotlight, PointLight).

• Immersive: profile for full 3D graphics and interaction, including audio sup-

port, collision, fog, and scripting.

• Full: profile for all defined nodes including NURBS, H-Anim and GeoSpatial

components.

Additionally, since the legacy specification for VRML97 is supported, the

VRML97 content may be updated or preserved. Table III shows the features sup-

ported by X3D system [36]. Figure 12 depicts the representation of the X3D code

listed in Figure 11, using Xj3D Browser [38].

II.3.3 Java3D

Java3D is a scene graph based 3D API for the Java programming language available as

a separate API since Java 2 Java Development Kit (JDK) [39]. With the Java 3D API,

. /

Full

Immersive

Interactive

Interchange
Rox

Group

Texture

Inline
TouchSensor
• PlaneSensor

NUR8S
H-Anim

GeoSpacial

\

\
Fog

Audio
Script

25

FIG. 10: Modular block of X3D baseline profiles (Reproduced from [37]).

<?xml version="1.0" encoding="UTF-8"?>

<!D0CTYPE X3D PUBLIC "http://www.web3d.Org/specifications/x3d-3.l.dtd"

"file:///www.web3d.org/TaskGroups/x3d/translation/x3d-3.1.dtd">

<X3D profile="Immersive" version="3.1"

xmlns:xsd="http://www.w3.org/2001/XMLSenema-instance"

xsd:noNamespaceSchemaLocation=

"http://www.web3d.org/specifications/x3d-3.1.xsd">

<Scene>

<Shape>

<Appearance>

<Material diffuseColor="0.3 0.5 0.8"/>

</Appearance>

<Sphere/>

</Shape>

</Scene>

</X3D>

FIG. 11: X3D sample code.

http://www.web3d.Org/specifications/x3d-3.l.dtd
file:///www.web3d.org/TaskGroups/x3d/translation/x3d-3.1.dtd
http://www.w3.org/2001/XMLSenema-instance
http://www.web3d.org/specifications/x3d-3.1.xsd

26

TABLE III: X3D Supported Features.

Feature

3D graphics and pro-

grammable shaders

2D graphics

CAD data

Animation

Spatialized audio and video

User interaction

Navigation

User-defined objects

Scripting

Networking

Physical simulation and

real-time communication

Explanation

Polygonal geometry, parametric geometry, hierar-

chical transformations, lighting, materials, multi-

pass/multi-stage texture mapping, pixel and vertex

shaders, hardware acceleration

Spatialized text; 2D vector graphics; 2D/3D com-

positing

Translation of CAD data to an open format for pub-

lishing and interactive media

Timers and interpolators to drive continous anima-

tions; humanoid animation and morphing

Audio-visual sources mapped onto geometry in the

scene

Mouse-based picking and dragging; keyboard input

Cameras; user movement within the 3D scene; col-

lision, proximity and visibility detection

Ability to extend built-in browser functionality by

creating user-defined data types

Ability to dynamically change the scene via pro-

gramming and scripting languages

Ability to compose a single X3D scene out of assets

located on a network; hyperlinking of objects to

other scenes or assets located on the World Wide

Web

Humanoid animation; geospatial datasets; integra-

tion with Distributed Interactive Simulation (DIS)

protocols

27

l-d-l*!̂ * s^,4 H * * 1 ;~;»)e{A"SI
imwtKfOW. ottedinttte x3d 8*91

FIG. 12: X3D Sample View in Xj3D Browser.

high-quality, scalable, platform-independent 3D graphics can be incorporated into

Java applications and applets. Additionally, Java 3D offers extensive sound support.

Java3D provides display and interaction with 3D graphics via means of a collection

of high-level constructs for creating and manipulating 3D geometry and structures

[40, 29]. These geometries and structures reside in a virtual universe represented by a

scene graph before they are rendered using native OpenGL or Direct3D libraries. To

define a Java3D scene Java programming language is used. Then, in the run-time,

the program creates instances of a Java3D object and places them in the scene graph

tree structure.

Figure 13 shows a sample Java3D scene graph [41]. VirtualUniverse object is the

root node of the scene graph, representing the largest unit of aggregate representation

|^&#fti><3ite;»Rpi8.x3if

28

of the scene. A Locale object is attached to a VirtualUniverse object and provides

a coordinate point of reference for objects in a scene and thus serves as the origin

for scene graph objects attached to it. The BranchGroup object is a grouping node

that acts as the root node for other grouping nodes, or geometry nodes, which can

be attached to it. BranchGroup node is the only grouping node in Java3D that can

be attached to a Locale object.

The TransformGroup object is a grouping node that specifies a transformation

that can change the position, orientation, or scale of all of its children nodes. Thus,

geometric primitives must be children of a TransformGroup object so that the trans-

formation can be applied. Interactive behavior can be built into the scene graph by

incorporating sensors with TransformGroup' objects. For example, to create a scene

having a cube that can rotate in response to a mouse trigger, the event handler for

the mouse event applies a transform to the TransformGroup object, thus changing

the position, and orientation of the cube. Figures 14 and 15 depict a sample Java3D

program that displays a rotated 3D Cube object.

Some of the Java3D API features [40, 42] are:

• Platform independent, cross-platform

• Support for retained, compiled-retained, and immediate mode rendering

• Includes hardware-accelerated OpenGL and Direct3D Tenderers (depending on

platform), as well as JOGL, a wrapper library that allows OpenGL in Java

programming

• Sophisticated virtual-reality-based view model with support for stereoscopic

29

Virtual
Universe

y

(BG)

Node

f Appearance } (Geometry j

BranchGroup
Nodes

TransformGroup
Node

View
Platform View u H CanvasSd ScraertSD

A...

f Physical Body j, (Physical Environment J

FIG. 13: Java3D Sample Scene Graph Diagram.

rendering and complex multi-display configurations

• Native support for head-mounted display

• CAVE support (multiple screen projectors)

• 3D sound support

• Support for shaders, set of software instructions, which is used by the graphic

resources primarily to perform rendering effects

30

import j avax.media.j3d.BranchGroup;
import javax.media.j3d.Transform3D;
import j avax.media.j 3d.TransformGroup;
import j avax.vecmath.AxisAngle4f;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.universe.SimpleUniverse;

public class sample3d {
public sample3d() {
SimpleUniverse universe = new SimpleUniverse0;
BranchGroup group = new BranchGroup();
TransformGroup tg = new TransformGroup();
Transform3D transform = new Transform3D();
transform.setRotation(new AxisAngle4f(0.7f, .7f, 0.7f, .7f));
tg.setTransform(transform);
tg.addChild(new ColorCube(0.3));
group.addChild(tg);
universe.getViewingPlatformO.setNominalViewingTransform();
universe.addBranchGraph(group);

}

public static void main(String[] args) {
new sample3d();

>

}

FIG. 14: Java3D Sample Code.

31

FIG. 15: Java3D Sample View.

II.3.4 JavaFX

JavaFX is a family of products and technologies from Sun Microsystems, announced

in May 2007 [43]. Currently JavaFX consists of JavaFX Script, JavaFX Desktop,

and JavaFX Mobile. JavaFX provides simplified and rapid content creation accross

browser, desktop and mobile platforms. It is possible to create 3D VEs via tools

provided JavaFX [44] in addition to advanced enterprise and Internet applications.

JavaFX allows use of most components in Java3D API. Java3D code needs to be

leveraged and encapsulated so that it can be used in platforms supporting JavaFX.

Already, a number of new mobile and portable devices are adopting JavaFX func-

tionality [43]. Figure 16 shows a sample JavaFX script displaying a Cube object.

32

package javafx3d;
import javafx.ui.*;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import Java.lang.Math;
import j ava.awt.BorderLayout;
import j avax.swing.JPanel;
class RenderPanel extends Panel -Q
operation RenderPanel.createComponentO {
var config = SimpleUniverse.getPreferredConfigurationO;

var c = new Canvas3D(config);
var univ = new SimpleUniverse(c);

univ.getViewingPlatformO.setNominalViewingTransform();
univ.getViewerO .getViewO .setMinimumFrameCycleTime(5);
var objRoot = new BranchGroupO ;
objRoot.addChild(new ColorCube(0.4));
objRoot.compile();
univ.addBranchGraph(objRoot);
var panel=new JPanelO;
panel.setLayout(new BorderLayout());
panel.add(c, BorderLayout.CENTER);
return panel;

}
var renderPanel=new RenderPanel();
Frame {

visible: true
screenx: 50
screeny: 100
width: 600
height: 400
content: BorderPanel {

border: EmptyBorder {left: 16 top: 16 right: 16 bottom: 16}
center: BorderPanel {

background: new Color(1,1,1,1)
}
center: renderPanel

}
}

FIG. 16: JavaFX sample script.

33

II.3.5 M3G (Mobile 3D Graphics API)

The Mobile 3D Graphics API (M3G) is an API for creating 3D computer graphics

on Java Platform, Micro Edition (JavaME) [45]. M3G extends the capabilities of

JavaME so that 3D computer graphics can be produced on embedded devices such as

mobile phones and PDAs. In contrast to Java3D, M3G is designed for low memory

and processing power devices. Thus Java3D and M3G are incompatible and seper-

ate. M3G API was designed by JSR expert group including Sun Microsystems, Sony

Ericsson, Symbian, Motorola, ARM, Cingular Wireless, and specification lead Nokia

[46]. The API has 30 classes (I.e., World, Object3D, Light, Camera, etc.) that can

be used to draw complex animated three-dimensional scenes. M3G has two modes

of rendering; immediate and retained. In immediate mode, graphics commands are

issued directly into the graphics pipeline and the rendering engine executes them

immediately. The developer has to control each key frame of the animation in imme-

diate mode. On the other hand, retained mode uses a scene graph that links objects

in the 3D world in a tree structure, and specifies world much like Java3D and X3D.

Figure 17 lists a code piece from a M3G application in retained mode. The M3G

standard also specifies a file format (".m3g" extension) for 3D model data, including

animation data. This allows developers to create content on PCs that can be loaded

by M3G on mobile devices.

34

public class MyCanvas extends Canvas
Graphics3D g3d;
World world;
int currentTime = 0;

public MyCanvas() {
g3d = Graphics3D.create();
Object root[] = Loader.load("world.m3g");
world = root [0];

}

protected void paint(Graphics g) {
g3d.bindTarget(g);
world.animate(currentTime);
currentTime += 50;
g3d.render(world);
g 3 d . r e l e a s e T a r g e t () ;

}

}

FIG. 17: M3G code piece (Retained Mode) [46].

II.3.6 JavaME (Java Platform, Micro Edition)

The Java Platform, Micro Edition (JavaME) is a specification of a subset of the Java

platform, which provides a collection of Java APIs for the development of software

for small, memory and computation constrained embedded devices such as mobile

phones, PDAs and set-top boxes [47]. Sun Microsystems, the designer of Java and

JavaME, provides a reference implementation of the specification, but does not pro-

vide free binary implementations of its JavaME runtime environment for mobile de-

vices. The implementation is left to third parties or to device manufacturers, to

provide their own.

JavaME is widely used for creating games for cell phones, since they might be

35

emulated on a PC during the development stage and easily uploaded to phones in

contrast to development and testing for other gaming consoles such as those made

by Nintendo, Sony and Microsoft, as expensive system-specific hardware and kits are

required.

There are currently two types of profiles, subsets of configurations: the Con-

nected Limited Device Configuration (CLDC) and the Connected Device Configura-

tion (CDC). CLDC is the strict subset of Java class libraries that requires minimal

JVM operation. On the other hand, CDC contains almost all the libraries Java

standard edition. Thus CDC is richer than CLDC.

Two important APIs for creating VEs on such micro devices are Mobile 3D Graph-

ics API (M3G) (§11.3.5) and Java Binding for OpenGL ES. Java Binding for OpenGL

ES implements OpenGL ES common profile on supported devices.

II.3.7 OpenGL (Open Graphics Library)

Open Graphics Library (OpenGL) is an API for developing applications that create

2D and 3D computer graphics. OpenGL was originally developed by Silicon Graphics

Inc. (SGI) in 1992 [48, 49]. OpenGL is implemented over different languages for

different platforms. OpenGL, under its specification, has a little over 250 function

calls that can be used to construct 3D scenes [50]. Each hardware vendor has to

implement the OpenGL specification on its hardware in order to open the hardware

to OpenGL development. There are implementations for variety of platforms, such

as Microsoft Windows, Linux and Mac OS. OpenGL hides the complexities of the

different variety of underlying 3D accelerators by requiring that all implementations

36

support OpenGL feature set. OpenGL forces the implementation to emulate the

feature via software where the feature does not exist on the hardware in question.

OpenGL uses a graphics pipeline, OpenGL state machine, that accepts primitives

(I.e., points, lines, and polygons) and converts them into pixels. In OpenGL, the

programmer has to dictate the exact steps required to render a scene in contrast to

scene graph (retained mode in Java3D) APIs, where the programmer only describes

the scene leaving the rendering to the API. Thus OpenGL programmer needs to

have a good knowledge of the graphics pipeline and rendering algorithms. Figure 18

depicts a simplified version of the OpenGL graphics pipeline [51, 48]. In the pipeline,

if necessary, polynomial functions are evaluated for certain inputs such as calculation

of NURBS surfaces, approximation of curves and surface geometry. Then, vertex

operations (e.g., transformation and lighting) are done as well as clipping non-visible

parts. Third, previous information is turned into pixels by rasterization process.

Fourth, per-fragment operations, like updating values depending on incoming and

previously stored depth values or color combinations, among others, are done. Lastly,

the fragments are inserted into frame buffer.

For handling of events such as key press, mouse movement, mouse button press

and resize window, OpenGL relies on the underlying operating system. This adds

the complexity of the development for the OpenGL developer. Several libraries are

built on top of OpenGL to provide features not available in OpenGL (e.g., OpenGL

Utility Toolkit (GLUT), OpenGL Utility Library (GLU), Simple DirectMedia Layer

(SDL), OpenGL User Interface Library (GLUI) and Fast Light Toolkit (FLTK)).

There are also other libraries to enable scene graph (retained mode) in OpenGL such

Display
List

Evaluator

Vertex Ops,

Primitive

Assembly

•!!: Pixel
Operations

Rasterization
-

Per Fragment
Operations

L
Texture

Memory

37

Frame
Buffer

FIG. 18: OpenGL Graphics Pipeline Process.

as OpenSG, OpenSceneGraph and OpenGL Performer.

Figures 19 and 20 depict a sample OpenGL program that displays a 3D colored

cube object.

II.3.8 DirectX - Direct3D

Microsoft DirectX is a series of APIs for Microsoft platforms to handle tasks related

to multimedia. DirectX is widely used for game programming/development and video

handling on Microsoft Windows, Microsoft Xbox and Microsoft Xbox 360, a gaming

console. Table IV lists the components (APIs) of the Microsoft DirectX system [52].

The main purpose of Direct3D is to provide a communication between the graphics

application and the graphics hardware drivers in Microsoft systems. In case there is

a sub feature that is not implemented in a specific hardware driver, the Direct3D

emulates using a software-based generic graphics card. Though it is too slow to be

used for tasks that require high performance, such as video games.

38

#include <windows.h>
#include <gl/glut.h>
#include <iostream>
using namespace std;
void disp(void);
void keyb(unsigned char key, int x, int y);
static int win;
int main(int argc, char **argv){
glutlnit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA I GLUT_DOUBLE);
glutInitWindowSize(500,500);
glutInitWindowPosition(100,100);
win = glutCreateWindow("GLUT Sample");
glutDisplayFunc(disp);
glutKeyboardFunc(keyb);
glClearColor(0.0,0.0,0.0,0.0);
glutMainLoopO ;
return 0;

}
void disp(void){
glClear(GL_C0L0R_BUFFER_BIT);
glPushMatrixO ;

glPushMatrixO ;
glColor3f(1,0,0);
glutSolidCube(0.5);
glPopMatrixO ;
glPopMatrixO ;
glutSwapBuffersO ;
}
void keyb(unsigned char key, int x, int y){
cout « "Pressed key " « key ;
cout « endl;
if(key == 'q'H
cout « "Quitting " « endl;
glutDestroyWindow(win);
exit(0);

}
}

FIG. 19: OpenGL sample code displaying a solid cube, using GLUT.

39

BmmammmmKmmmmmmmmmmmmmfmmi^K^^^^^^^^mtm^mx
!:
v^v','-->rf •• - ; „m*

t

FIG. 20: OpenGL (GLUT) sample: Color Cube.

TABLE IV: DirectX Components.

Component

DirectDraw

Direct3D (D3D)

DXGI

DirectSound

DirectSound3D (DS3D)

DirectMusic

Direct Animation

DirectX Transform

Direct3D Retained Mode

DirectX Media Objects

DirectSetup

Explanation

drawing 2D Graphics

drawing 3D graphics

multiple adapters and displays management

playback and recording of waveform sounds

playback of 3D sounds

playback of soundtracks

2D web animation

Web interactivity

scene graph mode 3D graphics

streaming objects (encoders, decoders and effects)

installation of DirectX components

40

Direct3D versus OpenGL

Direct3D, similar to OpenGL, is a immediate mode graphics API. The programmer

has to specify every step in the rendering operation. Hence, developing Direct3D

applications require advanced programming, again similar to OpenGL. Direct3d is a

proprietary API by Microsoft for Microsoft systems, where as OpenGL is an open

standard API that works on most modern operating systems (e.g., Microsoft Win-

dows, Mac OS X, Linux, PlayStation 3 and Nintendo Wii).

11.3.9 Virtools

Virtools is a development platform has been widely used in the video game market

(prototyping and rapid development), as well as for other highly interactive 3D expe-

riences, in Web marketing, and virtual product maintenance. Virtools 3D Life Player

is used to enable Web viewing experience for content that is created by Virtools. Vir-

tools is developed and supported by Dassault Systemes Technology [53]. Figure 21

shows development of Virtual Chainsaw in Virtools environment [54].

11.3.10 TouchDesigner

TouchDesigner is a 3D animation development tool designed for realtime performance

[55]. The content created can be viewed and interacted by TouchPlayer or Touch-

Mixer. TouchDesigner is developed by Derivative Inc., based in Canada. Figure 22

shows the development of Wound Debridement Simulator in TouchDesigner environ-

ment [56, 57, 58].

41

FIG. 21: Virtools development environment (Virtual Chainsaw).

ssggsggfflgmmwfflCTftffiffiffiif

Wmw r v * • MH

liSsIiiiSSK

SB"

- * l r * ^
BgffiK**!"?'?

a-I*
U-H-«1

n u

BHEF

a-a-

H-a-

FIG. 22: TouchDesigner development environment (Wound Debridement Simulator).

42

II.4 PLATFORMS

Platform is often described as a set of hardware components that make up the system

itself, that the software is written to run. Most commonly, operating systems are

written/installed to allow other software to be run. Thus, the operating system and

hardware couple become a platform themselves.

In the context of this thesis, a platform describes a hardware architecture or an

underlying software that allows the technologies described in § II.3 to be run or real-

ized. Operating systems such as the Microsoft Windows family system or Unix-like

(e.g., Linux and Mac OS running on a personal computer) are the underlying software

for some of the technologies described. Similarly, hardware devices, such as personal

computers, portable and immersive devices, are platforms for the technologies along

with their operating software or working specifications (e.g., a mobile phone with

Symbian software or Head Mounted Displays (HMDs) with connection ports/cables).

II.4.1 Microsoft Windows P C

Microsoft Windows is a series of operating systems from Microsoft Corp. [59]. Al-

though the most recent version of Windows is Windows Vista, Windows XP (32bit)

is considered the standard Windows version for the Windows family of operating

systems for the context. It is also assumed that technology support in the future

versions of Microsoft Windows is backward compatible with Windows XP. Out of the

technologies, only DirectX is embedded with the initial installation of the operations

43

system. Other technologies either have tools, APIs, plug-ins, components to install or

have to use drivers that are loaded by the Windows operating system (e.g, OpenGL).

11.4.2 Unix-l ike PC(Linux & Mac OS)

Unix-like operating system is denned as an operating system that behaves in a similar

manner to a UNIX system, which was developed originally in 1969 at Bell Labs

[60, 61]. Linux is a name given to a Unix-like operating system that uses Linux

(open source) kernel, which is the central component of the operating system. On

the other hand, Mac OS is another Unix-like operating system that is developed

by Apple Inc. Even though there are similarities among Unix-like platforms, from

the perspective of VE development, there are some tweaks that have to be made

when switching operating systems. Thus, each operating system has to be seen as a

separate platform for development of VEs.

11.4.3 Portable Devices

There are three types of portable devices that are used for developing and realiz-

ing VEs; portable computers (i.e., Laptops, Palmtops, Personal Digital Assistants

PDAs), portable communication devices (i.e., Mobile Phones and PDAs) and hand-

held gaming consoles (e.g., Playstation Portable [62] and Nintendo DS [63]). Most of

these devices require a different approach than personal computers, when developing

or rendering VEs with them. Even though laptops are personal computers in basis,

they have much less computational power and less storage space along with their lower

capability graphics accelerators. Thus, laptop computers can be seen as a different

44

platform in some cases. For other devices, mobile phones, PDAs etc.,the difference is

not only the computation/rendering power but also their operating system, modified

support (clipped versions of languages and APIs) for different technologies, and low

level of detail requirement (e.g., higher resolution rendering is meaningless for small

displays).

II.4.4 Immersive Devices

There are several different immersive devices out in the market, such as CAVE [64],

ImmersaDesk [65], VisionDome, [66] and Head Mounted Display (HMD) [67]. These

devices are non-traditional when compared to regular displays (i.e., LCD, CRT, pro-

jection screens), since they require modification of rendering algorithms. Most of the

time, special drivers or APIs are required in order to engage such devices. Hence,

immersive devices along with their required software should be considered platforms.

II.5 G R A P H I C S PROCESSING (RENDERING)

There are different varieties of capabilities available for VE developer from different

technologies and platforms. The developer has to match the requirements of the VE to

the capabilities of the technology and the platform. For example, a developer seeking

high fidelity graphics rendering with soft body deformations should not select VRML

as development technology, since it is trivially hard to define dynamic object behavior

in VRML as well as relatively poor rendering quality than other technologies.

45

Modern graphics hardware support point transformations and lighting calculations

without use of system resources [68]. Graphics processing units (GPUs) are improved

to include support for special operations specific to graphics rendering, such as fast

division, fast inverse square roots, transforms and dot product operations. Different

virtual systems have different models for representing the 3D virtual world space.

In some hardware Tenderers, the 3D VE has two meta spaces, the world space and

the view space dictated by a camera model. A renderer first transforms 3D data

from the world space to the view space. Next, the 3D data is projected onto a 2D

plane that represents the viewing screen in a desired fashion (i.e., scanline rendering,

rasterization, ray casting, radiosity and ray tracing [69]). Since the entire process is

highly computationally intensive, at each step, optimizations are necessary to meet

the requirements of real-time rendering. The renderer eliminates portions of data

that are not visible to the viewer by two processes known as culling and clipping.

Culling is the process where the graphics processor determines whether an object

is completely outside the current view. By not processing objects that are outside

the view volume, processor cycles are saved. Clipping is the process of splitting an

object into smaller pieces and determining the visible from the invisible pieces [68].

Thus after culling and clipping, the renderer discards the invisible pieces and starts

processing only on the visible pieces. Then, transformed 2D data is drawn to the to

the screen. This process is called rasterization. Rasterization is the process of taking

a geometric object in screen space and converting it into a raster image (pixels or

dots) for output to be drawn. The majority of time in the rendering process is spent

on rasterization. Rendering may be done in the general purpose CPU, in part by a

46

hardware-accelerated graphics card or totally on special purpose graphics hardware.

A proper choice of the view space can reduce the rendering load on the graphics

processor.

Application programming interfaces (APIs) for graphics accelerators such as Di-

rect3D, OpenGL or Glide [70] provide an interface between the scene graph manage-

ment and the actual rendering system or a direct interface between developer and

the rendering system. Applications written using APIs such as Direct3D or OpenGL

are portable across multiple hardware cards that support these standards. Writing

applications using Glide which is a low level rasterizing API for 3dfx cards makes

the application non-portable to other cards. But if the intended target platform is

known to use a 3dfx card, then the choice of writing to the glide API may be a good

design choice.

Besides the rendering done in lower level (e.g, rasterization) for the VE developer,

there are two modes of rendering in the technologies explained, immediate mode and

retained mode.

II.5.1 Immediate Mode Rendering

Immediate mode rendering is a style for application programming interfaces of graph-

ics libraries, in which client calls directly cause rendering of graphics objects to the

display. Every frame, the developer has to specify the steps of rendering and appli-

cation redraws everything regardless of actual changes. This method provides the

maximum amount of control and flexibility to the application program. OpenGL and

Direct3D developer has access to immediate mode rendering.

47

II.5.2 Retained Mode Rendering

In contrast to immediate mode, in retained mode the technology retains a complete

model of the objects to be rendered in the VE. The developer controls the environment

by changing the internal list of the objects. The library (API) (e.g., VRML, X3D

and Java3D) controls and applies the required rendering so that the objects in the

retained list are drawn. This retained list is called scene graph.

Scene Graph

The scene graph is a data structure that represents grouped objects and their hierar-

chical organization [68]. It is used to store, organize and render 3D scene information

such as geometries, lights, materials, and other parts of a scene. The simplest form

of scene graph uses an array or linked list data structure, and displaying its shapes is

simply a matter of linearly iterating the nodes one by one. Other common operations,

such as checking to see which shape intersects the mouse pointer in a GUI-based ap-

plication are also done by use of linear searches. Larger scene graphs cause linear

operations to become noticeably slow, and thus more complex underlying data struc-

tures are used, the most popular being a tree. This is the most common form of

scene graph. In these scene graphs hierarchical representation of group-nodes and

leaf-nodes is created. Group Nodes can have any number of child nodes attached to

it. Group nodes include transformations and switch nodes. Leaf Nodes are nodes that

are actually rendered objects or effects in the scene. These include objects, sprites,

sounds, lights, and anything that could be rendered. The scene graph hierarchy is

logical and often spatial representation of a graphical scene.

48

Every object in a 3D environment needs to be to be tested for culling and clipping

to identify whether that object is outside the current view. If a 3D world has a large

number of objects, it is computationally inefficient to test every object for culling

and clipping. The need to test every single object in the scene can be eliminated

by organizing the objects into groups of objects according to their spatial location.

Objects which are within the current view of interest will occur within the same spatial

region. By transversing the tree of the scene graph hierarchically, large portions of

the virtual world can be eliminated from processing by the renderer. This hierarchical

organization of grouped objects also provides the information on how the objects in

the real world are linked and operated upon.

VE systems may be broadly classified into active and passive systems. Passive VR

systems present a read-only view to the viewer. The user can navigate in the scene,

and the navigation changes characteristics of the view, such as perceived distance

and angle of view, but the user does not change the structure of the scene structure.

Active systems, in contrast, can dynamically create scenes based on user input and

user interaction and thus present a higher level of interaction capabilities to the user.

Using Script nodes, VEs built on VRML 2.0 can be designed to have capabilities

to insert, update, and delete objects as a result of user interaction with the scene.

In an active scene, as the state of the scene is modified, the scene graph tree must

also be updated to represent the new state. When a VE is changed as the result

of an external agent, which could be the result of a user interaction or the result of

a simulation feed update, only the affected sub-trees of the scene graph need to be

updated. Different systems have different implementations to update scene graphs.

49

Based on the structure of a specific scene graph, the result of an interaction may need

to update leaf nodes at different locations of the scene graph. The order of updating

the scene graph can improve the efficiency of the update operation.

50

CHAPTER III

THEORY

In this chapter, the rapid prototyping methodology for VEs and the Common Scene

Definition Framework (CSDF) [71] [30] will be described. The capability of rapid

prototyping for VEs is provided by the proposed framework, CSDF, and by the sur-

rounding system.

III.1 R A P I D P R O T O T Y P I N G

The VE designer has a general conceptual understanding that transcends his/her

favorite technology. The developers are usually familiar with a specific technology

within which they develop, but are required to learn a new one in which they lack the

expertise. Similarly, the VE developers must learn the platform on which the content

will be rendered. Therefore, having an automatic synthesis capability to target output

on a desired platform would reduce the time required to learn different outputs and

platforms either providing additional time to be devoted towards developing content

or speeding up delivery times.

Moreover, the automatic synthesis can also be used to assess suitability of a partic-

ular platform for the desired VE. A prototype can be realized quickly via the synthesis,

so that the developer may determine whether further investment is warranted or not.

More than usual, when a new platform is chosen by the VE developer to replicate a

previously implemented VE in the old platform, neither the old VE nor its components

VRML 2 0 Analysis asA Syntl-.ssls

51

FIG. 23: CSDF Concept Diagram.

are reused. Hence, virtually, the development starts from scratch. The automatic

synthesis allows reuse of existing content as an intermediate prototype for the targeted

platform.

Figure 23 shows the conceptual diagram of the CSDF. A virtual world defined in

a VR application, such as VRML, can be imported to CSDF, where the world would

be translated according to CSDF specifications. From this representation in CSDF,

it is possible to synthesize to any other technology on a specific platform. Note that

for the sake of diagram simplicity, only a few technologies and platforms are shown

in Figure 23. More detailed explanations are given in Chapter IV.

52

III.2 CLASSIFICATION OF V E CAPABILITIES

It is important to classify the capabilities of VE technologies, since the classification

reveals what type of approach should be taken to handle and represent VEs. It also

reveals what is possible and establishes the limits of what is trivial, and what is non-

trivial. When the representation difficulty classifies the capabilities, they might be

separated into three sets. The following subsections visit these sets.

111.2.1 Geometry /Appearance

Geometries and their corresponding appearance attributes can be statically described.

Neither dynamic behavior is acted upon them nor is dynamic behavior represented.

This set of capabilities is easiest to handle. This set can be represented in a fairly

straight forward way and usually can be broken into simpler capabilities of the

same class. For example, a complex but static object can be represented by an

indexed face set. Basic appearances can include attributes such as diffuse/emissive

colors/shininess/alpha channel.

111.2.2 Behaviors

Behaviors are the dynamics that are defined (pre-made/standard) by the VE tech-

nology. These include basic sensors (e.g., mouse, keyboard, location etc.) and other

scene elements like lighting/shading. Even though these behaviors affect the geome-

try/appearance in VEs, they are representable fairly universally across technologies.

Therefore, for many behaviors, there are mappings providing equality of these behav-

iors.

53

III.2.3 Script ing/Custom Coding

The most complex capabilities are custom made by the VE developer via use of either

scripting or coding in a computer language. These are, more often than not, quite dif-

ficult to represent in a format other than in their original format. In most cases, there

are script or code pieces embedded in VE specification. In other cases, some technolo-

gies represent the VEs in pure scripting or custom coding (e.g., OpenGL). In OpenGL,

very low level capabilities can not be easily recognized and represented in terms of

higher level capabilities. These would require sophisticated parsing/semantics repre-

sentations. Thus, OpenGL analysis is very challenging, and currently not supported

by CSDF.

III.3 CSDF

In the methodology, the VE is described by the Common Scene Definition Framework

(CSDF), which includes a superset of existing technologies. The superset consists of

all capabilities of existing technologies, so that any VE defined in any technology

can be represented in CSDF. This superset representation capability is necessary for

analysis and synthesis of VE technologies.

The VE developer is capable of rapidly synthesizing the desired output at the

target platform and technology. If a target technology lacks a feature in a source con-

tent and the target technology supports the implementation of the feature, CSDF will

support filling in this gap. An alternate approach for the framework is to downgrade

a complex VE to an environment that is a subset of the initial input, so that the

54

prototype of the environment can be realized on the target. For example, a Virtools

scene can be analyzed into CSDF and then synthesized to a basic Java3D environ-

ment displayed on a mobile device. In synthesis, a number of capabilities and level

of detail, which may not be supported by target platform and the technology, has to

be omitted. Furthermore, knowledge of the lack of a capability can be of use to the

developer in assessing the suitability of a platform for a particular application.

III .3 .1 F ramework

The fundamental representation for the CSDF is an extension of the X3D specification

(§11.3.2). The reasons for this decision are as follows:

• X3D is sponsored by and actively supported by the Web3D consortium. Thus,

basing the framework on X3D makes it easier to remain consistent with the

latest developments proposed by the Web3D consortium [36].

• X3D includes a rich set of primitives for modeling 3D geometry and behaviors.

X3D can be naturally extended create a superset of capabilities, when compared

to other candidate technologies.

• X3D is an extensible open file format standard and hence is suitable for sup-

porting an evolving CSDF.

• Web services, the programmatic interfaces for application to application com-

munication on the Internet use XML technologies to construct messages that

can be exchanged over a variety of underlying protocols. This helps to make

integration with Web services easier [71] [36].

55

As a result, CSDF has a scene graph structure similar to X3D. In CSDF, CSDFN

ode is the node class for the tree structure that was used to construct the scene graph.

All the other entities within CSDF scene graph are extended from CSDFNode. All

CSDF classes support Java Serialization via inheritance through CSDFNode. Java

Serialization is defined as follows [72]:

Object serialization is the process of saving an object's state as a sequence

of bytes, as well as the process of reconstituting those bytes into a live ob-

ject at some future time. The Java Serialization API provides a standard

mechanism for developers to handle object serialization.

Java Serialization reduces the time necessary to develop code for saving and restor-

ing object or application state. Moreover, Java Serialization makes it easier to send

objects over a network connection. The CSDF can use Java Serialization to save the

VE, represented within, to a database or to a file. The saved information can later

be recalled and used.

Even though, theoretically, it is possible to synthesize/analyze to/from all the

technologies described in §11.3, practical issues constrain some of such mappings

to/from CSDF. The synthesis process may involve representation of a higher level

capability in terms of lower level capabilities. For example, a primitive 3D model

might be represented by vertices and face sets. On the other hand, the analysis pro-

cess may be more complex in some cases, since setting low level capabilities up to a

high level capability can be trivial. For example, making a primitive 3D object from

56

a collection of vertices and face sets is a very complex process. The CSDF will be

discussed in more detail in Chapter IV.

111.3.2 Modules

The modularity of the CSDF is technology and platform independent. Thus, the

new technologies, or changes to existing technologies, and platforms can be applied

without changing the underlying architecture of the CSDF. In order to facilitate

such additions, module interfaces are created (see §IV). Since all modules implement

the common interfaces of CSDF, changing or adding a module will not affect the

connection of this module to CSDF.

It is also possible to create custom 3D model template libraries within CSDF,

which can be used by developers in their VEs. These libraries can be either stored

within the CSDF repository or in one of the possible technology formats in which the

analysis module exists.

111.3.3 Analysis (Parsing) from Technologies

VE developers use a variety of technologies and tools. A number of these technologies

have been described in §11.3. The analysis of the VE consists of representing the VE

in the CSDF by parsing/analyzing the respective formatted inputs of the technolo-

gies. The rapid prototyping system has the ability to import existing models (VEs)

from popular technologies into the common scene definition framework. The CSDF

also allows easy addition of import modules for other VEs because of its modular

architecture and easy plugability of the analysis modules.

57

III .3.4 Synthesis to Technologies/Platforms

Different technologies and platforms have different requirements. This is why VE

synthesis is necessary to transform from the requirements specification, denned in

CSDF, to a technology/platform architecture, which has its own requirements speci-

fication acting as a confining factor. Along with the representation of the VE, CSDF

also knows the capabilities and features of the target technology and platform. This

knowledge helps the synthesis process, by mapping from the CSDF representation to

the target technologies and platforms, to construct the customized output. In other

words, the CSDF synthesis process may create a representation of the VE that is

the best possible to replicate of the initial VE. In addition, CSDF can provide feed-

back on the capabilities that are not supported by either the target technology or the

platform. For example, unmatching capabilities often occur when the platforms and

technologies have various interaction and camera control methods.

If the representation in CSDF can not be directly synthesized, in case of a non-

supported capability, the synthesis process handles the mapping in one of two ways.

First, if the capability in question can be represented in terms of combinations of other

capabilities supported by the target technology or platform, the mapping creates low

level entities representing the high level entity in CSDF. For example, an entity in

CSDF, like a 3D object primitive, might have to be represented by a series of surfaces

or simpler primitives in OpenGL. Second, if the entity can not be supported by the

target platform or technology, it is omitted and a warning is generated. An example

for this situation might be the picking by mouse interaction capability in VRML,

58

which has to be omitted when synthesizing for VRML on a mobile device without

advanced interaction capability (e.g., touchscreen).

Furthermore, the proposed framework might approximate the structure of some

capabilities in the synthesized VE. This structural approximation can represent a

higher level of detail in terms of more lower levels of detail, so that limitations on

the target platform can be overcome. For example, the prototyping system may

approximate movie textures by representing the texture with a simple image. Hence,

the VE can be realized on a slower mobile device. This approximation can be applied

in other ways as well, such as using low fidelity primitives instead of high level ones

defined in CSDF. In some cases, an algorithm can be applied to simplify the 3D

models by lowering the number of vertices or voxels used. Thus, the approximation

optimizes the output for the target platform. Further optimizations can also be

applied, depending on the needs of the target platform (e.g. removing layers of the

representation or optimizing human to VE interfaces).

One other consideration for the synthesis process is the hardware requirements

specification for platforms. Specific sets of hardware architectures require optimiza-

tion. These hardware platforms may be single-processor, multi-processor, or cluster

type on a desktop computer, a laptop, or a mobile device. The framework has to

synthesize an output according to the needs of the target hardware platform, and

make necessary optimizations.

59

III .3.5 Authoring

The synthesized output by CSDF might also be used as a starting point for authoring

the given VE on the target VE technology. The authoring can be either at the

input/imported technology or at the target/synthesized technology and hardware

platform. Thus, CSDF leverages the knowledge of the VE developer from any 3D

technology to a new target 3D technology and platform, in contrast to VRJuggler

[73] and Diverse [74] systems. The proposed framework can also warn the user about

limitations of capabilities in the target 3D technology or the platform. This gives the

VE user a quick idea about the selected synthesis technology/platform, and also lets

the user know if the desired tuple of technology and platform is suitable for her needs.

In addition, CSDF allows modification of the VE within the framework. Therefore, a

VE developer can quickly analyze/import from a technology in which she is proficient,

then author extra capabilities that are non-existent in the imported technology.

60

C H A P T E R IV

R E F E R E N C E IMPLEMENTATION

The rapid prototyping methodology that is used in the development of VEs was

given in Chapter III. In this chapter, the implementation of the rapid prototyping

methodology to develop VEs and Common Scene Definition Framework are explained.

IV. 1 SOFTWARE FOR IMPLEMENTATION A N D TESTING

The rationale behind the choice of preferred development platform for the framework

and other used tools that form part of the rapid prototyping system is provided in

the following subsections.

IV. 1.1 Java

Java [75] was chosen as the language to implement the framework, parsers, and other

modules. Java is a strongly typed object oriented language originally developed by

Sun Microsystems and released in 1995. The language has a very similar syntax

to C and C++ but has a simpler object model and fewer low-level features [76].

When Java source code is compiled, the compiler creates a bytecode that can run on

any Java virtual machine (JVM) regardless of computer architecture. Hence, Java

is platform independent. This gives the freedom to switch platforms to the devel-

oper. Java Virtual Machine (JVM) ensures that programs cannot circumvent strict

system restrictions. Also, Java has strong type checking enforced by the compiler

61

that minimizes data corruption due to precision conversions. Table V shows some of

the differences between C++ and Java. The advantages of developing on the Java

platform leads to shorter project implementation and debugging times.

Java also has a powerful Reflection API [79] that is used throughout the CSDF

core and its modules. Reflection is the process in which a program can observe and

modify its own structure and behavior. Java reflection API can do the following

with/on any Java object [80, 81]:

• Determine the class of the object.

• Get information about the class's modifiers, fields, methods, constructors, and

super-classes from the Java object.

• Determine the constants and method declarations that belong to an interface.

• Create an instance of a class whose name is not known until runtime.

• Get and set the value of an object's field, even if the field name is unknown to

your program at runtime.

• Invoke a method on an object, even if the method is not known at runtime.

• Create a new array, whose size and component types are not known at runtime,

and then modify the array's components.

The development language selected for the framework and other modules does

not have any affect on synthesized VEs. It is only responsible for making necessary

transformations via analysis, storage, and synthesis. These transformations could be

62

TABLE V: Differences betwe

C++

Some backward compatibility with C

source code.

Allows direct calls to native system li-

braries.

Exposes low-level system facilities.

Optional automated bounds (Arrays

etc.) checking.

Explicit memory management, garbage

collection optional via library.

Allows explicitly overriding types.

C++ Standard Library has a more

limited scope but includes: Lan-

guage support, Diagnostics, General

Utilities, Strings, Locales, Contain-

ers, Algorithms, Iterators, Numerics,

Input/Output and Standard C Li-

brary. Platform-specific libraries differ

for threads, Network I/O and GUI Pro-

gramming and often require third-party

libraries.

Operator overloading.

Full, multiple inheritance

L C++ and Java [76, 77, 78].

Java

Not source-compatible with other lan-

guages.

Called through the Java Native Inter-

face (JNI).

Runs in a protected virtual machine.

Always performs bounds checking.

Automatic garbage collection only. Au-

tomatically manages memory and in-

stantiated objects by de-allocating ob-

jects no longer referenced. This elimi-

nates the need to explicitly free dynamic

memory from the heap.

Rigid type safety except for widening

conversions.

Extensive libraries including support

for containers, locales, algorithms, it-

erators, GUI programming, graphics,

multi-threading, networking and secu-

rity, (easier to import than C++ due

to highly portable jar library files)

Meaning of operators is immutable.

Full single inheritance, multiple inheri-

tance from interfaces only

63

done by other development languages (i.e., C++), and there would be no change in

the synthesized VE.

As an integrated development environment (IDE), an opensource software, Eclipse

[82] is selected and used. Eclipse provides a wide variety of extensible application

frameworks, tools and runtimes for software development and management.

IV.1.2 CSDF and Proprietary Platforms

Analysis of a Virtools native file is not possible since the file format is proprietary

and not available to us. In order to provide analysis capability to Virtools, a plug-in

for Virtools development environment is implemented. For this implementation, the

Virtools software development kit is used. The API for the Virtools SDK can be

accessed using Microsoft Visual Studio C++. The plug-in creates an intermediate

file that can be parsed by a CSDF analyzer created specifically for the intermediate

file. This intermediate file contains scene information including objects and other

elements of the scene in Virtools file. Similar to Virtools, TouchDesigner file format is

proprietary. In this TouchDesigner internal script is implemented to synthesize

the scene by reading an intermediate file that is created by CSDF TouchDesigner

synthesis module.

IV.2 MODULE S

In this section, implementation details of CSDF core, analysis modules, synthesis

modules and authoring process are briefly described.

64

® C S D F S p h e r e

>&
©

©

0

0

a

9

s

a

CSOFSphsr-O

geJCGntamerFskir;

getiavaSOO

ggtiava3DRa3kra0

Se&RadiusO

SetVRMt.0

p tXMLt l

setRajSiusO

sstVRMLRaaiisO

® CSDFNode

4
9

m
©

•

©

®

«
©

a

CSDFNmfsO

GetPweiitCi

adjClaldO

dump!)

getChiBQ

sstiiamefi

gsiNiimOJcirerK}

setfiamsf;

setPar*jttv}

to String*}

tcStringf)

I
® CSDFShape

CSSFStapeQ

SSMPEKOLC;

gsttlssO

SetVRMLQ

gettMLO

setCsdfAppsarancsr;

setvsdfSeomsttyG

© C S D F B o x

c?
>j

r.
c

'/.
0

G

C

CSDFBJMI

ge'Ccitairt 'FeSf

3&--a a-2.

je*_a aJCS,;ti

g«\,R! j

3«M-L

3£tS " c

wt/RT . S r e i

FIG. 24: CSDF Classes [71].

* CSDFPIane Sensor

f r CSOFPIansSensDfi)

O s^tCsntaintrFisiaQ

© getJa<'aSDO

» ffeiVRSiiLy

m §etXM La-

s' isEnaMKil;

• serVRHLAiiieo»fMtO

m aelVRMLfiMibKOO

® setVRML^inposiiism}

® »6tVRHLO?l3*iO

IV.2.1 C S D F Core

Figure 24 shows several entities from CSDF. Note that CSDFNode is the node class

for the tree structure that constructs the scene graph. All the other entities within

CSDF scene graph are extended from CSDFNode. As mentioned in §111.3.1, all the

classes implement a Serializable interface so that VE residing in CSDF can be stored

for later use or transmitted over networks.

CSDFShape node has two member fields; a Geometry field and an Appearance

field. Geometry classes such as CSDFBox, CSDFCylinder, CSDFSphere implement

the CSDFGeometry interface. Figure 25 shows the class diagram of the CSDFGeome-

try interface along with its implementors CSDFSphere, CSDFBox and CSDFPointSet.

65

«interfaces

I I CSDFGeometnf Interface

r ~i
OCSDF Sphere

CSDFSpher&i:

getContainerFiebff;

getJava3D(;

getJava?DRadius{";

® g&tRadtusi;:

getVRMLr:

m getXMLi.)

© seiRadiusf;

® setVRMLRadiusi;

© CSDFBox

of

o

o

0

o

o

o
o

CSDFBsxi

getContaifierFisldi

getJa»'a?Di,

SetJava2DSsei,

getVRHLi.

getMILi

setScei,

sef/RMLSeef

@ CSDFPointSet

W CSOFPsintSetO

getContainerFteldiO

® getVRMLQ

• ggtVRML1§N:umRjmtsO

m fetXMLC)

FIG. 25: CSDFGeometry interface and a few classes that implement the interface

[71].

Similarly, CSDF nodes for ImageTexture, MovieTexture and PixelTexture implement

CSDFTexture interface, where their shared functions are defined. Additionally, in

order to distribute synthesis capability, all classes that are extended from CSDFNode

implement CSDFSynthesis interface (Figure 26). The synthesis functions are defined

in CSDFSynthesis interface. The output format transformations for the respective

synthesis target platforms are implemented within each CSDF node.

IV. 2.2 Analysis

In this subsection, analysis and parsing methodologies for several technologies are

described. Figure 27 depicts the modules that analyze parse input technologies.

66

r
©CSBFSphere

4 CSOFSfttiereQ

m gelContainerFteWO

@ getJava3D()

® getlavaSORadiusQ

m getRadtasQ

® fstVRHLO

m getXMLQ

® setRadtaO

setVRMLRasiMsO

•s interlace*

0 CSDFSynthesislnterface

@ ge'Javs3D0

® getVRMLf)

m geiXMLO

1

8 CSDFShape

<£ CSDFShape*

O aadCi'kli,

O ge-tz-mbsentintensityi,

O getCsdfAppearancei,

O geEs3fGeornetryi,

O getJa*a;?Di.

Q getQPENGLi,

O gMUset,

O getVRMU,

O getKHLi

O setCsaf^ppeararcei

Q setCsdfGssmeiryi

Q setUse(,

i

8CSDFBox

«f CSDFBoxO

se-tConiainerFisldi)

@ ge(Java3D()

getJavaSDSizsjj

m getVRMLO

• gstXMLO

© setSizeO

a setVRMLSteeQ

8
1

C SDFPIane Sensor

c

©

O

®

®

©

9

•
@

CSDFPIaneSenserQ

getC Dntahsif ieid (j

get)ava30C|

getVRMLO

jeCCMLO

is-EnabteiO

setEnabtetfO

setEnabledy

setVRMLAutooffsetO

setVRIilLEnabledt)

setVRMLBaxpoSitonQ

sMVRMLKinposfcnO

sefl/RMLOffeet(>

FIG.

[71].

26: CSDFSynthesis interface and a few classes that implement the interface

1/RML1.0 VRML 2,0

VRML 1.0
Analyzer

VRML 2.0
Analyzer

I

Virtools

Virtools Analyzer

/ CSDF /

/ Virtual /

/ Environment /

/ Specification /

FIG. 27: Analysis components of CSDF.

input File Lexical
Analysis

VRML

67

Syntactic
Analysis

-
-

Semantic
Actions

Semantic
Analysis -

Translate : »/- CSPF ^

* \ Classes J

FIG. 28: Phases of VRML Parser.

An important design requirement in implementing the analyzer (parser) is to ensure

that adding capabilities to the common framework does not result in the redesign of

the VRML parser (i.e., the parser is sufficiently scalable with respect to the addition of

capabilities to the common framework). This requirement emphasizes the modularity

required by the architecture of the proposed rapid prototyping solution.

The different steps in the parsing of a VRML input file are shown in Figure 28. The

VRML parser has been implemented using JavaCC [83], a Java compiler-compiler.

JavaCC is an open source parser generator comparable to "famous," yet another

compiler-compiler (YACC) in Unix platform. JavaCC uses the Extended BackusNaur

Form (EBNF), which is a syntax used to describe context-free grammars.

The function of the lexical analyzer is to convert the input VRML file

into a sequence of tokens. These tokens consist of elements such as num-

bers, identifiers, begin-end blocks, statements, and program units. The to-

kens are matched by regular expressions used in the definition of the lan-

guage [84]. For example, the definition made (in JavaCC for VRML) for

regular expression to match a set of characters to be of numeric token type

is <NUMBER_LITERAL: (" -")? (" . ") ? ["0"-"9"] ([" 0 " - " 9 " , " . " , " + " , " - "]) * > .

68

The expression defines a valid numeric token to have an optional ' - ' character fol-

lowed by an optional ' . ' character followed by a single numeric digit followed by

optional zero or more occurrences of a valid numeric character. Similarly, it is possi-

ble to define tokens for symbols and keywords (e.g., <LBRACE: ' {' >, <RBRACE: ' } ' >

and <EVENTIN: "eventln"> for "{", " } " and "eventln" respectively).

In syntactic analysis, sequence of tokens produced by lexical analyzer is ana-

lyzed to determine grammatical structure with respect to a given context-free gram-

mar. Figure 29 shows a portion of the context-free grammar (CFG) specification for

VRML. In CFG of VRML (Figure 29), a vrmlScene consists of a group of statements,

which may be composed of a single statement, a single statement followed by a group

of statements or by no statement (empty). Similarly, a statement may be composed

of a nodeStatement or a protoStatement or a routeStatement. A nodeStatement may

be composed of a node, node definition (DEF), or a node use (USE).

For each grammar production, there exists a clause of a recursive function. The

syntactic correctness of the input VRML file is enforced by the grammar definition

on which the compiler is synthesized using JavaCC. When an input scene containing

an incorrect construct is input to the parser, the construct will match any of the valid

production rules specified by the grammar and as a result of this condition, a parse

exception is thrown by the parser.

Semantic actions are actions performed when the parser matches a grammar pro-

duction. In the parser, the semantic actions are the fragments of Java code that

are attached to each grammar production. Semantic actions are distributed along

with the control flow of the parsing. An example of a semantic action is the code

69

vrmlScene ::=

statements ;

statements ::=

statement I

statement statements I

empty ;

statement ::=

nodeStatement I

protoStatement I

routeStatement ;

nodeStatement ::=

node |

DEF nodeNameld node I

USE nodeNameld ;

FIG. 29: A small portion of the context-free grammar (CFG) for VRML language.

shown in Figure 30. The Java code between the braces executes every time the parser

encounters a USE tag followed by a node definition.

In the semantic analysis phase, the compiler connects variable declarations to their

use, checks each expression type for semantic correctness, and translates abstract

syntax into a simpler representation. Compilers maintain symbol tables to match

identifiers with their types and other important attributes. In the VRML language,

variable identifiers are specified by the DEF keyword and variable use is specified by

the USE keyword. The root node of the scene in CSDF has two symbol tables, one

table to hold DEF/ USE entries and the second table to hold Prototype references.

Event routing (behavior) between different entities in VRML is implemented via

the ROUTE statements. Events can be routed for only those nodes that have defined

names. Thus, references to nodes that have distinct and definitive names are kept in

the symbol table. When the parser encounters a definition for a named node (declared

70

<USE> def.name = NodeNameldO

{

Sys tem.e r r .p r in t lnC"Class Name = CSDF.CSDFUse");

Class t = Class.forName("CSDF.CSDFUse");

temp = (CSDF.CSDFNode)t.newInstanceO;

if(CSDFScene.symbolTable.get(def_name) != n u l l) {

System.err .print lnC"DEF Reference for "+def_name+" found") ;

((CSDF.CSDFUse)temp).setDefname(def.name);

}e l se{

throw new ParseException("DEF Reference for "+ def_name

+" not found in the Symbol t a b l e ") ;

}

parent .addChi ld(temp) ;

}

FIG. 30: Example of Semantic action in the VRML parser.

using DEF), a lookup is performed for the node name in the symbol table. Depending

on the semantic rules of the target platform, if the lookup returns an existing node,

in VRML, the new definition supersedes the previous definition, whereas in X3D,

a duplicate node definition is implied and the parser throws a ParseException. If

the lookup returns an empty or null reference, then a mapping between the node

name and reference is added. When the parser encounters an instantiation (USE

clause), a lookup is performed on the SymbolTable interface. If the lookup fails (i.e.,

an empty/null reference is returned), a ParseException is raised, indicating that an

object is being used before declaration.

The parser must accept only valid node types and reject invalid node types while

parsing a VRML file. This is performed by parser via type checking. For instance,

the VRML parser must accept valid nodes such as Box or Cylinder while rejecting

node declarations such as a Cube that is an invalid node with respect to VRML.

71

node_name = IdO

{
PRINTO'Class Name = CSDF.CSDF"+node_name+" Def name+defName);
Class t = null;
try{
t = Class.forName("CSDF.CSDF"+node_name);
node = (CSDF.CSDFNode)t.newInstanceO;

}catch(ClassNotFoundException cnfe){
THROW PARSE EXCEPTION ("ILLEGAL NODE FOUND")

}
if(defName != null) {
//UPDATE SYMBOL TABLE - Hidden for simplicity

}

//ADD NODE TO TREE - Hidden for simplicity

}
<LBRACE>
(NodeBody(temp))?
<RBRACE>

FIG. 31: Semantic action for node name handling and type checking (VRML Parsing).

Figure 31 shows the semantic action code that executes when the parser encounters

a node name. To achieve type checking abilities mentioned, framework classes in the

common framework (CSDF) were constructed to have names mapped to nodes in X3D

and VRML. By using the reflection feature of Java (see §IV.1.1), the parser creates

the corresponding framework entity name at runtime and instantiates the object from

existing CSDF class (Figure 31). For example, if the parser encounters a node name

Box, the parser computes the framework class name as CSDF. CSDFBox and instantiates

the class at runtime. Thus, the generic mechanism to instantiate the respective

framework class keeps the implementation of the VRML parser independent of the

addition of new capabilities to the common framework. The use of the Reflection

API for dynamic runtime instantiation also performs the function of type checking

72

for node types. If the parser tries to instantiate a class that is not present in the

framework, the Java runtime would raise a ClassNotFoundException and as a result

of this condition, a ParseException is raised.

Similar to node type checking, type checking for valid node attributes is performed

by the parser. Only valid attributes corresponding to a specific node should be ac-

cepted. For example, a valid attribute such as radius corresponding to a Cylinder

node should be accepted and attributes such as size or length that are not valid

attributes for a VRML Cylinder node should be rejected. Figure 32 shows the se-

mantic action code that executes when the parser encounters a field name (attribute

name) followed by a field value (attribute value). Again, the Java Reflection API is

used to employ type checking, similar to node type checking. While parsing, if the

parser encounters an attribute such as size, the parser first computes the method to

be invoked as setVRMLSize() by appending the attribute to the string setVRML. A

method object is created by the parser using the string setVRMLSize. This invokes

the method {setVRMLSize) on the method object (CSDFBox), which gets executed

with the field value ("0.5") as the parameter. Thus, for any attribute Xyz, the parser

tries to invoke the respective setVRMLXyz() method.

The traditional way of handling type checking (i.e., checking for each specific node

type or node attribute type) would make the parser code less manageable because

every time a new attribute is added to a node the code of the parser has to be

modified.

A CSDF class that is associated with a VRML node may have additional at-

tributes that are not valid VRML attributes, since these additional attributes may

73

f i e ld_va lue = Fie ldValue(nul l ,node)

{

S y s t e m . e r r . p r i n t l n (" F i e l d name "+field_name

+" F ie ld value "+f ie ld_va lue) ;

t r y {

i f (f i e l d _ v a l u e != n u l l) {

Class[] paramClassList = {Class . fo rName("Java . l ang .S t r ing")} ;

Field_name = Forma tUt i l s . cap i t a l i ze (f i e ld_name) ;

System . e r r . p r in t ln ("Method c a l l — setVRML"+field_name);

Method method = (node .ge tClassO) .getMethodO'setVRML"

+field_name,paramClassList) ;

Object [] paramList = { (S t r i n g) f i e l d _ v a l u e } ;

method.invoke(node,paramList) ;

}

}catch(Except ion e) {

//THROW PARSE EXCEPTION ("ILLEGAL ATTRIBUTE FOUND")

}

}

FIG. 32: Semantic action for node attribute handling and type checking (VRML

Parsing).

be associated with another technology such as X3D. A ParseException on encoun-

tering these attributes must be triggered when VRML parser encounters them. For

every technology that can be analyzed by CSDF, each framework class must have

a set of setter methods (i.e., functions that set value of fields of classes) specifying

which valid attributes correspond to the input technology specification. If an at-

tribute Xyz is a valid X3D attribute but not a valid VRML attribute for a particular

node, then the CSDF requirements specify that the framework class must have a

method setX3DXyz() and the class must not have the method setVRMLXyz(), since

Xyz is not a valid attribute of the VRML node in question. The parser triggers a

ParseException when the VRML node has an invalid attribute Xyz.

74

The translation phase refers to translation of the analyzed file into syntax of the

output platform of the parsing (not output of the synthesis). The output platform

of the translation phase is the CSDF. In the VRML parser, part of the translation

is performed as part of the type checking and the rest is done within the framework

classes during parsing process.

X3D Parser

X3D is an XML enabled 3D file format (§11.3.2). XML has a relatively simple syn-

tax when compared to VRML. XML technology has a wide selection of general and

powerful parser libraries. One of these libraries is open source Java-based document

object model (JDOM) [85]. JDOM integrates with Document Object Model (DOM)

and Simple API for XML (SAX) to facilitate reading, writing, and manipulating XML

from within Java code. JDOM hides the complexities of XML manipulation.

Each node of X3D has an XML structure in the following form (see Figure 11 on

page 25).

<element a t t r i b u t e 3 ' v a l u e d content </element>

The Element tag is the name of the X3D node (e.g., Material). Similarly, at-

tributes of the element represents the attributes of the node. With respect to XML,

all X3D nodes have their children defined in their content section.

X3D analyzer calls JDOM methods to trigger lexical and syntactic analysis on

the input X3D file. After these analyses, JDOM creates a tree structure representing

the input file as each element becomes a node in the tree. Then, the X3D parser

constructs the corresponding CSDF objects as the parser traverses the JDOM tree

75

FOR EACH CHILDREN

CREATE OBJECT (ACCORDING TO ITS TYPE - USING REFLECTION)

CALL CONSTRUCTOR RECURSIVELY(PASS JDOM ELEMENT AND PARENT CSDF OBJECT)

Constructor<?> co = t .ge tConst ruc tor (new Class [] { E lement . c l a ss ,

CSDFNode.class, CSDFFormatType.class }) ;

addChild((CSDF.CSDFNode) co.newInstance(new Object[] { component,

t h i s , CSDFFormatType.X3D })) ;

FOR EACH ATTRIBUTE

MODIFY SYMBOL TABLE IF NECESSARY

SET ATTRIBUTE VALUE (USING REFLECTION)

Method method = (t h i s . g e t C l a s s O) .getMethodC'set" + fieldName,

paramClassLis t) ;

Object [] paramList = { f ie ldValue } ;

method . invoke(th i s , paramLis t) ;

FIG. 33: X3D parser embedded in constructor of CSDF nodes (recursive construction

of CSDF classes).

recursively (Figure 33). Each node in CSDF has the capability to perform type check-

ing on its own node structure and attributes fetched from the corresponding JDOM

element. As the elements are fetched by CSDF objects recursively, the framework tree

is constructed. At the end of the recursive operation performed on JDOM element

objects, the CSDF classes necessary to represent the input X3D file are created and

translated.

Vir tools

As explained in §IV.1.2 and §11.3.9, Virtools uses a proprietary file format. Thus,

an extra analysis layer is implemented in the Virtools development SDK as a plug-

in to Virtools (see Figure 34). The Virtools plug-in creates an intermediate file by

polling objects in the Virtools scene. This intermediate file is later parsed by Virtools

76

Virtools Development Environment »

CSDF
Analyzer
Plug-in

Virtoel*
Scene

TouchDesigner

TouchDesijrer
Scene

CSDF
Synthesizer

Script

intermediate
File for Analysis

from
Virtools

CSDF Analysis/Synthesis

Virtools
Intermediate
File Analyzer hF

TouchDesigner
Intermediate

File Synthesizer

FIG. 34: Virtools to TouchDesigner Analysis/Synthesis.

analysis module that constructs corresponding CSDF objects.

Intermediate
File for

Synthesis
To

TouchDesigner

IV.2.3 Synthesis

The synthesis phase of the prototyping methodology maps a conceptual model of the

VE, which is CSDF, to a VE at a technology and platform tuple (Figure 35).

Depending on the target technology and platform, the synthesis module may do

one or more of the following:

• filter information (e.g., ignoring unsupported capabilities)

• representing higher level abstractions in terms of lower level capabilities at the

target

• optimizing by lowering level of fidelity

The requirements specification of the target technology and platform defines the

transformations done in the synthesis framework. The scene graph hierarchy of CSDF

/

CSDF

Virtual

Environment

Specification

FIG. 35: Synthesis components of CSDF.

77

Other Tech.
Synthesizer

Other
Technology J

makes it logically simple to synthesize individual components within the VE defined

in the framework. The synthesis into an output technology that does not have a scene

graph organization of components (e.g., OpenGL Synthesis) is more challenging than

a technology with scene graph organization (e.g., X3D and Java3D). The transforma-

tion to such technology with no scene graph organization (Immediate Mode) can be

done by carefully describing the rendering steps necessary for target VE, at each node

of CSDF. The VE as represented by the common scene format has all the information

necessary to synthesize the world. Thus, starting from the root node of the CSDF,

it is theoretically possible to collect all information stored at different levels of the

hierarchy by transversing the scene graph tree and to transform scene in CSDF to

the desired target format.

In the synthesis process, the scene graph organization provides a simple method

to produce an output for the target technology. The scene graph structure in CSDF

is traversed recursively starting with the root node of the tree. In this recursive

78

traversal, the corresponding synthesis function is invoked at each node. The synthesis

function is defined by CSDFSynthesisInterface and implemented by every CSDF class.

The synthesis function produces the necessary translation for the target technology.

When the traversal is complete, synthesis is complete. Currently the prototyping

system is able to synthesize a subset of the features of VRML 1.0, VRML 2.0, X3D,

Java3D, JavaME, JavaFX, OpenGL and TouchDesigner, each with their own subset

capabilities to show proof of concept. Chapter V gives the results from testing done

via some series of analysis/synthesis processes.

IV.2.4 Authoring

Authoring is currently supported via application development using CSDF. A Java

program using CSDF classes and its respective methods can author VEs residing in

CSDF, which are either analyzed from other technologies or saved at an earlier point

using Java Serialization. It is also possible to author multiple VEs using multiple sets

of CSDF classes.

IV.2.5 Current Implementation status

Table VI depicts the supported analysis and synthesis capabilities for CSDF. A class

or a group of classes represent a capability in virtual environment. For example,

CSDFIndexedFaceSet represents the capability of creating a virtual object out of

multiple geometric faces.

79

TABLE VI: Analysis and Synthesis Support for CSDF.

Class Name

CSDFAppearance

CSDFBackground

CSDFBox

CSDFColor

CSDFCone

CSDFCoordinate

CSDFCylinder

CSDFDirectionalLight

CSDFExternProtoDeclare

CSDFField

CSDFFieldObjRef

CSDFFontStyle

CSDFGroup

CSDFImageTexture

CSDFIndexedFaceSet

Analysis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

/

/

V
ir

to
o

ls

/

Synthesis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

1
.0

/

/

/

/

/

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

/

/

J
a
v
a
3
D

/

/

/

/

/

/

/

/

O
p

e
n

G
L

/

/

/

/

/

/

/

J
a
v
a
F

X

/

/

/

/

/

/

/

/

T
o
u
c
h
D

e
s
ig

n
e
r

/

Continued on Next Page...

80

TABLE VI - Continued

Class Name

CSDFIndexedLineSet

CSDFMaterial

CSDFNavigationlnfo

CSDFNode

CSDFNormal

CSDFOrientationlnterpolator

CSDFPixelTexture

CSDFPlaneSensor

CSDFPointLight

CSDFPointSet

CSDFPositionlnterpolator

CSDFProtoInstance

CSDFProximitySensor

CSDFRoute

CSDFScene

CSDFScript

Analysis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

V
ir

to
o

ls

/

/

Synthesis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

 1
.0

/

/

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

/

/

/

J
a
v
a
3
D

/

/

/

/

/

O
p

e
n

G
L

/

/

/

J
a
v
a
F

X

/

/

/

/

/

T
o
u
c
h
D

e
s
ig

n
e
r

/

/

Continued on Next Page...

81

TABLE VI - Continued

Class Name

CSDFShape

CSDFSphere

CSDFSwitch

CSDFText

CSDFTextureCoordinate

CSDFTextureTransform

CSDFTimeSensor

CSDFTouchSensor

CSDFTransform

CSDFUse

CSDFViewpoint

Analysis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

V
ir

to
o

ls

Synthesis

C
S

D
F

/

/

/

/

/

/

/

/

/

/

/

V
R

M
L

1
.0

/

/

/

V
R

M
L

 2
.0

/

/

/

/

/

/

/

/

/

/

/

X
3
D

/

/

/

/

/

/

/

/

/

/

J
a
v
a
3
D

/

/

/
O

p
e
n

G
L

/

/

/

J
a
v
a
F

X

/

/

/

T
o
u
c
h
D

e
s
ig

n
e
r

82

CHAPTER V

APPLICATIONS

In this chapter, proof of concept testing results are given. Two VEs are described;

a simple VE and the Virtual Operating Room. Then, the appropriate analysis and

synthesis processes are given.

V . l A SIMPLE V E

A simple VE is chosen to demonstrate some of the capabilities of the rapid prototyping

framework. A VRML 2.0 implementation and a view (in Cortona Player [86]) of the

selected VE are shown in Figure 36 and Figure 37, respectively.

The scene consists of a sphere and a box (Figure 36). In the scene, a plane sensor

(PlaneSensor) node is associated with the sphere. pSensor, plane sensor, is routed to

the box object so that any action on the plane sensor affects the box object. When a

mouse drag is applied on the sphere, the box translates in the magnitude and direction

of the mouse drag on the sphere. Route node provides the routing of the events to

the target node (Odu), so that the actions on the PlaneSensor node are translated

to the target node.

By using this simple VE developed in VRML 2.0, a demonstration of the frame-

work is given for the following reasons.

• The framework should be able to create aggregate objects from geometry prim-

itives in terms of the organization inside the framework (CSDF).

83

• If analysis and synthesis are performed from and to the same technology and

platform, the framework should be able to preserve the original definition of

the VE provided that all the capabilities are implemented per the technology

in question.

• When synthesizing to limited capability platform, optimizations such as remov-

ing and lowering LOD (level of detail) should be performed by the synthesizer.

Then, a warning should be produced to the developer of the VE.

• For capabilities implemented in a different manner for a different technology

and platform, the framework should be able provide necessary translations for

the capabilities.

The representation of behaviors, texture application processes and navigation

methodologies in VEs are quite varied. The selected simple VE provides sufficient

complexity to show some of the conceptual problems and solutions.

In the following subsections, various synthesis demonstrations for the simple VE

residing in CSDF (through analysis from VRML 2.0) are given.

V . l . l V R M L Synthesis

The synthesis to VRML 2.0 of the simple VE is a one-to-one mapping from the input

scene with no loss of capability. The input parser for VRML 2.0 is able to populate

the CSDF framework classes with the attributes and behaviors of the corresponding

VRML 2.0 input scene. Then, the framework classes are synthesized to VRML 2.0

format without any losses of information and capabilities.

84

#VRML V2.0 utf8
DEF Odu Transform{
children[
Transform{
translation -3.0 0.1 0.2
rotation 0.0 0.70710677 0.70710677 0.9
children Shape{
appearance Appearance-C
material Material{
diffuseColor 0.0 0.0 1.0

}
texture ImageTexture {
url "oduncrown.gif"
repeats TRUE
repeatT TRUE

}
}
geometry BoxO

}
}

]
}
DEF slider Transform {
children[
Shape {

appearance Appearance-[
material Material{
ambientIntensity 1.0
diffuseColor 1 0 0

}
}
geometry Sphere{
radius 1

}
}

DEF pSensor PlaneSensor-Cenabled TRUE}

]

}

ROUTE pSensor . t rans la t ion_changed TO 0 d u . s e t _ t r a n s l a t i o n

FIG. 36: VRML 2.0 implementation of the simple VE.

85

i v . r

• *

FIG. 37: VRML 2.0 implementation of the simple VE in Cortona plug-in for Internet

Explorer.

VRML 1.0 has capabilities to represent geometric shapes and apply textures to

surfaces, but does not have any capabilities for dynamic interactions (behaviors).

The input scene has features that cannot be represented on the target platform.

Hence this functionality cannot be represented in the output format. The CSDF

framework synthesizes the geometry primitives and appearance accurately. The drag

functionality is lost in the translation to a less capable VR platform.

V.1.2 X 3 D Synthesis

Since X3D is a more capable specification that includes all the capabilities of VRML

2.0 specification, the transformation from a VRML 2.0 to X3D format is also a loss-

less transformation. The input parser for VRML 2.0 is able to populate the CSDF

86

ti P:'!Oociui!w»tB^c^aWofkaj)ac^Slir^^l:50fr™n«worh^rf*K!*6n^sVEviiiilittsyiirth.wi

- > i« i A HH

FIG. 38: X3D view of the synthesized VE in Xj3D Browser.

framework classes with the attributes and behaviors of the corresponding VRML 2.0

input scene and synthesize to X3D format without any loss of information. Figure 38

shows the screen shot of the output VE in X3D format in Xj3D Browser.

V.1.3 Java3D Synthesis

In a VRML and X3D, some features (e.g., default lighting, movement, zoom and pan)

are automatically provided by the viewers/players of the technologies. In a Java3D

scene, the developer must implement all these essential features to the scene. Navi-

gation and views are more complicated in that the developer must use the API and

program these capabilities. A content designer unfamiliar with Java3D or unaccus-

tomed to programming will face challenges in producing compatible functionality.

87

This expertise in the specific technology is incorporated into the synthesized VE

by synthesis module of the framework. Figure 39 shows two screen shots of the output

VE in Java application. The first one (Figure 39(a)) is taken before the user made

panning and zooming to reveal the scene (Figure 39(b)). The default camera position

and frustum orientation in Java3D is different than VRML and X3D. This results in

a blocked initial view, one of the capability synthesis problems.

In order to provide a VE experience close to input technology, VRML 2.0, zoom

and rotate capability along with a light source (Headlight in VRML) are integrated

into the target VE with CSDF synthesis.

In Java3D, there is no class that directly handles the drag functionality, which ex-

ists in VRML 2.0 and X3D. Indeed, the drag functionality must be implemented using

events and callback handlers. The Java3D PickTranslateBehavior class, which can be

associated with any geometry primitive, has the capability to allow for picking of the

geometry. A callback function is registered to handle PickTranslateBehavior events.

In the callback function, the coordinates of the target geometry are transformed in

magnitude as returned by the PickTranslateBehavior node. This is a proper example

showing how CSDF can aggregate capabilities at the output technology to match the

capability at the input technology.

V.1.4 O p e n G L / G L U T Synthesis

OpenGL is a low-level API for rendering 3D VEs. It has virtually all capabilities

of rendering systems, but it lacks high level functions such as behavior models. The

developer of the OpenGL VE is responsible for implementing such behaviors and

• • • • I

(a) Java3D

.4&

(b) Java3D Corrected View

FIG. 39: Java3D view of the synthesized environment.

89

ifiMWSWWIU^KKIIKlK^^^^^^^^^^^SS^f:":, '•:.. , . -as:

FIG. 40: OpenGL view of the synthesized VE.

other high-level functions. Libraries such as GLUT exist, but these libraries do not

include high-level functional capabilities like Java3D and X3D. Thus, implementing

some of these high-level functions in OpenGL is costly, and many different ways of

implementation are possible. Thus, selecting the most effective method might be

problematic.

To demonstrate the OpenGL synthesis, synthesis is implemented only for a hand-

ful of these higher level functions and is adequate to demonstrate the concept. In

Figure 40, a screen shot of the synthesized OpenGL application is shown. The texture

mapping and pick capability are missing from the original simple VE only because of

practicality. The OpenGL synthesis virtually can realize any input capability.

90

FIG. 41: JavaFX view of the synthesized VE.

V.1.5 JavaFX Synthesis for Portable Device

Although JavaFX uses Java3D classes for 3D rendering, JavaFX's script-like structure

is incompatible with Jave3D code and thus does not permit the use of Java3D's

synthesis module. A separate synthesis module is implemented, so that semantic

differences in JavaFX are taken into account. The synthesis of the simple VE to

JavaFX (Figure 41) can be done without any loss of capability. However, there are a

few portable devices supporting JavaFX at the present.

V.2 VOR

Virtual Operating Room (VOR) [87, 88, 89] is a VE system that integrates proce-

dural medical simulators into a context-relevant individual or team training facility.

91

Trainees interact with a surgical team comprised of real and/or virtual team members

(e.g., attending surgeon, anesthesiologist, scrub technician, and circulating nurse).

The virtual members (agents) of the surgical team are realized in a CAVE-like im-

mersive projection platform (e.g., CAVE and Vision Dome). In order to render VOR,

the Virtools VR Player is used. VR Player provides easy integration of VEs to the

immersive projection system. Any VE developed on the Virtools environment can be

modified to be rendered in CAVE or Vision Dome. Figure 42 shows rendered images

on all four projection walls of a CAVE. Visual components of VOR that are subject

to analysis by CSDF are agent models and parts of the operating room. The model

is mostly designed via use of other tools such as 3DStudioMax, but later imported

into Virtools to constitute a composition file. However, model positions and orienta-

tions are adjusted in Virtools Composition. The following sub-section describes the

analysis process for Virtools composition files into CSDF.

V.2.1 Virtools Analysis

Virtools composition file format is a proprietary file format. Hence, it is not pos-

sible to analyze the file directly. An alternative approach is taken to analyze the

Virtools compositions. The approach involves a plug-in implementation for Virtools

development environment that parses the Virtools scene internally in the environment

(Figure 43). The plug-in is implemented using Virtools SDK. The information related

to the scene, agent models and the operating room components, are listed along with

their position and orientation data in an intermediate file. Later, this intermediate

file can be parsed by the Virtools analyzer module in CSDF. These components of

92

FIG. 42: Virtual Operating Room in Virtools VR Player (Four Projections).

the VE are stored in CSDFProto and CSDFExternProto nodes, since their geometry

is stored in external files (mesh and texture info). A similar type of methodology can

be used for many other VE technologies that have proprietary file format.

93

s .?

$ * t^jTr liiF^TTTiTlfi 'i I I I I I IF 1

PUSBSKKJBMRMIIII IB I

FIG. 43: Virtual Operating Room in Virtools Development Environment.

94

C H A P T E R VI

CONCLUSIONS

The work described in this thesis is a conceptual process for rapidly prototyping VEs.

In order to achieve rapid prototyping, CSDF was developed. CSDF serves as a su-

perset/model representation of the VE technologies on which rapid prototyping is

applied. The prototyping is provided by a synthesis to automate the migration of a

VE to a new VE on target technology/platform that is unfamiliar to the developer.

Analysis modules are presented to populate the CSDF with the capabilities of the

input technology. Even though X3D, VRML, and Virtools are considered as input

technology in implementation for the demonstration, it is possible to apply the same

analysis approach to any other VE technologies. Hence, ultimately, CSDF can be

the superset of all technologies that are considered in the implementation of CSDF.

CSDF synthesis modules are built to achieve automatic synthesis to target technology

and platforms. Again, for demonstration purposes, a limited number of technologies

are targeted (i.e., VRML, X3D, Java3D, JavaFX, JavaME, OpenGL, and TouchDe-

signer), and only a subset of capabilities was chosen for each technology to experiment

the research ideas to be used in the overall implementation. The framework is kept

extensible so that either more capabilities of the existing technologies can be added

or a completely new technology can be easily implemented.

In addition to Analysis and Synthesis capabilities, the rapid prototyping system

provides extra capabilities such as authoring and storage of the VEs residing in CSDF.

95

Hence, if needed, VEs can be authored in this superset of all technologies to ensure

that the maximum number of capabilities are supported on target VEs. Another

important feature of the prototyping system is its knowledge of the capability limita-

tions for a particular synthesis platform. Thus, an early feedback or warning can be

produced for the user during the synthesis process, when such a limitation is detected.

The features of the rapid prototyping system, described in this thesis, offer a con-

tribution to a solution for the problems (§1.3), whereas the other existing frameworks

(§1.1) do not offer such contribution.

In the following subsection, a description of possible future work that enhances

the dissertation is given.

VI. 1 F U T U R E W O R K

For demonstration purposes, a number of VE technologies and platforms are consid-

ered in the implementation in the current version of the framework with a subset of

their capabilities. Improving the supported capability subsets of the VE technologies

and adding additional technologies are two possible future extensions. Indeed, these

kinds of extensions are infinitely available, since newer technologies arise continuously

and existing technologies/platforms evolve.

Some other possible improvements or future work are in the following.

• Analysis support for APIs or languages requiring semantic analysis on computer

programming languages (e.g., OpenGL, Java3D) can be added. However, it is

very hard to find the best representative scene graph structure for immediate

96

mode APIs or languages. Another dimension of the problem arises from the

arbitrary use of custom behaviors and scripting in such technologies. Finding a

solid solution to such behavior analysis and representation is worthwhile.

• Java3D (retained mode) technology analysis to CSDF may be achieved by cre-

ating an analyzer employing an interpreter to determine the scene graph that

a Java3D program constructs. Such an approach might solve analysis problems

for technologies similar to Java3D.

• Currently, authoring can be done by developing Java programs using CSDF. A

user interface can be created to perform multiple authoring operations on VEs

residing in CSDF.

• Collaborative authoring application, where multi users authoring VEs concur-

rently or iteratively, for CSDF is another possible endeavor. This would facili-

tate a development environment for multiple users.

• Immersive environments such as CAVE and Vision Dome are widely used VE

applications. There are development environments to port VEs to such immer-

sive platforms. Support for immersive platforms can be implemented as a part

of technologies such as Java3D and OpenGL.

• Default values of attributes of CSDF classes need to be normalized across dif-

ferent VR platforms. Therefore, automatic synthesis is ensured to produce

equivalent VEs for all technologies and platforms.

97

BIBLIOGRAPHY

[1] C. Cruz-neira, A. Bierbaum, P. Hartling, C. Just, and K. Meinert, "VR Jug-

gler An Open Source Platform for Virtual Reality Applications," in 40th AIAA

Aerospace Sciences Meeting and Exhibit 2002, 2002. h t t p : / /www.a i aa .o rg /

content.cfm?pageid=406.

[2] h t tp : / /www.vr jugg le r .o rg / , 2006.

[3] J. Kelso and L. E. Arsenault, "DIVERSE: A framework for Building Extensible

and Reconfigurable Device Independent Virtual Environments," in IEEE Virtual

Reality, vol. 12, pp. 183-190, 2002.

[4] P. Figueroa, W. F. Bischof, H. J. Hoover, P. Boulanger, and R. Taylor, "InTml:

A Dataflow Oriented Development System for Virtual Reality Applications,"

Presence: Teleoperators & Virtual Environments, vol. 17, no. 5, pp. 492-511,

2008.

[5] h t tp : / /www.cs .ua lber ta .ca /~pf iguero / InTml , 2006.

[6] C. Jeffery, A. Dabholkarl, K. Tachtevrenidis, and Y. Kim, "A Framework for

Prototyping Collaborative Virtual Environments ," Lecture Notes in Computer

Science, vol. 3706, pp. 17-32, 2005.

[7] UVa User Interface Group, "ALICE: rapid prototyping for virtual reality," IEEE

Computer Graphics and Applications, vol. 15, pp. 8-11, May 1995.

http://www.aiaa.org/
http://www.vrjuggler.org/
http://www.cs.ualberta.ca/~pfiguero/InTml

98

[8] R. Kelly and R. Neetz, "Rapid prototyping: the procedure for software," Pro

ceedings of the IEEE 1988 National Aerospace and Electronics Conference, vol. 2,

pp. 644-652, 23-27 May 1988.

[9] L. Luqi and R. Steigerwald, "Rapid software prototyping," Proceedings of

the Twenty-Fifth Hawaii International Conference on System Sciences, vol. 2,

pp. 470-479, 7-10 Jan 1992.

[10] L. A. Belfore, II, "Rapid Prototyping and Synthesis of Virtual Worlds." Unpub-

lished White Paper, 2003.

[11] J. Crinnion, Evolutionary Systems Development, a practical guide to the use of

prototyping within a structured systems methodology, ch. 2, pp. 25-41. Plenum

Press, 1991.

[12] A. Davis, "Operational prototyping: a new development approach," IEEE Soft

ware, vol. 9, pp. 70-78, Sep 1992.

[13] R. Acosta, C. Burns, W. Rzepka, and J. Sidoran, "A case study of applying

rapid prototyping techniques in the Requirements Engineering Environment,"

Proceedings of the First International Conference on Requirements Engineering,

pp. 66-73, Apr 1994.

[14] S. W. Knerr, R. Breaux, S. L. Goldberg, and R. A. Thurman, "National De-

fense," in Handbook of Virtual Environments (K. M. Stanney, ed.), pp. 857-872,

Lawrence Erlbaum Associates, 2002.

99

[15] M. S. Atkin, D. L. Westbrook, and P. R. Cohen, "Capture the Flag: Military

Simulation Meets Computer Games," in Proceedings of A A AI Spring Symposium

Series on AI and Computer Games, pp. 1-5, AAAI Press, 1999.

[16] J. J. Wynn, J. D. Roberts, and M. O. Kinkead, "Visualizing the wargame-web-

based applications for viewing a course of action (COA)," in Proceedings of the

1999 International Conference of Web-Based Modeling & Simulation, vol. 16,

pp. 227-232, 1999.

[17] E. Salas, R. L. Oser, J. A. Cannon-Bowers, and E. Daskarolis-Kring, "Team

Training in Virtual Environments: An Event-based Approach," in Handbook of

Virtual Environments (K. M. Stanney, ed.), pp. 873-892, Lawrence Erlbaum

Associates, 2002.

[18] H. G. Weller, "Assessing the impact of computer-based learning on science,"

Journal of Research in Computing in Education, vol. 28, no. 4, pp. 461-485,

1996.

[19] S. V. Cobb, H. R. Neale, J. K. Crosier, and J. R. Wilson, "Development and

Evaluation of Virtual Environments for Education," in Handbook of Virtual En

vironments (K. M. Stanney, ed.), pp. 911-936, Lawrence Erlbaum Associates,

2002.

[20] R. M. Satava and S. B. Jones, "Medical Application of Virtual Reality," in

Handbook of Virtual Environments (K. M. Stanney, ed.), pp. 937-958, Lawrence

Erlbaum Associates, 2002.

100

[21] J. P. Shewchuk, K. H. Chung, and R. C. Williges, "Virtual Environments in

Manufacturing," in Handbook of Virtual Environments (K. M. Stanney, ed.),

pp. 1119-1141, Lawrence Erlbaum Associates, 2002.

[22] E. Badique, M. Cavazza, G. Klinker, G. Mair, T. Sweeney, and D. Thalmann,

"Entertainment Applications of Virtual Environments," in Handbook of Virtual

Environments (K. M. Stanney, ed.), pp. 1143-1166, Lawrence Erlbaum Asso-

ciates, 2002.

[23] H. Lichter, M. Schneider-Hufschmidt, and H. Zullighoven, "Prototyping in indus-

trial software projects—bridging the gap between theory and practice," in ICSE

'93: Proceedings of the 15th international conference on Software Engineering,

(Los Alamitos, CA, USA), pp. 221-229, IEEE Computer Society Press, 1993.

h t t p : / / po r t a l . a cm.o rg / c i t a t i on . c fm? id=257623 .

[24] Y.-R. Lee, S.-Y. Cho, and J.-B. Lee, "The design a virtual prototyping based on

ARMulator," Fourth Annual ACIS International Conference on Computer and

Information Science, pp. 387-390, 2005.

[25] O. Gutierrez, "Prototyping techniques for different problem contexts," in CHI

'89: Proceedings of the SIGCHI conference on Human factors in computing sys

tems, (New York, NY, USA), pp. 259-264, ACM, 1989.

[26] R. Budde and H. Zullighoven, "Prototyping revisited," CompEuro '90. Proceed

ings of the 1990 IEEE International Conference on Computer Systems and Soft

ware Engineering, pp. 418-427, 8-10 May 1990.

http://portal.acm.org/citation.cfm?id=257623

101

[27] S. Haag, M. Cummings, D. J. McCubbrey, A. Pinsonneault, and R. Dono-

van, Management Information Systems for the Information Age, pp. 311-315.

McGraw-Hill Ryerson, 2006.

[28] http:/ /www.web3d.org/x3d/vrml/ , 2007.

[29] A. E. Walsh and M. Bourges-Sevenier, Core WebSD, ch. 2, pp. 30-61. Prentice

Hall PTR, 2000.

[30] P. V. Krishnan, Rapid prototyping for the design of virtual worlds, ch. 3. Old

Dominion University, 2005.

[31] J. Hartman and J. Wernecke, The VRML 2.0 Handbook, ch. 2-3, pp. 11-59.

Addison-Wesley Publishing Company, 1996.

[32] B. Roehl and J. Couch, Late Night VRML 2.0 with Java, ch. 1-2. Hightstown,

NJ, USA: Ziff-Davis Publishing Co., 1997.

[33] S. Matsuba and B. Roehl, Using VRML, Special Edition, ch. 7. QUE Corpora-

tion, 1996.

[34] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, "Extensible markup language,"

World Wide Web J., vol. 2, no. 4, pp. 29-66, 1997.

[35] h t tp : / /www.web3d.org /x3d/spec i f ica t ions / , 2007.

[36] http:/ /www.web3d.org/ , 2007.

[37] ht tp: / /www.web3d.org/about/overview/, 2007.

http://www.web3d.org/x3d/vrml/
http://www.web3d.org/x3d/specifications/
http://www.web3d.org/
http://www.web3d.org/about/overview/

102

[38] h t tp : / /www.xj3d .org / , 2007.

[39] h t t p s : / / j a v a 3 d . d e v . j a v a . n e t / , 2006.

[40] D. Selman, Java 3D programming, pp. 46-63. Greenwich, CT, USA: Manning

Publications Co., 2002.

[41] A. E. Walsh and D. Gehringer, Java 3D API Jump-Start, ch. 2, pp. 35-61. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[42] K. Brown and D. Petersen, Ready-to-Run Java 3D, pp. 39-49. John Wiley &

Sons, Inc., 1999.

[43] h t t p s : / / j ava . sun . com/ j ava fx , 2007.

[44] R. P. Cook, "The design of a Java phone programming environment," in PPPJ

'07: Proceedings of the 5th international symposium on Principles and practice

of programming in Java, vol. 272, pp. 31-37, ACM, 2007.

[45] K. Pulli, J. Vaarala, V. Miettinen, T. Aarnio, and M. Callow, "Developing mo-

bile 3D applications with OpenGL ES and M3G," in SIGGRAPH '05: ACM

SIGGRAPH 2005 Courses, (New York, NY, USA), pp. 1-127, ACM, 2005.

ht tp: / /doi .acm.org/10.1145/1198555.1198730.

[46] h t t p : / / d e v e l o p e r s . s u n . c o m / m o b i l i t y / a p i s / a r t i c l e s / 3 d g r a p h i c s / , 2004.

[47] h t tp : / / j ava . sun .com/ javame/ , 2007.

[48] h t t p : //www. opengl. org / , 2006.

http://www.xj3d.org/
https://java3d.dev.java.net/
https://java.sun.com/javafx
http://doi.acm.org/10.1145/1198555.1198730
http://developers.sun
http://java.sun.com/javame/

103

[49] E. Angel, Open GL Primer, ch. 1. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2001.

[50] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide:

The Official Guide to Learning OpenGL, pp. 7-19. Addison-Wesley Professional,

2005.

[51] E. Angel, Interactive Computer Graphics: A Top-Down Approach With

OPENGL primer package, ch. 1-2, 13. Upper Saddle River, NJ, USA: Prentice-

Hall, Inc., 2001.

[52] h t t p : / /msdn .mic roso f t . com/en -us /d i r ec tx / , 2008.

[53] h t tp : / /www.vi r too ls .com/ , 2008.

[54] M. W. Scerbo, H. M. Garcia, A. Nalu, and E. Baydogan, "Chain Saw Virtual

Reality Safety Trainer." Unpublished White Paper, h t tp : / /www. l ions .odu .

edu/~ebayd001/misc/papers/chainsaw.pdf, 2006.

[55] h t tp : / /www.de r iva t ive inc . com/ too l s / touchdes igne r . a sp , 2008.

[56] Y. Shen, J. Seevinck, and E. Baydogan, "Realistic Irrigation Visualization in

a Surgical Wound Debridement Simulator," in Proceedings of Medicine Meets

Virtual Reality Conference, vol. 119, pp. 512-514, 2006.

[57] J. A. Seevinck, M. W. Scerbo, L. A. Belfore, II, L. J. Weireter, J. J. R. Crouch,

Y. Shen, F. D. McKenzie, H. M. Garcia, S. Girtelschmid, E. Baydogan, and E. A.

http://msdn.microsoft.com/en-us/directx/
http://www.virtools.com/
http://www.lions.odu
http://www.derivativeinc.com/tools/touchdesigner.asp

104

Schmidt, "A Simulation-Based Training System for Surgical Wound Debride-

ment," in Proceedings of Medicine Meets Virtual Reality Conference, vol. 119,

pp. 491-496, 2006.

[58] J. A. Seevinck, M. W. Scerbo, L. A. Belfore, II, L. J. Weireter, J. J. R. Crouch,

Y. Shen, F. D. McKenzie, H. M. Garcia, S. Girtelschmid, E. Baydogan, E. A.

Schmidt, and D. Spence, "Surgical Wound Debridement Simulation-Based Train-

ing System," in Advanced Technology Applications for Combat Casualty Care

(ATACCC) conference, pp. 15-17, 2005.

[59] http://www.microsoft.com/windows/, 2008.

[60] A. Siberschatz and P. B. Galvin, Operating System Concepts, pp. 737-741.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1993.

[61] A. Mason, "Criteria for UNIX-like systems," SIGSMALL Newsletter, vol. 8, no. 3,

pp. 8-13, 1982.

[62] h t tp : / /www.us .p lays ta t ion .com/PSP/ , 2008.

[63] h t t p : //www. n in tendo. com/ds, 2008.

[64] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart,

"The CAVE: audio visual experience automatic virtual environment," Commu

nications ACM, vol. 35, no. 6, pp. 64-72, 1992.

http://www.microsoft.com/windows/
http://www.us.playstation.com/PSP/

105

[65] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D. Brown,

"The ImmersaDesk and Infinity Wall projection-based virtual reality displays,"

SIGGRAPH Computer Graphics, vol. 31, no. 2, pp. 46-49, 1997.

[66] h t tp : / /www.vrea l i t ies .com/vrdomes .h tml , 2008.

[67] O. Cakmakci and J. Rolland, "Head-worn displays: a review," Journal of Display

Technology, vol. 2, pp. 199-216, Sept. 2006.

[68] D. H. Eberly, 3D game engine design: a practical approach to real-time computer

graphics, ch. 1-2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2000.

[69] T. Strothotte and S. Schlechtweg, Non-photorealistic computer graphics: model

ing, rendering, and animation, ch. 6. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 2002.

[70] h t t p : / / g l i d e . s o u r c e f o r g e . n e t / , 2008.

[71] L. A. Belfore, II, P. V. Krishnan, and E. Baydogan, "Common scene definition

framework for constructing virtual worlds," in WSC '05: Proceedings of the

37th conference on Winter simulation, vol. 3, pp. 1985-1992, Winter Simulation

Conference, 2005.

[72] T. Greanier, "Java Serialization." h t t p : / / j a v a . s u n . c o m / d e v e l o p e r /

t e c h n i c a l A r t i c l e s / P r o g r a m m i n g / s e r i a l i z a t i o n / , July 2000.

http://www.vrealities.com/vrdomes.html
http://glide.sourceforge.net/
http://java.sun.com/developer/

106

[73] A. Bierbaum, VR Juggler: A Virtual Platform for Virtual Reality Application

Development, ch. 1. Iowa State University, 2000.

[74] L. Arsenault, J. Kelso, R. Kriz, and F. D. Neves, "Diverse: a software toolkit

to integrate distributed simulations with heterogeneous virtual environments."

h t tp : / /www.d ive r se .v t . edu , 2001.

[75] h t t p : / / j a v a . s u n . c o m / , 2007.

[76] K. Reinholtz, "Java will be faster than C++," SIGPLAN Notes, vol. 35, no. 2,

pp. 25-28, 2000.

[77] S. S. Chandra and K. Chandra, "A comparison of Java and C#," Journal of

Computer Small Collection, vol. 20, no. 3, pp. 238-254, 2005.

[78] S. Sangappa, K. Palaniappan, and R. Tollerton, "Benchmarking Java against

C/C++for interactive scientific visualization," in JGI '02: Proceedings of the

2002 joint ACM-ISCOPE conference on Java Grande, (New York, NY, USA),

pp. 236-236, ACM, 2002.

[79] h t t p : / / j a v a . s u n . c o m / d o c s / b o o k s / t u t o r i a l / r e f l e c t / , 2007.

[80] M. Braux and J. Noye, "Towards partially evaluating reflection in Java," in

PEPM '00: Proceedings of the 2000 ACM SIGPLAN workshop on Partial evalu

ation and semantics-based program manipulation, vol. 34, pp. 2-11, ACM, 1999.

[81] I. R. Forman and N. Forman, Java Reflection in Action (In Action series), ch. 1,

pp. 3-26. Greenwich, CT, USA: Manning Publications Co., 2004.

http://www.diverse.vt.edu
http://java.sun.com/
http://java.sun.com/docs/books/tutorial/reflect/

107

[82] h t t p : / /www.ec l i p se .o rg / , 2007.

[83] h t t p s : / / j a v a c c . d e v . j a v a . n e t / , 2007.

[84] A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java, ch. 3.

New York, NY, USA: Cambridge University Press, 2003.

[85] ht tp: / /www.jdom.org/ , 2006.

[86] h t tp : / /www.para l l e lg raph ics . com/produc t s / co r tona / , 2006.

[87] E. Baydogan, S. Mazumdar, and L. A. Belfore, II, "Decoupled Agent Architec-

ture for Virtual Operating Room Training Simulations," in CGVR '08: Proceed

ings of The 2008 International Conference on Computer Graphics and Virtual

Reality, CGVR08, Las Vegas, 2008. h t tp : / /www.l ions .odu.edu/~ebayd001/

misc/papers/davortsCgvr08.pdf.

[88] M. W. Scerbo, L. A. Belfore, II, H. M. Garcia, L. J. Weireter, M. W. Jack-

son, A. Nalu, and E. Baydogan, "The Virtual Operating Room," in IITSEC

'06: The Interservice/Industry Training, Simulation & Education Conference,

vol. 2006(Conference Theme: Training 21st Century Joint Force), 2006.

[89] M. W. Scerbo, L. A. Belfore, II, H. M. Garcia, J. Leonard J. Weireter, M. W.

Jackson, A. Nalu, E. Baydogan, J. P. Bliss, and J. Seevinck, "A Virtual Operat-

ing Room for Context-Relevant Training," in Proceedings of the Human Factors

and Ergonomics Society 51st Annual Meeting-2007, vol. 51, pp. 507-511, 2007.

http://www.eclipse.org/
https://javacc.dev.java.net/
http://www.jdom.org/
http://www.parallelgraphics.com/products/cortona/
http://www.lions.odu.edu/~ebayd001/

108

VITA

Emre Baydogan

Department of Electrical and Computer Engineering

Old Dominion University

Norfolk, VA 23529

EDUCATION

PhD Candidate in Electrical and Computer Engineering 2001 - 2008

Old Dominion University, Norfolk, VA

Advisor: Lee A. Belfore, II

Grade Point Average: 3.88/4.00

MS in Computer Science and Engineering 1999 - 2001

Marmara University, Istanbul, Turkey

Advisor: M. Borahan Turner

Thesis: Adaptive Data Compression in Networks: a Learning Automaton Approach

Grade Point Average: 85/100

BS in Computer Science and Engineering 1994 - 1999

Marmara University, Istanbul, Turkey High Honors

Grade Point Average: 3.58/4.00

Rank in major: 4 out of approx. 35

Rank in class: 5 out of approx. 120

Highschool in Pure and Applied Sciences

Tuna High School, Istanbul, Turkey

Grade Point Average: 4.21/5.00

WORK E X P E R I E N C E

Research Assistant 9/03 - 5/08

VMASC, ODU, Norfolk, VA

Virtual Operating Room

1991 - 1994

High Honors

109

designed system architecture for simulation

implemented the controller and the modules for the simulation, using Java, Visual

C++, Visual Basic, Virtools, Dragon Naturally Speaking SDK, Microsoft Speech API

Wound Debriedement Simulator

implemented the modules for the simulation, using Visual C++, Touch Designer Hap-

tics DSK, Haptek SDK

Virtual Chainsaw

implemented the modues for the simulation, using Visual C++, Virtools, Haptics

SDK

VV&A for Enhanced Logistics Intratheater Support Tool

validated ELIST simulator

VRGait

implemented communication module for the simulator

Lab and Network Administrator 9/99 - 5/01

Marmara University, Istanbul, Turkey

administered laboratory containing 20 Intel based computers, one MS NT based

server, and two Sun workstations

Intern, Accounting Department Summer/Winter 97 - 98

Krevitas Food Ind. Inc., Istanbul, Turkey

helped design product/raw product codes and helped customization of SAP/3

Intern, Accounting Department Summer/Winter 94 - 96

Global Securities Inc., Istanbul, Turkey

helped manage stock operations in Takasbank

TEACHING E X P E R I E N C E

Teaching Ass is tan t 9/01 - 5/03

Old Dominion University, Norfolk, VA

responsible for grading labs/projects/assignments/exams

ECE 241/341 - Digital Design

110

Instructor 6/03 - 7/03

Old Dominion University, Norfolk, VA

responsible for teaching computer skills to K12 students (ECE Sponsorhip)

Teaching Assistant 9/99 - 5/01

Marmara University, Istanbul, Turkey

responsible for conducting lab sessions, grading labs/projects/assignments/exams

CSE 315 - Digital Design

CSE 337 - Computer Organization II

CSE 344 - Software Engineering

CSE 432 - Distributed Systems

CSE 381 - Modeling and System Simulation

CSE 482 - Introduction to Artificial Intelligence

PUBLICATIONS

E. Baydogan, S. Mazumdar, L. A. Belfore, "Decoupled Agent Architecture for

Virtual Operating Room Training Simulations", CGVR '08: Proceedings of The 2008

International Conference on Computer Graphics and Virtual Reality, 2008.

E. Baydogan, S. Mazumdar, L. A. Belfore, "Simulation Architecture for Virtual

Operating Room Training", 2008 VMASC Capstone Conference, 2008.

S. Mazumdar, E. Baydogan, L. A. Belfore, "OntoVOR: The Design of a

Knowledge-base for a Virtual Operating Room", Proceedings of the 2007 Modsim

World Conference, 2007.

M. Scerbo, L. A. Belfore II, H. M. Garcia, L. J. Weireter, Jr, M. W. Jackson,

A. Nalu, E. Baydogan, J. P. Bliss, J. Seevinck, "A Virtual Operating Room for

Context Relevant Training", Proceedings of Human Factors and Ergonomics Society

51st Annual Meeting, 2007

Y. Shen, J. Seevinck, and E. Baydogan, "Realistic Irrigation Visualization in

a Surgical Wound Debridement Simulator", Medicine Meets Virtual Reality 14, pp

512-514, (Long Beach, CA), January 2006.

J. A. Seevinck, M. W. Scerbo, L. A. Belfore II, L. J. Weireter, Jr. J. R. Crouch,

Y. Shen, F. D. McKenzie, H. M. Garcia, S. Girtelschmid, E. Baydogan, E. A.

Schmidt, "A Simulation-Based Training System for Surgical Wound Debridement",

I l l

Proceedings of the 14th Medicine Meets Virtual Reality Conference, Long Beach,

California, January 2006.

L Belfore, J Crouch, Y Shen, S Girtleschmid, E Baydogan. "A Software Frame-

work for Surgical Simulation Virtual Environments". Medicine Meets Virtual Reality

14, IOS Press, pp. 46-48, 2006.

M. Scerbo, L. Belfore, H. Garcia, M. Jackson, A. Nalu, E. Baydogan, L. Weireter,

"The Virtual Operating Room", Proceedings of the 2006 Interservice/Industry Train-

ing, Simulation & Education Conference, Dec. 4-7, 2006, Orlando, Florida.

L. A. Belfore, P.V. Krishnan, and E. Baydogan, "Common Scene Definition

Framework For Constructing Virtual Worlds", Proceedings of the 2005 Winter Sim-

ulation Conference, 2005.

J. Seevinck, M. W. Scerbo, L. A. Belfore II, L. Weireter, Jr., J. Crouch, Y. Shen,

F.D. McKenzie, H.M. Garcia, S. Girtelschmid, E. Baydogan, E. A. Schmidt, D.

Spence, "Surgical Wound Debridement Simulation-Based Training System", Project

description and prototype demonstration at Advanced Technology Applications for

Combat Casualty Care (ATACCC) conference. ATACCC St Pete Beach, USA. 15-17

August 2005.

Typeset using M^X.

	Old Dominion University
	ODU Digital Commons
	Winter 2008

	Rapid Prototyping for Virtual Environments
	Emre Baydogan
	Recommended Citation

	ProQuest Dissertations

