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ABSTRACT 

WAVELET-BASED ENHANCEMENT TECHNIQUE FOR 

VISIBILITY IMPROVEMENT OF DIGITAL IMAGES 

Numan Unaldi 

Old Dominion University, 2010 

Director: Dr Vijayan K. Asari 

Image enhancement techniques for visibility improvement of color digital images 

based on wavelet transform domain are investigated in this dissertation research. 

In this research, a novel, fast and robust wavelet-based dynamic range compression and 

local contrast enhancement (WDRC) algorithm to improve the visibility of digital images 

captured under non-uniform lighting conditions has been developed. A wavelet transform 

is mainly used for dimensionality reduction such that a dynamic range compression with 

local contrast enhancement algorithm is applied only to the approximation coefficients 

which are obtained by low-pass filtering and down-sampling the original intensity image. 

The normalized approximation coefficients are transformed using a hyperbolic sine curve 

and the contrast enhancement is realized by tuning the magnitude of the each coefficient 

with respect to surrounding coefficients. The transformed coefficients are then 

de-normalized to their original range. The detail coefficients are also modified to prevent 

edge deformation. The inverse wavelet transform is carried out resulting in a lower 

dynamic range and contrast enhanced intensity image. A color restoration process based on 

the relationship between spectral bands and the luminance of the original image is applied 

to convert the enhanced intensity image back to a color image. Although the colors of the 

enhanced images produced by the proposed algorithm are consistent with the colors of the 

original image, the proposed algorithm fails to produce color constant results for some 

"pathological" scenes that have very strong spectral characteristics in a single band. The 

linear color restoration process is the main reason for this drawback. Hence, a different 

approach is required for tackling the color constancy problem. The illuminant is modeled 



having an effect on the image histogram as a linear shift and adjust the image histogram to 

discount the illuminant. The WDRC algorithm is then applied with a slight modification, 

i.e. instead of using a linear color restoration, a non-linear color restoration process 

employing the spectral context relationships of the original image is applied. The proposed 

technique solves the color constancy issue and the overall enhancement algorithm provides 

attractive results improving visibility even for scenes with near-zero visibility conditions. 

In this research, a new wavelet-based image interpolation technique that can be used 

for improving the visibility of tiny features in an image is presented. In wavelet domain 

interpolation techniques, the input image is usually treated as the low-pass filtered 

subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the 

unknown high-resolution image is produced by estimating the wavelet coefficients of the 

high-pass filtered subbands. The same approach is used to obtain an initial estimate of the 

high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients 

are estimated via feeding this initial estimate to an undecimated wavelet transform 

(UWT). Taking an inverse transform after replacing the approximation coefficients of the 

UWT with initially estimated HR image, results in the final interpolated image. 

Experimental results of the proposed algorithms proved their superiority over the 

state-of-the-art enhancement and interpolation techniques. 

Keywords: Image enhancement, visibility improvement, wavelet domain enhancement, 

interpolation. 
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Chapter I 

INTRODUCTION 

1.1 Motivation for the Dissertation Research 

It is well known that human eyes perform much better than cameras when imaging 

real-world scenes, which generally have high dynamic range that can span more than six 

Q 

orders of magnitude. Human eyes have about 10:1 absolute range from fully adapted dark 

vision to fully adapted lighting conditions at noon on the equator. They can see about 

3xl04:l range of luminance when adapted to a normal working range. This is achieved 

through a series of adaptive mechanisms for brightness perception. First, the size of pupil is 

variable to accommodate different levels of radiance from different regions in a scene 

while the camera aperture is fixed when capturing the scene. When staring at a 

highly-bright region in the scene, the pupil will shrink to compress the dynamic range so 

that the eyes can deal with it. Second, and more importantly, the major dynamic range 

compression process is taking place via the lateral processing at the retinal level [1]. 

Finally, the early visual cortex is also found participating in some of the dynamic range 

processing. 

Conventional imaging devices, e.g. consumer cameras can measure only about three 

orders of magnitude. In addition, image display devices, like monitors and printers, also 

demonstrate limited dynamic range. As a result, images of high dynamic ranges scenes 

commonly suffer from poor visibility due to either overexposure causing saturation or 

underexposure resulting in low contrast dark images in which some important features are 

lost or become hard to detect by human eyes. Computer vision algorithms also have 

difficulty processing such images. 

The Human Visual System (HVS) perceives the color of an object independent of the 

type of light illuminating it. A red apple illuminated by different light sources with 
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different spectral characteristics, still tends to appear red even though reflected spectrum is 

not same each time. Additionally, a yellow patch illuminated with white light or a white 

patch illuminated with yellow light reflect the same spectral distribution, but the yellow 

patch is seen as yellow and the white patch as white. This phenomenon is known as color 

constancy, e.g. the ability to remove the effect of the illumination from the output. The 

HVS has a complex non-linear mechanism of neuro-physiological functions of individual 

neurons that determines the perceived color discounting the illurninant through spatial and 

spectral comparisons of color signals across a scene. 

Image enhancement is an important topic in digital image processing. It can help 

humans and computer vision algorithms obtain more accurate information from enhanced 

images. The visual quality and certain image properties, such as brightness, contrast, 

signal-to-noise ratio, resolution, edge sharpness, and color accuracy can be improved 

through the enhancement process. Many image enhancement algorithms have been 

developed based on various digital image processing techniques and applications. They 

can be developed in the spatial domain, spatial-frequency domain, or space-frequency 

domain (e.g., wavelet transform domain). 

In many image processing applications, magnifying the details in an image may also be 

required, especially when the resolution is limited. Digital satellite, aerial images, and 

medical imaging along with distant object/face recognition are examples of such 

applications. It is necessary to make the magnification (interpolation) without blurring for 

the magnified details to be useful for object/face recognition. 

Due to different properties of various image processing techniques employed in image 

enhancement algorithms, each algorithm may have certain specialties compared to other 

algorithms in terms of capability, performance, robustness, computation load, algorithm 

complexity, and so on. Therefore, it is necessary to investigate different image processing 

techniques to develop new image enhancement algorithms or to improve existing 

algorithms for the purpose of improving the visibility in scenes and strengthening the 

capability to deal with various image processing and computer vision applications. 

This dissertation research is dedicated to developing an innovative image enhancement 
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technique for improving the visibility of low quality digital images caused by many 

reasons such as high dynamic range scene irradiance, poor contrast due to the very narrow 

dynamic range of the captured scene, very low illumination (low light conditions), 

pathological scenes that violate the gray-world assumption, non-uniform illumination or 

the spectral characteristics of the illuminant, and the limited resolution of the imaging 

devices. This research is focused into developing an algorithm that can automatically 

(without any human interventions) enhance images suffering from the previously 

mentioned effects. 

1.2 Summary of the Dissertation Contributions 

In this dissertation research, a novel, fast and robust wavelet-based dynamic range 

compression and local contrast enhancement (WDRC) algorithm to improve the visibility 

of digital images captured under non-uniform lighting conditions has been developed. 

Wavelet transform is used especially for dimension reduction such that the WDRC 

algorithm is applied only to the approximation coefficients which are obtained by low-pass 

filtering and down-sampling the original intensity image. The normalized approximation 

coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is 

realized by tuning the magnitude of the each coefficient with respect to surrounding 

coefficients. The transformed coefficients are then de-normalized to their original range. 

The detail coefficients are also modified to prevent the edge deformation. The inverse 

wavelet transform is carried out resulting in a low dynamic range and contrast enhanced 

intensity image. A color restoration process based on the relationship between spectral 

bands and the luminance of the original image is applied to convert the enhanced intensity 

image back to a color image. 

The proposed image enhancement algorithm, which provides dynamic range 

compression, while preserving the local contrast and tonal rendition, is also a good 

candidate for real time video processing applications. Although the colors of the enhanced 

images produced by the proposed algorithm are consistent with the colors of the original 

image, the proposed algorithm fails to produce color constant results for some 
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"pathological" scenes that have very strong spectral characteristics in a single band. The 

linear color restoration process is the main reason for this drawback. Hence, a different 

approach is required for tackling the color constancy problem. The illuminant is modeled 

having an effect on the image histogram as a linear shift and adjust the image histogram to 

discount the illuminant. The WDRC algorithm is then applied with a slight modification, 

i.e. instead of using a linear color restoration, a non-linear color restoration process 

employing the spectral context relationships of the original image is applied. The proposed 

technique solves the color constancy issue and the overall enhancement algorithm provides 

attractive results improving visibility even for scenes with near-zero visibility conditions. 

The scheme of the WDRC algorithm is shown in Figure 1.1. 

Input Image 

Intensity Image 

Approx.Coef. 

LPF 
Normalized Coef. 

H 
Mapped Coef.-A' 

Local Average A/ 

A' 

Af 

Local Contrast 

~P] Enhancement 

A/An, 

De-normalized 

Coeff.-Anew 

Detail Coef. 

-*8> 

Modified Details 

Enhanced Intensity 

Image 

Output Color 

Figure 1.1 The proposed WDRC algorithm 



5 

In this research, new wavelet-based image interpolation technique that can be used 

for improving the visibility of tiny features in an image, is also presented. In wavelet 

domain interpolation techniques, the input image is usually treated as the low-pass 

filtered subbands of an unknown wavelet-transformed HR image, and then the unknown 

high-resolution image is produced by estimating the wavelet coefficients of the high-pass 

filtered subbands. The same approach is then used to obtain an initial estimate to the 

high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients 

are then estimated via feeding this initial estimate to an undecimated wavelet transform 

(UWT). Taking an inverse transform after replacing the approximation coefficients of the 

UWT with initially estimated HR image, results in the final interpolated image. 

Experimental results of the proposed algorithms proved their superiority over the 

state-of-the-art enhancement and interpolation techniques. 

1.3 Specific Objectives 

The specific objectives of this research are: 

• Development of a nonlinear function which mimics the HVS for simultaneously 

enhancing the dark regions and compressing the bright regions in a high contrast 

image. 

• Development of a context-dependent technique that is applied to the 

approximation coefficients of the discrete wavelet transform of the image that is 

to be enhanced. 

• Application of a contrast enhancement algorithm to the enhanced approximation 

coefficients to improve the local contrast. 

• Development of a technique for modification of detail coefficients to preserve the 

fine details and regularity of the edges in the image. 
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• Development of a histogram modification technique to account for the 

illumination spectral variations in the scene. 

• Development of a non-linear color restoration technique based on the relationship 

between spectral bands and the luminance of the original image and the enhanced 

intensity image to obtain the enhanced color image. 

• Development of a wavelet-based interpolation technique to increase the visibility 

of tiny features in an image. 

• Combining the enhancement algorithm with the interpolation technique. 

• Testing and evaluation of the performance of the proposed algorithms on various 

images captured in different scenes with diverse lighting conditions. 

1.4 Organization of the Dissertation 

The remaining chapters are organized as follows: 

In Chapter II, a literature review of the nonlinear image enhancement techniques with 

an emphasis on Retinex-based methods is presented. Among those techniques, MSRCR 

[29]-[33], AINDANE [42], and IRME [43] algorithms which are used as benchmarks to 

the proposed enhancement algorithms are introduced. A review of image interpolation 

techniques especially the wavelet-based interpolation methods is also presented. 

Chapter III presents the new wavelet-based image enhancement algorithm: 

wavelet-based dynamic range compression and local contrast enhancement (WDRC). For 

the algorithm, the details of nonlinear dynamic range compression through approximation 

coefficients obtained from the wavelet transformed intensity image, the local contrast 

enhancement based on local statistics of the approximation coefficients, detail coefficient 

modification, and a linear color restoration process are explained. The algorithm is 

discussed using various experimental results showing its capability of enhancing images 

of scenes with various illumination conditions. Drawbacks of the proposed algorithm in 

discounting the illuminant spectral variations for providing color constancy and in 

enhancing the images of some "pathological" scenes are also discussed. 
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In Chapter IV, a new color restoration (CR) process applied to WDRC processed 

images for tackling the color constancy problems is presented. The two steps for the 

nonlinear color restoration are described, namely, the global histogram adjustment before 

applying the WDRC algorithm and the final color restoration. Comparisons of the 

modified WDRC algorithm (WDRC-CR) with other advanced techniques are performed 

and discussed in terms of color constancy, visual quality, and computational complexity. 

In Chapter V, a new wavelet transform-based algorithm for image interpolation is 

presented, which uses undecimated wavelet transform (UWT) for estimation of the 

missing high frequency components i.e. the detail coefficients. For explaining the 

algorithm in detail, an efficient implementation of the UWT using "a trous algorithm" is 

explained as a preliminary and the application of UWT to the image interpolation is then 

introduced. Experimental results from the proposed algorithm are presented. Some 

performance comparisons of the proposed algorithm are also shown with the 

state-of-the-art wavelet-based and spatial domain interpolation techniques along with the 

conventional ones in terms of quantitative similarity measures. Finally, some examples 

that are processed by both non-linear enhancement and wavelet interpolation algorithms 

are shown. 

Finally, Chapter VI presents the major contributions of this dissertation work and 

some comments on related future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Spatial Domain Image Enhancement Techniques 

To cope with the high dynamic range scenes given the limited dynamic ranges of 

cameras, monitors, and printers, various image processing techniques which compress or 

modify dynamic range have been developed. Some of those are global histogram 

modification techniques, such as gamma adjustment, logarithmic compression, and 

levels/curves methods. However, those conventional methods generally have very limited 

performance such that some features may be lost during the image processing, or some 

cannot be sufficiently enhanced. The resulting images suffer from degraded global and 

local contrast which is related with the visual quality and the fine features. 

2.1.1 Histogram Equalization-Based Techniques 

Among the contrast enhancement techniques, histogram equalization (HE) and its 

modified versions are commonly used for enhancement. Although HE works well for 

scenes that have uni-modal or weakly bi-modal histograms, its performance is poor for 

scenes with strongly bi-modal histograms. To make it work for multi-modal histograms, 

adaptive histogram equalization (AHE) was introduced [2]. In AHE which is also called 

localized or windowed HE, histogram equalization is performed locally within an 

adjustable size window. AHE provides local contrast enhancement and performs better 

than normal HE. However, AHE suffers from intensive noise enhancement in "flat" 

regions and "ring" artifacts at strong edges due to its strong contrast enhancement [3]. In 

contrast limiting AHE (CLAHE [4,5]), undesired noise amplification is reduced by 

selecting the clipping level of the histogram and controlling local contrast enhancement. 

Multi-scale AHE (MAHE) [6] is the most advanced variation of HE. Unlike traditional 
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single scale techniques, wavelet-based MAHE is capable of modifying/enhancing the 

image components adaptively based on their spatial-frequency properties. Those 

advanced HE variations generally have very strong contrast enhancement, which is 

especially useful in feature extraction applications like medical imaging for diagnosis. 

They are not commonly used in processing color images probably because their strong 

contrast enhancement may lead to excessive noise or artifacts and cause the image to look 

unnatural. Applying HE techniques to equalize each color channel separately by 

neglecting the inter-component correlation would lead to an incorrect result due to the 

vectorial nature of the data, i.e. each pixel is represented by a vector with three 

components and the three components are mutually correlated. Therefore, HE based 

techniques based on joint processing of the three channels have been developed for 

processing color images. Those techniques can be classified in two main groups. 

In the first approach color data are processed in RGB space. The "3-D histogram 

equalization" method [7] consists of three-dimensional (3-D) histogram specification in 

the RGB cube, with the output histogram being uniform. In [8] "histogram explosion", a 

3-D technique that exploits the full 3-D gamut is proposed. For each point in the RGB 

cube corresponding to an image color, a ray that starts from some central point, passes 

through that point and reaches to the surface of the RGB cube is defined. Then, all points 

within a threshold distance of the ray are projected onto the ray. In this way, a 1-D 

histogram along the ray is created and, equalized to determine the new color value for the 

original point. Through this technique, color points are almost uniformly spread in the 

color space. The "histogram decimation" technique [9,10] attempts to uniformly scatter 

the color points over the full 3-D gamut iteratively by shifting the color points in the 

current space so that their average becomes the geometric center of the space. This is 

followed by dividing the current color space into eight equally-sized subspaces which are 

set as the current space for the next iteration. This procedure is repeated until the 

sub-space reaches its minimum value. Thus, the color points are spread to occupy the full 
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range. All of these methods have issues with modifying color hues, which leads, in 

general, to results that look unnatural, since the HVS is extremely sensitive to shifts in 

hue. 

The second approach for color HE is to perform equalization in color spaces other 

than RGB, [11]-[13] such as the Hue-Saturation-Intensity (HSI) space. This allows one to 

modify either only intensity component or both intensity and saturation components 

leaving the hue intact so that the issues concerning the shifts in hue of the above 

mentioned methods are solved. In [12], a method to jointly equalize intensity and 

saturation is presented, concluding that modification of saturation is not advised because 

of the unnatural results. In [14], an adaptive-neighborhood approach that performs its 

equalization only on the brightness component of the color image is presented. The 

method is designed to increase the number of intensity levels in the image by taking into 

account values of pixels within a certain neighborhood when computing the new intensity 

value of a pixel. The neighborhood is determined adaptively for each pixel in the image 

by a region growing algorithm, rather than forcing it to a predefined shape and size. 

HE of the intensity component is only more effective in terms of computational cost 

and producing consistent colors that are not unnatural, compared to modifying the color 

channels separately. Nevertheless, all of the presented techniques are generally 

computationally expensive and have problems with either color consistency due to shifts 

in hue or color constancy (i.e. being independent from illuminant spectral distribution). 

2.1.2 Retinex-Based Techniques 

Land and McCann [15] carried out several experiments demonstrating that color 

perception is not just a simple signal acquisition. They concluded that perception in the 

HVS is realized by computations in the three retinal-cortical systems, each independently 

processing the low, middle, and high frequencies of the visible spectrum. They named 
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this process the Retinex (retina+cortex). In Retinex-based algorithms, the average of 

surface reflectance relative to the surrounding surface reflectance, so called lightness 

values, are computed in each of three distinct spectral bands for computation of the color 

of a pixel. This yields three distinct lightness values that give an invariant description of 

the surface-spectral-reflectance function at each wavelength, implying color constancy 

under some assumptions of image formation [22]. 

According to Land and McCann's original work [15] the lightness values of a pixel i 

in an image is determined by considering a certain number of paths, starting at random 

points and ending at /, and then by accumulating the logarithm of the ratios between the 

intensity values of subsequent points in the paths with the ratio is larger than a threshold. 

In the original work, the Retinex calculation consists of four steps, i.e. ratio, product, 

reset, and average [25]. With the exception of reset [21], these operators have remained 

the same since the introduction of the Retinex; only the way in which these operators are 

applied to the image changed. The main difference in several variants [16]-[21] of the 

original work is the way in which the comparisons of the pixel values with other pixels in 

the image are carried out. Thus, the computational complexity is improved while 

preserving the basic principles. 

Through the years, the Retinex model has inspired a great variety of implementation 

and discussion, with results that are generally difficult to compare with each other 

[15]-[36]. Even Land and McCann presented different Retinex versions. In [21] Land 

presents the last version of his Retinex computation which has the following 

mathematical form: 

R
i out (x, y) = log /,- (x, y) - log[F(x, y) * /,- (x, y)] (2.1) 

where Ii(x,y) is the image distribution in the z'th color spectral band, "* " denotes the 

convolution operation, F(x,y) is the surround function, and Ri 0at(x,y) is the associated 

retinex output with the f th spectral band to produce Land's triplet values specifying color 
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and lightness. It is apparent that color constancy can be achieved with this form from 

(2.2H2.4): 

It (x, y) = Lt (x, y)rt (x, y) (2.2) 

where Li(x,y) is the spatial distribution of the source illumination and r,{x,y) is the 

distribution of scene reflectance. The reflectance component can be isolated if the 

illumination is known. Unfortunately, for arbitrary images the illumination is generally 

not known. However, if the intensity value at a pixel is divided by its spatially weighted 

average value, the following equation is obtained [22,28]: 

* . ^ > = ' ° g i f ^ = . o g
 L

L
il;T<x'yl (z3) 

Ii(x,y) Li(x,y)ri(x,y) 

where the bars denote the spatially weighted average value. As long as 

Lf (x, y) ~ Li (x, y) indicating the scene illumination is almost constant, then, 

Mx>y) 

'n(x,y) Kiout^y)-1^^2: (
2
-

4
) 

The approximate relation in (2.4) is equality for many cases and, for those cases where it 

is not strictly true, the reflectance ratio should dominate illumination variations [28]. 

Experiments conducted by Jobson et al. [28] show that Land's center/surround retinex 

achieves color constancy and dynamic range compression; but not a good visual rendition. 

Specificially, halo artifacts appear where uniform regions come together to form a high 

contrast edge "graying" in the large uniform zones in an image. Besides, global violations 

of the gray world assumption (e.g., scenes that are dominated by one color) cause a 

global "graying out" of the image. In [28], they investigated the properties of 

"Centre/Surround Retinex" and suggested solutions to some implementation issues they 

encountered during their experimental investigations of the algorithm. Their 

implementation, later so called Single Scale Retinex (SSR) aims to produce color 

constant and dynamic range compressed images with satisfactory rendition. To fulfill this, 
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it specifies the placement of the log function; the functional form of the surround; the 

space constant for the surround; and the treatment of the retinex triplets prior to display. 

To summarize the characteristics of the SSR algorithm [28]: 

1. The functional form of the surround is a Gaussian. 

2. The placement of the log function is AFTER surround formation. 

3. The post-retinex signal processing is a "canonical" gain/offset rather than an 

automatic gain/offset. 

4. There is a trade-off between dynamic range compression and tonal rendition 

which is governed by the Gaussian surround space constant. 

5. A single scale is incapable of simultaneously providing sufficient dynamic range 

compression and tonal rendition 

6. Violations of the gray-world assumption lead to retinexed images which are either 

"grayed-out" locally or globally or, more rarely, suffered from color distortion. 

Since the width of the surround affects the rendition of the processed image, multiple 

scale surrounds were found to be necessary to provide a visually acceptable balance 

between dynamic range compression and graceful tonal rendition. 

The Multiscale Retinex (MSR) [29]-[33] combines the dynamic range compression of 

the small scale retinex with the tonal rendition of the large scale retinex to produce an 

output which encompasses both. The equations for the MSR are defined by 

K 

Ri(x,y) = Gr YJWk{logIi(x,y)-\og[Fk(x,y)*Ii(x,y)^-Or, 

k=l ^ J 

i = l, ,N 

where the subscripts i represents z'th spectral band and TV is the number of the spectral 

bands: N=\ for grayscale images and 7V=3, is {R,G,B} for typical color images. K is 

the number of scales used in computations (with K=l the equation turns to be SSR) and 
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Wk are the weighting factors for the scales, Gr and Or are the gain and offset values 

that map the result of the retinex computation from retinex domain to display domain. 

Although the number of scales used for the MSR is application-dependent, it was 

empirically found that a combination of three scales representing narrow, medium, and 

wide surrounds is sufficient to provide both dynamic range compression and tonal 

rendition [29]-[33]. The narrow-surround acts as a high-pass filter, capturing all the fine 

details in the image but at a severe loss of tonal information. The wide-surround captures 

all the fine tonal information but at the cost of dynamic range. The medium surround 

captures both dynamic range and tonal information. The MSR is the average of the three 

renditions [33]. 

The halo artifacts around uniform regions that come together to form a high contrast 

edge caused by a small scale also lessen when multiple scales are used. The MSR still 

suffers from graying out of uniform zones much as the SSR does. This occurs because the 

retinex processing enhances each color band separately. The smaller values in the weaker 

channels get "pushed" up strongly, making them approximately equal in magnitude to the 

dominant channel, leading to a graying out of the overall region, which, in some cases, is 

severe. Unexpected color distortions in rare occasions are also reported due to gray-world 

violations [33]. Therefore, a color restoration scheme to remove this drawback is 

considered. MSR with color restoration (MSRCR) is mathematically represented as: 

R
MSRCRt = <*i (*>y) •

 R
MSRI (*» y) ( 2 - 6 ) 

with 

<*i(x,y) = filog\ 
N 

i=l 

+ 7 (2-7) 

where J3 and y are the color gain and color offset values, respectively. Again a single 

set of values for /? and y was determined for all spectral channels. There is an analogy 

between the internal forms of the retinex process and the color restoration process. Both 
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computations are contextual, highly relative, and nonlinear. The MSRCR provides the 

necessary color restoration, eliminating the color distortions and gray zones evident in the 

MSR output. However, MSRCR does not completely restore the bright colors that are in 

the original image. To handle that, a white balance [33] process is applied. The pixel 

intensities of the original image and the MSRCR output are compared, and maximum of 

either one is accepted for each pixels. 

Although MSRCR performs well for a very large variety of natural images, 

processing in three spectral channels for at least three scales makes the algorithm hard to 

implement for real-time applications on contemporary PC platforms. In addition, optimal 

performance is not always obtained with default parameter setting, especially when 

images that have a dark subject with a very bright background are being processed, 

MSRCR seems to have difficulty providing sufficient luminance enhancement for the 

subject. Besides, MSRCR with default parameters cannot handle the images with a very 

narrow dynamic range, such as images taken under turbid imaging condition without 

post-enhancement treatment. Moreover, there is a trade-off between using white-balance 

or not in MSRCR processing. If white-balance is turned-off, the uniform bright regions in 

the original image turn to gray in the enhanced image, but local contrast is improved even 

for the brightest regions. When white-balance is turned on this drawback is overcome, 

however, the enhancement of only dark regions can be achieved. Actually, the former is 

useful for computer vision applications, whereas the latter produces good rendition. 

Finally, the "halo effect" appearing at the boundaries with a large luminance change 

between the large uniform regions even though reduced, is not totally removed. 

In a more recent work [37], to overcome all the drawbacks addressed in the previous 

paragraph, Jobson et al. have developed their method with a fundamental shift in 

approach away from purely passive retinex processing to an active measurement and 

control system. The so called Visual Servo (VS) concept is shown in Figure 2.1. In VS 

enhancement, a key visual parameter is first measured, second, based upon the measured 

value, an enhancement control to improve the overall brightness, contrast, and sharpness 

of the image is activated followed by recomputing the visual measure. If the measured 
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value of the parameter achieves a predefined visual standard based upon the local image 

statistics, then the process is terminated; otherwise, the process is iterated until either the 

visual standard has been achieved or the VS has determined internally that all reasonable 

enhancement processing has been exhausted. 

Figure 2.1 The Visual Servo Enhancement (courtesy of NASA). 

A bunch of VS-processed image examples can be seen on the related internet site 

[38]. Those demonstrations show that visual servo automatically matches the type and 

degree of image enhancement to the type and degree of visual deficit in raw image data. 

The only drawback of this kind of enhancement is that it is computationally more 

extensive with its iterative nature than the passive form. 

Inspired by the MSRCR enhancement, many other image enhancement techniques 

have been developed performing their computations on only the intensity channel 

following a linear color restoration process to produce the enhanced color images. 

Among those, Multi-scale Luminance Retinex [39] method is proposed to apply the 

MSRCR on only the luminance channel. Luma-Dependent Nonlinear Enhancement 

(LDNE) [40,41] algorithm is another luminance-based multi-scale center/surround 

retinex algorithm. Adaptive Integrated Neighborhood Dependent Approach for Nonlinear 

Enhancement (AINDANE) [42] and Illuminance-Reflectance Model for Nonlinear 

Enhancement (IRME) [43] both implement adaptive luminance enhancement and 

adaptive contrast enhancement separately. Multi-Windowed Inverse Sigmoid (MWIS) 

[44] is an extension of IRME, replacing the inverse sigmoid function used in IRME for 
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adaptive luminance enhancement, by two combined sigmoid functions to deal with the 

bright regions as well. Locally Tuned Sine Nonlinearity (LTSN) is another extension of [45] 

utilizing the trigonometric function for illuminance enhancement to achieve the 

enhancement of dark and bright regions simultaneously. These techniques differ from 

each other in the way they perform luminance enhancement. In all these methods, the 

enhanced chromatic image component is obtained by using a linear color restoration 

process based on the chromatic information in the original image. Although these 

algorithms provide dynamic range compression to some extent, it is not possible to 

achieve color constancy by just modifying the luminance channel, since the chromatics of 

the original image are used linearly to restore the color, which stands in direct contrast to 

the color constancy objectives of the Retinex. The proposed enhancement algorithm in 

this dissertation is based on AINDANE and IRME in some aspects, therefore these two 

techniques are briefly introduced for completeness of the dissertation report. 

2.1.2.1 AINDANE 

The AINDANE algorithm [42] consists of two parts: adaptive luminance 

enhancement and adaptive contrast enhancement. The luminance enhancement part is an 

intensity transformation with a nonlinear transfer function. The contrast enhancement part, 

which is adaptively controlled by the global statistics of the image, tunes the intensity of 

each pixel based on its relative magnitude with respect to the neighboring pixels. To 

convert color images to intensity (gray-scale) images, the National Television System 

Committee (NTSC) standard is used, which is defined as: 

,/ v 76.2457? +149.6851G + 29.075 

i\x>y)= ^ (2-8) 

where R,G and B are the values of the red, green and blue color band of a pixel. Then the 

image intensity is normalized as: 
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in{^y) = 
_ l{x,y) 

255 
(2.9) 

followed by the nonlinear mapping by the transfer function given by (2.10) to get 

dynamic range compression. 

^ . ^ M ^ ^ ^ (210) 

where z provides the curve of the transfer function and is related to the image histogram 

defined as: 

for L<50 

z = i — for 50<Z<150 (2.11) 

for L>150 
100 

1 

where L is the intensity level corresponding to where the cumulative gray level 

distribution is 0.1. L is used as an indication to determine how dark the lowest 10% of 

pixels in an image are. If the z value is 0, the pixel will be a maximum enhanced level 

and if the z value is 1, no pixel will be enhanced. 

A surrounding pixel (neighborhood) dependent contrast enhancement method is 

implemented to achieve sufficient contrast for image enhancement. The luminance 

information of surrounding pixels is obtained by using 2D discrete spatial convolution 

with a Gaussian kernel. The center-surround contrast enhancement S(x,y) is carried out 

as defined in the following equation: 

S(x,y) = 255In'(x,y)
E
^ (2.12) 

where E(x,y) is the inverse of the center-surround ratio raised with a parameter P. 

E(x,y) = \ 
l
conv (x,y) 

i(x,y) 
(2.13) 

where the parameter P is related to the global standard deviation of the input intensity 
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image, l(x,y), and can be determined as: 

P = 

3 for G < 3 

2 7
 ~

2<J
 for 3<<7<10 (2.14) 

7 
1 for cr>10 

where global standard deviation a is the indication of the contrast level of the original 

intensity image. If the contrast of original image is poor, P will be larger and further 

increase the contrast enhancement. 

The contrast enhancement defined by (2.12) is carried out for the surround formations 

via three different scaled convolutions and the results are averaged as in MSR to get the 

enhanced intensity image. Finally, the enhanced color image can be obtained by linear 

color restoration based on chromatic information contained in the original image as: 

i(x,y) 
Sj(x,y) = S{x,y)^}J-J-Aj (2.15) 

where j represents the RGB spectral band and A,,• are parameters which adjust the color 

hue. 

2.1.2.2 IRME 

IRME [43] is an image enhancement algorithm based on a physical description of the 

creation of a radiance map of the real world scene. It divides the object radiance into two 

parts: illumination and reflectance. IRME runs its computations on the illumination and 

leaves the reflectance unchanged to improve the visual perception of those scenes. 

The algorithm consists of four steps: (a) illumination estimation and reflectance 

extraction; (b) adaptive dynamic range compression of illuminance; (c) adaptive mid-tone 

frequency components enhancement; (d) image restoration. 

The first step of the algorithm is to obtain the intensity image, i.e. the value 

component of the HSV color space. Based on the relation given in (2.2), reflectance is 
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extracted. Following the assumption that the illumination L(x,y) is slowly varying it is 

assumed to be contained in the low frequency components of the image and a Gaussian 

low-pass filtered result of the intensity image is used in estimating the illumination. This 

process is realized by using a 2-D discrete spatial convolution of the intensity image with 

a Gaussian kernel of a narrow surround, i.e. 2~5. 

In the second step, adaptive dynamic range compression of illuminance is performed 

using the windowed-inverse sigmoid (WIS) function. The sigmoid function is defined as: 

/ ( V ) = J—^T (2.16) 

where a is a parameter that determines the steepness of the curve shape. This function is 

used as the intensity transfer function for dynamic range compression by performing the 

equations (2.17)-(2.19). 

V = W ( 0 - / ( V n n n ) ] + /(VmJ (2.17) 

1 ( 1 ^ 

v = -
l n

 — -i 
(2.18) 

L " -v . 
T n mm 

L
n , e n h - (2.19) V —V . 

max mm 

where Equation (2.17) linearly maps the input range [0,1] of the normalized illuminance 

Ln to the range [f(vmin),f(vmw()] to be an input to the windowed-inverse sigmoid. Equation 

(2.18) is the inverse sigmoid function. Equation (2.19) is applied to normalize the output 

illuminance Ln" to range [0,1]. Parameters vmax and vmin are used to tune the curve shape 

of the transfer function. The coefficient vmin is empirically determined by the global mean 

Im of the intensity image as: 

^min=^ 

. - 6 for Im<70 
^ / w - 2 3 0 x 

V 

for 7 0 < / w <150 (2.20) 
80 , 

_ 3 ' for Im >150 
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The third step of the IRME is adaptive mid-tone frequency component enhancement 

which is same as the contrast enhancement part of AINDANE for a single medium scale 

of the Gaussian. The enhanced intensity image is obtained by multiplying the modified 

illumination L'nenh (x, y) and reflectance R(x, y) and is expressed as: 

l\x,y) = L'nenh (x,y)R(x,y) (2.21) 

Color restoration in IRME is also same as AINDANE's with Xj in (2.15) are taken as 

unity in IRME. 

2.2 Wavelet Transform Domain Image Enhancement Techniques 

Mathematical formulation of signal expansion using wavelets gives wavelet 

transform (WT) pairs, which is analogous to the Fourier transform (FT), in which signals 

are represented as a sum of sinusoids. A 'wavelet' is a small wave which has its energy 

concentrated in time with varying frequency and limited duration. The WT has the ability 

to provide both spatial (or temporal) and frequency information (i.e. space-frequency or 

time-frequency analysis) thus it is a suitable tool for transient, non-stationary or time 

varying phenomena whereas the non-local FT gives only frequency information. The 

need for simultaneous representation and localization of both time and frequency for 

non-stationary signals (e.g. speech and music) led toward the evolution of WT from the 

popular FT. The WT has been investigated and applied to many image processing 

problems. 

Based on several fields, i.e. subband coding from signal processing [46], quadrature 

mirror filtering (QMF) from speech recognition [47], and pyramidal image processing 

[48], Mallat [49] first proposed multiresolution analysis (MRA) by using the WT. This 

turned to be a powerful signal processing tool resulting in a very wide area of 

applications including image denoising [50]-[52], image coding or compression [53], 
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image enhancement [54]-[56], detection and classification [57], and synthesis [58]. Most 

importantly, the WT has been adopted in the state-of-art image and video compression 

standards like JPEG-2000 and MPEG-4 [59, 60]. 

2.2.1 Wavelet-based Image Enhancement Techniques 

Wavelet-based image enhancement is mainly used to enhance the perceptual quality 

of an image. Due to its band-pass nature, through which edges in an image can be located, 

the WT is well suited for improving the edge features in an images. By appropriately 

modifying edges, sharpness, and the local contrast can be enhanced leading to improved 

visual quality. 

Multi-scale image contrast enhancement has been proposed and implemented using 

either wavelets, especially in medical imaging application [56]-[60], or curvelet [55] 

transform for color and gray scale image enhancement. Velde [56] proposes modifying 

the wavelet coefficients in a contrary way to the coefficient thresholding in wavelet 

denoising algorithms, strengthening the weakest edges (small valued coefficients) and 

leaving the strongest edge unmodified. In [55], Velde's approach is realized in a curvelet 

domain with a slight modification to the mapping function applied for modifying the 

wavelet coefficients. 

Fu et al. [58] analyzing Histogram Equalization (HEQ) in the spatial domain, 

propose a method in wavelet domain to achieve contrast enhancement. They first perform 

the HEQ in the spatial domain and then perform the WT on the equalized image. Then, 

all approximation-coefficients are squared. They claim that this process compensates for 

the information that was lost during the HEQ process. Reeves et al. [59] investigate a WT 

domain filter based on locally adaptive linear minimum mean squared-error (LLMMSE) 

filter to suppress noise and enhance edges. They also apply global HEQ to the image 

represented by the normalized approximation coefficients at the coarsest decomposition 

level. Peng et al. [60] propose an approach using shift invariant wavelet transform for the 

contrast enhancement of radiographs. The edge information of radiographic images is 

extracted and protected by exploiting cross-scale correlation among wavelet coefficients, 
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while noise is smoothed out in the wavelet domain. Radiographs are then reconstructed 

from the transform coefficients modified at multi-scales by nonlinear enhancement 

operator. Qin and El Sakka [61] propose a wavelet-based method for contrast/edge 

enhancement. The proposed method histogram equalizes the image represented by the 

normalized approximation-coefficients, while high-boost filtering the detail-coefficients 

at selected resolution levels separately to achieve robust contrast and edge enhancement. 

In [62], a method to improve the perceptual quality of wavelet compressed images 

has been proposed. They model edges using the edge model of [63]. Edge parameters are 

modified in order to approach them to the ideal edge model. Edges are then 

reconstructed. Since the ideal edge model is not natural, neither are the algorithm results. 

2.2.2 Wavelet-based Image Interpolation Techniques 

Conventional techniques such as spline interpolation, nearest neighbor interpolation, 

bilinear interpolation, cubic convolution, b-spline, and tapered sine [64]-[67] utilize the 

coherence of adjacent points. Although these techniques have advantages in simplicity 

and fast implementation, the result of these interpolations may degrade fine details in an 

image. 

Linear interpolation tries to fit a straight line between two points. This technique 

leads to blurred image. Pixel replication copies neighboring pixel to the empty location. 

This technique tends to produce blocky images. Approaches like spline and sine 

interpolation are proposed to reduce these two extremities. Spline interpolation is 

inherently a smoothing operation, while sine produces ripples (the Gibbs phenomenon) in 

the output image. 

The HVS is highly sensitive to edges, which play a key role in the perception of an 

image as high quality. Therefore, a good interpolation algorithm possesses a requirement 

to correctly reconstruct the original scene edges or at least maintain the sharp edges in the 

scene. Recently, nonlinear interpolation techniques [68]-[74] have been developed to 
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flilfill this requirement. 

Wavelet-based interpolation techniques have been widely used for performing image 

interpolation for more than a decade. The input image is usually treated as the low-pass 

filtered subbands of an unknown wavelet-transformed high-resolution image, and then 

the unknown high-resolution image is produced by estimating the wavelet coefficients of 

the high-pass filtered subbands. The simplest approach is padding of the unknown 

high-pass filtered (detail) subbands with zeros and then taking the inverse wavelet 

transform. It is interesting to note that while this approach is capable of outperforming 

bilinear interpolation, it has never appeared in the literature probably due to its 

simplicity [75]. Nevertheless, various complex techniques have been presented to 

estimate the unknown HF wavelet coefficients to improve the quality of the reconstructed 

images. 

Chang et al. [76] extrapolate the features in textured regions by examining the 

evolution of wavelet transform extrema and important singularities. Large magnitude 

coefficients are selected, since modeling for other coefficients is not easy. A least squares 

error criterion based approach is adopted to determine the corresponding extrema at the 

finest scale. Carey et al. [77] based on the same approach in [76], use the Lipschitz 

property, which states the wavelet coefficients corresponding to large singularities decay 

exponentially over scale [78]. At each index, an exponential fit over scale was used for 

wavelet coefficients to predict the detail coefficients at the finer scale. In both methods, 

only coefficients with large magnitude are used indicating moderate details cannot be 

treated this way. Moreover since the wavelet coefficients are formed by contributions 

from more than one coefficient in a neighborhood determined by the support of the filters 

used in the analysis, edge reforming based on extrema evolution that takes account of 

only significant magnitudes, affect the quality of edge reconstruction. Finally, signs of 

estimated coefficients are replicated directly from 'parent' coefficients without any 

attempt made to estimate the actual signs, implying that signs of the coefficients 
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estimated using extrema evolution techniques cannot be relied upon. 

Crouse et al. [79] propose the use of the Hidden Markov Model (HMM) for 

predicting wavelet coefficients over scales. In the training phase, HMM is trained using 

an image database. They predict the exact coefficient from the observed coefficient of a 

noisy image, for denoising application. The principle used here is that the coarser scale 

coefficients are less affected by noise, while the detail coefficients contain most of the 

noise. The same idea is extended to image zooming by Kinebuchi and Woo [54]. They 

first use a hidden Markov tree model (HMT) to infer the probability of each hidden state 

and corresponding variances. Then, a Gaussian mixture model (GMM) (corresponding to 

the hidden states) is used for each wavelet coefficient and the wavelet coefficients in the 

highest subband are generated randomly (by sampling) using the estimated state 

probabilities and variances. In estimating variances, the property of exponential decay of 

variances was assumed [77] with roughly estimated exponents. 

Greenspan et al. [80] and Burt et al. [81] both utilize the inter-scale dependency 

(mainly related to edges) to extrapolate lost high-frequency components and use 

zero-crossings of the second derivative of smoothed images to locate edges. Based on the 

ideal step edge model, they estimate the interscale relations of edges in order to estimate 

edges at finer scales. 

Interpolation of interlaced sampling structure of the multiple low resolution (LR) 

images utilizing the multiresolutional basis fitting reconstruction (MBFR) technique [84], 

is applied to the wavelet based superresolution problem in [82] and [83]. In [85], MBFR 

is applied to a single LR image. Single LR interpolation does not give satisfactory results 

since a single LR image possesses uniform sampling, which does not suit MBFR. 

The decimated WT is not shift-invariant and, as a result, suppression of wavelet 

coefficients, such as quantization of coefficients during the compression process or 

non-exact estimation of high-frequency subband coefficients, introduces cyclostationarity 

into the image which manifests itself as ringing in the neighborhood of discontinuities 
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[75]. Temizel and Vlachos [75] propose a method in which initially estimated HR image 

via zero padding is shifted and wavelet transformed several times with different amount 

of shifts each time, followed by the inverse wavelet transform and the shift back to their 

original location. The results from each shift-transform cycle is then averaged in order to 

remove the ringing artifacts appeared before cycle-spinning process. 

Celik and Kusetogullari [86] present an interpolation technique using dual-tree 

complex wavelet transform (DT-CWT) [87,88] which exhibits approximate shift 

invariant property and improved directional resolution when compared that of the DWT. 

They estimate HR coefficients using different types of deformations obtained by bilateral 

filtering of the initially estimated HR image with different parameters followed by 

transforming each deformed HR image results, and the resultant HR image is computed 

by averaging the different reconstructions from LR image using different detail wavelet 

coefficient sets. The perceptual and objective quality of resolution enhanced images 

outperforms most recently proposed methods in the field. 
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CHAPTER III 

WAVELET-BASED DYNAMIC RANGE COMPRESSION AND 

LOCAL CONTRAST ENHANCEMENT 

3.1 Introduction 

In this chapter, a new wavelet-based image enhancement algorithm to improve the 

visibility of low quality digital images is introduced. To achieve this aim, the algorithm 

provides dynamic range compression, local contrast enhancement, and color constancy 

simultaneously. 

The proposed enhancement algorithm consists of four main stages, three of which are 

applied in discrete wavelet domain: 

1. Luminance enhancement via dynamic range compression of approximation 

coefficients. 

2. Local contrast enhancement using averaged luminance information of neighboring 

pixels which is inherited to approximation coefficients 

3. Detail coefficients modification. 

4. Color restoration. 

The derivation of the algorithm will be introduced in detail and experimental results 

will be shown in the following sections. Comparisons of the proposed WDRC algorithm 

with other state-of-art techniques will be provided in Chapter 4 after introducing the new 

non-linear color restoration approach. 
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3.2 Dynamic Range Compression 

For input color images, the intensity image I(x,y) can be obtained with the following 

equation: 

I(x,y) = max[/,(x,jOL i e {R,G,B} (3.1) 

This is the definition of the value (V) component in HSV color space. The enhancement 

algorithm is applied on this intensity image. According to 2D discrete wavelet transform, 

the luminance values are decomposed by (3.2): 

k.lez j>Jk,lez ,„ „N 

(3.2) 
+
 X lldv

jXiVv
jXi(x,y) + £ 2ld

dj,k,Wdj,kAx,y) 
j>Jk,lez j>Jk,lez 

where aJk! are the approximation coefficients at scale J with corresponding scaling 

functions ®j kj(x,y),md djjci=(d,d
v
,d) are the detail coefficients at each scale 

with corresponding wavelet functions *F ,-^j (x,y). While the first term on the right-hand 

side of (3.2) represents the coarse-scale approximation to I(x,y), the second, the third, and 

the fourth terms represent the detail components in horizontal, vertical and diagonal 

directions, respectively. 

Based on some assumptions about image formation and human vision behavior, the 

image intensity I(x, y) can be simplified as a product of the reflectance R(x, y) and the 

illuminance L(x, y) at each point (x, y). The illuminance L is assumed to contain the low 

frequency component of the image while the reflectance R mainly includes the high 

frequency component, since R generally varies much faster than L does in most parts of an 

image with a few exceptions, like shadow boundaries. In most cases, the illuminance has 

dynamic range that is several orders larger when compared to reflectance. By compressing 

only the dynamic range of the illuminance and preserving the reflectance, dynamic range 

compression of the image can be achieved [43]. Estimation of illuminance of a scene from 
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an image is a difficult task. Many techniques have been developed to deal with this 

problem [20,24]. Low pass filtered result of the intensity image can be used for this 

purpose [43]. 

The WT, with which any image can be expanded as a sum of its approximate image at 

some scale J along with corresponding detail components at scale J and at finer scales, is 

used especially for dimension reduction in the algorithm. Additionally, the approximate 

image represented by normalized approximation coefficients is used, which can be 

obtained by low pass filtering and down-sampling the original image in the wavelet 

transform, to estimate the down-sampled version of the illuminance. 

A raised hyperbolic sine function given in (3.3) which maps a.j k i from range [0,1] to 

[0,1] is used for compressing the dynamic range represented by the coefficients. 

A hyperbolic sine function for dynamic range compression was chosen since the function 

is 'two-sided' that allows for pull-up of small coefficients and pull-down of large 

coefficients to some extent at the same time. This is consistent with the human visual 

system that has mechanisms through which it can adapt itself allowing good visual 

discriminat ion in all lighting conditions. The normalized and compressed coefficients at 

level/can be obtained by: 

a
J,k,l 

sinh(4.6248ayXl -2.3124)+ 5' 

10 
(3.3) 

where a'Jki are normalized coefficients given by (3.4) and r is the curvature parameter 

which adjusts the shape of the hyperbolic sine function. 

a
J,k,l ~

min
(

a
J,k,l) 

max
(

a
J,kJ ) ~ min

(
a
J,kJ ) 

(3.4) 

In Figure 3.1 the hyperbolic sine function with different curvature parameters is shown. To 

ease the comparison, identity transformation (aJk[ = a'Jkj) is also given. For values of r 
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less than 1, small pixel values are pulled up much more than large pixel values are pulled 

down, and for values greater than 1, it is reversed. The default value of r=0.5 was 

determined which provides good range compression especially in shadowed scenes. Larger 

values of r were determined to be useful for bright scenes with no dark regions and for 

scientific applications such as medical image enhancement especially when the region of 

interest is too bright. 

modified sinh(x) 

Figure 3.1 Modified hyperbolic sine function 

After applying the mapping operator to the coefficients, if the new coefficients are 

de-normalized and the inverse wavelet transform is taken, the result will show a 

compressed dynamic range with a significant loss of contrast. The new image will look 

washed-out. Such an example is shown in Figure 3.2(b). Thus, the local contrast needs to 

be increased to improve the visual quality. 

3.3 Local Contrast Enhancement 

The global contrast enhancement techniques which modify the histogram of the 

image by stretching it or boosting the bright pixels and decreasing the value of dark 
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pixels globally, can not generally produce satisfying results. Those methods have limited 

performance in enhancing fine details especially when there are small luminance 

differences between adjacent pixels. Therefore, the surrounding pixels should be taken 

into account when one pixel is being processed. The "centre/surround ratio" introduced 

by Land [18], and efficiently modified by Jobson et al. [28] was used to achieve the 

compressed dynamic range preserving or even enhancing the local contrast. 

The center/surround ratio is used as a variable gain matrix, by simply multiplying 

with the modified coefficients when the ratio is less than 1 and by applying inverse of this 

matrix as a power transform to the coefficients when the ratio is greater than 1. In such a 

(a) (b) 

(c) (d) 

Figure 3.2 Results of the proposed algorithm at each step, (a) Original image; (b) Range compressed 

image; (c) Local contrast enhanced image; (d) Image with modified detail coefficients. 
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way, the processed images will not suffer either halo artifacts, or saturation caused by 

over-enhancement. In this technique, depending on their surrounding pixel intensity, 

pixels with the same luminance can have different outputs. When surrounded by darker 

or brighter pixels, the luminance of the pixel being processed (the center pixel) will be 

boosted or lowered respectively. As a result, image contrast and fine details can be 

sufficiently enhanced while dynamic range expansion can be controlled without 

degrading image quality. 

The local average image represented by modified approximation coefficients is 

obtained by filtering the normalized coefficients obtained from the wavelet 

decomposition of the original image with a Gaussian kernel. A Gaussian kernel was 

chosen, like in MSRCR, which proved to give good results over a wide range of space 

constants. The standard deviation (also called scale or space constant) of the 2D Gaussian 

distribution determines the size of the surround. The 2D Gaussian function G(x,y) is 

given by: 

G(x,y) = n^ °"2 J (3.5) 

where K is determined by: 

Y,^G(x,y) = l (3.6) 
x y 

and a is the surround space constant. Surround intensity information is obtained by 2D 

convolution of (5) with image A', whose elements are the normalized approximation 

coefficients dJkl given by (3.4) such that: 

M_ N_ 

2 2 

Af(x,y) = A'(x,y)*G(x,y)= £ J A'(x - x', y - y')G(x', ?) (3.7) 
, = _ M ,=_N_ 

2 y 2 
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The ratio between A' and A* determines whether the magnitude of center 

coefficient is higher than the average surrounding intensity or not. If it is higher, the 

corresponding coefficient will be increased, otherwise it will be lowered. As stated above, 

the size of the surrounding, which has a direct effect on the contrast enhancement result, 

is controlled by the space constant <T of the surround function G. The local contrast 

enhancement is carried out as follows: 

255AR2
J
 f o r £ < l 

(3.8) •Anew ' 

255,4 R 2
J
 forR>\ 

where, R is the centre/surround ratio, A is the matrix whose elements are the output of 

the hyperbolic sine function given in (3.3) anAAnewis the new coefficient matrix which 

will replace the approximation coefficients aJki obtained by the decomposition of the 

original image at level J. R is given by: 

R = 

(
A'^ 

(3.9) 

with the parameter d which is an enhancement strength constant with a default value of 1. 

It can be tuned for an optimal result. When it is greater than 1, the result contrast will be 

high with a cost of increased noise. When it is less than 1, the resulting image will have 

less contrast with less noise. The result of the contrast enhancement algorithm after 

taking the inverse WT of the modified coefficients and applying a linear color restoration 

process is given in Figure 3.2(c). ID comparison of the dynamic range compression and 

the contrast enhancement results are also shown in Figure 3.3. The curves in Figure 3.3 

show the average intenstity variations along columns (Figure 3.3(a)) and along rows 

(Figure 3.3(b)) of the original, dynamic range compressed and contrast enhanced 

intensity (gray-level) images given in Figure 3.2, respectively. It is observed in Figure 3.3 
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that the luminance enhancement is achieved by the dynamic range compression and the 

resulting contrast loss is restored or even improved by the contrast enhancement 

technique. 

300 400 
Pixel Locations 

500 600 700 

300 

200 250 300 
Pixel Locations 

500 

Figure 3.3. Average intensity variations. Top: Across columns; 

Bottom: Across rows of the images given in Figure 3.2. 
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The contrast enhancement transformation given in (3.8) consists of two different 

equations: the first is an adaptive multiplicative gain and it is used when the 

centre/surround ratio is less than 1. Multiplication with such a number will decrease the 

coefficients. The second equation is an adaptive power transform with different values 

for each coefficient and is valid when the center coefficient is greater than the local 

average. Since the coefficients are normalized to [0,1] and the term (—<1 ) is always 
R 

satisfied, the power transform given in (3.8) will always produce a higher value but less 

than or equal to 1. This prevents saturation and halo errors that would occur if the first 

equation in (3.8) was used instead. The second equation could be used instead of the first 

one as in AINDANE, but it would not provide as much contrast enhancement as the 

multiplicative gain. 

Using a single scale is incapable of simultaneously providing sufficient dynamic range 

compression and tonal rendition [29]-[31], therefore different scale constants (e.g. small, 

medium, large) of the Gaussian kernel can be used to gather surround information and the 

contrast enhancement process given by (3.5)-(3.9) is repeated for each scale. The final 

output is a linear combination of the new coefficients calculated using these multiple 

scales. This needs three times more calculations compared to using only one scale. 

Instead of using three convolutions, the same result can be approximated using a 

specifically designed Gaussian kernel [40]. Such a kernel, which we name 

'Combined-scale Gaussian (CG)' is a linear combination of three kernels with three 

different scales: 

G(x,y) = ^WkKk-e 

f-(*
2
V) 

a
k 

(3.10) 

with wt=-- The CG kernel obtained using three scales (2, 40, 120) is shown in 
3 

Figure 3.4. 
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Figure 3.4. Spatial form of CG operator. Left: 3-D representation; Right: Cross-section to illustrate the 

surround (both representation are distorted to visualize the surround). 

3.4 Detail Coefficient Modification 

Contrast enhancement through detail coefficient modification is a well-established 

technique and a large variety of applications can be seen in the literature [55]-[56]. In such 

a contrast enhancement technique, the small valued coefficients which also represent the 

noise content, are generally weakened or left untouched while large valued ones are 

strengthened by linear or non-linear curve mapping operators. Determining the threshold 

that separates the small and large coefficients is still an area of interest. Modifications of 

these coefficients can be very sensitive and may lead to undesired noise magnification or 

unpredictable edge deterioration such as jaggy edges. Thus, the inverse WT with the 

modified approximation coefficients will suffer from edge deterioration if the detail 

coefficients are not modified in an appropriate way. 

Considering the linearity property of the discrete WT as a starting point, any changes 

applied for enhancement of approximation coefficients should also be reflected to the 

detail part to prevent edge deterioration. To meet this requirement, the detail coefficients 

are modified using the ratio between the enhanced and original approximation coefficients. 

This ratio is applied as an adaptive gain mask such as: 
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D
h
»ew=^

L
D
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 D\ew=^D

v
 D

d
new=^-D

d (3.11) 
A A A 

where A and Anew are the original and enhanced approximation coefficients at level 1, 

respectively. D
h
,D

v
,D

d are the detail coefficient matrices for horizontal, vertical and 

diagonal details at level 1, and Dnew ,DneJ,Dnew are the corresponding modified 

matrices, respectively. If the wavelet decomposition is carried out for more than one level, 

equation (3.12) is used: 

A A A • 
~h _^newj h nv _ ^new,j n v n r f _ ^newj n d ,-> i - > N 

Aj J Aj Aj 

with/=./,/-1,.. ..2,1. Here Aj and Anewj- is determined by one level reconstruction using 

^•+1and DJ+1 for Aj ; AnewJ+l aadDnewJ+l for AnewJ at each step. Applying the 

wavelet algorithm more than once is computationally inefficient. In the implementations 

one level decomposition for illumination estimation yielded fast results with high visual 

quality. In Figure 3.2(c)-(d) results obtained with and without detail coefficient 

modification are given. The need for this step and the impact of the detail coefficient 

modification is apparent in two examples given in Figure 3.5. 

3.5 Color Restoration 

A linear color restoration process can be used to obtain the final color image. The 

ratio between the original and enhanced luminance image, along with the chromatic 

information of the original image determine the RGB values of the enhanced color 

image IenhJ(x,y): 

W*00 = %^/;(*,>0 i = r,g,b (3.13) 
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where I(x,y)'s are the pixel values of the input intensity image at (x,y) and is determined 

by (3.1); Ii (x,y)' s are the RGB values of the input color image at the corresponding pixel 

locations and Ienh(x,y) 's are the resulting pixels of the enhanced intensity image derived 

from the inverse wavelet transform of the modified coefficients. 

Figure 3.5 Examples showing the effect of detail modification. Original images left, enhancement results 

without and with detail coefficient modification, middle and right images, respectively. 

3.6 Experimental Results 

The proposed algorithm has been applied to process numerous color images captured 

under varying lighting conditions. Digital images used for experiments throughout the 

dissertation research are either taken with a simple commercial camera or obtained from 

publicly available internet resources. From observations, it can be concluded that the 

algorithm is capable of removing shades in high dynamic range images while preserving or 

even enhancing the local contrast. Besides, the produced colors are consistent with the 

colors of the original images. 
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Figure 3.6 Image enhancement results by proposed algorithm. Left column: Original images; 

Right column: Enhanced images. 
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Examples given in Figure 3.6 show that the proposed enhancement algorithm is 

capable of removing shadows and providing better results in terms of visual quality. The 

local contrast is preserved, even improved, in all these examples. The processed images 

are sharper than the original ones. Figure 3.7 shows two examples of the real-world 

scenes that violate the gray-world assumption. Although the scenes are dominated by one 

color channel (mostly-green), the proposed enhancement algorithm can provide results 

having very appealing color rendition and not suffering from graying-out of the uniform 

areas. 

Figure 3.7 Image enhancement results by proposed algorithm. Left column : Original images; Right 

column: Enhanced images. 
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Two examples of scenes that have very rich color mixture are given in Figure 3.8. The 

illumination is also balanced in both scenes. Both enhancement results preserve the color 

information well, providing sharper results. The background that has low illumination in 

the first image becomes more visible with realistic and balanced colors in the enhanced 

image. Both enhanced images are brighter than the original ones. 

Figure 3.8 Image enhancement results by proposed algorithm. Left column: Original images; 

Right column: Enhanced images. 

The WDRC algorithm successfully accomplishes color rendition, dynamic range 

compression with local contrast enhancement simultaneously except for some 

"pathological" scenes that have very strong spectral characteristics in a single band. Two 

examples for such scenes are given in Figure 3.9. Although the enhanced results are 
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sharper than the original images and the colors of the enhanced results are consistent with 

the colors in the original images, they are not the colors observed in real-life scenes. This 

drawback of the proposed algorithm is shared with AINDANE and IRME as well, since 

these algorithms, like the proposed one, exploit only the luminance component of the 

image to be enhanced. The "pathology" in the original image is inherited to the enhanced 

image via linear color restoration process. The algorithm is not "color constant". Color 

Figure 3.9 Enhancement results of the "Pathological images". Left column: Original images; 

Right column: Enhanced images. 

constancy implies the observed scene is independent of the spectral characteristics of the 

illumination to some extent. The scenes in given examples would let the real-world colors 

be more visible. Even though WDRC produces satisfactory results for most natural 

scenes, it cannot discount the illuminant spectral effect due to previously mentioned 
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reasons. Hence, a different approach, which will be introduced in the next Chapter is 

required for the final color restoration process. 

3.7 Summary of the Chapter 

In this chapter, a new wavelet-based image enhancement algorithm for improving the 

visibility of low quality digital images is introduced. The proposed enhancement algorithm 

works on the luminance channel and made up of several steps, some are applied in discrete 

wavelet domain. In the implementation of the algorithm, first a luminance enhancement 

via dynamic range compression of approximation coefficients obtained from the wavelet 

transform of the original image data is proposed. Second, a local contrast enhancement 

process using averaged luminance information of neighboring pixels which is inherited to 

approximation coefficients is applied. Then, detail coefficients are modified according to 

the degree of the enhancement of the approximation coefficients, and finally a linear color 

restoration process to recover the original color of the image. The algorithm provides 

dynamic range compression, local contrast enhancement, and color rendition 

simultaneously for a large variety of natural images except for some "pathological" scenes 

that have very strong spectral characteristics in a single band and for extremely turbid 

images. 
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CHAPTER IV 

WAVELET-BASED DYNAMIC RANGE COMPRESSION AND 

LOCAL CONTRAST ENHANCEMENT WITH COLOR 

RESTORATION 

4.1 Introduction 

As stated in the previous Chapter, the colors of the enhanced images produced by the 

WDRC algorithm are consistent with the colors of the original image, but fails to produce 

color constant results for some "pathological" scenes that have very strong spectral 

characteristics in a single band. The color restoration process which maps the ill 

conditioned recorded scene illuminant spectral distribution in the original image linearly to 

the enhanced image, is the main reason for this drawback. For tackling the color constancy 

problem, a novel technique was developped. The illuminant is modeled with an effect on 

the image histogram as a linear shift and the image histogram is adjusted to discount the 

illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of 

using a linear color restoration, a color restoration process employing the spectral context 

relationships of the original image similar to the process introduced in Jobson et al. [31] 

and Rahman et al. [33] is applied. The scheme of the algorithm is shown in Figure 4.1. 

Image Histogram 

Adjustment in each 

Spectral Channel 

WDRC Enhancement 

Algorithm 

Non-linear Color 

Restoration 

Figure 4.1 WDRC+Color Restoration 
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4.2 Proposed Color Restoration 

The proposed color restoration process consists of the separate steps as depicted in 

Figure 4.1. 

1. Histogram adjustment in each spectral channel of the input image before 

processing with WDRC algorithm. 

2. Producing the triplets values of the enhanced image via a non-linear color 

restoration. 

4.2.1 Histogram Adjustment 

The motivation in making a histogram adjustment for minimizing the illumination 

effect is based on some assumptions about image formation and human vision behavior. 

The sensor signal S(x,y) incident upon an imaging system can be approximated as the 

product [22]: 

S(x,y) = L(x,y)R(x,y), (4.1) 

where R(x,y) is the reflectance and L(x,y) is the illuminance at each point (x,y). In lightness 

algorithms, assuming that the sensors and filters used in artificial visual systems possess 

the same nonlinear property as human photoreceptors [22], i.e., logarithmic responses to 

physical intensities incident on their photoreceptors (4.1) can be decomposed into a sum of 

two components by using the transformation I(x,y) = \og(S(x,y)): 

I(x,y) = log(L(x,y))+log(R(x,y)), (4.2) 

where I(x,y) is the intensity of the image at pixel location (x,y). (4.2) implies that 

illuminance has an effect on the image histogram as a log-linear shift. This shift, 

intrinsically, is not the same in different spectral bands. 

Another assumption of the lightness algorithms is the gray-world assumption stating 

that "the average surface reflectance of each scene in each wavelength band is the same: 
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gray" [22]. From an image processing stance, this assumption indicates that images of 

natural scenes should contain pixels having almost equal average gray levels in each 

spectral band. 

Combining (4.2) with the gray-world assumption, a histogram adjustment is performed 

as follows: 

1. The amount of shift corresponding to illuminance is determined from the beginning 

of the lower tail of the histogram such that a predefined amount (typically 0.5%) of 

image pixels is clipped. 

2. The shift is subtracted from each pixel value. 

3. This process is repeated separately for each color channel. 

4.2.2 Non-linear Color Restoration 

Jobson et al. [29,31] consider a colorimetric transform as a starting point, using ratios 

that are less dependent on illuminant than raw spectro-photometry. They use the following 

color restoration factor (CRF) to achieve the desired rendition: 

at = AlodlfayV^Ifay) 
(4.3) 

where X and C are canonical color gain and color offset values respectively, and a( is 

multiplied with the output of the MSR to produce the color restored MSRCR output. The a,-

factor solves the problem of the graying of areas of constant intensities in MSR processed 

images [29-31]. Application of this factor, along with its impressive results lead to the 

conclusion that the visual information is not only the log of spatial context relationships 

within the image but the spectral context relationships as well. 
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Inspired by MSRCR, a non-linear approach was used to obtain the WDRC output. The 

CRF given in (4.4) is different from the one used in the MSRCR technique in such a way 

that in computing the spectral context ratios only the maximum spectral channel intensity 

at the pixel location (x,y) is used instead of adding each channel intensity. Instead of using 

a logarithmic function a canonical gain is applied as a power transform to the ratios. It 

should also be emphasized that one more distinction of the CRF from the CRF of MSRCR 

is that in MSRCR (4.3) is applied to each color channel of the MSR processed images 

while in WDRC-CR (4.4) is applied to the output intensity image enhanced by WDRC 

without any color restoration process. 

The CRF is determined empirically as in MSRCR after trying several color restoration 

functions on a range of test images. It is given by: 

4,/u =
 a
Je*h>

 a
i = (Ii(x,y)/™a*(li(x,y))) • (4,4) 

where fi is the non-linear gain factor corresponding to the canonical gain of CRF in 

MSRCR. When/? is equal to one the color restoration factor will be same as the linear color 

restoration of the WDRC. This factor has a canonical value as in MSRCR and increases the 

color saturation resulting in a more appealing color rendition. 

4.3 Experimental Results 

The WDRC+CR algorithm has been applied to process many different color images of 

various types, some of which are taken with a standard consumer camera or gathered from 

the internet site [38]. From observations, it can be concluded that the algorithm is capable 

of removing shadows in the high dynamic range images while preserving or even 

enhancing the local contrast well. Additionally, it produces almost color constant results 

much as HVS does. In this chapter, some results obtained by the proposed algorithm that 

demonstrate its ability to produce dynamic range compressed images while preserving 

local contrast, color constancy, and appealing rendition are shown. 
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In Figure 4.2, a computer simulated red, green, and blue illumination is applied to the 

mandrill image. The second row shows the histogram-adjusted images, and the third row 

shows the WDRC processed images of the second row. Histogram adjustment discounts 

the illuminant to a significant degree, mimicking the HVS, whose color constancy 

mechanism does not completely discount illumination variations. Overall enhancement 

results are brighter and sharper than the images of both rows. 

Fidelity, F, is a measure of similarity between two images and given by 

M-lN-l 

X YJ(l1(x,y)-I2(x,y))2 

F( / 1 , / 2 ) = l - ^ = ^ (4.5) 
v l

'
 Z)

 M-lN-l
 v ' 

EI(A(^))
2 

x=0y=0 

Fidelity between an image and itself is 1. In Table 4.1 fidelity results between the 

original image and the images shown in Figure 4.2 is given. Notice that histogram 

adjustment increases fidelity 2-3%, showing the impact of the process on discounting the 

illumination variations. The results given in the third row show the fidelity between the 

WDRC processed results of the original image and the images shown in the second row of 

Figure 4.2. WDRC processed images have fidelity near to 1, indicating the ability of the 

proposed algorithm in producing color constant results. 

Table 4.1 Fidelity experiments. First row: Fidelity between original and simulated images. Second row: 

Fidelity after histogram adjustment. Rows 3-6: Fidelity between the processed original and the processed 

simulated images. The image enhancement algorithms given in the last column are used to enhance the 

original and simulated images. 

F 

Red Illuminated 

0.9517 

0.9721 

0.9933 

0.9639 

0.9604 

0.9679 

Green Illuminated 

0.9666 

0.9839 

0.9941 

0.9673 

0.9691 

0.9768 

Blue Illuminated 

0.9435 

0.9797 

0.9927 

0.9606 

0.9493 

0.9610 

Algorithm 

-

Histogram Adjusted 

WDRC+CR 

MSRCR 

IRME 

AINDANE 
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Figure 4.2 The impact of WDRC+CR on discounting the illumination, (a) Simulated mandrill images with 

red, green, and blue illumination, respectively, (b) Histogram adjusted images obtained from the images of 

first row. (c) WDRC-CR applied to images of the second row. Illumination simulations are obtained using 

PhotoFlair®, a commercial image processing software. Top left: Original image. 

Figure 4.2, along with Table 1, show comparisons between WDRC+CR and other 

non-linear image enhancement algorithms: MSRCR, IRME, and AINDANE. The original 

image and illumination-simulated images are enhanced with various algorithms. MSRCR 

images are produced using PhotoFlair®, commercial software, with the default settings 

except for "white-balance" turned off and IRME and AINDANE results are produced with 

default settings using MATLAB codes provided by the authors. Fidelity results between 

the processed original and processed simulated images show superiority of the proposed 

algorithm in producing color constant results. The enhanced results depicted in Figure 4.3 

show this similarity between the WDRC + CR enhanced images for all type of simulations. 
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(a) 

(b) 

(c) 

(d) 

Figure 4.3. Enhancement results of algorithms applied to original and simulated images given in Figure 4.2. 

(a) WDRC+CR (b) MSRCR (c) IRME (d) AINDANE results. The topmost image is the original. 

Among the enhancement algorithms, MSRCR and AINDANE show an evident contrast 

enhancement. The contrast enhancement of AINDANE is severe causing blackening of an 
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important amount of pixels, while IRME has the poorest local contrast with increased 

average luminance resulting in a hazy appearance. WDRC+CR seems to produce the most 

balanced results in terms of increased local average intensity and increased local contrast. 

The proposed algorithm produces successful results even for the "pathological" scenes 

that have very strong spectral characteristics in a single band. Two examples for such 

scenes are given in Figure 4.4. Notice that WDRC+CR is capable of removing the 

illumination defect in both scenes recovering the original colors, while WDRC can't 

perform well enough to discount the illuminant defect. 

Three more examples for scenes that have very rich color mixture are given in 

Figure 4.5. The illumination in each scene differs from each other such that the scene in 

Figure 4.5(a) has a diffused illumination causing a hazy appearance and saturation, the 

scene in Figure 4.5(b) has a non-uniform illumination because of the shadow cast by the 

truck, and the scene in Figure 4.5(c) has a dark and defocused background due to 

insufficient illumination and distance, respectively. The final results preserve the color 

information well, providing a sharper appearance. The haze is removed in the first 

example, the shadow is eliminated in the second example, and the blurred and dark 

background becomes sharper and more visible with realistic and balanced colors in the 

third example. All of the enhanced images are brighter than the original ones. 

The WDRC+CR algorithm successfully accomplishes color rendition and dynamic 

range compression with local contrast enhancement simultaneously even for 

"pathological" scenes that have very strong spectral characteristics in a single band. It 

overcomes the drawback of WDRC, which is also encountered in other enhancement 

algorithms like AINDANE and IRME in which algorithms perform only the luminance 

component of the image and the final color image is determined via a linear color 

restoration process. The proposed algorithm produces "color constant" results, discounting 

the impact of the illumination variations. The observed scenes in given examples have 

similar colors to those produced by WDRC+CR. 
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(a) 

(b) 

(c) 

Figure 4.4 Enhancement results of the "pathological images." (a) Original images; (b) WDRC enhanced 

images; and (c) WDRC+CR enhanced images 
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Figure 4.5 Results obtained with WDRC+CR. Left column: Original images; Right Column: Enhanced 

images. 
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The WDRC-CR algorithm has also been applied to numerous aerial images with 

different degree of turbidity to show its potential usage in aerial imagery. The results show 

improved clarity i.e. the increased visibility distance for haze, fog, clouds and heavy rain. 

The algorithm works well for images captured in diverse flight conditions. Some examples 

for such conditions are presented in Figure 4.6. The left column in the figure depicts the 

original images and right column shows the enhanced WDRC-CR results. The example in 

Figure 4.6(a) shows a scene with mild haze; the proposed algorithm completely removes 

the haze resulting in sharper image with saturated colors. The scene in Figure 4.6(b) suffers 

from moderate fog with some smoke. Good clarity is achieved and the colors of the scene 

content are restored in the enhanced image. In Figure 4.6(c) an example of scenes with 

clouds and thick fog causing thicker turbidity is depicted. In the enhanced image visibility 

of features is improved significantly. Figure 4.6(d) is an example of a scene with near zero 

visibility. The enhanced images achieve a high level of improvement to feature visibility 

removing the severe turbidity 

In Figure 4.7 a comparison of the proposed algorithm with MSRCR, AINDANE[42], 

IRME [43], and LTSN [45] is given. MSRCR enhanced images are obtained using the 

default settings of PhotoFlair® with white balance preference turned-off. AINDANE, 

IRME, and LTSN results are produced using MATLAB codes with default settings, 

provided by the authors. Results from so-called autolevels enhancement* of the original 

image as well as the MSRCR processed images are also given to show the superiority of 

the proposed algorithm. From Figure 4.7 and from the experiments conducted with many 

other images, it can be inferred that the proposed algorithm outperforms these algorithms, 

providing better visibility enhancement and rendition simultaneously. 

Autolevels is a global image enhancement technique in which image histogram is stretched linearly after 

some portion of its both tails are clipped. For images with narrow histograms autolevels performs quite well 

and produces globally contrast enhanced images. 
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Figure 4.6 The enhancement results for different types of turbidity. 

Left column: Original images; Right column: Enhanced images. 
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Figure 4.7 Comparison of the proposed algorithm with other techniques. Left column, (a) to (d): Original, 

AINDANE, LTSN, Autolevels. Right column, (a) to (d): Proposed method, IRME, MSRCR, 

MSRCR+Autolevels, respectively. 
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4.4 Computational Complexity 

In previous sections, some comparisons of the WDRC-CR processed images with the 

results of other retinex inspired enhancement techniques were shown. In this section, the 

computational complexity of the proposed algorithm is briefly discussed and is compared 

with its retinex based relatives: MSRCR, AINDANE, and IRME. Since the algorithms 

used for comparisons are written on different environment with less or more code 

optimization; run time comparisons would not lead to fair results. Instead of giving run 

times for each algorithm, the computational complexities of the algorithms are calculated. 

The retinex based algorithms which use the centre/surround ratio in some fashion in 

their computations, calculate the surround using discrete spatial convolutions of the input 

images with Gaussian kernels of different scales. Because of high dimensionality of the 

convolutions, those are realized in Fourier domain by transforming the input image and 

the kernels with fast FT (FFT)'s, multiplying FFT transformed data and taking the 

inverse FFT to get the convolution results. Computations of FFT transforms are the main 

factors of the computational complexity. In MSRCR, AINDANE and IRME algorithms, 

full sized images are used in convolutions, while in the proposed algorithm only the 

approximation coefficients dimensionality of which is reduced by factor 4 (by 2 along 

rows and by 2 along columns) after one level Fast WT (FWT) of the intensity image are 

utilized as an input image to convolution. In addition to this, it is important to point out 

that the MSRCR algorithm, in its default settings, is applied to each color channel 

separately with three different scales, whereas AINDANE runs only on the intensity 

image with three scales just as MSRCR, and IRME almost with the same calculations of 

AINDANE, performs its computations for only one scale of Gaussian surround function. 

WDRC is also applied on the luminance channel for one scale but with the reduced 

dimensions. 
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Recalling the computational complexity of FFT for images with N pixels is 

0(Nlog2N) and the complexity of FWT is 0(N) with same orders for inverse transforms, 

the whole computational complexity for each algorithm to produce one pixel of the 

enhanced image of N pixels in calculated. In these calculations, it is assumed that the 

Gaussian kernels are produced directly in Fourier domain, so that it is not required to take 

the forward FT for the Gaussian kernels. For example, in MSRCR algorithm, the number 

of multiplications contributed to the computational complexity of the algorithm from the 

convolutions which are realized as FFT domain multiplications for three distinct scales of 

the surround function will be 9NlogN+9N ( 3NlogN for the forward FT of the input 

image for three color channels, 3NlogN for the inverse FT after multiplying each 

Gaussian kernel produced in Fourier domain with FFT processed color channels of the 

input image and finally 3NlogN for the inverse FT for three distinct scales ). Producing a 

Gaussian kernel directly in the FT domain requires 8N multiplications and 2N 

exponentials for each scale and totally 24N multiplications and 6N exponentials for three 

scales. The overall computational complexity is determined by taking into account the 

gain/offset and color restoration computations. The computational complexities for the 

proposed and the other benchmark algorithms are determined in the same way. 

The results are given in Table 4.2 showing the pace of the proposed algorithm 

compared to other retinex inspired algorithms. To see the impact of different non-linear 

tone-mapping functions on the run time, their run times are measured for ten different 

1024 by 1024 sequences and the results are averaged, which is given in Table 4.3. Using 

the normalized run times of different mapping functions from Table 4.3, computational 

complexity comparison of the algorithms for different sized input images are given in 

Table 4.4. From the table, it is seen that proposed WDRC algorithm with linear color 

restoration is ~10x faster than MSRCR and AINDANE, ~5x faster than IRME, whereas 

WDRC with histogram adjustment and non-linear color restoration is ~3x faster than 
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MSRCR and AINDANE, ~1.5x faster than IRME which is known to be designed for real 

time video processing on PC platforms. 

Table 4.2 Computational complexities of various retinex inspired algorithms for producing one pixel of the 

enhanced image of N pixels. 

Algorithm 

MSRCR 

AINDANE 

IRME 

WDRC 

WDRC-CR 

Computational Complexity / Pixel 

0(36+91og2N) +4 log function+6 exponential 

0(48+41og2N) +6 power transform+6 exponential 

0(31+2.1og2N)+2 power transform+1 log function+2 exponential 

TV 
0(13+0.5 log2— )+0.25 sinh function+0.125power transform 

+0.5 exponential. 

N 
0(21 + 0.5 log2 — )+0.25 sinh function+3.125 power transform 

+ 0.5 exponential. 

Table 4.3 Average run times for ten 1024x1024 length sequences for different mapping functions. 

Function 

Logarithm 

Floating point power transform 

Hyperbolic sine 

Exponential 

Floating point multiplication 

Time 

0.2824 sec. 

0.3848 sec. 

0.2352 sec. 

0.1659 sec 

0.0119 sec. 

~ Normalized Time 

24 

32 

20 

14 

1 
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Table 4.4 Computational complexities of various retinex inspired algorithms for producing one pixel of the 

enhanced image of different sizes. 

Algorithm/Image 

Size 

MSRCR 

AINDANE 

IRME 

WDRC 

WDRC-CR 

256x256 

0(360) 

0(388) 

0(179) 

0(36) 

0(128) 

512x512 

0(378) 

0(396) 

0(181) 

0(37) 

0(129) 

1024x1024 

0(396) 

0(404) 

0(185) 

0(38) 

0(130) 

2048x2048 

0(414) 

0(412) 

0(189) 

0(39) 

0(131) 

4.5 Summary of the Chapter 

In this Chapter, a new color restoration approach for solving the color constancy issue 

of the WDRC method is introduced. The color restoration process which maps the 

ill-conditioned recorded scene illuminant spectral distribution in the original image 

linearly to the enhanced image, is the main reason for this drawback. For tackling the color 

constancy problem a novel technique is proposed. The illuminant is modeled as it has an 

effect on the image histogram as a linear shift and for discounting the effect of the 

illuminant, a histogram adjustment process is proposed. Following the histogram 

adjustment process, the WDRC algorithm is applied for dynamic range compression and 

local contrast enhancement in the luminance channel except for the color restoration. 

Finally instead of using a linear process of the WDRC, a non-linear color restoration 

process employing the spectral context relationships of the original image is applied to the 

enhanced intensity image to produce the enhanced color images. Experiments conducted 

with numerous images show that the proposed algorithm provide an appealing rendition 

and color constancy better than the state-of-the-art methods. The proposed algorithm is 

also computationally more effective than its relatives. 
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CHAPTER V 

WAVELET-BASED IMAGE INTERPOLATION 

5.1 Introduction 

In this Chapter, a new wavelet-based image interpolation algorithm is introduced for 

magnifying the image details so that the visibility is improved. To achieve this aim, the 

algorithm is performed in the WT domain. In all the related work in literature addressed 

previously in Chapter 2, the image in hand is considered a low resolution (LR) image, and 

is treated as the approximation part (i.e. low-pass filtered subband) of an unknown wavelet 

transformed high resolution (HR) image. If one can estimate the detail coefficients (i.e. the 

missing high frequency content) accurately, then it will be possible to obtain the unknown 

HR image by taking the inverse wavelet transform. The proposed interpolation technique 

also exploits this approach and suggests a simple but efficient estimation for the high pass 

filtered subbands. 

Unfortunately producing the exact HR image is not, in general, possible, especially if 

aliasing occurs in sampling the captured the scene content. This is a case encountered 

when the sampling rate is not at least twice the maximum spatial frequency of the scene 

content. As a result, the high frequency information is mixed up with the data at low 

frequencies and it will not be possible to get the original data. Nevertheless, the research 

on developing interpolation methods for estimating HR images that visually and 

statistically approach the actual HR scene still merits interest. 

The proposed interpolation algorithm consists of three distinct steps. 

1. An initial HR image of size twice the LR image is estimated using zero padding of 

the details. 
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2. The HR image is transformed via UWT resulting in four subbands, namely LL, LH, 

HL, HH using a non-orthogonal filter bank. The size of each subband is twice the 

size of the LR image. 

3. In the transformed domain LL subband is replaced with the initially estimated HR 

image and applying the inverse UWT, the final HR image is determined. 

In Section 5.2, the mathematical backgrounds of the UWT are presented. In Section 

5.3, the implementation of the proposed interpolation is introduced. In Section 5.4, the 

results from the experiments on the assessment of the method are illustrated including the 

comparisons with the recent spatial and wavelet domain interpolation techniques along 

with the classical ones. 

5.2 Undecimated Wavelet Transform Using the "a Trous" Algorithm 

The most popular WT algorithm, which is also used in JPEG2000, is the standard 

decimated bi-orthogonal wavelet transform (DWT), since the bi-orthogonal WT gives 

good results in image compression. However, standard DWT is not optimal for other 

applications such as filtering, deconvolution, detection, or more generally, analysis of 

data [91]. The main reason for this is the lack of shift-invariance property in the DWT, 

which leads to many artifacts when an image is reconstructed after modification of its 

wavelet coefficients. Therefore an undecimated wavelet transform (UWT) in which the 

decimation step of the standard DWT is eliminated [92],[93] can be used alternatively for 

other applications such as denoising. In [95], Starck et ah show an improvement by more 

than 2.5dB in denoising via tresholding application using an undecimated transform 

instead of the regular one. 

The undecimated UWT of a ID signal Co, f u s ing the filter bank (h, g) is a set 

W={wi, . . . ,wj, cj } where wj are the wavelet coefficients at scale j and cj are the 

coefficients at the coarsest resolution. The "a trous" (meaning 'with holes' in French) 



63 

algorithm [92]-[94] can be applied in order to obtain wavelet coefficients at one 

resolution from another using the following equations: 

[[l] = {h
U)

 *Cj)[l]=^h[k]cj[l + 2Jk\ 

k 

vj+l[1] = (g
iJ) *cj)[/] = £g[k]C j[l + 2Jk 

(5.1) 

k 

where ' *' is the convolution operator and h [n] = h[- n], n e Z is the time-reversed of the 

discrete-time filter with an impulse response h[n] and /r-" [/] = h[l] if l/2J is an integer 

and 0 otherwise. For example when7=l, 

A(1) = ( ,h[-2],0,h[-l],0,h[0],0,h[l],0,h[2],....) 

The reconstruction of the signal Cjis realized via 

CjV] = - {h(j)
 *cJ + 1 )[l]+(gU)

 *w j+l)[/]] (5.2) 

where h and g are the filters corresponding to analysis filter pairs h and g, respectively. 

The only exact reconstruction condition [91 ] for the filter bank (h,g,h,g)is given by, 

H(z~
l
 )H{z) + G(z~

l
 )G(z) = 1 (5.3) 

where H(z) is the z-transform of a filter h and so on. This condition determines how one 

should design the synthesis type filter bank given the analysis filters providing a higher 

degree of freedom when compared the DWT. 

Extension of the a trous algorithm to 2D is straightforward. 

Cj+l[k,l] = {h^h
(
J^Cj)[k,l] 

w
h
j+l[kJl = (g

U)
h

U)
*Cj)[k,l] 

^ [ k A ^ g ^ ^ c j l k j ]
 ( 5 ' 4 ) 

v
d

j+1[kJ] = (£
U)

g
U)

*Cj)[k,l] w. 
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where hg*c is the convolution of c by the separable filter hg (i.e. convolution first along 

the columns by h and then convolution along the rows by g). At each scale, three wavelet 

images, w
h
,w

v
,w

d each of which has the same size as the original image, representing 

edges of the original image along horizontal, vertical and diagonal directions. 

In [91], it is shown that using non-bi-orthogonal filter banks, one can build the UWT. 

One example to this is: 

A1Z)[*] = [1,4,6,4,1]/16 ,k = [-2,..,2] 

h[k,l] = h
lD

[k]h
W

[l] (5.5) 

g[k,l] = S\_k,l]-h[k,l] 

where Sis defined as S[0,0] = 1 and S[k,l] = 0 otherwise. This filter bank is one 

widely used in analyzing the astronomical data. Following the exact reconstruction 

condition, it can be shown that for the above analysis filter bank h =g = S can be taken 

as synthesis filters yielding perfect reconstruction. Then just by co-additions of all scales 

perfectly reconstruct the original image: 

J 3 

c0[k,l] = cj[k,l]+ X 2>?[*,/] (5.6) 
j=ln=l 

where n stands for the three orientations at each scale. 

As previously stated, the non-subsampled nature of the decomposition allows one to 

reconstruct the original image from its wavelet transform in many ways. For a given filter 

bank (h,g), any filter bank (h, g) which satisfies the reconstruction condition given in 

(5.3), can be used in the reconstruction to obtain the original image. For example, for the 

analysis filters given in (5.5), h = h and g = S + h also constitute the prototype for the 

synthesis filter bank. For h=[l 4 6 4 1]/16 corresponding reconstruction filter 

g =[1 4 22 4 1]/16 is positive implying it is no longer related to a wavelet function 

[91]. 



65 

Figure 5.1 Three-level decomposition of Eintein image using UWT with the filter bank given in (5.5). Top 

row: Original and approximation image. 2
nd-4th Row: Images of horizontal, vertical and diagonal 

coefficients each column representing level 1-3 from left to right respectively. Detail images are amplified 

for the display purpose. 
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A signal can also be constructed from its Haar wavelet coefficients using the same 

approach. The Haar filters are h=[0.5 0.5] g=[-0.5 0.5], while the corresponding synthesis 

filters are determined such that if h = [1 4 6 4 1]/16 is chosen as a smoothing synthesis 

filter, g = [1,6,16,-6,-1] can be obtained following (5.3). In Figure 5.1a three-level UWT 

decomposition of Einstein image using the filter bank (5.5) is illustrated to show the 

capability of the filters in locating the edge features. 

5.3 Implementation of the Proposed Algorithm 

The first step in the implementation is wavelet domain zero padding (WZP) for an 

initial estimation of HR image. In WZP the unknown HR image is estimated by zero 

padding the high-frequency subbands and taking the inverse wavelet transform using the 

standard DWT. If the LR image in hand is denoted with s of size mxn, then the the initial 

estimate of the HR image is: 

x = IDWT\ 
S "mxn 

.^mxii "mxn 

(5.7) 

where 0 m x n is the zero matrix of size mxn and IDWT is the inverse decimated wavelet 

transform. In this implementation, the famous JPEG2000 standard CDF 9/7 filterbank is 

used for taking the inverse transform. 

Although the results of the WZP interpolation introduce some blur into the 

reconstructed image due to low pass nature of the filters used in the inverse transform and 

lack of the high frequency components, it achieves higher PSNR values over bicubic 

interpolation and even over the sophisticated method of Carey et al. [77,96]. By successful 

estimation of the high-frequency subband coefficients, it is possible to improve the visual 

quality of the reconstructed images as well as the PSNR values indicating how close the 

produced images are to the actual HR images. 
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The decimated wavelet transform is not shift-invariant and, as a result, non-exact 

estimation of high-frequency subband coefficients introduces cyclostationarity into the 

image which manifests itself as ringing in the neighborhood of discontinuities [75]. Celik 

and Kusetogullari [86] present an interpolation technique using the dual-tree complex 

wavelet transform (DT-CWT) [87,88] that exhibits approximate shift invariant property 

and improved directional resolution when compared that of the DWT. In this 

implementation, the UWT is employed to the WZP-produced HR images in order to 

provide a good estimation for the detail coefficients in the second step of the proposed 

technique. The filter bank given in (5.5) is used and one-level decomposition is applied to 

the WZP processed image to produce the estimated coefficients. 

In the third step, the approximation coefficients obtained from the UWT 

decomposition are replaced with the WZP processed image in a different way to those 

techniques appear in literature in which the LR image in hand is taken as the 

low-frequency subband of the DWT. Finally taking the inverse UWT, the estimated final 

HR image is produced. The scheme of the proposed algorithm is illustrated in Figure 5.2 

where UWT"1 indicates the inverse undecimated wavelet transform. 

Initially Estimated 

HR Image 

Coefficient 

Padding 

Estimated 

Details 

Approximation 

Coefficients 

UWT-

Estimated 

HR Image 
• 

Figure 5.2 The proposed interpolation algorithm. 
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5.4 Experimental Results and Discussion 

5.4.1 Performance Evaluation 

In this research's experiments, two different image quality metrics between the 

original HR images and the reconstructed images from the simulated LR images are 

utilized to provide objective performance comparisons: 

(1) Peak Signal-to-Noise Ratio (PSNR) 

(2) Universal Quality Index [97]. 

PSNR used to show the closeness of the reconstructed image to the original reference 

image is defined in decibels and given by 

(I \ 
PSNR = 201og10

 J
^ (5.8) 

\ £ ) 

where 7m a x is equal to 255 for 8-bit images and e is the root-mean-square (rms) error 

given by: 

e = ̂ Z{Y(x,y)-X(x,y))
2 (5.9) 

where Y{x, y) is the original image andX(x, y) is the reconstructed image. TV is the number 

of pixels in the image. 

Wang and Bovik [97] propose a universal image quality index (QI) that indicates the 

similarity between the reference image and the processed one. The QI is defined as: 

£ = — ! ^ Z (5.10) 

(o*+o*Xx
2
+y

2
) 
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7 9 

where x and y are the mean values while ox and <Jy indicate variances of the 

reference and processed images, respectively and <7™ is the covariance between the 

two images. 

2 JV j JV 

X = Vx,- ,V= V v ; (5.11) 
1 = 1 1 = 1 

2 = 1 1 = 1 

1 N 

Cxy = -T7— X(*i ~ x ) (^ ' ~ >0 (5-13> 

To,--x)
2 ,<yi = — y 

. ~ V l
 '

 y
 N-l^i 

2 = 1 1 = 1 

N 

2 

i= l 

where xt and yt represent the image pixel values in each image. The range of the Q 

index is [-1,1] in which 1 is the best value calculated if two images are identical. The 

quality index constitutes a measure for determining the distortion as a combination of 

three different factors, i.e. loss of correlation, luminance and contrast distortions. (5.10) is 

rewritten as a product of three components as: 

Q = ̂ _.2^.J^_ (514) 

The correlation between x and y is measured by the first component of (5.14), how close 

the mean luminance is between x and y is calculated as the second component, and the 

degree of contrast similarity is determined by the third component. 

In addition to the objective quality assessment, the results from the proposed method, 

along with the other state-of-the-art interpolation techniques are illustrated to show the 

degree of the visual quality of the proposed method. 
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5.4.2 Experimental Results 

In this research's experiments, six test images of size 512x512 are used and are 

illustrated in Figure 5.3 to show the capability of the proposed algorithm. These images 

are chosen for comparison since they are widely used for this purpose in literature 

because they provide both high and low frequency content simultaneously. The LR 

images are simulated from the images shown in Figure 5.3 by low-pass filtering with a 

3x3 average filter as a point spread function (PSF) of the imaging system and down 

sampling by 2 along each dimension. 

«M«H 

Figure 5.3 Test images:Left-to-right, Top row: Peppers, Bridge, Elaine. 

Bottom row: Barbara, Boat; and Lena. 
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The power of an interpolation algorithms can then determined based on how much 

the estimated HR image resembles the actual HR image visually by simply showing the 

interpolation results from the proposed method and statistically using the two metrics 

introduced in the previous section. Comparisons between the proposed and other 

techniques are provided, that are two well-known conventional techniques, bilinear and 

bicubic interpolation, two wavelet domain techniques [75,86] and two state-of-the-art 

spatial domain edge-based interpolation techniques [69,74] along with the WZP 

interpolation. The implementation of the benchmark algorithms is as follows. 

For bilinear and bicubic interpolations MATLAB® functions are used, [69] and [74] 

are realized with the MATLAB® codes provided by the authors, and the method in [75] 

is implemented. WZP is also implemented since it is one of the steps in [75] as well as 

the proposed algorithm. Some of the published results for [86] are also shown. 

As stated previously, WZP is realized with the CDF 9/7 filters. In the second step of the 

algorithm, i.e. the estimation of the detail coefficients employs the filter bank of (5.5) and 

the synthesis filters h = h and g = S + h for the inverse UWT at the final reconstruction 

step. 

In Figure 5.4 an example of the interpolation result is shown. In the figure the HR and 

simulated LR Barbara images, the result from the proposed algorithm applied to the LR 

image along with the initial WZP estimated HR image are given to illustrate the impact of 

the algorithm. Notice how the UWT based detail estimation improves the visual quality of 

the initially estimated HR image. Local contrast and sharpness of the WZP-processed 

images are improved after introducing the estimated details while most of distortions in the 

LR images are removed. However, the aliasing of the high frequency texture of the 

Barbara's scarf occurred due to the sampling of the data below the Nyquist rate, appears as 

in the LR image, is still an issue in the reconstructed image. This issue cannot be solved, 
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unless HR images are reconstructed from multiple LR images; such a process, which is 

known as superresolution is out of the scope of this dissertation. 

i 

Figure 5.4 The result of the interpolation algorithm. Top left: Original image. Top right: Simulated LR 

image. Bottom left: WZP result. Bottom right: Final reconstructed image 

The PSNR values resulting from the various interpolation methods are given in 

Table 5.1, while the Quality Index comparison is illustrated in Table 5.2. The PSNR and QI 

values are calculated with excluding the 10 pixels from the borders of the processed images 
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in order to make a fair comparison, since for the methods of [69] and [74], the codes 

provided by the authors do not handle the pixels at the border of the images. From both 

tables it can be inferred that the proposed algorithm outperforms other methods. 

Table 5.1 The PSNR(dB) results for various interpolation methods. The LR images are simulated from 

corresponding HR images using an average filter of size 3x3 and downsampling by 2 in both dimensions. 

Test 

Images 

Peppers 

Bridge 

Elaine 

Barbara 

Boat 

Lena 

METHODS 

Bilinear 

29.83 

24.64 

30.71 

23.92 

26.86 

29.70 

Bicubic 

30.29 

25.07 

31.04 

24.12 

27.34 

30.22 

NEDI 

[69] 

32.24 

25.66 

32.23 

24.45 

28.50 

32.38 

EGI 

[74] 

32.54 

25.99 

32.43 

24.61 

28.73 

32.59 

CS [75] 

33.02 

26.58 

32.73 

24.81 

29.27 

33.29 

Method 

in [86] 

33.75 

26.60 

33.00 

25.13 

29.80 

33.93 

Proposed 

33.84 

27.46 

33.08 

25.39 

30.19 

34.39 

Table 5.2 The Quality Index[97] results for the same experiment explained within the caption of Table 5.1. 

Test 

Images 

Peppers 

Bridge 

Elaine 

Barbara 

Boat 

Lena 

METHODS 

Bilinear 

0.6532 

0.6637 

0.6138 

0.6043 

0.6072 

0.6793 

Bicubic 

0.6766 

0.7080 

0.6356 

0.6335 

0.6429 

0.7087 

NEDI 

[69] 

0.6862 

0.7237 

0.6418 

0.6600 

0.6609 

0.7290 

EGI 

[74] 

0.6980 

0.7455 

0.6529 

0.6563 

0.6779 

0.7419 

CS [75] 

0.7187 

0.7825 

0.6727 

0.6811 

0.7042 

0.7661 

Method 

in [86] 

0.73 

0.79 

0.69 

0.71 

0.73 

0.79 

Proposed 

0.7449 

0.8439 

0.7078 

0.7364 

0.7521 

0.8071 
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In Figure 5.5 and Figure 5.6, the original Peppers and Bridge images are shown as well 

as the interpolation results for both images respectively to illustrate the degree of the visual 

quality of the proposed interpolations. It can be seen from the figures that among all the 

interpolation results, the closest to the original ones in terms of local contrast and 

illumination are the the result of the proposed algorithm. Bilinear and bicubic result suffer 

from blurring. While methods of [69] and [74] both uses edge-based interpolation 

techniques they provide good interpolations especially along strong edges producing thin 

edges in the processed images, however they cannot provide sufficient sharpness for the 

entire texture of the image scene [74]. The main reason for this is, they are both designed 

assuming the LR image formation is by dirac sampling, in which LR image is obtained by 

simply downsampling the original image discarding every other pixel along both rows and 

columns. It seems that it is more realistic to assume a low pass filter as a PSF in the LR 

image formation. The Cycle Spinning method [75] uses WZP interpolation in its method in 

such a way that by shifting the WZP-processed image and taking the forward and inverse 

DWT of it for several distinct shifts to get rid of the ringing artifacts that appear along the 

strong edges of the WZP-processed images. Therefore, the images produced by this 

method almost have the same appearance with WZP processed images except for a mild 

improvement around the edges. The resulting sharpness of the images is not as good as the 

one produced by the proposed algorithm. 

In Figure 5.7, another comparison example is given to illustrate the effectiveness of 

the proposed method. In the figure, the residual images, i.e. the difference image between 

the reconstructed image and the ground truth image are shown. Clearly, the proposed 

algorithm produces the best result when compared to the benchmark methods. 

In Figure 5.8, two examples for color image interpolation are shown. The PSNR and QI 

values are also provided for the comparison. The interpolations are carried out in each 

color channel separately. Again the highest quantities are produced by the proposed 

method. 
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(a) Original 

(b) Bilinear (d) NEDI[69] 

(e) EGI[74] (f) Cycle Spinning [75] (g) Proposed 

Figure 5.5 Interpolation results of the image Peppers. 
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(b) Bilinear 

(a) Original 

(c) Bicubic (d) NEDI[69] 

(e) EGI[74] (f) Cycle Spinning [75] (g) Proposed 

Figure 5.6 Interpolation results of the image Bridge 
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(a) Original 

(c) Bilinear 

(f) EGI [74] 

(d) Bicubic (e) NEDI[69] 

(g) Cycle Spinning [75] (h) Proposed 

Figure 5.7 Comparison of the residual images between the original Elaine image and images reconstructed 

from LR Elaine image. 
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(al) Original (bl)PSNR:33.38 QI:0.65 (cl)PSNR:36.15 QI:0.66 

(dl) PSNR:36.55 QL0.68 (el) PSNR:37.18 QI:0.71 (fl) PSNR:38.13 QI:0.76 

(a2) Original (b2)PSNR:33.38 QI:0.65 (c2)PSNR:36.15 QI:0.66 

(d2) PSNR:36.55 QI:0.68 (e2) PSNR:37.18 QL0.71 (f2) PSNR:38.13 QI:0.76 

Figure 5.8: The subjective and quantitative performance comparisons (a) Original images, Splash andF16. 

(b) Bicubic (c) NEDI [69] (d) EGI [74] (e) Cycle Spin [75] (f) Proposed. 
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Finally, in Figure 5.9 and Figure 5.10, two more image enhancement results are 

presented to show what will happen if the interpolation method introduced in this Chapter 

and the WDRC algorithm of Chapters 3-4 are applied together to enhance the feature 

visibility in images that suffer from poor visibility. The algorithms may be applied 

sequentially; first the proposed interpolation followed by the WDRC enhancement. 

Figure 5.9: The proposed interpolation followed by the proposed enhancement results. 

Top left: Original image, top: Interpolated image, bottom: Enhanced image 
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Figure 5.10: The proposed interpolation followed by the proposed enhancement results. Left column top to 

bottom row: Original, interpolated and enhanced images, respectively. Right column: Magnified portions of 

the images on the left column. 
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From Figures 5.9 and 5.10, it is obvious that the interpolation when applied with the 

enhancement algorithms provides a very powerful tool, which can be used in many image 

processing applications, especially for the ones in which visibility of the image features is 

crucial. 

5.5 Summary of the Chapter. 

In this Chapter, a new wavelet-based image interpolation algorithm was introduced for 

magnifying the image details so that the visibility is improved. The algorithm takes the 

low resolution image as the low-pass filtered subband of an unknown wavelet 

transformed high resolution image. Then, an initial high resolution image of size twice 

the LR image is estimated using zero padding of the details. The HR image is 

transformed via UWT resulting in four subbands, three of which are related with the high 

frequency components of the image. In the UWT domain, the LL subband is replaced 

with the initially estimated HR image and applying the inverse UWT, the final HR image 

is determined. Experiments conducted with both gray level and color images showed the 

superiority of the proposed algorithm over the state-of-the-art interpolation methods. 
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CHAPERVI 

CONCLUSIONS AND FUTURE WORK 

In this chapter, the major contributions of the dissertation are summarized and 

possible future work is suggested for further improvement of the proposed algorithms. 

6.1 Conclusions 

In this dissertation, two wavelet domain image enhancement techniques were 

developed for visibility improvement of digital images. In the first technique, a general 

purpose image enhancement algorithm based on the retinex theory has been developed. 

The second technique deals with the image interpolation problem for visibility 

improvement of the fine features in the image again in the wavelet domain. 

A wavelet-based image enhancement algorithm for dynamic range compression and 

local contrast enhancement, WDRC, is proposed. The dynamic range compression and 

the local contrast enhancement are realized on the luminance channel in the transformed 

domain. The image luminance is enhanced by dynamic range compression of the 

approximation coefficients successfully using a raised hyperbolic sine curve, then a 

neighborhood depended contrast enhancement process which utilizes the centre/surround 

ratio of the Retinex theory is employed to recover the contrast loss occurred due to range 

compression. The detail coefficients are also modified according to the degree of the 

enhancement of the approximation coefficients to preserve the edge regularity and finally 

a linear color restoration process is applied in order to recover the original colors in the 

image. Experiments have shown that the proposed algorithm provides dynamic range 

compression, local contrast enhancement, and color rendition simultaneously for a large 

variety of natural images except for some "pathological" scenes that have very strong 
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spectral characteristics in a single band such as extremely turbid images. Although the 

enhanced results are sharper than the original images and the colors of the enhanced 

results are consistent with the colors in the original images, they are not the colors 

observed in real-life scenes. This drawback of the proposed algorithm is shared with 

AINDANE and ERME, as well, since these algorithms, like the proposed one, exploit 

only the luminance component of the image and restore the colors through a linear 

process. 

In Chapter 4, a new color restoration approach for solving the color constancy issue 

of the WDRC method is introduced. The color restoration process which maps the 

ill-conditioned recorded scene illuminant spectral distribution in the original image 

linearly to the enhanced image, is the main reason for this drawback. For tackling the 

color constancy problem a novel technique is proposed. The illuminant is modeled as it 

has an effect on the image histogram as a linear shift and for discounting the effect of the 

illuminant, a histogram adjustment process is proposed. Following the histogram 

adjustment process, the WDRC algorithm is applied for dynamic range compression and 

local contrast enhancement in the luminance channel except for the color restoration. 

Finally instead of using a linear process of the WDRC, a non-linear color restoration 

process employing the spectral context relationships of the original image is applied to 

the enhanced intensity image to produce the enhanced color image. Experiments 

conducted with numerous images show that the proposed algorithm provides appealing 

rendition and color constancy better than the state-of-the-art methods. The proposed 

algorithm is also computationally more effective than other retinex based enhancement 

techniques. 

In this dissertation research, a new wavelet-based image interpolation algorithm was 

also developed for magnifying the image details so that the visibility of the tiny features is 

improved. The algorithm takes the LR image as the low-pass filtered subband of an 

unknown wavelet transformed high resolution image. Then an initial HR image of size 
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twice the LR image is estimated using zero padding of the details. The HR image is 

transformed via UWT resulting in four subbands, three of which are related with the high 

frequency components of the image. In the UWT domain, the LL subband is replaced 

with the initially estimated HR image and applying the inverse UWT, the final HR image 

is determined. Experiments conducted with both gray level and color images show the 

superiority of the proposed algorithm over the state-of-the-art interpolation methods. The 

interpolation algorithm along with the WDRC-CR can be used to improve the visibility 

of details in the image. 

6.2 Future Work 

For improving the proposed algorithms, some complementary work is introduced for 

future investigation. 

The impact of the enhancement algorithm is based on either introducing new high 

frequency components to the image or improving the existing ones. When the LR image 

is noisy, the contrast enhancement or an increase in the sharpness will inevitably increase 

the noise. Although this fact was encountered during experiments with the images taken 

by a simple commercial camera, the behavior of the proposed enhancement on noisy 

images for different noise levels has not been thoroughly investigated. It is important to 

determine this balance for further applications including the impact of the proposed 

algorithm on segmentation or edge detection in noisy images. Furthermore, an 

improvement to the WDRC algorithm can be proposed to handle the noisy images 

suppressing the noise while keeping the local contrast and sharpness high. 

Most of the existing interpolation techniques also discard the noise in the original 

image. However, in practice this is not generally valid because noise will be introduced in 

the image acquisition process. Denoising the noisy image first followed by the 

interpolation may be an approach but this may not lead to satisfying results due to some 
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artifacts (blur, block effects, etc) caused by the denoising process. These artifacts will 

further be amplified in the interpolation stage. Therefore, a new algorithm that can 

implement denoising and interpolation simultaneously can also be developed as a further 

research work. 
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	Recommended Citation


	ProQuest Dissertations

